‘® redhat.

OpenShift Enterprise
2
Deployment Guide

Installing and Configuring OpenShift Enterprise

Red Hat OpenShift Documentation
Team

OpenShift Enterprise 2 Deployment Guide

Installing and Configuring OpenShift Enterprise

Red Hat OpenShift Documentation Team

Legal Notice

Copyright © 2017 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Deployment Guide provides information on the initial installation and configuration of OpenShift
Enterprise. This document describes a typical deployment withRed Hat Enterprise Linux Server 6.6
or greater as the underlying platform. Some of the configuration settings described must be
modified to suit your requirements. This document covers the following: Introductory information that
includes hardware and software prerequisites, architecture information, upgrading from previous
installations, and general information about the sample installation. Instructions on how to install and
configure broker hosts and all necessary components and services. Instructions on how to install
and configure node hosts and all necessary components and services. Information on how to test
and validate an OpenShift Enterprise installation, and install and configure a developer workstation.
This document is intended for experienced system administrators.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Chapter 1. Introduction to OpenShift Enterprisecciiiiiiiernnns

1.1. Product Features
1.2. What's New in Current Release

Chapter 2. PrerequUisitescciiiiirnirnnrnirntrnrrnrnarnnrnnrnnns

2.1. Supported Operating Systems
2.2. Hardware Requirements
2.3. Red Hat Subscription Requirements

Chapter 3. Architecture ittt ittt i trnnaraacarnnns

3.1. Communication Mechanisms
3.2. State Management

3.3. Redundancy

3.4. Security

Chapter 4. Upgrading from Previous Versionscotiiinrnnernnns

4.1. Upgrade Tool

4.2. Preparing for an Upgrade

4.3. Upgrading from OpenShift Enterprise 1.2 to OpenShift Enterprise 2.0
4.4. Upgrading from OpenShift Enterprise 2.0 to OpenShift Enterprise 2.1
4.5. Upgrading from OpenShift Enterprise 2.1 to OpenShift Enterprise 2.2

Chapter 5. Host Preparationcciiiiiiiiriniinrnnrnnrnncnnrnnns

5.1. Default umask Setting

5.2. Network Access
5.2.1. Custom and External Firewalls
5.2.2. Manually Configuring an iptables Firewall
5.2.3. IPv6 Tolerance

5.3. Configuring Time Synchronization

5.4. Enabling Remote Administration

Chapter 6. Deployment Methodscc.iiiiiiiiiiiii it innennnns

6.1. Using the Installation Utility
6.2. Using the Installation Scripts
6.2.1. Selecting Components to Install
6.2.2. Selecting a Package Source
6.2.3. Selecting Password Options
6.2.4. Setting Broker and Supporting Service Parameters
6.2.5. Setting Node Parameters
6.2.6. Deploying Sample Broker and Node Hosts Using openshift.sh
6.2.7. Performing Required Post-Deployment Tasks
6.3. Using the Sample Deployment Steps
6.3.1. Service Parameters
6.3.2. DNS Information

Chapter 7. Manually Installing and Configuring a Broker Host

7.1. Configuring Broker Host Entitlements
7.1.1. Using Red Hat Subscription Management on Broker Hosts
7.1.2. Using Red Hat Network Classic on Broker Hosts
7.2. Configuring Yum on Broker Hosts
7.3. Installing and Configuring BIND and DNS
7.3.1. Installing BIND and DNS Packages
7.3.2. Configuring BIND and DNS

Table of Contents

10
11

.................... 13

13
13
15
20
25

.................... 33

33
33
33
34
35
36
37

.................... 38

38
42
43
44
45
47
48
49
50
51
52
53

.................... 54

54
54
56
56
58
59
59

Deployment Guide

7.3.2.1. Configuring Sub-Domain Host Name Resolution 60
7.3.2.2. Configuring Host Name Resolution 62
7.3.3. Verifying the BIND Configuration 63
7.4. Configuring DHCP and Host Name Resolution 63
7.4.1. Configuring the DHCP Client on the Broker Host 64
7.4.2. Verifying the DHCP Configuration 64
7.5. Installing and Configuring MongoDB 64
7.5.1. Installing MongoDB 65
7.5.2. Configuring MongoDB 65
7.5.3. Configuring MongoDB User Accounts 66
7.6. Installing and Configuring ActiveMQ 67
7.6.1. Installing ActiveMQ 67
7.6.2. Configuring ActiveMQ 68
7.6.3. Verifying the ActiveMQ Configuration 69
7.7. Installing and Configuring MCollective Client 70
7.7.1. Installing MCollective Client 70
7.7.2. Configuring MCollective Client 70
7.8. Installing and Configuring the Broker Application 71
7.8.1. Installing the Broker Application 71
7.8.2. Setting Ownership and Permissions for MCollective Client Configuration File 71
7.8.3. Modifying Broker Proxy Configuration 72
7.8.4. Configuring the Required Services 72
7.8.5. Configuring the Standard SELinux Boolean Variables 74
7.8.6. Configuring the Broker Domain 75
7.8.7. Configuring the Broker Datastore 75
7.8.8. Configuring the Broker Plug-ins 75
7.8.9. Configuring OpenShift Enterprise Authentication 76
7.8.10. Configuring Bundler 77
7.8.11. Verifying the Broker Configuration 78
Chapter 8. Continuing Broker Host Installation for Enterprisec.ciiiiiiiiiiinnrrnnnans 79
8.1. Installing and Configuring DNS Plug-ins 79
8.1.1. Installing and Configuring the Fog DNS Plug-in 79
8.1.2. Installing and Configuring the DYN® DNS Plug-in 80
8.1.3. Configuring the nsupdate DNS Plug-in for Compatible DNS Services 81
8.2. Configuring User Authentication for the Broker 81
8.2.1. Authenticating Using htpasswd 82
8.2.2. Authenticating Using LDAP 82
8.2.3. Authenticating Using Kerberos 83
8.2.4. Authenticating Using Mutual SSL 84
8.2.5. Integrating Active Directory Authentication with Identity Management 87
8.3. Separating Broker Components by Host 91
8.3.1. BIND and DNS 91
8.3.2. MongoDB 92
8.4. Configuring Redundancy 92
8.4.1. BIND and DNS 93
8.4.2. Authentication 93
8.4.3. MongoDB 93
8.4.4. ActiveMQ 96
8.4.4.1. Configuring a Network of ActiveMQ Brokers 97
8.4.4.2. Verifying a Network of ActiveMQ Brokers Using the ActiveMQ Console 100
8.4.4.3. Configuring MCollective for Redundant ActiveMQ Services 101
8.4.5. Broker Web Application 102

Q K InctallinAa and Manfimirina tha Maar Dlaramant DA in 1N2

Table of Contents

Q.. 1Al iy airiu wullliyuliliiy uic ocail riavciiiciit riuy-mi LU0
8.5.1. Developing and Implementing a Custom Gear Placement Algorithm 105
8.5.2. Example Gear Placement Algorithms 107

8.6. Using an External Routing Layer for High-Availability Applications 110
8.6.1. Selecting an External Routing Solution 111
8.6.2. Configuring the Sample Routing Plug-In 114
8.6.3. Configuring a Routing Daemon or Listener 116
8.6.4. Enabling Support for High-Availability Applications 124

8.7. Integrating with External Single Sign-on (SSO) Providers 126

8.8. Backing Up Broker Host Files 128

8.9. Management Console 128
8.9.1. Installing the Management Console 128
8.9.2. Creating an SSL Certificate 129

8.10. Administration Console 130
8.10.1. Installing the Administration Console 130
8.10.2. Accessing the Administration Console 130
8.10.3. Configuring Authentication for the Administration Console 132

8.11. Clearing Broker and Management Console Application Cache 134

Chapter 9. Manually Installing and Configuring Node Hosts ot innannnnns, 136

9.1. Configuring Node Host Entitlements 136
9.1.1. Using Red Hat Subscription Management on Node Hosts 137
9.1.2. Using Red Hat Network Classic on Node Hosts 139

9.2. Configuring Yum on Node Hosts 140

9.3. Creating a Node DNS Record 142

9.4. Configuring Node Host Name Resolution 142

9.5. Configuring the Node Host DHCP and Host Name 143

9.6. Installing the Core Node Host Packages 144

9.7. Installing and Configuring MCollective on Node Hosts 144
9.7.1. Facter 145

9.8. Installing Cartridges 146
9.8.1. Installing Web Cartridges 146
9.8.2. Installing Add-on Cartridges 147
9.8.3. Installing Cartridge Dependency Metapackages 147

9.9. Configuring SSH Keys on the Node Host 148

9.10. Configuring Required Services on Node Hosts 149
9.10.1. Configuring PAM 150
9.10.2. Configuring Cgroups 151
9.10.3. Configuring Disk Quotas 152
9.10.4. Configuring SELinux 153
9.10.5. Configuring System Control Settings 154
9.10.6. Configuring Secure Shell Access 155
9.10.7. Configuring the Port Proxy 155
9.10.8. Configuring Node Settings 156
9.10.9. Updating the Facter Database 157

9.11. Enabling Network Isolation for Gears 157

9.12. Configuring Node Hosts for xPaaS Cartridges 158

9.13. Configuring Gear Profiles (Sizes) 159
9.13.1. Adding or Modifying Gear Profiles 160

9.14. Configuring Districts 161
9.14.1. Creating a District 162
9.14.2. Viewing a District 163

9.15. Importing Cartridges 163

Deployment Guide

Chapter 10. Continuing Node Host Installation for Enterprise

10.1. Front-End Server Proxies
10.1.1. Configuring Front-end Server Plug-ins
10.1.2. Installing and Configuring the HTTP Proxy Plug-in
10.1.2.1. Changing the Front-end HTTP Configuration for Existing Deployments
10.1.3. Installing and Configuring the SNI Proxy Plug-in
10.1.4. Installing and Configuring the Websocket Proxy Plug-in
10.1.5. Installing and Configuring the iptables Proxy Plug-in
10.2. Enabling Seamless Gear Migration with Node Host SSH Keys
10.2.1. rsync Keys
10.2.2. SSH Host Keys
10.3. SSL Certificates
10.3.1. Creating a Matching Certificate
10.3.2. Creating a Properly Signed Certificate
10.3.3. Reusing the Certificate
10.4. Idling and Overcommitment
10.4.1. Manually Idling a Gear
10.4.2. Automated Gear Idling
10.4.3. Automatically Restoring Idled Gears
10.5. Backing Up Node Host Files

Chapter 11. Testing an OpenShift Enterprise Deployment

11.1. Testing the MCollective Configuration
11.2. Testing Clock Skew

11.3. Testing the BIND and DNS Configuration
11.4. Testing the MongoDB Configuration

Chapter 12. Configuring a Developer Workstationc.ccciiiirinnnennns

12.1. Configuring Workstation Entitlements

12.2. Creating a User Account

12.3. Installing and Configuring the Client Tools

12.4. Configuring DNS on the Workstation

12.5. Configuring the Client Tools on a Workstation

12.6. Using Multiple OpenShift Configuration Files

12.7. Switching Between Multiple OpenShift Environments
12.8. Creating a Domain and Application

Chapter 13. OpenShift Enterprise by Red Hat Offline Developer Virtual Machine Image
13.1. Downloading the Image
13.2. Using the Image

Chapter 14. Customizing OpenShift Enterprisecciiiiiiiiirinnnrnnns

14.1. Creating Custom Application Templates
14.2. Customizing the Management Console
14.3. Configuring the Logout Destination

Chapter 15. Asynchronous ErrataUpdatescoiiiiinnnrnnerrnnnrnnns

15.1. Applying Asynchronous Errata Updates

Appendix A. ReVIiSiON HiStoryouiiiiiii ittt ii s asna s aa e aennnnns

164
165
165
167
168
170
170
171
171
171
173
173
174
175
175
175
176
176
176

178
178
178
179
179

181
181
181
181
182
182
182
183
183

185
185
185

187
187
188
188

190
191

Chapter 1. Introduction to OpenShift Enterprise

Chapter 1. Introduction to OpenShift Enterprise

Openshift Enterprise by Red Hat is a Platform as a Service (PaaS) that provides developers and IT
organizations with an auto-scaling, cloud application platform for deploying new applications on secure,
scalable resources with minimal configuration and management overhead. OpenShift Enterprise supports a
wide selection of programming languages and frameworks, such as Java, Ruby, and PHP. Integrated
developer tools, such as Eclipse integration, JBoss Developer Studio, and Jenkins, support the application life
cycle.

Built on Red Hat Enterprise Linux, OpenShift Enterprise provides a secure and scalable multi-tenant
operating system for today's enterprise-class applications while providing integrated application runtimes and
libraries.

OpensShift Enterprise brings the OpenShift PaaS platform to customer data centers, enabling organizations to
implement a private PaaS that meets security, privacy, compliance, and governance requirements.

1.1. Product Features

OpensShift Enterprise automates hosting, configuration, deployment, and administration of application stacks
in an elastic cloud environment. Both system administrators and developers benefit with an open source
Platform-as-a-Service solution to deliver applications.

Benefits of Platform-as-a-Service

Ease of administration With OpenShift Enterprise, system administrators no longer have to
create development, testing, and production environments. Developers
can create their own application stacks using the OpenShift Enterprise
Management Console, client tools, or the REST API.

Choice Developers can choose their tools, languages, frameworks, and services.

Automatic scaling With OpenShift Enterprise, applications can scale out as necessary,
adjusting resources based on demand.

Avoid lock-in Using standard languages and middleware runtimes means that

customers are not tied to OpenShift Enterprise, and can easily move to
another platform.

Multiple clouds OpenShift Enterprise can be deployed on physical hardware, private
clouds, public clouds, hybrid clouds, or a mixture of these, allowing full
control over where applications are run.

1.2. What's New in Current Release

For a complete list of all the new features available in the current release of OpenShift Enterprise, see the

New features that are available in the current release are documented in the respective sections of this book.

https://access.redhat.com/site/documentation

Deployment Guide

Chapter 2. Prerequisites

2.1. Supported Operating Systems

A base installation of Red Hat Enterprise Linux Server 6.6 or later is required to install OpenShift Enterprise 2.
Red Hat recommends a "Basic Server" configuration for the base installation, although other configurations
are sufficient as a starting point.

Red Hat Enterprise Linux 6 is included with OpenShift Enterprise subscriptions. See Section 2.3, “Red
Hat Subscription Requirements” for more information.

At this time, OpenShift Enterprise 2 is only compatible with Red Hat Enterprise Linux Server 6. Future
versions will be compatible with Red Hat Enterprise Linux Server 7.

2.2. Hardware Requirements

Although the instructions in this document have been primarily tested on Kernel-based Virtual Machines
(KVMSs), the instructions also apply to other environments.

The following hardware requirements apply to all hosts, whether configured as a broker or as a node. The
hardware requirements are applicable to both physical and virtual environments.

AMD®64 or Intel® 64 architecture
Minimum 1 GB of memory
Minimum 8 GB of hard disk space

Network connectivity

2.3. Red Hat Subscription Requirements

To access the repositories required to install OpenShift Enterprise, your Red Hat account must have active
OpenShift Enterprise subscriptions. These subscriptions are available as supported or unsupported
evaluations, or they can be purchased by contacting Red Hat Sales. See

OpenShift Enterprise subscriptions include the following Red Hat products:
Red Hat Enterprise Linux 6 Server
Red Hat Software Collections 1
OpenShift Enterprise Infrastructure (broker and supporting services)

OpenShift Enterprise Application Node

https://www.openshift.com/products/enterprise/try-enterprise

Chapter 2. Prerequisites

OpensShift Enterprise Client Tools
JBoss Enterprise Web Server 2

In addition, the JBoss Enterprise Application Platform for OpenShift Enterprise add-on subscription, which
provides the JBoss EAP premium cartridge, includes the following Red Hat products:

JBoss Enterprise Application Platform 6
Red Hat OpenShift Enterprise JBoss EAP add-on

Support for the products included in supported evaluation and purchased OpenShift Enterprise subscriptions
is provided by Red Hat Global Support Services (GSS). See the OpenShift Enterprise Support Policy at

Evaluation subscriptions may be bundled differently than purchased subscriptions. Contact Red Hat
Sales for the latest information.

https://access.redhat.com/support/policy/updates/openshift/policies

Deployment Guide

Chapter 3. Architecture

OpenShift Enterprise consists of several components. This section provides information about the primary
components, and the various configurations described in this guide. The diagrams in subsequent sections
depict elements using the following legend:

Enmpnnent Architectural component

Daemon Long-running daemon process

Client Library call or short-lived process
Endpoint Public component endpoint
Internal component interface
Host Virtual or physical host

Figure 3.1. OpenShift Enterprise Components Legend

An OpensShift Enterprise deployment consists of two logical types of hosts: a broker and one or more nodes.
The broker handles the creation and management of user applications, the user authentication service, and
manages communication with the appropriate nodes. The nodes run the user applications in contained
environments called gears. The broker queries and controls nodes using a messaging service. The following
diagram provides a simplified version of the interaction between these two types of hosts:

REST API

Messaging

Figure 3.2. OpenShift Enterprise Host Types

Chapter 3. Architecture

The OpenShift Enterprise security model assumes that broker and node components are installed on
separate hosts. Running a broker and node on the same host is not supported.

3.1. Communication Mechanisms

Communication from external clients, such as the client tools or the Management Console, occurs through the
REST API that is hosted by the broker. The broker then communicates to the nodes using the messaging
service component. MCollective queries a set of nodes and communicates securely with individual nodes.
The following diagram provides a high-level description of this communication:

Incoming API Call

v

REST API
Broker

Rails Application MCollective Client

Messaging

ActiveMQ

MNode

MCollective Agent Cartridge

Figure 3.3. OpenShift Enterprise Communication Mechanisms

3.2. State Management

The broker is responsible for managing persistent data for OpenShift Enterprise using three distinct interfaces
that represent the complete state. Three interfaces are used because each data store is pluggable and each
type of data is usually managed by a separate system. The following table describes each section of
application data.

Table 3.1. Sections of Application Data

‘ Section Description

State This is the general application state where the data is stored using MongoDB by
default.
DNS This is the dynamic DNS state where BIND handles the data by default.

Deployment Guide

‘ Section Description

Auth This is the user state for authentication and authorization. This state is stored using
any authentication mechanism supported by Apache, such as mod_auth_Idap and
mod_auth_kerb.

REST API
Broker

Rails Application

)
- - -

MongoDB BIND LDAP or KDC

Figure 3.4. OpenShift Enterprise State Management

3.3. Redundancy

OpensShift Enterprise incorporates redundancy where each architectural component can be configured
redundantly. The broker applications themselves are stateless and can be set up behind a simple HTTP load
balancer. The messaging tier is also stateless, and MCollective can be configured to use multiple ActiveMQ
endpoints. Multiple MongoDB instances can be combined into a replica set for fault tolerance and high-
availability. This is illustrated in the following diagram:

Load Balancer

v

REST API

-

.
L

MeongoDB
Replica Set

Messaging

ActiveMQ ==mmm ArtiveMQ

10

Chapter 3. Architecture

Figure 3.5. Implementing Redundancy in OpenShift Enterprise

This guide focuses on providing a functional installation, and for the sake of simplicity, does not cover how to
implement redundancy with the various components. It describes how to install the broker, data stores, and
messaging components on one system, while the node is configured on a separate system. The following
diagram displays the resulting system topology:

Host 1 Host 2

REST API Node

Broker McCollective Agent

Rails Application

ri
Cartridge))

MCollective Client

MongoDB

Messaging

ActiveMQ

Figure 3.6. Simplified OpenShift Enterprise Installation Topology

3.4. Security

The OpenShift Enterprise multi-tenancy model is based on Red Hat Enterprise Linux, and it provides a
secure isolated environment that incorporates the following three security mechanisms:

SELinux

SELinux is an implementation of a mandatory access control (MAC) mechanism in the Linux
kernel. It checks for allowed operations at a level beyond what standard discretionary access
controls (DAC) provide. SELinux can enforce rules on files and processes, and on their actions
based on defined policy. SELinux provides a high level of isolation between applications running
within OpenShift Enterprise because each gear and its contents are uniquely labeled.

Control Groups (cgroups)

Control Groups allow you to allocate processor, memory, and input and output (I/O) resources
among applications. They provide control of resource utilization in terms of memory consumption,
storage and networking 1/O utilization, and process priority. This enables the establishment of
policies for resource allocation, thus ensuring that no system resource consumes the entire system
and affects other gears or services.

Kernel Namespaces

Kernel namespaces separate groups of processes so that they cannot see resources in other
groups. From the perspective of a running OpenShift Enterprise application, for example, the
application has access to a running Red Hat Enterprise Linux system, although it could be one of
many applications running within a single instance of Red Hat Enterprise Linux.

11

Deployment Guide

OpenShift Node Architecture

It is important to understand how routing works on a node to better understand the security architecture of
OpenShift Enterprise. An OpenShift Enterprise node includes several front ends to proxy traffic to the gears
connected to its internal network.

The HTTPD Reverse Proxy front end routes standard HTTP ports 80 and 443, while the Node.js front end
similarly routes WebSockets HTTP requests from ports 8000 and 8443. The port proxy routes inter-gear
traffic using a range of high ports. Gears on the same host do not have direct access to each other. See

In a scaled application, at least one gear runs HAProxy to load balance HTTP traffic across the gears in the
application, using the inter-gear port proxy.

Mode Host

Gear 3 Gear 2 Gear1 Reverse-Proxy

MyApsrholiudcom

Haade_Hast_IP_sadnes

Server
F m {Apache with mod_prexy)

Front-emd Server Plugin
MyDBE NotMyApp MyApp
HySaL JBoss EAP Apache PHP -
Local 127.0.31 127.0.2.1 127.0.1.1
Leapoack K Y e 0 Bn0 APP User Host
Web Browser
Bbtp A ppriciaud . cam

IPTable Block Port Proxy

liptables)

Maode_Host_|P_Address

JDBC (or other)
HTTP y

The OpenShift Enterprise security model assumes that broker and node components are installed on
separate hosts. Running a broker and node on the same host is not supported.

12

Chapter 4. Upgrading from Previous Versions

Chapter 4. Upgrading from Previous Versions

The following sections describe how to upgrade from previous major or minor versions to the most current
supported version of OpenShift Enterprise using the ose -upgrade tool. If you are deploying OpenShift

specific update instructions.

Upgrades across major or minor versions must be taken one upgrade at a time. For example, to upgrade
from 2.0 to 2.2, you must first use the ose -upgrade tool to upgrade from 2.0 to 2.1, then use the tool again
to upgrade from 2.1 to 2.2.

These upgrade processes require outages:
Broker services are disabled during the upgrade.

Applications are unavailable during certain steps of the upgrade. During the outage, users can still access
their gears using SSH, but should be advised against performing any Git pushes. See the section on your
relevant upgrade path for more specific outage information.

Although it may not be necessary, Red Hat recommends rebooting all hosts after an upgrade. Due to the
scheduled outage, this is a good time to apply any kernel updates that are included.

The updated OpensShift Enterprise packages are distributed in new channel repositories on Red Hat Network
so that the upgrade process occurs in a prescribed order, and to avoid accidental upgrades with a yum
update command.

4.1. Upgrade Tool

The upgrade process is managed as a series of steps that vary depending on the type of host, and is guided
by the ose-upgrade tool.

Each step typically consists of one or more scripts to be executed and varies depending on the type of
host.

Upgrade steps and scripts must be executed in a given order, and are tracked by the ose-upgrade tool.
The upgrade tool tracks all steps that have been executed and those that have failed. The next step or
script is not executed when a previous one has failed.

Failed steps can be reattempted after the issues are resolved. Note that only scripts that previously failed
are executed again, so ensure you are aware of the impact and that the issue has been resolved
correctly. If necessary, use the - -skip option to mark a step complete and proceed to the next step.
However, only do this when absolutely required.

The ose-upgrade tool log file is stored at /var/log/openshift/upgrade.log for review if required.

At any time, use the ose-upgrade status command to list the known steps and view the next step that
must be performed. Performing all the steps without pausing with the ose-upgrade all command is only
recommended for node hosts. For broker hosts, Red Hat recommends that you pause after each step to
better understand the process, and understand the next step to be performed.

4.2. Preparing for an Upgrade

The following instructions describe how to prepare OpenShift Enterprise for an upgrade.

13

Deployment Guide

Procedure 4.1. To Prepare OpenShift Enterprise for an Upgrade:

14

1.

Perform the required backup steps before starting with the upgrade. Only proceed to the next step
after the backup is complete, and the relevant personnel are notified of the upcoming outage.

Disable any change management software that is being used to manage your OpenShift Enterprise
installation configuration, and update it accordingly after the upgrade.

If a configuration file already exists on disk during an update, the RPM package that provides the file
does one of the following, depending on how the package is built:

Backs up the existing file with an . rpmsave extension and creates the new file.
Leaves the existing file in place and creates the new file with an . rpmnew extension.

Before updating, find any . rpm* files still on disk from previous updates using the following
commands:

updatedb
locate --regex '\.rpm(save|new)$'

Compare these files to the relevant configuration files currently in use and note any differences.
Manually merge any desired settings into the current configuration files, then either move the . rpm*
files to an archive directory or remove them.

Before attempting to upgrade, ensure the latest errata have been applied for the current minor
version of your OpenShift Enterprise installation. Run the yum update command, then check again
for any new configuration files that have changed:

yum update -y
updatedb
locate --regex '\.rpm(save|new)$'

Resolve any . rpm* files found again as described in the previous step.

Additional steps may also be required depending on the errata being applied. For more information
on errata updates, see the relevant OpenShift Enterprise Release Notes at

Restart any services that had their configuration files updated.

Run the oo-admin-chk script on a broker host:
oo-admin-chk

This command checks the integrity of the MongoDB datastore against the actual deployment of
application gears on the node hosts. Resolve any issues reported by this script, if possible, prior to
performing an upgrade. For more information on using the oo -admin-chk script and fixing gear
discrepancies, see the OpenShift Enterprise Troubleshooting Guide at

Run the oo-diagnostics script on all hosts:
oo-diagnostics

Use the output of this command to compare after the upgrade is complete.

http://access.redhat.com/site/documentation
http://access.redhat.com/site/documentation

Chapter 4. Upgrading from Previous Versions

4.3. Upgrading from OpenShift Enterprise 1.2 to OpenShift Enterprise 2.0

The following instructions describe how to upgrade from OpenShift Enterprise 1.2 to OpenShift Enterprise
2.0. The 2.0 upgrade packages are located in new channel repositories on Red Hat Network. The first
upgrade step, the begin step, adjusts the yum configurations in preparation for the upgrade. Red Hat
recommends that you perform this step in advance of the scheduled outage to ensure any subscription
issues are resolved before you proceed with the upgrade.

Procedure 4.2. To Bootstrap the Upgrade and Perform the begin Step:

1. The openshift-enterprise-release RPM package includes the ose-upgrade tool that guides you
through the upgrade process. Install the openshift-enterprise-release package on each host, and
update it to the most current version.

yum install openshift-enterprise-release

2. The begin step of the upgrade process applies to all hosts, and includes those hosts that contain
only supporting services such as MongoDB and ActiveMQ. Hosts using Red Hat Subscription
Management (RHSM) or Red Hat Network (RHN) Classic are unsubscribed from the 1.2 channels
and subscribed to the new 2.0 channels.

A Warning

This step assumes that the channel names come directly from Red Hat Network. If the
package source is an instance of Red Hat Satellite or Subscription Asset Manager and the
channel names are remapped differently, you must change this yourself. Examine the scripts
in the /usr/1ib/ruby/site_ruby/1.8/0se-upgrade/host/upgrades/2/ directory
for use as models. You can also add your custom script to a subdirectory to be executed with
the ose-upgrade tool.

In addition to updating the channel set, modifications to the yum configuration give priority to the
OpenShift Enterprise, Red Hat Enterprise Linux, and JBoss repositories. However, packages from
other sources are excluded as required to prevent certain issues with dependency management that
occur between the various channels.

Run the begin step on each host. Note that the command output is different depending on the type
of host. The following example output is from a broker host:

ose-upgrade begin

INFO: OpenShift broker installed.
INFO: Setting host step 'begin' status to UPGRADING
INFO: Starting upgrade number 2 to version 2.0.

[...]
INFO: Setting host step 'begin' status to COMPLETE
INFO: To continue the upgrade, install a specific upgrade package.

Procedure 4.3. To Install the Upgrade RPM Specific to a Host:

1. Depending on the host type, install the latest upgrade RPM package from the new OpenShift
Enterprise 2.0 channels. For broker hosts, install the openshift-enterprise-upgrade-broker package:

15

Deployment Guide

yum install openshift-enterprise-upgrade-broker

For node hosts, install the openshift-enterprise-upgrade-node package:

yum install openshift-enterprise-upgrade-node

If the package is already installed because of a previous upgrade, it still must be updated to the latest
package version for the OpenShift Enterprise 2.0 upgrade.

2. The ose-upgrade tool guides the upgrade process by listing the necessary steps that are specific tc
the upgrade scenario, and identifies the step to be performed next. The ose-upgrade status
command, or ose-upgrade, provides a current status report. The command output varies
depending on the type of host. The following example output is from a broker host:

ose-upgrade status

INFO: OpenShift broker installed.
Current upgrade is number 2 to version 2.0.
Step sequence:
begin pre outage rpms conf maintenance_mode pending_ops
confirm_nodes data gears end_maintenance_mode post
Next step is: pre
Procedure 4.4. To Perform the pre Step on Broker and Node Hosts:
1. The pre step manages the following actions:
Backs up OpensShift Enterprise configuration files.
Clears pending operations older than one hour. (Broker hosts only)
Performs any pre-upgrade datastore migration steps. (Broker hosts only)

Updates authorization indexes. (Broker hosts only)

Run the pre step on one broker host and each node host:
ose-upgrade pre

When one broker host begins this step, any attempts made by other broker hosts to run the pre step
simultaneously will fail.

2. After the pre step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.5. To Perform the outage Step on Broker and Node Hosts:

1. The outage step stops services as required depending on the type of host.

A Warning

The broker enters outage mode during this upgrade step. A substantial outage also begins for
applications on the node hosts. Scaled applications are unable to contact any child gears
during the outage. These outages last until the end_maintenance_mode step is complete.

16

Chapter 4. Upgrading from Previous Versions

Perform this step on all broker hosts first, and then on all node hosts. This begins the broker outage,
and all communication between the broker host and the node hosts is stopped. Perform the outage
step with the following command:

ose-upgrade outage

After the command completes on all hosts, node and broker hosts can be upgraded simultaneously
until the upgrade steps are complete on all node hosts, and the broker host reaches the
confirm_nodes step.

2. For all other hosts that are not a broker or a node host, run yum update to upgrade any services
that are installed, such as MongoDB or ActiveMQ:

yum update

Procedure 4.6. To Perform the rpms Step on Broker and Node Hosts:

The rpms step updates RPM packages installed on the node host, and installs any new RPM packages
that are required.

Run the rpms step on each host:

ose-upgrade rpms

Procedure 4.7. To Perform the conf Step on Broker and Node Hosts:

The conf step changes the OpenShift Enterprise configuration to match the new codebase installed in
the previous step. Each modified file is first copied to a file with the same name plus a .ugsave
extension and a timestamp. This makes it easier to determine what files have changed.

Run the conf step on each host:

ose-upgrade conf

A Warning

If the configuration files have been significantly modified from the recommended configuration,
manual intervention may be required to merge configuration changes so that they can be used
with OpensShift Enterprise.

Procedure 4.8. To Perform the maintenance_mode Step on Broker and Node Hosts:
The maintenance_mode step manages the following actions:

Configures the broker to disable the APl and return an outage notification to any requests. (Broker
hosts only)

Starts the broker service and, if installed, the console service in maintenance mode so that they
provide clients with an outage notification. (Broker hosts only)

Clears the broker and console caches. (Broker hosts only)

Enables gear upgrade extensions. (Node hosts only)

17

Starts the ruby193-mcollective service. (Node hosts only)

Run the maintenance_mode step on each host:

ose-upgrade maintenance_mode

Procedure 4.9. To Perform the pending_ops Step on a Broker Host:

1. The pending_ops step clears records of any pending application operations; the outage prevents
them from ever completing. Run the pending_ops step on one broker host. Do not run this
command on multiple broker hosts at the same time. When one broker host begins this step, any
attempts made by other broker hosts to run the pending_ops step simultaneously will fail:

ose-upgrade pending_ops

2. After the pending_ops step completes on the first broker host, run the command on any remaining
broker hosts.

Procedure 4.10. To Perform the confirm_nodes Step on Broker Hosts:

1. The confirm_nodes step attempts to access all known node hosts to determine whether they have
all been upgraded before proceeding. This step fails if the maintenance_mode step has not been
completed on all node hosts, or if MCollective cannot access any node hosts.

Run the confirm_nodes step on a broker host:

ose-upgrade confirm_nodes

2. If this step fails due to node hosts that are no longer deployed, you may need to skip the
confirm_nodes step. Ensure that all node hosts reported missing are not actually expected to
respond, then skip the confirm_nodes step with the following command:

ose-upgrade --skip confirm_nodes

Procedure 4.11. To Perform the data Step on Broker Hosts:

1. The data step runs a data migration against the shared broker datastore. Run thedata step on one
broker host:

ose-upgrade data

When one broker host begins this step, any attempts made by other broker hosts to run the data
step simultaneously will fail.

2. After the data step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.12. To Perform the gears Step on Broker Hosts:

1. The gears step runs a gear migration through the required changes so that they can be used in
OpenShift Enterprise 2.0. Run the gears step on one broker host:

ose-upgrade gears

Chapter 4. Upgrading from Previous Versions

When one broker host begins this step, any attempts made by other broker hosts to run the gears
step simultaneously will fail.

2. After the gears step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.13. To Perform the test_gears_complete Step on Node Hosts:

The test_gears_complete step verifies the gear migrations are complete before proceeding. This
step blocks the upgrade on node hosts by waiting until the gears step has completed on an associated
broker host. Run the test_gears_complete step on all node hosts:

ose-upgrade test_gears_complete

Procedure 4.14. To Perform the end_maintenance_mode Step on Broker and Node Hosts:

1. The end_maintenance_mode step starts the services that were stopped in the
maintenance_mode step or added in the interim. It gracefully restarts httpd to complete the node

host upgrade, and restarts the broker service and, if installed, the console service. Complete this step
on all node hosts first before running it on the broker hosts:

ose-upgrade end_maintenance_mode
2. Run the oo-accept-node script on each node host to verify that it is correctly configured:

o0o-accept-node

Procedure 4.15. To Perform the post Step on Broker Hosts:
1. The post step manages the following actions on the broker host:
Performs any post-upgrade datastore migration steps.
Publishes updated district UIDs to the node hosts.
Clears the broker and console caches.

Run the post step on a broker host:
ose-upgrade post

When one broker host begins this step, any attempts made by other broker hosts to run the post
step simultaneously will fail.

2. After the post step completes on the first broker host, run it on any remaining broker hosts.

3. The upgrade is now complete for an OpenShift Enterprise installation. Run oo-diagnostics on
each host to diagnose any problems:

oo-diagnostics

Known Upgrade Issues

Although the goal is to make the upgrade process as easy as possible, some known issues must be
addressed manually:

19

Deployment Guide

1. Because Jenkins applications cannot be migrated, follow these steps to regain functionality:
a. Save any modifications made to existing Jenkins jobs.
b. Remove the existing Jenkins application.
¢. Add the Jenkins application again.

d. Add the Jenkins client cartridge as required.

o

Reapply the required modifications from the first step.

2. There are no natifications when a gear is successfully migrated but fails to start. This may not be a
migration failure because there may be multiple reasons why a gear fails to start. However, Red Hat
recommends that you verify the operation of your applications after upgrading. The service
openshift-gears status command may be helpful in certain situations.

4.4. Upgrading from OpenShift Enterprise 2.0 to OpenShift Enterprise 2.1

The following instructions describe how to upgrade from OpenShift Enterprise 2.0 to OpenShift Enterprise
2.1. The 2.1 upgrade packages are located in distinct channel repositories on Red Hat Network. The first
upgrade step, the begin step, adjusts the yum configurations in preparation for the upgrade. Red Hat
recommends that you perform this step in advance of the scheduled outage to ensure any subscription
issues are resolved before you proceed with the upgrade.

Procedure 4.16. To Bootstrap the Upgrade and Perform the begin Step:

1. The openshift-enterprise-release RPM package includes the ose-upgrade tool that guides you
through the upgrade process. Install the openshift-enterprise-release package on each host, and
update it to the most current version.

yum install openshift-enterprise-release

2. The begin step of the upgrade process applies to all hosts, and includes those hosts that contain
only supporting services such as MongoDB and ActiveMQ. Hosts using Red Hat Subscription
Management (RHSM) or Red Hat Network (RHN) Classic are unsubscribed from the 2.0 channels
and subscribed to the new 2.1 channels.

A Warning

This step assumes that the channel names come directly from Red Hat Network. If the
package source is an instance of Red Hat Satellite or Subscription Asset Manager and the
channel names are remapped differently, you must change this yourself. Examine the scripts
in the /usr/1ib/ruby/site_ruby/1.8/0se-upgrade/host/upgrades/3/ directory
for use as models. You can also add your custom script to a subdirectory to be executed with
the ose-upgrade tool.

In addition to updating the channel set, modifications to the yum configuration give priority to the
OpenShift Enterprise, Red Hat Enterprise Linux, and JBoss repositories. However, packages from
other sources are excluded as required to prevent certain issues with dependency management that
occur between the various channels.

Run the begin step on each host. Note that the command output is different depending on the type
of host. The following example output is from a broker host:

20

Chapter 4. Upgrading from Previous Versions

ose-upgrade begin

INFO: OpenShift broker installed.

INFO: Setting host step 'begin' status to UPGRADING

INFO: Starting upgrade number 3 to version 2.1.

[...]

INFO: updating /etc/openshift-enterprise-release

INFO: Setting host step 'begin' status to COMPLETE

INFO: To continue the upgrade, install a specific upgrade package.

The oo-admin-yum-validator --oo-version 2.1 --fix-all command is run
automatically during the begin step. When using RHN Classic, the command does not
automatically subscribe a system to the OpenShift Enterprise 2.1 channels, but instead
reports the manual steps required. After the channels are manually subscribed, running the
begin step again sets the proper yum priorities and continues as expected.

Procedure 4.17. To Install the Upgrade RPM Specific to a Host:

1. Depending on the host type, install the latest upgrade RPM package from the new OpenShift
Enterprise 2.1 channels. For broker hosts, install the openshift-enterprise-upgrade-broker package:

yum install openshift-enterprise-upgrade-broker

For node hosts, install the openshift-enterprise-upgrade-node package:

yum install openshift-enterprise-upgrade-node

If the package is already installed because of a previous upgrade, it still must be updated to the latest
package version for the OpenShift Enterprise 2.1 upgrade.

2. The ose-upgrade tool guides the upgrade process by listing the necessary steps that are specific tc
the upgrade scenario, and identifies the step to be performed next. The ose-upgrade status
command, or ose-upgrade, provides a current status report. The command output varies
depending on the type of host. The following example output is from a broker host:

ose-upgrade status

INFO: Openshift broker installed.
Current upgrade is number 3 to version 2.1.
Step sequence:
begin pre outage rpms conf maintenance_mode pending_ops
confirm_nodes data gears end_maintenance_mode post
Next step is: pre

Procedure 4.18. To Perform the pre Step on Broker and Node Hosts:
1. The pre step manages the following actions:

Backs up OpensShift Enterprise configuration files.

21

Deployment Guide

Clears pending operations older than one hour. (Broker hosts only)
Performs any pre-upgrade datastore migration steps. (Broker hosts only)

Run the pre step on one broker host and each node host:

ose-upgrade pre

When one broker host begins this step, any attempts made by other broker hosts to run the pre step
simultaneously will fail.

2. After the pre step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.19. To Perform the outage Step on Broker and Node Hosts:

1. The outage step stops services as required depending on the type of host.

A Warning

The broker enters outage mode during this upgrade step. A substantial outage also begins for
applications on the node hosts. Scaled applications are unable to contact any child gears
during the outage. These outages last until the end_maintenance_mode step is complete.

Perform this step on all broker hosts first, and then on all node hosts. This begins the broker outage,
and all communication between the broker host and the node hosts is stopped. Perform the outage
step with the following command:

ose-upgrade outage

After the command completes on all hosts, node and broker hosts can be upgraded simultaneously
until the upgrade steps are complete on all node hosts, and the broker host reaches the
confirm_nodes step.

2. For all other hosts that are not a broker or a node host, run yum update to upgrade any services
that are installed, such as MongoDB or ActiveMQ:

yum update

Procedure 4.20. To Perform the rpms Step on Broker and Node Hosts:

The rpms step updates RPM packages installed on the host, and installs any new RPM packages that are
required. For node hosts, this includes the recommended cartridge dependency metapackages for any

for more information about cartridge dependency metapackages.

Run the rpms step on each host:

ose-upgrade rpms

Procedure 4.21. To Perform the conf Step on Broker and Node Hosts:

22

Chapter 4. Upgrading from Previous Versions

The conf step changes the OpenShift Enterprise configuration to match the new codebase installed in
the previous step. Each modified file is first copied to a file with the same name plus a .ugsave
extension and a timestamp. This makes it easier to determine what files have changed.

Run the conf step on each host:

ose-upgrade conf

A Warning

If the configuration files have been significantly modified from the recommended configuration,
manual intervention may be required to merge configuration changes so that they can be used
with OpensShift Enterprise.

Procedure 4.22. To Perform the maintenance_mode Step on Broker and Node Hosts:
The maintenance_mode step manages the following actions:

Configures the broker to disable the APl and return an outage notification to any requests. (Broker
hosts only)

Starts the broker service and, if installed, the console service in maintenance mode so that they
provide clients with an outage notification. (Broker hosts only)

Clears the broker and console caches. (Broker hosts only)

Enables gear upgrade extensions. (Node hosts only)

Saves and regenerates configurations for any apache-vhost front ends. (Node hosts only)
Stops the openshift-iptables-port-proxy service. (Node hosts only)

Starts the ruby193-mcollective service. (Node hosts only)

Run the maintenance_mode step on each host:

ose-upgrade maintenance_mode

Procedure 4.23. To Perform the pending_ops Step on Broker Hosts:

1. The pending_ops step clears records of any pending application operations because the outage
prevents them from ever completing. Run the pending_ops step on one broker host only:

ose-upgrade pending_ops
2. On any remaining broker hosts, run the following command to skip the pending_ops step:
ose-upgrade pending_ops --skip

Procedure 4.24. To Perform the confirm_nodes Step on Broker Hosts:

1. The confirm_nodes step attempts to access all known node hosts to determine whether they have
all been upgraded before proceeding. This step fails if the maintenance_mode step has not been

23

completed on all node hosts, or if MCollective cannot access any node hosts.

Run the confirm_nodes step on a broker host:

ose-upgrade confirm_nodes

2. If this step fails due to node hosts that are no longer deployed, you may need to skip the
confirm_nodes step. Ensure that all node hosts reported missing are not actually expected to
respond, then skip the confirm_nodes step with the following command:

ose-upgrade --skip confirm_nodes

Procedure 4.25. To Perform the data Step on Broker Hosts:

1. The data step runs a data migration against the shared broker datastore. Run thedata step on one
broker host:

ose-upgrade data

When one broker host begins this step, any attempts made by other broker hosts to run the data
step simultaneously will fail.

2. After the data step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.26. To Perform the gears Step on Broker Hosts:

1. The gears step runs a gear migration through the required changes so that they can be used in
OpenShift Enterprise 2.1. Run the gears step on one broker host:

ose-upgrade gears

When one broker host begins this step, any attempts made by other broker hosts to run the gears
step simultaneously will fail.

2. After the gears step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.27. To Perform the test_gears_complete Step on Node Hosts:

The test_gears_complete step verifies the gear migrations are complete before proceeding. This
step blocks the upgrade on node hosts by waiting until the gears step has completed on an associated
broker host. Run the test_gears_complete step on all node hosts:

ose-upgrade test_gears_complete

Procedure 4.28. To Perform the end_maintenance_mode Step on Broker and Node Hosts:

1. The end_maintenance_mode step starts the services that were stopped in the
maintenance_mode step or added in the interim. It gracefully restarts httpd to complete the node

host upgrade, and restarts the broker service and, if installed, the console service. Complete this step
on all node hosts first before running it on the broker hosts:

ose-upgrade end_maintenance_mode

Chapter 4. Upgrading from Previous Versions

2. Run the oo-accept-node script on each node host to verify that it is correctly configured:

o0o-accept-node

Procedure 4.29. To Perform the post Step on Broker Hosts:
1. The post step manages the following actions on the broker host:
Imports cartridges to the datastore.
Performs any post-upgrade datastore migration steps.
Clears the broker and console caches.

Run the post step on a broker host:
ose-upgrade post

When one broker host begins this step, any attempts made by other broker hosts to run the post
step simultaneously will fail.

2. After the post step completes on the first broker host, run it on any remaining broker hosts.

3. The upgrade is now complete for an OpenShift Enterprise installation. Run oo-diagnostics on
each host to diagnose any problems:

oo-diagnostics

Known Upgrade Issues

Although the goal is to make the upgrade process as easy as possible, some known issues must be
addressed manually:

1. Because Jenkins applications cannot be migrated, follow these steps to regain functionality:
a. Save any modifications made to existing Jenkins jobs.

b. Remove the existing Jenkins application.

(9]

. Add the Jenkins application again.

o

. Add the Jenkins client cartridge as required.

o

Reapply the required modifications from the first step.

2. There are no natifications when a gear is successfully migrated but fails to start. This may not be a
migration failure because there may be multiple reasons why a gear fails to start. However, Red Hat
recommends that you verify the operation of your applications after upgrading. The service
openshift-gears status command may be helpful in certain situations.

4.5. Upgrading from OpenShift Enterprise 2.1 to OpenShift Enterprise 2.2

The following instructions describe how to upgrade from OpenShift Enterprise 2.1 to OpenShift Enterprise
2.2. The 2.2 upgrade packages are located in distinct channel repositories on Red Hat Network. The first
upgrade step, the begin step, adjusts the yum configurations in preparation for the upgrade. Red Hat
recommends that you perform this step in advance of the scheduled outage to ensure any subscription

25

Deployment Guide

issues are resolved before you proceed with the upgrade.

Procedure 4.30. To Bootstrap the Upgrade and Perform the begin Step:

26

1. The openshift-enterprise-release RPM package includes the ose-upgrade tool that guides you

through the upgrade process. Install the openshift-enterprise-release package on each host, and
update it to the most current version.

yum install openshift-enterprise-release

. The begin step of the upgrade process applies to all hosts, and includes those hosts that contain

only supporting services such as MongoDB and ActiveMQ. Hosts using Red Hat Subscription
Management (RHSM) or Red Hat Network (RHN) Classic are unsubscribed from the 2.1 channels
and subscribed to the new 2.2 channels.

This step assumes that the channel names come directly from Red Hat Network. If the
package source is an instance of Red Hat Satellite or Subscription Asset Manager and the
channel names are remapped differently, you must change this yourself. Examine the scripts
in the /usr/1ib/ruby/site_ruby/1.8/0se-upgrade/host/upgrades/4/ directory
for use as models. You can also add your custom script to a subdirectory to be executed with
the ose-upgrade tool.

In addition to updating the channel set, modifications to the yum configuration give priority to the
OpenShift Enterprise, Red Hat Enterprise Linux, and JBoss repositories. However, packages from
other sources are excluded as required to prevent certain issues with dependency management that
occur between the various channels.

Run the begin step on each host. Note that the command output is different depending on the type
of host. The following example output is from a broker host:

ose-upgrade begin

INFO: OpenShift broker installed.

INFO: Setting host step 'begin' status to UPGRADING

INFO: Starting upgrade number 4 to version 2.2.

[...]

INFO: updating /etc/openshift-enterprise-release

INFO: Setting host step 'begin' status to COMPLETE

INFO: To continue the upgrade, install a specific upgrade package.

The oo-admin-yum-validator --oo-version 2.2 --fix-all command is run
automatically during the begin step. When using RHN Classic, the command does not
automatically subscribe a system to the OpenShift Enterprise 2.2 channels, but instead
reports the manual steps required. After the channels are manually subscribed, running the
begin step again sets the proper yum priorities and continues as expected.

Chapter 4. Upgrading from Previous Versions

Procedure 4.31. To Install the Upgrade RPM Specific to a Host:

1. Depending on the host type, install the latest upgrade RPM package from the new OpenShift
Enterprise 2.2 channels. For broker hosts, install the openshift-enterprise-upgrade-broker package:

yum install openshift-enterprise-upgrade-broker

For node hosts, install the openshift-enterprise-upgrade-node package:

yum install openshift-enterprise-upgrade-node

If the package is already installed because of a previous upgrade, it still must be updated to the latest
package version for the OpenShift Enterprise 2.2 upgrade.

2. The ose-upgrade tool guides the upgrade process by listing the necessary steps that are specific tc
the upgrade scenario, and identifies the step to be performed next. The ose-upgrade status
command, or ose-upgrade, provides a current status report. The command output varies
depending on the type of host. The following example output is from a broker host:

ose-upgrade status

INFO: OpenShift broker installed.
Current upgrade is number 4 to version 2.2.
Step sequence:
begin pre outage rpms conf maintenance_mode pending_ops
confirm_nodes data gears end_maintenance_mode post
Next step is: pre
Procedure 4.32. To Perform the pre Step on Broker and Node Hosts:
1. The pre step manages the following actions:
Backs up OpensShift Enterprise configuration files.
Clears pending operations older than one hour. (Broker hosts only)

Performs any pre-upgrade datastore migration steps. (Broker hosts only)

Run the pre step on one broker host and each node host:
ose-upgrade pre

When one broker host begins this step, any attempts made by other broker hosts to run the pre step
simultaneously will fail.

2. After the pre step completes on the first broker host, run it on any remaining broker hosts.

3. After the pre step completes on all hosts, the ose-upgrade tool allows you to continue through the
node and broker host upgrade steps in parallel. On broker hosts, the tool will block the
confirm_nodes step if the associated node hosts have not completed theirmaintenance_mode
step. On node hosts, the tool blocks the test_gears_complete step if the associated broker has
not completed the gears step.

Continue through the following procedures for instructions on each subsequent step.

27

Deployment Guide

Procedure 4.33. To Perform the rpms Step on Broker and Node Hosts:

1. The rpms step updates RPM packages installed on the host and installs any new RPM packages tha
are required. For node hosts, this includes the recommended cartridge dependency metapackages

Run the rpms step on each host:
ose-upgrade rpms

2. For all other hosts that are not a broker or a node host, run yum update to upgrade any services
that are installed, such as MongoDB or ActiveMQ:

yum update

Procedure 4.34. To Perform the conf Step on Broker and Node Hosts:

The conf step changes the OpenShift Enterprise configuration to match the new codebase installed in
the previous step. Each modified file is first copied to a file with the same name plus a .ugsave
extension and a timestamp. This makes it easier to determine what files have changed.

Run the conf step on each host:

ose-upgrade conf

A Warning

If the configuration files have been significantly modified from the recommended configuration,
manual intervention may be required to merge configuration changes so that they can be used
with OpensShift Enterprise.

Procedure 4.35. To Perform the maintenance_mode Step on Broker and Node Hosts:

A Warning

The broker enters maintenance mode during this upgrade step, which disables the API and returns an
outage notification to all client requests. This outage lasts until the end_maintenance_mode step is
complete.

1. Starting with OpenShift Enterprise 2.2, the apache-mod-rewrite front-end server proxy plug-in is
deprecated. New deployments of OpenShift Enterprise 2.2 now use the apache-vhost plug-in as
the default.

https://access.redhat.com/security/cve/CVE-2014-3566

Chapter 4. Upgrading from Previous Versions

Any new nodes added to your deployment after the upgrade will use the apache-vhost
plug-in by default. Note that the apache-mod-rewrite plug-in is incompatible with the
apache-vhost plug-in, and the front-end server configuration on all nodes across a

information.

The default behavior of the maintenance_mode step is to leave the apache-mod-rewrite plug-in
in place, if itis installed. Do not set the 0SE_UPGRADE_MIGRATE_VHOST environment variable at all,
not even to false or 0, if you require this default behavior.

However, if your OpenShift Enterprise 2.1 deployment was configured to use the apache-mod -
rewrite plug-in before starting the 2.2 upgrade, you can optionally allow the ose-upgrade tool to
migrate your node hosts to the newly-default apache -vhost plug-in. To enable this option, set the
OSE_UPGRADE_MIGRATE_VHOST environment variable on each node host:

export OSE_UPGRADE_MIGRATE_VHOST=true

2. The maintenance_mode step manages actions in the following order:

Configures the broker to disable the APl and return an outage notification to any requests.
(Broker hosts only)

Restarts the broker service and, if installed, the console service in maintenance mode so that
they provide clients with an outage notification. (Broker hosts only)

Clears the broker and console caches. (Broker hosts only)
Stops the ruby193-mcollective service. (Node hosts only)
Saves the front-end server proxy configuration. (Node hosts only)

If the OSE_UPGRADE_MIGRATE_VHOST environment variable was set in the previous step,
migrates from the apache-mod-rewrite plug-in to the apache-vhost plug-in. (Node hosts
only)

Enables gear upgrade extensions. (Node hosts only)
Starts the ruby193-mcollective service. (Node hosts only)

Run the maintenance_mode step on each host:
ose-upgrade maintenance_mode

Procedure 4.36. To Perform the pending_ops Step on Broker Hosts:

1. The pending_ops step clears records of any pending application operations because the outage
prevents them from ever completing. Run the pending_ops step on one broker host:

ose-upgrade pending_ops

29

https://access.redhat.com/security/cve/CVE-2014-3566

When one broker host begins this step, any attempts made by other broker hosts to run the
pending_ops step simultaneously will fail.

2. After the pending_ops step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.37. To Perform the confirm_nodes Step on Broker Hosts:

1. The confirm_nodes step attempts to access all known node hosts to determine whether they have
all been upgraded before proceeding. This step fails if the maintenance_mode step has not been
completed on all node hosts, or if MCollective cannot access any node hosts.

Run the confirm_nodes step on a broker host:
ose-upgrade confirm_nodes

2. If this step fails due to node hosts that are no longer deployed, you may need to skip the
confirm_nodes step. Ensure that all node hosts reported missing are not actually expected to
respond, then skip the confirm_nodes step with the following command:

ose-upgrade --skip confirm_nodes

Procedure 4.38. To Perform the data Step on Broker Hosts:

1. The data step runs a data migration against the shared broker datastore. Run thedata step on one
broker host:

ose-upgrade data

When one broker host begins this step, any attempts made by other broker hosts to run the data
step simultaneously will fail.

2. After the data step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.39. To Perform the gears Step on Broker Hosts:

1. The gears step runs a gear migration through the required changes so that they can be used in
OpenShift Enterprise 2.2. Run the gears step on one broker host:

ose-upgrade gears

When one broker host begins this step, any attempts made by other broker hosts to run the gears
step simultaneously will fail.

2. After the gears step completes on the first broker host, run it on any remaining broker hosts.

Procedure 4.40. To Perform the test_gears_complete Step on Node Hosts:

The test_gears_complete step verifies the gear migrations are complete before proceeding. This
step blocks the upgrade on node hosts by waiting until the gears step has completed on an associated
broker host. Run the test_gears_complete step on all node hosts:

ose-upgrade test_gears_complete

Prncadiira A A1 Tn Parfarm tha and maintanancre mnda Qtan nn Rrakar and Nlnda Hnecte:-

Chapter 4. Upgrading from Previous Versions

ITVULUMMIL T A IV VIV LIV U HHTRAIT LUV Y VUMY WLV Vi B VIV WU 1YV UL IV oo

1. The end_maintenance_mode step restarts the following services on the node hosts:
httpd (Restarts gracefully)
ruby193-mcollective
openshift-iptables-port-proxy
openshift-node-web-proxy
openshift-sni-proxy
openshift-watchman

Complete this step on all node hosts first before running it on the broker hosts:
ose-upgrade end_maintenance_mode

2. After the end_maintenance_mode command has completed on all node hosts, run the same

command on the broker hosts to disable the outage natification enabled during the broker
maintenance_mode step and restart the broker service and, if installed, the console service:

ose-upgrade end_maintenance_mode

This allows the broker to respond to client requests normally again.

3. Run the oo-accept-node script on each node host to verify that it is correctly configured:

o0o-accept-node

Procedure 4.42. To Perform the post Step on Broker Hosts:
1. The post step manages the following actions on the broker host:
Imports cartridges to the datastore.
Performs any post-upgrade datastore migration steps.
Clears the broker and console caches.

Run the post step on a broker host:
ose-upgrade post

When one broker host begins this step, any attempts made by other broker hosts to run the post
step simultaneously will fail.

2. After the post step completes on the first broker host, run it on any remaining broker hosts.

3. The upgrade is now complete for an OpenShift Enterprise installation. Run oo-diagnostics on
each host to diagnose any problems:

oo-diagnostics

Known Unarade Isslies

31

Deployment Guide

Although the goal is to make the upgrade process as easy as possible, some known issues must be
addressed manually:

32

1. Because Jenkins applications cannot be migrated, follow these steps to regain functionality:

a.

b.

C.

d.

e.

Save any modifications made to existing Jenkins jobs.
Remove the existing Jenkins application.

Add the Jenkins application again.

Add the Jenkins client cartridge as required.

Reapply the required modifications from the first step.

2. There are no natifications when a gear is successfully migrated but fails to start. This may not be a
migration failure because there may be multiple reasons why a gear fails to start. However, Red Hat
recommends that you verify the operation of your applications after upgrading. The service
openshift-gears status command may be helpful in certain situations.

Chapter 5. Host Preparation

Chapter 5. Host Preparation

Before installing any broker or node components, you must prepare each host for various requirements of
OpenShift Enterprise.

5.1. Default umask Setting

OpenShift Enterprise requires that the default umask value (022) for Red Hat Enterprise Linux 6 be set on all
hosts prior to installing any OpenShift Enterprise packages. If a custom umask setting is used, it is possible
for incorrect permissions to be set during installation for many files critical to OpenShift Enterprise operation.

5.2. Network Access

The components of an OpenShift Enterprise deployment require network access to connect with one another.
The deployment methods described in this guide set up a basic iptables firewall configuration by default to
enable network access. If your environment requires a custom or external firewall solution, the configuration
must accommodate the port requirements of OpenShift Enterprise.

5.2.1. Custom and External Firewalls

If you use a custom firewall configuration, consult the following table for details on the ports to which
OpensShift Enterprise components require access. The table includes all ports with external interfaces or
connections between hosts. It does not include the loopback interface. Some ports are optional depending on
your OpensShift Enterprise configuration and usage.

Application developers and application users require access to ports marked public in the Direction
column. Ensure the firewall exposes these ports publicly.

Further details on configuring an external firewall solution for use with OpenShift Enterprise are beyond the
scope of this guide. Consult your network administrator for more information.

Table 5.1. Required Ports for OpenShift Enterprise

‘ Host Port Protocol Direction Use

All 22 TCP Inbound internal Remote administration.
network

All 53 TCP/UDP Outbound to Name resolution.
nameserver

Broker 22 TCP Outbound to node rsync access to gears for moving gears
hosts between nodes.

Broker 80 TCP Inbound public HTTP access. HTTP requests to port 80
traffic are redirected to HTTPS on port 443.

Broker 443 TCP Inbound public HTTPS access to the broker REST API by
traffic rhc and Eclipse integration. HTTPS

access to the Management Console.

Broker 27017 TCP Outbound to Optional if the same host has both the
datastore host. broker and datastore components.

Broker 61613 TCP Outbound to ActiveMQ connections to communicate
ActiveMQ hosts with node hosts.

33

Deployment Guide

‘ Host Port
Node 22
Node 80
Node 443
Node 8000
Node 8443
Node 2303 -
2308 [a]
Node 443
Node 35531 -
65535
[b]
Node 35531 -
65535 [b]
Node 61613
ActiveMQ 61613
ActiveMQ 61616
Datastore 27017
Datastore 27017

Nameserver 53

Nameserver 53

Nameserver 53

Protocol
TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP/UDP

TCP/UDP

TCP/UDP

Direction

Inbound public
traffic

Inbound public
traffic
Inbound public
traffic
Inbound public
traffic

Inbound public
traffic

Inbound public
traffic

Outbound to broker
hosts

Inbound public
traffic

Inbound/outbound
with other node
hosts

Outbound to
ActiveMQ hosts
Inbound from broker
and node hosts
Inbound/outbound
with other ActiveMQ
brokers

Inbound from broker
hosts

Inbound/outbound
with other MongoDB
hosts

Inbound from broker
hosts

Inbound public
traffic

Outbound public
traffic

Use

Developers running git push to their
gears. Developer remote administration on
their gears.

HTTP requests to applications hosted on
OpenShift Enterprise.

HTTPS requests to applications hosted on
OpenShift Enterprise.

WebSocket connections to applications
hosted on OpenShift Enterprise. Optional if
you are not using WebSockets.

Secure WebSocket connections to
applications hosted on OpenShift
Enterprise. Optional if you are not using
secure WebSockets.

Gear access through the SNI proxy.
Optional if you are not using the SNI proxy.

REST API calls to broker hosts.

Gear access through the port-proxy
service. Optional unless applications need
to expose external ports in addition to the
front-end proxies.

Communications between cartridges
running on separate gears.

ActiveMQ connections to communicate
with broker hosts.

Broker and node host connections to
ActiveMQ.

Communications between ActiveMQ hosts.
Optional if no redundant ActiveMQ hosts
exist.

Broker host connections to MongoDB.
Optional if the same host has both the
broker and datastore components.
Replication between datastore hosts.
Optional if no redundant datastore hosts
exist.

Publishing DNS updates.

Name resolution for applications hosted on
OpenShift Enterprise.

DNS forwarding. Optional unless the
nameserver is recursively forwarding
requests to other nameservers.

[a] Note: The size and location of these SNI port range are configurable.
[b] Note: If the value of PROXY_BEGIN in the /etc/openshift/node. conf file changes from 35531,
adjust this port range accordingly.

5.2.2. Manually Configuring an iptables Firewall

34

Chapter 5. Host Preparation

The deployment methods described in this guide set up a basic firewall configuration by default. If your
OpensShift Enterprise deployment requires additional open ports, you can use iptables commands to allow
access on each host as needed:

Procedure 5.1. To Configure an iptables Firewall:

1. Use the following command to make any changes to an iptables configuration:

iptables --insert Rule --in-interface Network_ Interface --protocol
Protocol --source IP_Address --dport Destination_Port --jump ACCEPT

Example 5.1. Allowing Broker Access to MongoDB

The following is an example set of commands for allowing a set of brokers with IP addresses
10.0.0.1-3 access to the MongoDB datastore:

iptables --insert INPUT -i eth® -p tcp --source 10.0.0.1 --dport
27017 --jump ACCEPT
iptables --insert INPUT -i eth® -p tcp --source 10.0.0.2 --dport
27017 --jump ACCEPT
iptables --insert INPUT -i eth® -p tcp --source 10.0.0.3 --dport
27017 --jump ACCEPT

Example 5.2. Allowing Public Access to the Nameserver

The following example allows inbound public DNS requests to the nameserver:

iptables --insert INPUT --protocol tcp --dport 53 -j ACCEPT
iptables --insert INPUT --protocol udp --dport 53 -j ACCEPT

Note that because the command is for public access, there is no - -source option.

2. Save any firewall changes to make them persistent:

service iptables save

5.2.3. IPv6 Tolerance

OpensShift Enterprise supports a mixed IPv4 and IPv6 topology. In such a deployment, node, broker,
MongoDB, and ActiveMQ hosts must have IPv6 addresses and associated AAAA resource records, and all
hosts must still have IPv4 addresses and associated A resource records.

In a mixed IPv4 and IPv6 deployment, the following OpenShift Enterprise services allow communications ovelr
IPV6:

OpenShift Enterprise client tools (rhc)
Openshift Enterprise Management Console
ActiveMQ and MCollective

Application access

35

Deployment Guide
In a mixed IPv4 and IPv6 deployment, the following OpenShift Enterprise services have components that
either require or may require communications over IPv4:

MongoDB can be configured to listen on IPv6 so that some client tools can connect over IPv6 if the
mongo client is running version 1.10.0 or newer. However, the broker uses mongoid which currently
requires IPv4.

Broker DNS updates may require IPv4, however IPv6 connectivity can be used when using the nsupdate
DNS plug-in.

Caveats and Known Issues for IPv6 Tolerance

Inter-gear communication relies on IPv6 to IPv4 fallback. If for some reason the application or library
initiating the connection does not properly handle the fallback, then the connection fails.

The OpenShift Enterprise installation script and Puppet module do not configure MongoDB to use IPv6
and configures IPv4 addresses for other settings where required, for example in the nsupdate DNS plug-
in configuration.

OpensShift Enterprise internals explicitly query interfaces for IPv4 addresses in multiple places.

The apache-mod-rewrite and nodejs-websocket front-end server plug-ins have been tested,
however the following components have not:

The apache-vhost and haproxy-sni-proxy front-end server plug-ins.
DNS plug-ins other than nsupdate.

Routing plug-in.

Rsyslog plug-in.

Individual cartridges for full IPv6 tolerance.

5.3. Configuring Time Synchronization

OpensShift Enterprise requires NTP to synchronize the system and hardware clocks. This synchronization is
necessary for communication between the broker and node hosts; if the clocks are not synchronized
correctly, messages are dropped by MCollective. It is also helpful to have accurate time stamps on files and
in log file entries.

On each host, use the ntpdate command to set the system clock, replacing the NTP servers to suit your
environment:

ntpdate clock.redhat.com

You must also configure the /etc/ntp. conf file to keep the clock synchronized during operation.

If the error message "the NTP socket is in use, exiting" is displayed after running the ntpdate
command, it means that the ntpd daemon is already running. However, the clock may not be synchronized
due to a substantial time difference. In this case, run the following commands to stop the ntpd service, set
the clock, and start the service again:

36

https://bugzilla.redhat.com/show_bug.cgi?id=1104337
https://bugzilla.redhat.com/show_bug.cgi?id=1107816

Chapter 5. Host Preparation

service ntpd stop
ntpdate clock.redhat.com
service ntpd start

If you are installing OpenShift Enterprise on physical hardware, use the hwelock command to synchronize
the hardware clock to the system clock. Skip this step if you are installing on a virtual machine, such as an
Amazon EC2 instance. For a physical hardware installation, run the following command:

hwclock --systohc

If you use the kickstart or bash script, the synchronize_clock function performs these steps.

5.4. Enabling Remote Administration

Installing SSH keys for the root user enables you to access the hosts remotely from your personal
workstation. Run the following commands to ensure that the root user's SSH configuration directory exists,
and it has the correct permissions on the host:

mkdir /root/.ssh
chmod 700 /root/.ssh

On your workstation, you can either use the ssh-keygen command to generate a new key pair, or use an
existing public key. In either case, edit the /root/.ssh/authorized_keys file on the host and append the
public key, or use the ssh-copy-id command to do the same. For example, on your local workstation, run
the following command, replacing the example IP address with the IP address of your broker host:

ssh-copy-id root@10.0.0.1

37

Deployment Guide

Chapter 6. Deployment Methods

OpensShift Enterprise can be deployed using one of several methods:

The oo-install installation utility interactively gathers information about a deployment before
automating the installation of a OpenShift Enterprise host. This method is intended for trials of simple
deployments.

The installation scripts, available as either a kickstart or bash script, include configurable parameters that
help automate the installation of a OpenShift Enterprise host. This method allows for increased
customization of the installation process for use in production deployments.

The sample deployment steps detailed later in this guide describe the various actions of the installation
scripts. This method allows for a manual installation of a OpenShift Enterprise host.

Choose the deployment method that best suits your environment and requirements.

6.1. Using the Installation Utility

You can install OpenShift Enterprise using the oo-install installation utility, which is a front end to the
basic installation scripts. The installation utility provides a Ul for a single- or multi-host deployment either
from your workstation, or from one of the hosts to be installed.

The installation utility is provided to make the trial installation experience easier by interactively gathering the
data to run deployments. The features of this utility are planned to expand over time, but for production
deployments, Red Hat recommends creating customized installation scripts to suit your environment.

A configuration file based on your selections is created as ~/ .openshift/oo-install-cfg.yml, which
saves your responses to the installation utility so you can use them in future installations if your initial
deployment is interrupted. After completing an initial deployment, only additional node hosts can be added to
the deployment using the utility. To add broker, message server, or DB server components to an existing

Prerequisites
Before running the installation utility, consider the following:

Do you have ruby-1.8.7 or later, curl, tar, and gzip installed on your system? If required, the installation
utility offers suggestions to install RPM packages of utilities that are missing.

Does yum repolist show the correct repository setup?

Plan your host roles. Do you know which of your hosts will be the broker host and node hosts? If running
the tool with the -a option, do you have hosts for MongoDB and ActivemQ?

Do you have password-less SSH login access into the instances where you will be running the oo-install
command? Do your hosts have password-less SSH as well?

You can use an existing DNS server. During installation, the oo-install tool asks if you would like to install
a DNS server on the same host as the broker host. Answering no results in a BIND server being set up
for you. However, answering yes requires you to input the settings of your existing DNS server. This
BIND instance provides lookup information for applications that are created by any application
developers.

38

https://install.openshift.com

Chapter 6. Deployment Methods

Using the Installation Utility

There are two methods for using the installation utility. Both are outlined in the following procedures:

Procedure 6.1. To Run the Installation Utility From the Internet:

1. You can run the installation utility directly from the Internet with the following command:
$ sh <(curl -s https://install.openshift.com/ose-2.2)
Additional options can be used with the command. These options are outlined later in this section:

$ sh <(curl -s https://install.openshift.com/ose-2.2) -s rhsm -u
user@company.com

2. Follow the on-screen instructions to either deploy a new OpenShift Enterprise host, or add a node
host to an existing deployment.

Procedure 6.2. To Download and Run the Installation Utility:
Alternatively, you can download and run the installation utility with the following procedure:

1. Download and unpack the installation utility:

$ curl -o oo-install-ose.tgz
https://install.openshift.com/portable/oo-install-ose.tgz
$ tar -zxf oo-install-ose.tgz

2. Execute the installation utility to interactively configure one or more hosts:
$./00-install-ose

The oo-install-ose utility automatically runs the installation utility in OpenShift Enterprise mode.
Additional options can be used with the command. These options are outlined later in this section:

$./00-install-ose -s rhsm -u user@company.com

3. Follow the on-screen instructions to either deploy a new OpenShift Enterprise host, or add a node
host to an existing deployment.
Deployment Scenarios

The current iteration of the installation utility enables the initial deployment and configuration of OpenShift
Enterprise according to the following scenarios:

Broker, message server (ActiveMQ), and DB server (MongoDB) components on one host, and the node
components on separate hosts.

Broker, message server (ActiveMQ), DB server (MongoDB), and node components on separate hosts
(using -a for advanced mode only).

All components on one host.

39

Deployment Guide

A Warning

While having all components on one host is an available option using the installation utility for the
purposes of a trial installation, the OpenShift Enterprise security model assumes that broker and node
components are installed on separate hosts. Running a broker and node on the same host is not
supported.

Highly-available Deployments

Starting with OpensShift Enterprise 2.2, the installation utility can install a highly-available OpenShift
Enterprise deployment by configuring your defined hosts for redundancy within the installation utility prompts.
By default, and without the -a option, the installation utility scales and installs ActiveMQ and MongoDB
services along with the defined broker hosts. If the -a option is used, you can define redundant services on
separate hosts as well.

For applications running on your OpenShift Enterprise deployment to achieve high-availability, you must
further configure your deployment with the use of an external routing layer after the installation is completed.

implementing an external routing layer.

Configuring Your Deployment

When you run the installation utility for the first time, you are asked a number of questions related to the
components of your planned OpenShift Enterprise deployment, such as the following:

User names and either the host names or IP addresses for access to hosts.

DNS configuration for hosts.

Valid gear sizes for the deployment.

Default gear capabilities for new users.

Default gear size for new applications.

User names and passwords for configured services, with an option to automatically generate passwords.
Gear size for new node hosts (profile name only).

District membership for new node hosts.

Red Hat subscription type. Note that when using the installation utility you can add multiple pool IDs by
separating each pool ID with a space. You can find the required pool IDs with the procedure outlined in

Options for the Installation Utility
The installation utility can be used with the following options:
-a (--advanced-mode)

By default, the installation utility installs MongoDB and ActiveMQ on the system designated as the
broker host. Use the -a option to install these services on a different host.

-c (--config-file) FILE_PATH

40

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/User_Guide/chap-Applications.html#Highly-Available_Applications

Chapter 6. Deployment Methods

Use the -c¢ option with the desired tilepath to specity a configuration file other than the detfault
~/ .openshift/oo-install-cfg.yml file. If the specified file does not exist, a file will be
created with some basic settings.

-I (--list-workflows)

Before using the -w option, use the -1 option to find the desired workflow ID.

-w (--workflow) WORKFLOW _ID

If you already have an OpenShift Enterprise deployment configuration file, use the install utility with
the -w option and the enterprise_deploy workflow ID to run the deployment without any user
interaction. The configuration is assessed, then deployed if no problems are found. This is useful
for restarting after a failed deployment or for running multiple similar deployments.

-s (--subscription-type) TYPE

The -s option determines how the deployment will obtain the RPMs needed to install OpenShift
Enterprise, and overrides any method specified in the configuration file. Use the option with one of
the following types:

rhsm

rhn

yum

none

Red Hat Subscription Manager is used to register and configure the OpenShift
software channels according to user, password, and pool settings.

RHN Classic is used to register and configure the OpenShift software channels
according to user, password, and optional activation key settings. RHN Classic is
primarily intended for existing, legacy systems. Red Hat strongly recommends that you
use Red Hat Subscription Manager for new installations, because RHN Classic is
being deprecated.

New yum repository entries are created in the /etc/yum. repos.d/ directory
according to several repository URL settings. This is not a standard subscription and it
is assumed you have already created or have access to these repositories in the
layout specified in the openshift.sh file.

The default setting. Use this option when the software subscriptions on your
deployment hosts are already configured as desired and changes are not needed.

-u (--username) USERNAME

Use the -u option to specify the user for the Red Hat Subscription Management or RHN Classic
subscription methods from the command line instead of in the configuration file.

-p (--password) PASSWORD

Similar to the -u option, use the -p option to specify the password for the Red Hat Subscription
Management or RHN Classic subscription methods from the command line instead of in the
configuration file. As an alternative, the interactive Ul mode also provides an option for entering
subscription parameters for a one-time use without them being saved to the system.

-d (--debug)

When using the -d option, the installation utility prints information regarding any attempts to
establish SSH sessions as it is running. This can be useful for debugging remote deployments.

41

Deployment Guide

If none is used for the subscription type, either by using the -s flag or by not configuring subscription
information through the interactive Ul or . yml configuration file, you must manually configure the
correct yum repositories with the proper priorities before running the installation utility. See

Post-Install Tasks

Once the oo-install tool has completed the install without errors, you have a working OpenShift Enterprise
installation. Consult the following list for directions on what to do next:

6.2. Using the Installation Scripts

You can deploy OpenShift Enterprise using the installation scripts, which include configurable parameters to
help automate the installation of OpenShift Enterprise components on a Red Hat Enterprise Linux 6.6 system.
By supplying the scripts with parameters relevant to your deployment requirements, you can get an
environment running quickly without having to manually configure all of the required services.

For kickstarts, the openshift . ks kickstart script is available at:

Example 6.1. Downloading the openshift. ks Kickstart Script

$ curl -0 https://raw.githubusercontent.com/openshift/openshift-
extras/enterprise-2.2/enterprise/install-scripts/openshift.ks

For pre-installed Red Hat Enterprise Linux 6.6 systems, the openshift . sh bash script is the extracted
%post section of the openshift.ks script and is available at:

Example 6.2. Downloading the openshift.sh Bash Script

$ curl -0 https://raw.githubusercontent.com/openshift/openshift-
extras/enterprise-2.2/enterprise/install-scripts/generic/openshift.sh

42

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/User_Guide/Creating_an_Application5.html
https://raw.githubusercontent.com/openshift/openshift-extras/enterprise-2.2/enterprise/install-scripts/openshift.ks
https://raw.githubusercontent.com/openshift/openshift-extras/enterprise-2.2/enterprise/install-scripts/generic/openshift.sh

Chapter 6. Deployment Methods

The actions and parameters related to the installation and configuration of OpenShift Enterprise are the same
between the two scripts. The commented notes in the header of the scripts provide extensive information on
their usage and parameters.

The sample deployment steps detailed later in this guide describe the various actions of the
installation scripts. However, these deployment methods are independent of each other; this means
that you can install and configure a complete broker or node host by either following the steps
manually, or by running the scripts. The corresponding functions of the scripts are identified in the
respective sample deployment steps.

Supplying Parameters to the Scripts

When using the openshift. ks script, you can supply parameters as kernel parameters during the kickstart
process. When using the openshift. sh script, you can similarly supply parameters as command-line
arguments. See the commented notes in the header of the scripts for alternative methods of supplying
parameters using the openshift. sh script.

The installation scripts are highly customizable, and as such can be used for a variety of deployment
scenarios using many different configurations. The following sections highlight some important parameters,
show basic script usage, and provide examples on installing and configuring sample hosts for a simple
deployment.

For the purposes of this guide, the following examples use the openshift . sh script by supplying
parameters as command-line arguments. The same parameters can be supplied as kernel
parameters for kickstarts using the openshift.ks script.

6.2.1. Selecting Components to Install
If you do not supply any parameters, the scripts install all OpenShift Enterprise components on a single host
with the default configuration. Using the install components parameter, the scripts can be configured to

install one or more of the following components on a single host:

Table 6.1. Options for the install_components Parameter

‘ Options Description

broker Installs the broker application and tools.

named Supporting service. Installs a BIND DNS server.
activemq Supporting service. Installs the messaging bus.
datastore Supporting service. Installs the MongoDB datastore.
node Installs node functionality, including cartridges.

43

Deployment Guide

A Warning

The OpenShift Enterprise security model assumes that broker and node components are installed on
separate hosts. Running a broker and node on the same host is not supported.

You can install any combination of components on a host, as long as broker and node components are
installed on separate hosts. Any component can also be installed as a standalone host.

For example, the following command runs the openshift. sh script and installs the broker, named,
activemq, and datastore components on a single host, using default values for all unspecified
parameters:

Example 6.3. Installing the broker, named, activemq, and datastore Components Using
openshift.sh

$ sudo sh openshift.sh install_components=broker, named, activemq, datastore

For another example, the following command runs the openshift. sh script and installs only the node
component on a single host, using default values for all unspecified parameters:

Example 6.4. Installing the node Component Using openshift.sh

$ sudo sh openshift.sh install_components=node

6.2.2. Selecting a Package Source

If you do not supply an install_method parameter, the scripts assume that the installation source has
already been configured to provide the required packages. Using the install_method parameter, the
scripts can be configured to install packages from one of the following sources:

Table 6.2. Options for the install method Parameter

Parameter Description Additional Related Parameters
yum Configures yum based on supplied rhel_repo, rhel_optional_repo,
additional parameters. jboss_repo_base,

rhscl_repo_base, ose_repo_base,
ose_extra_repo_base

rhsm Uses Red Hat Subscription Management rhn_user, rhn_pass, sm_reg_pool,
rhn_reg_opts

rhn Uses RHN Classic. rhn_user, rhn_pass, rhn_reg_opts,
rhn_reg_actkey

44

Chapter 6. Deployment Methods

While Red Hat Network (RHN) Classic can be used to subscribe to channels, it is primarily intended
for existing, legacy systems. Red Hat strongly recommends that you use Red Hat Subscription
Management for new installations. For details on how to migrate from RHN Classic to RHSM, see the
OpenShift Enterprise Administration Guide.

See the commented notes in the header of the scripts for detailed information about each of the additional
related parameters.

For example, the following command runs the openshift. sh script and uses Red Hat Subscription
Management as the package source, using default values for all unspecified parameters:

Example 6.5. Selecting a Package Source Using openshift.sh

$ sudo sh openshift.sh install method=rhsm rhn_user=user@example.com
rhn_pass=password sm_reg_pool=Example_3affb61f013b3ef6a5fedh9a

6.2.3. Selecting Password Options

By default, the installation scripts generate random passwords for configured services. For example, these
passwords include the password that the broker and node both use to authenticate with the ActiveMQ
service, as well as the password for the test OpenShift user account. If you are not deploying a production
instance, you can supply the no_scramble parameter set to true to have default, insecure passwords
used across the deployment.

You can set any password parameter manually with a unique password, which automatically overrides
generating a random password for that parameter. When supplying a unique password, use alphanumeric
characters as other characters may cause syntax errors; if non-alphanumeric characters are required, update
them separately after the installation completes. For multi-host deployments, set unique passwords in
parameters consistently across hosts for any services you are installing.

The scripts return a list of all passwords, whether randomly generated or manually set, after the installation is
completed. The following table describes the available user name and password parameters for configured
services, including the default user name values and related install_component options:

Table 6.3. User Name and Password Parameters

‘ User Name Parameter Password Parameter Description
mcollective_user mcollective_ password These credentials are shared and
must be the same between all
Default: mcollective broker and nodes for

communicating over the
mcollective topic channels in
ActiveMQ. They must be specified
and shared between separate
ActiveMQ and broker hosts.
These parameters are used by
the install_component
options broker and node.

45

Deployment Guide

User Name Parameter
mongodb_broker_user

Default: openshift

Not available.

mongodb_admin_user

Default: admin

openshift_user1

Default: demo

Not available.

Default: amq

46

Password Parameter
mongodb_broker _password

mongodb_key

mongodb_admin_password

openshift_passwordl

activemq_amq_user_passwor
d

Description

These credentials are used by the
broker and its MongoDB plug-in to
connect to the MongoDB
datastore. They must be specified
and shared between separate
MongoDB and broker hosts, as
well as between any replicated
MongoDB hosts. These
parameters are used by the
install component options
datastore and broker.

This key is shared and must be
the same between any replicated
MongoDB hosts. This parameter
is used by the

install component option
datastore.

The credentials for this
administrative user created in the
MongoDB datastore are not used
by OpenShift Enterprise, but an
administrative user must be
added to MongoDB so it can
enforce authentication. These
parameters are used by the
install component option
datastore.

These credentials are created in
the
/etc/openshift/htpasswd
file for the test OpenShift
Enterprise user account. This test
user can be removed after the
installation is completed. These
parameters are used by the
install component option
broker.

The password set for the
ActiveMQ amq user is required by
replicated ActiveMQ hosts to
communicate with one another.
The amq user is enabled only if
replicated hosts are specified
using the
activemq_replicants
parameter. If set, ensure the
password is the same between all
ActiveMQ hosts. These
parameters are used by the
install component option
activemq.

Chapter 6. Deployment Methods

For example, the following command runs the openshift. sh script and sets unique passwords for various
configured services, using default values for all unspecified parameters:

Example 6.6. Setting Unique Passwords Using openshift.sh

$ sudo sh openshift.sh install_components=broker,activemq, datastore
mcollective_password=passwordl mongodb_broker_password=password2
openshift_passwordl=password3

6.2.4. Setting Broker and Supporting Service Parameters
When using the installation scripts, you can set a variety of parameters related to the broker and supporting
services. The following table highlights some important parameters used during the installation of the

respective components:

Table 6.4. Broker and Supporting Service Parameters

Parameter Description

domain This sets the network domain under which DNS entries for applications
are placed.
hosts_domain If specified and host DNS is to be created, this domain is created and

used for creating host DNS records; application records are still placed
in the domain specified with the domain parameter.

hostname This is used to configure the host's actual host name. This value
defaults to the value of the broker_hostname parameter if the
broker component is being installed, otherwise named_hos tname if
installing named, activemq_hostname if installing activemq, or
datastore_hostname if installing datastore.

broker_hostname This is used as a default for the hostname parameter when installing
the broker component. It is also used both when configuring the
broker and when configuring the node, so that the node can contact the
broker's REST API for actions such as scaling applications up or down.
It is also used when adding DNS records, if the named_entries
parameter is not specified.

named_ip_addr This is used by every host to configure its primary name server. It
defaults to the current IP address if installing the named component,
otherwise it defaults to the broker_ip_addr parameter.

named_entries This specifies the host DNS entries to be created in comma-separated,
colon-delimited hostname : ipaddress pairs, or can be set to none
so that no DNS entries are created for hosts. The installation script
defaults to creating entries only for other components being installed
on the same host when the named component is installed.

bind_key This sets a key for updating BIND instead of generating one. If you are
installing the broker component on a separate host from the named
component, or are using an external DNS server, configure the BIND
key so that the broker can update it. Any Base64-encoded value can
be used, but ideally an HMAC-SHA256 key generated by dnssec -
keygen should be used. For other key algorithms or sizes, ensure the
bind_keyalgorithm and bind_keysize parameters are
appropriately set as well.

47

Deployment Guide

‘ Parameter Description

valid_gear_sizes This is a comma-separated list of gear sizes that are valid for use in
applications, and sets the VALID GEAR_SIZES parameter in the
/etc/openshift/broker.conf file.

default_gear_size This is the default gear size used when new gears are created, and
sets the DEFAULT_GEAR_SIZE parameter in the
/etc/openshift/broker. conf file.

default_gear_capabilitie Thisis a comma-separated list of default gear sizes allowed on a new

s user account, and sets the DEFAULT_GEAR_CAPABILITIES
parameter in the /etc/openshift/broker.conf file.

See the OpenShift Enterprise Administration Guide for more information on the VALID_GEAR_SIZES,
DEFAULT_GEAR_SIZE, and DEFAULT_GEAR _CAPABILITIES parameters in the
/etc/openshift/broker. conf file.

For example, the following command runs the openshift. sh script and sets various parameters for the
broker and supporting services, using default values for all unspecified parameters:

Example 6.7. Setting Broker and Supporting Service Parameters Using openshift.sh

$ sudo sh openshift.sh install_components=broker,named, activemq, datastore
domain=apps.example.com hosts_domain=hosts.example.com
broker_hostname=broker.hosts.example.com
named_entries=broker:192.168.0.1,activemq:192.168.0.1,n0de1:192.168.0.2
valid_gear_sizes=medium default_gear_size=medium
default_gear_capabilities=medium

6.2.5. Setting Node Parameters

When using the installation scripts, you can set a variety of parameters related to nodes. The following table
highlights some important parameters used during installations of the node component:

Table 6.5. Node Parameters

‘ Parameter Description

domain This sets the network domain under which DNS entries for applications
are placed.
hosts_domain If specified and host DNS is to be created, this domain is created and

used for creating host DNS records; application records are still placed
in the domain specified with the domain parameter.

hostname This is used to configure the host's actual host name.

node_hostname This is used as a default for the hostname parameter when installing
the node component. It is also used when adding DNS records, if the
named_entries parameter is not specified.

named_ip_addr This is used by every host to configure its primary name server. It
defaults to the current IP address if installing the named component,
otherwise it defaults to the broker_ip_addr parameter.

node_ip_addr This is used by the node to provide a public IP address if different from

one on its NIC. It defaults to the current IP address when installing the
node component.

48

Chapter 6. Deployment Methods

‘ Parameter Description

broker_hostname This is used by the node to record the host name of its broker, as the
node must be able to contact the broker's REST API for actions such
as scaling applications up or down.

node_profile This sets the name of the node profile, also known as a gear profile or
gear size, to be used on the node being installed. The value must also
be a member of the valid_gear_sizes parameter used by the
broker.

cartridges This is a comma-separated list of cartridges to install on the node and
defaults to standard, which installs all cartridges that do not require
add-on subscriptions. See the commented notes in the header of the
scripts for the full list of individual cartridges and more detailed usage.

For example, the following command runs the openshift. sh script and sets various node parameters,
using default values for all unspecified parameters:

Example 6.8. Setting Node Parameters Using openshift.sh

$ sudo sh openshift.sh install_components=node domain=apps.example.com
hosts_domain=hosts.example.com node_hostname=nodel.hosts.example.com
broker_ip_addr=192.168.0.1 broker_hostname=broker .hosts.example.com
node_profile=medium cartridges=php, ruby, postgresql, haproxy, jenkins

6.2.6. Deploying Sample Broker and Node Hosts Using openshift.sh

The examples in this section show how to install and configure sample broker and node hosts for a simple
deployment using the openshift. sh script. Whereas the preceding openshift . sh examples demonstrate
various parameters discussed in their respective sections, the examples in this section use a combination of
the parameters discussed up to this point to demonstrate a specific deployment scenario. The broker and
supporting service components are installed on one host (Host 1), and the node component is installed on a
separate host (Host 2).

Deploying a Sample Broker Host Using openshift. sh
For Host 1, the command shown in the example runs the openshift. sh script with:
Red Hat Subscription Manager set as the package source.
The broker, named, activemq, and datastore options set as the installation components.

Unique passwords set for MCollective, ActiveMQ, MongoDB, and the test OpenShift Enterprise user
account.

Various parameters set for the broker and supporting services.

Default values set for all unspecified parameters.

Example 6.9. Installing and Configuring a Sample Broker Host Using openshift.sh

$ sudo sh openshift.sh install method=rhsm rhn_user=user@example.com
rhn_pass=password sm_reg_pool=Example_3affb61f013b3ef6a5fedh9a
install components=broker,named, activemq, datastore

49

Deployment Guide

mcollective_password=passwordl mongodb_broker_password=password2
openshift_passwordl=password3 domain=apps.example.com
hosts_domain=hosts.example.com broker_hostname=broker.hosts.example.com
named_entries=broker:192.168.0.1,activemq:192.168.0.1,n0de1:192.168.0.2
valid_gear_sizes=medium default_gear_size=medium
default_gear_capabilities=medium 2>&1 | tee -a openshift.sh.log

In this example, script output is logged to the openshift.sh.log file. If a new kernel package was installed
during the installation, the host must be restarted before the new kernel is loaded.

Deploying a Sample Node Host Using openshift.sh

For Host 2, the command shown in the example runs the openshift . sh script with:
Red Hat Subscription Manager set as the package source.
The node option set as the installation component.

The same unique password set for the MCollective user account that was set during the broker host
installation.

Various node parameters set, including which cartridges to install.

Default values set for all unspecified parameters.

Example 6.10. Installing and Configuring a Sample Node Host Using openshift.sh

$ sudo sh openshift.sh install method=rhsm rhn_user=user@example.com
rhn_pass=password sm_reg_pool=Example_3affb61f013b3ef6a5fedh9a
install components=node mcollective_password=passwordil
domain=apps.example.com hosts_domain=hosts.example.com
node_hostname=nodel.hosts.example.com broker_ip_addr=192.168.0.1
broker_hosthame=broker.hosts.example.com node_profile=medium
cartridges=php, ruby, postgresql, haproxy, jenkins 2>&1 | tee -a
openshift.sh.log

In this example, script output is logged to the openshift.sh.log file. If a new kernel package was installed
during the installation, the host must be restarted before the new kernel is loaded.

6.2.7. Performing Required Post-Deployment Tasks

Ensure that the installation has completed on both the broker and node host before continuing with the
instructions in this section.

After deploying OpenShift Enterprise hosts using the installation scripts, the following tasks must be
performed before the deployment is fully operational:

Cartridge manifests must be imported on the broker host before cartridges can be used in applications.

At least one district must be created before applications can be created.

50

Chapter 6. Deployment Methods

If the default passwords were used for any deployment scenario, Red Hat recommends changing them
manually after the initial installation is completed as well.

Performing Post-Deployment Tasks Manually

You can perform these tasks manually on the broker host. Run the following command to import the cartridge
manifests for all cartridges installed on nodes:

oo-admin-ctl-cartridge -c import-profile --activate --obsolete

Performing Post-Deployment Tasks Using openshift.sh

Alternatively, you can perform these tasks using the openshift . sh script by running the post_deploy
action. This action is not run by default, but by supplying the actions parameter, you can specify that it only
run post_deploy. When running the post_deploy action, ensure that the script is run on the broker host
using the broker installation component.

If the valid_gear_sizes, default_gear_capabilities, or default_gear size parameters
were supplied during the initial broker host installation, ensure that the same values are supplied
again when running the post_deploy action. Otherwise, your configured values will be overridden
by default values.

If the valid_gear_sizes parameter is supplied when running the post_deploy action, districts are
created for each size in valid_gear_sizes with names in the format default-gear_size_name. If you
do not want these default districts created, see the instructions for manually performing these tasks.

For example, the following command for the broker host runs the post_deploy action of the
openshift. sh script. It supplies the same values for the valid_gear_sizes,
default_gear_capabilities, and default_gear_size used during the sample broker host
installation and uses default values for all unspecified parameters:

Example 6.11. Running the post_deploy Action on the Broker Host

$ sudo sh openshift.sh actions=post_deploy install components=broker
valid_gear_sizes=medium default_gear_size=medium
default_gear_capabilities=medium 2>&1 | tee -a openshift.sh.log

In this example, script output is logged to the openshift. sh. log file. Cartridge manifests are imported on
the broker host, and a district named default-medium is created.

6.3. Using the Sample Deployment Steps

sample deployment steps for hosts identified in this guide as the following:

Host 1

51

Deployment Guide

The sample deployment steps are useful for understanding the various actions of the installation scripts,
which enables administrators to further customize their deployments to their specifications.

Packages that are installed from third-party repositories and products such as EPEL or Puppet can adversely
affect OpenShift Enterprise installations. This can result in issues that require additional time to troubleshoot.
Therefore, Red Hat recommends that you only use packages from Red Hat Enterprise Linux Server 6 to
install the base operating system and additional repositories when preparing OpenShift Enterprise hosts, and
disable any third-party yum repositories during installation, including the unsupported Red Hat Enterprise
Linux Server Optional channel. Proper yum configurations for OpenShift Enterprise installations are covered

The sample deployment steps assume that Host 1 and Host 2 are configured with a Red Hat Enterprise Linux
Server entitlement and have Red Hat Enterprise Linux Server 6.6 or later installed with all base packages
fully updated. Most importantly, you must have the latest version of the selinux-policy package installed on
each host, as it is necessary for the correct operation of OpenShift Enterprise. Use the yum update
command to update all packages before installing OpenShift Enterprise.

A Warning

The OpenShift Enterprise security model assumes that broker and node components are installed on
separate hosts. Running a broker and node on the same host is not supported.

6.3.1. Service Parameters

In the sample deployment steps, the broker host (Host 1) and node host (Host 2) are configured with the
following parameters:

Service domain example.com

Broker IP address DHCP

Broker host name broker.example.com

Node O IP address DHCP

Node 0 host name node.example.com

Datastore service MongoDB

Authentication service Basic Authentication using httpd mod_auth_basic
DNS service BIND, configured as follows:

IP address: dynamic
Zone: example.com (same as Service Domain)
Domain suffix: example.com (same as Service Domain)

Messaging service MCollective using ActiveMQ
All of these parameters are customizable to suit your requirements. As detailed in the instructions, the

domain and host names can be modified by editing the appropriate configuration files. The messaging,
authentication, and DNS services are each implemented as plug-ins to the broker.

52

Chapter 6. Deployment Methods

DHCP is supported, and use thereof is assumed in this guide. However, dynamic reassignment of IP
addresses is not supported and can cause problems.

6.3.2. DNS Information

The sample deployment steps configure a DNS service to allow OpensShift Enterprise to dynamically publish
DNS host names of applications within your chosen domain. This can only be made authoritative by an
external authority, such as your system administrator, or Internet service provider. If the OpenShift Enterprise
name server is not made authoritative by your DNS provider, application host names are visible only on the
OpenShift Enterprise hosts, or any workstation configured to use the same DNS service. Alternatively,
OpenShift Enterprise can publish to an existing authoritative service if given the necessary credentials for the
domain.

The process of creating an authoritative DNS service and establishing a delegation agreement with your IT
department are beyond the scope of this guide. Each organization has its own policies and procedures for
managing DNS services. The requirements must be discussed with the appropriate personnel for your site to
make the OpenShift Enterprise service available.

[1] https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/ntml/User_Guide/chap-
Applications.html#Highly-Available_Applications

53

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/User_Guide/chap-Applications.html#Highly-Available_Applications

Deployment Guide

Chapter 7. Manually Installing and Configuring a Broker Host

Prerequisites:

This chapter describes how to manually install and configure the OpenShift Enterprise broker host. The
example host contains the broker application, MongoDB, ActiveMQ, and BIND. Each of these components is
covered in individual sections.

Perform all of the procedures in this section only after the base operating system is fully installed and
configured, and before you install and configure any node hosts.

The OpenShift Enterprise security model assumes that broker and node components are installed on
separate hosts. Running a broker and node on the same host is not supported.

7.1. Configuring Broker Host Entitlements

OpenShift Enterprise requires several packages that are not available in the standard Red Hat Enterprise
Linux channels. A broker host requires a subscription for the appropriate OpenShift Enterprise channels to
receive these extra packages.

Table 7.1. OpenShift Enterprise Broker Host Channels

‘ Channel Name Purpose Required Provided By
Red Hat OpensShift Base channel for Yes. "OpenShift Enterprise
Enterprise 2.2 OpensShift Enterprise 2.2 Broker Infrastructure"
Infrastructure. broker hosts. subscription.
Red Hat OpensShift Provides access to the Not required for broker "OpenShift Enterprise
Enterprise 2.2 Client OpenShift Enterprise 2.2 functionality, but required Broker Infrastructure”
Tools. client tools. during installation for subscription.
testing and
troubleshooting
purposes.
Red Hat Software Provides access to the Yes. "OpenShift Enterprise
Collections 1. latest version of Broker Infrastructure"
programming languages, subscription.

database servers, and
related packages.

You must register your host through either Red Hat Subscription Management (RHSM) or Red Hat Network
(RHN) Classic to attach any of the above subscriptions and enable the proper channels. Instructions for either
of these subscription methods are provided in the following sections. Choose one subscription method and

7.1.1. Using Red Hat Subscription Management on Broker Hosts

54

Chapter 7. Manually Installing and Configuring a Broker Host

For additional information on managing your subscription entitlements with Red Hat Subscription
Management, see the Red Hat Subscription Management guides at

Procedure 7.1. To Configure Broker Host Entitlements with Red Hat Subscription Management:

1. Onyour Red Hat Enterprise Linux instance, register the system:

Example 7.1. Registering Using the Subscription Manager

subscription-manager register

Username:
Password:

The system has been registered with id: 3tghj35d1-7c19-4734-b638-
f24tw8eh6246

2. Locate the desired OpenShift Enterprise subscription pool IDs in the list of available subscriptions for
your account:

Example 7.2. Finding the OpenShift Enterprise Pool ID

subscription-manager list --available

| S S S S S S S S S Sy S S S S Sy Sy +
Available Subscriptions
| S S S S S S S S S Sy S S S S Sy Sy +
Subscription Name: OpenShift Enterprise Broker Infrastructure
SKU: SYS#H##H#H
Pool Id: Example_3affb61f013b3ef6a5feOb9a
Quantity: 1
Service Level: Layered
Service Type: L1-L3
Multi-Entitlement: No
Ends: 01/01/2020
System Type: Physical

3. Attach the desired subscription. Replace pool-id in the following command with your relevant Pool
ID value from the previous step:

subscription-manager attach --pool pool-id
4. Enable only the Red Hat OpenShift Enterprise 2.2 Infrastructure channel:
subscription-manager repos --enable rhel-6-server-ose-2.2-infra-rpms

5. Confirm that yum repolist displays the enabled channel:

55

http://access.redhat.com/site/documentation

Deployment Guide

yum repolist
repo id repo name

rhel-6-server-ose-2.2-infra-rpms Red Hat OpenShift Enterprise 2.2
Infrastructure (RPMs)

OpensShift Enterprise broker hosts require a customized yum configuration to install correctly. For

7.1.2. Using Red Hat Network Classic on Broker Hosts

For additional information regarding Red Hat Network (RHN) Classic, see the Red Hat Subscription

While Red Hat Network (RHN) Classic can be used to subscribe to channels, it is primarily intended
for existing, legacy systems. Red Hat strongly recommends that you use Red Hat Subscription
Management for new installations. For details on how to migrate from RHN Classic to RHSM, see the
OpenShift Enterprise Administration Guide.

Procedure 7.2. To Configure Entitlements with Red Hat Network (RHN) Classic:

1. On your Red Hat Enterprise Linux instance, register the system. Replace username and password
in the following command with your Red Hat Network account credentials.

rhnreg_ks --username username --password password
2. Enable only the Red Hat OpenShift Enterprise 2.2 Infrastructure channel.
rhn-channel -a -c rhel-x86_64-server-6-ose-2.2-infrastructure
3. Confirm that yum repolist displays the enabled channel.

yum repolist
repo id repo name

rhel-x86_64-server-6-o0se-2.2-infrastructure Red Hat OpenShift
Enterprise 2.2 Infrastructure - x86_64

OpensShift Enterprise broker hosts require a customized yum configuration to install correctly. For

7.2. Configuring Yum on Broker Hosts

The packages required for running OpenShift Enterprise are all available from Red Hat Network (RHN).
Third-party RPM repositories and even other products provided by Red Hat can create conflicts with
OpensShift Enterprise during initial deployment and later when applying updates. To avoid these issues, it is

56

http://access.redhat.com/site/documentation

Chapter 7. Manually Installing and Configuring a Broker Host

best to use a combination of the yum-plugin-priorities package and exclude directives in the yum
configuration files.

The yum-plugin-priorities package helps prevent other repositories from interfering with Red Hat Network
content for OpenShift Enterprise. The exclude directives work around the cases that priorities will not solve.
The oo-admin-yum-validator tool consolidates this yum configuration process for specified component
types called roles.

Using the oo-admin-yum-validator Tool

broker components. This tool reports a set of problems, provides recommendations, and halts by default so
that you can review each set of proposed changes. You then have the option to apply the changes manually,
or let the tool attempt to fix the issues that have been found. This process may require you to run the tool
several times. You also have the option of having the tool both report all found issues, and attempt to fix all
issues.

Procedure 7.3. To Configure Yum on Broker Hosts:

1. Install the latest openshift-enterprise-release package:

yum install openshift-enterprise-release

2. Run the oo-admin-yum-validator command with the -o option for version 2.2 and the -r
option for the broker role. This reports the first detected set of problems, provides a set of proposed
changes, and halts.

Example 7.3. Detecting Problems

oo-admin-yum-validator -o 2.2 -r broker

Please note: --role=broker implicitly enables --role=client to
ensure /usr/bin/rhc is available for testing and troubleshooting.
Detected OpenShift Enterprise repository subscription managed by Red
Hat Subscription Manager.

The required OpenShift Enterprise repositories are disabled:
rhel-server-rhscl-6-rpms
rhel-6-server-ose-2.2-rhc-rpms
rhel-6-server-rpms
Enable these repositories by running these commands:
subscription-manager repos --enable=rhel-server-rhscl-6-rpms
subscription-manager repos --enable=rhel-6-server-ose-2.2-rhc-rpms
subscription-manager repos --enable=rhel-6-server-rpms
Please re-run this tool after making any recommended repairs to this
system

Alternatively, use the - -report-all option to report all detected problems.

oo-admin-yum-validator -0 2.2 -r broker --report-all

57

Deployment Guide

3. After reviewing the reported problems and their proposed changes, either fix them manually or let the
tool attempt to fix the first set of problems using the same command with the - -fix option. This may
require several repeats of steps 2 and 3.

Example 7.4. Fixing Problems

oo-admin-yum-validator -o 2.2 -r broker --fix

Please note: --role=broker implicitly enables --role=client to
ensure /usr/bin/rhc is available for testing and troubleshooting.
Detected OpensShift Enterprise repository subscription managed by Red
Hat Subscription Manager.

Enabled repository rhel-server-rhscl-6-rpms

Enabled repository rhel-6-server-ose-2.2-rhc-rpms
Enabled repository rhel-6-server-rpms

Alternatively, use the - -fix-all option to allow the tool to attempt to fix all of the problems that are
found.

oo-admin-yum-validator -o 2.2 -r broker --fix-all

If the host is using Red Hat Network (RHN) Classic, the - -fix and - -fix-all options do
not automatically enable any missing OpenShift Enterprise channels as they do when the host
is using Red Hat Subscription Management. Enable the recommended channels with the
rhn-channel command. Replace repo-id in the following command with the repository ID
reported in the oo-admin-yum-validator command output.

rhn-channel -a -c repo-id

For either subscription method, the - -fix and - -fix-all options do not automatically
install any packages. The tool reports if any manual steps are required.

4. Repeat steps 2 and 3 until the oo-admin-yum-validator command displays the following
message.

No problems could be detected!

7.3. Installing and Configuring BIND and DNS

58

Chapter 7. Manually Installing and Configuring a Broker Host

This section describes how to configure BIND on the broker host, and is included primarily for completeness
and to help you quickly install and configure your system. Skip this section if there are alternative
arrangements for handling DNS updates from OpenShift Enterprise.

If you wish to have OpenShift Enterprise update an existing BIND server in your infrastructure, see the
following instructions. If you desire a different configuration, a different DNS update plug-in can be installed

supported DNS plug-ins that are available as of OpenShift Enterprise 2.1.6 and later as well as information on
developing your own plug-in.

7.3.1. Installing BIND and DNS Packages

Install all the required packages:

yum install bind bind-utils

7.3.2. Configuring BIND and DNS

Most of the instructions in this guide reference the domain name that is used to configure the sample
OpenShift Enterprise installation. Configure the $domain environment variable to simplify the process with
the following command, replacing example . com with the domain name to suit your environment:

domain=example.com

Configure the $keyfile environment variable so that it contains the file name for a new DNSSEC key for
your domain, which is created in the subsequent step:

keyfile=/var/named/$domain.key

Use the dnssec-keygen tool to generate the new DNSSEC key for the domain. Run the following
commands to delete any old keys and generate a new key:

rm -vf /var/named/K$domain*

pushd /var/named

dnssec-keygen -a HMAC-SHA256 -b 256 -n USER -r /dev/urandom $domain
KEY="$(grep Key: K$domain*.private | cut -d ' ' -f 2)"

popd

The $KEY environment variable has been set to hold the newly-generated key. This key is used in a
later step.

Enabling Communication Between the Broker and BIND

Ensure that a key exists so that the broker can communicate with BIND. Use the rndc-confgen command
to generate the appropriate configuration files for rndc, which is the tool that the broker uses to perform this
communication:

rndc-confgen -a -r /dev/urandom

59

Deployment Guide

Configuring Ownership, Permissions, and SELinux Context

Ensure that the ownership, permissions, and SELinux context are set appropriately for this new key:

restorecon -v /etc/rndc.* /etc/named.*
chown -v root:named /etc/rndc.key
chmod -v 640 /etc/rndc.key

7.3.2.1. Configuring Sub-Domain Host Name Resolution

Configure BIND to resolve host names under the domain used for your OpenShift Enterprise installation. To
achieve this, create a database for the domain. The dns-nsupdate plug-in includes an example database,
used in this example as a template.

Procedure 7.4. To Configure Sub-Domain Host Name Resolution:

1. Delete and create the /var/named/dynamic directory:

rm -rvf /var/named/dynamic
mkdir -vp /var/named/dynamic

2. Create an initial named database in a new file called /var/named/dynamic/$domain . db,
replacing domain with your chosen domain. If the shell syntax is unfamiliar, see the BASH

cat <<EOF > /var/named/dynamic/${domain}.db

\$ORIGIN
\$TTL 1 ; 1 seconds (for testing only)
${domain} IN SOA nsl.${domain}. hostmaster.${domain}. (
2011112904 ; serial
60 ; refresh (1 minute)
15 ; retry (15 seconds)
1800 ; expire (30 minutes)
10 ; minimum (10 seconds)
)
NS nsl.${domain}.
MX 10 mail.${domain}.
\$ORIGIN ${domain}.
nsl A 127.0.0.1

EOF

Procedure 7.5. To Install the DNSSEC Key for a Domain:

1. Create the file /var/named/$domain . key, where domain is your chosen domain:

cat <<EOF > /var/named/$domain .key
key $domain {
algorithm HMAC-SHA256;
secret "${KEY}";
Iy
EOF

2. Set the permissions and SELinux context to the correct values:

60

http://www.gnu.org/software/bash/manual/bashref.html#Here-Documents

chgrp named -R /var/named
chown named -R /var/named/dynamic
restorecon -rv /var/named

This configuration also requires a new /etc/named. conf file.

Procedure 7.6. To Configure a New /etc/named. conf File:

1. Create the required file:

cat <<EOF > /etc/named.conf

// named.conf

//

// Provided by Red Hat bind package to configure the ISC BIND named(8)
DNS

// server as a caching only nameserver (as a localhost DNS resolver
only).

//

// See /usr/share/doc/bind*/sample/ for example named configuration
files.

//

options {

listen-on port 53 { any; };

directory "/var/named";

dump-file "/var/named/data/cache_dump.db";
statistics-file "/var/named/data/named_stats.txt";
memstatistics-file "/var/named/data/named_mem_stats.txt";

allow-query { any; },;

recursion no;

/* Path to ISC DLV key */
bindkeys-file "/etc/named.iscdlv.key";

Iy
logging {
channel default_debug {
file "data/named.run";
severity dynamic;
Iy
Iy

// use the default rndc key
include "/etc/rndc.key";

controls {

inet 127.0.0.1 port 953
allow { 127.0.0.1; } keys { "rndc-key"; };

b

include "/etc/named.rfc1912.zones";

include "$domain.key";

Deployment Guide

2.

zone "$domain" IN {
type master;
file "dynamic/$domain.db";
allow-update { key $domain ; } ;
3
EOF

Set the permissions and SELinux context to the correct values:

chown -v root:named /etc/named.conf
restorecon /etc/named.conf

7.3.2.2. Configuring Host Name Resolution

Update the /etc/resolv. conf file on the broker host (Host 1) so that it uses the local named service. This
allows the broker to resolve its own host name, existing node host names, and any future nodes that are
added. Also configure the firewall and named service to serve local and remote DNS requests for the domain.

Procedure 7.7. To Configure Host Name Resolution:

1.

2.

62

Edit the /etc/resolv. conf file on the broker host.

Add the following entry as the first name server:

nhameserver 127.0.0.1

Save and close the file.

. Open a shell and run the following commands. This allows DNS access through the firewall, and

ensures the named service starts on boot.

lokkit --service=dns
chkconfig named on

Use the service command to start the named service (that is, BIND) for some immediate updates:
service named start

Use the nsupdate command to open an interactive session to BIND and pass relevant information
about the broker. In the following example, server, update, and send are commands to the
nsupdate command.

Remember to replace broker .example. com with the fully-qualified domain name,
10.0.0.1 with the IP address of your broker, and keyfile with the new key file.

Update your BIND configuration:

nsupdate -k $keyfile
server 127.0.0.1
update delete broker.example.com A

Chapter 7. Manually Installing and Configuring a Broker Host

update add broker.example.com 180 A 10.0.0.1
send

7. Press Ctrl+D to save the changes and close the session.

If you use the kickstart or bash script, the configure_named and configure_dns_resolution
functions perform these steps.

7.3.3. Verifying the BIND Configuration

Before continuing with further configuration, ensure BIND is configured correctly so that the broker's host
name resolves.

dig @127.0.0.1 broker.example.com

Inspect the ANSWER SECTION of the output, and ensure it contains the correct IP address.

Ensure the local BIND instance is being used by the broker:

dig broker.example.com

(An example AUTHORITY section:)
;+ AUTHORITY SECTION:
example.com. 1 IN NS nsl.example.com.

Inspect the AUTHORITY SECTION of the output to verify that it contains the broker host name. If you have
BIND configured on a separate host, verify that it returns that host name.

The BIND instance as configured will not answer questions about domains it does not own, but if you add one
or more secondary nameservers in the /etc/resolv. conf file, they can be queried for other domains.
Because the dig command will only query the BIND instance by default, use thehost command to test
requests for other host names.

host icann.org
icann.org has address 192.0.43.7

icann.org has IPv6 address 2001:500:88:200::7
icann.org mail is handled by 10 pechoral.icann.org.

7.4. Configuring DHCP and Host Name Resolution

This section describes how to perform system-wide network configurations on the broker. Note that no new
packages are required to complete this configuration.

63

Deployment Guide

This section assumes that the broker is using the ethO network interface. If your system uses a
different interface, substitute that interface name in the file names in the ensuing instructions.

7.4.1. Configuring the DHCP Client on the Broker Host

For correct configuration, ensure the DHCP client uses the local BIND instance, and the correct host name
and domain name.

Use the following procedure to configure the DHCP client correctly. Remember to replace the example IP
addresses, host names, and domain names with the values to suit your environment.

Procedure 7.8. To Configure DHCP on the Broker Host:

1. Create the /etc/dhcp/dhclient -etho. conf file:
touch /etc/dhcp/dhclient-ethoe.conf
2. Edit the file to contain the following lines:

prepend domain-name-servers 10.0.0.1;
prepend domain-search "example.com";

3. Open the /etc/sysconfig/network file. Locate the line that begins with HOSTNAME= and ensure
it is set to your broker host name:

HOSTNAME=broker.example.com

4. Run the following command to immediately set the host name. Remember to replace the example
value with the fully-qualified domain name of your broker host.

hostname broker.example.com

If you use the kickstart or bash script, the configure_dns_resolution and
configure_hostname functions perform these steps.

7.4.2. Verifying the DHCP Configuration

Run the following command to verify the host name of the broker host:

hostname

7.5. Installing and Configuring MongoDB

64

Chapter 7. Manually Installing and Configuring a Broker Host

The following configuration changes are required for MongoDB so that it can be used with OpenShift
Enterprise:

Configuring authentication
Specifying the default database size
Creating an administrative user

Creating a regular user
7.5.1. Installing MongoDB
Install all of the required MongoDB packages with the following command:

yum install mongodb-server mongodb

7.5.2. Configuring MongoDB

The MongoDB configuration consists of three main steps:
Configuring authentication
Configuring default database size

Configuring the firewall and mongod daemon

Procedure 7.9. To Configure Authentication and Default Database Size for MongoDB:
1. Open the /etc/mongodb . conf file.

2. Locate the line beginning with auth = and ensure it is set to true:
auth = true

3. Add the following line at the end of the file:
smallfiles = true

4. Ensure no other lines exist that begin with either auth = or smallfiles =.

5. Save and close the file.

Procedure 7.10. To Configure the Firewall and Mongo Daemon:

1. Ensure the mongod daemon starts on boot:
chkconfig mongod on
2. Start the mongod daemon immediately:

service mongod start

65

Deployment Guide

If you use the kickstart or bash script, the configure_datastore function performs these steps.

Verifying MongoDB Configuration

Before continuing with further configuration, verify that you can connect to the MongoDB database:

mongo

This command starts a MongoDB interactive session. Press CTRL+D to leave this session and return to the
command shell.

The start and restart actions of MongoDB return before the daemon is ready to accept connections.
As a result, MongoDB takes time to initialize the journal, which can take several minutes. If you
receive the message "Error: couldn't connect to server 127.0.0.1" with the mongo command, wait and
try again. When MongoDB is ready, it will write a "waiting for connections" message in the
/var/log/mongodb/mongodb. log file. A connection to the MongoDB database is required for the
ensuing steps.

7.5.3. Configuring MongoDB User Accounts

The following instructions describe how to create an account in MongoDB for the broker host to use.

The MongoDB user and password created for the broker host in this section are used when updating
the /etc/openshift/broker. conf file later in Section 7.8.7, “Configuring the Broker Datastore”.

Procedure 7.11. To Create a MongoDB Account:

1. Open an interactive MongoDB session:
mongo

2. At the MongoDB interactive session prompt, select the admin database:
> use admin

3. Add the admin user to the admin database. Replace password in the command with a unique
password:

> db.addUser ("admin", "password")

66

Chapter 7. Manually Installing and Configuring a Broker Host

4. Authenticate using the admin account created in the previous step. Replace password in the
command with the appropriate password:

> db.auth("admin", "password")
5. Switch to the openshift_broker database:
> use openshift_broker

6. Add the openshift userto the openshift_broker database. Replace password in the
command with a unique password:

> db.addUser ("openshift", "password")
7. Press CTRL+D to exit the MongoDB interactive session.

Verifying MongoDB Account

The following instructions describe how to verify that the openshift account has been created.

Procedure 7.12. To Verify a MongoDB Account:

1. Open an interactive MongoDB session:
mongo

2. Switch to the openshift_broker database:
> use openshift_broker

3. Authenticate using the openshift account. Replace password in the command with the
appropriate password:

> db.auth("openshift", "password")

4. Retrieve a list of MongoDB users:

> db.system.users.find()

An entry for the openshift user is displayed.

5. Press CTRL+D to exit the MongoDB interactive session.

7.6. Installing and Configuring ActiveMQ

This section describes how to install and configure ActiveMQ as the messaging platform to aid in
communication between the broker and node hosts.

7.6.1. Installing ActiveMQ

Run the following command to install the required packages for ActiveMQ:

67

Deployment Guide

yum install activemq activemq-client

7.6.2. Configuring ActiveMQ

Edit the /etc/activemq/activemq. xml file to correctly configure ActiveMQ. You can download a sample

changes:

1. Replace activemq.example.com in this file with the actual fully-qualified domain name (FQDN) of
this host.

2. Substitute your own passwords for the example passwords provided, and use them in the
MCollective configuration that follows.

Configure the firewall to allow MCollective to communicate on TCP port 61613, and set the activemq
service to start on boot:

lokkit --port=61613:tcp
chkconfig activemq on

Start the activemq service:

service activemq start

If you use the kickstart or bash script, the configure_activemq function performs these steps.

Ensure that the ActiveMQ monitor console web service requires authentication and answers only on
the localhost interface. It is important to limit access to the ActiveMQ console for security.

Procedure 7.13. To Secure the ActiveMQ Console:

1. Ensure authentication is enabled:

sed -1 -e '/name="authenticate"/s/false/true/'
/etc/activemq/jetty.xml

2. For the console to answer only on the 1ocalhost interface, check the
/etc/activemq/jetty.xml file. Ensure that the Connector bean has the host property with the
value of 127.0.0.1.

Example 7.5. Connector Bean Configuration

<bean id="Connector"

68

https://raw.github.com/openshift/openshift-extras/enterprise-2.2/enterprise/install-scripts/activemq.xml

Chapter 7. Manually Installing and Configuring a Broker Host

class="org.eclipse.jetty.server.nio.SelectChannelConnector">
<!-- see the jettyPort bean -->
<property name="port" value="#
{systemProperties['jetty.port']}" />
<property name="host" value="127.0.0.1" />
</bean>

3. Ensure that the line for the admin user in the /etc/activemq/jetty-realm.propertiesfile is
uncommented, and change the default password to a unique one. User definitions in this file take the
following form:

username: password [,role ...]

Example 7.6. admin User Definition

admin: password, admin

4. Restart the activemq service for the changes to take effect:

service activemq restart

7.6.3. Verifying the ActiveMQ Configuration

MCollective can act in one of two ways: it can transport host-to-host messages, or it can broadcast
messages with the appropriate hosts responding to the broadcasting host. In the latter case, a message that
is broadcast has a "topic" that is used to indicate which hosts should respond.

After ActiveMQ has started, verify that it is listening for messages for the OpenShift Enterprise topics. It can
take 60 seconds or longer for the activemq daemon to finish initializing and start answering queries.

Verify that authentication is working, replacing password with your password:

curl --head --user admin:password
http://localhost:8161/admin/xml/topics.jsp

A 200 OK message should be displayed, followed by the remaining header lines. If you see a401
Unauthorized message, it means your user name or password is incorrect.

Verify that the service returns a topic list, replacing password with your password:

curl --user admin:password --silent
http://localhost:8161/admin/xml/topics.jsp | grep -A 4 topic

If no results are returned, run it again without the - -silent argument, and without using grep to filter
messages:

curl http://localhost:8161/admin/xml/topics.jsp

If the following message is returned, it means that either the ActiveMQ service is not running, or it has not
finished initializing.

69

Deployment Guide

curl: (7) couldn't connect to host
If this persists for more than 60 seconds, and the activemq daemon is running, look in the ActiveMQ log file:
more /var/log/activemq/activemq.log

After you have verified the ActiveMQ configuration, disable the unused Jetty by commenting out the line that
loads jetty.xml. This can be done by editing activemq.xml manually or by running the following
command:

sed -ie "s/\(.*import resource.*jetty.xml.*\)/<\!-- \1 -->/"
/etc/activemq/activemq.xml

Restart the activemq service for the changes to take effect:

service activemq restart

7.7. Installing and Configuring MCollective Client

The broker application on Host 1 uses the MCollective client to communicate with the node hosts. In turn, the
MCollective client relies on Apache ActiveMQ. The following sections describe how to install and configure
the MCollective client.

7.7.1. Installing MCollective Client

Run the following command to install all required packages for the MCollective client on the broker host:

yum install ruby193-mcollective-client

7.7.2. Configuring MCollective Client

Configure the MCollective client to use ActiveMQ on Host 1.

Replace the contents of the /opt/rh/ruby193/root/etc/mcollective/client.cfqg file with the
following configuration. Change the setting for plugin.activemq.pool.1. host from localhost to the
actual host name of Host 1, and use the same password for the MCollective user specified in
/etc/activemqg/activemq.xml. Also ensure that you set the password for the plugin. psk parameter,
and the figures for the heartbeat parameters. This prevents any node failures when you install MCollective

leave these as the default values:

main_collective = mcollective

collectives = mcollective

libdir = /opt/rh/ruby193/root/usr/libexec/mcollective
logger_type = console

loglevel = warn

direct_addressing = 0

Plugins

securityprovider = psk
plugin.psk = asimplething

70

Chapter 7. Manually Installing and Configuring a Broker Host

connector = activemq
plugin.activemq.pool.size =
plugin.activemq.pool.1.host = localhost
plugin.activemq.pool.1.port = 61613
plugin.activemq.pool.1.user = mcollective
plugin.activemq.pool.1.password = marionette

[N

plugin.activemq.heartbeat_interval = 30

plugin.activemq.max_hbread_fails = 2
plugin.activemq.max_hbrlck_fails = 2
Broker will retry ActiveMQ connection, then report error
plugin.activemq.initial_ reconnect_delay = 0.1
plugin.activemq.max_reconnect_attempts = 6

Facts

factsource = yaml
plugin.yaml = /opt/rh/ruby193/root/etc/mcollective/facts.yaml

If you use the kickstart or bash script, the configure_mcollective_for_activemq_on_broker
function performs these steps.

7.8. Installing and Configuring the Broker Application

The following sections describe how to install and configure the broker Rails application that provides the
REST API to the client tools.

7.8.1. Installing the Broker Application

Install the required packages for these instructions using:
yum install openshift-origin-broker openshift-origin-broker-util rubygem-

openshift-origin-auth-remote-user rubygem-openshift-origin-msg-broker -
mcollective rubygem-openshift-origin-dns-nsupdate

If you use the kickstart or bash script, the install_broker_pkgs function performs this step.

7.8.2. Setting Ownership and Permissions for MCollective Client Configuration File

Set the ownership and permissions for the MCollective client configuration file:

chown apache:apache /opt/rh/ruby193/root/etc/mcollective/client.cfg
chmod 640 /opt/rh/ruby193/root/etc/mcollective/client.cfg

71

Deployment Guide

If you use the kickstart or bash script, the configure_mcollective_for_activemq_on_broker
function performs this step.

7.8.3. Modifying Broker Proxy Configuration

The default installation of mod_ss1 includes a configuration file with a VirtualHost that can cause spurious
warnings. In some cases, it may interfere with requests to the OpenShift Enterprise broker application.

Modify the /etc/httpd/conf.d/ssl. conf file to prevent these issues:

sed -i '/VirtualHost/,/VirtualHost/ d' /etc/httpd/conf.d/ssl.conf

7.8.4. Configuring the Required Services

A number of services must be started for the broker Rails application when Host 1 is booted up. Start these
services using:

chkconfig httpd on
chkconfig network on
chkconfig ntpd on
chkconfig sshd on

Configure the firewall to allow access to these services:

lokkit --nostart --service=ssh
lokkit --nostart --service=https
lokkit --nostart --service=http

Set the appropriate ServerName in the Apache configuration on the broker:

sed -1 -e "s/ServerName .*\$/ServerName “hostname /" \
/etc/httpd/conf.d/000002_openshift_origin_broker_servername.conf

If you use the kickstart or bash script, the enable_services_on_broker function performs these
steps.

Configuring Inter-Host Access Keys

Generate a broker access key, which is used by Jenkins and other optional services. The access key is
configured with the /etc/openshift/broker . conf file. This includes the expected key file locations,
which are configured in the lines shown in the sample screen output. The following AUTH_PRIV_KEY FILE
and AUTH_PUB_KEY_FILE settings show the default values, which can be changed as required. The
AUTH_PRIV_KEY_PASS setting can also be configured, but it is not required.

72

Chapter 7. Manually Installing and Configuring a Broker Host

AUTH_PRIV_KEY_FILE="/etc/openshift/server_priv.pem"
AUTH_PRIV_KEY_PASS=""
AUTH_PUB_KEY_FILE="/etc/openshift/server_pub.pem"

The AUTH_PRIV_KEY FILE, AUTH_PRIV_KEY PASS and AUTH_PUB_KEY FILE settings must
specify the same private key on all associated brokers for the Jenkins authentication to work.

The following commands generate the broker access key and assume the default key file locations are used.
If you changed the AUTH_PRIV_KEY_FILE or AUTH_PRIV_KEY PASS settings, replace
/etc/openshift/server_priv.pem or /etc/openshift/server_pub.pem in the following commands as necessary.

openssl genrsa -out /etc/openshift/server_priv.pem 2048
openssl rsa -in /etc/openshift/server_priv.pem -pubout >
/etc/openshift/server_pub.pem

chown apache:apache /etc/openshift/server_pub.pem

chmod 640 /etc/openshift/server_pub.pem

The AUTH_SALT setting in the /etc/openshift/broker . conf file must also be set. It must be secret and
set to the same value across all brokers in a cluster, or scaling and Jenkins integration will not work. Create
the random string using:

openssl rand -base64 64

If AUTH_SALT is changed after the broker is running, the broker service must be restarted:
service openshift-broker restart

Further, if any gears are present when the value is changed again, run the oo-admin-broker -auth
tool to recreate the broker authentication keys. Run the following command to rekey authentication
tokens for all applicable gears:

oo-admin-broker-auth --rekey-all
See the command's - -help output and man page for additional options and more detailed use

cases.

Configure the SESSION_SECRET setting in the /etc/openshift/broker.conf file to sign the Rails
sessions. Ensure it is the same across all brokers in a cluster. Create the random string using:

openssl rand -hex 64

Similar to AUTH_SALT, if the SESSION_SECRET setting is changed after the broker is running, the broker
service must be restarted. Note that all sessions are dropped when the broker service is restarted.

73

Deployment Guide

Configure a suitable SSH key to share between the broker host and all node hosts to facilitate moving gears
between nodes. Create the key and copy it to the appropriate directory with:

ssh-keygen -t rsa -b 2048 -f ~/.ssh/rsync_id_rsa
cp ~/.ssh/rsync_id_rsa* /etc/openshift/

As part of the node host configuration, copy this key to the appropriate directory on each node host. See

If you use the kickstart or bash script, the configure_access_keys_on_broker function performs
these steps.

7.8.5. Configuring the Standard SELinux Boolean Variables

The standard SELinux policy requires correct configuration of variables for the broker application. Configure
these variables using:

setsebool -P httpd_unified=on httpd_execmem=on
httpd_can_network_connect=on httpd_can_network_relay=on
httpd_run_stickshift=on named_write_master_zones=on allow_ypbind=on

Table 7.2. SELinux Boolean Variable Options

‘ Boolean Variable Purpose

httpd_unified Allow the broker to write files in the http file context.

httpd_execmem Allow httpd processes to write to and execute the same memory.
This capability is required by Passenger (used by both the broker and
the console) and by The Ruby Racer/V8 (used by the console).

httpd_can_network_connec Allow the broker application to access the network.

t

httpd_can_network relay Allow the SSL termination Apache instance to access the back-end
broker application.

httpd_run_stickshift Enable Passenger-related permissions.
named_write _master_zones Allow the broker application to configure DNS.
allow_ypbind Allow the broker application to use ypbind to communicate directly

with the name server.

Next, relabel the required files and directories with the correct SELinux contexts:

fixfiles -R ruby193-rubygem-passenger restore
fixfiles -R ruby193-mod_passenger restore

restorecon -rv /var/run

restorecon -rv /opt

74

Chapter 7. Manually Installing and Configuring a Broker Host

If you use the kickstart or bash script, the configure_selinux_policy_on_broker function
performs these steps.

7.8.6. Configuring the Broker Domain

Modify the configuration files of the broker application to suit your domain name:

sed -i -e "s/ACLOUD_DOMAIN=.*\$/CLOUD_DOMAIN=$domain/"
/etc/openshift/broker.conf

If you use the kickstart or bash script, the configure_controller function performs this step.

7.8.7. Configuring the Broker Datastore

Update the broker application configuration to use the MongoDB user, password, and database name that

Verify that the MONGO_USER, MONGO_PASSWORD, and MONGO_DB fields are configured correctly in the
/etc/openshift/broker.conf file.

Example 7.7. Example MongoDB configuration in /etc/openshift/broker.conf

MONGO_USER="openshift"
MONGO_PASSWORD="password"
MONGO_DB="openshift_broker"

7.8.8. Configuring the Broker Plug-ins

Enable the required plug-ins for authentication, DNS, and messaging in the /etc/openshift/plugins.d
directory. For example, the example . conf file enables the example plug-in. The contents of the

example. conf file contain configuration settings in the form of lines containing key=value pairs. In some
cases, the only requirement is to copy an example configuration. Other plug-ins, such as the DNS plug-in,
require further configuration.

Change to the /etc/openshift/plugins.d/ directory to access the files needed for the following
configuration steps:

cd /etc/openshift/plugins.d

Procedure 7.14. To Configure the Required Plug-ins:

1. Copy the example configuration file for the remote user authentication plug-in:

75

Deployment Guide

cp openshift-origin-auth-remote-user.conf.example openshift-origin-
auth-remote-user.conf

2. Copy the example configuration file for the MCollective messaging plug-in:

cp openshift-origin-msg-broker-mcollective.conf.example openshift-
origin-msg-broker-mcollective.conf

3. Configure the dns-nsupdate plug-in:

cat << EOF > openshift-origin-dns-nsupdate.conf
BIND_SERVER="127.0.0.1"

BIND_PORT=53

BIND_KEYNAME="$domain"

BIND_KEYVALUE="SKEY"
BIND_KEYALGORITHM=HMAC-SHA256

BIND_ZONE="$domain"

EOF

If you use the kickstart or bash script, the configure_httpd_auth,
configure_messaging_plugin, and configure_dns_plugin functions perform these steps.

7.8.9. Configuring OpenShift Enterprise Authentication

With the remote user authentication plug-in, the broker service relies on the httpd service to handle
authentication and pass on the authenticated user, or "remote user". Therefore, it is necessary to configure
authentication in httpd. In a production environment, you can configure httpd to use LDAP, Kerberos, or
another industrial-strength technology. This example uses Apache Basic Authentication and a htpasswd file
to configure authentication.

Procedure 7.15. To Configure Authentication for the OpenShift Enterprise Broker:

1. Copy the example file to the correct location. This configures httpd to use
/etc/openshift/htpasswd for its password file.

cp /var/www/openshift/broker/httpd/conf.d/openshift-origin-auth-
remote-user-basic.conf.sample
/var/www/openshift/broker/httpd/conf.d/openshift-origin-auth-remote-
user.conf

76

Chapter 7. Manually Installing and Configuring a Broker Host

The /var/www/openshift/broker/httpd/conf.d/openshift-origin-auth-
remote-user .conf file must be readable by Apache for proper authentication. Red Hat
recommends not making the file unreadable by httpd.

2. Create the htpasswd file with an initial user "demo":

htpasswd -c /etc/openshift/htpasswd demo

New password:
Re-type new password:
Adding password for user demo

If you use the kickstart or bash script, the configure_httpd_auth function performs these steps.
The script creates the demo user with a default password, which is set to changeme in OpenShift
Enterprise 2.0 and prior releases. With OpenShift Enterprise 2.1 and later, the default password is
randomized and displayed after the installation completes. The demo user is intended for testing an
installation, and must not be enabled in a production installation.

7.8.10. Configuring Bundler

Run the following command to verify that Bundler can find the necessary Ruby modules (or "gems") to run the
broker Rails application:

cd /var/www/openshift/broker
scl enable ruby193 'bundle --local'

This command produces the following output:

Your bundle is complete! Use “bundle show [gemname] to see where a bundled
gem is installed.

Configure the broker to start when you reboot Host 1:

chkconfig openshift-broker on

If you use the kickstart or bash script, the configure_controller function performs these steps.

Start the broker immediately:

service httpd start
service openshift-broker start

77

Deployment Guide

7.8.11. Verifying the Broker Configuration

Use the curl command on the broker host to retrieve the REST API base as a quick test to verify your
broker configuration:

curl -Ik https://localhost/broker/rest/api

Verify that a 200 OK response is returned. Otherwise, try the command again without the -I option and look
for an error message or Ruby backtrace:

curl -k https://localhost/broker/rest/api

78

Chapter 8. Continuing Broker Host Installation for Enterprise

Chapter 8. Continuing Broker Host Installation for Enterprise

This section describes how to customize your broker installation for enterprise use, and provides information
beyond the basic installation of an OpenShift Enterprise broker host.

8.1. Installing and Configuring DNS Plug-ins

OpensShift Enterprise must be able to make dynamic, real-time updates to a DNS domain to publish
applications. A DNS plug-in on the broker handles these updates by creating or deleting CNAME records.

However, you can instead define and use a different plug-in that updates a DNS service of your choice.

To implement a different DNS plug-in, you can either develop your own or install and configure one of the
supported plug-ins that are shipped with OpenShift Enterprise. If you choose to develop your own, inspect the
nsupdate plug-in code as an example. The location of the gem and the source files varies depending on the
version of the RPM package. Use the following command to find out the location of these files on your broker
hosts:

rpm -ql rubygem-openshift-origin-dns-nsupdate

Then see the Gem_Location/1lib/openshift/nsupdate_plugin. rb file to observe the necessary
functions.

If you choose to use one of the supported DNS plug-ins, see the following sections.
8.1.1. Installing and Configuring the Fog DNS Plug-in
Available starting in OpenShift Enterprise 2.2, the Fog DNS plug-in uses cloud DNS services to publish

OpensShift Enterprise applications. Currently, this plug-in can only be configured for use with Rackspace®
Cloud DNS.

Procedure 8.1. To Install and Configure the Fog DNS Plug-in:
Perform all of the following steps on each broker host in your deployment.

1. Install the Fog DNS plug-in:
yum install rubygem-openshift-origin-dns-fog
2. Copy the example to create the configuration file:

cp /etc/openshift/plugins.d/openshift-origin-dns-fog.conf.example
/etc/openshift/plugins.d/openshift-origin-dns-fog.conf

3. Editthe /etc/openshift/plugins.d/openshift-origin-dns-fog.conf file and set your
Rackspace® Cloud DNS credentials.

Example 8.1. Fog DNS Plug-in Configuration Using Rackspace® Cloud DNS

79

http://www.ietf.org/rfc/rfc2136.txt
http://fog.io/dns
http://www.rackspace.com/cloud/dns

Deployment Guide

FOG_RACKSPACE_USERNAME="racker"
FOG_RACKSPACE_API_KEY="apikey"
FOG_RACKSPACE_REGION="ord"

4. Disable any other DNS plug-in that may be in use by moving its configuration file from the
/etc/openshift/plugins.d/ directory or renaming it so that it does not end with a . conf
extension.

5. Restart the broker service to reload the configuration:

service openshift-broker restart

8.1.2. Installing and Configuring the DYN® DNS Plug-in

Available starting in OpenShift Enterprise 2.1.6, the DYN® DNS plug-in uses the DYN® Managed DNS
service to publish OpenShift Enterprise applications.

Procedure 8.2. To Install and Configure the DYN® DNS Plug-in:
Perform all of the following steps on each broker host in your deployment.

1. Install the DYN® DNS plug-in:
yum install rubygem-openshift-origin-dns-dynect
2. Copy the example to create the configuration file:

cp /etc/openshift/plugins.d/openshift-origin-dns-dynect.conf.example
/etc/openshift/plugins.d/openshift-origin-dns-dynect.conf

3. Editthe /etc/openshift/plugins.d/openshift-origin-dns-dynect.conf file and set
your DYN® DNS credentials.

Example 8.2. DYN® DNS Plug-in Configuration

ZONE=Cloud_Domain
DYNECT_CUSTOMER_NAME=Customer_Name
DYNECT_USER_NAME=Username
DYNECT_PASSWORD=Password
DYNECT_URL=https://api2.dynect.net

4. Disable any other DNS plug-in that may be in use by moving its configuration file from the
/etc/openshift/plugins.d/ directory or renaming it so that it does not end with a . conf
extension.

5. Restart the broker service to reload the configuration:

service openshift-broker restart

80

http://dyn.com/managed-dns

Chapter 8. Continuing Broker Host Installation for Enterprise

8.1.3. Configuring the nsupdate DNS Plug-in for Compatible DNS Services

A basic installation of OpenShift Enterprise includes the default nsupdate DNS plug-in, as described in

Using Infoblox®

Because Infoblox® supports TSIG and GSS-TSIG updates, you can configure the nsupdate DNS plug-in to

information on Infoblox®.

Configuring your Infoblox® service with the appropriate keys is outside of the scope of this guide, but once a
key has been added to your zone, the configuration requirements on your OpenShift Enterprise hosts are the
same as if you were using a BIND server.

Procedure 8.3. To Configure the nsupdate DNS Plug-in to Update an Infoblox® Service:
Perform all of the following steps on each broker host in your deployment.

1. The nsupdate DNS plug-in is installed by default during a basic installation of OpenShift Enterprise,
but if it is not currently installed, install the rubygem-openshift-origin-dns-nsupdate package:

yum install rubygem-openshift-origin-dns-nsupdate

2. Editthe /etc/openshift/plugins.d/openshift-origin-dns-nsupdate.conf file and set
values appropriate for your Infoblox® service and zone:

BIND_SERVER="Infoblox_Name_Server"
BIND_PORT=53

BIND_KEYNAME="Key_ Name"
BIND_KEYVALUE="Key_ Value"
BIND_KEYALGORITHM=Key_ Algorithm_Type
BIND_ZONE="Zone_Name"

3. Disable any other DNS plug-in that may be in use by moving its configuration file from the
/etc/openshift/plugins.d/ directory or renaming it so that it does not end with a . conf
extension.

4. Restart the broker service to reload the configuration:

service openshift-broker restart

8.2. Configuring User Authentication for the Broker

User authentication on OpenShift Enterprise with the standard remote user authentication plug-in uses
Apache HTTP Server authentication methods. When a user is successfully authenticated for the first time, the
broker host creates a user record in MongoDB. Therefore, a user can be added by creating the user in your
preferred authentication repository.

OpensShift Enterprise supports any form of Apache authentication capable of setting theREMOTE_USER
Apache environment variable securely. The following sections provide details on configuring user
authentication on the broker for a number of popular authentication methods.

81

http://www.ietf.org/rfc/rfc2136.txt
https://www.infoblox.com

Deployment Guide

The