
Red Hat OpenShift Documentation
Team

OpenShift Enterprise
2
Cartridge Specification Guide

Specifications for developing OpenShift Enterprise cartridges

OpenShift Enterprise 2 Cartridge Specification Guide

Specifications for developing OpenShift Enterprise cartridges

Red Hat OpenShift Documentation Team

Legal Notice

Copyright © 2017 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
The OpenShift Enterprise Cartridge Specification Guide provides guidelines and specifications about
components and services that are essential to the design of custom cartridges. This guide helps
developers to create custom cartridges so that application components that are not currently
supported by the available cartridges can be integrated with OpenShift Enterprise.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Introduction to OpenShift Enterprise

Chapter 2. Managed Files

Chapter 3. Locking Cartridges
3.1. Cartridge Lock Configuration

Chapter 4. Exposing Services
4.1. TCP Endpoints
4.2. TCP Endpoint Example
4.3. Custom HTTP Services
4.4. Enabling Custom Paths for Websockets

Chapter 5. Creating Template Directories for Language Cartridges
5.1. Marker Files
5.2. Action Hooks

Chapter 6. Using Cartridge Scripts
6.1. Embedded Ruby (ERB) Processing
6.2. setup Script
6.3. install Script
6.4. post-install Script
6.5. teardown Script
6.6. control Script
6.7. metrics Script
6.8. Exit Status Codes
6.9. Communication Between OpenShift and Cartridges

Chapter 7. Environment Variables
7.1. System Environment Variables
7.2. Cartridge Environment Variables
7.3. Custom Cartridge Environment Variables

Chapter 8. Cartridge Events
8.1. Cartridge Event Publishing
8.2. Cartridge Event Subscriptions
8.3. Cartridge Event Example

Chapter 9. OpenShift Build Process
9.1. Default Build Life Cycle
9.2. Default Scaling Build Life Cycle
9.3. Builder Cartridge Life Cycle
9.4. Archiving Applications
9.5. Binary Deployment

Chapter 10. Backing Up and Restoring Cartridges
10.1. Snapshot
10.2. Restore

Chapter 11. Upgrading Custom and Community Cartridges
11.1. Upgrade Itinerary
11.2. Compatible Upgrades
11.3. Incompatible Upgrades
11.4. Cartridge Upgrade Script

3

4

6
6

8
8
9

11
11

13
13
13

15
15
16
17
17
18
18
19
20
23

24
24
24
25

26
26
26
27

29
29
30
31
31
31

33
33
34

35
35
36
36
36

Table of Contents

1

. .

. .

. .

Chapter 12. Enabling Logshifter

Chapter 13. OpenShift Cartridge Reference
13.1. Cartridge Hierarchy
13.2. Cartridge Directory Structure
13.3. Cartridge Metadata Elements

13.3.1. Cartridge-Short-Name
13.3.2. Cartridge-Version
13.3.3. Compatible-Versions
13.3.4. Cartridge-Vendor
13.3.5. Version
13.3.6. Versions
13.3.7. Categories

13.3.7.1. System Categories
13.3.7.2. Descriptive Categories

13.3.8. Group-Overrides
13.3.9. Scaling
13.3.10. Source-Url
13.3.11. Source-Md5
13.3.12. Additional-Control-Actions
13.3.13. Endpoints

13.4. Example openshift.conf.erb File

Appendix A. Revision History

38

39
39
39
40
42
42
42
43
43
43
43
43
45
45
45
46
46
46
46
47

48

Cartridge Specification Guide

2

Chapter 1. Introduction to OpenShift Enterprise

OpenShift Enterprise by Red Hat is a Platform as a Service (PaaS) that provides developers and IT
organizations with an auto-scaling, cloud application platform for deploying new applications on secure,
scalable resources with minimal configuration and management overhead. OpenShift Enterprise supports a
wide selection of programming languages and frameworks, such as Java, Ruby, and PHP. Integrated
developer tools, such as Eclipse integration, JBoss Developer Studio, and Jenkins, support the application life
cycle.

Built on Red Hat Enterprise Linux, OpenShift Enterprise provides a secure and scalable multi-tenant
operating system for today's enterprise-class applications while providing integrated application runtimes and
libraries.

OpenShift Enterprise brings the OpenShift PaaS platform to customer data centers, enabling organizations to
implement a private PaaS that meets security, privacy, compliance, and governance requirements.

Chapter 1. Introduction to OpenShift Enterprise

3

Chapter 2. Managed Files

Managed files are files that have non-default settings, or that require special handling by OpenShift
Enterprise.

The $cartridge_name/metadata/managed_files.yml file lists managed files and strings that
OpenShift Enterprise uses during different stages of the cartridge life cycle.

File Patterns

Most entries in the managed_files.yml file use file patterns. OpenShift Enterprise treats these patterns
like shell globs. Dir.glob processes entries that contain asterisk (*) symbols using the
File::FNM_DOTMATCH flag. It treats entries that end in a forward slash (/) as directories, and other entries
as files. For more information on globs, see http://ruby-doc.org/core-1.9.3/Dir.html#method-c-glob.

Entries that begin with ~/ start at the gear directory. All other entries start at the cartridge directory.

Strings

Some entries allow string values. These values return directly without any modification.

Allowed Entries

OpenShift Enterprise supports the following entries:

Table 2.1. Managed File Entries

Entry Type Usage Reference
locked_files File Pattern Files that the application developer can

read but not update.
Chapter 3, Locking
Cartridges

snapshot_exclusio
ns

File Pattern Array of file names not to backup from the
gear when rhc snapshot runs.

Chapter 10,
Backing Up and
Restoring
Cartridges

setup_rewritten File Pattern Files that OpenShift Enterprise removes
before running setup.

Section 6.2, “setup
Script”

process_templates File Pattern ERB templates OpenShift Enterprise
renders after running setup.

Section 6.1,
“Embedded Ruby
(ERB) Processing”

restore_transforms Strings Set of regex transforms for rewriting file
names when rhc restore runs.

Chapter 10,
Backing Up and
Restoring
Cartridges

The following example demonstrates the structure of a basic managed_files.yml file:

Example 2.1. managed_files.yml

locked_files:
- env/
- ~/.foorc
snapshot_exclusions:
- mydir/*

Cartridge Specification Guide

4

http://ruby-doc.org/core-1.9.3/Dir.html#method-c-glob

restore_transforms:
- s|${OPENSHIFT_GEAR_NAME}/data|app-root/data|
process_templates:
- **/*.erb
setup_rewritten:
- conf/*

Chapter 2. Managed Files

5

Chapter 3. Locking Cartridges

Cartridge instances on a gear are either locked or unlocked at any given time. Locking a cartridge enables
cartridge scripts to have greater access to the gear's files and directories. Application developers have read
and write access to unlocked files, and read-only access to locked files. This means that application scripts
and hooks cannot override cartridge code when the cartridge is locked.

OpenShift Enterprise controls the lock state of cartridges, moving them between locked and unlocked at
various points in the cartridge life cycle.

A cartridge with no locked_files entry in the $cartridge_name/metadata/managed_files.yml file
is permanently unlocked. This approach is not recommended, but it may be sufficient for simple cartridges.

Note

Cartridge file locking is not a security measure. It is designed to prevent application developers from
accidentally breaking their applications by modifying cartridge files.

3.1. Cartridge Lock Configuration

The locked_files entry in the $cartridge_name/metadata/managed_files.yml file lists files and
directories that OpenShift Enterprise locks at certain points during the cartridge life cycle.

If a file in the locked_files list does not exist, OpenShift Enterprise creates the file before your setup
script is called. OpenShift Enterprise also creates missing directories if required.

If files require application developers to have read and write access to them while an application is deploying
and running, do not allow OpenShift Enterprise to create them from the locked_files list. For example,
create ~/.node-gyp and ~/.npm in a node.js cartridge using a setup or install script.

Entries that begin with ~/ start at the gear directory. All other entries start at the cartridge directory. Entries
that end with a forward slash (/) are treated as directories. Entries that end with an asterisk (*) are treated as
lists of files. Entries that end with any other character are treated as files.

Note

OpenShift Enterprise does not change entry types. For example, if you enter a directory without a
forward slash (/) at the end, OpenShift Enterprise treats it as a file. A cartridge can fail to operate if its
locked_files entries are not accurate.

Example 3.1. PHP locked_files Configuration Entry

locked_files:
- ~/.pearrc
- bin/
- conf/*

Explanation:

Cartridge Specification Guide

6

~/.pearrc: when locked, you can edit this file but application developers cannot.

php/bin/: the directory is locked but not the files it contains. Only you can add files to the directory,
but both you and application developers can edit those files.

php/conf/*: the directory is not locked, but the files in the directory are locked. Both you and
application developers can add files to the directory, but only you can edit them.

Reserved Files

All visible files and directories in a gear's home directory are reserved. Certain hidden files are also reserved.
While a cartridge is unlocked, you can create any unreserved hidden file or directory in the gear's home
directory.

Reserved Hidden Files

~/.ssh

~/.sandbox

~/.tmp

~/.env

Chapter 3. Locking Cartridges

7

Chapter 4. Exposing Services

Most cartridges provide services by binding to ports. Cartridges must declare to which ports they bind, and
provide variable names to describe:

The IP addresses provided to the cartridge for binding.

The local gear ports to which the cartridge services bind.

(Optional) The public proxy ports that expose local gear ports for communication between related gears in
an application, such as the TCP proxy public endpoint.

(Optional) TCP endpoint mappings that establish a front end for application users.

4.1. TCP Endpoints

TCP endpoints are services that are exposed by a cartridge, and are accessible by other cartridges or gears
in an application. They may be any protocol which uses TCP, such as http or mysql. These services may
also be exposed to application users through mappings. OpenShift Enterprise only creates endpoint ports for
scalable applications.

The endpoints can be defined in the Endpoints section of the
$cartridge_name/metadata/manifest.yml file.

Example 4.1. Endpoints Entry

Endpoints:
 - Private-IP-Name: <name of IP variable>
 Private-Port-Name: <name of port variable>
 Private-Port: <port number>
 Public-Port-Name: <name of public port variable>
 Protocols: [<protocol type 1>,<protocol type 2>]
 Mappings:
 - Frontend: '<frontend path>'
 Backend: '<backend path>'
 Options: { ... }
 - <...>
 - <...>

When a cartridge is installed on a gear, it automatically assigns IP addresses to each IP variable name
ensuring that assigned addresses can bind to the specified port.

If an endpoint specifies a public port variable, a public port proxy mapping is created using a random external
port accessible through the gear's DNS entry.

Endpoint Environment Variables

Endpoint values are exposed to cartridge scripts and application code through environment variables. These
environment variables are formed from the Cartridge-Short-Name element and from the endpoint
variable names specified in the manifest.yml file.

Example 4.2. Environment Variable Format

Cartridge Specification Guide

8

OPENSHIFT_{Cartridge-Short-Name}_{name of IP variable} =>
<assigned internal IP>
OPENSHIFT_{Cartridge-Short-Name}_{name of port variable} =>
<endpoint specified port>
OPENSHIFT_{Cartridge-Short-Name}_{name of public port variable} =>
<assigned external port>

Endpoint Protocols

You can define the protocols for services using the Protocols variable. Protocols takes a comma-
separated list of protocol types from the following available options:

Table 4.1. Endpoint Protocols

Protocol Description
tcp TCP
http HTTP
https HTTP Secure (HTTP over SSL/TLS)
ws WebSocket
wss WebSocket Secure (WebSocket over SSL/TLS)
tls SNI Proxy
mongodb MongoDB
mysql MySQL
postgresql PostgreSQL

If the Protocols list is not set, the default behavior matches the pre-Protocols behavior. For example, if
an endpoint has Mappings, assume HTTP; otherwise, assume TCP. The front-end modules also translate
Mappings options. For example, if a Mappings entry has websocket set in its Options, then ws is added
to the Protocols list.

Endpoint Mappings

If an endpoint specifies Mappings, a front-end httpd route to the cartridge is created for each mapping
entry using the provided options. The Frontend key is a front-end path element connected to a back-end
URI specified by the Backend key. The Options hash enables additional route configuration options.

Table 4.2. Endpoint Mapping Options

Option Description
websocket Enable WebSocket on a particular path
gone Mark the path as gone (URI is ignored)
forbidden Mark the path as forbidden (URI is ignored)
noproxy Mark the path as not proxied (URI is ignored)
redirect Use redirection to URI instead of proxy (URI must be a path)
file Ignore request and load file path contained in URI (must be a path)
tohttps Redirect request to HTTPS and use the path contained in the URI

(must be a path)

4.2. TCP Endpoint Example

Chapter 4. Exposing Services

9

This section provides an example Endpoints entry in a $cartridge_name/metadata/manifest.yml
file, and demonstrates how OpenShift Enterprise uses this entry to create environment variables, public proxy
port mappings, and httpd routes.

Example 4.3. Endpoints Entry

Name: CustomCart
Cartridge-Short-Name: CUSTOMCART

...

Endpoints:
 - Private-IP-Name: HTTP_IP
 Private-Port-Name: WEB_PORT
 Private-Port: 8080
 Public-Port-Name: WEB_PROXY_PORT
 Protocols: [ws]
 Mappings:
 - Frontend: '/web_front'
 Backend: '/web_back'
 - Frontend: '/socket_front'
 Backend: '/socket_back'
 Options: { "websocket": true }

 - Private-IP-Name: HTTP_IP
 Private-Port-Name: ADMIN_PORT
 Private-Port: 9000
 Public-Port-Name: ADMIN_PROXY_PORT
 Protocols: [http]
 Mappings:
 - Frontend: '/admin_front'
 - Backend: '/admin_back'

 - Private-IP-Name: INTERNAL_SERVICE_IP
 Private-Port-Name: 5544
 Public-Port-Name: INTERNAL_SERVICE_PORT

Environment Variables

Several environment variables are created for the cartridge using the information in the Endpoints entry.

Example 4.4. Environment Variables

Internal IP/port allocations
OPENSHIFT_CUSTOMCART_HTTP_IP=<assigned internal IP 1>
OPENSHIFT_CUSTOMCART_WEB_PORT=8080
OPENSHIFT_CUSTOMCART_ADMIN_PORT=9000
OPENSHIFT_CUSTOMCART_INTERNAL_SERVICE_IP=<assigned internal IP 2>
OPENSHIFT_CUSTOMCART_INTERNAL_SERVICE_PORT=5544

Cartridge Specification Guide

10

Public proxy port mappings
OPENSHIFT_CUSTOMCART_WEB_PROXY_PORT=<assigned public port 1>
OPENSHIFT_CUSTOMCART_ADMIN_PROXY_PORT=<assigned public port 2>

Proxy Port Mapping

Proxy port mapping is assigned using the information in the Endpoints entry.

Example 4.5. Proxy Port Mapping

<assigned external IP>:<assigned public port 1> =>
OPENSHIFT_CUSTOMCART_HTTP_IP:OPENSHIFT_CUSTOMCART_WEB_PORT
<assigned external IP>:<assigned public port 2> =>
OPENSHIFT_CUSTOMCART_HTTP_IP:OPENSHIFT_CUSTOMCART_ADMIN_PORT

httpd Routing

The httpd routes are assigned using the Endpoints entry.

Example 4.6. httpd Routing

http://<app dns>/web_front =>
http://OPENSHIFT_CUSTOMCART_HTTP_IP:8080/web_back
http://<app dns>/socket_front =>
http://OPENSHIFT_CUSTOMCART_HTTP_IP:8080/socket_back
http://<app dns>/admin_front =>
http://OPENSHIFT_CUSTOMCART_HTTP_IP:9000/admin_back

4.3. Custom HTTP Services

With ERB templates you can expose cartridge services using an application's URL by placing the Apache
configuration code in the httpd.d directory.

After OpenShift Enterprise runs the cartridge setup script, it processes each ERB template and writes the
contents of the node's httpd configuration.

Example 4.7. A mongodb.conf.erb File

Alias /health <%= ENV['OPENSHIFT_HOMEDIR'] +
"/mongodb/httpd.d/health.html" %>
Alias / <%= ENV['OPENSHIFT_HOMEDIR'] + "/mongodb/httpd.d/index.html" %>

4.4. Enabling Custom Paths for Websockets

Websockets are used to create real-time events initiated by an OpenShift Enterprise application.

Chapter 4. Exposing Services

11

The ability to add a custom path for websocket URLs to a cartridge must be enabled in that cartridge's
manifest.yml file before it can be used in a new application. Add the following information to the
/usr/libexec/openshift/cartridges/Cart_Name/metadata/manifest.yml file of the desired
cartridge:

- Private-IP-Name: IP2
 Private-Port-Name: PORT2
 Private-Port: 8080
 Public-Port-Name: PROXY_PORT2
 Protocols:
 - http
 - ws
 Mappings:
 - Frontend: '/file_path'
 Backend: '/file_path2'
 Options:
 websocket: true

This adds a second endpoint to a cartridge with ws listed in the protocols and websockets set to true.

After a cartridge has been modified to use custom paths for websocket URLs, a new application can then be
created with the modified cartridge. The application is accessible using the new endpoint, as shown in the
following example:

ws://app-domain.example.com:8000/file_path

Cartridge Specification Guide

12

Chapter 5. Creating Template Directories for Language Cartridges

Use the $cartridge_name/template/ or $cartridge_name/template.git/ directory to provide a
basic example of an application written in the language or framework your cartridge packages. Welcome the
application developer to your cartridge and inform them that the cartridge is operating correctly.

If you provide a $cartridge_name/template.git/ directory, OpenShift Enterprise copies the directory
for the application developer.

If you provide a $cartridge_name/template/ directory, OpenShift Enterprise uses it to create a Git
repository for the application developer. Ensure that your setup and install scripts account for the path
change from template to template.git.

Create .gitignore files in empty directories to ensure the directories are retained when OpenShift
Enterprise builds the Git repository.

Example 5.1. Ruby Template Directory

A Ruby 1.8 cartridge with Passenger support has a template/public/ directory and a config.ru file
to define the web application.

+- template
| +- config.ru
| +- public
| | +- .gitignore
| .openshift
| +- markers
| |- ...

5.1. Marker Files

The $cartridge_name/template/.openshift/markers/ directory contains example marker files for
application developers. These files set conditions for various stages of a cartridge's life cycle. You can add
marker files as required to enable application developers to control aspects of your cartridge.

Example 5.2. Ruby 1.8 Marker Files

Marker Action
force_clean_build OpenShift Enterprise removes previous output from the bundle

install --deployment command and reinstalls all gems
according to the current Gemfile and Gemfile.lock files.

hot_deploy OpenShift Enterprise serves new application code without restarting
the application's web server.

disable_auto_scaling OpenShift Enterprise does not automatically scale a scalable
application.

5.2. Action Hooks

Chapter 5. Creating Template Directories for Language Cartridges

13

The $cartridge_name/template/.openshift/action_hooks/ directory contains examples of
application developer action hooks that run during the cartridge life cycle.

Example 5.3. Action Hooks

pre_start_`cartridge name`
post_start_`cartridge name`
pre_stop_`cartridge name`

OpenShift Enterprise runs default action_hooks as indicated in the control script. To add additional
hooks, run them explicitly in the control script. Ensure appropriate documentation is available for
application developers to use the additional hooks correctly.

If you find that action hooks are not working, they may not be executable. To fix this, run the following
command:

$ git update-index --chmod=+x .openshift/action_hooks/file_name

The --chmod=(+/-)x command sets the execute permissions on the updated file specified.

Cartridge Specification Guide

14

Chapter 6. Using Cartridge Scripts

Cartridge scripts act as the application programming interface (API) for a cartridge. Use these scripts to
contain the required code for single version software that configures easily. For complex configurations and
software with multiple versions, use these scripts as shim code to set up the required environment and run
additional scripts. You can also create symbolic links from these scripts.

Cartridge scripts are located in the $cartridge_name/bin/ directory, and run from the cartridge's home
directory.

Table 6.1. Required Scripts

Script Name Usage
setup Creates and configures files that OpenShift Enterprise copies from the cartridge

repository to the gear's directory. Runs for the initial installation and every
upgrade.

control Enables OpenShift Enterprise or the application developer to control the state
of a cartridge and its packaged software.

Table 6.2. Optional Scripts

Script Name Usage
teardown Prepares the gear for cartridge removal.
install Creates and configures files that OpenShift Enterprise copies from the cartridge

repository to the gear's directory. Runs only on the first installation of the
cartridge.

post-install Configures the cartridge after the cartridge starts. Runs only on the first
installation of the cartridge.

metrics Gathers cartridge level metrics.

6.1. Embedded Ruby (ERB) Processing

Embedded Ruby (ERB) is a templating system that embeds Ruby into a text document. To provide more
flexible configuration and environment variable options, OpenShift Enterprise enables you to provide certain
values as ERB templates. For more information on ERB templates, see http://ruby-doc.org/stdlib-
1.9.3/libdoc/erb/rdoc/ERB.html.

OpenShift Enterprise renders ERB templates at safe_level 2 and processes them in two passes. For
more information on Ruby safe levels, see http://www.ruby-doc.org/docs/ProgrammingRuby/html/taint.html.

ERB Processing Passes

1. The first pass processes entries in the $cartridge_name/env/ directory. This pass is mandatory,
and occurs before OpenShift Enterprise runs the $cartridge_name/bin/setup script.

2. The second pass processes entries specified in the process_templates entry of the
$cartridge_name/metadata/managed_files.yml file. This pass occurs after OpenShift
Enterprise runs the $cartridge_name/bin/setup script, but before it runs the
$cartridge_name/bin/install script. This enables the setup script to create or modify ERB
templates as required, and for the install script to use the processed values.

Example 6.1. Environment Variable Template

Chapter 6. Using Cartridge Scripts

15

http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
http://www.ruby-doc.org/docs/ProgrammingRuby/html/taint.html

For OpenShift Enterprise release 2.0, an env/OPENSHIFT_MONGODB_DB_LOG_DIR.erb file contains:

<%= ENV['OPENSHIFT_MONGODB_DIR'] %>/log/

For OpenShift Enterprise release 2.1 and later, an env/OPENSHIFT_MONGODB_DB_LOG_DIR.erb file
contains:

<%= ENV['OPENSHIFT_LOG_DIR'] %>

The value of LOG_DIR for each cartridge is set to the same value as OPENSHIFT_LOG_DIR.

From that ERB file, OpenShift Enterprise creates an env/OPENSHIFT_MONGODB_DB_LOG_DIR
environment variable containing:

/var/lib/openshift/aa9e0f66e6451791f86904eef0939e/mongodb/log/

Example 6.2. php.ini Configuration Template

A conf/php.ini.erb file contains:

upload_tmp_dir = "<%= "#{ENV['OPENSHIFT_PHP_DIR']}tmp/" %>"
session.save_path = "<%= "#{ENV['OPENSHIFT_PHP_DIR']}sessions/" %>"

From that ERB file, OpenShift Enterprise creates a conf/php.ini file containing:

upload_tmp_dir =
"/var/lib/openshift/aa9e0f66e6451791f86904eef0939e/php/tmp/"
session.save_path =
"/var/lib/openshift/aa9e0f66e6451791f86904eef0939e/php/sessions/"

Other possible uses for ERB templates are includes values in httpd configuration files, database
configuration values for storing persistent data in the OPENSHIFT_DATA_DIR directory, and the application
name value in the pom.xml file.

6.2. setup Script

Synopsis

setup [--version <version>]

Options

--version <version>: selects which version of the cartridge to install. If you do not supply a version,
OpenShift Enterprise installs the version given in the Version element of the
$cartridge_name/metadata/manifest.yml file.

Description

The setup script creates and configures files that OpenShift Enterprise copies from the cartridge repository
to the gear's directory. The setup script must be re-entrant. OpenShift Enterprise runs the script for every
upgrade that is not backward compatible. Add logic you want to run only once to the install script, not the

Cartridge Specification Guide

16

setup script.

Add files created during setup to the setup_rewritten section of the
$cartridge_name/metadata/managed_files.yml file. During an upgrade, OpenShift Enterprise
deletes these files prior to running the setup script.

If you use ERB templates to configure software, OpenShift Enterprise processes these files for environment
variable substitution after running the setup script.

Lock context: unlocked.

6.3. install Script

Synopsis

install [--version <version>]

Options

--version <version>: selects which version of the cartridge to install. If you do not supply a version,
OpenShift Enterprise installs the version given in the Version element of the
$cartridge_name/metadata/manifest.yml file.

Description

The install script creates and configures files that OpenShift Enterprise copies from the cartridge
repository to the gear's directory. OpenShift Enterprise runs the install script only on the first installation of
a cartridge.

Put logic for one-time operations, for example generating passwords, creating ssh keys, and adding
environment variables, in the install script.

Report client results and messages with the install script, not the setup script.

The install script may substitute a version dependent of the template or template.git directories.

Lock context: unlocked.

6.4. post-install Script

Synopsis

post-install [--version <version>]

Options

--version <version>: selects which version of the cartridge to install. If you do not supply a version,
OpenShift Enterprise installs the version given in the Version element of the
$cartridge_name/metadata/manifest.yml file.

Description

Use the post-install script to configure your cartridge after the cartridge starts. OpenShift Enterprise only
runs the post-install script for the first installation of the cartridge.

Chapter 6. Using Cartridge Scripts

17

Lock context: locked.

6.5. teardown Script

Synopsis

teardown

Description

The teardown script prepares the gear for cartridge removal. The script only runs when OpenShift
Enterprise removes the cartridge from a gear; it does not run when OpenShift Enterprise deletes the gear.
The gear continues to operate without the functionality of the removed cartridge.

Lock context: unlocked.

6.6. control Script

Synopsis

control <action>

Options

<action>: the action the cartridge performs.

Description

The control script enables OpenShift Enterprise or the application developer to control the state of a
cartridge and its packaged software.

Table 6.3. Control Script Actions

Action Result
update-configuration,
pre-build, build, deploy,
post-deploy

See Chapter 9, OpenShift Build Process.

start Starts the software the cartridge controls.
stop Stops the software the cartridge controls.
status Returns a zero (0) exit status if the cartridge code is running.
reload Instructs the cartridge and its packaged software to reload their configuration

information. This action only operates if the cartridge is running.
restart Stops the current process and starts a new one for the packaged software.
threaddump Signals the packaged software to perform a thread dump, if applicable.
tidy Releases unused resources.
pre-snapshot Prepares the cartridge for a snapshot.
post-snapshot Tidies the cartridge after a snapshot.
pre-restore Prepares the cartridge for restoration.
post-restore Tidies the cartridge after restoration.

Lock context: locked.

Cartridge Specification Guide

18

Using the tidy Action

By default, the tidy action performs the following operations:

Garbage collects the Git repository.

Removes all files in the /tmp directory.

Add additional operations to the tidy action by editing the tidy() function in the
$cartridge_name/bin/control file. Because applications have limited resources, it is recommended
that you tidy thoroughly.

Example 6.3. Additional tidy Operations

rm $OPENSHIFT_{Cartridge-Short_Name}_DIR/logs/log.[0-9]

cd $OPENSHIFT_REPO_DIR ; mvn clean

Using the status Action

When an application developer queries the status of your packaged software, use a zero (0) exit status to
indicate correct operation. Direct information to the application developer using stdout. Return errors with a
non-zero exit status using stderr.

OpenShift Enterprise maintains the expected state of an application in the ~/app-root/runtime/.state
file. Do not use this file to determine the status of the packaged software as it contains the expected state of
the application, not the current state.

Table 6.4. Values for .state

Value Status
building Application is building.
deploying Application is deploying.
idle Application is shutdown due to inactivity.
new A gear exists, but no application is installed.
started Application started.
stopped Application is stopped.

6.7. metrics Script

With the release of OpenShift Enterprise 2.1, a metrics entry can be added to the cartridge’s
$cartridge_name/metadata/manifest.yml to inform OpenShift Enterprise that it supports metrics.

Example 6.4. Metrics Entry

Metrics:
- enabled

The metrics script must be an executable file in the $cartridge_name/bin/ directory.

Chapter 6. Using Cartridge Scripts

19

Message Format

A metrics message must include the following fields and be written to standard out (STDOUT):

type=metric <metric name>=<metric value>

Example 6.5. Metrics Message Example

type=metric thread.count=5

6.8. Exit Status Codes

OpenShift Enterprise follows the convention that scripts return zero (0) for success and non-zero for failure.

OpenShift Enterprise supports special handling of several non-zero exit codes. These codes enable
OpenShift Enterprise to refine its behavior, for example when returning HTTP status codes through the REST
API or when deciding whether to continue or abort an operation.

If a cartridge script returns a value not included in the following tables, OpenShift Enterprise treats the error
as fatal to the cartridge.

Table 6.5. User Errors

Exit Code Usage
1 Non-specific error
97 Invalid user credentials
99 User does not exist
100 An application with specified name already exists
101 An application with specified name does not exist and cannot be operated on
102 A user with login already exists
103 Given namespace is already in use
104 User's gear limit has been reached
105 Invalid application name
106 Invalid namespace
107 Invalid user login
108 Invalid SSH key
109 Invalid cartridge types
110 Invalid application type specified
111 Invalid action
112 Invalid API
113 Invalid auth key
114 Invalid auth iv
115 Too many cartridges of one type per user
116 Invalid SSH key type
117 Invalid SSH key name or tag
118 SSH key name does not exist
119 SSH key or key name not specified
120 SSH key name already exists
121 SSH key already exists

Cartridge Specification Guide

20

122 Last SSH key for user
123 No SSH key for user
124 Could not delete default or primary key
125 Invalid template
126 Invalid event
127 A domain with specified namespace does not exist and cannot be operated on
128 Could not delete domain because domain has valid applications
129 The application is not configured with this cartridge
130 Invalid parameters to estimates controller
131 Error during estimation
132 Insufficient Access Rights
133 Could not delete user
134 Invalid gear profile
135 Cartridge not found in the application
136 Cartridge already embedded in the application
137 Cartridge cannot be added or removed from the application
138 User deletion not permitted for normal or non-subaccount user
139 Could not delete user because user has valid domain or applications
140 Alias already in use
141 Unable to find nameservers for domain
150 A plan with specified id does not exist
151 Billing account was not found for user
152 Billing account status not active
153 User has more consumed gears than the new plan allows
154 User has gears that the new plan does not allow
155 Error getting account information from billing provider
156 Updating user plan on billing provider failed
157 Plan change not allowed for subaccount user
158 Domain already exists for user
159 User has additional filesystem storage that the new plan does not allow
160 User max gear limit capability does not match with current plan
161 User gear sizes capability does not match with current plan
162 User max untracked additional filesystem storage per gear capability does not match

with current plan
163 Gear group does not exist
164 User is not allowed to change storage quota
165 Invalid storage quota value provided
166 Storage value not within allowed range
167 Invalid value for nolinks parameter

168 Invalid scaling factor provided. Value out of range.
169 Could not completely distribute scales_from to all groups

170 Could not resolve DNS
171 Could not obtain lock
172 Invalid or missing private key is required for SSL certificate
173 Alias does exist for this application
174 Invalid SSL certificate
175 User is not authorized to add private certificates
176 User has private certificates that the new plan does not allow

Exit Code Usage

Chapter 6. Using Cartridge Scripts

21

180 This command is not available in this application
181 User maximum tracked additional filesystem storage per gear capability does not

match with current plan
182 User does not have gear_sizes capability provided by current plan

183 User does not have max_untracked_addtl_storage_per_gear capability
provided by current plan

184 User does not have max_tracked_addtl_storage_per_gear capability
provided by current plan

185 Cartridge X can not be added without cartridge Y

186 Invalid environment variables: expected array of hashes.
187 Invalid environment variable X. Valid keys name (required), value

188 Invalid environment variable name X: specified multiple times

189 Environment name X not found in application

190 Value not specified for environment variable X

191 Specify parameters name/value or environment_variables

192 Environment name X already exists in application

193 Environment variable deletion not allowed for this operation
194 Name can only contain letters, digits and underscore and cannot begin with a digit
210 Cannot override existing location for Git repository
211 Parent directory for Git repository does not exist
212 Could not find libra_id_rsa

213 Could not read from SSH configuration file
214 Could not write to SSH configuration file
215 Host could not be created or found
216 Error in Git pull
217 Destroy aborted
218 Not found response from request
219 Unable to communicate with server
220 Plan change is not allowed for this account
221 Plan change is not allowed at this time for this account. Wait a few minutes and try

again. If problem persists contact Red Hat support.
253 Could not open configuration file
255 Usage error

Exit Code Usage

Table 6.6. Uncommon Server Errors

Exit Code Usage
140 No nodes available. If the problem persists contact Red Hat support.
141 Cartridge exception.
142 Application is registered to an invalid node. If the problem persists contact Red Hat

support.
143 Node execution failure. If the problem persists contact Red Hat support.
144 Error communicating with user validation system. If the problem persists contact Red

Hat support.
145 Error communicating with DNS system. If the problem persists contact Red Hat

support.
146 Gear creation exception.

6.9. Communication Between OpenShift and Cartridges

Cartridge Specification Guide

22

6.9. Communication Between OpenShift and Cartridges

A cartridge can provide services for use by multiple gears in one application. OpenShift Enterprise enables
you to publish these services. Each message writes to stdout or stderr with an exit status, one message
per line.

Example 6.6. Service Messages

ENV_VAR_ADD: <variable name>=<value>

CART_DATA: <variable name>=<value>

CART_PROPERTIES: <key>=<value>

APP_INFO: <value>

Chapter 6. Using Cartridge Scripts

23

Chapter 7. Environment Variables

OpenShift Enterprise uses environment variables to communicate information between cartridges,
applications, and the system.

OpenShift Enterprise provides several system environment variables that are available for use at all cartridge
entry points.

Place cartridge environment variables in the $cartridge_name/env/ directory. OpenShift Enterprise loads
cartridge variables after system environment variables, but before calling your code.

7.1. System Environment Variables

OpenShift Enterprise provides several system environment variables. These variables are read-only.

Table 7.1. System Environment Variables

Name Value
HOME Alias for OPENSHIFT_HOMEDIR.

HISTFILE Bash history file.
OPENSHIFT_APP_DNS The fully qualified domain name of the application using your cartridge.
OPENSHIFT_APP_NAME The name of the application using your cartridge. Assigned by the

application developer.
OPENSHIFT_APP_UUID The UUID of the application using your cartridge. Assigned by

OpenShift Enterprise.
OPENSHIFT_DATA_DIR The directory where the application and your cartridge store data.
OPENSHIFT_GEAR_DNS The fully qualified domain name of the gear where your cartridge is

installed. This may not be the same as OPENSHIFT_APP_DNS).

OPENSHIFT_GEAR_NAME The name of the gear where your cartridge is installed. Assigned by
OpenShift Enterprise. This may not be the same as
OPENSHIFT_APP_NAME).

OPENSHIFT_GEAR_UUID The UUID of the gear where your cartridge is installed. Assigned by
OpenShift Enterprise.

OPENSHIFT_HOMEDIR The home directory of the gear where your cartridge is installed.
Assigned by OpenShift Enterprise.

OPENSHIFT_REPO_DIR The directory where the application repository is stored. OpenShift
Enterprise runs the application from this location.

OPENSHIFT_TMP_DIR The directory where the application and your cartridge store temporary
data.

TMP Alias for OPENSHIFT_TMP_DIR.

TMPDIR Alias for OPENSHIFT_TMP_DIR.

7.2. Cartridge Environment Variables

OpenShift Enterprise provides three environment variables for all cartridges by default. These variables are
read-only.

Table 7.2. Cartridge Environment Variables

Cartridge Specification Guide

24

Name Value
OPENSHIFT_{Cartridge-Short-
Name}_DIR

The directory where cartridge information is installed.

OPENSHIFT_{Cartridge-Short-
Name}_IDENT

The identity of the cartridge, sourced from its manifest.yml file. The
format is Cartridge-Vendor:Version:Cartridge-Version.

OPENSHIFT_PRIMARY_CARTR
IDGE_DIR

The directory where the primary cartridge on a gear is installed. For
example, a scaling PHP application has both a PHP cartridge and a
HAProxy cartridge installed on the head gear. In this case, the PHP
cartridge is the primary cartridge.

7.3. Custom Cartridge Environment Variables

You can add custom environment variables to a cartridge by adding them to the cartridge's
$cartridge_name/env/ directory or creating them with the cartridge's setup and install scripts.

Entries in a cartridge's $cartridge_name/env/ directory do not override system-provided environment
variables. Using system-provided environment variable names in the $cartridge_name/env/ directory
prevents the cartridge from installing correctly.

Prefix custom environment variables with OPENSHIFT_{cartridge short name}_ to prevent overwriting
other cartridge variables in the packaged software's process environment space.

Suffix directory environment variables with _DIR and the value with a backslash (/).

You can provide Embedded Ruby (ERB) templates for environment variables in the
$cartridge_name/env/ directory. OpenShift Enterprise processes ERB templates in this directory before
calling the cartridge's setup script.

OpenShift Enterprise sets the PATH variable using the path /etc/openshift/env/PATH. If you provide an
OPENSHIFT_{Cartridge-Short-Name}_PATH_ELEMENT, OpenShift Enterprise uses the value to build
the PATH when your scripts run or an application developer performs an interactive log on.

Important

OpenShift Enterprise does not validate cartridge-provided environment variables. A cartridge can fail
to function if its environment variable files contain invalid data.

Packaged Software Environment Variables

If your cartridge packages software with its own environment variables, add these variables to the cartridge's
$cartridge_name/env/ directory or include them in the shim code of the scripts in the
$cartridge_name/bin/ directory.

Example 7.1. Jenkins Environment Variables

JENKINS_URL

JENKINS_USERNAME

JENKINS_PASSWORD

Chapter 7. Environment Variables

25

Chapter 8. Cartridge Events

OpenShift Enterprise provides a publish and subscribe system that enables a cartridge to act when a
developer adds or removes another cartridge in an application.

The Publishes and Subscribes elements in the $cartridge_name/metadata/manifest.yml file
detail support for cartridge events.

8.1. Cartridge Event Publishing

When OpenShift Enterprise adds a cartridge to an application, it uses entries in the Publishes section of
the $cartridge_name/metadata/manifest.yml file to construct events sent to other cartridges in the
application. Define publish events in the manifest.yml file using the following format:

Publishes:
 <event_name>:
 Type: "<event type>"

Example 8.1. PHP Cartridge Publishes Entry

Publishes:
 get-php-ini:
 Type: "FILESYSTEM:php-ini"
 publish-http-url:
 Type: "NET_TCP:httpd-proxy-info"
 publish-gear-endpoint:
 Type: "NET_TCP:gear-endpoint-info"

For each Publishes entry, OpenShift Enterprise runs a script named
$cartridge_name/hooks/$event_name.

OpenShift Enterprise joins lines of output that the hooks/$event_name script writes to stdout with single
spaces, then inputs the result to subscriber scripts in other cartridges that match the Type of the publish
event. The input to matching subscriber scripts is prefaced with hooks/<event_name> <gear_name>
<namespace> <gear_uuid>.

8.2. Cartridge Event Subscriptions

When OpenShift Enterprise adds a cartridge to an application, it uses entries in the Subscribes section of
the $cartridge_name/metadata/manifest.yml file in other cartridges to determine what actions to
take for those other cartridges. Define subscribe events in the manifest.yml file using the following format:

Subscribes:
 <event_name>:
 Type: "<event type>"

Example 8.2. PHP Cartridge Subscribes Entry

Cartridge Specification Guide

26

Subscribes:
 set-env:
 Type: "ENV:*"
 Required: false
 set-mysql-connection-info:
 Type: "NET_TCP:db:mysql"
 Required: false
 set-postgres-connection-info:
 Type: "NET_TCP:db:postgres"
 Required: false
 set-doc-url:
 Type: "STRING:urlpath"
 Required: false

When OpenShift Enterprise processes a cartridge publish script, it inputs the result to subscriber scripts in
other cartridges that match the Type of the publish event. The input to matching subscriber scripts is
prefaced with $cartridge_name/hooks/<event_name> <gear_name> <namespace>
<gear_uuid>.

For each matching Subscribes entry, OpenShift Enterprise runs a script named
$cartridge_name/hooks/$event_name. OpenShift Enterprise must send and process entries marked
with Required: true.

The publisher script determines the format of the information input to the subscriber script. Ensure that
subscriber script can parse the input correctly.

8.3. Cartridge Event Example

In this example, an application developer adds a MySQL database cartridge to a PHP application. The
publish and subscribe relationship between the cartridges enables the PHP cartridge to set environment
variables on its gear so it can connect to the new MySQL cartridge, which is on a different gear.

MySQL Cartridge as Publisher

The MySQL cartridge lists a publish-mysql-connection-info event in the Publishes section of its
mysql/metadata/manifest.yml file:

Publishes:
 publish-mysql-connection-info:
 Type: "NET_TCP:db:mysql"

The MySQL cartridge implements a script in mysql/hooks/publish-mysql-connection-info.

PHP Cartridge as Subscriber

The PHP cartridge lists a set-mysql-connection-info event in the Subscribes section of its
php/metadata/manifest.yml file:

Subscribes:
 set-mysql-connection-info:
 Type: "NET_TCP:db:mysql"

The PHP cartridge implements a script in php/hooks/set-mysql-connection-info.

Chapter 8. Cartridge Events

27

Cartridge Event Communication Process

OpenShift Enterprise matches the event Type in the PHP cartridge's Subscribes list to the event Type in
the MySQL cartridge's Publishes list. In this example, the event Type is "NET_TCP:db:mysql".

The MySQL cartridge's publish-mysql-connection-info script outputs the username, host, port, URL,
and password required to connect to the MySQL instance:

OPENSHIFT_MYSQL_DB_USERNAME=username;
OPENSHIFT_MYSQL_DB_PASSWORD=password;
OPENSHIFT_MYSQL_DB_HOST=hostname;
OPENSHIFT_MYSQL_DB_PORT=port;
OPENSHIFT_MYSQL_DB_URL=url;

OpenShift Enterprise sends the output of the MySQL cartridge's publish-mysql-connection-info to
the PHP cartridge's set-mysql-connection-info script using the following format:

hooks/publish-mysql-connection-info gear_name namespace gear_uuid
'OPENSHIFT_MYSQL_DB_USERNAME=username;OPENSHIFT_MYSQL_DB_PASSWORD=password;O
PENSHIFT_MYSQL_DB_HOST=hostname;OPENSHIFT_MYSQL_DB_PORT=port;OPENSHIFT_MYSQL
_DB_URL=url;'

Note that the publisher script determines the format of the information input to the subscriber script. When
writing subscriber scripts, ensure that they parse the input correctly.

Cartridge Specification Guide

28

Chapter 9. OpenShift Build Process

When an application developer pushes changes to an application's Git repository, OpenShift Enterprise
builds and deploys the application using the updated repository. The build and deploy process changes if the
application is scaling or if it uses a builder cartridge.

9.1. Default Build Life Cycle

If no builder cartridge is present, OpenShift Enterprise executes the default build life cycle when an
application developer pushes changes to an application Git repository. The default life cycle consists of a
build, preparation, distribute, and deploy phase.

In the default build life cycle, OpenShift Enterprise manages the starting and stopping of the application, and
moves the updated code into $OPENSHIFT_REPO_DIR. The primary cartridge and application developer
action hooks ($OPENSHIFT_REPO_DIR/.openshift/action_hooks) determine specific behaviors
during this process.

Build Phase

During this phase, OpenShift Enterprise:

1. Runs the gear stop command to stop the application.

2. Runs the control pre-receive command on the primary cartridge.

3. Runs the control pre-repo-archive command on the primary cartridge.

4. Creates a new application directory: $OPENSHIFT_HOMEDIR/app-deployments/$date_$time
and dependent subdirectories.

Note

If your cartridge requires a particular directory structure for dependencies, create a symbolic
link for your cartridge directory structure into $OPENSHIFT_DEPENDENCIES_DIR. Use
$OPENSHIFT_BUILD_DEPENDENCIES_DIR for build time only dependencies.

5. Copies $OPENSHIFT_HOMEDIR/app-root/runtime/dependencies from the active application
to $OPENSHIFT_HOMEDIR/app-deployments/$date_$time/dependencies.

6. Removes previous applications starting from the oldest until the number set at
$OPENSHIFT_KEEP_DEPLOYMENTS is reached.

7. Copies the new application source code to $OPENSHIFT_REPO_DIR. This is the only point in the
build life cycle when OpenShift Enterprise copies the application source code.

8. Runs the control pre-build command on the primary cartridge.

9. Runs the pre-build user action hook, if present.

10. Runs the control build command on the primary cartridge.

11. Runs the build user action hook, if present.

Preparation Phase

Chapter 9. OpenShift Build Process

29

1. OpenShift Enterprise runs the prepare user action hook, if present.

2. The application ID and checksum of application contents are calculated.

3. OpenShift Enterprise creates $OPENSHIFT_HOMEDIR/app-deployments/by-
id/$deployment_id and points to ../app-deployments/$date_time

Distribute Phase

1. OpenShift Enterprise synchronizes the new application with all child gears if the application is
scalable.

Deploy Phase

During this phase, OpenShift Enterprise:

1. Updates $OPENSHIFT_HOMEDIR/app-root/runtime/repo so it points to ../../app-
deployments/$date_$time/repo

2. Updates $OPENSHIFT_HOMEDIR/app-root/runtime/dependencies so it points to
../../app-deployments/$date_$time/dependencies

3. Runs the control update-configuration command on the primary cartridge.

4. Starts all secondary cartridges in the application.

5. Runs the control deploy command on the primary cartridge.

6. Runs the deploy user action hook, if present.

7. Starts the primary cartridge using the gear start command.

8. Runs the control post-deploy command on the primary cartridge.

9. Runs the post-deploy user action hook, if present.

Result:

The build is now complete and the application is running.

9.2. Default Scaling Build Life Cycle

On the head gear, where the web proxy runs, the build phase for a scalable application is the same as the
default build phase for a non-scaling application. The deploy phase for scalable applications is different.

Deploy Phase

1. OpenShift Enterprise starts the secondary cartridges on the application's head gear.

2. OpenShift Enterprise runs the web proxy's deploy hook on the head gear.

3. The web proxy runs deployment steps on the application's secondary gears. For example, the default
web proxy, HAProxy, preforms the following steps:

a. It stops the secondary gears.

b. It synchronizes the code and build artifacts from the head gear to the secondary gears.

Cartridge Specification Guide

30

c. It runs the primary cartridge's control update-configuration command on the
secondary gears.

d. It starts all the secondary cartridges on the secondary gears.

e. It runs the primary cartridge's control deploy command on the secondary gears.

f. It runs the deploy user action hook, if present, on the secondary gears.

g. It starts the primary cartridge on the secondary gears. The application is now running on the
secondary gears.

h. It runs the primary cartridge's control post-deploy command on the secondary gears.

i. It runs the post-deploy user action hook, if present, on the secondary gears.

4. OpenShift Enterprise runs the primary cartridge's control deploy command on the head gear.

5. OpenShift Enterprise runs the deploy user action hook, if present, on the head gear.

6. OpenShift Enterprise starts the primary cartridge on the head gear.

7. OpenShift Enterprise runs the primary cartridge's control post-deploy command on the head
gear.

8. OpenShift Enterprise runs the post-deploy user action hook, if present, on the head gear.

The build is now complete, and the scaled application is running.

9.3. Builder Cartridge Life Cycle

If an application includes a builder cartridge, OpenShift Enterprise does not perform build tasks. Instead, the
builder cartridge runs the build process.

During the Git pre-receive hook, OpenShift Enterprise runs the builder cartridge's control pre-
receive command.

During the Git post-receive hook, OpenShift Enterprise runs the builder cartridge's control post-
receive command.

Note

Build processes use the application developer's gear resources to run. When implementing a builder
cartridge, do not copy source code or build artifacts more than necessary.

9.4. Archiving Applications

Current applications can be archived and re-deployed later. Use the $rhc archive-deployment
command to archive applications:

$ rhc archive-deployment

9.5. Binary Deployment

Chapter 9. OpenShift Build Process

31

9.5. Binary Deployment

Binary deployment is very similar to build and deploy without the build. Instead, the built artifacts and
dependencies are provided and the deploy steps start at prepare. Binary deployment are enabled using:

$ rhc app configure $app --deployment-type binary

Cartridge Specification Guide

32

Chapter 10. Backing Up and Restoring Cartridges

OpenShift Enterprise provides snapshot and restore features for user applications. These features
enable OpenShift Enterprise application developers to:

Snapshot the current state of an application to create a backup.

Restore an application from an archived state.

Copy or rename an application by taking a snapshot, creating a new application, then restoring the
snapshot data to the new application.

10.1. Snapshot

When an application developer runs the rhc snapshot save command, OpenShift Enterprise creates an
archive of the application and performs the following steps:

1. Stops the application by running the gear stop command.

2. Runs the control pre-snapshot command for each cartridge on the gear. You can control
cartridge serialization in the snapshot by implementing the control pre-snapshot command in
conjunction with exclusions. For example, you can snapshot to a database dump instead of a
database file.

3. Builds a list of exclusions from the snapshot_exclusions entry in the
$cartridge_name/metadata/managed_files.yml file for each cartridge on the gear.

4. Creates an archive of the application in tar.gz format and writes it to stdout for use by the client
tools. In addition to the files listed in the snapshot_exclusions entry in the
managed_files.yml file, OpenShift Enterprise excludes the following files:

Selected gear user files: .tmp, .ssh, .sandbox.

Application state file: app-root/runtime/.state.

Bash history file: $OPENSHIFT_DATA_DIR/.bash_history.

5. Runs the control post-snapshot command for each cartridge on the gear. Use this script to
cleanup after the snapshot runs.

6. Will either stop or start the gear based on the state of the application before the snapshot.

Snapshot Exclusions

Use the optional snapshot_exclusions entry in the
$cartridge_name/metadata/managed_files.yml file to list files to exclude from the snapshot and
restore process. File patterns originate from the OPENSHIFT_HOMEDIR directory, not the cartridge directory.
Do not exclude files that your cartridge requires to operate.

Example 10.1. snapshot_exclusions Entry

snapshot_exclusions:
- mydir/*

Chapter 10. Backing Up and Restoring Cartridges

33

OpenShift Enterprise uses the tar command when performing snapshots. See the tar man page --
exclude-from option for more information.

10.2. Restore

When an application developer runs the rhc snapshot restore command, OpenShift Enterprise restores
the application from an archive in the following steps:

1. Prepares the application for restoration.

If the archive contains a Git repository, OpenShift Enterprise runs the gear pre-receive
command.

If the archive does not contain a Git repository, OpenShift Enterprise runs the gear stop
command.

2. Runs the control pre-restore command for each cartridge on the gear. This enables you to
control the restoration of your cartridge, for example by deleting an old database dump.

3. Builds a list of file name changes to apply during the restoration from the restore_transforms
entry in the $cartridge_name/metadata/managed_files.yml file for each cartridge on the
gear.

4. Extracts the archive into the gear user's home directory, overwriting existing files and applying the file
name changes listed in the restore_transforms entry in the managed_files.yml file.

5. Runs the control post-restore command for each cartridge on the gear. Use this script to load
a database flat file into the running database.

6. Resumes the application.

If the archive contains a Git repository, OpenShift Enterprise runs the gear postreceive
command.

If the archive does not contain a Git repository, OpenShift Enterprise runs the gear start
command.

7. Will either stop or start the gear based on the state of the application before restoring.

Restoring with Transformed File Names

Use the optional restore_transforms entry in the
$cartridge_name/metadata/managed_files.yml file to provide scripts that transform file names
when OpenShift Enterprise restores an application. This entry enables you to restore older snapshots to a
newer cartridge with file name changes.

Example 10.2. restore_transforms Entry

restore_transforms:
- s|${OPENSHIFT_GEAR_NAME}/data|app-root/data|

OpenShift Enterprise uses the tar command when restoring a gear. See the tar man page --transform
option for more information.

Cartridge Specification Guide

34

Chapter 11. Upgrading Custom and Community Cartridges

The OpenShift Enterprise runtime contains a system for upgrading custom cartridges on a gear to the latest
available version and for applying gear-level changes that affect cartridges.

The oo-admin-upgrade command on the broker host provides the command line interface for the upgrade
system and can upgrade all the gears in an OpenShift Enterprise environment, all the gears on a node, or a
single gear. This command queries the OpenShift Enterprise broker to determine the locations of the gears to
migrate and uses MCollective calls to trigger the upgrade for a gear.

Upgrade Process Overview

1. Load the gear upgrade extension, if configured.

2. Inspect the gear state.

3. Run the gear extension's pre-upgrade script, if it exists.

4. Compute the upgrade itinerary for the gear.

5. If the itinerary contains an incompatible upgrade, stop the gear.

6. Upgrade the cartridges in the gear according to the itinerary.

7. Run the gear extension's post-upgrade script, if it exists.

8. If the itinerary contains an incompatible upgrade, restart and validate the gear.

9. Clean up after the upgrade by deleting pre-upgrade state and upgrade metadata.

11.1. Upgrade Itinerary

The upgrade process must be re-entrant; if it fails or times out, a subsequent upgrade operation must pick up
where the last one left off. The upgrade itinerary stores information about which cartridges in a gear to
upgrade and which type of upgrade to perform.

There are two types of cartridge upgrade processes: compatible and incompatible. The Compatible-
Versions element in a cartridge's $cartridge_name/metadata/manifest.yml file determines
whether the new version is compatible with a previous version. The main difference between the compatible
and incompatible upgrade processes is that an incompatible cartridge's gear stops during an upgrade, while a
compatible cartridge's gear continues to run.

Upgrade Itinerary Configuration

1. Read in the current IDENT of the cartridge.

2. Determine the name and software version of the cartridge in the cartridge repository; this provides
the manifest for the latest version of the cartridge. If a manifest does not exist in the cartridge
repository or does not include the software version, skip the cartridge.

3. If the latest manifest is for the same cartridge version as the version currently installed on the gear,
skip the cartridge unless the ignore_cartridge_version parameter is set. If the
ignore_cartridge_version parameter is set, record an incompatible upgrade for the cartridge
in the itinerary.

Chapter 11. Upgrading Custom and Community Cartridges

35

4. If the latest manifest includes the current cartridge version in the Compatible-Versions element,
record a compatible upgrade for the cartridge in the itinerary. Otherwise, record an incompatible
upgrade for the cartridge in the itinerary.

11.2. Compatible Upgrades

If the upgrade itinerary records a compatible upgrade for a cartridge, OpenShift Enterprise uses the following
process:

Compatible Upgrade Process

1. Overlay the new version of the cartridge on the gear.

2. Remove the files declared in the Processed-Templates element of the cartridge's managed-
files.yml.

3. Unlock the cartridge directory.

4. Secure the cartridge directory.

5. Run the cartridge's upgrade script, if it exists.

6. Lock the cartridge directory.

11.3. Incompatible Upgrades

If the upgrade itinerary records an incompatible upgrade for a cartridge, OpenShift Enterprise uses the
following process:

Incompatible Upgrade Process

1. Remove the files and directories declared in the Setup-Rewritten element of the cartridge's
managed_files.yml.

2. Overlay the new version of the cartridge on the gear.

3. Unlock the cartridge directory.

4. Secure the cartridge directory.

5. Run the cartridge's upgrade script, if it exists.

6. Run the cartridge's setup script.

7. Process the cartridge's ERB templates.

8. Lock the cartridge directory.

9. Create new endpoints for the cartridge.

10. Connect the frontend.

11.4. Cartridge Upgrade Script

Cartridge Specification Guide

36

You can provide a cartridge upgrade script in the $cartridge_name/bin/ directory to run during the
upgrade process. The upgrade script enables you to perform actions during the upgrade process that the
compatible or incompatible processes do not perform. If you provide an upgrade script, OpenShift Enterprise
passes it the following arguments:

The software version of the cartridge.

The current cartridge version.

The cartridge version being upgraded to.

A non-zero exit code from this script results in the upgrade operation failing.

Chapter 11. Upgrading Custom and Community Cartridges

37

Chapter 12. Enabling Logshifter

Using logshifter enables automatic log rotation and consolidation across cartridges in a gear. In OpenShift
Enterprise, cartridges can log to Syslog using logshifter. For more information about logshifter, see the
logshifter README file.

When writing a cartridge control script, it is typical to spawn a runtime process such as java or mongod. To
take advantage of logshifter, redirect the standard out (STDOUT) and standard error (STEDRR) streams of
the process to the /usr/bin/logshifter file. For example, for a Java-based cartridge:

Example 12.1. Redirecting Logs Using Logshifter:

java ... |& /usr/bin/logshifter -tag my-cartridge &

Using this method, java is started in the background, and all output produced by the application is logged
through logshifter. The -tag argument must be a string unique to the cartridge.

Tips for PID Management

In the example above, the standard pipe operator is used from a shell script to redirect logs from the cartridge
process to logshifter. This works well for programs which are capable of managing a PID file internally.
However, for cartridges which bootstrap a process and cannot manage a PID file by itself, using a simple
pipe operator can be problematic. When piping programs using a shell, the programs are typically started in
parallel, rendering the $! variable unreliable for determining the PID of the cartridge process. For these
cases, setting up a named pipe can allow the cartridge to use logshifter and also manage the PID of the
process. The following example demonstrates the setup of a named pipe used by a Java cartridge which
preserves the reliability of $! so the cartridge script can manage the PID file manually:

Example 12.2. Setting Up Named Pipe:

LOGPIPE=${OPENSHIFT_HOMEDIR}/app-root/runtime/logshifter-my-cartridge
rm -f $LOGPIPE && mkfifo $LOGPIPE

/usr/bin/logshifter -tag my-cartridge < $LOGPIPE &
java ... &> $LOGPIPE &
echo $! > $OPENSHIFT_MY_CARTRIDGE_DIR/my-cartridge.pid

Setting up the named pipe manually provides the most flexibility for managing both the logshifter and
cartridge processes.

Cartridge Specification Guide

38

Chapter 13. OpenShift Cartridge Reference

This chapter contains reference material for OpenShift Enterprise cartridges.

13.1. Cartridge Hierarchy

OpenShift cartridges use a hierarchy so that multiple cartridges can be collocated or combined on one gear.
This hierarchy consists of a single, primary cartridge, along with a combination of embedded cartridges.
The primary cartridge controls the application build life cycle, responds to scaling events, and provides
external network accessibility. The embedded cartridges support the primary cartridge and provide
additional capabilities to applications.

A good example of this hierarchy is the relationship between the jenkins cartridge and the jenkins-
client cartridge. While the jenkins cartridge provides a fully functional browser based Jenkins service,
the jenkins-client cartridge is embedded in web applications to offload application builds to an existing
Jenkins service. Note that the jenkins-client cartridge by itself provides no value and must be combined
with an existing primary cartridge.

13.2. Cartridge Directory Structure

The required directories of a cartridge must conform to a set structure or the cartridge can fail to function
properly. You can add additional directories and files as needed to support the function of your cartridge.

Required files must exist for minimal OpenShift Enterprise support of the cartridge.

Discretionary files are recommended, but not necessary. For example, conf.d is the standard file
where a web framework installs its httpd configuration.

Optional files are not necessary. Use optional files to support additional cartridge functionality.

Chapter 13. OpenShift Cartridge Reference

39

Figure 13.1. Cartridge Directory Structure

To support multiple software versions within one cartridge, create symbolic links between the
$cartridge_name/bin/control file and the
$cartridge_name/versions/$software_version/bin/control file. Alternatively, use the
$cartridge_name/bin/control file as a shim to call the control file for the desired version.

When creating an instance of your cartridge for use by a gear, OpenShift Enterprise copies the files, links,
and directories from the cartridge library, with the exception of the $cartridge_name/usr/ directory. The
$cartridge_name/usr/ directory is symbolically linked to the gear's cartridge instance. This link enables
all cartridge instances to share libraries and other data.

See Chapter 3, Locking Cartridges for details on customizing a cartridge instance.

13.3. Cartridge Metadata Elements

OpenShift Enterprise uses a manifest.yml file located in the $cartridge_name/metadata/ directory to
determine the features a cartridge requires. OpenShift Enterprise also uses data from the manifest.yml file
to provide information about the cartridge to users.

Example 13.1. manifest.yml File

Name: PHP
Cartridge-Short-Name: PHP
Cartridge-Version: '1.0.1'

Cartridge Specification Guide

40

Compatible-Versions:
 - '1.0.1'
Cartridge-Vendor: redhat
Display-Name: PHP 5.4
Description: "PHP is a general-purpose server-side scripting language..."
Version: '5.4'
Versions:
 - '5.4'
License: "The PHP License, version 3.0"
License-Url: http://www.php.net/license/3_0.txt
Vendor: PHP Group
Categories:
 - service
 - php
 - web_framework
Website: http://www.php.net
Help-Topics:
 "Developer Center": https://openshift.redhat.com/community/developers
Cart-Data:
 - Key: OPENSHIFT_...
 Type: environment
 Description: "How environment variable should be used"
Provides:
 - php-5.4
 - "php"
Publishes:
 get-php-ini:
 Type: "FILESYSTEM:php-ini"
 publish-http-url:
 Type: "NET_TCP:httpd-proxy-info"
 publish-gear-endpoint:
 Type: "NET_TCP:gear-endpoint-info"
Subscribes:
 set-db-connection-info:
 Type: "NET_TCP:db:connection-info"
 Required: false
 set-nosql-db-connection-info:
 Type: "NET_TCP:nosqldb:connection-info"
 Required: false
 set-mysql-connection-info:
 Type: "NET_TCP:db:mysql"
 Required : false
 set-postgres-connection-info:
 Type: "NET_TCP:db:postgres"
 Required : false
 set-doc-url:
 Type: "STRING:urlpath"
 Required : false
Scaling:
 Min: 1
 Max: -1
Group-Overrides:
 - components:
 - php-5.4
 - web_proxy
Endpoints:

Chapter 13. OpenShift Cartridge Reference

41

 - Private-IP-Name: IP1
 Private-Port-Name: HTTP_PORT
 Private-Port: 8080
 Public-Port-Name: PROXY_HTTP_PORT
 Mappings:
 - Frontend: '/front'
 Backend: '/back'
Additional-Control-Actions:
 - threaddump

13.3.1. Cartridge-Short-Name

OpenShift Enterprise creates several environment variables when installing a cartridge. The Cartridge-
Short-Name element forms part of these environment variable names.

Example 13.2. Cartridge-Short-Name Entry for a PHP cartridge

Cartridge-Short-Name: PHP

Environment variables use PHP in their name:

OPENSHIFT_PHP_DIR
OPENSHIFT_PHP_IP
OPENSHIFT_PHP_PORT
OPENSHIFT_PHP_PROXY_PORT

13.3.2. Cartridge-Version

The Cartridge-Version element identifies the release version of a cartridge. The value uses the format:

<number>[.<number>[.<number>[...]]]

For example:

Cartridge-Version: '1.0.3'

When you publish a new version of a cartridge, OpenShift Enterprise uses the Cartridge-Version value
to determine upgrade requirements for applications that use the cartridge. YAML treats number.number as
a float but OpenShift Enterprise requires a string for this value, so the value must be enclosed in single
quotes (').

13.3.3. Compatible-Versions

The Compatible-Versions element is a list of previous cartridge versions that are compatible with the
current cartridge version.

Example 13.3. Compatible-Versions Entry

Compatible-Versions: ['1.0.1']

Cartridge Specification Guide

42

To be compatible with a previous version, the code changes in the current cartridge version must not require
a restart of the cartridge or of an application using the cartridge.

If the previous cartridge version is not in the Compatible-Versions list when you update the cartridge to a
new version, OpenShift Enterprise stops the cartridge, installs the new code, runs setup, and restarts the
cartridge. This process results in a short amount of downtime for applications that use the cartridge.

13.3.4. Cartridge-Vendor

The Cartridge-Vendor element identifies the creator of a cartridge. OpenShift Enterprise uses this value
to differentiate between similar cartridges installed on the system. You can use a company name or an
individual identifier for this value.

Example 13.4. Cartridge-Vendor Entry

Cartridge-Vendor: redhat

13.3.5. Version

The Version element is the default version of the software packaged in the cartridge.

Example 13.5. Version Entry

Version: '5.3'

13.3.6. Versions

The Versions element is the list of software versions packaged in the cartridge.

Example 13.6. Versions Entry

Versions: ['5.3']

13.3.7. Categories

The Categories element is a list of classifications for a particular cartridge, and contains two distinct
groups:

system categories are special to the platform and influence the system behavior.

descriptive categories are arbitrary classifications that improve the searching of cartridges in the
Management Console and the client tools.

13.3.7.1. System Categories

Chapter 13. OpenShift Cartridge Reference

43

system categories contain the following subcategories:

web_framework

web_proxy

service

plugin

embedded

domain_scope

Web Framework Category

The web_framework category describes cartridges that accept inbound HTTP, HTTPS, and WebSocket
requests. SSL termination occurs at the platform layer before cartridge interaction. The original inbound
protocol is passed to the cartridge using the X-Forwarded-Proto header. An application can have one
cartridge from the web_framework category.

Web Proxy Category

The web_proxy category describes cartridges that route web traffic to the application's gears. When a
scalable application is created with a cartridge from the web_framework category, a web_proxy cartridge
is automatically added to enable the auto scaling feature. Therefore, when a web_framework cartridge has
to scale beyond a single gear, the web_proxy cartridge automatically routes to the endpoint defined by the
Public-Port-Name with the PROXY_PORT value. The web_proxy cartridge is automatically updated over
HTTP with routing rules of the new gears as they are added. An application can have one cartridge from the
web_proxy category.

Service Category

The service category describes add-on cartridges that are not based on HTTP, such as MySQL. The
service category cartridges can scale independently, but may not be addressable outside of the platform.
Therefore, OpenShift Enterprise applications must have at least one web_framework category cartridge so
that the application's DNS registration contains at least one addressable HTTP endpoint. However, most
applications consist of a web_framework category cartridge and other cartridges from the service
category. Therefore, using the service category to classify a cartridge, such as MySQL, installs the
cartridge on a separate gear from that of the web_framework cartridge. This allows both cartridges to scale
independently.

Embedded Category

The embedded category describes cartridges that are always collocated or installed with any other primary
cartridge in non-scalable applications. For example, the Jenkins client cartridge can be combined with any
web application cartridge to offload the builds to a Jenkins service.

Plugin Category

The plugin category is similar to the embedded category, but for scalable applications. It describes
cartridges that can be collocated with other cartridges in scalable applications. The plugin category uses
defined Group-Overrides to determine the collocation between cartridges. For example, the Group-
Overrides can specify that a Cron cartridge must be collocated with the web_framework category
cartridge.

Cartridge Specification Guide

44

Domain Scope Category

The domain_scope category describes cartridges that can only have a single instance within a domain. For
example, the Jenkins server cartridge contains the domain_scope category to ensure that there is only one
Jenkins server application within an entire domain. The Jenkins client cartridge is embedded in all other
applications to enable builds that are handled by the Jenkins server.

13.3.7.2. Descriptive Categories

The descriptive categories are mostly used in the OpenShift Enterprise Management Console and the
client tools to improve the overall user experience. In the Management Console, the descriptive
categories are used as tags that allow users to search and filter the available cartridges.

When using the client tools, the descriptive categories are used to apply matching logic to cartridge
operations. For example, if a user runs the rhc add-cartridge php command, the descriptive
categories are searched along with the names of the cartridges.

13.3.8. Group-Overrides

By default, each cartridge in a scalable application resides on its own gear within its own group instance.
Group-Overrides can be used when you wish to have two cartridges located on the same set of gears.
For example, if you create a cron cartridge and wish to collocate that with a web_framework category
cartridge, you can do so as shown in the following example.

Example 13.7. Group-Overrides with cron and web_framework Cartridges

Group-Overrides:
- components:
 - web_framework
 - cron

In cases where you wish to collocate a web_framework category cartridge with a web_proxy category
cartridge, you can do so as shown in the following example.

Example 13.8. Group-Overrides with web_framework and web_proxy Cartridges

Group-Overrides:
- components:
 - web_proxy
 - web_framework

13.3.9. Scaling

When a cartridge is added to a scalable application, the Min and Max parameters define the scaling limits for
that cartridge. If both the Min and Max values are set to 1, this means that the cartridge cannot scale. If the
Max value is set to -1, the cartridge can scale up to the user's maximum gear limit. These limits are
applicable for both automatic and manual scaling of cartridges.

Note that when using Group-Overrides to collocate two or more scalable cartridges, the scaling limits of
both cartridges must match. However, there may be cases where this limitation may not be ideal; for
example, a web_proxy category cartridge collocated with a web_framework category cartridge. In such a

Chapter 13. OpenShift Cartridge Reference

45

case, it is not recommended to have the web_proxy cartridge be located on every gear that holds the
web_framework cartridge. The Multiplier parameter allows you to place a cartridge only on certain
gears within a group instance, rather than all of them. For example, if the Multiplier is set to 3, every third
gear within the group instance gets the cartridge installed on it. If it is set to 1, then the cartridge gets installed
on all gears within the group instance.

13.3.10. Source-Url

The Source-Url element is the location from which OpenShift Enterprise downloads cartridge files during
application creation.

Table 13.1. Supported Source Schemes

Scheme Method Expected Inputs
git clone git repo
https GET zip, tar, tag.gz, tgz
http GET zip, tar, tag.gz, tgz
file file copy cartridge directory tree

Example 13.9. Source-Url Entry

Source-Url: https://github.com/example/killer-cartridge.git
Source-Url: git://github.com/chrisk/fakeweb.git
Source-Url: https:://www.example.com/killer-cartridge.zip
Source-Url: https://github.com/example/killer-cartridge/archive/master.zip

13.3.11. Source-Md5

The Source-Md5 element is an MD5 digest. If OpenShift Enterprise downloads a cartridge using a non-Git
scheme, it verifies the downloaded file against this MD5 digest.

Example 13.10. Source-Md5 Entry

Source-Md5: 835ed97b00a61f0dae2e2b7a75c672db

13.3.12. Additional-Control-Actions

The Additional-Control-Actions element is a list of optional actions a cartridge supports. OpenShift
Enterprise can only call optional actions if they are included in this element.

Example 13.11. Additional-Control-Actions Entry

Additional-Control-Actions:
 - threaddump

13.3.13. Endpoints

Cartridge Specification Guide

46

See Chapter 4, Exposing Services.

13.4. Example openshift.conf.erb File

httpd is a common base for OpenShift Enterprise cartridges. You can use this example
conf.d/openshift.conf.erb file as a starting point for writing a cartridge based on httpd.

ServerRoot "<%= ENV['OPENSHIFT_HOMEDIR'] + "/ruby-1.8" %>"
DocumentRoot "<%= ENV['OPENSHIFT_REPO_DIR'] + "/public" %>"
Listen <%= ENV['OPENSHIFT_RUBY_IP'] + ':' + ENV['OPENSHIFT_RUBY_PORT'] %>
User <%= ENV['OPENSHIFT_GEAR_UUID'] %>
Group <%= ENV['OPENSHIFT_GEAR_UUID'] %>

ErrorLog "|/usr/sbin/rotatelogs <%= ENV['OPENSHIFT_HOMEDIR']%>/ruby-
1.8/logs/error_log-%Y%m%d-%H%M%S-%Z 86400"
CustomLog "|/usr/sbin/rotatelogs <%=
ENV['OPENSHIFT_HOMEDIR']%>/logs/access_log-%Y%m%d-%H%M%S-%Z 86400" combined

PassengerUser <%= ENV['OPENSHIFT_GEAR_UUID'] %>
PassengerPreStart http://<%= ENV['OPENSHIFT_RUBY_IP'] + ':' +
ENV['OPENSHIFT_RUBY_PORT'] %>/
PassengerSpawnIPAddress <%= ENV['OPENSHIFT_RUBY_IP'] %>
PassengerUseGlobalQueue off
<Directory <%= ENV['OPENSHIFT_REPO_DIR]%>/public>
 AllowOverride all
 Options -MultiViews
</Directory>

Chapter 13. OpenShift Cartridge Reference

47

Appendix A. Revision History

Revision 2.1-3 Mon Sep 15 2014 Bilhar Aulakh
BZ 1114617: Updated Section 6.1, “Embedded Ruby (ERB) Processing” with correct file names.

Revision 2.1-2 Thu Jun 26 2014 Julie Wu
Added Chapter 12, Enabling Logshifter.
Updated Section 6.7, “metrics Script” with 2.1 release callout.

Revision 2.1-1 Fri May 16 2014 Julie Wu
OpenShift Enterprise 2.1 release.
BZ 1097056: Updated Section 4.1, “TCP Endpoints”, Section 4.2, “TCP Endpoint Example”, and
Section 13.3, “Cartridge Metadata Elements”.
Added Section 6.7, “metrics Script”.
Added Section 4.4, “Enabling Custom Paths for Websockets”.
Updated Section 10.2, “Restore” and Section 10.1, “Snapshot”.

Revision 2.0-0 Mon Dec 9 2013 Bilhar Aulakh
OpenShift Enterprise 2.0 release.
Add section on cartridge categories.
Add section on cartridge hierarchy.
Update default lifecycle phases.
Add section on archiving applications.
Add section on binary deployment.

Cartridge Specification Guide

48

	Table of Contents
	Chapter 1. Introduction to OpenShift Enterprise
	Chapter 2. Managed Files
	Chapter 3. Locking Cartridges
	3.1. Cartridge Lock Configuration

	Chapter 4. Exposing Services
	4.1. TCP Endpoints
	4.2. TCP Endpoint Example
	4.3. Custom HTTP Services
	4.4. Enabling Custom Paths for Websockets

	Chapter 5. Creating Template Directories for Language Cartridges
	5.1. Marker Files
	5.2. Action Hooks

	Chapter 6. Using Cartridge Scripts
	6.1. Embedded Ruby (ERB) Processing
	6.2. setup Script
	6.3. install Script
	6.4. post-install Script
	6.5. teardown Script
	6.6. control Script
	6.7. metrics Script
	6.8. Exit Status Codes
	6.9. Communication Between OpenShift and Cartridges

	Chapter 7. Environment Variables
	7.1. System Environment Variables
	7.2. Cartridge Environment Variables
	7.3. Custom Cartridge Environment Variables

	Chapter 8. Cartridge Events
	8.1. Cartridge Event Publishing
	8.2. Cartridge Event Subscriptions
	8.3. Cartridge Event Example

	Chapter 9. OpenShift Build Process
	9.1. Default Build Life Cycle
	9.2. Default Scaling Build Life Cycle
	9.3. Builder Cartridge Life Cycle
	9.4. Archiving Applications
	9.5. Binary Deployment

	Chapter 10. Backing Up and Restoring Cartridges
	10.1. Snapshot
	10.2. Restore

	Chapter 11. Upgrading Custom and Community Cartridges
	11.1. Upgrade Itinerary
	11.2. Compatible Upgrades
	11.3. Incompatible Upgrades
	11.4. Cartridge Upgrade Script

	Chapter 12. Enabling Logshifter
	Chapter 13. OpenShift Cartridge Reference
	13.1. Cartridge Hierarchy
	13.2. Cartridge Directory Structure
	13.3. Cartridge Metadata Elements
	13.3.1. Cartridge-Short-Name
	13.3.2. Cartridge-Version
	13.3.3. Compatible-Versions
	13.3.4. Cartridge-Vendor
	13.3.5. Version
	13.3.6. Versions
	13.3.7. Categories
	13.3.7.1. System Categories
	13.3.7.2. Descriptive Categories

	13.3.8. Group-Overrides
	13.3.9. Scaling
	13.3.10. Source-Url
	13.3.11. Source-Md5
	13.3.12. Additional-Control-Actions
	13.3.13. Endpoints

	13.4. Example openshift.conf.erb File

	Appendix A. Revision History

