
OpenShift Container Platform 3.7

CLI Reference

OpenShift Container Platform 3.7 CLI Reference

Last Updated: 2018-11-02

OpenShift Container Platform 3.7 CLI Reference

OpenShift Container Platform 3.7 CLI Reference

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

With the OpenShift Container Platform command line interface (CLI), you can create applications
and manage OpenShift projects from a terminal. These topics show you how to use CLI.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. GET STARTED WITH THE CLI
2.1. OVERVIEW
2.2. PREREQUISITES
2.3. INSTALLING THE CLI

2.3.1. For Windows
2.3.2. For Mac OS X
2.3.3. For Linux

2.4. BASIC SETUP AND LOGIN
2.5. CLI CONFIGURATION FILES
2.6. PROJECTS
2.7. WHAT’S NEXT?

CHAPTER 3. MANAGING CLI PROFILES
3.1. OVERVIEW
3.2. SWITCHING BETWEEN CLI PROFILES
3.3. MANUALLY CONFIGURING CLI PROFILES
3.4. LOADING AND MERGING RULES

CHAPTER 4. DEVELOPER CLI OPERATIONS
4.1. OVERVIEW
4.2. COMMON OPERATIONS
4.3. OBJECT TYPES
4.4. BASIC CLI OPERATIONS

4.4.1. whoami
4.4.2. types
4.4.3. login
4.4.4. logout
4.4.5. new-project
4.4.6. new-app
4.4.7. status
4.4.8. project
4.4.9. explain
4.4.10. cluster
4.4.11. completion
4.4.12. help
4.4.13. plugin
4.4.14. version

4.5. APPLICATION MODIFICATION CLI OPERATIONS
4.5.1. get
4.5.2. describe
4.5.3. edit
4.5.4. config
4.5.5. volume
4.5.6. label
4.5.7. annotate
4.5.8. expose
4.5.9. delete
4.5.10. set

4.5.10.1. set env
4.5.10.2. set build-secret

5

6
6
6
6
7
7
8
9

10
11
12

13
13
13
15
17

20
20
20
21
22
22
22
22
22
22
22
23
23
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
26
26
26
26

Table of Contents

1

. .

4.6. BUILD AND DEPLOYMENT CLI OPERATIONS
4.6.1. start-build
4.6.2. rollback
4.6.3. rollout
4.6.4. new-build
4.6.5. cancel-build
4.6.6. image
4.6.7. import
4.6.8. import-image
4.6.9. scale
4.6.10. tag

4.7. ADVANCED COMMANDS
4.7.1. adm
4.7.2. apply
4.7.3. create
4.7.4. replace
4.7.5. process
4.7.6. run
4.7.7. patch
4.7.8. export
4.7.9. extract
4.7.10. idle
4.7.11. observe
4.7.12. auth
4.7.13. policy
4.7.14. convert
4.7.15. secrets
4.7.16. autoscale

4.8. TROUBLESHOOTING AND DEBUGGING CLI OPERATIONS
4.8.1. debug

4.8.1.1. Usage
4.8.1.2. Examples

4.8.2. logs
4.8.3. exec
4.8.4. rsh
4.8.5. rsync
4.8.6. port-forward
4.8.7. proxy
4.8.8. attach
4.8.9. cp

CHAPTER 5. ADMINISTRATOR CLI OPERATIONS
5.1. OVERVIEW
5.2. COMMON OPERATIONS
5.3. BASIC CLI OPERATIONS

5.3.1. new-project
5.3.2. policy
5.3.3. groups

5.4. INSTALL CLI OPERATIONS
5.4.1. router
5.4.2. ipfailover
5.4.3. registry

5.5. MAINTENANCE CLI OPERATIONS

26
26
28
28
28
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
32
32
32
32
32
32
32
32
33
33
33
33
34
34
34
34
34
34
35

36
36
36
36
36
36
36
37
37
37
37
37

OpenShift Container Platform 3.7 CLI Reference

2

. .

. .

5.5.1. build-chain
5.5.2. manage-node
5.5.3. prune

5.6. SETTINGS CLI OPERATIONS
5.6.1. config
5.6.2. create-kubeconfig
5.6.3. create-api-client-config

5.7. ADVANCED CLI OPERATIONS
5.7.1. create-bootstrap-project-template
5.7.2. create-bootstrap-policy-file
5.7.3. create-login-template
5.7.4. overwrite-policy
5.7.5. create-node-config
5.7.6. ca

5.8. OTHER CLI OPERATIONS
5.8.1. version
5.8.2. help

CHAPTER 6. EXTENDING THE CLI
6.1. OVERVIEW
6.2. PREREQUISITES
6.3. INSTALLING PLUG-INS

6.3.1. The Plug-in Loader
6.3.1.1. Search Order

6.4. WRITING PLUG-INS
6.4.1. The plugin.yaml Descriptor
6.4.2. Recommended Directory Structure
6.4.3. Accessing Runtime Attributes

CHAPTER 7. REVISION HISTORY: CLI REFERENCE
7.1. WED NOV 29 2017

37
37
37
37
37
38
38
38
38
38
38
38
38
39
39
39
39

40
40
40
40
40
40
41
41
42
42

44
44

Table of Contents

3

OpenShift Container Platform 3.7 CLI Reference

4

CHAPTER 1. OVERVIEW
With the OpenShift Container Platform command line interface (CLI), you can create applications and
manage OpenShift Container Platform projects from a terminal. The CLI is ideal in situations where you
are:

Working directly with project source code.

Scripting OpenShift Container Platform operations.

Restricted by bandwidth resources and cannot use the web console.

The CLI is available using the oc command:

$ oc <command>

See Get Started with the CLI for installation and setup instructions.

CHAPTER 1. OVERVIEW

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-new-app
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-infrastructure-components-web-console

CHAPTER 2. GET STARTED WITH THE CLI

2.1. OVERVIEW

The OpenShift Container Platform CLI exposes commands for managing your applications, as well as
lower level tools to interact with each component of your system. This topic guides you through getting
started with the CLI, including installation and logging in to create your first project.

2.2. PREREQUISITES

Certain operations require Git to be locally installed on a client. For example, the command to create an
application using a remote Git repository:

$ oc new-app https://github.com/<your_user>/<your_git_repo>

Before proceeding, install Git on your workstation. See the official Git documentation for instructions per
your workstation’s operating system.

2.3. INSTALLING THE CLI

The easiest way to download the CLI is by accessing the About page on the web console if your cluster
administrator has enabled the download links:

Installation options for the CLI vary depending on your operating system.

OpenShift Container Platform 3.7 CLI Reference

6

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

To log in using the CLI, collect your token from the web console’s Command Line page, which is
accessed from Command Line Tools in the Help menu. The token is hidden, so you must click the
copy to clipboard button at the end of the oc login line on the Command Line Tools page, then
paste the copied contents to show the token.

2.3.1. For Windows

The CLI for Windows is provided as a zip archive; you can download it from the Red Hat Customer
Portal. After logging in with your Red Hat account, you must have an active OpenShift Enterprise
subscription to access the downloads page:

Download the CLI from the Red Hat Customer Portal

Alternatively, if the cluster administrator has enabled it, you can download and unpack the CLI from the
About page on the web console.

Tutorial Video:

The following video walks you through this process: Click here to watch

Then, unzip the archive with a ZIP program and move the oc binary to a directory on your PATH. To
check your PATH, open the Command Prompt and run:

C:\> path

2.3.2. For Mac OS X

The CLI for Mac OS X is provided as a tar.gz archive; you can download it from the Red Hat Customer
Portal. After logging in with your Red Hat account, you must have an active OpenShift Enterprise
subscription to access the downloads page:

Download the CLI from the Red Hat Customer Portal

Alternatively, if the cluster administrator has enabled it, you can download and unpack the CLI from the
About page on the web console.

CHAPTER 2. GET STARTED WITH THE CLI

7

https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290
https://access.redhat.com/videos/2212891
https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

1

Tutorial Video:

The following video walks you through this process: Click here to watch

Then, unpack the archive and move the oc binary to a directory on your PATH. To check your PATH,
open a Terminal window and run:

$ echo $PATH

2.3.3. For Linux

For Red Hat Enterprise Linux (RHEL) 7, you can install the CLI as an RPM using Red Hat Subscription
Management (RHSM) if you have an active OpenShift Enterprise subscription on your Red Hat account:

subscription-manager register
subscription-manager refresh

subscription-manager attach --pool=<pool_ID> 1
subscription-manager repos --enable="rhel-7-server-ose-3.7-rpms"
yum install atomic-openshift-clients

Pool ID for an active OpenShift Enterprise subscription

For RHEL, Fedora, and other Linux distributions, you can also download the CLI directly from the Red
Hat Customer Portal as a tar.gz archive. After logging in with your Red Hat account, you must have an
active OpenShift Enterprise subscription to access the downloads page.

Download the CLI from the Red Hat Customer Portal

Tutorial Video:

The following video walks you through this process: Click here to watch

OpenShift Container Platform 3.7 CLI Reference

8

https://access.redhat.com/videos/2212921
https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290
https://access.redhat.com/videos/2213051

Alternatively, if the cluster administrator has enabled it, you can download and unpack the CLI from the
About page on the web console.

Then, unpack the archive and move the oc binary to a directory on your PATH. To check your path, run:

$ echo $PATH

To unpack the archive:

$ tar -xf <file>

NOTE

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on your
library path. If libc is not available, you might see the following error when you run CLI
commands:

oc: No such file or directory

2.4. BASIC SETUP AND LOGIN

The oc login command is the best way to initially set up the CLI, and it serves as the entry point for
most users. The interactive flow helps you establish a session to an OpenShift Container Platform server
with the provided credentials. The information is automatically saved in a CLI configuration file that is
then used for subsequent commands.

The following example shows the interactive setup and login using the oc login command:

Example 2.1. Initial CLI Setup

$ oc login
OpenShift server [https://localhost:8443]: https://openshift.example.com

1

CHAPTER 2. GET STARTED WITH THE CLI

9

1

2

3

4

Username: alice 2
Authentication required for https://openshift.example.com (openshift)
Password: ******

Login successful. 3

You don't have any projects. You can try to create a new project, by
running

 $ oc new-project <projectname> 4

Welcome to OpenShift! See 'oc help' to get started.

The command prompts for the OpenShift Container Platform server URL.

The command prompts for login credentials: a user name and password.

A session is established with the server, and a session token is received.

If you do not have a project, information is given on how to create one.

When you have completed the CLI configuration, subsequent commands use the configuration file for
the server, session token, and project information.

You can log out of CLI using the oc logout command:

$ oc logout
User, alice, logged out of https://openshift.example.com

If you log in after creating or being granted access to a project, a project you have access to is
automatically set as the current default, until switching to another one:

$ oc login
Username: alice
Authentication required for https://openshift.example.com (openshift)
Password:
Login successful.

Using project "aliceproject".

Additional options are also available for the oc login command.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file. The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

2.5. CLI CONFIGURATION FILES

OpenShift Container Platform 3.7 CLI Reference

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#users

A CLI configuration file permanently stores oc options and contains a series of authentication
mechanisms and OpenShift Container Platform server connection information associated with
nicknames.

As described in the previous section, the oc login command automatically creates and manages CLI
configuration files. All information gathered by the command is stored in a configuration file located in
~/.kube/config. The current CLI configuration can be viewed using the following command:

Example 2.2. Viewing the CLI Configuration

$ oc config view
apiVersion: v1
clusters:
- cluster:
 server: https://openshift.example.com
 name: openshift
contexts:
- context:
 cluster: openshift
 namespace: aliceproject
 user: alice
 name: alice
current-context: alice
kind: Config
preferences: {}
users:
- name: alice
 user:
 token: NDM2N2MwODgtNjI1Yy10N3VhLTg1YmItYzI4NDEzZDUyYzVi

CLI configuration files can be used to setup multiple CLI profiles using various OpenShift Container
Platform servers, namespaces, and users so that you can switch easily between them. The CLI can
support multiple configuration files; they are loaded at runtime and merged together along with any
override options specified from the command line.

2.6. PROJECTS

A project in OpenShift Container Platform contains multiple objects to make up a logical application.

Most oc commands run in the context of a project. The oc login selects a default project during initial
setup to be used with subsequent commands. Use the following command to display the project
currently in use:

$ oc project

If you have access to multiple projects, use the following syntax to switch to a particular project by
specifying the project name:

$ oc project <project_name>

For example:

$ oc project project02

CHAPTER 2. GET STARTED WITH THE CLI

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-authentication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-projects

Now using project 'project02'.

$ oc project project03
Now using project 'project03'.

$ oc project
Using project 'project03'.

The oc status command shows a high level overview of the project currently in use, with its
components and their relationships, as shown in the following example:

$ oc status
In project OpenShift 3 Sample (test)

service database-test (172.30.17.113:6434 -> 3306)
 database-test deploys docker.io/library/mysql:latest
 #1 deployed 47 hours ago

service frontend-test (172.30.17.236:5432 -> 8080)
 frontend-test deploys origin-ruby-sample:test <-
 builds https://github.com/openshift/ruby-hello-world with
docker.io/openshift/ruby-20-centos7:latest
 not built yet
 #1 deployment waiting on image

To see more information about a service or deployment config, use 'oc
describe service <name>' or 'oc describe dc <name>'.
You can use 'oc get pods,svc,dc,bc,builds' to see lists of each of the
types described above.

2.7. WHAT’S NEXT?

After you have logged in, you can create a new application and explore some common CLI operations.

OpenShift Container Platform 3.7 CLI Reference

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-new-app

1

CHAPTER 3. MANAGING CLI PROFILES

3.1. OVERVIEW

A CLI configuration file allows you to configure different profiles, or contexts, for use with the OpenShift
CLI. A context consists of user authentication and OpenShift Container Platform server information
associated with a nickname.

3.2. SWITCHING BETWEEN CLI PROFILES

Contexts allow you to easily switch between multiple users across multiple OpenShift Container Platform
servers, or clusters, when using issuing CLI operations. Nicknames make managing CLI configuration
easier by providing short-hand references to contexts, user credentials, and cluster details.

After logging in with the CLI for the first time, OpenShift Container Platform creates a ~/.kube/config file
if one does not already exist. As more authentication and connection details are provided to the CLI,
either automatically during an oc login operation or by setting them explicitly, the updated information
is stored in the configuration file:

Example 3.1. CLI Configuration File

The clusters section defines connection details for OpenShift Container Platform clusters,
including the address for their master server. In this example, one cluster is nicknamed
openshift1.example.com:8443 and another is nicknamed openshift2.example.com:8443.

apiVersion: v1

clusters: 1
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift1.example.com:8443
 name: openshift1.example.com:8443
- cluster:
 insecure-skip-tls-verify: true
 server: https://openshift2.example.com:8443
 name: openshift2.example.com:8443

contexts: 2
- context:
 cluster: openshift1.example.com:8443
 namespace: alice-project
 user: alice/openshift1.example.com:8443
 name: alice-project/openshift1.example.com:8443/alice
- context:
 cluster: openshift1.example.com:8443
 namespace: joe-project
 user: alice/openshift1.example.com:8443
 name: joe-project/openshift1/alice

current-context: joe-project/openshift1.example.com:8443/alice 3
kind: Config
preferences: {}

users: 4
- name: alice/openshift1.example.com:8443
 user:
 token: xZHd2piv5_9vQrg-SKXRJ2Dsl9SceNJdhNTljEKTb8k

CHAPTER 3. MANAGING CLI PROFILES

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#architecture-additional-concepts-authentication

2

3

4

This contexts section defines two contexts: one nicknamed alice-
project/openshift1.example.com:8443/alice, using the alice-project project,
openshift1.example.com:8443 cluster, and alice user, and another nicknamed joe-
project/openshift1.example.com:8443/alice, using the joe-project project,
openshift1.example.com:8443 cluster and alice user.

The current-context parameter shows that the joe-
project/openshift1.example.com:8443/alice context is currently in use, allowing the alice user
to work in the joe-project project on the openshift1.example.com:8443 cluster.

The users section defines user credentials. In this example, the user nickname
alice/openshift1.example.com:8443 uses an access token.

The CLI can support multiple configuration files; they are loaded at runtime and merged together along
with any override options specified from the command line.

After you are logged in, you can use the oc status command or the oc project command to verify
your current working environment:

Example 3.2. Verifying the Current Working Environment

$ oc status
oc status
In project Joe's Project (joe-project)

service database (172.30.43.12:5434 -> 3306)
 database deploys docker.io/openshift/mysql-55-centos7:latest
 #1 deployed 25 minutes ago - 1 pod

service frontend (172.30.159.137:5432 -> 8080)
 frontend deploys origin-ruby-sample:latest <-
 builds https://github.com/openshift/ruby-hello-world with joe-
project/ruby-20-centos7:latest
 #1 deployed 22 minutes ago - 2 pods

To see more information about a service or deployment, use 'oc describe
service <name>' or 'oc describe dc <name>'.
You can use 'oc get all' to see lists of each of the types described
above.

$ oc project
Using project "joe-project" from context named "joe-
project/openshift1.example.com:8443/alice" on server
"https://openshift1.example.com:8443".

To log in using any other combination of user credentials and cluster details, run the oc login
command again and supply the relevant information during the interactive process. A context is
constructed based on the supplied information if one does not already exist.

If you are already logged in and want to switch to another project the current user already has access to,
use the oc project command and supply the name of the project:

OpenShift Container Platform 3.7 CLI Reference

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#api-authentication

$ oc project alice-project
Now using project "alice-project" on server
"https://openshift1.example.com:8443".

At any time, you can use the oc config view command to view your current, full CLI configuration, as
seen in the CLI config file output.

Additional CLI configuration commands are also available for more advanced usage.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file. The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

3.3. MANUALLY CONFIGURING CLI PROFILES

NOTE

This section covers more advanced usage of CLI configurations. In most situations, you
can simply use the oc login and oc project commands to log in and switch between
contexts and projects.

If you want to manually configure your CLI configuration files, you can use the oc config command
instead of modifying the files themselves. The oc config command includes a number of helpful
subcommands for this purpose:

Table 3.1. CLI Configuration Subcommands

Subcom
mand

Usage

set-
crede
ntial
s

Sets a user entry in the CLI configuration file. If the referenced user nickname already exists, the
specified information is merged in.

$ oc config set-credentials <user_nickname>
[--client-certificate=<path/to/certfile>] [--client-key=
<path/to/keyfile>]
[--token=<bearer_token>] [--username=<basic_user>] [--password=
<basic_password>]

CHAPTER 3. MANAGING CLI PROFILES

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#users

set-
clust
er

Sets a cluster entry in the CLI configuration file. If the referenced cluster nickname already exists,
the specified information is merged in.

$ oc config set-cluster <cluster_nickname> [--server=
<master_ip_or_fqdn>]
[--certificate-authority=<path/to/certificate/authority>]
[--api-version=<apiversion>] [--insecure-skip-tls-verify=true]

set-
conte
xt

Sets a context entry in the CLI configuration file. If the referenced context nickname already exists,
the specified information is merged in.

$ oc config set-context <context_nickname> [--cluster=
<cluster_nickname>]
[--user=<user_nickname>] [--namespace=<namespace>]

use-
conte
xt

Sets the current context using the specified context nickname.

$ oc config use-context <context_nickname>

set Sets an individual value in the the CLI configuration file.

$ oc config set <property_name> <property_value>

The <property_name> is a dot-delimited name where each token represents either an
attribute name or a map key. The <property_value> is the new value being set.

unset Unsets individual values in the CLI configuration file.

$ oc config unset <property_name>

The <property_name> is a dot-delimited name where each token represents either an
attribute name or a map key.

view Displays the merged CLI configuration currently in use.

$ oc config view

Displays the result of the specified CLI configuration file.

$ oc config view --config=<specific_filename>

Subcom
mand

Usage

Example Usage

Consider the following configuration workflow. First, set credentials for a user nickname alice that uses
an access token:

OpenShift Container Platform 3.7 CLI Reference

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#api-authentication

1

$ oc config set-credentials alice --
token=NDM2N2MwODgtNjI1Yy10N3VhLTg1YmItYzI4NDEzZDUyYzVi

Set a cluster entry named openshift1:

$ oc config set-cluster openshift1 --server=https://openshift1.example.com

Set a context named alice that uses the alice user and the openshift1 cluster:

$ oc config set-context alice --cluster=openshift1 --user=alice

Now that the alice context has been created, switch to that context:

$ oc config use-context alice

Set the aliceproject namespace for the alice context:

$ oc config set contexts.alice.namespace aliceproject

You can now view the configuration that has been created:

$ oc config view
apiVersion: v1
clusters:
- cluster:
 server: https://openshift1.example.com
 name: openshift1
contexts:
- context:
 cluster: openshift1
 namespace: aliceproject
 user: alice
 name: alice

current-context: alice 1
kind: Config
preferences: {}
users:
- name: alice
 user:
 token: NDM2N2MwODgtNjI1Yy10N3VhLTg1YmItYzI4NDEzZDUyYzVi

The current context is set to alice.

All subsequent CLI operations will use the alice context, unless otherwise specified by overriding CLI
options or until the context is switched.

3.4. LOADING AND MERGING RULES

When issuing CLI operations, the loading and merging order for the CLI configuration follows these rules:

1. CLI configuration files are retrieved from your workstation, using the following hierarchy and
merge rules:

CHAPTER 3. MANAGING CLI PROFILES

17

If the --config option is set, then only that file is loaded. The flag may only be set once
and no merging takes place.

If $KUBECONFIG environment variable is set, then it is used. The variable can be a list of
paths, and if so the paths are merged together. When a value is modified, it is modified in
the file that defines the stanza. When a value is created, it is created in the first file that
exists. If no files in the chain exist, then it creates the last file in the list.

Otherwise, the ~/.kube/config file is used and no merging takes place.

2. The context to use is determined based on the first hit in the following chain:

The value of the --context option.

The current-context value from the CLI configuration file.

An empty value is allowed at this stage.

3. The user and cluster to use is determined. At this point, you may or may not have a context; they
are built based on the first hit in the following chain, which is run once for the user and once for
the cluster:

The value of the --user option for user name and the --cluster option for cluster name.

If the --context option is present, then use the context’s value.

An empty value is allowed at this stage.

4. The actual cluster information to use is determined. At this point, you may or may not have
cluster information. Each piece of the cluster information is built based on the first hit in the
following chain:

The values of any of the following command line options:

--server,

--api-version

--certificate-authority

--insecure-skip-tls-verify

If cluster information and a value for the attribute is present, then use it.

If you do not have a server location, then there is an error.

5. The actual user information to use is determined. Users are built using the same rules as
clusters, except that you can only have one authentication technique per user; conflicting
techniques cause the operation to fail. Command line options take precedence over
configuration file values. Valid command line options are:

--auth-path

--client-certificate

OpenShift Container Platform 3.7 CLI Reference

18

--client-key

--token

6. For any information that is still missing, default values are used and prompts are given for
additional information.

CHAPTER 3. MANAGING CLI PROFILES

19

CHAPTER 4. DEVELOPER CLI OPERATIONS

4.1. OVERVIEW

This topic provides information on the developer CLI operations and their syntax. You must setup and
login with the CLI before you can perform these operations.

The developer CLI uses the oc command, and is used for project-level operations. This differs from the
administrator CLI, which uses the oc adm command for more advanced, administrator operations.

4.2. COMMON OPERATIONS

The developer CLI allows interaction with the various objects that are managed by OpenShift Container
Platform. Many common oc operations are invoked using the following syntax:

$ oc <action> <object_type> <object_name>

This specifies:

An <action> to perform, such as get or describe.

The <object_type> to perform the action on, such as service or the abbreviated svc.

The <object_name> of the specified <object_type>.

For example, the oc get operation returns a complete list of services that are currently defined:

$ oc get svc
NAME LABELS SELECTOR
IP PORT(S)
docker-registry docker-registry=default docker-
registry=default 172.30.78.158 5000/TCP
kubernetes component=apiserver,provider=kubernetes <none>
172.30.0.2 443/TCP
kubernetes-ro component=apiserver,provider=kubernetes <none>
172.30.0.1 80/TCP

The oc describe operation can then be used to return detailed information about a specific object:

$ oc describe svc docker-registry
Name: docker-registry
Labels: docker-registry=default
Selector: docker-registry=default
IP: 172.30.78.158
Port: <unnamed> 5000/TCP
Endpoints: 10.128.0.2:5000
Session Affinity: None
No events.

OpenShift Container Platform 3.7 CLI Reference

20

WARNING

Versions of oc prior to 3.0.2.0 did not have the ability to negotiate API versions
against a server. So if you are using oc up to 3.0.1.0 with a server that only supports
v1 or higher versions of the API, make sure to pass --api-version in order to
point the oc client to the correct API endpoint. For example: oc get svc --api-
version=v1.

4.3. OBJECT TYPES

The CLI supports the following object types, some of which have abbreviated syntax:

Object Type Abbreviated Version

build

buildConfig bc

deploymentConfig dc

deployments (Technology Preview) deploy

event ev

imageStream is

imageStreamTag istag

imageStreamImage isimage

job

LimitRange limits

node

pod po

ResourceQuota quota

replicationController rc

replicaSet (Technology Preview) rs

CHAPTER 4. DEVELOPER CLI OPERATIONS

21

secrets

service svc

ServiceAccount sa

persistentVolume pv

persistentVolumeClaim pvc

Object Type Abbreviated Version

4.4. BASIC CLI OPERATIONS

The following table describes basic oc operations and their general syntax:

4.4.1. whoami

Return information about the current session:

$ oc whoami [--options]

4.4.2. types

Display an introduction to some core OpenShift Container Platform concepts:

$ oc types

4.4.3. login

Log in to the OpenShift Container Platform server:

$ oc login

4.4.4. logout

End the current session:

$ oc logout

4.4.5. new-project

Create a new project:

$ oc new-project <project_name>

4.4.6. new-app

OpenShift Container Platform 3.7 CLI Reference

22

Creates a new application based on the source code in the current directory:

$ oc new-app

Creates a new application based on the source code in a remote repository:

$ oc new-app https://github.com/sclorg/cakephp-ex

Creates a new application based on the source code in a private remote repository:

$ oc new-app https://github.com/youruser/yourprivaterepo --source-
secret=yoursecret

4.4.7. status

Show an overview of the current project:

$ oc status

4.4.8. project

Switch to another project. Run without options to display the current project. To view all projects you have
access to run oc projects.

$ oc project <project_name>

4.4.9. explain

See the documentation of a resource and its fields:

$ oc explain <resource_name>

4.4.10. cluster

Start or stop a OpenShift Container Platform cluster:

$ oc cluster [--options]

4.4.11. completion

Output shell completion code for the specified shell:

$ oc completion [--options]

4.4.12. help

Get help about any command:

$ oc <command> --help

CHAPTER 4. DEVELOPER CLI OPERATIONS

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-new-app

4.4.13. plugin

Run a command line plug-in:

$ oc plugin [--options]

4.4.14. version

Display client and server versions:

$ oc version [--options]

4.5. APPLICATION MODIFICATION CLI OPERATIONS

4.5.1. get

Return a list of objects for the specified object type. If the optional <object_name> is included in the
request, then the list of results is filtered by that value.

$ oc get <object_type> [<object_name>]

You can use the -o or --output option to modify the output format.

$ oc get <object_type> [<object_name>]-o|--output=json|yaml|wide|custom-
columns=...|custom-columns-file=...|go-template=...|go-template-
file=...|jsonpath=...|jsonpath-file=...]

The output format can be a JSON or YAML, or an extensible format like custom columns, golang
template, and jsonpath.

For example, the following command lists the name of the pods running in a specific project:

$ oc get pods -n default -o jsonpath='{range .items[*].metadata}{"Pod
Name: "}{.name}{"\n"}{end}'

Pod Name: docker-registry-1-wvhrx
Pod Name: registry-console-1-ntq65
Pod Name: router-1-xzw69

4.5.2. describe

Returns information about the specific object returned by the query. A specific <object_name> must be
provided. The actual information that is available varies as described in object type.

$ oc describe <object_type> <object_name>

4.5.3. edit

Edit the desired object type:

OpenShift Container Platform 3.7 CLI Reference

24

http://kubernetes.io/docs/user-guide/kubectl-overview/#custom-columns
http://golang.org/pkg/text/template/#pkg-overview
http://kubernetes.io/docs/user-guide/jsonpath

$ oc edit <object_type>/<object_name>

Edit the desired object type with a specified text editor:

$ OC_EDITOR="<text_editor>" oc edit <object_type>/<object_name>

Edit the desired object in a specified format (eg: JSON):

$ oc edit <object_type>/<object_name> \
 --output-version=<object_type_version> \
 -o <object_type_format>

4.5.4. config

Change configuration files for the client:

$ oc config --config=""

4.5.5. volume

Modify a volume:

$ oc volume <object_type>/<object_name> [--option]

4.5.6. label

Update the labels on a object:

$ oc label <object_type> <object_name> <label>

4.5.7. annotate

Update the annotations on a resource:

$ oc annotate [--options]

4.5.8. expose

Look up a service and expose it as a route. There is also the ability to expose a deployment
configuration, replication controller, service, or pod as a new service on a specified port. If no labels are
specified, the new object will re-use the labels from the object it exposes.

If you are exposing a service, the default generator is --generator=route/v1. For all other cases the
default is --generator=service/v2, which leaves the port unnamed. Generally, there is no need to
set a generator with the oc expose command. A third generator, --generator=service/v1, is
available with the port name default.

$ oc expose <object_type> <object_name>

CHAPTER 4. DEVELOPER CLI OPERATIONS

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-volumes

4.5.9. delete

Delete the specified object. An object configuration can also be passed in through STDIN. The oc
delete all -l <label> operation deletes all objects matching the specified <label>, including the
replication controller so that pods are not re-created.

$ oc delete -f <file_path>

$ oc delete <object_type> <object_name>

$ oc delete <object_type> -l <label>

$ oc delete all -l <label>

4.5.10. set

Modify a specific property of the specified object.

4.5.10.1. set env

Sets an environment variable on a deployment configuration or a build configuration:

$ oc set env dc/mydc VAR1=value1

4.5.10.2. set build-secret

Sets the name of a secret on a build configuration. The secret may be an image pull or push secret or a
source repository secret:

$ oc set build-secret --source bc/mybc mysecret

4.6. BUILD AND DEPLOYMENT CLI OPERATIONS

One of the fundamental capabilities of OpenShift Container Platform is the ability to build applications
into a container from source.

OpenShift Container Platform provides CLI access to inspect and manipulate deployment configurations
using standard oc resource operations, such as get, create, and describe.

4.6.1. start-build

Manually start the build process with the specified build configuration file:

$ oc start-build <buildconfig_name>

Manually start the build process by specifying the name of a previous build as a starting point:

$ oc start-build --from-build=<build_name>

OpenShift Container Platform 3.7 CLI Reference

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#replication-controllers

Manually start the build process by specifying either a configuration file or the name of a previous build
and retrieve its build logs:

$ oc start-build --from-build=<build_name> --follow

$ oc start-build <buildconfig_name> --follow

Wait for a build to complete and exit with a non-zero return code if the build fails:

$ oc start-build --from-build=<build_name> --wait

Set or override environment variables for the current build without changing the build configuration.
Alternatively, use -e.

$ oc start-build --env <var_name>=<value>

Set or override the default build log level output during the build:

$ oc start-build --build-loglevel [0-5]

Specify the source code commit identifier the build should use; requires a build based on a Git repository:

$ oc start-build --commit=<hash>

Re-run build with name <build_name>:

$ oc start-build --from-build=<build_name>

Archive <dir_name> and build with it as the binary input:

$ oc start-build --from-dir=<dir_name>

Use existing archive as the binary input; unlike --from-file the archive will be extracted by the builder
prior to the build process:

$ oc start-build --from-archive=<archive_name>

Use <file_name> as the binary input for the build. This file must be the only one in the build source.
For example, pom.xml or Dockerfile.

$ oc start-build --from-file=<file_name>

Download the binary input using HTTP or HTTPS instead of reading it from the file system:

$ oc start-build --from-file=<file_URL>

Download an archive and use its contents as the build source:

$ oc start-build --from-archive=<archive_URL>

The path to a local source code repository to use as the binary input for a build:

CHAPTER 4. DEVELOPER CLI OPERATIONS

27

$ oc start-build --from-repo=<path_to_repo>

Specify a webhook URL for an existing build configuration to trigger:

$ oc start-build --from-webhook=<webhook_URL>

The contents of the post-receive hook to trigger a build:

$ oc start-build --git-post-receive=<contents>

The path to the Git repository for post-receive; defaults to the current directory:

$ oc start-build --git-repository=<path_to_repo>

List the webhooks for the specified build configuration or build; accepts all, generic, or github:

$ oc start-build --list-webhooks

Override the Spec.Strategy.SourceStrategy.Incremental option of a source-strategy build:

$ oc start-build --incremental

Override the Spec.Strategy.DockerStrategy.NoCache option of a docker-strategy build:

$oc start-build --no-cache

4.6.2. rollback

Perform a rollback:

$ oc rollback <deployment_name>

4.6.3. rollout

Manage a Kubernetes deployment or an OpenShift deployment configuration. Start a new rollout, view
its status or history, or rollback to a previous revision of your application:

$ oc rollout [--options]

4.6.4. new-build

Create a build configuration based on the source code in the current Git repository (with a public remote)
and a container image:

$ oc new-build .

Create a build configuration based on a remote git repository:

$ oc new-build https://github.com/sclorg/cakephp-ex

OpenShift Container Platform 3.7 CLI Reference

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#rolling-back-a-deployment

Create a build configuration based on a private remote git repository:

$ oc new-build https://github.com/youruser/yourprivaterepo --source-
secret=yoursecret

4.6.5. cancel-build

Stop a build that is in progress:

$ oc cancel-build <build_name>

Cancel multiple builds at the same time:

$ oc cancel-build <build1_name> <build2_name> <build3_name>

Cancel all builds created from the build configuration:

$ oc cancel-build bc/<buildconfig_name>

Specify the builds to be canceled:

$ oc cancel-build bc/<buildconfig_name> --state=<state>

Example values for state are new or pending.

4.6.6. image

Useful commands for managing images.

$ oc image [--options]

4.6.7. import

Commands that import applications into OpenShift Container Platform.

$ oc import [--options]

4.6.8. import-image

Import tag and image information from an external image repository:

$ oc import-image <image_stream>

4.6.9. scale

Set the number of desired replicas for a replication controller or a deployment configuration to the
number of specified replicas:

$ oc scale <object_type> <object_name> --replicas=<#_of_replicas>

CHAPTER 4. DEVELOPER CLI OPERATIONS

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/architecture/#replication-controllers

4.6.10. tag

Take an existing tag or image from an image stream, or a container image "pull spec", and set it as the
most recent image for a tag in one or more other image streams:

$ oc tag <current_image> <image_stream>

4.7. ADVANCED COMMANDS

4.7.1. adm

Administrative commands. Tools for managing a cluster:

$ oc adm [--options]

4.7.2. apply

Apply a configuration to a resource by file name or stdin:

$ oc apply [--options]

4.7.3. create

Parse a configuration file and create one or more OpenShift Container Platform objects based on the file
contents. The -f flag can be passed multiple times with different file or directory paths. When the flag is
passed multiple times, oc create iterates through each one, creating the objects described in all of the
indicated files. Any existing resources are ignored.

$ oc create -f <file_or_dir_path>

4.7.4. replace

Attempt to modify an existing object based on the contents of the specified configuration file. The -f flag
can be passed multiple times with different file or directory paths. When the flag is passed multiple times,
oc replace iterates through each one, updating the objects described in all of the indicated files.

$ oc replace -f <file_or_dir_path>

4.7.5. process

Transform a project template into a project configuration file:

$ oc process -f <template_file_path>

4.7.6. run

Create and run a particular image, possibly replicated. By default, create a deployment configuration to
manage the created container(s). You can choose to create a different resource using the --
generator flag:

OpenShift Container Platform 3.7 CLI Reference

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-templates

API Resource --generator Option

Deployment configuration deploymentconfig/v1 (default)

Pod run-pod/v1

Replication controller run/v1

Deployment using extensions/v1beta1
endpoint

deployment/v1beta1

Deployment using apps/v1beta1 endpoint deployment/apps.v1beta1

Job job/v1

Cron job cronjob/v2alpha1

You can choose to run in the foreground for an interactive container execution.

$ oc run NAME --image=<image> \
 [--generator=<resource>] \
 [--port=<port>] \
 [--replicas=<replicas>] \
 [--dry-run=<bool>] \
 [--overrides=<inline_json>] \
 [options]

4.7.7. patch

Updates one or more fields of an object using strategic merge patch:

$ oc patch <object_type> <object_name> -p <changes>

The <changes> is a JSON or YAML expression containing the new fields and the values. For example,
to update the spec.unschedulable field of the node node1 to the value true, the json expression is:

$ oc patch node node1 -p '{"spec":{"unschedulable":true}}'

4.7.8. export

Export resources to be used elsewhere:

$ oc export <object_type> [--options]

See Creating a Template from Existing Objects for more information on exporting existing objects from
your project in template form.

4.7.9. extract

CHAPTER 4. DEVELOPER CLI OPERATIONS

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#export-as-template

Extract secrets or config maps to disk:

$ oc extract [--options]

4.7.10. idle

Idle scalable resources:

$ oc idle [--options]

4.7.11. observe

Observe changes to resources and react to them:

$ oc observe [--options]

4.7.12. auth

Inspect authorization:

$ oc auth [--options]

4.7.13. policy

Manage authorization policies:

$ oc policy [--options]

4.7.14. convert

Convert configuration files between different API versions:

$ oc convert [--options]

4.7.15. secrets

Configure secrets:

$ oc secrets [--options] path/to/ssh_key

4.7.16. autoscale

Setup an autoscaler for your application. Requires metrics to be enabled in the cluster. See Enabling
Cluster Metrics for cluster administrator instructions, if needed.

$ oc autoscale dc/<dc_name> [--options]

4.8. TROUBLESHOOTING AND DEBUGGING CLI OPERATIONS

OpenShift Container Platform 3.7 CLI Reference

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/installation_and_configuration/#install-config-cluster-metrics

4.8.1. debug

Launch a command shell to debug a running application.

$ oc debug -h

When debugging images and setup problems, you can get an exact copy of a running pod configuration
and troubleshoot with a shell. Since a failing pod may not be started and not accessible to rsh or exec,
running the debug command creates a carbon copy of that setup.

The default mode is to start a shell inside of the first container of the referenced pod, replication
controller, or deployment configuration. The started pod will be a copy of your source pod, with labels
stripped, the command changed to /bin/sh, and readiness and liveness checks disabled. If you just
want to run a command, add -- and a command to run. Passing a command will not create a TTY or
send STDIN by default. Other flags are supported for altering the container or pod in common ways.

A common problem running containers is a security policy that prohibits you from running as a root user
on the cluster. You can use this command to test running a pod as non-root (with --as-user) or to run
a non-root pod as root (with --as-root).

The debug pod is deleted when the the remote command completes or you interrupt the shell.

4.8.1.1. Usage

$ oc debug RESOURCE/NAME [ENV1=VAL1 ...] [-c CONTAINER] [options] [--
COMMAND]

4.8.1.2. Examples

To debug a currently running deployment:

$ oc debug dc/test

To test running a deployment as a non-root user:

$ oc debug dc/test --as-user=1000000

To debug a specific failing container by running the env command in the second container:

$ oc debug dc/test -c second -- /bin/env

To view the pod that would be created to debug:

$ oc debug dc/test -o yaml

4.8.2. logs

Retrieve the log output for a specific build, deployment, or pod. This command works for builds, build
configurations, deployment configurations, and pods.

$ oc logs -f <pod>

CHAPTER 4. DEVELOPER CLI OPERATIONS

33

4.8.3. exec

Execute a command in an already-running container. You can optionally specify a container ID,
otherwise it defaults to the first container.

$ oc exec <pod> [-c <container>] <command>

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user.
Administrators can SSH into a node host, then use the docker exec command on the
desired container.

4.8.4. rsh

Open a remote shell session to a container:

$ oc rsh <pod>

4.8.5. rsync

Copy the contents to or from a directory in an already-running pod container. If you do not specify a
container, it defaults to the first container in the pod.

To copy contents from a local directory to a directory in a pod:

$ oc rsync <local_dir> <pod>:<pod_dir> -c <container>

To copy contents from a directory in a pod to a local directory:

$ oc rsync <pod>:<pod_dir> <local_dir> -c <container>

4.8.6. port-forward

Forward one or more local ports to a pod:

$ oc port-forward <pod> <local_port>:<remote_port>

4.8.7. proxy

Run a proxy to the Kubernetes API server:

$ oc proxy --port=<port> --www=<static_directory>

4.8.8. attach

Attach to a running container:

$ oc attach [--options]

OpenShift Container Platform 3.7 CLI Reference

34

https://access.redhat.com/errata/RHSA-2015:1650
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/developer_guide/#dev-guide-port-forwarding

4.8.9. cp

Copy files and directories to and from containers:

$ oc cp [--options]

CHAPTER 4. DEVELOPER CLI OPERATIONS

35

CHAPTER 5. ADMINISTRATOR CLI OPERATIONS

5.1. OVERVIEW

This topic provides information on the administrator CLI operations and their syntax. You must setup and
login with the CLI before you can perform these operations.

The openshift command is used for starting services that make up the OpenShift Container Platform
cluster. For example, openshift start [master|node]. However, it is also an all-in-one command
that can perform all the same actions as the oc and oc adm commands via openshift cli and
openshift admin respectively.

The administrator CLI differs from the normal set of commands under the developer CLI, which uses the
oc command, and is used more for project-level operations.

5.2. COMMON OPERATIONS

The administrator CLI allows interaction with the various objects that are managed by OpenShift
Container Platform. Many common oc adm operations are invoked using the following syntax:

$ oc adm <action> <option>

This specifies:

An <action> to perform, such as new-project or groups.

An available <option> to perform the action on as well as a value for the option. Options
include --output.

IMPORTANT

When running oc adm commands, you should run them only from the first master listed
in the Ansible host inventory file, by default /etc/ansible/hosts.

5.3. BASIC CLI OPERATIONS

5.3.1. new-project

Creates a new project:

$ oc adm new-project <project_name>

5.3.2. policy

Manages authorization policies:

$ oc adm policy

5.3.3. groups

OpenShift Container Platform 3.7 CLI Reference

36

Manages groups:

$ oc adm groups

5.4. INSTALL CLI OPERATIONS

5.4.1. router

Installs a router:

$ ocadm router <router_name>

5.4.2. ipfailover

Installs an IP failover group for a set of nodes:

$ oc adm ipfailover <ipfailover_config>

5.4.3. registry

Installs an integrated container registry:

$ oc adm registry

5.5. MAINTENANCE CLI OPERATIONS

5.5.1. build-chain

Outputs the inputs and dependencies of any builds:

$ oc adm build-chain <image_stream>[:<tag>]

5.5.2. manage-node

Manages nodes. For example, list or evacuate pods, or mark them ready:

$ oc adm manage-node

5.5.3. prune

Removes older versions of resources from the server:

$ oc adm prune

5.6. SETTINGS CLI OPERATIONS

5.6.1. config

CHAPTER 5. ADMINISTRATOR CLI OPERATIONS

37

Changes kubelet configuration files:

$ oc adm config <subcommand>

5.6.2. create-kubeconfig

Creates a basic .kubeconfig file from client certificates:

$ oc adm create-kubeconfig

5.6.3. create-api-client-config

Creates a configuration file for connecting to the server as a user:

$ oc adm create-api-client-config

5.7. ADVANCED CLI OPERATIONS

5.7.1. create-bootstrap-project-template

Creates a bootstrap project template:

$ oc adm create-bootstrap-project-template

5.7.2. create-bootstrap-policy-file

Creates the default bootstrap policy:

$ oc adm create-bootstrap-policy-file

5.7.3. create-login-template

Creates a login template:

$ oc adm create-login-template

5.7.4. overwrite-policy

Resets the policy to the default values:

$ oc adm overwrite-policy

5.7.5. create-node-config

Creates a configuration bundle for a node:

$ oc adm create-node-config

OpenShift Container Platform 3.7 CLI Reference

38

5.7.6. ca

Manages certificates and keys:

$ oc adm ca

5.8. OTHER CLI OPERATIONS

5.8.1. version

Displays the version of the indicated object:

$ oc adm version

5.8.2. help

Displays help about any command:

$ oc adm help <command>

CHAPTER 5. ADMINISTRATOR CLI OPERATIONS

39

CHAPTER 6. EXTENDING THE CLI

6.1. OVERVIEW

This topic reviews how to install and write extensions for the CLI. Usually called plug-ins or binary
extensions, this feature allows you to extend the default set of oc commands available and, therefore,
allows you to perform new tasks.

A plug-in is a set of files: typically at least one plugin.yaml descriptor and one or more binary, script, or
assets files.

CLI plug-ins are currently only available under the oc plugin subcommand.

IMPORTANT

CLI plug-ins are currently a Technology Preview feature. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers to
test functionality and provide feedback during the development process.

See the Red Hat Technology Preview features support scope for more information.

6.2. PREREQUISITES

You must have:

A working oc binary installed.

An oc version of 3.7 or later (recommended).

6.3. INSTALLING PLUG-INS

Copy the plug-in’s plugin.yaml descriptor, binaries, scripts, and assets files to one of the locations in the
file system where oc searches for plug-ins.

Currently, OpenShift Container Platform does not provide a package manager for plug-ins. Therefore, it
is your responsibility to place the plug-in files in the correct location. It is recommended that each plug-in
is located on its own directory.

To install a plug-in that is distributed as a compressed file, extract it to one of the locations specified in
The Plug-in Loader section.

6.3.1. The Plug-in Loader

The plug-in loader is responsible for searching plug-in files, and checking if the plug-in provides the
minimum amount of information required for it to run. Files placed in the correct location that do not
provide the minimum amount of information (for example, an incomplete plugin.yaml descriptor) are
ignored.

6.3.1.1. Search Order

The plug-in loader uses the following search order:

OpenShift Container Platform 3.7 CLI Reference

40

https://access.redhat.com/support/offerings/techpreview/

1. ${KUBECTL_PLUGINS_PATH}
If specified, the search stops here.

If the KUBECTL_PLUGINS_PATH environment variable is present, the loader uses it as the only
location to look for plug-ins. The KUBECTL_PLUGINS_PATH environment variable is a list of
directories. In Linux and Mac, the list is colon-delimited. In Windows, the list is semicolon-
delimited.

If KUBECTL_PLUGINS_PATH is not present, the loader begins to search the additional locations.

2. ${XDG_DATA_DIRS}/kubectl/plugins
The plug-in loader searches one or more directories specified according to the XDG System
Directory Structure specification.

Specifically, the loader locates the directories specified by the XDG_DATA_DIRS environment
variable. The plug-in loader searches the kubectl/plugins directory inside of directories
specified by the XDG_DATA_DIRS environment variable. If XDG_DATA_DIRS is not specified, it
defaults to /usr/local/share:/usr/share.

3. ~/.kube/plugins
The plugins directory under the user’s kubeconfig directory. In most cases, this is
~/.kube/plugins:

Loads plugins from both /path/to/dir1 and /path/to/dir2
$ KUBECTL_PLUGINS_PATH=/path/to/dir1:/path/to/dir2 kubectl plugin -h

6.4. WRITING PLUG-INS

You can write a plug-in in any programming language or script that allows you to write CLI commands. A
plug-in does not necessarily need to have a binary component. It could rely entirely on operating system
utilities like echo, sed, or grep. Alternatively, it could rely on the oc binary.

The only strong requirement for an oc plug-in is the plugin.yaml descriptor file. This file is responsible
for declaring at least the minimum attributes required to register a plug-in and must be located under one
of the locations specified in the Search Order section.

6.4.1. The plugin.yaml Descriptor

The descriptor file supports the following attributes:

name: "great-plugin" # REQUIRED: the plug-in command name,
to be invoked under 'kubectl'
shortDesc: "great-plugin plug-in" # REQUIRED: the command short
description, for help
longDesc: "" # the command long description, for
help
example: "" # command example(s), for help
command: "./example" # REQUIRED: the command, binary, or
script to invoke when running the plug-in
flags: # flags supported by the plug-in
 - name: "flag-name" # REQUIRED for each flag: flag name
 shorthand: "f" # short version of the flag name
 desc: "example flag" # REQUIRED for each flag: flag
description

CHAPTER 6. EXTENDING THE CLI

41

https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

 defValue: "extreme" # default value of the flag
tree: # allows the declaration of subcommands
 - ... # subcommands support the same set of
attributes

The preceding descriptor declares the great-plugin plug-in, which has one flag named -f | --
flag-name. It could be invoked as:

$ oc plugin great-plugin -f value

When the plug-in is invoked, it calls the example binary or script, which is located in the same directory
as the descriptor file, passing a number of arguments and environment variables. The Accessing
Runtime Attributes section describes how the example command accesses the flag value and other
runtime context.

6.4.2. Recommended Directory Structure

It is recommended that each plug-in has its own subdirectory in the file system, preferably with the same
name as the plug-in command. The directory must contain the plugin.yaml descriptor and any binary,
script, asset, or other dependency it might require.

For example, the directory structure for the great-plugin plug-in could look like this:

~/.kube/plugins/
└── great-plugin
 ├── plugin.yaml
 └── example

6.4.3. Accessing Runtime Attributes

In most use cases, the binary or script file you write to support the plug-in must have access to some
contextual information provided by the plug-in framework. For example, if you declared flags in the
descriptor file, your plug-in must have access to the user-provided flag values at runtime.

The same is true for global flags. The plug-in framework is responsible for doing that, so plug-in writers
do not need to worry about parsing arguments. This also ensures the best level of consistency between
plug-ins and regular oc commands.

Plug-ins have access to runtime context attributes through environment variables. To access the value
provided through a flag, for example, look for the value of the proper environment variable using the
appropriate function call for your binary or script.

The supported environment variables are:

KUBECTL_PLUGINS_CALLER: The full path to the oc binary that was used in the current
command invocation. As a plug-in writer, you do not have to implement logic to authenticate and
access the Kubernetes API. Instead, you can use the value provided by this environment
variable to invoke oc and obtain the information you need, using for example oc get --
raw=/apis.

KUBECTL_PLUGINS_CURRENT_NAMESPACE: The current namespace that is the context for this
call. This is the actual namespace to be considered in namespaced operations, meaning it was
already processed in terms of the precedence between what was provided through the
kubeconfig, the --namespace global flag, environment variables, and so on.

OpenShift Container Platform 3.7 CLI Reference

42

KUBECTL_PLUGINS_DESCRIPTOR_*: One environment variable for every attribute declared in
the plugin.yaml descriptor. For example, KUBECTL_PLUGINS_DESCRIPTOR_NAME,
KUBECTL_PLUGINS_DESCRIPTOR_COMMAND.

KUBECTL_PLUGINS_GLOBAL_FLAG_*: One environment variable for every global flag
supported by oc. For example, KUBECTL_PLUGINS_GLOBAL_FLAG_NAMESPACE,
KUBECTL_PLUGINS_GLOBAL_FLAG_LOGLEVEL.

KUBECTL_PLUGINS_LOCAL_FLAG_*: One environment variable for every local flag declared in
the plugin.yaml descriptor. For example, KUBECTL_PLUGINS_LOCAL_FLAG_HEAT in the
preceding great-plugin example.

CHAPTER 6. EXTENDING THE CLI

43

CHAPTER 7. REVISION HISTORY: CLI REFERENCE

7.1. WED NOV 29 2017

OpenShift Container Platform 3.7 Initial Release

OpenShift Container Platform 3.7 CLI Reference

44

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. GET STARTED WITH THE CLI
	2.1. OVERVIEW
	2.2. PREREQUISITES
	2.3. INSTALLING THE CLI
	2.3.1. For Windows
	2.3.2. For Mac OS X
	2.3.3. For Linux

	2.4. BASIC SETUP AND LOGIN
	2.5. CLI CONFIGURATION FILES
	2.6. PROJECTS
	2.7. WHAT’S NEXT?

	CHAPTER 3. MANAGING CLI PROFILES
	3.1. OVERVIEW
	3.2. SWITCHING BETWEEN CLI PROFILES
	3.3. MANUALLY CONFIGURING CLI PROFILES
	3.4. LOADING AND MERGING RULES

	CHAPTER 4. DEVELOPER CLI OPERATIONS
	4.1. OVERVIEW
	4.2. COMMON OPERATIONS
	4.3. OBJECT TYPES
	4.4. BASIC CLI OPERATIONS
	4.4.1. whoami
	4.4.2. types
	4.4.3. login
	4.4.4. logout
	4.4.5. new-project
	4.4.6. new-app
	4.4.7. status
	4.4.8. project
	4.4.9. explain
	4.4.10. cluster
	4.4.11. completion
	4.4.12. help
	4.4.13. plugin
	4.4.14. version

	4.5. APPLICATION MODIFICATION CLI OPERATIONS
	4.5.1. get
	4.5.2. describe
	4.5.3. edit
	4.5.4. config
	4.5.5. volume
	4.5.6. label
	4.5.7. annotate
	4.5.8. expose
	4.5.9. delete
	4.5.10. set
	4.5.10.1. set env
	4.5.10.2. set build-secret

	4.6. BUILD AND DEPLOYMENT CLI OPERATIONS
	4.6.1. start-build
	4.6.2. rollback
	4.6.3. rollout
	4.6.4. new-build
	4.6.5. cancel-build
	4.6.6. image
	4.6.7. import
	4.6.8. import-image
	4.6.9. scale
	4.6.10. tag

	4.7. ADVANCED COMMANDS
	4.7.1. adm
	4.7.2. apply
	4.7.3. create
	4.7.4. replace
	4.7.5. process
	4.7.6. run
	4.7.7. patch
	4.7.8. export
	4.7.9. extract
	4.7.10. idle
	4.7.11. observe
	4.7.12. auth
	4.7.13. policy
	4.7.14. convert
	4.7.15. secrets
	4.7.16. autoscale

	4.8. TROUBLESHOOTING AND DEBUGGING CLI OPERATIONS
	4.8.1. debug
	4.8.1.1. Usage
	4.8.1.2. Examples

	4.8.2. logs
	4.8.3. exec
	4.8.4. rsh
	4.8.5. rsync
	4.8.6. port-forward
	4.8.7. proxy
	4.8.8. attach
	4.8.9. cp

	CHAPTER 5. ADMINISTRATOR CLI OPERATIONS
	5.1. OVERVIEW
	5.2. COMMON OPERATIONS
	5.3. BASIC CLI OPERATIONS
	5.3.1. new-project
	5.3.2. policy
	5.3.3. groups

	5.4. INSTALL CLI OPERATIONS
	5.4.1. router
	5.4.2. ipfailover
	5.4.3. registry

	5.5. MAINTENANCE CLI OPERATIONS
	5.5.1. build-chain
	5.5.2. manage-node
	5.5.3. prune

	5.6. SETTINGS CLI OPERATIONS
	5.6.1. config
	5.6.2. create-kubeconfig
	5.6.3. create-api-client-config

	5.7. ADVANCED CLI OPERATIONS
	5.7.1. create-bootstrap-project-template
	5.7.2. create-bootstrap-policy-file
	5.7.3. create-login-template
	5.7.4. overwrite-policy
	5.7.5. create-node-config
	5.7.6. ca

	5.8. OTHER CLI OPERATIONS
	5.8.1. version
	5.8.2. help

	CHAPTER 6. EXTENDING THE CLI
	6.1. OVERVIEW
	6.2. PREREQUISITES
	6.3. INSTALLING PLUG-INS
	6.3.1. The Plug-in Loader
	6.3.1.1. Search Order

	6.4. WRITING PLUG-INS
	6.4.1. The plugin.yaml Descriptor
	6.4.2. Recommended Directory Structure
	6.4.3. Accessing Runtime Attributes

	CHAPTER 7. REVISION HISTORY: CLI REFERENCE
	7.1. WED NOV 29 2017

