‘® redhat.

JBoss Enterprise Application Platform
6.2

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6
Edition 1

Last Updated: 2017-10-16

JBoss Enterprise Application Platform 6.2 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6
Edition 1

Nidhi Chaudhary
Lucas Costi

Russell Dickenson
Sande Gilda

Vikram Goyal
Eamon Logue

Darrin Mison

Scott Mumford
David Ryan

Misty Stanley-Jones
Keerat Verma

Tom Wells

Legal Notice

Copyright © 2014 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0

Unported License. If you distribute this document, or a modified version of it, you must provide

attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is aregistered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides references and examples for Java EE 6 developers using Red Hat JBoss
Enterprise Application Platform 6 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONSottt

1.1.INTRODUCTION
1.1.1. About Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6)
1.2. PREREQUISITES
1.2.1. Become Familiar with Java Enterprise Edition 6
1.2.1.1. Overview of EE 6 Profiles
1.2.1.2. Java Enterprise Edition 6 Web Profile
1.2.1.3. Java Enterprise Edition 6 Full Profile
1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6
1.2.2.1. Modules
1.2.2.2. Overview of Class Loading and Modules
1.3. SET UP THE DEVELOPMENT ENVIRONMENT
1.3.1. Download and Install JBoss Developer Studio
1.3.1.1. Setup the JBoss Developer Studio
1.3.1.2. Download JBoss Developer Studio 5
1.3.1.3. Install JBoss Developer Studio 5
1.3.1.4. Start JBoss Developer Studio
1.3.1.5. Add the JBoss EAP 6 Server to JBoss Developer Studio
1.4.RUN YOUR FIRST APPLICATION
1.4.1. Replace the Default Welcome Web Application
1.4.2. Download the Quickstart Code Examples
1.4.2.1. Access the Quickstarts
1.4.3. Run the Quickstarts
1.4.3.1. Run the Quickstarts in JBoss Developer Studio
1.4.3.2. Run the Quickstarts Using a Command Line
1.4.4. Review the Quickstart Tutorials
1.4.4.1. Explore the helloworld Quickstart
1.4.4.2. Explore the numberguess Quickstart

CHAPTER 2. MAVEN GUIDE ... ittt ittt iiiiieeieeeinneennneennnenns

2.1.LEARN ABOUT MAVEN
2.1.1. About the Maven Repository
2.1.2. About the Maven POM File
2.1.3. Minimum Requirements of a Maven POM File
2.1.4. About the Maven Settings File
2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY
2.2.1. Download and Install Maven
2.2.2. Install the JBoss EAP 6 Maven Repository
2.2.3. Install the JBoss EAP 6 Maven Repository Locally
2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd
2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager
2.2.6. About Maven Repository Managers
2.3. USE THE MAVEN REPOSITORY
2.3.1. Configure the JBoss EAP Maven Repository
2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
2.3.3. Configure the JBoss EAP 6 Maven Repository Using the Project POM
2.3.4. Manage Project Dependencies
Supported Maven Artifacts
Dependency Management
JBoss JavaEE Specs Bom
JBoss EAP BOMs and Quickstarts

Table of Contents

............. 42

42
42
42
42
43
44
44
44
45
45
46
47
48
48
49
55
56
57
57
58
58

Development Guide

JBoss Client BOMs

2.4. UPGRADE THE MAVEN REPOSITORY
2.4.1. Apply a Patch to the Local Maven Repository

CHAPTER 3. CLASS LOADING AND MODULES ...\ttt ittt iiiiietieeeineeennneannns

3.1.INTRODUCTION

3.1.1. Overview of Class Loading and Modules

3.1.2. Class Loading
3.1.3. Modules
3.1.4. Module Dependencies

3.1.5. Class Loading in Deployments
3.1.6. Class Loading Precedence

3.1.7. Dynamic Module Naming

3.1.8. jboss-deployment-structure.xml

3.2. ADD AN EXPLICIT MODULE

DEPENDENCY TO A DEPLOYMENT

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED

3.5.EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT
3.6.1. Programmatically Load Classes and Resources in a Deployment
3.6.2. Programmatically Iterate Resources in a Deployment

3.7. CLASS LOADING AND SUBDEPLOYMENTS
3.7.1. Modules and Class Loading in Enterprise Archives
3.7.2. Subdeployment Class Loader Isolation

3.7.3. Disable Subdeployment
3.8. REFERENCE

Class Loader Isolation Within a EAR

3.8.1. Implicit Module Dependencies

3.8.2. Included Modules

3.8.3. JBoss Deployment Structure Deployment Descriptor Reference

CHAPTER 4. GLOBAL VALVES
4.1. ABOUT VALVES
4.2. ABOUT GLOBAL VALVES

4.3. ABOUT AUTHENTICATOR VALVES
4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE
4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE

4.6. CREATE A CUSTOM VALVE

CHAPTER 5. LOGGING FORDEVELOPERS .. .iiiiiiiiiiiiiiiiiiiiiiitiiietiineeanneeennncannncannns

5.1.INTRODUCTION
5.1.1. About Logging

5.1.2. Application Logging Frameworks Supported By JBoss LogManager

5.1.3. About Log Levels
5.1.4. Supported Log Levels

5.1.5. Default Log File Locations
5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

5.2.1. About JBoss Logging

5.2.2. Features of JBoss Logging
5.2.3. Add Logging to an Application with JBoss Logging

5.3. LOGGING PROFILES
5.3.1. About Logging Profiles

5.3.2. Specify a Logging Profile in an Application

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION .. .ot iiiiiiiiiiieiieenan

60
60
60

63
63
63
63
63
64
65
65
66
67
67
69
70

71
73
73
75
77
77
78
78
79
79
83
91

93
93
93
93
93
94
95

98
98
98
98
98
99
100
100
100
100
102
102
103

Table of Contents

6.1.INTRODUCTION 105
6.1.1. About Internationalization 105
6.1.2. About Localization 105

6.2. JBOSS LOGGING TOOLS 105
6.2.1. Overview 105

6.2.1.1. JBoss Logging Tools Internationalization and Localization 105
6.2.1.2. JBoss Logging Tools Quickstart 105
6.2.1.3. Message Logger 106
6.2.1.4. Message Bundle 106
6.2.1.5. Internationalized Log Messages 106
6.2.1.6. Internationalized Exceptions 106
6.2.1.7. Internationalized Messages 106
6.2.1.8. Translation Properties Files 107
6.2.1.9. JBoss Logging Tools Project Codes 107
6.2.1.10. JBoss Logging Tools Message Ids 107
6.2.2. Creating Internationalized Loggers, Messages and Exceptions 107
6.2.2.1. Create Internationalized Log Messages 107
6.2.2.2. Create and Use Internationalized Messages 109
6.2.2.3. Create Internationalized Exceptions 110
6.2.3. Localizing Internationalized Loggers, Messages and Exceptions m
6.2.3.1. Generate New Translation Properties Files with Maven m
6.2.3.2. Translate an Internationalized Logger, Exception or Message 12
6.2.4. Customizing Internationalized Log Messages 13
6.2.4.1. Add Message Ids and Project Codes to Log Messages 13
6.2.4.2. Specify the Log Level for a Message 14
6.2.4.3. Customize Log Messages with Parameters 15
6.2.4.4. Specify an Exception as the Cause of a Log Message 116
6.2.5. Customizing Internationalized Exceptions 17
6.2.5.1. Add Message Ids and Project Codes to Exception Messages 17
6.2.5.2. Customize Exception Messages with Parameters 18
6.2.5.3. Specify One Exception as the Cause of Another Exception 19
6.2.6. Reference 121
6.2.6.1. JBoss Logging Tools Maven Configuration 121
6.2.6.2. Translation Property File Format 122
6.2.6.3. JBoss Logging Tools Annotations Reference 122
CHAPTER 7. ENTERPRISE JAVABEANS ... iiiiiiiiiiittiiiiiiineettooesssnsssssossssnsssssssssnnnnns 124

7.1.INTRODUCTION 124
7.1.1. Overview of Enterprise JavaBeans 124
7.1.2. EJB 3.1 Feature Set 124
7.1.3.EJB 3.1 Lite 125
7.1.4.EJB 3.1 Lite Features 125
7.1.5. Enterprise Beans 125
7.1.6. Overview of Writing Enterprise Beans 126
7.1.7. Session Bean Business Interfaces 126

7.1.7.1. Enterprise Bean Business Interfaces 126
7.1.7.2. EJB Local Business Interfaces 126
7.1.7.3. EJB Remote Business Interfaces 127
7.1.7.4. EJB No-interface Beans 127

7.2. CREATING ENTERPRISE BEAN PROJECTS 127
7.2.1. Create an EJB Archive Project Using JBoss Developer Studio 127
7.2.2. Create an EJB Archive Project in Maven 131
7.2.3. Create an EAR Project containing an EJB Project 133

Development Guide

7.2.4. Add a Deployment Descriptor to an EJB Project 136
7.3. SESSION BEANS 137
7.3.1. Session Beans 137
7.3.2. Stateless Session Beans 137
7.3.3. Stateful Session Beans 137
7.3.4. Singleton Session Beans 138
7.3.5. Add Session Beans to a Project in JBoss Developer Studio 138
7.4. MESSAGE-DRIVEN BEANS 141
7.4.1. Message-Driven Beans 141
7.4.2. Resource Adapters 141
7.4.3. Create a JMS-based Message-Driven Bean in JBoss Developer Studio 141
7.5.INVOKING SESSION BEANS 143
7.5.1. Invoke a Session Bean Remotely using JNDI 143
7.5.2. About EJB Client Contexts 146
7.5.3. Considerations When Using a Single EJB Context 146
7.5.4. Using Scoped EJB Client Contexts 148
7.5.5. Configure EJBs Using a Scoped EJB Client Context 149
7.5.6. EJB Client Properties 150
7.6. CONTAINER INTERCEPTORS 154
7.6.1. About Container Interceptors 154
7.6.2. Create a Container Interceptor Class 154
7.6.3. Configure a Container Interceptor 155
7.6.4. Change the Security Context Identity 157
7.6.5. Pass Additional Security For EJB Authentication 161
7.6.6. Use a Client Side Interceptor in an Application 168
7.7. CLUSTERED ENTERPRISE JAVABEANS 169
7.7.1. About Clustered Enterprise JavaBeans (EJBs) 169
7.8. REFERENCE 169
7.8.1. EJB JNDI Naming Reference 169
7.8.2. EJB Reference Resolution 170
7.8.3. Project dependencies for Remote EJB Clients 170
7.8.4. jboss-ejb3.xml Deployment Descriptor Reference 172
CHAPTER 8. CLUSTERING IN WEB APPLICATIONS ...t iiiiiiiiittiieennnneessoosssnnsssssosssnnnnss 175
8.1. SESSION REPLICATION 175
8.1.1. About HTTP Session Replication 175
8.1.2. About the Web Session Cache 175
8.1.3. Configure the Web Session Cache 175
8.1.4. Enable Session Replication in Your Application 176
8.2. HTTPSESSION PASSIVATION AND ACTIVATION 179
8.2.1. About HTTP Session Passivation and Activation 179
8.2.2. Configure HttpSession Passivation in Your Application 180
8.3. COOKIE DOMAIN 181
8.3.1. About the Cookie Domain 182
8.3.2. Configure the Cookie Domain 182
8.4. IMPLEMENT AN HA SINGLETON 182
CHAPTER 9. Ol iitiiiiiiiiiiitiieetinnaeeeaoesssnassssossssnsssssossssnssssssssssnnssssssssnnnass. 191
9.1. OVERVIEW OF CDI 191
9.1.1. Overview of CDI 191
9.1.2. About Contexts and Dependency Injection (CDI) 191
9.1.3. Benefits of CDI 191
9.1.4. About Type-safe Dependency Injection 191

Table of Contents

9.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces
9.2. USE CDI
9.2.1. First Steps
9.2.1.1. Enable CDI
9.2.2. Use CDI to Develop an Application
9.2.2.1. Use CDI to Develop an Application
9.2.2.2. Use CDI with Existing Code
9.2.2.3. Exclude Beans From the Scanning Process
9.2.2.4. Use an Injection to Extend an Implementation
9.2.3. Ambiguous or Unsatisfied Dependencies
9.2.3.1. About Ambiguous or Unsatisfied Dependencies
9.2.3.2. About Qualifiers
9.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection
9.2.4. Managed Beans
9.2.4.1. About Managed Beans
9.2.4.2. Types of Classes That are Beans
9.2.4.3. Use CDI to Inject an Object Into a Bean
9.2.5. Contexts, Scopes, and Dependencies
9.2.5.1. Contexts and Scopes
9.2.5.2. Available Contexts
9.2.6. Bean Lifecycle
9.2.6.1. Manage the Lifecycle of a Bean
9.2.6.2. Use a Producer Method
9.2.7. Named Beans and Alternative Beans
9.2.7.1. About Named Beans
9.2.7.2. Use Named Beans
9.2.7.3. About Alternative Beans
9.2.7.4. Override an Injection with an Alternative
9.2.8. Stereotypes
9.2.8.1. About Stereotypes
9.2.8.2. Use Stereotypes
9.2.9. Observer Methods
9.2.9.1. About Observer Methods
9.2.9.2. Fire and Observe Events
9.2.10. Interceptors
9.2.10.1. About Interceptors
9.2.10.2. Use Interceptors with CDI
9.2.11. About Decorators
9.2.12. About Portable Extensions
9.2.13. Bean Proxies
9.2.13.1. About Bean Proxies
9.2.13.2. Use a Proxy in an Injection

CHAPTER 10. JAVA TRANSACTION API (JTA) 1 iiitiiitttttieeninnaeessossssnsssssossssnsssssssssnnnnss
10.1. OVERVIEW
10.1.1. Overview of Java Transactions API (JTA)
10.2. TRANSACTION CONCEPTS
10.2.1. About Transactions
10.2.2. About ACID Properties for Transactions
10.2.3. About the Transaction Coordinator or Transaction Manager
10.2.4. About Transaction Participants
10.2.5. About Java Transactions APl (JTA)
10.2.6. About Java Transaction Service (JTS)

192
192
192
192
193
193
194
194
195
196
196
196
197
198
198
199
199
201
201
201
201
201
202
204
204
204
205
205
206
206
206
207
207
208
209
209
209
21
21
212
212
212

214
214
214
214
214
214
215
215
215
216

Development Guide

10.2.7. About XA Datasources and XA Transactions
10.2.8. About XA Recovery
10.2.9. About the 2-Phase Commit Protocol
10.2.10. About Transaction Timeouts
10.2.11. About Distributed Transactions
10.2.12. About the ORB Portability API
10.2.13. About Nested Transactions
10.3. TRANSACTION OPTIMIZATIONS
10.3.1. Overview of Transaction Optimizations
10.3.2. About the LRCO Optimization for Single-phase Commit (1PC)
10.3.3. About the Presumed-Abort Optimization
10.3.4. About the Read-Only Optimization
10.4. TRANSACTION OUTCOMES
10.4.1. About Transaction Outcomes
10.4.2. About Transaction Commit
10.4.3. About Transaction Roll-Back
10.4.4. About Heuristic Outcomes
10.4.5. JBoss Transactions Errors and Exceptions
10.5. OVERVIEW OF JTA TRANSACTIONS
10.5.1. About Java Transactions API (JTA)
10.5.2. Lifecycle of a JTA Transaction
10.6. TRANSACTION SUBSYSTEM CONFIGURATION
10.6.1. Transactions Configuration Overview
10.6.2. Transactional Datasource Configuration
10.6.2.1. Configure Your Datasource to Use JTA Transactions
10.6.2.2. Configure an XA Datasource
10.6.2.3. Log in to the Management Console
10.6.2.4. Create a Non-XA Datasource with the Management Interfaces
10.6.2.5. Datasource Parameters
10.6.3. Transaction Logging
10.6.3.1. About Transaction Log Messages
10.6.3.2. Configure Logging for the Transaction Subsystem
10.6.3.3. Browse and Manage Transactions
10.7. USE JTA TRANSACTIONS
10.7.1. Transactions JTA Task Overview
10.7.2. Control Transactions
10.7.3. Begin a Transaction
10.7.4. Nest Transactions
10.7.5. Commit a Transaction
10.7.6. Roll Back a Transaction
10.7.7. Handle a Heuristic Outcome in a Transaction
10.7.8. Transaction Timeouts
10.7.8.1. About Transaction Timeouts
10.7.8.2. Configure the Transaction Manager
10.7.9. JTA Transaction Error Handling
10.7.9.1. Handle Transaction Errors
10.8. ORB CONFIGURATION
10.8.1. About Common Object Request Broker Architecture (CORBA)
10.8.2. Configure the ORB for JTS Transactions
10.9. TRANSACTION REFERENCES
10.9.1. JBoss Transactions Errors and Exceptions
10.9.2. JTA Clustering Limitations
10.9.3. JTA Transaction Example

216
216
217
217
217
217
218
219
219
219
219
219
220
220
220
220
220
221
221
221
222
222
222
223
223
224
224
225
227
234
234
235
236
240
240
241
241
242
243
244
245
246
246
246
250
250
251
251
251
253
253
253
253

Table of Contents

10.9.4. API Documentation for JBoss Transactions JTA 256
CHAPTER 1. HIBERN ATE .. itttiiiiiiiitettteesnnnaeessossssnsssssossssnssssssssssnsssssosssnnnsss 257
11.1. ABOUT HIBERNATE CORE 257
11.2. JAVA PERSISTENCE API (JPA) 257
11.2.1. About JPA 257
11.2.2. Hibernate EntityManager 257
11.2.3. Getting Started 257
11.2.3.1. Create a JPA project in JBoss Developer Studio 257
11.2.3.2. Create the Persistence Settings File in JBoss Developer Studio 260
11.2.3.3. Example Persistence Settings File 261
11.2.3.4. Create the Hibernate Configuration File in JBoss Developer Studio 262
11.2.3.5. Example Hibernate Configuration File 262
11.2.4. Configuration 263
11.2.4.1. Hibernate Configuration Properties 263
11.2.4.2. Hibernate JDBC and Connection Properties 265
11.2.4.3. Hibernate Cache Properties 267
11.2.4.4. Hibernate Transaction Properties 267
11.2.4.5. Miscellaneous Hibernate Properties 268
11.2.4.6. Hibernate SQL Dialects 269
11.2.5. Second-Level Caches 272
11.2.5.1. About Second-Level Caches 272
11.2.5.2. Configure a Second Level Cache for Hibernate 272
11.3. HIBERNATE ANNOTATIONS 273
11.3.1. Hibernate Annotations 273
11.4. HIBERNATE QUERY LANGUAGE 277
11.4.1. About Hibernate Query Language 277
11.4.2. HQL Statements 278
11.4.3. About the INSERT Statement 278
11.4.4. About the FROM Clause 279
11.4.5. About the WITH Clause 279
11.4.6. About Bulk Update, Insert and Delete 280
11.4.7. About Collection Member References 282
11.4.8. About Qualified Path Expressions 282
11.4.9. About Scalar Functions 284
11.4.10. HQL Standardized Functions 284
11.4.11. About the Concatenation Operation 285
11.4.12. About Dynamic Instantiation 285
11.4.13. About HQL Predicates 286
11.4.14. About Relational Comparisons 288
11.4.15. About the IN Predicate 289
11.4.16. About HQL Ordering 290
11.5. HIBERNATE SERVICES 291
11.5.1. About Hibernate Services 291
11.5.2. About Service Contracts 291
11.5.3. Types of Service Dependencies 291
11.5.4. The ServiceRegqistry 292
11.5.4.1. About the ServiceRegistry 292
11.5.5. Custom Services 292
11.5.5.1. About Custom Services 292
11.5.6. The Bootstrap Registry 294
11.5.6.1. About the Boot-strap Registry 294
11.5.6.2. Using BootstrapServiceRegistryBuilder 294

Development Guide

11.5.6.3. BootstrapRegistry Services
11.5.7. The SessionFactory Registry
11.5.7.1. SessionFactory Registry
11.5.7.2. SessionFactory Services
11.5.8. Integrators
11.5.8.1. Integrators
11.5.8.2. Integrator use-cases
11.6. BEAN VALIDATION
11.6.1. About Bean Validation
11.6.2. Hibernate Validator
11.6.3. Validation Constraints
11.6.3.1. About Validation Constraints
11.6.3.2. Create a Constraint Annotation in the JBoss Developer Studio
11.6.3.3. Create a New Java Class in the JBoss Developer Studio
11.6.3.4. Hibernate Validator Constraints
11.6.4. Configuration
11.6.4.1. Example Validation Configuration File
11.7. ENVERS
11.7.1. About Hibernate Envers
11.7.2. About Auditing Persistent Classes
11.7.3. Auditing Strategies
11.7.3.1. About Auditing Strategies
11.7.3.2. Set the Auditing Strategy
11.7.4. Getting Started with Entity Auditing
11.7.4.1. Add Auditing Support to a JPA Entity
11.7.5. Configuration
11.7.5.1. Configure Envers Parameters
11.7.5.2. Enable or Disable Auditing at Runtime
11.7.5.3. Configure Conditional Auditing
11.7.5.4. Envers Configuration Properties
11.7.6. Queries
11.7.6.1. Retrieve Auditing Information
11.8. PERFORMANCE TUNING
11.8.1. Alternative Batch Loading Algorithms
11.8.2. Second Level Caching of Object References for Non-mutable Data

CHAPTER12. JAX-RSWEB SERVICES .. ittt ittt iiiiieiieeannns

12.1. ABOUT JAX-RS
12.2. ABOUT RESTEASY
12.3. ABOUT RESTFUL WEB SERVICES
12.4. RESTEASY DEFINED ANNOTATIONS
12.5. RESTEASY CONFIGURATION
12.5.1. RESTEasy Configuration Parameters
12.6. JAX-RS WEB SERVICE SECURITY
12.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
12.6.2. Secure a JAX-RS Web Service using Annotations
12.7. RESTEASY LOGGING
12.7.1. About JAX-RS Web Service Logging
12.7.2. Logging Categories Defined in RESTEasy
12.8. EXCEPTION HANDLING
12.8.1. Create an Exception Mapper
12.8.2. RESTEasy Internally Thrown Exceptions
12.9. RESTEASY INTERCEPTORS

295
295
296
296
296
296
297
297
297
298
298
298
298
300
301
303
303
303
303
304
304
304
305
305
305
307
307
308
308
309

3N

3N
314
314
316

318
318
318
318
318
320
321
322
322
324
324
324
324
325
325
325
327

12.9.1. Intercept JAX-RS Invocations

12.9.2. Bind an Interceptor to a JAX-RS Method

12.9.3. Register an Interceptor

12.9.4. Interceptor Precedence Families

12.9.4.1. About Interceptor Precedence Families
12.9.4.2. Define a Custom Interceptor Precedence Family

12.10. STRING BASED ANNOTATIONS

12.10.1. Convert String Based @*Param Annotations to Objects
12.11. CONFIGURE FILE EXTENSIONS

12.11.1. Map File Extensions to Media Types in the web.xml File

12.11.2. Map File Extensions to Languages in the web.xml File

12.11.3. RESTEasy Supported Media Types
12.12. RESTEASY JAVASCRIPT API

12.12.1. About the RESTEasy JavaScript API

12.12.2. Enable the RESTEasy JavaScript API Servlet

12.12.3. RESTEasy Javascript APl Parameters

12.12.4. Build AJAX Queries with the JavaScript API

12.12.5. REST.Request Class Members
12.13. RESTEASY ASYNCHRONOUS JOB SERVICE

12.13.1. About the RESTEasy Asynchronous Job Service

12.13.2. Enable the Asynchronous Job Service

12.13.3. Configure Asynchronous Jobs for RESTEasy

12.13.4. Asynchronous Job Service Configuration Parameters
12.14. RESTEASY JAXB

12.14.1. Create a JAXB Decorator
12.15. RESTEASY ATOM SUPPORT

12.15.1. About the Atom API and Provider

CHAPTER13. JAX-WSWEB SERVICESiiiiiiiiiiiiiiiiiiiiiiiiieennn,

13.1. ABOUT JAX-WS WEB SERVICES
13.2. CONFIGURE THE WEBSERVICES SUBSYSTEM
13.3. JAX-WS WEB SERVICE ENDPOINTS
13.3.1. About JAX-WS Web Service Endpoints
13.3.2. Write and Deploy a JAX-WS Web Service Endpoint
13.4. JAX-WS WEB SERVICE CLIENTS
13.4.1. Consume and Access a JAX-WS Web Service
13.4.2. Develop a JAX-WS Client Application
13.5. JAX-WS DEVELOPMENT REFERENCE
13.5.1. Enable Web Services Addressing (WS-Addressing)
13.5.2. JAX-WS Common API Reference

CHAPTER 14. IDENTITY WITHIN APPLICATIONScciiiiiiiiiiiiiiinnne,

14.1. FOUNDATIONAL CONCEPTS
14.1.1. About Encryption
14.1.2. About Security Domains
14.1.3. About SSL Encryption
14.1.4. About Declarative Security

14.2. ROLE-BASED SECURITY IN APPLICATIONS
14.2.1. About Application Security
14.2.2. About Authentication
14.2.3. About Authorization
14.2.4. About Security Auditing
14.2.5. About Security Mapping

Table of Contents

327
330
330
330
330
331
332
332
336
336
337
337
338
338
339
339
340
341
342
342
342
342
344
345
345
347
347

......................... 348

348
349
352
352
354
356
356
361
367
367
368

......................... 372

372
372
372
372
373
373
373
373
374
374
374

Development Guide

14.2.6. About the Security Extension Architecture
14.2.7. Java Authentication and Authorization Service (JAAS)
14.2.8. About Java Authentication and Authorization Service (JAAS)
14.2.9. Use a Security Domain in Your Application
14.2.10. Use Role-Based Security In Servlets
14.2.11. Use A Third-Party Authentication System In Your Application
14.3. SECURITY REALMS
14.3.1. About Security Realms
14.3.2. Add a New Security Realm
14.3.3. Add a User to a Security Realm
14.4. EJB APPLICATION SECURITY
14.4.1. Security Identity
14.4.1.1. About EJB Security Identity
14.4.1.2. Set the Security Identity of an EJB
14.4.2. EJB Method Permissions
14.4.2.1. About EJB Method Permissions
14.4.2.2. Use EJB Method Permissions
14.4.3. EJB Security Annotations
14.4.3.1. About EJB Security Annotations
14.4.3.2. Use EJB Security Annotations
14.4.4. Remote Access to EJBs
14.4.4.1. About Remote Method Access
14.4.4.2. About Remoting Callbacks
14.4.4.3. About Remoting Server Detection
14.4.4.4. Configure the Remoting Subsystem
14.4.4.5. Use Security Realms with Remote EJB Clients
14.4.4.6. Add a New Security Realm
14.4.4.7. Add a User to a Security Realm
14.4.4.8. About Remote EJB Access Using SSL Encryption
14.5. JAX-RS APPLICATION SECURITY
14.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
14.5.2. Secure a JAX-RS Web Service using Annotations
14.6. SECURE REMOTE PASSWORD PROTOCOL
14.6.1. About Secure Remote Password Protocol (SRP)
14.6.2. Configure Secure Remote Password (SRP) Protocol
14.7. PASSWORD VAULTS FOR SENSITIVE STRINGS
14.7.1. About Securing Sensitive Strings in Clear-Text Files
14.7.2. Create a Java Keystore to Store Sensitive Strings
14.7.3. Mask the Keystore Password and Initialize the Password Vault
14.7.4. Configure JBoss EAP 6 to Use the Password Vault
14.7.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore
14.7.6. Store and Resolve Sensitive Strings In Your Applications
14.8. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
14.8.1. About Java Authorization Contract for Containers (JACC)
14.8.2. Configure Java Authorization Contract for Containers (JACC) Security
14.9. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
14.9.1. About Java Authentication SPI for Containers (JASPI) Security
14.9.2. Configure Java Authentication SPI for Containers (JASPI) Security

CHAPTER 15. SINGLE SIGN ON (SS0) ...ttt ittt ittt iiiiitiiteteineeenneeennnecnnneenns
15.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
15.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
15.3. CHOOSE THE RIGHT SSO IMPLEMENTATION

10

375
376
376
380
382
384
391
391
392
392
393
393
393
393
394
394
395
398
398
398
399
399
400
401
401
409
410
41
41
41
41
413
414
414
414
416
416
417
419
420
422
425
427
427
427
429
429
429

430
430
431
431

Table of Contents

15.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION 432
15.5. ABOUT KERBEROS 434
15.6. ABOUT SPNEGO 435
15.7. ABOUT MICROSOFT ACTIVE DIRECTORY 435
15.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS
435
CHAPTER 16. DEVELOPMENT SECURITY REFERENCES ..ottt ieianeens 440
16.1. JBOSS-WEB.XML CONFIGURATION REFERENCE 440
16.2. EJB SECURITY PARAMETER REFERENCE 443
CHAPTER 17. SUPPLEMENTAL REFERENCES ... ittt ittt ittt ittt eenas 445
17.1. TYPES OF JAVA ARCHIVES 445
APPENDIX A. REVISION HISTORY ittt ittt ieiiteeiatetnenetennecannacannnnns 447

1

Development Guide

12

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1.INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6)

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a fast, secure, powerful middleware
platform built upon open standards, and compliant with the Java Enterprise Edition 6 specification. It
integrates JBoss Application Server 7 with high-availability clustering, powerful messaging, distributed
caching, and other technologies to create a stable and scalable platform.

The new modular structure allows for services to be enabled only when required, significantly
increasing start up speed. The Management Console and Management Command Line Interface
remove the need to edit XML configuration files by hand, adding the ability to script and automate
tasks. In addition, it includes APIs and development frameworks that can be used to develop secure,
powerful, and scalable Java EE applications quickly.

Report a bug

1.2. PREREQUISITES
1.2.1. Become Familiar with Java Enterprise Edition 6

1.2.1.1. Overview of EE 6 Profiles

Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two
profiles that the EE 6 specification defines are the Full Profileand the Web Profile.

EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile
includes a subset of APIs which are useful to web developers.

JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile
specifications.

e Section1.2.1.2, “Java Enterprise Edition 6 Web Profile”
e Section1.2.1.3, “Java Enterprise Edition 6 Full Profile”

Report a bug

1.2.1.2. Java Enterprise Edition 6 Web Profile

The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is
designed for web application development. The other profile defined by the Java Enterprise Edition 6
specification is the Full Profile. See Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile” for more
details.

Java EE 6 Web Profile Requirements

e Java Platform, Enterprise Edition 6

e Java Web Technologies

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+228-545448+%5BSpecified%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6+%28JBoss+EAP+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-545448+10+Oct+2013+14%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4488-459875+%5BSpecified%5D&comment=Title%3A+Overview+of+EE+6+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4488-459875+14+Jun+2013+09%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

o Servlet 3.0 (JSR 315)

o JSP 2.2 and Expression Language (EL) 1.2

o JavaServer Faces (JSF) 2.0 (JSR 314)

o Java Standard Tag Library (JSTL) for JSP 1.2

o Debugging Support for Other Languages 1.0 (JSR 45)

e Enterprise Application Technologies

o Contexts and Dependency Injection (CDI) (JSR 299)

o Dependency Injection for Java (JSR 330)

o Enterprise JavaBeans 3.1 Lite (JSR 318)

o Java Persistence API 2.0 (JSR 317)

o Common Annotations for the Java Platform 1.1 (JSR 250)
o Java Transaction API (JTA) 1.1 (JSR 907)

o Bean Validation (JSR 303)

Report a bug

1.2.1.3. Java Enterprise Edition 6 Full Profile

The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of
them as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web
Profile (Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following
APIs. JBoss Enterprise Edition 6 supports the Full Profile.

Items Included in the EE 6 Full Profile

e EJB 3.1 (not Lite) (JSR 318)
e Java EE Connector Architecture 1.6 (JSR 322)
e Java Message Service (JMS) API 1.1 (JSR 914)

e JavaMail 1.4 (JSR 919)

e Web Service Technologies

o Jax-RS RESTful Web Services 1.1 (JSR 311)

o

Implementing Enterprise Web Services 1.3 (JSR 109)

JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)

o

o Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)

o Web Services Metadata for the Java Platform (JSR 181)

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4489-336224+%5BSpecified%5D&comment=Title%3A+Java+Enterprise+Edition+6+Web+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4489-336224+28+Nov+2012+05%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

o Java APIs for XML-based RPC 1.1 (JSR 101)
o Java APIs for XML Messaging 1.3 (JSR 67)

o Java API for XML Registries (JAXR) 1.0 (JSR 93)

e Management and Security Technologies

o Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)
o Java Authentication Contract for Containers 1.3 (JSR 115)

o Java EE Application Deployment 1.2 (JSR 88)

o J2EE Management 1.1 (JSR 77)

Report a bug

1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP
6

1.2.2.1. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged. All modules provide the same
features.

Static Modules
Static Modules are predefined in the EAP_HOME /modules/ directory of the application server.

Each sub-directory represents one module and contains one or more JAR files and a configuration
file (module.xml). The name of the module is defined in the module.xml file. All the application
server provided APIs are provided as static modules, including the Java EE APIs as well as other
APIs such as JBoss Logging.
Example 1.1. Example module.xml file
<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysqgl-connector-java-5.1.15.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api'"/>
</dependencies>
</module>

The module name, com.mysql, should match the directory structure for the module.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third party libraries. Instead of bundling those libraries with each application, a

15

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4490-336229+%5BSpecified%5D&comment=Title%3A+Java+Enterprise+Edition+6+Full+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4490-336229+28+Nov+2012+05%3A17+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR
deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name
of the deployed archive. Because deployments are loaded as modules, they can configure
dependencies and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

Report a bug

1.2.2.2. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of
hierarchical class loaders. Developers have fine-grained control of the classes available to their
applications, and can configure a deployment to ignore classes provided by the application server in
favour of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module
can define dependencies on other modules in order to have the classes from that module added to its
own class path. Because each deployed JAR and WAR file is treated as a module, developers can
control the contents of their application's class path by adding module configuration to their
application.

The following material covers what developers need to know to successfully build and deploy
applications on JBoss EAP 6.

Report a bug

1.3.SET UP THE DEVELOPMENT ENVIRONMENT

1.3.1. Download and Install JBoss Developer Studio

1.3.1.1. Setup the JBoss Developer Studio

1. Section 1.3.1.2, “Download JBoss Developer Studio 5”
2. Section 1.3.1.3, “Install JBoss Developer Studio 5”
3. Section 1.3.1.4, “Start JBoss Developer Studio”

Report a bug

1.3.1.2. Download JBoss Developer Studio 5

1. Go to https://access.redhat.com/.

2. Select Downloads > Red Hat JBoss Middleware — Downloads.

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4360-458732+%5BSpecified%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-458732+11+Jun+2013+14%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4352-459876+%5BSpecified%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-459876+14+Jun+2013+09%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4583-155458+%5BSpecified%5D&comment=Title%3A+Setup+the+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4583-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://access.redhat.com/

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

3. Select JBoss Developer Studio from the dropbox.
4. Select the appropriate version and click Download.

Report a bug

1.3.1.3. Install JBoss Developer Studio 5

Prerequisites:

Section 1.3.1.2, “Download JBoss Developer Studio 5”

Procedure 1.1. Install JBoss Developer Studio 5

1. Open a terminal.
2. Move into the directory containing the downloaded . jar file.

3. Run the following command to launch the GUl installer:
I java -jar jbdevstudio-build_version.jar

4. Click Next to start the installation process.
5. SelectI accept the terms of this license agreement and click Next.

6. Adjust the installation path and click Next.

NOTE

If the installation path folder does not exist, a prompt will appear. Click Ok to
create the folder.

7. Choose a JVM, or leave the default JVM selected, and click Next.

8. Add any application platforms available, and click Next.

9. Review the installation details, and click Next.
10. Click Next when the installation process is complete.

11. Configure the desktop shortcuts for JBoss Developer Studio, and click Next.
12. Click Done.

Report a bug

1.3.1.4. Start JBoss Developer Studio

Prerequisites:

Section 1.3.1.3, “Install JBoss Developer Studio 5”

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4580-481828+%5BSpecified%5D&comment=Title%3A+Download+JBoss+Developer+Studio+5%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4580-481828+25+Jul+2013+15%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4581-433133+%5BSpecified%5D&comment=Title%3A+Install+JBoss+Developer+Studio+5%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4581-433133+11+Apr+2013+16%3A07+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Procedure 1.2. Command to start JBoss Developer Studio
1. Open a terminal.
2. Change into the installation directory.

3. Run the following command to start the JBoss Developer Studio:

I [localhost]$./jbdevstudio
Report a bug

1.3.1.5. Add the JBoss EAP 6 Server to JBoss Developer Studio

These instructions assume this is your first introduction to JBoss Developer Studio and you have not
yet added any JBoss EAP 6 servers.

Procedure 1.3. Add the server
1. Open the Servers tab. If there is no Servers tab, add it to the panel as follows:
a. Click Window — Show View — Other....
b. Select Servers from the Server folder and click OK.

2. Click on the new server wizard link or right click within the blank Server panel and select
New — Server.

File Edit Navigate Search Project Run Window Help
| ra~ |#v 0o ar @ |wer |5 e |8 0 | % |® s o 2y (4 JBoss|

/e |

[(5 ™ = 0| |Boss Central &2

5 & Y| i JBoss Central 7 [Q Search JBoss Commu 'él @ % =
. | |An outline is
~ Create Projects rgv ¥ News 8 Elnot available.
5 Dynamic Web Project "¢ OpenShift Application i, This week in |Boss (4th of May 2012) 6 day
=5 . - . ago by Mark Little
1 Java EE Web Project (2] Java EE Project Before we start, let me say Happy Star Wars
E/ HTMLS Project @& RichFaces Project Day! So after last week's GSoC focus, this wee
e . . we have a lot breadth to cover. Let's get
4% Spring MVC Project @& GWT Web Project straight...
~ Project Examples — am s
= 8 ¢ i, This week in JBoss (26th of April 2012) 2
waske ann hv Mark 1itta
+ |Boss Quickstarts ~ Blogs
b e
RACSS A LN i, Using JBoss Admin iPhone app together with
New and Noteworthy User Forum |Boss Tools 2 hours ago by Max Rydahl
Ref Devel e Andersen ||
Reference Developer Forum This morning | woke up to an email stating thail~
a m I B
Getting Started| % Software/Update
[£ Problems [ﬁ Properties [éﬂ servers =] = =0

No servers available. Define a new server from the new server wizard...

J 0* 0 itemns selected J

Figure 1.1. Add a new server - No servers available

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4582-433134+%5BSpecified%5D&comment=Title%3A+Start+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4582-433134+11+Apr+2013+16%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

3. Expand JBoss Enterprise Middleware and choose JBoss Enterprise Application
Platform 6.x.Then click Next.

New Server

Choose the type of server to create

Select the server type:

Define a New Server g

Download additional server adapters

[type filter text

= (= |Boss Enterprise Middleware
¢ |Boss Enterprise Application Platform 4.3
i |Boss Enterprise Application Platform 5.x

& |Boss Enterprise Application Platform 6.x
JBoss Enterprise Application Platform (EAP) 6.x

Server's host name: Q[Iocalhost]
Server name: |JBoss EAP 6.0 Runtime Server]
@ < Back ” Next > | [Cancel l [Finish

Figure 1.2. Choose server type

4. Click Browse and navigate to your JBoss EAP 6 install location. Then click Next.

19

Development Guide

20

JBoss Runtime ® ®
[|Boss
@

|Boss Enterprise Application Platform 6.0 @ by res ot

A |Boss Server runtime references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as well as by a "server" which will be able to start and stop instances of JBoss.

Mame

|JBoss EAP 6.0 Runtime]

Home Directory

[,fhDmefusername}toolsfjboss-eap-ﬁ.ﬂ] Bmws]e...

JRE
[DefaulthE for JavaSE-1.6 - l |]RE

Configuration file: |standalone.xml] Browse...

@ < Back " Next > l [Cancel l [Finish

Figure 1.3. Browse to server install

. On this screen you define the server behavior. You can start the server manually or let JBoss

Developer Studio manage it for you. You can also define a remote server for deployment and
determine if you want to expose the management port for that server, for example, if you need
connect to it using JMX. In this example, we assume the server is local and you want JBoss
Developer Studio to manage your server so you do not need to check anything. Click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Create a new JBoss Server .' B "

JBoss Enterprise Application Platform 6.0 by Red Hat

A JBoss Server manages starting and stopping instances of JBoss.
It manages command line arguments and keeps track of which modules have been deployed.

Runtime Information

If the runtime information below is incorrect, please press back, Installed Runtimes...,
and then Add to create a new runtime from a different Location.

Home Directory fhomejusername/tools/jboss-eap-6.0
Execution Environment Java Platform, Standard Edition 6.0
JRE Default JRE for JavaSE-1.6

Server Behaviour

L Server is externally managed. Assume server is started.

[Listen on all interfaces to allow remote web connections

L] Expose your management port as the server's hostname

T

Local '

@:‘ < Back || Mext = | | Cancel | | Finish

Figure 1.4. Define the new JBoss server behavior

6. This screen allows you to configure existing projects for the new server. Because you do not
have any projects at this point, click Finish.

21

Development Guide

New Server

Add and Remove
Modify the resources that are configured on the server l_—/

Move resources to the right to configure them on the server

Available: Configured:
| Add> |
[< Remove l
| AddAl>> |
L3
[<= Remove AII]

@ < Back][Next > l [Cancel l [Finish

Figure 1.5. Modify resources for the new JBoss server

Result

The JBoss Enterprise Application Server 6.0 Runtime Server is listed in the Servers tab.

22

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

@ EER
File Edit Navigate Search Project Run Window Help
r4 B0 QU Q| WG BEr | E bR = s 2 (£ JBoss|
O
By 2™ = 8 | i |Boss Central 2 =8 » =8
B & T || i)Boss Central ” [Q g] @ % i
= [~ |An outline is
~ Create Projects v ~ News 51 E[7 not available.
% Dynamic Web Project "“* OpenShift Application i, This week in JBoss (4th of May 2012) 6 day
a4 . - . ago by Mark Little
&1 Java EE Web Project (= Java EE Project Before we start, let me say Happy Star Wars
E/ HTMLS Project & RichFaces Project Day! So after last week's GSoC focus, this wee|
e . K we have a lot breadth to cover. Let's get 1
4% spring MVC Project @ GWT Web Project straight...
~ Project Examples am . . .
=% 8 & i, This week in JBoss (26th of April 2012) 2
waale ann hv Mark |ittHle
» JBoss Quickstarts ~ Blogs LA
~ Documentation 5 Using |Boss Admin iPhone app together with
New and Noteworthy ~ User Forum J—B%SS Tools 2 hours ago by Max Rydahl
Andersen
Reference Developer Forum This moming | woke up to an email stating thai[~]
I m | [>)
Getting Started| % Software/Update
[£{ Problems | = Properties | 4. Servers 2 =] ¥ =08
I 4 JBoss EAP 6.0 Runtime Server [Stopped]
k
0* 0 items selected

Figure 1.6. Server appears in the server list

Report a bug

1.4. RUN YOUR FIRST APPLICATION

1.4.1. Replace the Default Welcome Web Application

JBoss EAP 6 includes a Welcome application, which displays when you open the URL of the server at
port 8080. You can replace this application with your own web application by following this procedure.

Procedure 1.4. Replace the Default Welcome Web Application With Your Own Web Application

1. Disable the Welcome application.
Use the Management CLI script EAP_HOME/bin/jboss-cli. shto run the following
command. You may need to change the profile to modify a different managed domain profile,
or remove the /profile=default portion of the command for a standalone server.

/profile=default/subsystem=web/virtual-server=default-host:write-
attribute(name=enable-welcome-root, value=false)

2. Configure your Web application to use the root context.

To configure your web application to use the root context (/) as its URL address, modify its
jboss-web.xml, which is located in the META-INF/ or WEB-INF/ directory. Replace its
<context-root> directive with one that looks like the following.

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8022-459877+%5BSpecified%5D&comment=Title%3A+Add+the+JBoss+EAP+6+Server+to+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8022-459877+14+Jun+2013+09%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

<jboss-web>
<context-root>/</context-root>
</jboss-web>

3. Deploy your application.
Deploy your application to the server group or server you modified in the first step. The
application is now available onhttp://SERVER_URL : PORT/.

Report a bug
1.4.2. Download the Quickstart Code Examples

1.4.2.1. Access the Quickstarts

Summary

JBoss EAP 6 comes with a series of quickstart examples designed to help users begin writing
applications using the Java EE 6 technologies.

Prerequisites

e Maven 3.0.0 or higher. For more information on installing Maven, refer to
http://maven.apache.org/download.html.

e Section 2.1.1, “About the Maven Repository”

e The JBoss EAP 6.2 Maven respository is available online, so it is not necessary to download
and install it locally. If you plan to use the online repository, you can skip to the next step. If
you prefer to install a local repository, see: Section 2.2.3, “Install the JBoss EAP 6 Maven

Repository Locally”.

e Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”

Procedure 1.5. Download the Quickstarts

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Quickstarts" in the list.
3. Click the Download button to download a Zip archive containing the examples.
4. Unzip the archive in a directory of your choosing.

Result

The JBoss EAP Quickstarts have been downloaded and unzipped. Refer to the README . md file in the
top-level directory of the Quickstart archive for instructions about deploying each quickstart.

Report a bug

1.4.3. Run the Quickstarts

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+9017-458837+%5BSpecified%5D&comment=Title%3A+Replace+the+Default+Welcome+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9017-458837+11+Jun+2013+16%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://maven.apache.org/download.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5720-562864+%5BSpecified%5D&comment=Title%3A+Access+the+Quickstarts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5720-562864+03+Dec+2013+02%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.4.3.1. Run the Quickstarts in JBoss Developer Studio

Procedure 1.6. Import the quickstarts into JBoss Developer Studio

Each quickstart ships with a POM (Project Object Model) file that contains project and configuration
information for the quickstart. Using this POM file, you can easily import the quickstart into JBoss
Developer Studio.

1. If you have not done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using
the Maven Settings”.

2. Start JBoss Developer Studio.
3. From the menu, select File = Import.

4. In the selection list, choose Maven — Existing Maven Projects, then click Next.

Select \
- . ¥
Import Existing Maven Projects H

Select an import source:

[:}-‘;:e filter text "]

P (= General £
b = CVS
P &= EB
P = Git
P (= Install
P =)ava EE
+ [= Maven
. Check out Maven Projects from SCM

0, Install or deploy an artifact to a Maven repository

(<]

L Materialize Maven Proiects from SCM

@ < Back ” Next > l [Cancel l [Finish

Figure 1.7. Import Existing Maven Projects

5. Browse to the directory of the quickstart you want to import and click OK. The Projects list
box will be populated with the pom. xm1 file of the selected quickstart project.

25

Development Guide

G Import Maven Projects E3

Maven Projects

Select Maven projects

Root Directory: | /quickstarts/helloworld v || Browse... |
Projects:
fpom.xml org.jboss.as.quickstarts:jboss-as-helloworld:7.1.1. CR2:war Select All

Deselect All

Refresh

d

[] Add project(s) to working set

Working set: |][More
» Advanced
® < Back " Next = l [Cancel l [Finish

Figure 1.8. Select Maven Projects

6. Click Next, then click Finish.

Procedure 1.7. Build and Deploy the helloworld quickstart

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the
JBoss server is configured and running correctly.

1. Open the Servers tab. To add it to the panel:
a. Click Window — Show View — Other....
b. Select Servers from the Server folder and click Ok.

2. Right click on helloworld in the Project Explorer tab, and select Run As = Run on
Server.

3. Selectthe JBoss EAP 6.2 Runtime Server server and click Next. This should deploy the
helloworld quickstart to the JBoss server.

26

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

4. View the server console. You should see the following messages:

JBAS018210: Register web context: /jboss-helloworld
JBAS018559: Deployed "jboss-helloworld.war" (runtime-name : "jboss-
helloworld.war")

The registered web context is appended tohttp://localhost:8080 to provide the URL
used to access the deployed application.

5. To verify that the helloworld quickstart was deployed successfully to the JBoss server,
open a web browser and access the application at this URL: http://localhost:8080/jboss-
helloworld

Report a bug

1.4.3.2. Run the Quickstarts Using a Command Line

Procedure 1.8. Build and Deploy the Quickstarts Using a Command Line

You can easily build and deploy the quickstarts using a command line. Be aware that, when using a
command line, you are responsible for starting the JBoss server if it is required.

1. Review the README file in the root directory of the quickstarts.

This file contains general information about system requirements, how to configure Maven,
how to add users, and how to run the Quickstarts. Be sure to read through it before you get
started.

It also contains a table listing the available quickstarts. The table lists each quickstart name
and the technologies it demonstrates. It gives a brief description of each quickstart and the
level of experience required to set it up. For more detailed information about a quickstart, click
on the quickstart name.

Some quickstarts are designed to enhance or extend other quickstarts. These are noted in the
Prerequisites column. If a quickstart lists prerequisites, you must install them first before
working with the quickstart.

Some quickstarts require the installation and configuration of optional components. Do not
install these components unless the quickstart requires them.

2. Run the helloworld quickstart.
The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that
the JBoss server is configured and running correctly. Open the README file in the root of the
helloworld quickstart. It contains detailed instructions on how to build and deploy the
quickstart and access the running application

3. Run the other quickstarts.
Follow the instructions in the README file located in the root folder of each quickstart to run
the example.

Report a bug

1.4.4. Review the Quickstart Tutorials

1.4.4.1. Explore the helloworld Quickstart

27

http://localhost:8080/jboss-helloworld
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+7306-576005+%5BSpecified%5D&comment=Title%3A+Run+the+Quickstarts+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7306-576005+16+Jan+2014+08%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+7307-331991+%5BSpecified%5D&comment=Title%3A+Run+the+Quickstarts+Using+a+Command+Line%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7307-331991+09+Nov+2012+04%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Summary

The helloworld quickstart shows you how to deploy a simple Servlet to JBoss EAP 6. The business
logic is encapsulated in a service which is provided as a CDI (Contexts and Dependency Injection) bean
and injected into the Servlet. This quickstart is very simple. All it does is print "Hello World" onto a web
page. It is a good starting point to make sure you have configured and started your server properly.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README file at the root of the helloworld quickstart directory. Here we show you how to use JBoss
Developer Studio to run the quickstart.

Procedure 1.9. Import the helloworld quickstart into JBoss Developer Studio

If you previously imported all of the quickstarts into JBoss Developer Studio following the steps here
Section 1.4.3.1, “Run the Quickstarts in JBoss Developer Studio” , you can skip to the next section.

1. If you have not done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using
the Maven Settings”.

2. If you have not done so, Section 1.3.1.3, “Install JBoss Developer Studio 5”.
3. Section 1.3.1.4, “Start JBoss Developer Studio”.
4. From the menu, select File - Import.

5. In the selection list, choose Maven — Existing Maven Projects, then click Next.

28

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Select \u
Import Existing Maven Projects u

Select an import source:

[l:g,fp-e filter text J]

b = General
b = CVs
P = EJB
b = Git
b = Install
P &= Java EE
<~ [=Maven
. Check out Maven Projects from SCM

& Existing Majen Projects

0, Install or deploy an artifact to a Maven repository

(<]

L Materialize Maven Proiects from SCM

@ < Back ” Next > | [Cancel l [Finish

Figure 1.9. Import Existing Maven Projects

6. Browse to the QUICKSTART_HOME/quickstart/helloworld/ directory and click OK. The
Projects list box is populated with the pom.xml file from the helloworld quickstart
project.

29

Development Guide

Import Maven Projects

Maven Projects

Select Maven projects

Root Directory: |/Quickstarts/quickstart/helloworld v H Browse... l
Projects:
fpom.xml org.jboss.as.quickstarts:jboss-as-helloworld: war select All

Deselect All

Refresh

il

[] Add project(s) to working set

Working set: | ¢ | | More...
» Advanced
k
@ < Back “ Next > | [Cancel l l Finish

Figure 1.10. Select Maven Projects

7. Click Finish.

Procedure 1.10. Build and Deploy the helloworld quickstart

1. If you have not yet configured JBoss Developer Studio for JBoss EAP 6, you must
Section 1.3.1.5, “Add the JBoss EAP 6 Server to JBoss Developer Studio” .

2. Right click on jboss-as-helloworldinthe Project Explorer tab,and select Run As —
Run on Server.

30

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Run On Server

Run On Server
Select which server to use

How do you want to select the server?

@ |Choose an existing server |

) Manually define a new server

Select the server that you want to use:

[ype fiter toxt 7

= = localhost

£ |Boss EAP 6.0 Runtime Server ®- Stopped

JBoss Enterprise Application Platform (EAP) 6.x

[] Always use this server when running this project

&

@ | < Back ” Next > l [Cancel l [Finish

Figure 1.11. Run on Server

3. Select the JBoss EAP 6.0 Runtime Server server and click Next. This deploys the
helloworld quickstart to the JBoss server.

4. To verify that the helloworld quickstart was deployed successfully to the JBoss server,
open a web browser and access the application at this URL: http://localhost:8080/jboss-as-
helloworld

Procedure 1.11. Examine the Directory Structure

The code for the helloworld quickstart can be found in the QUICKSTART_HOME/helloworld
directory. The helloworld quickstart is comprised a Servlet and a CDI bean. It also includes an empty
beans.xml file which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.

1. The beans.xml file is located in the WEB-INF/ folder in the src/main/webapp/ directory of
the quickstart.

2. The src/main/webapp/ directory also includes an index.html file which uses a simple
meta refresh to redirect the user's browser to the Servlet, which is located at
http://localhost:8080/jboss-as-helloworld/HelloWorld.

31

http://localhost:8080/jboss-as-helloworld
http://localhost:8080/jboss-as-helloworld/HelloWorld

Development Guide

3. All the configuration files for this example are located in WEB-INF/, which can be found in the
src/main/webapp/ directory of the example.

4. Notice that the quickstart doesn't even need a web . xml file!

Procedure 1.12. Examine the Code

The package declaration and imports have been excluded from these listings. The complete listing is
available in the quickstart source code.

32

1. Review the HelloWorldServlet code
The HelloWorldServlet. java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This Servlet
sends the information to the browser.

27. @WebServlet("/HellowWorld")
28. public class HelloWorldServlet extends HttpServlet {

29.

30. static String PAGE_HEADER = "<html><head /><body>";
31

32. static String PAGE_FOOTER = "</body></html>";

33.

34. @Inject

35. HelloService helloService;

36.

37. @Ooverride

38. protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

{

39. PrintWriter writer = resp.getWriter();

40. writer.println(PAGE_HEADER);

41. writer.println("<h1>" +
helloService.createHelloMessage("World") + "</h1>");
42. writer.println(PAGE_FOOTER);

43. writer.close();

44. }

45,

46. }

Table 1.1. HelloWorldServlet Details

27 Before Java EE 6, an XML file was used to register Servlets. It is now much cleaner. All
you need to do is add the @WebServlet annotation and provide a mapping to a URL
used to access the servlet.

30-32 Every web page needs correctly formed HTML. This quickstart uses static Strings to write
the minimum header and footer output.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

34-35 These lines inject the HelloService CDI bean which generates the actual message. As long
as we don't alter the API of HelloService, this approach allows us to alter the
implementation of HelloService at a later date without changing the view layer.

41 This line calls into the service to generate the message "Hello World", and write it out to
the HTTP request.

2. Review the HelloService code
The HelloService. javafile is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service is
very simple. It returns a message. No XML or annotation registration is required.

9. public class HelloService {

11. String createHelloMessage(String name) {
12. return "Hello " + name + "!";
32. 3}

Report a bug

1.4.4.2. Explore the numberguess Quickstart

Summary

This quickstart shows you how to create and deploy a simple application to JBoss EAP 6. This
application does not persist any information. Information is displayed using a JSF view, and business
logic is encapsulated in two CDI (Contexts and Dependency Injection) beans. In the numberguess
quickstart, you get 10 attempts to guess a number between 1 and 100. After each attempt, you're told
whether your guess was too high or too low.

The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess
directory. The numberguess quickstart is comprised of a number of beans, configuration files and
Facelets (JSF) views, packaged as a WAR module.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README file at the root of the numberguess quickstart directory. Here we show you how to use

JBoss Developer Studio to run the quickstart.

Procedure 1.13. Import the numberguess quickstart into JBoss Developer Studio

If you previously imported all of the quickstarts into JBoss Developer Studio following the stepsin the
following procedure, Section 1.4.3.1, “Run the Quickstarts in JBoss Developer Studio” , you can skip to
the next section.

1. If you have not done so, perform the following procedures: Section 1.3.1.3, “Install JBoss
Developer Studio 5”

2. Section 1.3.1.4, “Start JBoss Developer Studio”

33

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+7881-459879+%5BSpecified%5D&comment=Title%3A+Explore+the+helloworld+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7881-459879+14+Jun+2013+09%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

3. From the menu, select File = Import.

4. In the selection list, choose Maven — Existing Maven Projects, then click Next.

Select \
P
Import Existing Maven Projects u

Select an import source:

[:}-' pe filter text

P (= General
b = CVS

P &= EB

P = Git

P (= Install

P =)ava EE
+ [= Maven

. Check out Maven Projects from SCM

0, Install or deploy an artifact to a Maven repository

(<]

L Materialize Maven Proiects from SCM

Finish

®@

M
[ma)
o
(]
=
=
m
>
—
v
)
5]
=]
(]
A

Figure 1.12. Import Existing Maven Projects

5. Browse to the QUICKSTART_HOME/quickstart/numberguess/ directory and click OK. The
Projects list box is populated with the pom.xml file from the numberguess quickstart
project.

6. Click Finish.

Procedure 1.14. Build and Deploy the numberguess quickstart

1. If you have not yet configured JBoss Developer Studio for JBoss EAP 6, you must do the
following: Section 1.3.1.5, “Add the JBoss EAP 6 Server to JBoss Developer Studio” .

2. Right click on jboss-as-numberguess in the Project Explorer tab, and select Run As
— Run on Server.

3. Select the JBoss EAP 6.0 Runtime Server server and click Next. This deploys the
numberguess quickstart to the JBoss server.

34

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

4. To verify that the numberguess quickstart was deployed successfully to the JBoss server,
open a web browser and access the application at this URL: http://localhost:8080/jboss-as-
numberguess

Procedure 1.15. Examine the Configuration Files

All the configuration files for this example are located in WEB-INF/ directory which can be found in the
src/main/webapp/ directory of the quickstart.

1. Examine the faces-config file
This quickstart uses the JSF 2.0 version of faces-config.xml filename. A standardized
version of Facelets is the default view handler in JSF 2.0, so there's really nothing that you
have to configure. JBoss EAP 6 goes above and beyond Java EE here. It will automatically
configure the JSF for you if you include this configuration file. As a result, the configuration
consists of only the root element:

03. <faces-config version="2.0"

04. xmlns="http://java.sun.com/xml/ns/javaee"

05. xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
06. xsi:schemaLocation="

07. http://java.sun.com/xml/ns/javaee>

08. http://java.sun.com/xml/ns/javaee/web-
facesconfig_2_0.xsd">

09.

10. </faces-config>

2. Examine the beans.xml file
There's also an empty beans . xml file, which tells JBoss EAP 6 to look for beans in this
application and to activate the CDI.

3. There is no web.xml file
Notice that the quickstart doesn't even need a web . xm1l file!

Procedure 1.16. Examine the JSF Code

JSF uses the . xhtml file extension for source files, but serves up the rendered views with the .jsf
extension.

e Examine the home.xhtml code
The home . xhtml file is located in the src/main/webapp/ directory.

03. <html xmlns="http://www.w3.0rg/1999/xhtml"

04. xmlns:ui="http://java.sun.com/jsf/facelets"
05. xmlns:h="http://java.sun.com/jsf/html"

06. xmlns:f="http://java.sun.com/jsf/core">

07.

08. <head>

09. <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />

10. <title>Numberguess</title>

11. </head>

12.

13. <body>

35

http://localhost:8080/jboss-as-numberguess

Development Guide

14. <div id="content">

15. <h1>Guess a number...</h1>

16. <h:form id="numberGuess">

17.

18. <!-- Feedback for the user on their guess -->

19. <div style="color: red">

20. <h:messages id="messages" globalOnly="false" />
21. <h:outputText id="Higher" value="Higher!"

22. rendered="#{game.number gt game.guess and
game.guess ne 0}" />

23. <h:outputText id="Lower" value="Lower!"

24, rendered="#{game.number 1t game.guess and
game.guess ne 0}" />

25. </div>

26.

27. <!-- Instructions for the user -->

28. <div>

29. I'm thinking of a number between <span

30. id="numberGuess:smallest">#
{game.smallest} and <span

31. id="numberGuess:biggest">#{game.biggest}.
You have

32. #{game.remainingGuesses} guesses remaining.

33. </div>

34.

35. <!-- Input box for the users guess, plus a button to
submit, and reset -->

36. <!-- These are bound using EL to our CDI beans -->
37. <div>

38. Your guess:

39. <h:inputText id="inputGuess" value="#{game.guess}"
40. required="true" size="3"

41. disabled="#{game.number eq game.guess}"

42, validator="#{game.validateNumberRange}" />
43. <h:commandButton id="guessButton" value='"Guess"
44, action="#{game.check}"

45, disabled="#{game.number eq game.guess}" />
46. </div>

47 . <div>

48. <h:commandButton id="restartButton" value="Reset"
49, action="#{game.reset}" immediate="true" />
50. </div>

51. </h:form>

52.

53. </div>

54,

55. <br style='"clear: both" />

56.

57. </body>

58. </html>

Table 1.2. JSF Details

36

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

20-24 These are the messages which can be sent to the user: "Higher!" and "Lower!"

29-32 As the user guesses, the range of numbers they can guess gets smaller. This sentence
changes to make sure they know the number range of a valid guess.

38-42 This input field is bound to a bean property using a value expression.

42 A validator binding is used to make sure the user does not accidentally input a number
outside of the range in which they can guess. If the validator was not here, the user might
use up a guess on an out of bounds number.

43-45 There must be a way for the user to send their guess to the server. Here we bind to an
action method on the bean.

Procedure 1.17. Examine the Class Files

All of the numberguess quickstart source files can be found in the
src/main/java/org/jboss/as/quickstarts/numberguess/ directory. The package
declaration and imports have been excluded from these listings. The complete listing is available in the
quickstart source code.

1. Review the Random.java qualifier code
A qualifier is used to remove ambiguity between two beans, both of which are eligible for
injection based on their type. For more information on qualifiers, refer to Section 9.2.3.3, “Use
a Qualifier to Resolve an Ambiguous Injection”

The @Random qualifier is used for injecting a random number.

21. @Target({ TYPE, METHOD, PARAMETER, FIELD })
22. @Retention(RUNTIME)

23. @Documented

24. @Qualifier

25. public @interface Random {

27. }

2. Review the MaxNumber.java qualifier code
The @MaxNumberqualifier is used for injecting the maximum number allowed.

21. @Target({ TYPE, METHOD, PARAMETER, FIELD })
22. @Retention(RUNTIME)

23. @Documented

24. @Qualifier

25. public @interface MaxNumber {

27. }

37

Development Guide

38

3. Review the Generator code
The Generator class is responsible for creating the random number via a producer method. It
also exposes the maximum possible number via a producer method. This class is application
scoped so you don't get a different random each time.

28. @ApplicationScoped
29. public class Generator implements Serializable {

30. private static final long serialVersionUID =
-7213673465118041882L ;

31.

32. private java.util.Random random = new
java.util.Random(System.currentTimeMillis());
33.

34. private int maxNumber = 100;

35.

36. java.util.Random getRandom() {

37. return random;

38. }

39.

40. @Produces

41, @Random

42, int next() {

43. // a number between 1 and 100

44, return getRandom().nextInt(maxNumber - 1) + 1;
45, }

46.

47. @Produces

48. @MaxNumber

49, int getMaxNumber() {

50. return maxNumber;

51. }

52. }

4. Review the Game code
The session scoped class Game is the primary entry point of the application. It is responsible for
setting up or resetting the game, capturing and validating the user's quess, and providing
feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to
initialize the game by retrieving a random number from the @Random Instance<Integer>
bean.

Notice the @Named annotation in the class. This annotation is only required when you want to
make the bean accessible to a JSF view via Expression Language (EL), in this case #{game}.

035. @Named
036. @SessionScoped
037. public class Game implements Serializable {

038.

039. private static final long serialVersionUID =
091300443278089016L;

040.

041. Ve

042, * The number that the user needs to guess
043. */

044. private int number;

045.
046.
047.
048.
049.
050.
051.
052.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

/**
* The users latest guess
*/

private int guess;

/**

* The smallest number guessed so far (so we can track the

valid guess range).

053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064 .
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084 .
085.
086.
087.
088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.

*/
private int smallest;

/**
* The largest number guessed so far
*/

private int biggest;

/**
* The number of guesses remaining
*/

private int remainingGuesses;

/**
* The maximum number we should ask them to guess
*/

@Inject

@MaxNumber

private int maxNumber;

/**
* The random number to guess
*/

@Inject

@Random

Instance<Integer> randomNumber;

public Game() {
3

public int getNumber() {
return number;

}

public int getGuess() {
return guess;

}

public void setGuess(int guess) {
this.guess = guess;

}

public int getSmallest() {
return smallest;

}

public int getBiggest() {

39

Development Guide

40

100.
101.
102.
103.
104.
105.
106.
107.
108.

the

109.
110.
111.
112,
113.
114.
115.
116.
117.

return biggest;

}

public int getRemainingGuesses() {
return remainingGuesses;

}

/**
* Check whether the current guess is correct, and update
biggest/smallest guesses as needed.
* Give feedback to the user if they are correct.
*/
public void check() {
if (guess > number) {
biggest = guess - 1;
} else if (guess < number) {
smallest = guess + 1;
} else if (guess == number) {
FacesContext.getCurrentInstance().addMessage(null, new

FacesMessage("Correct!"));

118.
119.
120.
121.
122,
123.

}

remainingGuesses--;

}

/**
* Reset the game, by putting all values back to their

defaults, and getting a new random number.

124.

the

125.

* We also call this method when the user starts playing for
first time using
* {@linkplain PostConstruct @PostConstruct} to set the

initial values.

126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

*/

@PostConstruct

public void reset() {
this.smallest = 0;
this.guess = 0;
this.remainingGuesses = 10;
this.biggest = maxNumber;
this.number = randomNumber.get();

}

/**
* A JSF validation method which checks whether the guess is

valid. It might not be valid because

138. * there are no guesses left, or because the guess is not 1in
range.

139. *

140. */

141. public void validateNumberRange(FacesContext context,

UIComponent toValidate, Object value) {

142. if (remainingGuesses <= 0) {

143. FacesMessage message = new FacesMessage('"No guesses
left!");

144. context.addMessage(tovValidate.getClientId(context),
message);

145. ((UIInput) tovalidate).setValid(false);

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

146. return;

147. }

148. int input = (Integer) value;

149.

150. if (input < smallest || input > biggest) {

151. ((UIInput) tovalidate).setValid(false);

152.

153. FacesMessage message = new FacesMessage('"Invalid
guess");

154. context.addMessage(tovValidate.getClientId(context),
message);

155. }

156. }

157. }

Report a bug

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8023-459880+%5BSpecified%5D&comment=Title%3A+Explore+the+numberguess+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8023-459880+14+Jun+2013+09%3A17+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

CHAPTER 2. MAVEN GUIDE

2.1.LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and
other build artifacts. The default public repository is the Maven 2 Central Repository , but repositories
can be private and internal within a company with a goal to share common artifacts among
development teams. Repositories are also available from third-parties. JBoss EAP 6 includes a Maven
repository that contains many of the requirements that Java EE developers typically use to build
applications on JBoss EAP 6. To configure your project to use this repository, see Section 2.3.1,
“Configure the JBoss EAP Maven Repository”.

A repository can be local or remote. Remote repositories are accessed using common protocols such
as http:// forarepository onan HTTP server or file:// for arepository a file server. A local
repository is a cached download of the artifacts from a remote repository.

For more information about Maven, see Welcome to Apache Maven.

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

For more information about Maven POM files, see the Apache Maven Project POM Reference and
Section 2.1.2, “About the Maven POM File” .

Report a bug

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom. xml file requires some configuration options and will
default all others. See Section 2.1.3, “Minimum Requirements of a Maven POM File” for details.

The schema for the pom. xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.
For more information about POM files, see the Apache Maven Project POM Reference.

Report a bug

2.1.3. Minimum Requirements of a Maven POM File

Minimum requirements

The minimum requirements of a pom. xml file are as follows:

42

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+1841-459881+%5BSpecified%5D&comment=Title%3A+About+the+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1841-459881+14+Jun+2013+09%3A18+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5721-155458+%5BSpecified%5D&comment=Title%3A+About+the+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5721-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 2. MAVEN GUIDE

e project root

e modelVersion

e groupld - the id of the project's group

e artifactld - the id of the artifact (project)

e version - the version of the artifact under the specified group

Sample pom.xml file

A basic pom. xml file might look like this:

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.jboss.app</groupIld>
<artifactId>my-app</artifactId>
<version>1</version>

</project>

Report a bug

2.1.4. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that should not be distributed with the pom. xm1l file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found.

In the Maven install

The settings file can be found in the M2_HOME/conf/ directory. These settings are referred to as
global settings. The default Maven settings file is a template that can be copied and used as a
starting point for the user settings file.

In the user's install

The settings file can be found in the USER_HOME/ .m2/ directory. If both the Maven and user
settings.xml files exist, the contents are merged. Where there are overlaps, the user's
settings.xml file takes precedence.

The following is an example of a Maven settings. xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<profiles>
<!-- Configure the JBoss EAP Maven repository -->
<profile>
<id>jboss-eap-maven-repository</id>
<repositories>

43

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5723-332011+%5BSpecified%5D&comment=Title%3A+Minimum+Requirements+of+a+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5723-332011+09+Nov+2012+04%3A50+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

<repository>
<id>jboss-eap</id>
<url>file:///path/to/repo/jboss-eap-6.0-maven-repository</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-eap-maven-plugin-repository</id>
<url>file:///path/to/repo/jboss-eap-6.0-maven-repository</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!-- Optionally, make the repository active by default -->
<activeProfile>jboss-eap-maven-repository</activeProfile>
</activeProfiles>
</settings>

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-
1.0.0.xsd.

Report a bug

2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY

2.2.1. Download and Install Maven

1. Goto Apache Maven Project - Download Maven and download the latest distribution for your
operating system.

2. See the Maven documentation for information on how to download and install Apache Maven
for your operating system.

Report a bug

2.2.2. Install the JBoss EAP 6 Maven Repository

There are three ways to install the repository; on your local file system, on Apache Web Server, or with
a Maven repository manager.

e Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”

44

http://maven.apache.org/xsd/settings-1.0.0.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5756-155458+%5BSpecified%5D&comment=Title%3A+About+the+Maven+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5756-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://maven.apache.org/download.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8896-332015+%5BSpecified%5D&comment=Title%3A+Download+and+Install+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8896-332015+09+Nov+2012+04%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 2. MAVEN GUIDE

e Section 2.2.4, “Install the JBoss EAP 6 Maven Repository for Use with Apache httpd”

e Section 2.2.5, “Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager”

Report a bug

2.2.3. Install the JBoss EAP 6 Maven Repository Locally

Summary

The JBoss EAP 6.2 Maven repository is available online, so it is not necessary to download and install it
locally. However, if you prefer to install the JBoss EAP Maven repository locally, there are three ways
to do it: on your local file system, on Apache Web Server, or with a Maven repository manager. This
example covers the steps to download the JBoss EAP 6 Maven Repository to the local file system. This
option is easy to configure and allows you to get up and running quickly on your local machine. It can
help you become familiar with using Maven for development but is not recommended for team
production environments.

Procedure 2.1. Download and Install the JBoss EAP 6 Maven Repository to the Local File System

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.htmi?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform 6.2.0 Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the file in the same directory on the local file system into a directory of your choosing.
5. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

This creates a Maven repository directory called jboss-eap-6.2.0.maven-repository.

IMPORTANT

If you want to continue to use an older local repository, you must configure it separately
in the Maven settings.xml configuration file. Each local repository must be
configured within its own <repository> tag.

IMPORTANT

When downloading a new Maven repository, remove the cached repository/
subdirectory located under the .m2/directory before attempting to use the new Maven
repository.

Report a bug

2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd

There are three ways to install the repository; on your local file system, on Apache Web Server, or with
a Maven repository manager. This example will cover the steps to download the JBoss EAP 6 Maven
Repository for use with Apache httpd. This option is good for multi-user and cross-team development

45

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8321-459882+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8321-459882+14+Jun+2013+09%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5707-581809+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Locally%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5707-581809+30+Jan+2014+10%3A26+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

environments because any developer that can access the web server can also access the Maven
repository.

Prerequisites

You must configure Apache httpd. See Apache HTTP Server Project documentation for instructions.

Procedure 2.2. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform 6.2.0 Maven Repository" in the list.
3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files in a directory that is web accessible on the Apache server.

5. Configure Apache to allow read access and directory browsing in the created directory.
6. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

This allows a multi-user environment to access the Maven repository on Apache httpd.

NOTE

If you're upgrading from a previous version of the repository, note that JBoss EAP
Maven Repository artifacts can be simply extracted into an existing JBoss product
Maven repository (such as JBoss EAP 6.1.0) without any conflicts. After the repository
archive has been extracted, the artifacts can be used with the existing Maven settings
for this repository.

Report a bug
2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager

There are three ways to install the repository; on your local file system, on Apache Web Server, or with
a Maven repository manager. This option is best if you have a licenses and already use a repository
manager because you can host the JBoss repository alongside your existing repositories. For more
information about Maven repository managers, see Section 2.2.6, “About Maven Repository
Managers”.

This example will cover the steps to install the JBoss EAP 6 Maven Repository using Sonatype Nexus
Maven Repository Manager. For more complete instructions, see Sonatype Nexus: Manage Artifacts.

Procedure 2.3. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform 6.2.0 Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

46

http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5722-581768+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+for+Use+with+Apache+httpd%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5722-581768+30+Jan+2014+10%3A16+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://www.sonatype.org/nexus/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

CHAPTER 2. MAVEN GUIDE

4. Unzip the files into a directory of your choosing.

Procedure 2.4. Add the JBoss EAP 6 Maven Repository using Nexus Maven Repository Manager

1. Loginto Nexus as an Administrator.

2. Select the Repositories section from the Views — Repositories menu to the left of your
repository manager.

3. Click the Add. . . dropdown, then select Hosted Repository.
4. Give the new repository a name and ID.

5. Enter the path on disk to the unzipped repository in the field Override Local Storage
Location.

6. Continue if you want the artifact to be available in a repository group. Do not continue with this
procedure if this is not what you want.

7. Select the repository group.
8. Click on the Configure tab.

9. Dragthe new JBoss Maven repository from the Available Repositories list tothe
Ordered Group Repositorieslist on the left.

NOTE

Note that the order of this list determines the priority for searching Maven
artifacts.

2

10. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

The repository is configured using Nexus Maven Repository Manager.

Report a bug

2.2.6. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

e They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient
deployments and a better level of control over what is downloaded by Maven.

e They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Apache Maven Project - The List of
Repository Managers.

Commonly used Maven repository managers

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+7827-581774+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Using+Nexus+Maven+Repository+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7827-581774+30+Jan+2014+10%3A21+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://maven.apache.org/repository-management.html

Development Guide

Sonatype Nexus

See Sonatype Nexus: Manage Artifacts for more information about Nexus.

Artifactory

See Artifactory Open Source for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

Report a bug

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
e You can configure the repositories in the Maven global or user settings.

e You can configure the repositories in the project's POM file.

Procedure 2.5. Configure Maven Settings to Use the JBoss EAP 6 Maven Repository

1. Configure the Maven repository using Maven settings
This is the recommended approach. Maven settings used with a repository manager or
repository on a shared server provide better control and manageability of projects. Settings
also provide the ability to use an alternative mirror to redirect all lookup requests for a specific
repository to your repository manager without changing the project files. For more information
about mirrors, see http://maven.apache.org/guides/mini/qguide-mirror-settings.html.

This method of configuration applies across all Maven projects, as long as the project POM file
does not contain repository configuration.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

2. Configure the Maven repository using the project POM
This method of configuration is generally not recommended. If you decide to configure
repositories in your project POM file, plan carefully and be aware that it can slow down your
build and you may even end up with artifacts that are not from the expected repository.

48

http://www.sonatype.org/nexus/
http://www.jfrog.com/products.php
http://archiva.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8765-332098+%5BSpecified%5D&comment=Title%3A+About+Maven+Repository+Managers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8765-332098+09+Nov+2012+05%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://maven.apache.org/guides/mini/guide-mirror-settings.html

CHAPTER 2. MAVEN GUIDE

NOTE

In an Enterprise environment, where a repository manager is usually used,
Maven should query all artifacts for all projects using this manager. Because
Maven uses all declared repositories to find missing artifacts, if it can't find what
it's looking for, it will try and look for it in the repository central (defined in the
built-in parent POM). To override this central location, you can add a definition
with central so that the default repository central is now your repository
manager as well. This works well for established projects, but for clean or 'new’
projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration.
Maven has to query these external repositories for missing artifacts. This not
only slows down your build, it also causes you to lose control over where your
artifacts are coming from and likely to cause broken builds.

This method of configuration overrides the global and user Maven settings for the configured
project.

Section 2.3.3, “Configure the JBoss EAP 6 Maven Repository Using the Project POM” .

Report a bug

2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

e You can modify the Maven settings. This directs Maven to use the configuration across all
projects.

e You can configure the project's POM file. This limits the configuration to the specific project.

This topic shows you how to direct Maven to use the JBoss EAP 6 Maven Repository across all projects
using the Maven settings. This is the recommended approach.

You can configure Maven to use either the online or a locally installed JBoss EAP 6.2 repository. If you
choose to use the online repository, you can use a preconfigured settings file or add the JBoss EAP 6.2
Maven profiles to the existing settings file. To use a local repository, you must download the repository
and configure the settings to point to your locally installed repository. The following procedures
describe how to configure Maven for JBoss EAP 6.2.

49

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8418-459886+%5BSpecified%5D&comment=Title%3A+Configure+the+JBoss+EAP+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8418-459886+14+Jun+2013+09%3A25+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, refer to the
chapter entitled Maven Guidein the Development Guide for JBoss EAP 6 on
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
The following are examples for each of the installation options:

File System
file:///path/to/repo/jboss-eap-6.x-maven-repository
Apache Web Server
http://intranet.acme.com/jboss-eap-6.x-maven-repository/
Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

You can configure Maven using either the Maven install global settings or the user install
settings. These instructions configure the user install settings as this is the most
common configuration.

Procedure 2.6. Configure Maven Using the Settings Shipped with the Quickstart Examples

The Red Hat JBoss Enterprise Application Platform 6.2 Quickstarts ship with a settings.xml file
that is configured to use the online JBoss EAP 6.2 Maven repository. This is the simplest approach.

1. This procedure overwrites the existing Maven settings file, so you must back up the existing
Maven settings.xml file.

a. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/ .m2/ directory.

m For Linux or Mac, thisis: ~/.m2/

m For Windows, this is: \Documents and Settings\USER_NAME\ .m2\ or
\Users\USER_NAME\ .m2\

b. If you have an existing USER_HOME/ .m2/settings.xml file, rename it or make a backup
copy so you can restore it later.

2. Download and unzip the quickstart examples that ship with JBoss EAP 6.2. For more
information, see the section entitled Download the Quickstart Code Examplesin the Development
Guide for JBoss EAP 6 on
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.

3. Copy the QUICKSTART_HOME/settings.xml file to the USER_HOME/ .m2/ directory.

4. If you modify the settings.xml file while JBoss Developer Studio is running, follow the
procedure below entitled Refresh the JBoss Developer Studio User Settings

Procedure 2.7. Manually Edit and Configure the Maven Settings To Use the Online JBoss EAP 6.2
Maven Repository

You can manually add the JBoss EAP 6.2 profiles to an existing Maven settings file.

50

https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

CHAPTER 2. MAVEN GUIDE

. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/ .m2/ directory.

o For Linux or Mac, thisis~/.m2/

o For Windows, this is \Documents and Settings\USER_NAME\ .m2\ or
\Users\USER_NAME\ .m2\

. Ifyou do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/ .m2/conf/ directory into the USER_HOME/ .m2/ directory.

. Copy the following XML into the <profiles> element of the file.

<!-- Configure the JBoss GA Maven repository -->
<profile>
<id>jboss-ga-repository</id>
<repositories>
<repository>
<id>jboss-ga-repository</id>
<url>http://maven.repository.redhat.com/techpreview/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-ga-plugin-repository</id>
<url>http://maven.repository.redhat.com/techpreview/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<!-- Configure the JBoss Early Access Maven repository -->
<profile>
<id>jboss-earlyaccess-repository</id>
<repositories>
<repository>
<id>jboss-earlyaccess-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>

51

Development Guide

<pluginRepositories>
<pluginRepository>
<id>jboss-earlyaccess-plugin-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

Copy the following XML into the <activeProfiles> element of the settings.xml file.

<activeProfile>jboss-ga-repository</activeProfile>
<activeProfile>jboss-earlyaccess-repository</activeProfile>

4. If you modify the settings.xml file while JBoss Developer Studio is running, follow the
procedure below entitled Refresh the JBoss Developer Studio User Settings

Procedure 2.8. Configure the Settings to Use a Locally Installed JBoss EAP Repository

You can modify the settings to use the JBoss EAP 6.2 repository installed on the local file system.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/ .m2/ directory.

o For Linux or Mac, thisis~/.m2/

o For Windows, this is \Documents and Settings\USER_NAME\ .m2\ or
\Users\USER_NAME\ .m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/ .m2/conf/ directory into the USER_HOME/ .m2/ directory.

3. Copy the following XML into the <profiles> element of the settings.xml file. Be sure to
change the <url> to the actual repository location.

<profile>
<id>jboss-eap-repository</id>
<repositories>
<repository>
<id>jboss-eap-repository</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.x-maven-repository</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>

52

CHAPTER 2. MAVEN GUIDE

<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>
file:///path/to/repo/jboss-eap-6.x-maven-repository
</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

Copy the following XML into the <activeProfiles> element of the settings.xml file.

I <activeProfile>jboss-eap-repository</activeProfile>

4. If you modify the settings.xml file while JBoss Developer Studio is running, follow the
procedure below entitled Refresh the JBoss Developer Studio User Settings

Procedure 2.9. Refresh the JBoss Developer Studio User Settings

If you modify the settings.xml file while JBoss Developer Studio is running, you must refresh the
user settings.

1. From the menu, choose Window — Preferences.
2. Inthe Preferences Window, expand Maven and choose User Settings.

3. Click the Update Settings button to refresh the Maven user settings in JBoss Developer
Studio.

53

Development Guide

* He

Ins

] - % v v v

General

P
P Ant

I Data Management
I* Forge
FreeMarker Editor

HQL editor

Java

Java EE

Java Persistence
Javascript

JBoss Tools
Maven

P Plug-in Developme

Ip

tall/Update =

Archetypes
Discovery
Installations
Templates
User Interface

WTP integration

(<l

m ol |}|_

@

User Settings:

[,I'hDme,l'USEmamef.mzfsettings.xml] IB"DWEE---

|. Update Settings |

Local Repository (From merged user and global settings):

[,I'humefusemamef.mﬂrepnsitory H Reindex |
| Restore Defaults | | Apply |
|_ Cancel] | 0] 4 |

Figure 2.1. Update Maven User Settings

Report a bug

54

IMPORTANT

If your Maven repository contains outdated artifacts, you may encounter one of the
following Maven error messages when you build or deploy your project:

e Missing artifact ARTIFACT_NAME

e [ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located in your
~/.m2/repository/ subdirectory on Linux, or the

%SystemDrive%\User sS\USERNAME\ .m2\repository\ subdirectory on Windows.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5709-562921+%5BSpecified%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Maven+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5709-562921+03+Dec+2013+06%3A16+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 2. MAVEN GUIDE

2.3.3. Configure the JBoss EAP 6 Maven Repository Using the Project POM
There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

e You can modify the Maven settings.
e You can configure the project's POM file.

This task shows you how to configure a specific project to use the JBoss EAP 6 Maven Repository by
adding repository information to the project pom. xml. This configuration method supercedes and
overrides the global and user settings configurations.

This method of configuration is generally not recommended. If you decide to configure repositories in
your project POM file, plan carefully and be aware that it can slow down your build and you may even
end up with artifacts that are not from the expected repository.

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can't find what it's looking for, it will try and
look for it in the repository central (defined in the built-in parent POM). To override this
central location, you can add a definition with central so that the default repository
central is now your repository manager as well. This works well for established projects,
but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration. Maven has
to query these external repositories for missing artifacts. This not only slows down your
build, it also causes you to lose control over where your artifacts are coming from and
likely to cause broken builds.

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see:

Section 2.2.2, “Install the JBoss EAP 6 Maven Repository” . The following are examples
for each of the installation options:

File System
file:///path/to/repo/jboss-eap-6.0.0-maven-repository
Apache Web Server
http://intranet.acme.com/jboss-eap-6.0.0-maven-repository/
Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jbhoss-
eap-6.0.0-maven-repository

1. Open your project's pom. xml file in a text editor.

2. Add the following repository configuration. If there is already a <repositories>
configuration in the file, then add the <repository> element to it. Be sure to change the
<url> to the actual repository location.

I <repositories>

55

Development Guide

<repository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.0.0-maven-
repository/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>

3. Add the following plug-in repository configuration. If there is already a
<pluginRepositories> configuration in the file, then add the <pluginRepository>

element to it.

<pluginRepositories>
<pluginRepository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.0.0-maven-
repository/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

Report a bug

2.3.4. Manage Project Dependencies

This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise
Application Platform 6.

A BOM is a Maven pom. xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupId:artifactId:version(GAV) to the dependency
management section of the project pom. xml file and specifying the <scope>import</scope>and
<type>pom</type> element values.

56

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4606-459888+%5BSpecified%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Project+POM%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4606-459888+14+Jun+2013+09%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 2. MAVEN GUIDE

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

Supported Maven Artifacts

As part of the product build process, all runtime components of JBoss EAP are built from source in a
controlled environment. This helps to ensure that the binary artifacts do not contain any malicious
code, and that they can be supported for the life of the product. These artifacts can be easily identified
by the -redhat version qualifier, for example 1.0.0-redhat-1.

Adding a supported artifact to the build configuration pom. xml file ensures that the build is using the
correct binary artifact for local building and testing. Note that an artifact with a -redhat version is
not necessarily part of the supported public APIl, and may change in future revisions. For information
about the public supported API, see the JavaDoc documentation included in the release.

For example, to use the supported version of hibernate, add something similar to the following to your
build configuration.

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifact>
<version>4.2.6.Final-redhat-1</version>
<scope>provided</scope>

</dependency>

Notice that the above example includes a value for the <version/> field. However, it is recommended
to use Maven dependency management for configuring dependency versions.

Dependency Management

Maven includes a mechanism for managing the versions of direct and transitive dependencies
throughout the build. For general information about using dependency management, see the Apache
Maven Project Introduction to the Dependency Mechanism.

Using one or more supported JBoss dependencies directly in your build does not guarantee that all
transitive dependencies of the build will be fully supported JBoss artifacts. It is common for Maven
builds to use a mix of artifact sources from the Maven central repository, the JBoss.org Maven
repository, and other Maven repositories.

Included with the JBoss EAP Maven repository is a dependency management BOM, which specifies all
supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will
prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In
other words, transitive dependencies will be managed to the correct supported dependency version
where applicable. The version of this BOM matches the version of the JBoss EAP release.

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org.jboss.bom</groupId>
<artifactId>eap6-supported-artifacts</artifactId>
<version>6.2.0.GA</version>

57

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Development Guide

<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

JBoss JavaEE Specs Bom
The jboss-javaee-6.0 BOM contains the Java EE Specification APl JARs used by JBoss EAP.

To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and
Servlet APl JARs needed to build and deploy the application.

The following example uses the 3.0.2.Final-redhat-x version of the jbhoss-javaee-6.06 BOM.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.jboss.spec</groupIld>
<artifactId>jboss-javaee-6.0</artifactId>
<version>3.0.2.Final-redhat-x</version>
<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

<dependencies>

<dependency>
<groupId>org.jboss.spec.javax.servlet</groupId>
<artifactId>jboss-servlet-api_3.0_spec</artifactId>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.jboss.spec.javax.servlet.jsp</groupId>
<artifactId>jboss-jsp-api_2.2_spec</artifactId>
<scope>provided</scope>

</dependency>

</dependencies>

JBoss EAP BOMs and Quickstarts
The JBoss BOMs are located in the jboss-bom project at https://github.com/jboss-developer/jboss-
eap-boms.

The quickstarts provide the primary use case examples for the Maven repository. The following table
lists the Maven BOMs used by the quickstarts.

Table 2.1. JBoss BOMs Used by the Quickstarts

58

https://github.com/jboss-developer/jboss-eap-boms

CHAPTER 2. MAVEN GUIDE

Maven artifactid Description

jboss-javaee-6.0-with-hibernate This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate ORM, Hibernate Search and
Hibernate Validator. It also provides tool projects such as Hibernate
JPA Model Gen and Hibernate Validator Annotation Processor.

jboss-javaee-6.0-with- This BOM builds on the Java EE full profile BOM, adding Hibernate
hibernate3 Community projects including Hibernate 3 ORM, Hibernate Entity
Manager (JPA 1.0) and Hibernate Validator.

jboss-javaee-6.0-with-logging This BOM builds on the Java EE full profile BOM, adding the JBoss
Logging Tools and Log4 framework.

jboss-javaee-6.0-with-osgi This BOM builds on the Java EE full profile BOM, adding OSGI.
jboss-javaee-6.0-with-resteasy This BOM builds on the Java EE full profile BOM, adding RESTEasy
jboss-javaee-6.0-with-security This BOM builds on the Java EE full profile BOM, adding Picketlink.

jboss-javaee-6.0-with-tools This BOM builds on the Java EE full profile BOM, adding Arquillian to
the mix. It also provides a version of JUnit and TestNG recommended
for use with Arquillian.

jboss-javaee-6.0-with- This BOM includes a world class transaction manager. Use the JBossTS
transactions APIs to access its full capabilities.

The following example uses the 6.2.0.GA version of the jboss-javaee-6.0-with-hibernate
BOM.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.jboss.bom.eap</groupId>
<artifactId>jboss-javaee-6.0-with-hibernate</artifactId>
<version>6.2.0.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifactId>
<scope>provided</scope>
</dependency>

</dependencies>

59

Development Guide

JBoss Client BOMs
The JBoss EAP server build includes two client BOMs: jboss-as-ejb-client-bomand jboss-as-
jms-client-bom.

The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The following example uses the 7.3.0.Final-redhat - x version of the jbhoss-as-ejb-client-
bom client BOM.

<dependencies>
<dependency>
<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-ejb-client-bom</artifactId>
<version>7.3.0.Final-redhat-x</version>
<type>pom</type>
</dependency>
|
</dependencies>

This example uses the 7.3.0.Final-redhat -x version of the jboss-as-jms-client-bom client
BOM.

<dependencies>
<dependency>
<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-jms-client-bom</artifactId>
<version>7.3.0.Final-redhat-x</version>
<type>pom</type>
</dependency>

</dependencies>

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

Report a bug
2.4. UPGRADE THE MAVEN REPOSITORY

2.4.1. Apply a Patch to the Local Maven Repository

Summary

A Maven repository stores Java libraries, plug-ins, and other artifacts required to build and deploy
applications to JBoss EAP. The JBoss EAP repository is available online or as a downloaded ZIP file. If
you use the publicly hosted repository, updates are applied automatically for you. However, if you
download and install the Maven repository locally, you are responsible for applying any updates.
Whenever a patch is available for JBoss EAP, a corresponding patch is provided for the JBoss EAP

60

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+22363-593725+%5BSpecified%5D&comment=Title%3A+Manage+Project+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22363-593725+25+Feb+2014+07%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 2. MAVEN GUIDE

Maven repository. This patch is available in the form of an incremental ZIP file that is unzipped into the
existing local repository. The ZIP file contains new JAR and POM files. It does not overwrite any
existing JARs nor does it remove JARs, so there is no rollback requirement.

For more information about the JBoss EAP patching process, see the chapter entitled Patching and
Upgrading JBoss EAP 6 in the Administration and Configuration Guidefor JBoss Enterprise Application
Platform 6 located on the Customer Portal at
https://access.redhat.com/site/documentation/JBoss_Enterprise_Apnplication_Platform/.

This task describes how to apply Maven updates to your locally installed Maven repository using the
unzip command.

Prerequisites

e Valid access and subscription to the Red Hat Customer Portal.

e The Red Hat JBoss Enterprise Application Platform 6.3.0 Maven Repository ZIP file,
downloaded and installed locally.

Procedure 2.10. Update the Maven Repository

1. Open a browser and log into https://access.redhat.com.
2. Select Downloads from the menu at the top of the page.
3. Find Red Hat JBoss Middleware and click the Download Software button.

4. Select Application Platformfrom the Product drop-down menu that appears on the
next screen.

5. Select the correct version of JBoss EAP from the Version drop-down menu that appears on
this screen, then click on Patches.

6. Find Red Hat JBoss Enterprise Application Platform 6.2 CPx Incremental
Maven Repository inthe list and click Download.

7. You are prompted to save the ZIP file to a directory of your choice. Choose a directory and
save the file.

8. Locate the path to JBoss EAP Maven repository, referred to in the commands below as
EAP_MAVEN_REPOSITORY_PATH, for your operating system. For more information about how
to install the Maven repository on the local file system, see Section 2.2.3, “Install the JBoss
EAP 6 Maven Repository Locally”.

9. Unzip the Maven patch file directly into the installation directory of the JBoss EAP 6.2.x Maven
repository.

o For Linux, open a terminal and type the following command:

[standalone@localhost:9999 /] unzip -o jboss-eap-6.2.x-
incremental-maven-repository.zip -d EAP_MAVEN_REPOSITORY_PATH

o For Windows, use the Windows extraction utility to extract the ZIP file into the root of the
EAP_MAVEN_REPOSITORY_PATH directory.

Result

61

https://access.redhat.com/site/documentation/JBoss_Enterprise_Apnplication_Platform/
https://access.redhat.com

Development Guide

The locally installed Maven repository is updated with the latest patch.

Report a bug

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+28282-608380+%5BSpecified%5D&comment=Title%3A+Apply+a+Patch+to+the+Local+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28282-608380+04+Mar+2014+03%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

CHAPTER 3. CLASS LOADING AND MODULES

3.1.INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of
hierarchical class loaders. Developers have fine-grained control of the classes available to their
applications, and can configure a deployment to ignore classes provided by the application server in
favour of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module
can define dependencies on other modules in order to have the classes from that module added to its
own class path. Because each deployed JAR and WAR file is treated as a module, developers can
control the contents of their application's class path by adding module configuration to their
application.

The following material covers what developers need to know to successfully build and deploy
applications on JBoss EAP 6.

Report a bug

3.1.2. Class Loading

Class Loading is the mechanism by which Java classes and resources are loaded into the Java Runtime
Environment.

Report a bug

3.1.3. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged. All modules provide the same
features.

Static Modules

Static Modules are predefined in the EAP_HOME /modules/ directory of the application server.
Each sub-directory represents one module and contains one or more JAR files and a configuration
file (module.xml). The name of the module is defined in the module.xml file. All the application
server provided APIs are provided as static modules, including the Java EE APIs as well as other
APIs such as JBoss Logging.

<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysqgl-connector-java-5.1.15.jar"/>
</resources>
<dependencies>

Example 3.1. Example module.xml file
<module name="javax.api"/>

‘ <?xml version="1.0" encoding="UTF-8"?>

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4352-459876+%5BSpecified%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-459876+14+Jun+2013+09%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4549-155458+%5BSpecified%5D&comment=Title%3A+Class+Loading%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4549-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

</dependencies>
</module>

‘ <module name="javax.transaction.api'"/>
The module name, com.mysql, should match the directory structure for the module.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR
deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name
of the deployed archive. Because deployments are loaded as modules, they can configure
dependencies and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

Report a bug

3.1.4. Module Dependencies

A module dependency is a declaration that one module requires the classes of another module in order
to function. Modules can declare dependencies on any number of other modules. When the application
server loads a module, the modular class loader parses the dependencies of that module and adds the
classes from each dependency to its class path. If a specified dependency cannot be found, the module
will fail to load.

Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies
to access the APIs provided by JBoss EAP 6.

There are two types of dependencies: explicit and implicit.

Explicit dependencies are declared in configuration by the developer. Static modules can declare
dependencies in the modules.xml file. Dynamic modules can have dependencies declared in the
MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.

Explicit dependencies can be specified as optional. Failure to load an optional dependency will not
cause a module to fail to load. However if the dependency becomes available later it will NOT be added
to the module's class path. Dependencies must be available when the module is loaded.

Implicit dependencies are added automatically by the application server when certain conditions or
meta-data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of
modules that are added by detection of implicit dependencies in deployments.

Deployments can also be configured to exclude specific implicit dependencies. This is done with the
jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an

application bundles a specific version of a library that the application server will attempt to add as an
implicit dependency.

A module's class path contains only its own classes and that of it's immediate dependencies. A module

64

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4360-458732+%5BSpecified%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-458732+11+Jun+2013+14%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

is not able to access the classes of the dependencies of one of its dependencies. However a module can
specify that an explicit dependency is exported. An exported dependency is provided to any module
that depends on the module that exports it.

Example 3.2. Module dependencies

Module A depends on Module B and Module B depends on Module C. Module A can access the
classes of Module B, and Module B can access the classes of Module C. Module A cannot access the
classes of Module C unless:

e Module A declares an explicit dependency on Module C, or

e Module B exports its dependency on Module C.

Report a bug

3.1.5. Class Loading in Deployments

For the purposes of classloading all deployments are treated as modules by JBoss EAP 6. These are
called dynamic modules. Class loading behavior varies according to the deployment type.

WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/1ib directory are
treated the same as classes in WEB-INF/classes directory. All classes packaged in the war will
be loaded with the same class loader.

EAR Deployment

EAR deployments are made up more than one module. The definition of these modules follows
these rules:

1. The 1ib/ directory of the EAR is a single module called the parent module.

2. Each WAR deployment within the EAR is a single module.

3. Each EJB JAR deployment within the EAR is a single module.
Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic
dependency on the parent module. However they do not have automatic dependencies on each
other. This is called subdeployment isolation and can be disabled on a per deployment basis or for
the entire application server.
Explicit dependencies between subdeployment modules can be added by the same means as any

other module.

Report a bug

3.1.6. Class Loading Precedence

The JBoss EAP 6 modular class loader uses a precedence system to prevent class loading conflicts.
During deployment a complete list of packages and classes is created for each deployment and each of

its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5825-458735+%5BSpecified%5D&comment=Title%3A+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5825-458735+11+Jun+2013+14%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4550-459889+%5BSpecified%5D&comment=Title%3A+Class+Loading+in+Deployments%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4550-459889+14+Jun+2013+09%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

copies of the same classes and packages within the deployments class path from conflicting with each

other.
The class loader loads classes in the following order, from highest to lowest:

1. Implicit dependencies.

These are the dependencies that are added automatically by JBoss EAP 6, such as the JAVA
EE APIs. These dependencies have the highest class loader precedence because they contain

common functionality and APIs that are supplied by JBoss EAP 6.

Refer to Section 3.8.1, “Implicit Module Dependencies” for complete details about each implicit

dependency.

2. Explicit dependencies.

These are dependencies that are manually added in the application configuration. This can be

done using the application's MANIFEST . MF file or the new optional JBoss deployment
descriptor jboss-deployment-structure.xml file.

Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” to learn how to

add explicit dependencies.

3. Local resources.

Class files packaged up inside the deployment itself, e.qg. from the WEB-INF/classes or WEB-

INF/1ib directories of a WAR file.

4. Inter-deployment dependencies.

These are dependencies on other deployments in a EAR deployment. This can include classes

in the 1ib directory of the EAR or classes defined in other EJB jars.

Report a bug

3.1.7. Dynamic Module Naming

All deployments are loaded as modules by JBoss EAP 6 and named according to the following
conventions.

1. Deployments of WAR and JAR files are named with the following format:
I deployment .DEPLOYMENT_NAME

For example, inventory.war and store. jar will have the module names of
deployment.inventory.war and deployment.store. jar respectively.

2. Subdeployments within an Enterprise Archive are named with the following format:
I deployment.EAR_NAME . SUBDEPLOYMENT_NAME

For example, the subdeployment of reports.war within the enterprise archive

accounts.ear will have the module name of deployment.accounts.ear.reports.war.

Report a bug

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4561-459890+%5BSpecified%5D&comment=Title%3A+Class+Loading+Precedence%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4561-459890+14+Jun+2013+09%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4562-458740+%5BSpecified%5D&comment=Title%3A+Dynamic+Module+Naming%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4562-458740+11+Jun+2013+14%3A04+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

3.1.8. jboss-deployment-structure.xml

jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-
deployment-structure-1_2.xsd

Report a bug

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT

This task shows how to add an explicit dependency to an application. Explicit module dependencies can
be added to applications to add the classes of those modules to the class path of the application at
deployment.

Some dependencies are automatically added to deployments by JBoss EAP 6. Refer to Section 3.8.1,
“Implicit Module Dependencies” for details.

Prerequisites

1. You must already have a working software project that you want to add a module dependency
to.

2. You must know the name of the module being added as a dependency. Refer to Section 3.8.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

Dependencies can be configured using two different methods:
1. Adding entries to the MANIFEST . MF file of the deployment.

2. Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Procedure 3.1. Add dependency configuration to MANIFEST.MF

Maven projects can be configured to create the required dependency entries in the MANIFEST . MF file.
Refer to Section 3.3, “Generate MANIFEST.MF entries using Maven” .

1. Add MANIFEST.MF file
If the project has no MANIFEST . MF file, create a file called MANIFEST.MF. For a web
application (WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to
the META-INF directory.

2. Add dependencies entry

Add a dependencies entry to the MANIFEST . MF file with a comma-separated list of
dependency module names.

I Dependencies: org.javassist, org.apache.velocity

3. Optional: Make a dependency optional
A dependency can be made optional by appending optional to the module name in the
dependency entry.

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4611-459892+%5BSpecified%5D&comment=Title%3A+jboss-deployment-structure.xml%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4611-459892+14+Jun+2013+09%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

I Dependencies: org.javassist optional, org.apache.velocity

4. Optional: Export a dependency

A dependency can be exported by appending export to the module name in the dependency
entry.

I Dependencies: org.javassist, org.apache.velocity export

Procedure 3.2. Add dependency configuration to jpboss-deployment-structure.xml

1.

68

Add jboss-deployment-structure.xml

If the application has no jboss-deployment-structure.xml file then create a new file
called jboss-deployment-structure.xml and add it to the project. This file is an XML file
with the root element of <jboss-deployment-structure> .

<jboss-deployment-structure>

</jboss-deployment-structure>

For a web application (WAR) add this file to the WEB- INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

. Add dependencies section
Create a<deployment> element within the document root and a <dependencies>
element within that.

. Add module elements

Within the dependencies node, add a module element for each module dependency. Set the
name attribute to the name of the module.

I <module name="org.javassist" />

. Optional: Make a dependency optional
A dependency can be made optional by adding the optional attribute to the module entry
with the value of TRUE. The default value for this attribute is FALSE.

I <module name="org.javassist" optional="TRUE" />

. Optional: Export a dependency
A dependency can be exported by adding the export attribute to the module entry with the
value of TRUE. The default value for this attribute is FALSE.

<module name="org.javassist" export="TRUE" />

<jboss-deployment-structure>

<deployment>

‘ Example 3.3. jboss-deployment-structure.xml with two dependencies

<dependencies>

CHAPTER 3. CLASS LOADING AND MODULES

<module name="org.javassist" />
<module name="org.apache.velocity" export="TRUE" />
</dependencies>
</deployment>
</jboss-deployment-structure>

JBoss EAP 6 will add the classes from the specified modules to the class path of the application when it
is deployed.

Report a bug

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects that use the Maven JAR, EJB or WAR packaging plug-ins can generate a MANIFEST.MF
file with a Dependencies entry. This does not automatically generate the list of dependencies, this
process only creates the MANIFEST . MF file with the details specified in the pom.xml.

Prerequisites

1. You must already have a working Maven project.

2. The Maven project must be using one of the JAR, EJB, or WAR plug-ins (maven-jar-plugin,
maven-ejb-plugin, maven-war-plugin).

3. You must know the name of the project's module dependencies. Refer to Section 3.8.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment, then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

Procedure 3.3. Generate a MANIFEST.MF file containing module dependencies

1. Add Configuration

Add the following configuration to the packaging plug-in configuration in the project's
pom. xml file.

<configuration>
<archive>
<manifestEntries>
<Dependencies></Dependencies>
</manifestEntries>
</archive>
</configuration>

2. List Dependencies

Add the list of the module dependencies in the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST . MF. Refer to Section 3.2, “Add an

Explicit Module Dependency to a Deployment” for details about that format.

I <Dependencies>org.javassist, org.apache.velocity</Dependencies>

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4551-459893+%5BSpecified%5D&comment=Title%3A+Add+an+Explicit+Module+Dependency+to+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4551-459893+14+Jun+2013+09%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

3. Build the Project
Build the project using the Maven assembly goal.

I [Localhost]$ mvn assembly:assembly

When the project is built using the assembly goal, the final archive contains a MANIFEST . MF file with
the specified module dependencies.

The example here shows the WAR plug-in but it also works with the JAR and EJB plug-ins (maven-
jar-plugin and maven-ejb-plugin).

<artifactId>maven-war-plugin</artifactId>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.javassist,
org.apache.velocity</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
</plugins>

‘ Example 3.4. Configured Module Dependencies in pom.xml

Report a bug

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
This task describes how to configure your application to exclude a list of module dependencies.

You can configure a deployable application to prevent implicit dependencies from being loaded. This is
commonly done when the application includes a different version of a library or framework than the
one that will be provided by the application server as an implicit dependency.

Prerequisites

1. You must already have a working software project that you want to exclude an implicit
dependency from.

2. You must know the name of the module to exclude. Refer to Section 3.8.1, “Implicit Module
Dependencies” for a list of implicit dependencies and their conditions.

Procedure 3.4. Add dependency exclusion configuration to jboss-deployment-structure.xml

1. If the application has no jboss-deployment-structure.xml file, create a new file called
jboss-deployment-structure.xml and add it to the project. This file is an XML file with
the root element of <jboss-deployment-structure> .

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5828-459894+%5BSpecified%5D&comment=Title%3A+Generate+MANIFEST.MF+entries+using+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5828-459894+14+Jun+2013+09%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

<jboss-deployment-structure>

</jboss-deployment-structure>

For a web application (WAR) add this file to the WEB- INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a<deployment> element within the document root and an <exclusions>
element within that.

<deployment>
<exclusions>

</exclusions>
</deployment>

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

I <module name="org.javassist" />

Example 3.5. Excluding two modules

<jboss-deployment-structure>
<deployment>
<exclusions>
<module name="org.javassist" />
<module name="org.dom4j" />
</exclusions>
</deployment>
</jboss-deployment-structure>

Report a bug

3.5.EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

Summary

This topic covers the steps required to exclude a subsystem from a deployment. This is done by editing
the jboss-deployment-structure.xml configuration file. Excluding a subsystem provides the
same effect as removing the subsystem, but it applies only to a single deployment.

Procedure 3.5. Exclude a Subsystem
1. Open the jboss-deployment-structure.xml file in a text editor.

2. Add the following XML inside the <deployment> tags:

<exclude-subsystems>
<subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

I

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4552-155458+%5BSpecified%5D&comment=Title%3A+Prevent+a+Module+Being+Implicitly+Loaded%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4552-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

3. Save the jboss-deployment-structure.xml file.

Result

The subsystem has been successfully excluded. The subsystem's deployment unit processors will no
longer run on the deployment.

Example 3.6. Example jboss-deployment-structure.xml file.
<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
<ear-subdeployments-isolated>true</ear-subdeployments-isolated>
<deployment>
<exclude-subsystems>

<subsystem name="resteasy" />
</exclude-subsystems>
<exclusions>
<module name="org.javassist" />
</exclusions>
<dependencies>
<module name="deployment.javassist.proxy" />
<module name="deployment.myjavassist" />
<module name="myservicemodule" services="import"/>
</dependencies>
<resources>
<resource-root path="my-library.jar" />
</resources>
</deployment>
<sub-deployment name="myapp.war">
<dependencies>
<module name="deployment.myear.ear.myejbjar.jar" />
</dependencies>
<local-last value="true" />
</sub-deployment>
<module name="deployment.myjavassist" >
<resources>
<resource-root path="javassist.jar" >
<filter>
<exclude path="javassist/util/proxy" />
</filter>
</resource-root>
</resources>
</module>
<module name="deployment.javassist.proxy" >
<dependencies>
<module name="org.javassist" >
<imports>
<include path="javassist/util/proxy" />
<exclude path="/**" />
</imports>
</module>
</dependencies>
</module>
</jboss-deployment-structure>

Report a bug

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+11440-386280+%5BSpecified%5D&comment=Title%3A+Exclude+a+Subsystem+from+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11440-386280+20+Mar+2013+12%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A
DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment

You can programmatically find or load classes and resources in your application code. The method you
choose will depend on a number of factors. This topic describes the methods available and provides
guidelines for when to use them.

Load a Class Using the Class.forName() Method

You can use the Class. forName() method to programmatically load and initialize classes. This
method has two signatures.

Class.forName(String className)

This signature takes only one parameter, the name of the class you need to load. With this
method signature, the class is loaded by the class loader of the current class and initializes the
newly loaded class by default.

Class.forName(String className, boolean initialize, ClassLoader loader)

This signature expects three parameters: the class name, a boolean value that specifies whether
to initialize the class, and the ClassLoader that should load the class.

The three argument signature is the recommended way to programmatically load a class. This
signature allows you to control whether you want the target class to be initialized upon load. It is
also more efficient to obtain and provide the class loader because the JVM does not need to
examine the call stack to determine which class loader to use. Assuming the class containing the
code is named CurrentClass, you can obtain the class's class loader using
Current.class.getClassLoader () method.

The following example provides the class loader to load and initialize the TargetClass class:

Example 3.7. Provide a class loader to load and initialize the TargetClass.

Class<?> targetClass = Class.forName("com.myorg.util.TargetClass",
true, CurrentClass.class.getClassLoader());

Find All Resources with a Given Name

If you know the name and path of a resource, the best way to load it directly is to use the standard
JDK Class or ClassLoader API.

Load a Single Resource

To load a single resource located in the same directory as your class or another class in your
deployment, you can use the Class.getResourceAsStream() method.

Example 3.8. Load a single resource in your deployment.

InputStream inputStream =
CurrentClass.class.getResourceAsStream('"targetResourceName");

73

Development Guide

Load All Instances of a Single Resource

To load all instances of a single resource that are visible to your deployment's class loader, use
the Class.getClassLoader () .getResources(String resourceName) method, where
resourceName is the fully qualified path of the resource. This method returns an Enumeration
of all URL objects for resources accessible by the class loader with the given name. You can then
iterate through the array of URLs to open each stream using the openStream() method.

Example 3.9. Load all instances of a resource and iterate through the resulit.

Enumeration<URL> urls =
CurrentClass.class.getClassLoader().getResources("full/path/to/reso
urce");
while (urls.hasMoreElements()) {
URL url = urls.nextElement();
InputStream inputStream = null;
try {
inputStream = url.openStream();
// Process the inputStream

} catch(IOException ioException) {
// Handle the error
} finally {
if (inputStream != null) {
try {
inputStream.close();
} catch (Exception e) {

// ignore
}
}
}

}

NOTE

Because the URL instances are loaded from local storage, it is not necessary to

use the openConnection() or other related methods. Streams are much
- simpler to use and minimize the complexity of the code.

Load a Class File From the Class Loader

If a class has already been loaded, you can load the class file that corresponds to that class using
the following syntax:

Example 3.10. Load a class file for a class that has been loaded.

CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleNam

InputStream inputStream =
e() + ".class");

If the class is not yet loaded, you must use the class loader and translate the path:

74

CHAPTER 3. CLASS LOADING AND MODULES

InputStream inputStream =
CurrentClass.class.getClassLoader().getResourceAsStream(className.rep

String className = '"com.myorg.util.TargetClass"
lace('.', '/') + ".class");

‘ Example 3.11. Load a class file for a class that has not been loaded.

Report a bug

3.6.2. Programmatically Iterate Resources in a Deployment

The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc
for the JBoss Modules APl is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use
these APIs, you must add the following dependency to the MANIFEST . MF:

I Dependencies: org.jboss.modules

It is important to note that while these APIs provide increased flexibility, they will also run much more
slowly than a direct path lookup.

This topic describes some of the ways you can programmatically iterate through resources in your
application code.

List Resources Within a Deployment and Within All Imports

There are times when it is not possible to look up resources by the exact path. For example, the
exact path may not be known or you may need to examine more than one file in a given path. In this
case, the JBoss Modules library provides several APlIs for iterating all deployment resources. You
can iterate through resources in a deployment by utilizing one of two methods.

Iterate All Resources Found in a Single Module

The ModuleClassLoader.iterateResources() method iterates all the resources within
this module class loader. This method takes two arguments: the starting directory name to
search and a boolean that specifies whether it should recurse into subdirectories.

The following example demonstrates how to obtain the ModuleClassLoader and obtain the
iterator for resources in the bin/ directory, recursing into subdirectories.

TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
moduleClassLoader.iterateResources("bin", true);

| Example 3.12. Find resources in the "bin" directory, recursing into subdirectories.

The resultant iterator may be used to examine each matching resource and query its name and
size (if available), open a readable stream, or acquire a URL for the resource.

Iterate All Resources Found in a Single Module and Imported Resources

The Module.iterateResources() method iterates all the resources within this module class
loader, including the resources that are imported into the module. This method returns a much

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+24376-556084+%5BSpecified%5D&comment=Title%3A+Programmatically+Load+Classes+and+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24376-556084+15+Nov+2013+05%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://docs.jboss.org/jbossmodules/1.3.0.Final/api/

Development Guide

larger set than the previous method. This method requires an argument, which is a filter that
narrows the result to a specific pattern. Alternatively, PathFilters.acceptAll() can be supplied to
return the entire set.

| Example 3.13. Find the entire set of resources in this module, including imports.

TargetClass.class.getClassLoader();
Module module = moduleClasslLoader.getModule();
Iterator<Resource> moduleResources =

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
module.iterateResources(PathFilters.acceptAll());

Find All Resources That Match a Pattern

If you need to find only specific resources within your deployment or within your deployment's full
import set, you need to filter the resource iteration. The JBoss Modules filtering APIs give you
several tools to accomplish this.

Examine the Full Set of Dependencies

If you need to examine the full set of dependencies, you can use the
Module.iterateResources() method's PathFilter parameter to check the name of each
resource for a match.

Examine Deployment Dependencies

If you need to look only within the deployment, use the
ModuleClassLoader.iterateResources() method. However, you must use additional
methods to filter the resultant iterator. The PathFilters.filtered() method can provide a
filtered view of a resource iterator this case. The PathFilters class includes many static
methods to create and compose filters that perform various functions, including finding child
paths or exact matches, or matching an Ant-style "glob" pattern.

Additional Code Examples For Filtering Resouces

The following examples demonstrate how to filter resources based on different criteria.

TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/messages.properties"),

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
moduleClassLoader.iterateResources("", true));

| Example 3.14. Find all files named "messages.properties” in your deployment.

TargetClass.class.getClassLoader();

Example 3.15. Find all files named "messages.properties" in your deployment and imports.
Module module = moduleClasslLoader.getModule();

| ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)

76

CHAPTER 3. CLASS LOADING AND MODULES

Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.match("**/message.properties));

TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/my-resources/**"),

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
moduleClassLoader.iterateResources("", true));

| Example 3.16. Find all files inside any directory named "my-resources” in your deployment.

TargetClass.class.getClassLoader();

Module module = moduleClasslLoader.getModule();

Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.any(PathFilters.match("**/messages

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
"), PathFilters.match("**/errors"));

| Example 3.17. Find all files named "messages" or "errors" in your deployment and imports.

TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("path/form/of/packagename",

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
false);

| Example 3.18. Find all files in a specific package in your deployment.

Report a bug

3.7. CLASS LOADING AND SUBDEPLOYMENTS

3.7.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR.
e Each WAR and EJB JAR subdeployment is a module.

e The contents of the 1ib/ directory in the root of the EAR archive is a module. This is called the
parent module.

77

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+24377-549761+%5BSpecified%5D&comment=Title%3A+Programmatically+Iterate+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24377-549761+31+Oct+2013+06%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

These modules have the same behaviour as any other module with the following additional implicit
dependencies:

e WAR subdeployments have implicit dependencies on the parent module and any EJB JAR
subdeployments.

e EJB JAR subdeployments have implicit dependencies on the parent module and any other EJB
JAR subdeployments.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another
subdeployment as would be done for any other module.

The implicit dependencies described above occur because JBoss EAP 6 has subdeployment class
loader isolation disabled by default.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE 6 specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST . MF file of
each subdeployment.

Report a bug

3.7.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default a subdeployment can access the resources of other subdeployments.

If a subdeployment should not access the resources of other subdeployments (strict subdeployment
isolation is required) then this can be enabled.

Report a bug

3.7.3. Disable Subdeployment Class Loader Isolation Within a EAR

This task shows you how to disable Subdeployment class loader isolation in an EAR deployment by
using a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled it is not possible to add a
WAR deployment as a dependency.

1. Add the deployment descriptor file
Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF
directory of the EAR if it doesn't already exist and add the following content:

<jboss-deployment-structure>

</jboss-deployment-structure>

78

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4354-459895+%5BSpecified%5D&comment=Title%3A+Modules+and+Class+Loading+in+Enterprise+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4354-459895+14+Jun+2013+09%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4565-373289+%5BSpecified%5D&comment=Title%3A+Subdeployment+Class+Loader+Isolation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4565-373289+12+Feb+2013+12%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

2. Add the <ear-subdeployments-isolated> element
Add the <ear -subdeployments-isolated> element to the jhoss-deployment-
structure.xml file if it doesn't already exist with the content of false.

I <ear-subdeployments-isolated>false</ear-subdeployments-isolated>

Result:

Subdeployment class loader isolation will now be disabled for this EAR deployment. This means that
the subdeployments of the EAR will have automatic dependencies on each of the non-WAR
subdeployments.

Report a bug
3.8. REFERENCE

3.8.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies
and the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsyste Modules Always added Modules Conditional Conditions

m added

Core . . - -
Server e Jjavax.api

e sun.jdk

e org.jboss.
logging

e org.apache
.log4j

e org.apache
.commons.1

ogging
e org.slf4j

e org.jboss.
logging.ju
1-to-
slf4j-stub

EE) -))
Subsyste e Javaee.api

m

79

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4566-155458+%5BSpecified%5D&comment=Title%3A+Disable+Subdeployment+Class+Loader+Isolation+Within+a+EAR%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4566-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

80

Subsyste

m

EJB3
subsystem

JAX-RS
(Resteasy)
subsystem

Modules Always added

e javax.xml.
bind.api

Modules Conditional
added

e javaee.api

e org.jboss.
resteasy.r
esteasy-
atom-
provider

e org.jboss.
resteasy.r
esteasy-
cdi

e org.jboss.
resteasy.r
esteasy-
jaxrs

e org.jboss.
resteasy.r
esteasy-
jaxb-
provider

e org.jboss.
resteasy.r
esteasy-
jackson-
provider

e org.jboss.
resteasy.r
esteasy-
jsapi

e org.jboss.
resteasy.r
esteasy-
multipart-
provider

e org.jboss.
resteasy.a
sync-http-
servlet-30

Conditions

The presence of ejb-jar .xml in
valid locations in the deployment, as
specified by the Java EE 6
specification or the presence of
annotation-based EJBs (e.g.
@Stateless,@Stateful,
@MessageDriven etc)

The presence of JAX-RS annotations
in the deployment

CHAPTER 3. CLASS LOADING AND MODULES

Subsyste Modules Always added Modules Conditional Conditions

m added

JCA sub- . . . If the deployment is a resource
system ¢ Javax.reso * Javax.jms. j4aptor (RAR) deployment.

urce.api api

e javax.vali
dation.api

e org.jboss.
logging

e org.jboss.
ironjacama
r.api

e org.jboss.
ironjacama
r.impl

e org.hibern
ate.valida

tor
JPA . . . The presence of an
(Hibernate y i :}c’:’;éze;; * Javaee.apl gpersistenceUnit or
) i « org.jhoss. @Pers;stenceContgxt
subsystem as.jpa annotation, or a<persistence-
unit-ref>or<persistence-
e org.hibern context-ref>inadeployment
ate descriptor.
e Org.javass
ist
SAR - . The deployment is a SAR archive
Subsyste e org.jboss.
m logging
e org.jboss.
modules
Security . - -
Subsyste e oOrg.picket
m box

81

Development Guide

Subsyste Modules Always added Modules Conditional Conditions
m added
Web - . . The deployment is a WAR archive.
Subsyste e Javaee.api JavaServer Faces(JSF) is only added
m e COMmM.sun.js ifused.
f-impl
e org.hibern
ate.valida
tor
e org.jboss.
as.web
e org.jboss.
logging
Web . - -
Services e org.jboss.
Subsyste ws.api
m e org.jboss.
ws.spi
Weld (CDI) - . If abeans. xml file is detected in the
Subsyste e Javax.pers . josioyment
m istence.ap

i
e javaee.api

e Org.javass
ist

e org.jboss.
intercepto
r

e org.jboss.
as.weld

e org.jboss.
logging

e org.jboss.
weld.core

e org.jboss.
weld.api

e org.jboss.
weld.spi

Report a bug

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4353-378345+%5BSpecified%5D&comment=Title%3A+Implicit+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4353-378345+04+Mar+2013+11%3A09+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 3. CLASS LOADING AND MODULES

3.8.2. Included Modules

e asm.asm
e ch.qos.cal10n

e com.google.guava

e com.h2database.h2

e com.sun.jsf-impl

e com.sun.jsf-impl

e com.sun.xml.bind

e com.sun.xml.messaging.saaj
e gnu.getopt

e javaee.api

e javax.activation.api

e javax.annotation.api

e javax.api

e javax.ejb.api

e javax.el.api

e javax.enterprise.api

e javax.enterprise.deploy.api
e javax.faces.api

e javax.faces.api

e javax.inject.api

e javax.interceptor.api

e javax.jms.api

e javax.jws.api

e javax.mail.api

e javax.management.j2ee.api
e javax.persistence.api

e javax.resource.api

83

Development Guide

e javax.rmi.api

e javax.security.auth.message.api
e javax.security.jacc.api

e javax.servlet.api

e javax.servlet.jsp.api

e javax.servlet.jstl.api

e javax.transaction.api

e javax.validation.api

e javax.ws.rs.api

e javax.wsdl4j.api

e javax.xml.bind.api

e javax.xml.jaxp-provider

e javax.xml.registry.api

e javax.xml.rpc.api

e javax.xml.soap.api

e javax.xml.stream.api

e javax.xml.ws.api

e jline

e net.sourceforge.cssparser
e net.sourceforge.htmlunit
e net.sourceforge.nekohtml
e nu.xom

e org.antlr

e org.apache.ant

e org.apache.commons.beanutils
e org.apache.commons.cli

e org.apache.commons.codec

e org.apache.commons.collections

84

org.

org.

org.

org.

org.

org.

org.

org

org

org

org

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

apache.commons.io
apache.commons.lang
apache.commons.logging
apache.commons. pool
apache.cxf
apache.httpcomponents

apache.james.mime4j

.apache.log4j
.apache.neethi
.apache.santuario.xmlsec

.apache.velocity

apache.ws.scout
apache.ws.security
apache.ws.xmlschema

apache.xalan

apache.xerces

apache.xml-resolver
codehaus. jackson. jackson-core-asl
codehaus. jackson. jackson-jaxrs
codehaus. jackson. jackson-mapper-asl
codehaus. jackson. jackson-xc
codehaus.woodstox

dom4j

hibernate

hibernate.envers
hibernate.infinispan
hibernate.validator

hornetq

CHAPTER 3. CLASS LOADING AND MODULES

85

Development Guide

86

org

org.

org.

org.

org.

org.

org.

org

org

org

org

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org

org

.hornetq.ra
infinispan
infinispan
infinispan
infinispan
jacorb

javassist

.cachestore. jdbc
.cachestore.remote

.client.hotrod

.jaxen

.jboss.as
.jboss.as
.jboss.as
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
as

.jboss.

.jboss.as

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

.aggregate
.appclient
.cli
clustering.
clustering.
clustering.
clustering.
clustering.
clustering.
clustering.
clustering.
clustering.

clustering.

cmp

connector

console

controller

controller-
.deployment -

.deployment -

api

common
ejb3.infinispan
impl

infinispan
jgroups

service
singleton
web.infinispan

web.spi

client
repository

scanner

org.

org.

org.

org.

org

org.

org.

org.

org.

org

org.

org.

org.

org.

org

org.

org.

org.

org.

org

org.

org.

org.

org.

org

org.

org.

org.

jboss.
jboss.
jboss.
jboss.
.jboss.
jboss.
jboss.
jboss.
jboss.
.jboss.
jboss.
jboss.
jboss.
jboss.
.jboss.
jboss.
jboss.
jboss.
jboss.
.jboss.
jboss.
jboss.
jboss.
jboss.
.jboss.
jboss.
jboss.

jboss.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as.

as

as.

as.

as.

domain-add-user
domain-http-error-context
domain-http-interface
domain-management

ee

ee.deployment

ejb3

embedded

host-controller

.jacorb

jaxr

jaxrs

jdr

jmx

jpa
jpa.hibernate
jpa.hibernate
jpa.hibernate.infinispan
jpa.openjpa
jpa.spi
jpa.util
jsr77

logging

mail

.management-client-content

messaging
modcluster

naming

CHAPTER 3. CLASS LOADING AND MODULES

87

Development Guide

88

org

org.

org.

org.

org.

org.

org.

org

org

org

org

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org

org

.jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
.jboss.
.jboss.
.jboss.
.jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
.jboss.

.jboss.

as.network

as.osgi
as.platform-mbean
as.pojo
as.process-controller
as.protocol

as.remoting

as.sar

as.security

as.server

as.standalone
as.threads
as.transactions

as.web

as.webservices
as.webservices.server.integration
as.webservices.server.jaxrpc-integration
as.weld

as.xts

classfilewriter
com.sun.httpserver
common-core

dmr

ejb-client

ejb3

iiop-client
integration.ext-content

interceptor

CHAPTER 3. CLASS LOADING AND MODULES

org.jbhoss.interceptor.spi
org.jbhoss.invocation
org.jbhoss.ironjacamar.api
org.jbhoss.ironjacamar.impl
org.jboss.ironjacamar.jdbcadapters
org.jbhoss. jandex
org.jbhoss.jaxbintros
org.jhoss.jhoss-transaction-spi
org.jbhoss.jsfunit.core
org.jhoss.jts
org.jbhoss.jts.integration
org.jbhoss.logging
org.jbhoss.logmanager
org.jhoss.logmanager.log4j
org.jboss.marshalling
org.jboss.marshalling.river
org.jbhoss.metadata
org.jboss.modules

org.jhoss.msc

org.jbhoss.netty
org.jbhoss.osgi.deployment
org.jhoss.osgi. framework
org.jbhoss.osgi.resolver
org.jbhoss.osgi.spi
org.jbhoss.osgi.vfs
org.jboss.remoting3
org.jhoss.resteasy.resteasy-atom-provider

org.jhoss.resteasy.resteasy-cdi

89

Development Guide

90

org

org.

org.

org.

org.

org.

org.

org

org

org

org

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org.

org

org

.jboss.

.jboss.
.jboss.
.jboss.

.jboss.

.jboss.

.jboss.

jboss.
jboss.
jboss.
jboss.
jboss.

jboss.

jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.
jboss.

jboss.

resteasy.resteasy-jackson-provider

resteasy.resteasy-jaxb-provider

resteasy.resteasy-jaxrs

resteasy.resteasy-jsapi

resteasy.resteasy-multipart-provider

sasl

security.negotiation

security.xacml

shrinkwrap.core

staxmapper

stdio

threads

vfs

weld.api

weld.core

weld.spi

WS.

WS.

WS.

WS.

WS.

WS.

WS.

WS.

WS.

WS.

WS

WS

api

common

cxf.jbossws-cxf-client
cxf.jbossws-cxf-factories
cxf.jbossws-cxf-server
cxf.jbossws-cxf-transports-httpserver
jaxws-client
jaxws-jboss-httpserver-httpspi
native.jbossws-native-core

native.jbossws-native-factories

.hative.jbossws-native-services

.saaj-impl

CHAPTER 3. CLASS LOADING AND MODULES

e org.jboss.ws.spi

e org.jboss.ws.tools.common

e org.jboss.ws.tools.wsconsume
e org.jboss.ws.tools.wsprovide
e org.jboss.xb

e org.jboss.xnio

e org.jboss.xnio.nio

e org.jboss.xts

e org.jdom

e org.jgroups

e org.joda.time

e org.junit

e org.omg.api

e org.osgi.core

e org.picketbox

e org.picketlink

e org.python.jython.standalone
e org.scannotation.scannotation
e org.slf4j

e org.slf4j.ext

e org.slf4j.impl

e org.slf4j.jcl-over-slfaj

e org.w3c.css.sac

e sun.jdk

Report a bug

3.8.3. JBoss Deployment Structure Deployment Descriptor Reference

The key tasks that can be performed using this deployment descriptor are:

e Defining explicit module dependencies.

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+3891-299121+%5BSpecified%5D&comment=Title%3A+Included+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3891-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

e Preventing specific implicit dependencies from loading.

e Defining additional modules from the resources of that deployment.

e Changing the subdeployment isolation behaviour in that EAR deployment.
e Adding additional resource roots to a module in an EAR.

Report a bug

92

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4614-155458+%5BSpecified%5D&comment=Title%3A+JBoss+Deployment+Structure+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4614-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 4. GLOBAL VALVES

CHAPTER 4. GLOBAL VALVES

4.1. ABOUT VALVES

A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is
inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it
on or perform any other processing such as authentication or even cancelling the request. Valves are
usually packaged with an application.

Version 6.1.0 and later supports global valves.

Report a bug

4.2. ABOUT GLOBAL VALVES

A Global Valve is a valve that is inserted into the request processing pipeline of all deployed
applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6.
Global valves are configured in the web subsystem.

Only version 6.1.0 and later supports global valves.

Report a bug

4.3. ABOUT AUTHENTICATOR VALVES

An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-
class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the
authenticate() method.

This can be used to implement additional authentication schemes.

Report a bug

4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE

Valves that are not installed as global valves must be included with your application and configured in
the jboss-web.xml deployment descriptor.

IMPORTANT

Valves that are installed a global valves are automatically applied to all deployed
applications.

Prerequisites

e The valve must be created and included in your application's classpath. This can be done by
either including it in the application's WAR file or any module that is added as a dependency.
Examples of such modules include a static module installed on the server or a JAR file in the
1lib/ directory of an EAR archive if the WAR is deployed in an EAR.

e The application must include a jboss-web.xml deployment descriptor.

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14168-431207+%5BSpecified%5D&comment=Title%3A+About+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14168-431207+04+Apr+2013+09%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14169-458741+%5BSpecified%5D&comment=Title%3A+About+Global+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14169-458741+11+Jun+2013+14%3A05+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14172-431207+%5BSpecified%5D&comment=Title%3A+About+Authenticator+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14172-431207+04+Apr+2013+09%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Procedure 4.1. Configure an application for a local valve

1. Add Valve element
Add a valve element with the attributes of name and class-name to the application's jboss -
web . xml file. Name is a unique identifier for the valve and class-name is the name of the valve
class.

<valve>
<class-name>VALVECLASSNAME</class-name>
</valve>

2. Specific Parameters
If the valve has configurable parameters, add a param child element to the valve element for
each parameter, specifying the name and value for each.

I <param name="PARAMNAME" value = "VALUE" />

When the application is deployed, the valve will be enabled for the application with the specified
configuration.

<param name="restricteduseragents" value = "A.*MS Web Services
Client Protocol.*$" />

</valve>

Example 4.1. jboss-web.xml valve configuration
<valve>
<class-name="org.jboss.samplevalves.restrictedUserAgentsvalve">

Report a bug

4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR
VALVE

Configuring an application to use an authenticator valve requires the valve to be installed and
configured (either local to the application or as a global valve) and the web . xm1 deployment
descriptor of the application to be configured. In the simplest case, the web . xml configuration is the
same as using BASIC authentication except the auth-method child element of 1login-configis set
to the name of the valve performing the configuration.

Prerequisites

e Authentication valve must already be created.

e |f the authentication valve is a global valve then it must already be installed and configured,
and you must know the name that it was configured as.

e You need to know the realm name of the security realm that the application will use.

If you do not know the valve or security realm name to use, ask your server administrator for this
information.

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14173-545459+%5BSpecified%5D&comment=Title%3A+Configure+a+Web+Application+to+use+a+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14173-545459+10+Oct+2013+14%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 4. GLOBAL VALVES

Procedure 4.2. Configure an Application to use an Authenticator Valve

1. Configure the valve
When using a local valve, it must be configured in the applications jboss-web . xml
deployment descriptor. Refer to Section 4.4, “Configure a Web Application to use a Valve” .

When using a global valve, this is unnecessary.

2. Add security configuration to web.xml
Add the security configuration to the web.xml file for your application, using the standard
elements such as security-constraint, login-config, and security-role. In the login-config
element, set the value of auth-method to the name of the authenticator valve. The realm-name
element also needs to be set to the name of the JBoss security realm being used by the
application.

<login-config>
<auth-method>VALVE_NAME</auth-method>
<realm-name>REALM_NAME</realm-name>
</login-config>

When the application is deployed, the authentication of requests is handled by the configured
authentication valve.

Report a bug

4.6. CREATE A CUSTOM VALVE

A Valve is a Java class that gets inserted into the request processing pipeline for an application before
the application's servlet filters. This can be used to modify the request or perform any other behavior.
This task demonstrates the basic steps required for implementing a valve.

Procedure 4.3. Create a Custom Valve

1. Create the Valve class
Create a subclass of org.apache.catalina.valves.ValveBase.

package org.jboss.samplevalves;
import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;

import org.apache.catalina.connector.Response;

public class restrictedUserAgentsValve extends ValveBase {
}

2. Implement the invoke method
The invoke () method is called when this valve is executed in the pipeline. The request and
response objects are passed as parameters. Perform any processing and modification of the
request and response here.

public void invoke(Request request, Response response)

{

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14174-549377+%5BSpecified%5D&comment=Title%3A+Configure+a+Web+Application+to+use+an+Authenticator+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14174-549377+29+Oct+2013+14%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

96

I }

3. Invoke the next pipeline step
The last thing the invoke method must do is invoke the next step of the pipeline and pass the
modified request and response objects along. This is done using the getNext () .invoke()
method

I getNext().invoke(request, response);

4. Optional: Specify parameters

If the valve must be configurable, enable this by adding a parameter. Do this by adding an
instance variable and a setter method for each parameter.

private String restrictedUserAgents = null;

public void setRestricteduseragents(String mystring)

{
¥

this.restrictedUserAgents = mystring;

Example 4.2. Sample Custom Valve

package org.jboss.samplevalves;

import java.io.IOException;
import java.util.regex.Pattern;

import javax.servlet.ServletException;

import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;

public class restrictedUserAgentsValve extends ValveBase
{

private String restrictedUserAgents = null;

public void setRestricteduseragents(String mystring)

{
}

this.restrictedUserAgents = mystring;

public void invoke(Request request, Response response) throws
IOException, ServletException
{
String agent = request.getHeader("User-Agent");
System.out.println("user-agent: " + agent + " : " +
restrictedUserAgents);
if (Pattern.matches(restrictedUserAgents, agent))
{
System.out.println("user-agent: " + agent + " matches: " +
restrictedUserAgents);
response.addHeader ("Connection", "close");

}

CHAPTER 4. GLOBAL VALVES

getNext().invoke(request, response);
}
}

Report a bug

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14175-431208+%5BSpecified%5D&comment=Title%3A+Create+a+Custom+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14175-431208+04+Apr+2013+09%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

CHAPTER 5. LOGGING FOR DEVELOPERS

5.1.INTRODUCTION

5.1.1. About Logging

Logging is the practice of recording a series of messages from an application that provide a record (or
log) of the application's activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern logging frameworks in Java also include other details such as the exact time and the
origin of the message.

Report a bug

5.1.2. Application Logging Frameworks Supported By JBoss LogManager

JBoss LogManager supports the following logging frameworks:
e JBoss Logging - included with JBoss EAP 6
e Apache Commons Logging - http://commons.apache.org/logging/
e Simple Logging Facade for Java (SLF4J) - http://www.sIf4j.org/
e Apache log4j - http://logging.apache.org/log4j/1.2/

e Java SE Logging (java.util.logging) -
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.htmi

Report a bug

5.1.3. About Log Levels

Log levels are an ordered set of enumerated values that indicate the nature and severity of a log
message. The level of a given log message is specified by the developer using the appropriate methods
of their chosen logging framework to send the message.

JBoss EAP 6 supports all the log levels used by the supported application logging frameworks. The
most commonly used six log levels are (in order of lowest to highest): TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

Log levels are used by log categories and handlers to limit the messages they are responsible for. Each
log level has an assigned numeric value which indicates its order relative to other log levels. Log
categories and handlers are assigned a log level and they only process log messages of that level or
higher. For example a log handler with the level of WARN will only record messages of the levels WARN,
ERROR and FATAL.

Report a bug

5.1.4. Supported Log Levels

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4576-155458+%5BSpecified%5D&comment=Title%3A+About+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4576-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4496-458824+%5BSpecified%5D&comment=Title%3A+Application+Logging+Frameworks+Supported+By+JBoss+LogManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4496-458824+11+Jun+2013+15%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8869-458826+%5BSpecified%5D&comment=Title%3A+About+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8869-458826+11+Jun+2013+16%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 5. LOGGING FOR DEVELOPERS

Table 5.1. Supported Log Levels

Log Level VEINT) Description

FINEST 300 -

FINER 400 -

TRACE 400 Use for messages that provide detailed information about the running state of an
application. Log messages of TRACE are usually only captured when debugging an
application.

DEBUG 500 Use for messages that indicate the progress individual requests or activities of an
application. Log messages of DEBUG are usually only captured when debugging an
application.

FINE 500 -

CONFIG 700 -

INFO 800 Use for messages that indicate the overall progress of the application. Often used
for application startup, shutdown and other major lifecycle events.

WARN 900 Use to indicate a situation that is not in error but is not considered ideal. May

indicate circumstances that may lead to errors in the future.

WARNING 900 -

ERROR 1000 Use to indicate an error that has occurred that could prevent the current activity
or request from completing but will not prevent the application from running.

SEVERE 1000 -

FATAL 1100 Use to indicate events that could cause critical service failure and application
shutdown and possibly cause JBoss EAP 6 to shutdown.

Report a bug

5.1.5. Default Log File Locations

These are the log files that get created for the default logging configurations. The default configuration
writes the server log files using periodic log handlers

Table 5.2. Default Log File for a standalone server

Log File Description

EAP_HOME/standalone/log/server.log The Server Log. Contains all server log messages,
including server startup messages.

Table 5.3. Default Log Files for a managed domain

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+8872-458827+%5BSpecified%5D&comment=Title%3A+Supported+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8872-458827+11+Jun+2013+16%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Log File Description

EAP_HOME/domain/log/host - Host Controller boot log. Contains log messages
controller.log related to the startup of the host controller.
EAP_HOME/domain/log/process- Process controller boot log. Contains log messages
controller.log related to the startup of the process controller.

EAP_HOME/domain/servers/SERVERNAME/ The server log for the named server. Contains all log
log/server.log messages for that server, including server startup
messages.

Report a bug

5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

5.2.1. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss EAP 6.

JBoss Logging provide an easy way to add logging to an application. You add code to your application
that uses the framework to send log messages in a defined format. When the application is deployed to
an application server, these messages can be captured by the server and displayed and/or written to
file according to the server's configuration.

Report a bug

5.2.2. Features of JBoss Logging

e Provides an innovative, easy to use "typed" logger.

e Full support for internationalization and localization. Translators work with message bundles in
properties files while developers can work with interfaces and annotations.

e Build-time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development.

Report a bug

5.2.3. Add Logging to an Application with JBoss Logging

To log messages from your application you create a Logger object (org. jboss.logging. Logger)
and call the appropriate methods of that object. This task describes the steps required to add support
for this to your application.

Prerequisites

You must meet the following conditions before continuing with this task:
e If you are using Maven as your build system, the project must already be configured to include

the JBoss Maven Repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven
Repository Using the Maven Settings”

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4495-453128+%5BSpecified%5D&comment=Title%3A+Default+Log+File+Locations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4495-453128+27+May+2013+13%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4575-459896+%5BSpecified%5D&comment=Title%3A+About+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4575-459896+14+Jun+2013+09%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4578-155458+%5BSpecified%5D&comment=Title%3A+Features+of+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4578-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 5. LOGGING FOR DEVELOPERS

e The JBoss Logging JAR files must be in the build path for your application. How you do this
depends on whether you build your application using JBoss Developer Studio or with Maven.

o When building using JBoss Developer Studio this can be done selecting Project ->
Properties from the JBoss Developer Studio menu, selecting Targeted Runtimes and
ensuring the runtime for JBoss EAP 6 is checked.

o When building using Maven this can be done by adding the following dependency
configuration to your project's pom. xml file.

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>3.1.2.GA-redhat-1</version>
<scope>provided</scope>

</dependency>

You do not need to include the JARs in your built application because JBoss EAP 6 provides
them to deployed applications.

Once your project is setup correctly. You need to follow the following steps for each class that you
want to add logging to:

1. Add imports
Add the import statements for the JBoss Logging class namespaces that you will be using. At a
minimum you will need to import import org.jboss.logging.Logger.

I import org.jboss.logging.Logger;

2. Create a Logger object
Create aninstance of org. jboss.logging.Logger and initialize it by calling the static
method Logger .getLogger (Class). Red Hat recommends creating this as a single instance
variable for each class.

private static final Logger LOGGER =
Logger.getLogger(HellowWorld.class);

3. Add logging messages
Add calls to the methods of the Logger object to your code where you want it to send log
messages. The Logger object has many different methods with different parameters for
different types of messages. The easiest to use are:

debug(Object message)
info(Object message)

error(Object message)
trace(Object message)

fatal(Object message)

101

Development Guide

These methods send a log message with the corresponding log level and the message
parameter as a string.

I LOGGER.error("Configuration file not found.");

For the complete list of JBoss Logging methods refer to the org. jboss.logging package in
the JBoss EAP 6 API Documentation.

Example 5.1. Using JBoss Logging when opening a properties file

This example shows an extract of code from a class that loads customized configuration for an
application from a properties file. If the specified file is not found, a ERROR level log message is
recorded.

import org.jboss.logging.Logger;
public class LocalSystemConfig

{
private static final Logger LOGGER =

Logger.getLogger(LocalSystemConfig.class);

public Properties openCustomProperties(String configname) throws
CustomConfigFileNotFoundException

{

Properties props = new Properties();
try
{

LOGGER.info("Loading custom configuration from "+configname);
props.load(new FileInputStream(configname));

}

catch(IOException e) //catch exception in case properties file
does not exist

{

LOGGER.error("Custom configuration file ("+configname+") not
found. Using defaults.");
throw new CustomConfigFileNotFoundException(configname);

}

return props,;

Report a bug
5.3. LOGGING PROFILES

5.3.1. About Logging Profiles

IMPORTANT

Logging Profiles are only available in version 6.1.0 and later.

Logging Profiles are independent sets of logging configuration that can be assigned to deployed

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4501-459897+%5BSpecified%5D&comment=Title%3A+Add+Logging+to+an+Application+with+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4501-459897+14+Jun+2013+09%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 5. LOGGING FOR DEVELOPERS

applications. A logging profile can define handlers, categories and a root logger just like the regular
logging subsystem but cannot refer to configuration in other profiles or the main logging subsystem.
The design of logging profiles mimics the logging subsystem for ease of configuration.
The use of logging profiles allows administrators to create logging configuration that is specific to one
or more applications without affecting any other logging configuration. Because each profile is defined
in the server configuration it means that the logging configuration can be changed without requiring
that the affected applications be re-deployed.
Each logging profile can have the following configuration:

e A unique name. This is required.

e Any number of log handlers.

e Any number of log categories.

e Up to oneroot logger.

An application can specify a logging profile to use in it's MANIFEST.MF file, using the Logging-profile
attribute.

IMPORTANT

Logging profiles cannot be configured using the management console.
Report a bug

5.3.2. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST . MF file.

Prerequisites:

1. You must know the name of the logging profile that has been setup on the server for this
application to use. Ask your server administrator for the name of the profile to use.

Procedure 5.1. Add Logging Profile configuration to an Application

e Edit MANIFEST.MF
If your application does not have a MANIFEST . MF file: create one with the following content,
replacing NAME with the required profile name.

Manifest-Version: 1.0
Logging-Profile: NAME

If your application already has a MANIFEST . MF file: add the following line to it, replacing NAME
with the required profile name.

I Logging-Profile: NAME

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14116-429839+%5BSpecified%5D&comment=Title%3A+About+Logging+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14116-429839+03+Apr+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

NOTE

If you are using Maven and the maven-war -plugin, you can put your MANIFEST.MF
fileinsrc/main/resources/META-INF/ and add the following configuration to your
pom. xml file.

<plugin>
<artifactId>maven-war-plugin</artifactId>
<configuration>
<archive>
<manifestFile>src/main/resources/META-
INF/MANIFEST.MF</manifestFile>
</archive>
</configuration>
</plugin>

When the application is deployed it will use the configuration in the specified logging profile for its log
messages.

Report a bug

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+14120-429839+%5BSpecified%5D&comment=Title%3A+Specify+a+Logging+Profile+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14120-429839+03+Apr+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.1.INTRODUCTION

6.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different
languages and regions without engineering changes.

Report a bug

6.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

Report a bug

6.2. JBOSS LOGGING TOOLS

6.2.1. Overview

6.2.1.1. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated usingorg. jboss.logging annotations. It is not necessary to implement the interfaces,
JBoss Logging Tools does this at compile time. Once defined you can use these methods to log
messages or obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized
by creating a properties file for each bundle containing the translations for a specific language and
region. JBoss Logging Tools can generate template property files for each bundle that can then be
edited by a translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.
Message ids and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log
messages. With adequate documentation, the meaning of a log message can be determined from the
identifiers regardless of the language that the message was written in.

Report a bug

6.2.1.2. JBoss Logging Tools Quickstart

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4891-332111+%5BSpecified%5D&comment=Title%3A+About+Internationalization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4891-332111+09+Nov+2012+05%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4892-332110+%5BSpecified%5D&comment=Title%3A+About+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4892-332110+09+Nov+2012+05%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4890-332067+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Internationalization+and+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4890-332067+09+Nov+2012+05%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that
demonstrates the features of JBoss Logging Tools. It has been used extensively in this documentation
for code samples.

Refer to this quickstart for a complete working demonstration of all the features described in this
documentation.

Report a bug

6.2.1.3. Message Logger

A Message Logger is an interface that is used to define internationalized log messages. A Message
Logger interface is annotated with @org. jboss.logging.MessageLogger.

Report a bug

6.2.1.4. Message Bundle

A message bundle is an interface that can be used to define generic translatable messages and
Exception objects with internationalized messages . A message bundle is not used for creating log
messages.

A message bundle interface is annotated with @org. jboss.logging.MessageBundle.

Report a bug

6.2.1.5. Internationalized Log Messages

Internationalized Log Messages are log messages created by defining a method in a Message Logger.
The method must be annotated with the @LogMessage and @Message annotations and specify the log
message using the value attribute of @Message. Internationalized log messages are localized by
providing translations in a properties file.

JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Report a bug

6.2.1.6. Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a message
bundle. Message bundle methods that return Java Exception objects can be annotated to define a
default exception message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale. Internationalized exceptions can also have project
codes and message ids assigned to them.

Report a bug

6.2.1.7. Internationalized Messages

An internationalized message is a string returned from a method defined in a message bundle.
Message bundle methods that return Java String objects can be annotated to define the default
content of that String, known as the message. The default message is replaced with a translation if one
is found in a matching properties file for the current locale.

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6715-432919+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6715-432919+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6716-432920+%5BSpecified%5D&comment=Title%3A+Message+Logger%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6716-432920+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6717-432921+%5BSpecified%5D&comment=Title%3A+Message+Bundle%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6717-432921+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6714-168867+%5BSpecified%5D&comment=Title%3A+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6714-168867+27+Jul+2012+21%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6718-432922+%5BSpecified%5D&comment=Title%3A+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6718-432922+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION
Report a bug

6.2.1.8. Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from
one interface for one locale, country, and variant. Translation properties files are used by the JBoss
Logging Tools to generated the classes that return the messages.

Report a bug

6.2.1.9. JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message Id. Project codes are defined with the
projectcCode attribute of the @MessageLogger annotation.

Report a bug

6.2.1.10. JBoss Logging Tools Message Ids

Message Ids are numbers, that when combined with a project code, uniquely identify a log message.
Message Ids are displayed at the beginning of each log message, appended to the project code for the
message. Message Ids are defined with the id attribute of the @Message annotation.

Report a bug
6.2.2. Creating Internationalized Loggers, Messages and Exceptions

6.2.2.1. Create Internationalized Log Messages

This task shows you how to use JBoss Logging Tools to create internationalized log messages by
creating MessagelLogger interfaces. It does not cover all optional features or the localization of those
log messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project. Refer to Section 6.2.6.1, “JBoss Logging Tools
Maven Configuration”.

2. The project must have the required maven configuration for JBoss Logging Tools.

Procedure 6.1. Create an Internationalized Log Message Bundle

1. Create an Message Logger interface
Add a Java interface to your project to contain the log message definitions. Name the interface
descriptively for the log messages that will be defined in it.

The log message interface has the following requirements:
o It must be annotated with @org. jboss.logging.MessageLogger.

o It must extendorg.jboss.logging.BasicLogger.

107

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6719-432923+%5BSpecified%5D&comment=Title%3A+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6719-432923+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6720-432924+%5BSpecified%5D&comment=Title%3A+Translation+Properties+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6720-432924+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5148-332119+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Project+Codes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5148-332119+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5149-332118+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Message+Ids%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5149-332118+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

o The interface must define a field of that is a typed logger that implements this interface. Do
this with the getMessageLogger () method of org. jboss.logging.Logger.

package com.company.accounts.loggers;

import org.jboss.logging.BasiclLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.MessagelLogger;

@MessagelLogger(projectCode="")
interface AccountsLogger extends BasiclLogger

{

AccountsLogger LOGGER = Logger.getMessagelLogger (
AccountsLogger.class,
AccountsLogger.class.getPackage().getName());

}

2. Add method definitions
Add a method definition to the interface for each log message. Name each method
descriptively for the log message that it represents.

Each method has the following requirements:
o The method must return void.
o It must be annotated with the @org. jboss.logging.LogMessage annotation.
o It must be annotated with the @org. jboss.logging.Message annotation.

o The value attribute of @org. jboss.logging.Message contains the default log message.
This is the message that is used if no translation is available.

@LogMessage
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

The default log level is INFO.
3. Invoke the methods
Add the calls to the interface methods in your code where the messages must be logged from.

It is not necessary to create implementations of the interfaces, the annotation processor does
this for you when the project is compiled.

I AccountsLogger.LOGGER.customerQueryFailDBClosed();

The custom loggers are sub-classed from BasicLogger so the logging methods of
BasiclLogger (debug(), error() etc) can also be used. It is not necessary to create other
loggers to log non-internationalized messages.

I AccountsLogger.LOGGER.error("Invalid query syntax.");

RESULT: the project now supports one or more internationalized loggers that can now be localized.

Report a bug

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4898-436449+%5BSpecified%5D&comment=Title%3A+Create+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4898-436449+19+Apr+2013+13%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.2.2.2. Create and Use Internationalized Messages

This task shows you how to create internationalized messages and how to use them. This task does not
cover all optional features or the process of localizing those messages.

Refer to the logging-tools quickstart for a complete example.

Prerequisites

1.

You have a working Maven project using the JBoss EAP 6 repository. Refer to Section 2.3.2,
“Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

. The required Maven configuration for JBoss Logging Tools has been added. Refer to

Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”.

Procedure 6.2. Create and Use Internationalized Messages

1.

Create an interface for the exceptions

JBoss Logging Tools defines internationalized messages in interfaces. Name each interface
descriptively for the messages that will be defined in it.

The interface has the following requirements:
o It must be declared as public
o It must be annotated with @org. jboss.logging.MessageBundle.

o The interface must define a field that is a message bundle of the same type as the
interface.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle

{
GreetingMessageBundle MESSAGES =

Messages.getBundle(GreetingMessageBundle.class);

}

. Add method definitions

Add a method definition to the interface for each message. Name each method descriptively
for the message that it represents.

Each method has the following requirements:
o It must return an object of type String.
o It must be annotated with the @org. jboss.logging.Message annotation.

o The value attribute of @org. jboss.logging.Message must be set to the default
message. This is the message that is used if no translation is available.

@Message(value = "Hello world.")
String helloworldString();

. Invoke methods

Invoke the interface methods in your application where you need to obtain the message.

109

Development Guide

System.console.out.println(helloworldString());

RESULT: the project now supports internationalized message strings that can be localized.

Report a bug

6.2.2.3. Create Internationalized Exceptions

This task shows you how to create internationalized exceptions and how to use them. This task does
not cover all optional features or the process of localization of those exceptions.

Refer to the logging-tools quick start for a complete example.

For this task it is assumed that you already have a software project, that is being built in either JBoss
Developer Studio or Maven, to which you want to add internationalized exceptions.

Procedure 6.3. Create and use Internationalized Exceptions

110

1. Add JBoss Logging Tools configuration
Add the required project configuration to support JBoss Logging Tools. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”

2. Create an interface for the exceptions
JBoss Logging Tools defines internationalized exceptions in interfaces. Name each interface
descriptively for the exceptions that will be defined in it.

The interface has the following requirements:

o

It must be declared as public.
It must be annotated with @org. jboss.logging.MessageBundle.

The interface must define a field that is a message bundle of the same type as the
interface.

@MessageBundle(projectCode="")
public interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS =

Messages.getBundle(ExceptionBundle.class);

}

3. Add method definitions

Add a method definition to the interface for each exception. Name each method descriptively
for the exception that it represents.

Each method has the following requirements:

o

It must return an object of type Exceptionor a sub-type of Exception.
It must be annotated with the @org. jboss.logging.Message annotation.

The value attribute of @org. jboss.logging.Message must be set to the default
exception message. This is the message that is used if no translation is available.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4900-459898+%5BSpecified%5D&comment=Title%3A+Create+and+Use+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4900-459898+14+Jun+2013+09%3A50+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

o Ifthe exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as the constructor.

@VMessage(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = '"Date string '%s' was invalid.")
ParseException dateWasInvalid(String dateString, @Param int
errorOffset);

4. Invoke methods
Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object which you can then

throw.
try
{
propsInFile=new File(configname);
props.load(new FileInputStream(propsInFile));
}
catch(IOException ioex) //in case props file does not exist
{
throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
}

RESULT: the project now supports internationalized exceptions that can be localized.

Report a bug
6.2.3. Localizing Internationalized Loggers, Messages and Exceptions

6.2.3.1. Generate New Translation Properties Files with Maven

Projects that are being built with Maven can generate empty translation property files for each
Message Logger and Message Bundle it contains. These files can then be used as new translation
property files.

The following procedure shows how to configure a Maven project to generate new translation property
files.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project.
2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Procedure 6.4. Generate New Translation Properties Files with Maven

m

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4899-436457+%5BSpecified%5D&comment=Title%3A+Create+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4899-436457+19+Apr+2013+13%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

1. Add Maven configuration
Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler
plug-in configuration and assign it the path where the new files will be created.

<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>

<source>1.6</source>

<target>1.6</target>

<compilerArgument>

AgeneratedTranslationFilesPath=${project.basedir}/target/generated-
translation-files
</compilerArgument>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>

The above configuration will create the new files in the target/generated-translation-
files directory of your Maven project.

2. Build the project
Build the project using Maven.

I [Localhost]$ mvn compile

One properties files is created per interface annotated with @MessageBundle or @MessageLogger.
The new files are created in a subdirectory corresponding to the Java package that each interface is
declared in.

Each new file is named using the following syntax where InterfaceName is the name of the interface
that this file was generated for: InterfaceName .i18n_locale_COUNTRY_VARIANT.properties.

These files can now be copied into your project as the basis for new translations.

Report a bug

6.2.3.2. Translate an Internationalized Logger, Exception or Message

Logging and Exception messages defined in interfaces using JBoss Logging Tools can have
translations provided in properties files.

The following procedure shows how to create and use a translation properties file. It is assumed that
you already have a project with one or more interfaces defined for internationalized exceptions or log

messages.

Refer to the 1ogging-tools quick start for a complete example.

Prerequisites

1. You must already have a working Maven project.

2. The project must already be configured for JBoss Logging Tools.

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5127-436425+%5BSpecified%5D&comment=Title%3A+Generate+New+Translation+Properties+Files+with+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5127-436425+19+Apr+2013+13%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

3. The project must contain one or interfaces that define internationalized log messages or
exceptions.

4. The project must be configured to generate template translation property files.

Procedure 6.5. Translate an internationalized logger, exception or message

1. Generate the template properties files
Run the mvn compile command to create the template translation properties files.

2. Add the template file to your project
Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files
must be in the same package as the interfaces they are translating.

3. Rename the copied template file
Rename the copy of the template file according to the translation it will contain. E.qg.
GreeterLogger.il8n_fr_FR.properties.

4. Translate the contents of the template.
Edit the new translation properties file to contain the appropriate translation.

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyeé.

Repeat steps two, three, and four for each translation of each bundle being performed.

RESULT: The project now contains translations for one or more message or logger bundles. Building
the project will generate the appropriate classes to log messages with the supplied translations. It is
not necessary to explicitly invoke methods or supply parameters for specific languages, JBoss
Logging Tools automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

Report a bug
6.2.4. Customizing Internationalized Log Messages

6.2.4.1. Add Message Ids and Project Codes to Log Messages

This task shows how to add message ids and project codes to internationalized log messages created
using JBoss Logging Tools. A log message must have both a project code and message id for them to
be displayed in the log. If a message does not have both a project code and a message id, then neither is
displayed.

Refer to the 1ogging-tools quick start for a complete example.

Prerequisites

1. You must already have a project with internationalized log messages. Refer to Section 6.2.2.1,
“Create Internationalized Log Messages”.

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4901-435192+%5BSpecified%5D&comment=Title%3A+Translate+an+Internationalized+Logger%2C+Exception+or+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4901-435192+16+Apr+2013+15%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

2. You need to know what the project code you will be using is. You can use a single project code,
or define different ones for each interface.

Procedure 6.6. Add message Ids and Project Codes to Log Messages

1. Specify the project code for the interface.
Specify the project code using the projectCode attribute of the @MessageLogger annotation

attached to a custom logger interface. All messages that are defined in the interface will use
that project code.

@VMessagelLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasiclLogger

{
¥

2. Specify Message Ids
Specify a message id for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

@LogMessage
@Message(id=43, value = "Customer query failed, Database not
available.") void customerQueryFailDBClosed();

The log messages that have both a message ID and project code have been associated with them will
prepend these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4)
ACCNTS000043: Customer query failed, Database not available.

Report a bug

6.2.4.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the 1evel attribute of the @LogMessage annotation attached to the
logging method.

Procedure 6.7. Specify the log level for a message

1. Specify level attribute
Add the level attribute to the @LogMessage annotation of the log message method
definition.

2. Assignlog level
Assign the level attribute the value of the log level for this message. The valid values for
level are the six enumerated constants defined in org. jboss.logging.Logger.Level:
DEBUG, ERROR, FATAL, INFO, TRACE, and WARN.

Import org.jboss.logging.Logger.Level;

@LogMessage (level=Level.ERROR)

114

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5171-332120+%5BSpecified%5D&comment=Title%3A+Add+Message+Ids+and+Project+Codes+to+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5171-332120+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

Invoking the logging method in the above sample will produce a log message at the level of ERROR.

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
Customer query failed, Database not available.

Report a bug

6.2.4.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Procedure 6.8. Customize log messages with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message
References can use explicit or ordinary indexes.

o Touse ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

o To use explicit indexes, insert the characters %{#} in the message where #is the number
of the parameter you want to appear.

IMPORTANT

Using explicit indexes allows the parameter references in the message to be in a
different order than they are defined in the method. This is important for translated
messages which may require different ordering of parameters.

The number of parameters must match the number of references to the parameters in the specified
message or the code will not compile. A parameter marked with the @Cause annotation is not included
in the number of parameters.

Example 6.1. Message parameters using ordinary indexes

@LogMessage (level=Logger.Level.DEBUG)
@Message(id=2, value='"Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

Example 6.2. Message parameters using explicit indexes

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5174-332121+%5BSpecified%5D&comment=Title%3A+Specify+the+Log+Level+for+a+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5174-332121+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

@Message(id=2, value='"Customer query failed, customerid:%{1}, user:%
{2}")

@LogMessage (level=Logger.Level.DEBUG)
void customerLookupFailed(Long customerid, String username);

Report a bug

6.2.4.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of
the message. This parameter must be of the type Throwable or any of its sub-classes and is marked
with the @Cause annotation. This parameter cannot be referenced in the log message like other
parameters and is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to
indicate the "causing" exception. It is assumed that you have already created internationalized logging
messages to which you want to add this functionality.

Procedure 6.9. Specify an exception as the cause of a log message

1. Add the parameter
Add a parameter of the type Throwable or a sub-class to the method.

@Message(id=404, value="Loading configuration failed. Config
file:%s")
void loadConfigFailed(Exception ex, File file);

2. Add the annotation
Add the @Cause annotation to the parameter.

import org.jboss.logging.Cause

@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

3. Invoke the method

When the method is invoked in your code, an object of the correct type must be passed and
will be displayed after the log message.

try

{
confFile=new File(filename);
props.load(new FileInputStream(confFile));

}
catch(Exception ex) //in case properties file cannot be read
{
ConfiglLogger.LOGGER.loadConfigFailed(ex, filename);
}

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5172-435189+%5BSpecified%5D&comment=Title%3A+Customize+Log+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5172-435189+16+Apr+2013+15%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

Below is the output of the above code samples if the code threw an exception of type
FileNotFoundException.

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3)
Loading configuration failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file
or directory)

at java.io.FilelInputStream.open(Native Method)

at java.io.FileInputStream.<init>(FileInputStream.java:120)

at com.company.app.demo.Main.openCustomProperties(Main.java:70)

at com.company.app.Main.go(Main.java:53)

at com.company.app.Main.main(Main.java:43)

Report a bug
6.2.5. Customizing Internationalized Exceptions

6.2.5.1. Add Message Ids and Project Codes to Exception Messages

The following procedure shows the steps required to add message IDs and project codes to
internationalized Exception messages created using JBoss Logging Tools.

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference of all the
exception messages for an application so that someone can lookup the meaning of an exception
message written in language that they do not understand.

Prerequisites

1. You must already have a project with internationalized exceptions. Refer to Section 6.2.2.3,
“Create Internationalized Exceptions”.

2. You need to know what the project code you will be using is. You can use a single project code,
or define different ones for each interface.

Procedure 6.10. Add message IDs and project codes to exception messages

1. Specify a project code
Specify the project code using the projectCode attribute of the @MessageBundle
annotation attached to a exception bundle interface. All messages that are defined in the
interface will use that project code.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS =

Messages.getBundle(ExceptionBundle.class);

}

2. Specify message IDs
Specify a message id for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5175-332124+%5BSpecified%5D&comment=Title%3A+Specify+an+Exception+as+the+Cause+of+a+Log+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5175-332124+09+Nov+2012+05%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example 6.3. Creating internationalized exceptions

This exception bundle interface has the project code of ACCTS, with a single exception method with
the id of 143.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS =

Messages.getBundle(ExceptionBundle.class);

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

The exception object can be obtained and thrown using the following code.
I throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

This would display an exception message like the following:

Exception in thread "main" java.io.IOException: ACCTS000143: The config
file could not be opened.

at com.company.accounts.Main.openCustomProperties(Main.java:78)

at com.company.accounts.Main.go(Main.java:53)

at com.company.accounts.Main.main(Main.java:43)

Report a bug

6.2.5.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional
information to be displayed in the exception message. Where the parameters appear in the exception
message is specified in the message itself using either explicit or ordinary indexing.

The following procedure shows the steps required to use method parameters to customize method
exceptions.

Procedure 6.11. Customize an exception message with parameters

118

1. Add parameters to method definition

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5191-438962+%5BSpecified%5D&comment=Title%3A+Add+Message+Ids+and+Project+Codes+to+Exception+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5191-438962+22+Apr+2013+08%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the exception message
References can use explicit or ordinary indexes.

o Touse ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

o To use explicit indexes, insert the characters %{#} in the message where #is the number
of the parameter you want to appear.

Using explicit indexes allows the parameter references in the message to be in a different
order than they are defined in the method. This is important for translated messages which
may require different ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in
the specified message or the code will not compile. A parameter marked with the
@Cause annotation is not included in the number of parameters.

Example 6.4. Using ordinary indexes

@Message(id=143, value = "The config file %s could not be opened.™")
IOException configFileAccessError(File config);

Example 6.5. Using explicit indexes

@Message(id=143, value = "The config file %{1} could not be opened.")
IOException configFileAccessError(File config);

Report a bug

6.2.5.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter
with @Cause. This parameter is used to pass the causing exception. This parameter cannot be
referenced in the exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause
parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

Procedure 6.12. Specify one exception as the cause of another exception

1. Add the parameter
Add the a parameter of the type Throwable or a sub-class to the method.

119

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5195-432385+%5BSpecified%5D&comment=Title%3A+Customize+Exception+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5195-432385+09+Apr+2013+13%3A23+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError (Throwable cause, String msg);

2. Add the annotation
Add the @Cause annotation to the parameter.

import org.jboss.logging.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError (@Cause Throwable cause, String
msg);

3. Invoke the method
Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block using the caught exception as the cause.

try
{

}

catch(Exception ex)

{
throw ExceptionBundle.EXCEPTIONS.calculationError (

ex, "calculating payment due
per day");
}

Example 6.6. Specify one exception as the cause of another exception

This exception bundle defines a single method that returns an exception of type
ArithmeticException.

interface CalcExceptionBundle

{
CalcExceptionBundle EXCEPTIONS =

Messages.getBundle(CalcExceptionBundle.class);

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calcError(@Cause Throwable cause, String value);

@MessageBundle(projectCode = "TPS")
}

This code snippet performs an operation that throws an exception because it attempts to divide an
integer by zero. The exception is caught and a new exception is created using the first one as the
cause.

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;

try
{

120

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

amountPerDay = totalDue/daysToPay;
}
catch (Exception ex)
{
throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per
day");
}

This is what the exception message looks like:

Exception in thread "main" java.lang.ArithmeticException: TPS000328:
Error calculating: payments per day.
at com.company.accounts.Main.go(Main.java:58)
at com.company.accounts.Main.main(Main.java:43)
Caused by: java.lang.ArithmeticException: / by zero
at com.company.accounts.Main.go(Main.java:54)
1 more

Report a bug

6.2.6. Reference

6.2.6.1. JBoss Logging Tools Maven Configuration

To build a Maven project that uses JBoss Logging Tools for internationalization you must make the
following changes to the project's configuration in the pom. xm1l file.

Refer to the logging-tools quick start for an example of a complete working pom.xml file.

1. JBoss Maven Repository must be enabled for the project. Refer to Section 2.3.2, “Configure
the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The Maven dependencies for jboss-loggingand jboss-logging-processor mustbe
added. Both of dependencies are available in JBoss EAP 6 so the scope element of each can be
set to provided as shown.

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging-processor</artifactId>
<version>1.0.0.Final</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>3.1.0.GA</version>
<scope>provided</scope>

</dependency>

3. The maven-compiler-plugin must be at least version 2.2 and be configured for target
and generated sources of 1. 6.

121

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5206-332127+%5BSpecified%5D&comment=Title%3A+Specify+One+Exception+as+the+Cause+of+Another+Exception%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5206-332127+09+Nov+2012+05%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>

Report a bug

6.2.6.2. Translation Property File Format

The property files used for translations of messages in JBoss Logging Tools are standard Java
property files. The format of the file is the simple line-oriented, key=value pair format described in
the documentation for the java.util.Properties class,
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.

The file name format has the following format:
I InterfaceName.il18n_locale_COUNTRY_VARIANT.properties

e InterfaceName is the name of the interface that the translations apply to.
e locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

e locale and COUNTRY specify the language and country using the ISO-639 and 1ISO-3166
Language and Country codes respectively. COUNTRY is optional.

e VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Example 6.7. Sample Translation Properties File

File name: GreeterService.i18n_fr_FR_POSIX.properties.

Message: Hello message sent.

Level: Logger.Level.INFO
logHelloMessageSent=Bonjour message envoyeé.

Report a bug

6.2.6.3. JBoss Logging Tools Annotations Reference

The following annotations are defined in JBoss Logging for use with internationalization and
localization of log messages, strings, and exceptions.

122

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4896-459899+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Maven+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4896-459899+14+Jun+2013+09%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+6723-435193+%5BSpecified%5D&comment=Title%3A+Translation+Property+File+Format%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6723-435193+16+Apr+2013+15%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

Table 6.1. JBoss Logging Tools Annotations

Annotation Target Description Attributes

@MessageBundle Interface Defines the interface as a projectCod
Message Bundle. e

@MessagelLogger Interface Defines the interface as a projectcCod
Message Logger. e

@Message Method Can be used in Message Bundles value,id

and Message Loggers. In a
Message Logger it defines a
method as being a localized
logger. In a Message Bundle it
defines the method as being one
that returns a localized String or
Exception object.

@LogMessage Method Defines a method in a Message level
Logger as being a logging (default INFO)
method.

@Cause Parameter Defines a parameter as beingone -

that passes an Exception as the
cause of either a Log message or
another Exception.

@Param Parameter Defines a parameter as beingone -
that is passed to the constructor
of the Exception.

Report a bug

123

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4895-432372+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Annotations+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4895-432372+09+Apr+2013+12%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

CHAPTER 7. ENTERPRISE JAVABEANS

7.1.INTRODUCTION

7.1.1. Overview of Enterprise JavaBeans

Enterprise JavaBeans (EJB) 3.1 is an API for developing distributed, transactional, secure and portable
Java EE applications through the use of server-side components called Enterprise Beans. Enterprise
Beans implement the business logic of an application in a decoupled manner that encourages reuse.
Enterprise JavaBeans 3.1 is documented as the Java EE specification JSR-318.

JBoss EAP 6 has full support for applications built using the Enterprise JavaBeans 3.1 specification.
The EJB Container is implemented using the JBoss EJB3 community project,
http://www.jboss.org/ejb3.

Report a bug

7.1.2. EJB 3.1 Feature Set

The following features are supported in EJB 3.1
e Session Beans
o Message Driven Beans
e No-interface views
e localinterfaces
e remote interfaces
o JAX-WS web services
o JAX-RS web services
e Timer Service
e Asynchronous Calls
e |Interceptors
e RMI/IIOP interoperability
e Transaction support
e Security
e Embeddable API

The following features are supported in EJB 3.1 but are proposed for "pruning". This means that these
features may become optional in Java EE 7.

e Entity Beans (container and bean-managed persistence)

e EJB 2.1 Entity Bean client views

124

http://www.jboss.org/ejb3
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4525-459154+%5BSpecified%5D&comment=Title%3A+Overview+of+Enterprise+JavaBeans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4525-459154+12+Jun+2013+11%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 7. ENTERPRISE JAVABEANS

e EJB Query Language (EJB QL)
o JAX-RPC based Web Services (endpoints and client views)

Report a bug

7.1.3. EJB 3.1 Lite

EJB Lite is a sub-set of the EJB 3.1 specification. It provides a simpler version of the full EJB 3.1
specification as part of the Java EE 6 web profile.

EJB Lite simplifies the implementation of business logic in web applications with enterprise beans by:
1. Only supporting the features that make sense for web-applications, and
2. allowing EJBs to be deployed in the same WAR file as a web-application.

Report a bug

7.1.4.EJB 3.1 Lite Features

EJB Lite includes the following features:
e Stateless, stateful, and singleton session beans
e Local business interfaces and "no interface" beans
e |Interceptors
e Container-managed and bean-managed transactions
e Declarative and programmatic security
e Embeddable API
The following features of EJB 3.1 are specifically not included:
e Remote interfaces
o RMI-IIOP Interoperability
o JAX-WS Web Service Endpoints
e EJB Timer Service
o Asynchronous session bean invocations
e Message-driven beans

Report a bug

7.1.5. Enterprise Beans

Enterprise beans are server-side application components as defined in the Enterprise JavaBeans
(EJB) 3.1 specification, JSR-318. Enterprise beans are designed for the implementation of application
business logic in a decoupled manner to encourage reuse.

125

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4533-331976+%5BSpecified%5D&comment=Title%3A+EJB+3.1+Feature+Set%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4533-331976+09+Nov+2012+02%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4529-155458+%5BSpecified%5D&comment=Title%3A+EJB+3.1+Lite%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4529-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4531-155458+%5BSpecified%5D&comment=Title%3A+EJB+3.1+Lite+Features%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4531-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Enterprise beans are written as Java classes and annotated with the appropriate EJB annotations.
They can be deployed to the application server in their own archive (a JAR file) or be deployed as part
of a Java EE application. The application server manages the lifecycle of each enterprise bean and
provides services to them such as security, transactions, and concurrency management.

An enterprise bean can also define any number of business interfaces. Business interfaces provide
greater control over which of the bean's methods are available to clients and can also allow access to
clients running in remote JVMs.

There are three types of Enterprise Bean: Session beans, Message-driven beans and Entity beans.

IMPORTANT

Entity beans are now deprecated in EJB 3.1 and Red Hat recommends the use of JPA
entities instead. Red Hat only recommends the use of Entity beans for backwards
compatibility with legacy systems.

Report a bug

7.1.6. Overview of Writing Enterprise Beans

Enterprise beans are server-side components designed to encapsulate business logic in a manner
decoupled from any one specific application client. By implementing your business logic within
enterprise beans you will be able to reuse those beans in multiple applications.

Enterprise beans are written as annotated Java classes and do not have to implement any specific EJB
interfaces or be sub-classed from any EJB super classes to be considered an enterprise bean.

EJB 3.1 enterprise beans are packaged and deployed in Java archive (JAR) files. An enterprise bean
JAR file can be deployed to your application server, or included in an enterprise archive (EAR) file and
deployed with that application. It is also possible to deploy enterprise beans in a WAR file along side a
web application if the beans comply with the EJB 3.1 Lite specification.

Report a bug
7.1.7. Session Bean Business Interfaces

7.1.7.1. Enterprise Bean Business Interfaces

An EJB business interface is a Java interface written by the bean developer which provides
declarations of the public methods of a session bean that are available for clients. Session beans can
implement any number of interfaces including none (a "no-interface" bean).

Business interfaces can be declared as local or remote interfaces but not both.

Report a bug

7.1.7.2. EJB Local Business Interfaces

An EJB local business interface declares the methods which are available when the bean and the client
are in the same JVM. When a session bean implements a local business interface only the methods
declared in that interface will be available to clients.

Report a bug

126

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5089-299121+%5BSpecified%5D&comment=Title%3A+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5089-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5090-336507+%5BSpecified%5D&comment=Title%3A+Overview+of+Writing+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5090-336507+29+Nov+2012+00%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5096-336522+%5BSpecified%5D&comment=Title%3A+Enterprise+Bean+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5096-336522+29+Nov+2012+00%3A35+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5354-432911+%5BSpecified%5D&comment=Title%3A+EJB+Local+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5354-432911+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 7. ENTERPRISE JAVABEANS

7.1.7.3. EJB Remote Business Interfaces

An EJB remote business interface declares the methods which are available to remote clients. Remote
access to a session bean that implements a remote interface is automatically provided by the EJB
container.

A remote client is any client running in a different JVM and can include desktop applications as well as
web applications, services and enterprise beans deployed to a different application server.

Local clients can access the methods exposed by a remote business interface. This is done using the
same methods as remote clients and incurs all the normal overhead of making a remote request.

Report a bug

7.1.7.4. EJB No-interface Beans

A session bean that does not implement any business interfaces is called a no-interface bean. All of the
public methods of no-interface beans are accessible to local clients.

A session bean that implements a business interface can also be written to expose a "no-interface"
view.

Report a bug

7.2. CREATING ENTERPRISE BEAN PROJECTS

7.2.1. Create an EJB Archive Project Using JBoss Developer Studio

This task describes how to create an Enterprise JavaBeans (EJB) project in JBoss Developer Studio.

Prerequisites

e A server and server runtime for JBoss EAP 6 has been set up.

Procedure 7.1. Create an EJB Project in JBoss Developer Studio

1. Create new project
To open the New EJB Project wizard, navigate to the File menu, select New, and then EJB
Project.

127

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5355-432912+%5BSpecified%5D&comment=Title%3A+EJB+Remote+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5355-432912+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5356-432913+%5BSpecified%5D&comment=Title%3A+EJB+No-interface+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5356-432913+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

EJBE Project
€ Name cannot be empty.

Project name: | |

-Project location

Use default location

Location: | home/student/ workspace | | Erowse...

-Target runtime

| JBoss EAP 6.0 Runtime S | | New Runtime. ..

-EJB module version

{3

3.1

-Configuration

| Default Gonfiguration for JBoss EAP 6.0 Runtime S | | Modify...

A good starting point for working with JBoss EAP 6.0 Huntime runtime. Additional
facets can later be installed to add new functionality to the project.

-EAR membership
[] Add project to an EAR

EAR project name: |EAR b | |I‘-— Project... |
Working sets |
@ < Back || Mext | | Cancel | | Finist

Figure 7.1. New EJB Project wizard

2. Specify Details
Supply the following details:

o Project name.

As well as the being the name of the project that appears in JBoss Developer Studio this is
also the default filename for the deployed JAR file.

o Project location.

128

CHAPTER 7. ENTERPRISE JAVABEANS

The directory where the project's files will be saved. The default is a directory in the
current workspace.

o Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

o EJB module version. This is the version of the EJB specification that your enterprise beans
will comply with. Red Hat recommends using 3. 1.

o Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

. Java Build Configuration
This screen allows you to customize the directories will contain Java source files and the
directory where the built output is placed.

Leave this configuration unchanged and click Next.

. EJB Module settings

Check the Generate ejb-jar.xml deployment descriptor checkbox if a deployment
descriptor is required. The deployment descriptor is optional in EJB 3.1 and can be added later
if required.

Click Finish and the project is created and will be displayed in the Project Explorer.

129

Development Guide

File Edit Navigate Search Project Run Window He

| rav |- Ov Qv | B~ & | @ |
r% Project Explorer 32 - = Type Hieramhﬂ =g
= ~

- 7 payment-arrangments
< (@) Deployment Descriptor: payment-arrangments
[Entity Beans (1.x-2.x)
3 Message-Driven Beans
L@ Session Beans
= A JAX-WS Web Services
(4% Service Endpoint Interfaces
= Web Services
< [ejbModule
v = META-INF
¥ ejb-jar.xml
MANIFEST.MF
P = JRE System Library [java-1.6.0-openjdk-1.6.0.0.x8¢
[» =i |Boss Enterprise Application Platform 6.x Runtime
=i EAR Libraries
P &= build

Figure 7.2. Newly created EJB Project in the Project Explorer

5. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking on the server you want to deploy the built
artifact to in the server tab, and select "Add and Remove".

Select the resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

130

CHAPTER 7. ENTERPRISE JAVABEANS

Add and Remove
Modify the resources that are configured on the server =]

Move resources to the right to configure them on the server

Available: Configured:

—

[Add >

Add All ==

If server is started, publish changes immediately

@ Cancel l [Finish

Figure 7.3. Add and Remove dialog

Result

You now have an EJB Project in JBoss Developer Studio that can build and deploy to the specified
server.

If no enterprise beans are added to the project then JBoss Developer Studio will display the warning
"An EJB module must contain one or more enterprise beans." This warning will disappear once one or
more enterprise beans have been added to the project.

Report a bug

7.2.2. Create an EJB Archive Project in Maven

This task demonstrates how to create a project using Maven that contains one or more enterprise
beans packaged in a JAR file.

Prerequisites:

e Maven is already installed.

e You understand the basic usage of Maven.

131

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5385-459900+%5BSpecified%5D&comment=Title%3A+Create+an+EJB+Archive+Project+Using+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5385-459900+14+Jun+2013+09%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Procedure 7.2. Create an EJB Archive project in Maven

132

1. Create the Maven project
An EJB project can be created using Maven's archetype system and the ejb-javaee6
archetype. To do this run the mvn command with parameters as shown:

mvn archetype:generate -
DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6

Maven will prompt you for the groupId, artifactId, version and package for your
project.

[localhost]$ mvn archetype:generate -
DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6

[INFO] Scanning for projects...

[INFO]

=1
[INFO]

[INFO] >>> maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom >>>

[INFO]

[INFO] <<< maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom <<<

[INFO]

[INFO] --- maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom ---

[INFO] Generating project in Interactive mode

[INFO] Archetype [org.codehaus.mojo.archetypes:ejb-javaee6:1.5]
found in catalog remote

Define value for property 'groupId': : com.shinysparkly
Define value for property 'artifactId': : payment-arrangments
Define value for property 'version': 1.0-SNAPSHOT:

Define value for property 'package': com.shinysparkly:

Confirm properties configuration:
groupId: com.company

artifactId: payment-arrangments
version: 1.0-SNAPSHOT

package: com.company.collections

[INFO] == - o- oo oo moioaeoiiiicocoacciccocoooccccaccscccaoanns
[INFO] Total time: 32.440s

[INFO] Finished at: Mon Oct 31 10:11:12 EST 2011

[INFO] Final Memory: 7M/81M

[INFO] == - o- oo oo moioaeoiiiicocoacciccocoooccccaccscccaoanns

[localhost]$

CHAPTER 7. ENTERPRISE JAVABEANS

2. Add your enterprise beans

Write your enterprise beans and add them to the project under the src/main/java directory
in the appropriate sub-directory for the bean's package.

3. Build the project
To build the project, run the mvn package command in the same directory as the pom.xml

file. This will compile the Java classes and package the JAR file. The built JAR file is named
artifactId-version.jar andis placedinthe target/ directory.

RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain
enterprise beans and the JAR file can be deployed to an application server.

Report a bug

7.2.3. Create an EAR Project containing an EJB Project

This task describes how to create a new Enterprise Archive (EAR) project in JBoss Developer Studio
that contains an EJB Project.

Prerequisites

e A server and server runtime for JBoss EAP 6 has been set up. Refer to Section 1.3.1.5, “Add the
JBoss EAP 6 Server to JBoss Developer Studio”.

Procedure 7.3. Create an EAR Project containing an EJB Project

1. Open the New EAR Application Project Wizard
Navigate to the File menu, select New, then Project and the New Project wizard appears.
Select Java EE/Enterprise Application Project and click Next.

133

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5099-336535+%5BSpecified%5D&comment=Title%3A+Create+an+EJB+Archive+Project+in+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5099-336535+29+Nov+2012+00%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

134

EAR Application Project (,
@ Name cannot be empty. u_'_L'

Project name: | |

-Project location

Use default location

. . q r = 1 I
Location: | home/student/workspace/Collections App | | Browse...

-Target runtime

| JBoss EAP 6.0 Runtime S | | New Runtime. ..

-EAR version

<

6.0

-Configuration

| Default Gonfiguration for JBoss EAP 6.0 Runtime S | | Modify...

A good starting point for working with JBoss EAP 6.0 Huntime runtime. Additional
facets can later be installed to add new functionality to the project.

-“Working sets

[| Add project to working sets

1A/ ol | . e —
\Warking sets: | - | |

Figure 7.4. New EAR Application Project Wizard

2. Supply details
Supply the following details:

o Project name.

As well as the being the name of the project that appears in JBoss Developer Studio this is

also the default filename for the deployed EAR file.

o Project location.

CHAPTER 7. ENTERPRISE JAVABEANS

The directory where the project's files will be saved. The default is a directory in the
current workspace.

o Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

o EAR version.

This is the version of the Java Enterprise Edition specification that your project will
comply with. Red Hat recommends using 6.

o Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Add a new EJB Module
New Modules can be added from the Enterprise Application page of the wizard. To add a
new EJB Project as a module follow the steps below:

a. Add new EJB Module
Click New Module, uncheck Create Default Modules checkbox, select the
Enterprise Java Bean and click Next. The New EJB Project wizard appears.

b. Create EJB Project
New EJB Project wizard is the same as the wizard used to create new standalone EJB
Projects and is described in Section 7.2.1, “Create an EJB Archive Project Using JBoss
Developer Studio”.

The minimal details required to create the project are:
m Project name
m Target Runtime
m EJB Module version
m Configuration

All the other steps of the wizard are optional. Click Finish to complete creating the EJB
Project.

The newly created EJB project is listed in the Java EE module dependencies and the checkbox
is checked.

4. Optional: add an application.xml deployment descriptor
Check the Generate application.xml deployment descriptor checkboxif oneis
required.

5. Click Finish
Two new project will appear, the EJB project and the EAR project

6. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking in the Servers tab on the server you
want to deploy the built artifact to in the server tab, and select Add and Remove.

135

Development Guide

Select the EAR resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

Add and Remove
Modify the resources that are configured on the server =

Move resources to the right to configure them on the server
Available: Configured:

M

(& CollectionsAppE|B

=< Remove l

<<= Remove All

If server is started, publish changes immediately

@ Cancel l [Finish

Figure 7.5. Add and Remove dialog

Result

You now have an Enterprise Application Project with a member EJB Project. This will build and deploy
to the specified server as a single EAR deployment containing an EJB subdeployment.

Report a bug

7.2.4. Add a Deployment Descriptor to an EJB Project

An EJB deployment descriptor can be added to an EJB project that was created without one. To do
this, follow the procedure below.

Perquisites:

e You have a EJB Project in JBoss Developer Studio to which you want to add an EJB
deployment descriptor.

Procedure 7.4. Add an Deployment Descriptor to an EJB Project

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5098-459901+%5BSpecified%5D&comment=Title%3A+Create+an+EAR+Project+containing+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5098-459901+14+Jun+2013+09%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

CHAPTER 7. ENTERPRISE JAVABEANS

1. Open the Project
Open the project in JBoss Developer Studio.

2. Add Deployment Descriptor
Right-click on the Deployment Descriptor folder in the project view and select Generate
Deployment Descriptor Stub.

=
[+ Project Explorer £2 == Eq(
=~ f';" payment-arrangement H

b Deployment Descriptor: payment-arrangement

New >
[A JAX-WS Web Services
= [gjbModule Import...
- = META-INF Export >

MAMIFEST.MF Refres! F5
P =l JRE System Library [java-1.6.0-sun-1.6.0.29.x8 ~lose Project
I =i JBoss Enterprise Application Platform 6.x Runt “lose Unrelated Projects

=, EAR Libraries

Run As >
Debug As >
Profile As >

Figure 7.6. Adding a Deployment Descriptor

The new file,ejb-jar.xml, is created in ejbModule/META-INF/. Double-clicking on the
Deployment Descriptor folder in the project view will also open this file.

Report a bug

7.3. SESSION BEANS

7.3.1. Session Beans

Session Beans are Enterprise Beans that encapsulate a set of related business processes or tasks and
are injected into the classes that request them. There are three types of session bean: stateless,
stateful, and singleton.

Report a bug

7.3.2. Stateless Session Beans

Stateless session beans are the simplest yet most widely used type of session bean. They provide
business methods to client applications but do not maintain any state between method calls. Each
method is a complete task that does not rely on any shared state within that session bean. Because
there is no state, the application server is not required to ensure that each method call is performed on
the same instance. This makes stateless session beans very efficient and scalable.

Report a bug

7.3.3. Stateful Session Beans

137

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5386-336549+%5BSpecified%5D&comment=Title%3A+Add+a+Deployment+Descriptor+to+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5386-336549+29+Nov+2012+00%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4527-299121+%5BSpecified%5D&comment=Title%3A+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4527-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5236-336541+%5BSpecified%5D&comment=Title%3A+Stateless+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5236-336541+29+Nov+2012+00%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Stateful session beans are Enterprise Beans that provide business methods to client applications and
maintain conversational state with the client. They should be used for tasks that must be done in
several steps (method calls), each of which replies on the state of the previous step being maintained.
The application server ensures that each client receives the same instance of a stateful session bean
for each method call.

Report a bug

7.3.4. Singleton Session Beans

Singleton session beans are session beans that are instantiated once per application and every client
request for a singleton bean goes to the same instance. Singleton beans are an implementation of the
Singleton Design Pattern as described in the book Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; published by Addison-
Wesley in 1994,

Singleton beans provide the smallest memory footprint of all the session bean types but must be
designed as thread-safe. EJB 3.1 provides container-managed concurrency (CMC) to allow developers
to implement thread safe singleton beans easily. However singleton beans can also be written using
traditional multi-threaded code (bean-managed concurrency or BMC) if CMC does not provide enough
flexibility.

Report a bug

7.3.5. Add Session Beans to a Project in JBoss Developer Studio

JBoss Developer Studio has several wizards that can be used to quickly create enterprise bean
classes. The following procedure shows how to use the JBoss Developer Studio wizards to add a
session bean to a project.

Prerequisites:

e You have a EJB or Dynamic Web Project in JBoss Developer Studio to which you want to add
one or more session beans.

Procedure 7.5. Add Session Beans to a Project in JBoss Developer Studio

1. Open the Project
Open the project in JBoss Developer Studio.

2. Open the "Create EJB 3.x Session Bean" wizard
ToopentheCreate EJB 3.x Session Bean wizard, navigate to the File menu, select
New, and then Session Bean (EJB 3.x).

138

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5237-336540+%5BSpecified%5D&comment=Title%3A+Stateful+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5237-336540+29+Nov+2012+00%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5238-336543+%5BSpecified%5D&comment=Title%3A+Singleton+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5238-336543+29+Nov+2012+00%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Create EJB 3.x Session Bean

Specify class file destination.

Project:

Source folder:

Java package:

Class name:

Superclass:

State type:

CHAPTER 7. ENTERPRISE JAVABEANS

@

payment-arrangement -
/payment-arrangement/ejbModule | Browse... |
| | Browse... |

| Browse... |
Stateless -

Create business interface

[] Bemaote |

[] Local |

| No-interface View

@

[
|—.r

Figure 7.7. Create EJB 3.x Session Bean wizard

3. Specify class information
Supply the following details:

o Project

Verify the correct project is selected.

o Source folder

Cancel Finish

This is the folder that the Java source files will be created in. This should not usually need

to be changed.

o Package

Specify the package that the class belongs to.

o Class name

Specify the name of the class that will be the session bean.

139

Development Guide

o

Superclass

The session bean class can inherit from a super class. Specify that here if your session has
a super class.

State type
Specify the state type of the session bean: stateless, stateful, or singleton.
Business Interfaces

By default the No-interface box is checked so no interfaces will be created. Check the
boxes for the interfaces you wish to define and adjust the names if necessary.

Remember that enterprise beans in a web archive (WAR) only support EJB 3.1 Lite and this
does not include remote business interfaces.

Click Next.

4. Session Bean Specific Information
You can enter in additional information here to further customize the session bean. It is not
required to change any of the information here.

Items that you can change are:

o

o

o

Bean name.

Mapped name.

Transaction type (Container managed or Bean managed).
Additional interfaces can be supplied that the bean must implement.

You can also specify EJB 2.x Home and Component interfaces if required.

5. Finish
Click Finish and the new session bean will be created and added to the project. The files for
any new business interfaces will also be created if they were specified.

RESULT: A new session bean is added to the project.

140

CHAPTER 7. ENTERPRISE JAVABEANS

File Edit Source Refactor Navigate Search Project Run Window Help

=5 G| 0ovar Ggrev | PlY Bm o248 »n | | & e
[?5 Project Exp 22 . T2 Type Hiera] = 8| [J] InterestCalculator.java 2
<}==€> - package com.company.collections;
~ & payment-arrangement @ import javax.ejb.LocalBean;[]
b (@ Deployment Descriptor: payment-al o JHE
b A JAX-WS Web Services * Session Bean implementation class InterestCalculator
*f
~ @ejbModule @stateless
@LocalBean

~ f com.company.collections
P [J] InterestCalculatorLocal.java
P = META-INF

P =i)Boss Enterprise Application Platforr
=i EAR Libraries
P = build

P =i JRE System Library [java-1.6.0-open)

public class InterestCalculator implements InterestCalculatorLocal {

= ‘i**
* Default constructor.
*
= public InterestCalculator() {
// TODD Auto-generated constructor stub
1

Figure 7.8. New Session Bean in JBoss Developer Studio

Report a bug

7.4. MESSAGE-DRIVEN BEANS

7.4.1. Message-Driven Beans

Message-driven Beans (MDBs) provide an event driven model for application development. The
methods of MDBs are not injected into or invoked from client code but are triggered by the receipt of
messages from a messaging service such as a Java Messaging Service (JMS) server. The Java EE 6
specification requires that JMS is supported but other messaging systems can be supported as well.

Report a bug

7.4.2. Resource Adapters

A resource adapter is a deployable Java EE component that provides communication between a Java
EE application and an Enterprise Information System (EIS) using the Java Connector Architecture
(JCA) specification. A resource adapter is often provided by EIS vendors to allow easy integration of
their products with Java EE applications.

An Enterprise Information System can be any other software system within an organization. Examples
include Enterprise Resource Planning (ERP) systems, database systems, e-mail servers and

proprietary messaging systems.

A resource adapter is packaged in a Resource Adapter Archive (RAR) file which can be deployed to
JBoss EAP 6. A RAR file may also be included in an Enterprise Archive (EAR) deployment.

Report a bug

7.4.3. Create a JMS-based Message-Driven Bean in JBoss Developer Studio

This procedure shows how to add a JMS-based Message-Driven Bean to a project in JBoss Developer
Studio. This procedure creates an EJB 3.x Message-Driven Bean that uses annotations.

141

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5440-336550+%5BSpecified%5D&comment=Title%3A+Add+Session+Beans+to+a+Project+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5440-336550+29+Nov+2012+00%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4528-299121+%5BSpecified%5D&comment=Title%3A+Message-Driven+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4528-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+4516-465334+%5BSpecified%5D&comment=Title%3A+Resource+Adapters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4516-465334+19+Jun+2013+09%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

Prerequisites:

1. You must have an existing project open in JBoss Developer Studio.
2. You must know the name and type of the JMS destination that the bean will be listening to.

3. Support for Java Messaging Service (JMS) must be enabled in the JBoss EAP 6 configuration
to which this bean will be deployed.

Procedure 7.6. Add a JMS-based Message-Driven Bean in JBoss Developer Studio

1. Openthe Create EJB 3.x Message-Driven Bean Wizard

Go to File = New — Other. Select EJB/Message-Driven Bean (EJB 3.x) andclick the
Next button.

Create EJB 3.x Message-Driven Bean

Specify class file destination.

Project: | payment-arrangement - |

Source folder: /pay ment-arrangement/ejbModule | Browse... |
Java package: | | Browse... |
Class name:

Superclass: | Browse... |
Destination name:

| JMS
Destination type: | Queue ==
® < Back Cancel

Figure 7.9. Create EJB 3.x Message-Driven Bean Wizard
2. Specify class file destination details
There are three sets of details to specify for the bean class here: Project, Java class, and

message destination.

Project

o If multiple projects exist in the Workspace, ensure that the correct one is selected in

142

CHAPTER 7. ENTERPRISE JAVABEANS

ne rroject menu.

o The folder where the source file for the new bean will be created is ejbModule under
the selected project's directory. Only change this if you have a specific requirement.

Java class

o The required fields are: Java package and class name.

o Itis not necessary to supply a Superclass unless the business logic of your
application requires it.

Message Destination

These are the details you must supply for a JMS-based Message-Driven Bean:

o Destination name. This is the queue or topic name that contains the messages that
the bean will respond to.

o By default the JMS checkbox is selected. Do not change this.

o SetDestination type to Queue or Topic as required.

Click the Next button.

3. Enter Message-Driven Bean specific information
The default values here are suitable for a JMS-based Message-Driven bean using Container-
managed transactions.

o Change the Transaction type to Bean if the Bean will use Bean-managed transactions.
o Change the Bean name if a different bean name than the class name is required.

o The JMS Message Listener interface will already be listed. You do not need to add or
remove any interfaces unless they are specific to your applications business logic.

o Leave the checkboxes for creating method stubs selected.
Click the Finish button.

Result: The Message-Driven Bean is created with stub methods for the default constructor and the
onMessage () method. A JBoss Developer Studio editor window opened with the corresponding file.

Report a bug

7.5. INVOKING SESSION BEANS

7.5.1. Invoke a Session Bean Remotely using JNDI

This task describes how to add support to a remote client for the invocation of session beans using
JNDI. The task assumes that the project is being built using Maven.

The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The
quickstart contains projects for both the session beans to deploy and the remote client. The code
samples below are taken from the remote client project.

143

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+14875%2C+Development+Guide-6.2-1%0ABuild+Date%3A+07-04-2014+14%3A52%3A35%0ATopic+ID%3A+5094-459902+%5BSpecified%5D&comment=Title%3A+Create+a+JMS-based+Message-Driven+Bean+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5094-459902+14+Jun+2013+09%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.2.0

Development Guide

This task assumes that the session beans do not require authentication.

Prerequisites

The following prerequisites must be satisfied before beginning:

You must already have a Maven project created ready to use.

Configuration for the JBoss EAP 6 Maven repository has already been added.

The session beans that you want to invoke are already deployed.

The deployed session beans implement remote business interfaces.

The remote business interfaces of the session beans are available as a Maven dependency. If
the remote business interfaces are only available as a JAR file then it is recommended to add
the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the

install:install-file goal for directions, http://maven.apache.org/plugins/maven-
install-plugin/usage.htmi

You need to know the hostname and JNDI port of the server hosting the session beans.

To invoke a session bean from a remote client you must first configure the project correctly.

Procedure 7.7. Add Maven Project Configuration for Remote Invocation of Session Beans

144

1.

Add the required project dependencies
The pom. xml for the project must be updated to include the necessary dependencies.

. Add the jboss-ejb-client.properties file

The JBoss EJB client APl expects to find a file in the root of the project named jboss-ejb-
client.properties that contains the connection information for the JNDI service. Add this
file to the src/main/resources/ directory of your project with the following content.

In the following line, set SSL_ENABLED to true for SSL
remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLE
D=false

remote.connections=default

Uncomment the following line to set SSL_STARTTLS to true for SSL

#
remote.connection.default.connect.options.org.xnio.Options.SSL_START
TLS=true

remote.connection.default.host=localhost
remote.connection.default.port = 4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLI
CY_NOANONYMOUS=false

Add any of the following SASL options if required

#
remote.connection.default.connect.options.org.xnio.Options.SASL_POLI
CY_NOANONYMOUS=false

#
remote.connection.default.connect.options.org.xnio.Options.SASL_POLI
CY_NOPLAINTEXT=false

#
remote.connection.default.connect.options.org.xnio.Options.SASL_DISA
LLOWED_MECHANISMS=JBOSS-LOCAL-USER

http://maven.apache.org/plugins/maven-install-plugin/usage.html

CHAPTER 7. ENTERPRISE JAVABEANS

Change the host name and port to match your server. 4447 is the default port number. For a
secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS

line. The Remoting interface in the container supports secured and unsecured connections
using the same port.

3. Add dependencies for the remote business interfaces
Add the Maven dependencies to the pom. xml for the remote business interfaces of the
session beans.

<dependency>
<groupId>org.jboss.as.quickstarts</groupId>
<artifactId>jboss-as-ejb-remote-server-side</artifactId>
<type>ejb-client</type>
<version>${project.version}</version>

</dependency>

Now that the project has been configured correctly, you can add the code to access and invoke the
session beans.

Procedure 7.8. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean

1. Handle checked exceptions
Two of the methods used in the following code (InitialContext () and lookup()) have a
checked exception of type javax.naming.NamingException. These method calls must
either be enclosed in a try/catch block that catches NamingException or in a method that is
declared to throw NamingException. The ejb-remote quickstart uses the second
technique.

2. Create a JNDI Context

A JNDI Context object provides the mechanism for requesting resources from the server.
Create a JNDI context using the following code:

final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.URL_PKG_PREFIXES,
"org.jboss.ejb.client.naming");

final Context context = new InitialContext(jndiProperties);

The connection properties for the JNDI service are read from the jboss-ejb-
client.propertiesfile.

3. Use the JNDI Context's lookup() method to obtain a bean proxy
Invoke the 1lookup () method of the bean proxy and pass it the JNDI name of the session bean

you require. This will return an object that must be cast to the type of the remote business
interface that contains the methods you want to invoke.

final RemoteCalculator statelessRemoteCalculator =

(RemoteCalculator) context.lookup(
"ejb:/jboss-as-ejb-remote-server-side/CalculatorBean!" +
RemoteCalculator.class.getName());

145

Development Guide

Session bean JNDI names are defined using a special syntax. For more information, see
Section 7.8.1, “EJB JNDI Naming Reference” .

4. Invoke methods
Now that you have a proxy bean object you can invoke any of the methods contained in the
remote business interface.

int a 204;

int b = 340;

System.out.println("Adding " + a + " and " + b + " via the remote
stateless calculator deployed on the server");

int sum = statelessRemoteCalculator.add(a, b);
System.out.println("Remote calculator returned sum = " + sum);

The proxy bean passes the method invocation request to the session bean on the server,
where it is executed. The result is returned to the proxy bean which then returns it to the
caller. The communication between the proxy bean and the remote session bean is transparent
to the caller.

You should now be able to configure a Maven project to support invoking session beans on a remote
server and write the code invoke the session beans methods using a proxy bean retrieved from the
server using JNDI.

Report a bug

7.5.2. About EJB Client Contexts

JBoss EAP 6 introduced the EJB client API for managing remote EJB invocations. The JBoss EJB
client APl uses the EJBClientContext, which may be associated with and be used by one or more
threads concurrently. The means an EJBClientContext can potentially contain any number of EJB
receivers. An EJB receiver is a component that knows how to communicate with a server that is
capable of handling the EJB invocation. Typically, EJB remote applications can be classified int