
Red Hat Quay 3

Use Red Hat Quay

Use Red Hat Quay

Last Updated: 2024-04-30

Red Hat Quay 3 Use Red Hat Quay

Use Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn to use Red Hat Quay

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. USERS AND ORGANIZATIONS
1.1. TENANCY MODEL
1.2. CREATING USER ACCOUNTS
1.3. DELETING A RED HAT QUAY USER FROM THE COMMAND LINE
1.4. CREATING ORGANIZATION ACCOUNTS

CHAPTER 2. CREATING A REPOSITORY
2.1. CREATING AN IMAGE REPOSITORY BY USING THE UI
2.2. CREATING AN IMAGE REPOSITORY BY USING THE CLI

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
3.1. ALLOWING ACCESS TO USER REPOSITORIES

3.1.1. Allowing user access to a user repository
3.1.2. Allowing robot access to a user repository

3.2. ORGANIZATION REPOSITORIES
3.2.1. Creating an Organization

3.2.1.1. Creating another Organization by using the API
3.2.2. Adding a team to an organization
3.2.3. Setting a Team role
3.2.4. Adding users to a Team

3.3. DISABLING ROBOT ACCOUNTS

CHAPTER 4. WORKING WITH TAGS
4.1. VIEWING AND MODIFYING TAGS

4.1.1. Adding a new image tag to an image
4.1.2. Moving an image tag
4.1.3. Deleting an image tag

4.1.3.1. Viewing tag history
4.1.3.2. Reverting tag changes

4.1.4. Fetching an image by tag or digest
4.2. TAG EXPIRATION

4.2.1. Setting tag expiration from a Dockerfile
4.2.2. Setting tag expiration from the repository

4.3. VIEWING CLAIR SECURITY SCANS

CHAPTER 5. VIEWING AND EXPORTING LOGS
5.1. VIEWING LOGS USING THE UI
5.2. EXPORTING REPOSITORY LOGS

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS
6.1. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT CONTAINER PLATFORM

6.1.1. Configuring the OpenShift Container Platform TLS component
6.1.2. Preparing OpenShift Container Platform for Red Hat Quay Builders
6.1.3. Configuring Red Hat Quay Builders

6.2. OPENSHIFT CONTAINER PLATFORM ROUTES LIMITATIONS
6.3. TROUBLESHOOTING BUILDS

6.3.1. DEBUG config flag
6.3.2. Troubleshooting OpenShift Container Platform and Kubernetes Builds

6.4. SETTING UP GITHUB BUILDS

CHAPTER 7. BUILDING CONTAINER IMAGES

6

7
7
7
8
9

10
10
11

12
12
12
13
14
15
15
16
16
17
18

20
20
21
21
21
22
22
22
22
23
23
24

25
25
26

28
28
28
28
30
31
32
32
33
33

34

Table of Contents

1

. .

. .

. .

. .

7.1. BUILD CONTEXTS
7.2. TAG NAMING FOR BUILD TRIGGERS
7.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
7.4. VIEWING AND MANAGING BUILDS
7.5. CREATING A NEW BUILD
7.6. BUILD TRIGGERS

7.6.1. Creating a Build trigger
7.6.2. Manually triggering a Build

7.7. SETTING UP A CUSTOM GIT TRIGGER
7.7.1. Creating a trigger
7.7.2. Custom trigger creation setup

7.7.2.1. SSH public key access
7.7.2.2. Webhook

CHAPTER 8. CREATING AN OAUTH APPLICATION IN GITHUB
8.1. CREATE NEW GITHUB APPLICATION

CHAPTER 9. REPOSITORY NOTIFICATIONS
9.1. CREATING NOTIFICATIONS
9.2. REPOSITORY EVENTS DESCRIPTION

9.2.1. Repository Push
9.2.2. Dockerfile Build Queued
9.2.3. Dockerfile Build started
9.2.4. Dockerfile Build successfully completed
9.2.5. Dockerfile Build failed
9.2.6. Dockerfile Build cancelled
9.2.7. Vulnerability detected

9.3. NOTIFICATION ACTIONS
9.3.1. Notifications added
9.3.2. E-mail notifications
9.3.3. Webhook POST notifications
9.3.4. Flowdock notifications
9.3.5. Hipchat notifications
9.3.6. Slack notifications

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT
10.1. HELM AND OCI PREREQUISITES

10.1.1. Installing Helm
10.1.2. Upgrading to Helm 3.8
10.1.3. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay

10.2. USING HELM CHARTS
10.3. COSIGN OCI SUPPORT
10.4. INSTALLING AND USING COSIGN
10.5. USING OTHER ARTIFACT TYPES
10.6. DISABLING OCI ARTIFACTS IN RED HAT QUAY

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
11.1. QUOTA MANAGEMENT ARCHITECTURE
11.2. QUOTA MANAGEMENT LIMITATIONS
11.3. QUOTA MANAGEMENT CONFIGURATION FIELDS

11.3.1. Example quota management configuration
11.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

11.4.1. Setting the quota
11.4.2. Viewing the quota

34
34
35
35
36
36
36
38
38
38
38
39
39

41
41

43
43
44
44
44
45
46
47
48
48
49
49
49
49
49
49
49

50
50
50
51
51
51
52
54
55
56

57
57
58
58
59
59
60
60

Red Hat Quay 3 Use Red Hat Quay

2

. .

. .

. .

11.4.3. Modifying the quota
11.4.4. Pushing images

11.4.4.1. Pushing ubuntu:18.04
11.4.4.2. Using the API to view quota usage
11.4.4.3. Pushing another image

11.4.5. Rejecting pushes using quota limits
11.4.5.1. Setting reject and warning limits
11.4.5.2. Viewing reject and warning limits
11.4.5.3. Pushing an image when the reject limit is exceeded
11.4.5.4. Notifications for limits exceeded

CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES
12.1. PROXY CACHE ARCHITECTURE
12.2. PROXY CACHE LIMITATIONS
12.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY

12.3.1. Leveraging storage quota limits in proxy organizations
12.3.1.1. Testing the storage quota limits feature in proxy organizations

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS
13.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE
13.2. RED HAT QUAY BUILD LIMITATIONS
13.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM

13.3.1. OpenShift Container Platform TLS component
13.3.2. Using OpenShift Container Platform for Red Hat Quay builders

13.3.2.1. Preparing OpenShift Container Platform for virtual builders
13.3.2.2. Manually adding SSL/TLS certificates

13.3.2.2.1. Creating and signing certificates
13.3.2.2.2. Setting TLS to unmanaged
13.3.2.2.3. Creating temporary secrets
13.3.2.2.4. Copying secret data to the configuration YAML

13.3.2.3. Using the UI to create a build trigger
13.3.2.4. Modifying your AWS S3 storage bucket
13.3.2.5. Modifying your Google Cloud Platform object bucket

CHAPTER 14. USING THE V2 UI
14.1. V2 USER INTERFACE CONFIGURATION

14.1.1. Creating a new organization using the v2 UI
14.1.2. Deleting an organization using the v2 UI
14.1.3. Creating a new repository using the v2 UI
14.1.4. Deleting a repository using the v2 UI
14.1.5. Pushing an image to the v2 UI
14.1.6. Deleting an image using the v2 UI
14.1.7. Creating a new team using the Red Hat Quay v2 UI
14.1.8. Creating a robot account using the v2 UI

14.1.8.1. Bulk managing robot account repository access using the Red Hat Quay v2 UI
14.1.9. Creating default permissions using the Red Hat Quay v2 UI
14.1.10. Organization settings for the v2 UI
14.1.11. Viewing image tag information using the v2 UI
14.1.12. Adjusting repository settings using the v2 UI

14.2. VIEWING RED HAT QUAY TAG HISTORY
14.3. ADDING AND MANAGING LABELS ON THE RED HAT QUAY V2 UI
14.4. SETTING TAG EXPIRATIONS ON THE RED HAT QUAY V2 UI
14.5. SELECTING COLOR THEME PREFERENCE ON THE RED HAT QUAY V2 UI

60
61
61
61

62
63
63
64
64
65

67
67
70
71
72
72

74
74
74

74
74
75
75
79
79
80
80
80
83
84
85

87
87
87
88
88
89
89
90
90
91

92
93
94
94
95
96
96
97
98

Table of Contents

3

. .

14.6. VIEWING USAGE LOGS ON THE RED HAT QUAY V2 UI
14.7. ENABLING THE LEGACY UI

CHAPTER 15. USING THE RED HAT QUAY API
15.1. ACCESSING THE QUAY API FROM QUAY.IO
15.2. CREATING AN OAUTH ACCESS TOKEN
15.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER
15.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

15.4.1. Get superuser information
15.4.2. Creating a superuser using the API
15.4.3. List usage logs

15.4.3.1. Example for pagination
15.4.4. Directory synchronization
15.4.5. Create a repository build via API
15.4.6. Create an org robot
15.4.7. Trigger a build
15.4.8. Create a private repository
15.4.9. Create a mirrored repository

98
99

100
100
100
102
102
102
103
104
104
107
107
108
108
108
108

Red Hat Quay 3 Use Red Hat Quay

4

Table of Contents

5

PREFACE
Red Hat Quay container image registries let you store container images in a central location. As a
regular user of a Red Hat Quay registry, you can create repositories to organize your images and
selectively add read (pull) and write (push) access to the repositories you control. A user with
administrative privileges can perform a broader set of tasks, such as the ability to add users and control
default settings.

This guide assumes you have a Red Hat Quay deployed and are ready to start setting it up and using it.

Red Hat Quay 3 Use Red Hat Quay

6

CHAPTER 1. USERS AND ORGANIZATIONS
Before creating repositories to contain your container images in Red Hat Quay, you should consider how
these repositories will be structured. With Red Hat Quay, each repository requires a connection with
either an Organization or a User. This affiliation defines ownership and access control for the
repositories.

1.1. TENANCY MODEL

Organizations provide a way of sharing repositories under a common namespace that does not
belong to a single user. Instead, these repositories belong to several users in a shared setting,
such as a company.

Teams provide a way for an Organization to delegate permissions. Permissions can be set at the
global level (for example, across all repositories), or on specific repositories. They can also be
set for specific sets, or groups, of users.

Users can log in to a registry through the web UI or a by using a client, such as Podman or
Docker, using their respective login commands, for example, $ podman login. Each user
automatically gets a user namespace, for example, <quay-
server.example.com>/<user>/<username>, or quay.io/<username>.

Superusers have enhanced access and privileges through the Super User Admin Panel in the
user interface. Superuser API calls are also available, which are not visible or accessible to
normal users.

Robot accounts provide automated access to repositories for non-human users like pipeline
tools. Robot accounts are similar to OpenShift Container Platform Service Accounts.
Permissions can be granted to a robot account in a repository by adding that account like you
would another user or team.

1.2. CREATING USER ACCOUNTS

A user account for Red Hat Quay represents an individual with authenticated access to the platform’s
features and functionalities. Through this account, you gain the capability to create and manage
repositories, upload and retrieve container images, and control access permissions for these resources.
This account is pivotal for organizing and overseeing your container image management within Red Hat
Quay.

Use the following procedure to create a new user for your Red Hat Quay repository.

CHAPTER 1. USERS AND ORGANIZATIONS

7

Prerequisites

You have configured a superuser in your config.yaml file. For more information, see
Configuring a Red Hat Quay superuser .

Procedure

1. Log in to your Red Hat Quay repository as the superuser.

2. In the navigation pane, select your account name, and then click Super User Admin Panel.

3. Click the Users icon in the column.

4. Click the Create User button.

5. Enter the new user’s Username and Email address, and then click the Create User button.

6. You are redirected to the Users page, where there is now another Red Hat Quay user.

NOTE

You might need to refresh the Users page to show the additional user.

7. On the Users page, click the Options cogwheel associated with the new user. A drop-down
menu appears, as shown in the following figure:

8. Click Change Password.

9. Add the new password, and then click Change User Password.
The new user can now use that username and password to log in using the web UI or through
their preferred container client, like Docker or Podman.

1.3. DELETING A RED HAT QUAY USER FROM THE COMMAND LINE

When accessing the Users tab in the Superuser Admin panel of the Red Hat Quay UI, you might
encounter a situation where no users are listed. Instead, a message appears, indicating that Red Hat
Quay is configured to use external authentication, and users can only be created in that system.

This error occurs for one of two reasons:

The web UI times out when loading users. When this happens, users are not accessible to
perform any operations on.

Red Hat Quay 3 Use Red Hat Quay

8

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/index#red_hat_quay_superuser

On LDAP authentication. When a userID is changed but the associated email is not. Currently,
Red Hat Quay does not allow the creation of a new user with an old email address.

Use the following procedure to delete a user from Red Hat Quay when facing this issue.

Procedure

Enter the following curl command to delete a user from the command line:

NOTE

After deleting the user, any repositories that this user had in his private account
become unavailable.

1.4. CREATING ORGANIZATION ACCOUNTS

Any user can create their own organization to share repositories of container images. To create a new
organization:

1. While logged in as any user, select the plus sign (+) from the upper right corner of the home
page and choose New Organization.

2. Type the name of the organization. The name must be alphanumeric, all lower case, and
between 2 and 255 characters long

3. Select Create Organization. The new organization appears, ready for you to begin adding
repositories, teams, robot accounts and other features from icons on the left column. The
following figure shows an example of the new organization’s page with the settings tab selected.

$ curl -X DELETE -H "Authorization: Bearer <insert token here>"
https://<quay_hostname>/api/v1/superuser/users/<name_of_user>

CHAPTER 1. USERS AND ORGANIZATIONS

9

CHAPTER 2. CREATING A REPOSITORY
A repository provides a central location for storing a related set of container images. These images can
be used to build applications along with their dependencies in a standardized format.

Repositories are organized by namespaces. Each namespace can have multiple repositories. For
example, you might have a namespace for your personal projects, one for your company, or one for a
specific team within your organization.

Red Hat Quay provides users with access controls for their repositories. Users can make a repository
public, meaning that anyone can pull, or download, the images from it, or users can make it private,
restricting access to authorized users or teams.

There are two ways to create a repository in Red Hat Quay: by pushing an image with the relevant
docker or podman command, or by using the Red Hat Quay UI.

2.1. CREATING AN IMAGE REPOSITORY BY USING THE UI

Use the following procedure to create a repository using the Red Hat Quay UI.

Procedure

1. Log in to your user account through the web UI.

2. On the Red Hat Quay landing page, click Create New Repository. Alternatively, you can click
the + icon → New Repository. For example:

3. On the Create New Repository page:

a. Append a Repository Name to your username or to the Organization that you wish to use.

IMPORTANT

Do not use the following words in your repository name: * build * trigger *
tag

When these words are used for repository names, users are unable access
the repository, and are unable to permanently delete the repository.
Attempting to delete these repositories returns the following error: Failed to
delete repository <repository_name>, HTTP404 - Not Found.

b. Optional. Click Click to set repository description to add a description of the repository.

c. Click Public or Private depending on your needs.

d. Optional. Select the desired repository initialization.

Red Hat Quay 3 Use Red Hat Quay

10

4. Click Create Private Repository to create a new, empty repository.

2.2. CREATING AN IMAGE REPOSITORY BY USING THE CLI

With the proper credentials, you can push an image to a repository using either Docker or Podman that
does not yet exist in your Red Hat Quay instance. Pushing an image refers to the process of uploading a
container image from your local system or development environment to a container registry like Quay.io.
After pushing an image to Quay.io, a repository is created.

Use the following procedure to create an image repository by pushing an image.

Prerequisites

You have download and installed the podman CLI.

You have logged into Quay.io.

You have pulled an image, for example, busybox.

Procedure

1. Pull a sample page from an example registry. For example:

Example output

2. Tag the image on your local system with the new repository and image name. For example:

3. Push the image to the registry. Following this step, you can use your browser to see the tagged
image in your repository.

Example output

$ sudo podman pull busybox

Trying to pull docker.io/library/busybox...
Getting image source signatures
Copying blob 4c892f00285e done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

$ sudo podman tag docker.io/library/busybox quay-
server.example.com/quayadmin/busybox:test

$ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/busybox:test

Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures

CHAPTER 2. CREATING A REPOSITORY

11

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
As a Red Hat Quay user, you can create your own repositories and make them accessible to other users
that are part of your instance. Alternatively, you can create a specific Organization to allow access to
repositories based on defined teams.

In both User and Organization repositories, you can allow access to those repositories by creating
credentials associated with Robot Accounts. Robot Accounts make it easy for a variety of container
clients, such as Docker or Podman, to access your repositories without requiring that the client have a
Red Hat Quay user account.

3.1. ALLOWING ACCESS TO USER REPOSITORIES

When you create a repository in a user namespace, you can add access to that repository to user
accounts or through Robot Accounts.

3.1.1. Allowing user access to a user repository

Use the following procedure to allow access to a repository associated with a user account.

Procedure

1. Log into Red Hat Quay with your user account.

2. Select a repository under your user namespace that will be shared across multiple users.

3. Select Settings in the navigation pane.

4. Type the name of the user to which you want to grant access to your repository. As you type,
the name should appear. For example:

5. In the permissions box, select one of the following:

Read. Allows the user to view and pull from the repository.

Write. Allows the user to view the repository, pull images from the repository, or push
images to the repository.

Admin. Provides the user with all administrative settings to the repository, as well as all Read
and Write permissions.

6. Select the Add Permission button. The user now has the assigned permission.

7. Optional. You can remove or change user permissions to the repository by selecting the

Red Hat Quay 3 Use Red Hat Quay

12

7. Optional. You can remove or change user permissions to the repository by selecting the
Options icon, and then selecting Delete Permission.

3.1.2. Allowing robot access to a user repository

Robot Accounts are used to set up automated access to the repositories in your Red Hat Quay registry.
They are similar to OpenShift Container Platform service accounts.

Setting up a Robot Account results in the following:

Credentials are generated that are associated with the Robot Account.

Repositories and images that the Robot Account can push and pull images from are identified.

Generated credentials can be copied and pasted to use with different container clients, such as
Docker, Podman, Kubernetes, Mesos, and so on, to access each defined repository.

Each Robot Account is limited to a single user namespace or Organization. For example, the Robot
Account could provide access to all repositories for the user jsmith. However, it cannot provide access
to repositories that are not in the user’s list of repositories.

Use the following procedure to set up a Robot Account that can allow access to your repositories.

Procedure

1. On the Repositories landing page, click the name of a user.

2. Click Robot Accounts on the navigation pane.

3. Click Create Robot Account.

4. Provide a name for your Robot Account.

5. Optional. Provide a description for your Robot Account.

6. Click Create Robot Account. The name of your Robot Account becomes a combination of your
username plus the name of the robot, for example, jsmith+robot

7. Select the repositories that you want the Robot Account to be associated with.

8. Set the permissions of the Robot Account to one of the following:

None. The Robot Account has no permission to the repository.

Read. The Robot Account can view and pull from the repository.

Write. The Robot Account can read (pull) from and write (push) to the repository.

Admin. Full access to pull from, and push to, the repository, plus the ability to do
administrative tasks associated with the repository.

9. Click the Add permissions button to apply the settings.

10. On the Robot Accounts page, select the Robot Account to see credential information for that
robot.

11. Under the Robot Account option, copy the generated token for the robot by clicking Copy to

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES

13

11. Under the Robot Account option, copy the generated token for the robot by clicking Copy to
Clipboard. To generate a new token, you can click Regenerate Token.

NOTE

Regenerating a token makes any previous tokens for this robot invalid.

12. Obtain the resulting credentials in the following ways:

Kubernetes Secret: Select this to download credentials in the form of a Kubernetes pull
secret yaml file.

rkt Configuration: Select this to download credentials for the rkt container runtime in the
form of a .json file.

Docker Login: Select this to copy a full docker login command line that includes the
credentials.

Docker Configuration: Select this to download a file to use as a Docker config.json file, to
permanently store the credentials on your client system.

Mesos Credentials: Select this to download a tarball that provides the credentials that can
be identified in the URI field of a Mesos configuration file.

3.2. ORGANIZATION REPOSITORIES

After you have created an Organization, you can associate a set of repositories directly to that
Organization. An Organization’s repository differs from a basic repository in that the Organization is
intended to set up shared repositories through groups of users. In Red Hat Quay, groups of users can be
either Teams, or sets of users with the same permissions, or individual users.

Other useful information about Organizations includes the following:

You cannot have an Organization embedded within another Organization. To subdivide an
Organization, you use teams.

Organizations cannot contain users directly. You must first add a team, and then add one or
more users to each team.

NOTE

Red Hat Quay 3 Use Red Hat Quay

14

NOTE

Individual users can be added to specific repositories inside of an organization.
Consequently, those users are not members of any team on the Repository
Settings page. The Collaborators View on the Teams and Memberships page
shows users who have direct access to specific repositories within the
organization without needing to be part of that organization specifically.

Teams can be set up in Organizations as just members who use the repositories and associated
images, or as administrators with special privileges for managing the Organization.

3.2.1. Creating an Organization

Use the following procedure to create an Organization.

Procedure

1. On the Repositories landing page, click Create New Organization.

2. Under Organization Name, enter a name that is at least 2 characters long, and less than 225
characters long.

3. Under Organization Email, enter an email that is different from your account’s email.

4. Click Create Organization to finalize creation.

3.2.1.1. Creating another Organization by using the API

You can create another Organization by using the API. To do this, you must have created the first
Organization by using the UI. You must also have generated an OAuth Access Token.

Use the following procedure to create another Organization by using the Red Hat Quay API endpoint.

Prerequisites

You have already created at least one Organization by using the UI.

You have generated an OAuth Access Token. For more information, see "Creating an OAuth
Access Token".

Procedure

1. Create a file named data.json by entering the following command:

2. Add the following content to the file, which will be the name of the new Organization:

3. Enter the following command to create the new Organization using the API endpoint, passing in
your OAuth Access Token and Red Hat Quay registry endpoint:

$ touch data.json

{"name":"testorg1"}

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES

15

Example output

3.2.2. Adding a team to an organization

When you create a team for your Organization you can select the team name, choose which repositories
to make available to the team, and decide the level of access to the team.

Use the following procedure to create a team for your Organization.

Prerequisites

You have created an organization.

Procedure

1. On the Repositories landing page, select an Organization to add teams to.

2. In the navigation pane, select Teams and Membership. By default, an owners team exists with
Admin privileges for the user who created the Organization.

3. Click Create New Team.

4. Enter a name for your new team. Note that the team must start with a lowercase letter. It can
also only use lowercase letters and numbers. Capital letters or special characters are not
allowed.

5. Click Create team.

6. Click the name of your team to be redirected to the Team page. Here, you can add a description
of the team, and add team members, like registered users, robots, or email addresses. For more
information, see "Adding users to a team".

7. Click the No repositories text to bring up a list of available repositories. Select the box of each
repository you will provide the team access to.

8. Select the appropriate permissions that you want the team to have:

None. Team members have no permission to the repository.

Read. Team members can view and pull from the repository.

Write. Team members can read (pull) from and write (push) to the repository.

Admin. Full access to pull from, and push to, the repository, plus the ability to do
administrative tasks associated with the repository.

9. Click Add permissions to save the repository permissions for the team.

3.2.3. Setting a Team role

$ curl -X POST -k -d @data.json -H "Authorization: Bearer <access_token>" -H "Content-
Type: application/json" http://<quay-server.example.com>/api/v1/organization/

"Created"

Red Hat Quay 3 Use Red Hat Quay

16

After you have added a team, you can set the role of that team within the Organization.

Prerequisites

You have created a team.

Procedure

1. On the Repository landing page, click the name of your Organization.

2. In the navigation pane, click Teams and Membership.

3. Select the TEAM ROLE drop-down menu, as shown in the following figure:

4. For the selected team, choose one of the following roles:

Member. Inherits all permissions set for the team.

Creator. All member permissions, plus the ability to create new repositories.

Admin. Full administrative access to the organization, including the ability to create teams,
add members, and set permissions.

3.2.4. Adding users to a Team

With administrative privileges to an Organization, you can add users and robot accounts to a team. When
you add a user, Red Hat Quay sends an email to that user. The user remains pending until they accept
the invitation.

Use the following procedure to add users or robot accounts to a team.

Procedure

1. On the Repository landing page, click the name of your Organization.

2. In the navigation pane, click Teams and Membership.

3. Select the team you want to add users or robot accounts to.

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES

17

4. In the Team Members box, enter information for one of the following:

A username from an account on the registry.

The email address for a user account on the registry.

The name of a robot account. The name must be in the form of <organization_name>+
<robot_name>.

NOTE

Robot Accounts are immediately added to the team. For user accounts, an
invitation to join is mailed to the user. Until the user accepts that invitation,
the user remains in the INVITED TO JOIN state. After the user accepts the
email invitation to join the team, they move from the INVITED TO JOIN list
to the MEMBERS list for the Organization.

Additional resources

Creating an OAuth Access Token

3.3. DISABLING ROBOT ACCOUNTS

Red Hat Quay administrators can manage robot accounts by disallowing users to create new robot
accounts.

IMPORTANT

Robot accounts are mandatory for repository mirroring. Setting the
ROBOTS_DISALLOW configuration field to true breaks mirroring configurations. Users
mirroring repositories should not set ROBOTS_DISALLOW to true in their config.yaml
file. This is a known issue and will be fixed in a future release of Red Hat Quay.

Use the following procedure to disable robot account creation.

Prerequisites

You have created multiple robot accounts.

Procedure

1. Update your config.yaml field to add the ROBOTS_DISALLOW variable, for example:

2. Restart your Red Hat Quay deployment.

Verification: Creating a new robot account

1. Navigate to your Red Hat Quay repository.

2. Click the name of a repository.

3. In the navigation pane, click Robot Accounts.

ROBOTS_DISALLOW: true

Red Hat Quay 3 Use Red Hat Quay

18

https://access.redhat.com/documentation/en-us/red_hat_quay/3.10/html-single/red_hat_quay_api_guide/index#creating_oauth_access_token

4. Click Create Robot Account.

5. Enter a name for the robot account, for example, <organization-name/username>+<robot-
name>.

6. Click Create robot account to confirm creation. The following message appears: Cannot
create robot account. Robot accounts have been disabled. Please contact your
administrator.

Verification: Logging into a robot account

1. On the command-line interface (CLI), attempt to log in as one of the robot accounts by
entering the following command:

The following error message is returned:

2. You can pass in the log-level=debug flag to confirm that robot accounts have been
deactivated:

$ podman login -u="<organization-name/username>+<robot-name>" -
p="KETJ6VN0WT8YLLNXUJJ4454ZI6TZJ98NV41OE02PC2IQXVXRFQ1EJ36V12345678"
<quay-server.example.com>

Error: logging into "<quay-server.example.com>": invalid username/password

$ podman login -u="<organization-name/username>+<robot-name>" -
p="KETJ6VN0WT8YLLNXUJJ4454ZI6TZJ98NV41OE02PC2IQXVXRFQ1EJ36V12345678" -
-log-level=debug <quay-server.example.com>

...
DEBU[0000] error logging into "quay-server.example.com": unable to retrieve auth token:
invalid username/password: unauthorized: Robot accounts have been disabled. Please
contact your administrator.

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES

19

CHAPTER 4. WORKING WITH TAGS
An image tag refers to a label or identifier assigned to a specific version or variant of a container image.
Container images are typically composed of multiple layers that represent different parts of the image.
Image tags are used to differentiate between different versions of an image or to provide additional
information about the image.

Image tags have the following benefits:

Versioning and Releases: Image tags allow you to denote different versions or releases of an
application or software. For example, you might have an image tagged as v1.0 to represent the
initial release and v1.1 for an updated version. This helps in maintaining a clear record of image
versions.

Rollbacks and Testing: If you encounter issues with a new image version, you can easily revert to
a previous version by specifying its tag. This is particularly helpful during debugging and testing
phases.

Development Environments: Image tags are beneficial when working with different
environments. You might use a dev tag for a development version, qa for quality assurance
testing, and prod for production, each with their respective features and configurations.

Continuous Integration/Continuous Deployment (CI/CD): CI/CD pipelines often utilize image
tags to automate the deployment process. New code changes can trigger the creation of a new
image with a specific tag, enabling seamless updates.

Feature Branches: When multiple developers are working on different features or bug fixes,
they can create distinct image tags for their changes. This helps in isolating and testing
individual features.

Customization: You can use image tags to customize images with different configurations,
dependencies, or optimizations, while keeping track of each variant.

Security and Patching: When security vulnerabilities are discovered, you can create patched
versions of images with updated tags, ensuring that your systems are using the latest secure
versions.

Dockerfile Changes: If you modify the Dockerfile or build process, you can use image tags to
differentiate between images built from the previous and updated Dockerfiles.

Overall, image tags provide a structured way to manage and organize container images, enabling
efficient development, deployment, and maintenance workflows.

4.1. VIEWING AND MODIFYING TAGS

To view image tags on Red Hat Quay, navigate to a repository and click on the Tags tab. For example:

View and modify tags from your repository

Red Hat Quay 3 Use Red Hat Quay

20

4.1.1. Adding a new image tag to an image

You can add a new tag to an image in Red Hat Quay.

Procedure

1. Click the Settings, or gear, icon next to the tag and clicking Add New Tag.

2. Enter a name for the tag, then, click Create Tag.
The new tag is now listed on the Repository Tags page.

4.1.2. Moving an image tag

You can move a tag to a different image if desired.

Procedure

Click the Settings, or gear, icon next to the tag and clicking Add New Tag and enter an existing
tag name. Red Hat Quay confirms that you want the tag moved instead of added.

4.1.3. Deleting an image tag

Deleting an image tag effectively removes that specific version of the image from the registry.

To delete an image tag, use the following procedure.

Procedure

1. Navigate to the Tags page of a repository.

2. Click Delete Tag. This deletes the tag and any images unique to it.

NOTE

Deleting an image tag can be reverted based on the amount of time allotted
assigned to the time machine feature. For more information, see "Reverting tag
changes".

CHAPTER 4. WORKING WITH TAGS

21

4.1.3.1. Viewing tag history

Red Hat Quay offers a comprehensive history of images and their respective image tags.

Procedure

Navigate to the Tag History page of a repository to view the image tag history.

4.1.3.2. Reverting tag changes

Red Hat Quay offers a comprehensive time machine feature that allows older images tags to remain in
the repository for set periods of time so that they can revert changes made to tags. This feature allows
users to revert tag changes, like tag deletions.

Procedure

1. Navigate to the Tag History page of a repository.

2. Find the point in the timeline at which image tags were changed or removed. Next, click the
option under Revert to restore a tag to its image, or click the option under Permanently Delete
to permanently delete the image tag.

4.1.4. Fetching an image by tag or digest

Red Hat Quay offers multiple ways of pulling images using Docker and Podman clients.

Procedure

1. Navigate to the Tags page of a repository.

2. Under Manifest, click the Fetch Tag icon.

3. When the popup box appears, users are presented with the following options:

Podman Pull (by tag)

Docker Pull (by tag)

Podman Pull (by digest)

Docker Pull (by digest)
Selecting any one of the four options returns a command for the respective client that
allows users to pull the image.

4. Click Copy Command to copy the command, which can be used on the command-line interface
(CLI). For example:

4.2. TAG EXPIRATION

Images can be set to expire from a Red Hat Quay repository at a chosen date and time using the tag
expiration feature. This feature includes the following characteristics:

When an image tag expires, it is deleted from the repository. If it is the last tag for a specific

$ podman pull quay-server.example.com/quayadmin/busybox:test2

Red Hat Quay 3 Use Red Hat Quay

22

When an image tag expires, it is deleted from the repository. If it is the last tag for a specific
image, the image is also set to be deleted.

Expiration is set on a per-tag basis. It is not set for a repository as a whole.

After a tag is expired or deleted, it is not immediately removed from the registry. This is
contingent upon the allotted time designed in the time machine feature, which defines when the
tag is permanently deleted, or garbage collected. By default, this value is set at 14 days, however
the administrator can adjust this time to one of multiple options. Up until the point that garbage
collection occurs, tags changes can be reverted.

The Red Hat Quay superuser has no special privilege related to deleting expired images from user
repositories. There is no central mechanism for the superuser to gather information and act on user
repositories. It is up to the owners of each repository to manage expiration and the deletion of their
images.

Tag expiration can be set up in one of two ways:

By setting the quay.expires-after= LABEL in the Dockerfile when the image is created. This
sets a time to expire from when the image is built.

By selecting an expiration date on the Red Hat Quay UI. For example:

4.2.1. Setting tag expiration from a Dockerfile

Adding a label, for example, quay.expires-after=20h by using the docker label command causes a tag
to automatically expire after the time indicated. The following values for hours, days, or weeks are
accepted:

1h

2d

3w

Expiration begins from the time that the image is pushed to the registry.

4.2.2. Setting tag expiration from the repository

Tag expiration can be set on the Red Hat Quay UI.

Procedure

1. Navigate to a repository and click Tags in the navigation pane.

CHAPTER 4. WORKING WITH TAGS

23

2. Click the Settings, or gear icon, for an image tag and select Change Expiration.

3. Select the date and time when prompted, and select Change Expiration. The tag is set to be
deleted from the repository when the expiration time is reached.

4.3. VIEWING CLAIR SECURITY SCANS

Clair security scanner is not enabled for Red Hat Quay by default. To enable Clair, see Clair on Red Hat
Quay.

Procedure

1. Navigate to a repository and click Tags in the navigation pane. This page shows the results of
the security scan.

2. To reveal more information about multi-architecture images, click See Child Manifests to see
the list of manifests in extended view.

3. Click a relevant link under See Child Manifests, for example, 1 Unknown to be redirected to the
Security Scanner page.

4. The Security Scanner page provides information for the tag, such as which CVEs the image is
susceptible to, and what remediation options you might have available.

NOTE

Image scanning only lists vulnerabilities found by Clair security scanner. What users do
about the vulnerabilities are uncovered is up to said user. Red Hat Quay superusers do
not act on found vulnerabilities.

Red Hat Quay 3 Use Red Hat Quay

24

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/vulnerability_reporting_with_clair_on_red_hat_quay/testing-clair-with-quay

CHAPTER 5. VIEWING AND EXPORTING LOGS
Activity logs are gathered for all repositories and namespace in Red Hat Quay.

Viewing usage logs of Red Hat Quay. can provide valuable insights and benefits for both operational and
security purposes. Usage logs might reveal the following information:

Resource Planning: Usage logs can provide data on the number of image pulls, pushes, and
overall traffic to your registry.

User Activity: Logs can help you track user activity, showing which users are accessing and
interacting with images in the registry. This can be useful for auditing, understanding user
behavior, and managing access controls.

Usage Patterns: By studying usage patterns, you can gain insights into which images are
popular, which versions are frequently used, and which images are rarely accessed. This
information can help prioritize image maintenance and cleanup efforts.

Security Auditing: Usage logs enable you to track who is accessing images and when. This is
crucial for security auditing, compliance, and investigating any unauthorized or suspicious
activity.

Image Lifecycle Management: Logs can reveal which images are being pulled, pushed, and
deleted. This information is essential for managing image lifecycles, including deprecating old
images and ensuring that only authorized images are used.

Compliance and Regulatory Requirements: Many industries have compliance requirements
that mandate tracking and auditing of access to sensitive resources. Usage logs can help you
demonstrate compliance with such regulations.

Identifying Abnormal Behavior: Unusual or abnormal patterns in usage logs can indicate
potential security breaches or malicious activity. Monitoring these logs can help you detect and
respond to security incidents more effectively.

Trend Analysis: Over time, usage logs can provide trends and insights into how your registry is
being used. This can help you make informed decisions about resource allocation, access
controls, and image management strategies.

There are multiple ways of accessing log files:

Viewing logs through the web UI.

Exporting logs so that they can be saved externally.

Accessing log entries using the API.

To access logs, you must have administrative privileges for the selected repository or namespace.

NOTE

A maximum of 100 log results are available at a time via the API. To gather more results
that that, you must use the log exporter feature described in this chapter.

5.1. VIEWING LOGS USING THE UI

Use the following procedure to view log entries for a repository or namespace using the web UI.

CHAPTER 5. VIEWING AND EXPORTING LOGS

25

Procedure

1. Navigate to a repository or namespace for which you are an administrator of.

2. In the navigation pane, select Usage Logs.

3. Optional. On the usage logs page:

a. Set the date range for viewing log entries by adding dates to the From and to boxes. By
default, the UI shows you the most recent week of log entries.

b. Type a string into the Filter Logs box to display log entries that of the specified keyword.
For example, you can type delete to filter the logs to show deleted tags.

c. Under Description, toggle the arrow of a log entry to see more, or less, text associated with
a specific log entry.

5.2. EXPORTING REPOSITORY LOGS

You can obtain a larger number of log files and save them outside of the Red Hat Quay database by
using the Export Logs feature. This feature has the following benefits and constraints:

You can choose a range of dates for the logs you want to gather from a repository.

You can request that the logs be sent to you by an email attachment or directed to a callback
URL.

To export logs, you must be an administrator of the repository or namespace.

30 days worth of logs are retained for all users.

Export logs only gathers log data that was previously produced. It does not stream logging data.

Your Red Hat Quay instance must be configured for external storage for this feature. Local
storage does not work for exporting logs.

Red Hat Quay 3 Use Red Hat Quay

26

When logs are gathered and made available to you, you should immediately copy that data if you
want to save it. By default, the data expires after one hour.

Use the following procedure to export logs.

Procedure

1. Select a repository for which you have administrator privileges.

2. In the navigation pane, select Usage Logs.

3. Optional. If you want to specify specific dates, enter the range in the From and to boxes.

4. Click the Export Logs button. An Export Usage Logs pop-up appears, as shown

5. Enter an email address or callback URL to receive the exported log. For the callback URL, you
can use a URL to a specified domain, for example, <webhook.site>.

6. Select Start Logs Export to start the process for gather the selected log entries. Depending on
the amount of logging data being gathered, this can take anywhere from a few minutes to
several hours to complete.

7. When the log export is completed, the one of following two events happens:

An email is received, alerting you to the available of your requested exported log entries.

A successful status of your log export request from the webhook URL is returned.
Additionally, a link to the exported data is made available for you to delete to download the
logs.

NOTE

The URL points to a location in your Red Hat Quay external storage and is set to expire
within one hour. Make sure that you copy the exported logs before the expiration time if
you intend to keep your logs.

CHAPTER 5. VIEWING AND EXPORTING LOGS

27

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES
WITH BUILD WORKERS

Red Hat Quay supports building Dockerfiles using a set of worker nodes on OpenShift Container
Platform or Kubernetes. Build triggers, such as GitHub webhooks, can be configured to automatically
build new versions of your repositories when new code is committed.

This document shows you how to enable Builds with your Red Hat Quay installation, and set up one
more more OpenShift Container Platform or Kubernetes clusters to accept Builds from Red Hat Quay.

6.1. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT
CONTAINER PLATFORM

You must pre-configure Red Hat Quay Builders prior to using it with OpenShift Container Platform.

6.1.1. Configuring the OpenShift Container Platform TLS component

The tls component allows you to control TLS configuration.

NOTE

Red Hat Quay does not support Builders when the TLS component is managed by the
Red Hat Quay Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support Builders, you must add both the Quay route and the Builder route name to the
SAN list in the certificate; alternatively you can use a wildcard.

To add the builder route, use the following format:

6.1.2. Preparing OpenShift Container Platform for Red Hat Quay Builders

Prepare Red Hat Quay Builders for OpenShift Container Platform by using the following procedure.

Prerequisites

You have configured the OpenShift Container Platform TLS component.

Procedure

1. Enter the following command to create a project where Builds will be run, for example, builder:

2. Create a new ServiceAccount in the the builder namespace by entering the following
command:

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]

$ oc new-project builder

$ oc create sa -n builder quay-builder

Red Hat Quay 3 Use Red Hat Quay

28

3. Enter the following command to grant a user the edit role within the builder namespace:

4. Enter the following command to retrieve a token associated with the quay-builder service
account in the builder namespace. This token is used to authenticate and interact with the
OpenShift Container Platform cluster’s API server.

5. Identify the URL for the OpenShift Container Platform cluster’s API server. This can be found in
the OpenShift Container Platform Web Console.

6. Identify a worker node label to be used when schedule Build jobs. Because Build pods need to
run on bare metal worker nodes, typically these are identified with specific labels.
Check with your cluster administrator to determine exactly which node label should be used.

7. Optional. If the cluster is using a self-signed certificate, you must get the Kube API Server’s
certificate authority (CA) to add to Red Hat Quay’s extra certificates.

a. Enter the following command to obtain the name of the secret containing the CA:

b. Obtain the ca.crt key value from the secret in the OpenShift Container Platform Web
Console. The value begins with "-----BEGIN CERTIFICATE-----" .̀

c. Import the CA to Red Hat Quay. Ensure that the name of this file matches
K8S_API_TLS_CA.

8. Create the following SecurityContextConstraints resource for the ServiceAccount:

$ oc policy add-role-to-user -n builder edit system:serviceaccount:builder:quay-builder

$ oc sa get-token -n builder quay-builder

$ oc get sa openshift-apiserver-sa --namespace=openshift-apiserver -o json | jq
'.secrets[] | select(.name | contains("openshift-apiserver-sa-token"))'.name

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 name: quay-builder
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: null
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups:
 type: RunAsAny
volumes:
- '*'
allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

29

6.1.3. Configuring Red Hat Quay Builders

Use the following procedure to enable Red Hat Quay Builders.

Procedure

1. Ensure that your Red Hat Quay config.yaml file has Builds enabled, for example:

2. Add the following information to your Red Hat Quay config.yaml file, replacing each value with
information that is relevant to your specific installation:

allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities:
- '*'
allowedUnsafeSysctls:
- '*'
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: quay-builder-scc
 namespace: builder
rules:
- apiGroups:
 - security.openshift.io
 resourceNames:
 - quay-builder
 resources:
 - securitycontextconstraints
 verbs:
 - use

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: quay-builder-scc
 namespace: builder
subjects:
- kind: ServiceAccount
 name: quay-builder
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: quay-builder-scc

FEATURE_BUILD_SUPPORT: True

BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/

Red Hat Quay 3 Use Red Hat Quay

30

For more information about each configuration field, see

6.2. OPENSHIFT CONTAINER PLATFORM ROUTES LIMITATIONS

The following limitations apply when you are using the Red Hat Quay Operator on OpenShift Container
Platform with a managed route component:

Currently, OpenShift Container Platform Routes are only able to serve traffic to a single port.
Additional steps are required to set up Red Hat Quay Builds.

Ensure that your kubectl or oc CLI tool is configured to work with the cluster where the Red
Hat Quay Operator is installed and that your QuayRegistry exists; the QuayRegistry does not
have to be on the same bare metal cluster where Builders run.

Ensure that HTTP/2 ingress is enabled on the OpenShift cluster by following these steps.

The Red Hat Quay Operator creates a Route resource that directs gRPC traffic to the Build
manager server running inside of the existing Quay pod, or pods. If you want to use a custom
hostname, or a subdomain like <builder-registry.example.com>, ensure that you create a
CNAME record with your DNS provider that points to the status.ingress[0].host of the create
Route resource. For example:

$ kubectl get -n <namespace> route <quayregistry-name>-quay-builder -o jsonpath=
{.status.ingress[0].host}

 ORCHESTRATOR:
 REDIS_HOST: quay-redis-host
 REDIS_PASSWORD: quay-redis-password
 REDIS_SSL: true
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetes
 BUILDER_NAMESPACE: builder
 K8S_API_SERVER: api.openshift.somehost.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 5120Mi
 CONTAINER_CPU_LIMITS: 1000m
 CONTAINER_MEMORY_REQUEST: 3968Mi
 CONTAINER_CPU_REQUEST: 500m
 NODE_SELECTOR_LABEL_KEY: beta.kubernetes.io/instance-type
 NODE_SELECTOR_LABEL_VALUE: n1-standard-4
 CONTAINER_RUNTIME: podman
 SERVICE_ACCOUNT_NAME: *****
 SERVICE_ACCOUNT_TOKEN: *****
 QUAY_USERNAME: quay-username
 QUAY_PASSWORD: quay-password
 WORKER_IMAGE: <registry>/quay-quay-builder
 WORKER_TAG: some_tag
 BUILDER_VM_CONTAINER_IMAGE: <registry>/quay-quay-builder-qemu-rhcos:v3.4.0
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 SSH_AUTHORIZED_KEYS:
 - ssh-rsa 12345 someuser@email.com
 - ssh-rsa 67890 someuser2@email.com

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

31

https://docs.openshift.com/container-platform/4.14/networking/ingress-operator.html#nw-http2-haproxy_configuring-ingress

1

Using the OpenShift Container Platform UI or CLI, update the Secret referenced by
spec.configBundleSecret of the QuayRegistry with the Build cluster CA certificate. Name the
key extra_ca_cert_build_cluster.cert. Update the config.yaml file entry with the correct
values referenced in the Builder configuration that you created when you configured Red Hat
Quay Builders, and add the BUILDMAN_HOSTNAME CONFIGURATION FIELD:

The externally accessible server hostname which the build jobs use to communicate back
to the Build manager. Default is the same as SERVER_HOSTNAME. For OpenShift Route,
it is either status.ingress[0].host or the CNAME entry if using a custom hostname.
BUILDMAN_HOSTNAME must include the port number, for example, somehost:443 for
an OpenShift Container Platform Route, as the gRPC client used to communicate with the
build manager does not infer any port if omitted.

6.3. TROUBLESHOOTING BUILDS

The Builder instances started by the Build manager are ephemeral. This means that they will either get
shut down by Red Hat Quay on timeouts or failure, or garbage collected by the control plane (EC2/K8s).
In order to obtain the Build logs, you must do so while the Builds are running.

6.3.1. DEBUG config flag

The DEBUG flag can be set to true in order to prevent the Builder instances from getting cleaned up
after completion or failure. For example:

When set to true, the debug feature prevents the Build nodes from shutting down after the quay-
builder service is done or fails. It also prevents the Build manager from cleaning up the instances by
terminating EC2 instances or deleting Kubernetes jobs. This allows debugging Builder node issues.

Debugging should not be set in a production cycle. The lifetime service still exists; for example, the

BUILDMAN_HOSTNAME: <build-manager-hostname> 1
BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 600
 ORCHESTRATOR:
 REDIS_HOST: <quay_redis_host
 REDIS_PASSWORD: <quay_redis_password>
 REDIS_SSL: true
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetes
 BUILDER_NAMESPACE: builder
 ...

 EXECUTORS:
 - EXECUTOR: ec2
 DEBUG: true
 ...
 - EXECUTOR: kubernetes
 DEBUG: true
 ...

Red Hat Quay 3 Use Red Hat Quay

32

Debugging should not be set in a production cycle. The lifetime service still exists; for example, the
instance still shuts down after approximately two hours. When this happens, EC2 instances are
terminated, and Kubernetes jobs are completed.

Enabling debug also affects the ALLOWED_WORKER_COUNT, because the unterminated instances
and jobs still count toward the total number of running workers. As a result, the existing Builder workers
must be manually deleted if ALLOWED_WORKER_COUNT is reached to be able to schedule new
Builds.

Setting DEBUG will also affect ALLOWED_WORKER_COUNT, as the unterminated instances/jobs will
still count towards the total number of running workers. This means the existing builder workers will need
to manually be deleted if ALLOWED_WORKER_COUNT is reached to be able to schedule new Builds.

6.3.2. Troubleshooting OpenShift Container Platform and Kubernetes Builds

Use the following procedure to troubleshooting OpenShift Container Platform Kubernetes Builds.

Procedure

1. Create a port forwarding tunnel between your local machine and a pod running with either an
OpenShift Container Platform cluster or a Kubernetes cluster by entering the following
command:

2. Establish an SSH connection to the remote host using a specified SSH key and port, for
example:

3. Obtain the quay-builder service logs by entering the following commands:

6.4. SETTING UP GITHUB BUILDS

If your organization plans to have Builds be conducted by pushes to Github, or Github Enterprise,
continue with Creating an OAuth application in GitHub .

$ oc port-forward <builder_pod> 9999:2222

$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost

$ systemctl status quay-builder

$ journalctl -f -u quay-builder

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

33

CHAPTER 7. BUILDING CONTAINER IMAGES
Building container images involves creating a blueprint for a containerized application. Blueprints rely on
base images from other public repositories that define how the application should be installed and
configured.

Red Hat Quay supports the ability to build Docker and Podman container images. This functionality is
valuable for developers and organizations who rely on container and container orchestration.

7.1. BUILD CONTEXTS

When building an image with Docker or Podman, a directory is specified to become the build context.
This is true for both manual Builds and Build triggers, because the Build that is created by Red Hat Quay
is not different than running docker build or podman build on your local machine.

Red Hat Quay Build contexts are always specified in the subdirectory from the Build setup, and fallback
to the root of the Build source if a directory is not specified.

When a build is triggered, Red Hat Quay Build workers clone the Git repository to the worker machine,
and then enter the Build context before conducting a Build.

For Builds based on .tar archives, Build workers extract the archive and enter the Build context. For
example:

Extracted Build archive

Imagine that the Extracted Build archive is the directory structure got a Github repository called
example. If no subdirectory is specified in the Build trigger setup, or when manually starting the Build,
the Build operates in the example directory.

If a subdirectory is specified in the Build trigger setup, for example, subdir, only the Dockerfile within it is
visible to the Build. This means that you cannot use the ADD command in the Dockerfile to add file,
because it is outside of the Build context.

Unlike Docker Hub, the Dockerfile is part of the Build context on Red Hat Quay. As a result, it must not
appear in the .dockerignore file.

7.2. TAG NAMING FOR BUILD TRIGGERS

Custom tags are available for use in Red Hat Quay.

One option is to include any string of characters assigned as a tag for each built image. Alternatively, you
can use the following tag templates on the Configure Tagging section of the build trigger to tag
images with information from each commit:

example
├── .git
├── Dockerfile
├── file
└── subdir
 └── Dockerfile

Red Hat Quay 3 Use Red Hat Quay

34

${commit}: Full SHA of the issued commit

${parsed_ref.branch}: Branch information (if available)

${parsed_ref.tag}: Tag information (if available)

${parsed_ref.remote}: The remote name

${commit_info.date}: Date when the commit was issued

${commit_info.author.username}: Username of the author of the commit

${commit_info.short_sha}: First 7 characters of the commit SHA

${committer.properties.username}: Username of the committer

This list is not complete, but does contain the most useful options for tagging purposes. You can find the
complete tag template schema on this page.

For more information, see Set up custom tag templates in build triggers for Red Hat Quay and Quay.io

7.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD

To specify that a commit should be ignored by the Red Hat Quay build system, add the text [skip build]
or [build skip] anywhere in your commit message.

7.4. VIEWING AND MANAGING BUILDS

Repository Builds can be viewed and managed on the Red Hat Quay UI.

Procedure

1. Navigate to a Red Hat Quay repository using the UI.

2. In the navigation pane, select Builds.

CHAPTER 7. BUILDING CONTAINER IMAGES

35

https://github.com/quay/quay/blob/abfde5b9d2cf7d7145e68a00c9274011b4fe0661/buildtrigger/basehandler.py#L96-L195
https://access.redhat.com/solutions/7033393

7.5. CREATING A NEW BUILD

Red Hat Quay can create new Builds so long as FEATURE_BUILD_SUPPORT is set to to true in their
config.yaml file.

Prerequisites

You have navigated to the Builds page of your repository.

FEATURE_BUILD_SUPPORT is set to to true in your config.yaml file.

Procedure

1. On the Builds page, click Start New Build.

2. When prompted, click Upload Dockerfile to upload a Dockerfile or an archive that contains a
Dockerfile at the root directory.

3. Click Start Build.

NOTE

Currently, users cannot specify the Docker build context when manually
starting a build.

Currently, BitBucket is unsupported on the Red Hat Quay v2 UI.

4. You are redirected to the Build, which can be viewed in real-time. Wait for the Dockerfile Build
to be completed and pushed.

5. Optional. you can click Download Logs to download the logs, or Copy Logs to copy the logs.

6. Click the back button to return to the Repository Builds page, where you can view the Build
History.

7.6. BUILD TRIGGERS

Build triggers invoke builds whenever the triggered condition is met, for example, a source control push,
creating a webhook call, and so on.

7.6.1. Creating a Build trigger

Use the following procedure to create a Build trigger using a custom Git repository.

NOTE

The following procedure assumes that you have not included Github credentials in your
config.yaml file.

Red Hat Quay 3 Use Red Hat Quay

36

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/#webhook

Prerequisites

You have navigated to the Builds page of your repository.

Procedure

1. On the Builds page, click Create Build Trigger.

2. Select the desired platform, for example, Github, BitBucket, Gitlab, or use a custom Git
repository. For this example, we are using a custom Git repository from Github.

3. Enter a custom Git repository name, for example, git@github.com:<username>/<repo>.git.
Then, click Next.

4. When prompted, configure the tagging options by selecting one of, or both of, the following
options:

Tag manifest with the branch or tag name. When selecting this option, the built manifest
the name of the branch or tag for the git commit are tagged.

Add latest tag if on default branch. When selecting this option, the built manifest with
latest if the build occurred on the default branch for the repository are tagged.
Optionally, you can add a custom tagging template. There are multiple tag templates that
you can enter here, including using short SHA IDs, timestamps, author names, committer,
and branch names from the commit as tags. For more information, see "Tag naming for
Build triggers".

After you have configured tagging, click Next.

5. When prompted, select the location of the Dockerfile to be built when the trigger is invoked. If
the Dockerfile is located at the root of the git repository and named Dockerfile, enter
/Dockerfile as the Dockerfile path. Then, click Next.

6. When prompted, select the context for the Docker build. If the Dockerfile is located at the root
of the Git repository, enter / as the build context directory. Then, click Next.

7. Optional. Choose an optional robot account. This allows you to pull a private base image during
the build process. If you know that a private base image is not used, you can skip this step.

8. Click Next. Check for any verification warnings. If necessary, fix the issues before clicking Finish.

9. You are alerted that the trigger has been successfully activated. Note that using this trigger
requires the following actions:

You must give the following public key read access to the git repository.

You must set your repository to POST to the following URL to trigger a build.
Save the SSH Public Key, then click Return to <organization_name>/<repository_name>.
You are redirected to the Builds page of your repository.

10. On the Builds page, you now have a Build trigger. For example:

CHAPTER 7. BUILDING CONTAINER IMAGES

37

7.6.2. Manually triggering a Build

Builds can be triggered manually by using the following procedure.

Procedure

1. On the Builds page, Start new build.

2. When prompted, select Invoke Build Trigger.

3. Click Run Trigger Now to manually start the process.
After the build starts, you can see the Build ID on the Repository Builds page.

7.7. SETTING UP A CUSTOM GIT TRIGGER

A custom Git trigger is a generic way for any Git server to act as a Build trigger. It relies solely on SSH
keys and webhook endpoints. Everything else is left for the user to implement.

7.7.1. Creating a trigger

Creating a custom Git trigger is similar to the creation of any other trigger, with the exception of the
following:

Red Hat Quay cannot automatically detect the proper Robot Account to use with the trigger.
This must be done manually during the creation process.

There are extra steps after the creation of the trigger that must be done. These steps are
detailed in the following sections.

7.7.2. Custom trigger creation setup

When creating a custom Git trigger, two additional steps are required:

1. You must provide read access to the SSH public key that is generated when creating the
trigger.

2. You must setup a webhook that POSTs to the Red Hat Quay endpoint to trigger the build.

The key and the URL are available by selecting View Credentials from the Settings, or gear icon.

View and modify tags from your repository

Red Hat Quay 3 Use Red Hat Quay

38

7.7.2.1. SSH public key access

Depending on the Git server configuration, there are multiple ways to install the SSH public key that Red
Hat Quay generates for a custom Git trigger.

For example, Git documentation describes a small server setup in which adding the key to
$HOME/.ssh/authorize_keys would provide access for Builders to clone the repository. For any git
repository management software that is not officially supported, there is usually a location to input the
key often labeled as Deploy Keys.

7.7.2.2. Webhook

To automatically trigger a build, one must POST a .json payload to the webhook URL using the
following format.

This can be accomplished in various ways depending on the server setup, but for most cases can be
done with a post-receive Git Hook.

NOTE

This request requires a Content-Type header containing application/json in order to be
valid.

Example webhook

{
 "commit": "1c002dd", // required
 "ref": "refs/heads/master", // required
 "default_branch": "master", // required
 "commit_info": { // optional
 "url": "gitsoftware.com/repository/commits/1234567", // required
 "message": "initial commit", // required

CHAPTER 7. BUILDING CONTAINER IMAGES

39

https://git-scm.herokuapp.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://git-scm.herokuapp.com/book/en/v2/Customizing-Git-Git-Hooks#idp26374144

 "date": "timestamp", // required
 "author": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 },
 "committer": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 }
 }
}

Red Hat Quay 3 Use Red Hat Quay

40

CHAPTER 8. CREATING AN OAUTH APPLICATION IN GITHUB
You can authorize your Red Hat Quay registry to access a GitHub account and its repositories by
registering it as a GitHub OAuth application.

8.1. CREATE NEW GITHUB APPLICATION

Use the following procedure to create an OAuth application in Github.

Procedure

1. Log into Github Enterprise.

2. In the navigation pane, select your username → Your organizations.

3. In the navigation pane, select Applications.

4. Click Register New Application. The Register a new OAuth application configuration screen is
displayed, for example:

5. Enter a name for the application in the Application name textbox.

6. In the Homepage URL textbox, enter your Red Hat Quay URL.

NOTE

If you are using public GitHub, the Homepage URL entered must be accessible by
your users. It can still be an internal URL.

7. In the Authorization callback URL, enter

CHAPTER 8. CREATING AN OAUTH APPLICATION IN GITHUB

41

https://github.com/settings/applications/new

7. In the Authorization callback URL, enter
https://<RED_HAT_QUAY_URL>/oauth2/github/callback.

8. Click Register application to save your settings.

9. When the new application’s summary is shown, record the Client ID and the Client Secret shown
for the new application.

Red Hat Quay 3 Use Red Hat Quay

42

https:/oauth2/github/callback

CHAPTER 9. REPOSITORY NOTIFICATIONS
Red Hat Quay supports adding notifications to a repository for various events that occur in the
repository’s lifecycle.

9.1. CREATING NOTIFICATIONS

Use the following procedure to add notifications.

Prerequisites

You have created a repository.

You have administrative privileges for the repository.

Procedure

Navigate to a repository on Red Hat Quay.

1. In the navigation pane, click Settings.

2. In the Events and Notifications category, click Create Notification to add a new notification
for a repository event. You are redirected to a Create repository notification page.

3. On the Create repository notification page, select the drop-down menu to reveal a list of
events. You can select a notification for the following types of events:

Push to Repository

Dockerfile Build Queued

Dockerfile Build Started

Dockerfile Build Successfully Completed

Docker Build Cancelled

Package Vulnerability Found

4. After you have selected the event type, select the notification method. The following methods
are supported:

Quay Notification

E-mail

Webhook POST

Flowdock Team Notification

HipChat Room Notification

Slack Room Notification
Depending on the method that you choose, you must include additional information. For
example, if you select E-mail, you are required to include an e-mail address and an optional
notification title.

CHAPTER 9. REPOSITORY NOTIFICATIONS

43

5. After selecting an event and notification method, click Create Notification.

9.2. REPOSITORY EVENTS DESCRIPTION

The following sections detail repository events.

9.2.1. Repository Push

A successful push of one or more images was made to the repository:

{
 "name": "repository",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "homepage": "https://quay.io/repository/dgangaia/repository",
 "updated_tags": [
 "latest"
]
}

9.2.2. Dockerfile Build Queued

The following example is a response from a Dockerfile Build that has been queued into the Build system.

NOTE

Responses can differ based on the use of optional attributes.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "repo": "test",
 "trigger_metadata": {
 "default_branch": "master",
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "author": { //Optional
 "username": "dgangaia",

Red Hat Quay 3 Use Red Hat Quay

44

 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 },
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 }
 }
 },
 "is_manual": false,
 "manual_user": null,
 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2"
}

9.2.3. Dockerfile Build started

The following example is a response from a Dockerfile Build that has been queued into the Build system.

NOTE

Responses can differ based on the use of optional attributes.

{
 "build_id": "a8cc247a-a662-4fee-8dcb-7d7e822b71ba",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "50bc599",
 "trigger_metadata": { //Optional
 "commit": "50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "date": "2019-03-06T14:10:14+11:00",
 "message": "test build",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional

CHAPTER 9. REPOSITORY NOTIFICATIONS

45

 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/a8cc247a-a662-4fee-8dcb-
7d7e822b71ba"
}

9.2.4. Dockerfile Build successfully completed

The following example is a response from a Dockerfile Build that has been successfully completed by the
Build system.

NOTE

This event occurs simultaneously with a Repository Push event for the built image or
images.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "b7f7d2b",
 "image_id": "sha256:0339f178f26ae24930e9ad32751d6839015109eabdf1c25b3b0f2abf8934f6cb",
 "trigger_metadata": {
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
//Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },

Red Hat Quay 3 Use Red Hat Quay

46

 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2",
 "manifest_digests": [

"quay.io/dgangaia/test@sha256:2a7af5265344cc3704d5d47c4604b1efcbd227a7a6a6ff73d6e4e08a27f
d7d99",

"quay.io/dgangaia/test@sha256:569e7db1a867069835e8e97d50c96eccafde65f08ea3e0d5debaf16e25
45d9d1"
]
}

9.2.5. Dockerfile Build failed

The following example is a response from a Dockerfile Build that has failed.

{
 "build_id": "5346a21d-3434-4764-85be-5be1296f293c",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "docker_url": "quay.io/dgangaia/test",
 "error_message": "Could not find or parse Dockerfile: unknown instruction: GIT",
 "namespace": "dgangaia",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "6ae9a86",
 "trigger_metadata": { //Optional
 "commit": "6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "date": "2019-03-06T14:18:16+11:00",
 "message": "failed build test",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/5346a21d-3434-4764-85be-
5be1296f293c"
}

CHAPTER 9. REPOSITORY NOTIFICATIONS

47

9.2.6. Dockerfile Build cancelled

The following example is a response from a Dockerfile Build that has been cancelled.

{
 "build_id": "cbd534c5-f1c0-4816-b4e3-55446b851e70",
 "trigger_kind": "github",
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "cbce83c",
 "trigger_metadata": {
 "commit": "cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": {
 "url": "https://github.com/dgangaia/test/commit/cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "date": "2019-03-06T14:27:53+11:00",
 "message": "testing cancel build",
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 },
 "author": {
 "username": "dgangaia",
 "url": "https://github.com/dgangaia",
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/cbd534c5-f1c0-4816-b4e3-
55446b851e70"
}

9.2.7. Vulnerability detected

The following example is a response from a Dockerfile Build has detected a vulnerability in the
repository.

{
 "repository": "dgangaia/repository",
 "namespace": "dgangaia",
 "name": "repository",
 "docker_url": "quay.io/dgangaia/repository",
 "homepage": "https://quay.io/repository/dgangaia/repository",

 "tags": ["latest", "othertag"],

Red Hat Quay 3 Use Red Hat Quay

48

 "vulnerability": {
 "id": "CVE-1234-5678",
 "description": "This is a bad vulnerability",
 "link": "http://url/to/vuln/info",
 "priority": "Critical",
 "has_fix": true
 }
}

9.3. NOTIFICATION ACTIONS

9.3.1. Notifications added

Notifications are added to the Events and Notifications section of the Repository Settings page. They
are also added to the Notifications window, which can be found by clicking the bell icon in the
navigation pane of Red Hat Quay.

Red Hat Quay notifications can be setup to be sent to a User, Team, or the organization as a whole.

9.3.2. E-mail notifications

E-mails are sent to specified addresses that describe the specified event. E-mail addresses must be
verified on a per-repository basis.

9.3.3. Webhook POST notifications

An HTTP POST call is made to the specified URL with the event’s data. For more information about
event data, see "Repository events description".

When the URL is HTTPS, the call has an SSL client certificate set from Red Hat Quay. Verification of this
certificate proves that the call originated from Red Hat Quay. Responses with the status code in the 2xx
range are considered successful. Responses with any other status code are considered failures and
result in a retry of the webhook notification.

9.3.4. Flowdock notifications

Posts a message to Flowdock.

9.3.5. Hipchat notifications

Posts a message to HipChat.

9.3.6. Slack notifications

Posts a message to Slack.

CHAPTER 9. REPOSITORY NOTIFICATIONS

49

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT
Container registries were originally designed to support container images in the Docker image format.
To promote the use of additional runtimes apart from Docker, the Open Container Initiative (OCI) was
created to provide a standardization surrounding container runtimes and image formats. Most container
registries support the OCI standardization as it is based on the Docker image manifest V2, Schema 2
format.

In addition to container images, a variety of artifacts have emerged that support not just individual
applications, but also the Kubernetes platform as a whole. These range from Open Policy Agent (OPA)
policies for security and governance to Helm charts and Operators that aid in application deployment.

Red Hat Quay is a private container registry that not only stores container images, but also supports an
entire ecosystem of tooling to aid in the management of containers. Red Hat Quay strives to be as
compatible as possible with the OCI 1.0 Image and Distribution specifications , and supports common
media types like Helm charts (as long as they pushed with a version of Helm that supports OCI) and a
variety of arbitrary media types within the manifest or layer components of container images. Support
for such novel media types differs from previous iterations of Red Hat Quay, when the registry was more
strict about accepted media types. Because Red Hat Quay now works with a wider array of media types,
including those that were previously outside the scope of its support, it is now more versatile
accommodating not only standard container image formats but also emerging or unconventional types.

In addition to its expanded support for novel media types, Red Hat Quay ensures compatibility with
Docker images, including V2_2 and V2_1 formats. This compatibility with Docker V2_2 and V2_1 images
demonstrates Red Hat Quay’s' commitment to providing a seamless experience for Docker users.
Moreover, Red Hat Quay continues to extend its support for Docker V1 pulls, catering to users who
might still rely on this earlier version of Docker images.

Support for OCI artifacts are enabled by default. Prior to this, OCI media types were enabled under the
under the FEATURE_GENERAL_OCI_SUPPORT configuration field.

NOTE

Because all OCI media types are now enabled by default, use of
FEATURE_GENERAL_OCI_SUPPORT, ALLOWED_OCI_ARTIFACT_TYPES, and
IGNORE_UNKNOWN_MEDIATYPES is no longer required.

Additionally, the FEATURE_HELM_OCI_SUPPORT configuration field has been
deprecated. This configuration field is no longer supported and will be removed in a
future version of Red Hat Quay.

10.1. HELM AND OCI PREREQUISITES

Helm simplifies how applications are packaged and deployed. Helm uses a packaging format called
Charts which contain the Kubernetes resources representing an application. Red Hat Quay supports
Helm charts so long as they are a version supported by OCI.

Use the following procedures to pre-configure your system to use Helm and other OCI media types.

10.1.1. Installing Helm

Use the following procedure to install the Helm client.

Procedure

Red Hat Quay 3 Use Red Hat Quay

50

https://docs.docker.com/registry/spec/manifest-v2-2/
https://opencontainers.org/posts/announcements/2021-05-04-oci-dist-spec-v1/

1. Download the latest version of Helm from the Helm releases page.

2. Enter the following command to unpack the Helm binary:

3. Move the Helm binary to the desired location:

For more information about installing Helm, see the Installing Helm documentation.

10.1.2. Upgrading to Helm 3.8

Support for OCI registry charts requires that Helm has been upgraded to at least 3.8. If you have already
downloaded Helm and need to upgrade to Helm 3.8, see the Helm Upgrade documentation.

10.1.3. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay

Communication between the Helm client and Red Hat Quay is facilitated over HTTPS. As of Helm 3.5,
support is only available for registries communicating over HTTPS with trusted certificates. In addition,
the operating system must trust the certificates exposed by the registry. You must ensure that your
operating system has been configured to trust the certificates used by Red Hat Quay. Use the following
procedure to enable your system to trust the custom certificates.

Procedure

1. Enter the following command to copy the rootCA.pem file to the /etc/pki/ca-
trust/source/anchors/ folder:

2. Enter the following command to update the CA trust store:

10.2. USING HELM CHARTS

Use the following example to download and push an etherpad chart from the Red Hat Community of
Practice (CoP) repository.

Prerequisites

You have logged into Red Hat Quay.

Procedure

1. Add a chart repository by entering the following command:

2. Enter the following command to update the information of available charts locally from the chart

$ tar -zxvf helm-v3.8.2-linux-amd64.tar.gz

$ mv linux-amd64/helm /usr/local/bin/helm

$ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/

$ sudo update-ca-trust extract

$ helm repo add redhat-cop https://redhat-cop.github.io/helm-charts

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

51

https://github.com/helm/helm/releases
https://helm.sh/docs/intro/install/
https://helm.sh/docs/helm/helm_upgrade/

2. Enter the following command to update the information of available charts locally from the chart
repository:

3. Enter the following command to pull a chart from a repository:

4. Enter the following command to package the chart into a chart archive:

Example output

5. Log in to Red Hat Quay using helm registry login:

6. Push the chart to your repository using the helm push command:

Example output:

7. Ensure that the push worked by deleting the local copy, and then pulling the chart from the
repository:

Example output:

10.3. COSIGN OCI SUPPORT

Cosign is a tool that can be used to sign and verify container images. It uses the ECDSA-P256 signature
algorithm and Red Hat’s Simple Signing payload format to create public keys that are stored in PKIX
files. Private keys are stored as encrypted PEM files.

Cosign currently supports the following:

$ helm repo update

$ helm pull redhat-cop/etherpad --version=0.0.4 --untar

$ helm package ./etherpad

Successfully packaged chart and saved it to: /home/user/linux-amd64/etherpad-0.0.4.tgz

$ helm registry login quay370.apps.quayperf370.perfscale.devcluster.openshift.com

$ helm push etherpad-0.0.4.tgz
oci://quay370.apps.quayperf370.perfscale.devcluster.openshift.com

Pushed: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:a6667ff2a0e2bd7aa4813db9ac854b5124ff1c458d170b70c2d2375325f2451b

$ rm -rf etherpad-0.0.4.tgz

$ helm pull oci://quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad --
version 0.0.4

Pulled: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:4f627399685880daf30cf77b6026dc129034d68c7676c7e07020b70cf7130902

Red Hat Quay 3 Use Red Hat Quay

52

Hardware and KMS Signing

Bring-your-own PKI

OIDC PKI

Built-in binary transparency and timestamping service

Use the following procedure to directly install Cosign.

Prerequisites

You have installed Go version 1.16 or later.

You have set FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file.

Procedure

1. Enter the following go command to directly install Cosign:

Example output

2. Generate a key-value pair for Cosign by entering the following command:

Example output

3. Sign the key-value pair by entering the following command:

Example output

If you experience the error: signing quay-server.example.com/user1/busybox:test: getting
remote image: GET https://quay-server.example.com/v2/user1/busybox/manifests/test:
UNAUTHORIZED: access to the requested resource is not authorized; map[] error, which
occurs because Cosign relies on ~./docker/config.json for authorization, you might need to
execute the following command:

$ go install github.com/sigstore/cosign/cmd/cosign@v1.0.0

go: downloading github.com/sigstore/cosign v1.0.0
go: downloading github.com/peterbourgon/ff/v3 v3.1.0

$ cosign generate-key-pair

Enter password for private key:
Enter again:
Private key written to cosign.key
Public key written to cosign.pub

$ cosign sign -key cosign.key quay-server.example.com/user1/busybox:test

Enter password for private key:
Pushing signature to: quay-server.example.com/user1/busybox:sha256-
ff13b8f6f289b92ec2913fa57c5dd0a874c3a7f8f149aabee50e3d01546473e3.sig

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

53

https://quay-server.example.com/v2/user1/busybox/manifests/test

Example output

4. Enter the following command to see the updated authorization configuration:

10.4. INSTALLING AND USING COSIGN

Use the following procedure to directly install Cosign.

Prerequisites

You have installed Go version 1.16 or later.

You have set FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file.

Procedure

1. Enter the following go command to directly install Cosign:

Example output

2. Generate a key-value pair for Cosign by entering the following command:

Example output

3. Sign the key-value pair by entering the following command:

$ podman login --authfile ~/.docker/config.json quay-server.example.com

Username:
Password:
Login Succeeded!

$ cat ~/.docker/config.json
{
 "auths": {
 "quay-server.example.com": {
 "auth": "cXVheWFkbWluOnBhc3N3b3Jk"
 }
 }

$ go install github.com/sigstore/cosign/cmd/cosign@v1.0.0

go: downloading github.com/sigstore/cosign v1.0.0
go: downloading github.com/peterbourgon/ff/v3 v3.1.0

$ cosign generate-key-pair

Enter password for private key:
Enter again:
Private key written to cosign.key
Public key written to cosign.pub

Red Hat Quay 3 Use Red Hat Quay

54

Example output

If you experience the error: signing quay-server.example.com/user1/busybox:test: getting
remote image: GET https://quay-server.example.com/v2/user1/busybox/manifests/test:
UNAUTHORIZED: access to the requested resource is not authorized; map[] error, which
occurs because Cosign relies on ~./docker/config.json for authorization, you might need to
execute the following command:

Example output

4. Enter the following command to see the updated authorization configuration:

10.5. USING OTHER ARTIFACT TYPES

By default, other artifact types are enabled for use by Red Hat Quay.

Use the following procedure to add additional OCI media types.

Prerequisites

You have set FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file.

Procedure

1. In your config.yaml file, add the ALLOWED_OCI_ARTIFACT_TYPES configuration field. For
example:

$ cosign sign -key cosign.key quay-server.example.com/user1/busybox:test

Enter password for private key:
Pushing signature to: quay-server.example.com/user1/busybox:sha256-
ff13b8f6f289b92ec2913fa57c5dd0a874c3a7f8f149aabee50e3d01546473e3.sig

$ podman login --authfile ~/.docker/config.json quay-server.example.com

Username:
Password:
Login Succeeded!

$ cat ~/.docker/config.json
{
 "auths": {
 "quay-server.example.com": {
 "auth": "cXVheWFkbWluOnBhc3N3b3Jk"
 }
 }

FEATURE_GENERAL_OCI_SUPPORT: true
ALLOWED_OCI_ARTIFACT_TYPES:
 <oci config type 1>:
 - <oci layer type 1>
 - <oci layer type 2>

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

55

https://quay-server.example.com/v2/user1/busybox/manifests/test

2. Add support for your desired artifact type, for example, Singularity Image Format (SIF), by
adding the following to your config.yaml file:

IMPORTANT

When adding artifact types that are not configured by default, Red Hat Quay
administrators will also need to manually add support for Cosign and Helm if
desired.

Now, users can tag SIF images for their Red Hat Quay registry.

10.6. DISABLING OCI ARTIFACTS IN RED HAT QUAY

Use the following procedure to disable support for OCI artifacts.

Procedure

Disable OCI artifact support by setting FEATURE_GENERAL_OCI_SUPPORT to false in your
config.yaml file. For example:

 <oci config type 2>:
 - <oci layer type 3>
 - <oci layer type 4>

ALLOWED_OCI_ARTIFACT_TYPES:
 application/vnd.oci.image.config.v1+json:
 - application/vnd.dev.cosign.simplesigning.v1+json
 application/vnd.cncf.helm.config.v1+json:
 - application/tar+gzip
 application/vnd.sylabs.sif.config.v1+json:
 - application/vnd.sylabs.sif.layer.v1+tar

FEATURE_GENERAL_OCI_SUPPORT = false

Red Hat Quay 3 Use Red Hat Quay

56

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND
ENFORCEMENT OVERVIEW

With Red Hat Quay, users have the ability to report storage consumption and to contain registry growth
by establishing configured storage quota limits. On-premise Red Hat Quay users are now equipped with
the following capabilities to manage the capacity limits of their environment:

Quota reporting: With this feature, a superuser can track the storage consumption of all their
organizations. Additionally, users can track the storage consumption of their assigned
organization.

Quota management: With this feature, a superuser can define soft and hard checks for Red Hat
Quay users. Soft checks tell users if the storage consumption of an organization reaches their
configured threshold. Hard checks prevent users from pushing to the registry when storage
consumption reaches the configured limit.

Together, these features allow service owners of a Red Hat Quay registry to define service level
agreements and support a healthy resource budget.

11.1. QUOTA MANAGEMENT ARCHITECTURE

With the quota management feature enabled, individual blob sizes are summed at the repository and
namespace level. For example, if two tags in the same repository reference the same blob, the size of
that blob is only counted once towards the repository total. Additionally, manifest list totals are counted
toward the repository total.

IMPORTANT

Because manifest list totals are counted toward the repository total, the total quota
consumed when upgrading from a previous version of Red Hat Quay might be reportedly
differently in Red Hat Quay 3.9. In some cases, the new total might go over a repository’s
previously-set limit. Red Hat Quay administrators might have to adjust the allotted quota
of a repository to account for these changes.

The quota management feature works by calculating the size of existing repositories and namespace
with a backfill worker, and then adding or subtracting from the total for every image that is pushed or
garbage collected afterwords. Additionally, the subtraction from the total happens when the manifest is
garbage collected.

NOTE

Because subtraction occurs from the total when the manifest is garbage collected, there
is a delay in the size calculation until it is able to be garbage collected. For more
information about garbage collection, see Red Hat Quay garbage collection .

The following database tables hold the quota repository size, quota namespace size, and quota registry
size, in bytes, of a Red Hat Quay repository within an organization:

QuotaRepositorySize

QuotaNameSpaceSize

QuotaRegistrySize

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

57

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#red_hat_quay_garbage_collection

The organization size is calculated by the backfill worker to ensure that it is not duplicated. When an
image push is initialized, the user’s organization storage is validated to check if it is beyond the
configured quota limits. If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, users are notified.

For a hard check, the push is stopped.

If storage consumption is within configured quota limits, the push is allowed to proceed.

Image manifest deletion follows a similar flow, whereby the links between associated image tags and the
manifest are deleted. Additionally, after the image manifest is deleted, the repository size is
recalculated and updated in the QuotaRepositorySize, QuotaNameSpaceSize, and
QuotaRegistrySize tables.

11.2. QUOTA MANAGEMENT LIMITATIONS

Quota management helps organizations to maintain resource consumption. One limitation of quota
management is that calculating resource consumption on push results in the calculation becoming part
of the push’s critical path. Without this, usage data might drift.

The maximum storage quota size is dependent on the selected database:

Table 11.1. Worker count environment variables

Variable Description

Postgres 8388608 TB

MySQL 8388608 TB

SQL Server 16777216 TB

11.3. QUOTA MANAGEMENT CONFIGURATION FIELDS

Table 11.2. Quota management configuration

Field Type Description

FEATURE_QUOTA_MANAGEMENT Boolean Enables configuration, caching,
and validation for quota
management feature.

Default: `False`

DEFAULT_SYSTEM_REJECT_QUOTA_BYTES String Enables system default quota
reject byte allowance for all
organizations.

By default, no limit is set.

Red Hat Quay 3 Use Red Hat Quay

58

QUOTA_BACKFILL Boolean Enables the quota backfill worker
to calculate the size of pre-
existing blobs.

Default: True

QUOTA_TOTAL_DELAY_SECONDS String The time delay for starting the
quota backfill. Rolling
deployments can cause incorrect
totals. This field must be set to a
time longer than it takes for the
rolling deployment to complete.

Default: 1800

PERMANENTLY_DELETE_TAGS Boolean Enables functionality related to
the removal of tags from the time
machine window.

Default: False

RESET_CHILD_MANIFEST_EXPIRATION Boolean Resets the expirations of
temporary tags targeting the
child manifests. With this feature
set to True, child manifests are
immediately garbage collected.

Default: False

Field Type Description

11.3.1. Example quota management configuration

The following YAML is the suggested configuration when enabling quota management.

Quota management YAML configuration

11.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

When an organization is first created, it does not have a quota applied. Use the
/api/v1/organization/{organization}/quota endpoint:

Sample command

FEATURE_QUOTA_MANAGEMENT: true
FEATURE_GARBAGE_COLLECTION: true
PERMANENTLY_DELETE_TAGS: true
QUOTA_TOTAL_DELAY_SECONDS: 1800
RESET_CHILD_MANIFEST_EXPIRATION: true

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

59

Sample output

11.4.1. Setting the quota

To set a quota for an organization, POST data to the /api/v1/organization/{orgname}/quota
endpoint: .Sample command

Sample output

11.4.2. Viewing the quota

To see the applied quota, GET data from the /api/v1/organization/{orgname}/quota endpoint:

Sample command

Sample output

11.4.3. Modifying the quota

To change the existing quota, in this instance from 10 MB to 100 MB, PUT data to the
/api/v1/organization/{orgname}/quota/{quota_id} endpoint:

Sample command

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[]

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 10485760}' https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/testorg/quota | jq

"Created"

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 10485760,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
 }
]

Red Hat Quay 3 Use Red Hat Quay

60

Sample output

11.4.4. Pushing images

To see the storage consumed, push various images to the organization.

11.4.4.1. Pushing ubuntu:18.04

Push ubuntu:18.04 to the organization from the command line:

Sample commands

11.4.4.2. Using the API to view quota usage

To view the storage consumed, GET data from the /api/v1/repository endpoint:

Sample command

Sample output

$ curl -k -X PUT -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 104857600}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1 | jq

{
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
}

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true' | jq

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

61

11.4.4.3. Pushing another image

1. Pull, tag, and push a second image, for example, nginx:

Sample commands

2. To view the quota report for the repositories in the organization, use the /api/v1/repository
endpoint:

Sample command

Sample output

 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true'

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 },

Red Hat Quay 3 Use Red Hat Quay

62

3. To view the quota information in the organization details, use the
/api/v1/organization/{orgname} endpoint:

Sample command

Sample output

11.4.5. Rejecting pushes using quota limits

If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, or warning, users are notified.

For a hard check, or reject, the push is terminated.

11.4.5.1. Setting reject and warning limits

 {
 "namespace": "testorg",
 "name": "nginx",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 59231659,
 "configured_quota": 104857600
 },
 "last_modified": 1651229507,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg' | jq

{
 "name": "testorg",
 ...
 "quotas": [
 {
 "id": 1,
 "limit_bytes": 104857600,
 "limits": []
 }
],
 "quota_report": {
 "quota_bytes": 87190725,
 "configured_quota": 104857600
 }
}

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

63

To set reject and warning limits, POST data to the
/api/v1/organization/{orgname}/quota/{quota_id}/limit endpoint:

Sample reject limit command

Sample warning limit command

11.4.5.2. Viewing reject and warning limits

To view the reject and warning limits, use the /api/v1/organization/{orgname}/quota endpoint:

View quota limits

Sample output for quota limits

11.4.5.3. Pushing an image when the reject limit is exceeded

In this example, the reject limit (80%) has been set to below the current repository size (~83%), so the
next push should automatically be rejected.

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Reject","threshold_percent":80}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Warning","threshold_percent":50}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [
 {
 "id": 2,
 "type": "Warning",
 "limit_percent": 50
 },
 {
 "id": 1,
 "type": "Reject",
 "limit_percent": 80
 }
],
 "default_config_exists": false
 }
]

Red Hat Quay 3 Use Red Hat Quay

64

Push a sample image to the organization from the command line:

Sample image push

Sample output when quota exceeded

11.4.5.4. Notifications for limits exceeded

When limits are exceeded, a notification appears:

Quota notifications

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in example-
registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on
namespace

CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

65

Red Hat Quay 3 Use Red Hat Quay

66

CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR
UPSTREAM REGISTRIES

With the growing popularity of container development, customers increasingly rely on container images
from upstream registries like Docker or Google Cloud Platform to get services up and running. Today,
registries have rate limitations and throttling on the number of times users can pull from these registries.

With this feature, Red Hat Quay will act as a proxy cache to circumvent pull-rate limitations from
upstream registries. Adding a cache feature also accelerates pull performance, because images are
pulled from the cache rather than upstream dependencies. Cached images are only updated when the
upstream image digest differs from the cached image, reducing rate limitations and potential throttling.

With Red Hat Quay cache proxy, the following features are available:

Specific organizations can be defined as a cache for upstream registries.

Configuration of a Quay organization that acts as a cache for a specific upstream registry. This
repository can be defined by using the Quay UI, and offers the following configurations:

Upstream registry credentials for private repositories or increased rate limiting.

Expiration timer to avoid surpassing cache organization size.

Global on/off configurable via the configuration application.

Caching of entire upstream registries or just a single namespace, for example, all of docker.io or
just docker.io/library.

Logging of all cache pulls.

Cached images scannability by Clair.

12.1. PROXY CACHE ARCHITECTURE

The following image shows the expected design flow and architecture of the proxy cache feature.

CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

67

When a user pulls an image, for example, postgres:14, from an upstream repository on Red Hat Quay,
the repository checks to see if an image is present. If the image does not exist, a fresh pull is initiated.
After being pulled, the image layers are saved to cache and server to the user in parallel. The following
image depicts an architectural overview of this scenario:

If the image in the cache exists, users can rely on Quay’s cache to stay up-to-date with the upstream
source so that newer images from the cache are automatically pulled. This happens when tags of the
original image have been overwritten in the upstream registry. The following image depicts an
architectural overview of what happens when the upstream image and cached version of the image are
different:

Red Hat Quay 3 Use Red Hat Quay

68

If the upstream image and cached version are the same, no layers are pulled and the cached image is
delivered to the user.

In some cases, users initiate pulls when the upstream registry is down. If this happens with the configured
staleness period, the image stored in cache is delivered. If the pull happens after the configured
staleness period, the error is propagated to the user. The following image depicts an architectural
overview when a pull happens after the configured staleness period:

CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

69

Quay administrators can leverage the configurable size limit of an organization to limit cache size so that
backend storage consumption remains predictable. This is achieved by discarding images from the
cache according to the frequency in which an image is used. The following image depicts an
architectural overview of this scenario:

12.2. PROXY CACHE LIMITATIONS

Proxy caching with Red Hat Quay has the following limitations:

Your proxy cache must have a size limit of greater than, or equal to, the image you want to
cache. For example, if your proxy cache organization has a maximum size of 500 MB, and the
image a user wants to pull is 700 MB, the image will be cached and will overflow beyond the
configured limit.

Cached images must have the same properties that images on a Quay repository must have.

Red Hat Quay 3 Use Red Hat Quay

70

12.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY

The following procedure describes how you can use Red Hat Quay to proxy a remote registry. This
procedure is set up to proxy quay.io, which allows users to use podman to pull any public image from
any namespace on quay.io.

Prerequisites

FEATURE_PROXY_CACHE in your config.yaml is set to true.

Assigned the Member team role. For more information about team roles, see Users and
organizations in Red Hat Quay.

Procedure

1. In your Quay organization on the UI, for example, cache-quayio, click Organization Settings on
the left hand pane.

2. Optional: Click Add Storage Quota to configure quota management for your organization. For
more information about quota management, see Quota Management.

NOTE

In some cases, pulling images with Podman might return the following error when
quota limit is reached during a pull: unable to pull image: Error parsing image
configuration: Error fetching blob: invalid status code from registry 403
(Forbidden). Error 403 is inaccurate, and occurs because Podman hides the
correct API error: Quota has been exceeded on namespace. This known issue
will be fixed in a future Podman update.

3. In Remote Registry enter the name of the remote registry to be cached, for example, quay.io,
and click Save.

NOTE

By adding a namespace to the Remote Registry, for example,
quay.io/<namespace>, users in your organization will only be able to proxy from
that namespace.

4. Optional: Add a Remote Registry Username and Remote Registry Password.

NOTE

If you do not set a Remote Registry Username and Remote Registry Password,
you cannot add one without removing the proxy cache and creating a new
registry.

5. Optional: Set a time in the Expiration field.

NOTE

CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

71

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/use_red_hat_quay/user-org-intro
https://access.redhat.com//documentation/en-us/red_hat_quay/3.7/html-single/use_red_hat_quay#red-hat-quay-quota-management-and-enforcement

NOTE

The default tag Expiration field for cached images in a proxy organization is
set to 86400 seconds. In the proxy organization, the tag expiration is
refreshed to the value set in the UI’s Expiration field every time the tag is
pulled. This feature is different than Quay’s default individual tag expiration
feature. In a proxy organization, it is possible to override the individual tag
feature. When this happens, the individual tag’s expiration is reset according
to the Expiration field of the proxy organization.

Expired images will disappear after the allotted time, but are still stored in
Quay. The time in which an image is completely deleted, or collected,
depends on the Time Machine setting of your organization. The default time
for garbage collection is 14 days unless otherwise specified.

6. Click Save.

7. On the CLI, pull a public image from the registry, for example, quay.io, acting as a proxy cache:

$ podman pull <registry_url>/<organization_name>/<quayio_namespace>/<image_name>

IMPORTANT

If your organization is set up to pull from a single namespace in the remote
registry, the remote registry namespace must be omitted from the URL. For
example, podman pull <registry_url>/<organization_name>/<image_name>.

12.3.1. Leveraging storage quota limits in proxy organizations

With Red Hat Quay 3.8, the proxy cache feature has been enhanced with an auto-pruning feature for
tagged images. The auto-pruning of image tags is only available when a proxied namespace has quota
limitations configured. Currently, if an image size is greater than quota for an organization, the image is
skipped from being uploaded until an administrator creates the necessary space. Now, when an image is
pushed that exceeds the allotted space, the auto-pruning enhancement marks the least recently used
tags for deletion. As a result, the new image tag is stored, while the least used image tag is marked for
deletion.

IMPORTANT

As part of the auto-pruning feature, the tags that are marked for deletion are
eventually garbage collected by the garbage collector (gc) worker process. As a
result, the quota size restriction is not fully enforced during this period.

Currently, the namespace quota size computation does not take into account the
size for manifest child. This is a known issue and will be fixed in a future version of
Red Hat Quay.

12.3.1.1. Testing the storage quota limits feature in proxy organizations

Use the following procedure to test the auto-pruning feature of an organization with proxy cache and
storage quota limitations enabled.

Prerequisites

Your organization is configured to serve as a proxy organization. The following example proxies

Red Hat Quay 3 Use Red Hat Quay

72

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#tag-expiration

Your organization is configured to serve as a proxy organization. The following example proxies
from quay.io.

FEATURE_PROXY_CACHE is set to true in your config.yaml file.

FEATURE_QUOTA_MANAGEMENT is set to true in your config.yaml file.

Your organization is configured with a quota limit, for example, 150 MB.

Procedure

1. Pull an image to your repository from your proxy organization, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.7.9

2. Depending on the space left in your repository, you might need to pull additional images from
your proxy organization, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.6.2

3. In the Red Hat Quay registry UI, click the name of your repository.

Click Tags in the navigation pane and ensure that quay:3.7.9 and quay:3.6.2 are tagged.

4. Pull the last image that will result in your repository exceeding the allotted quota, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.5.1

5. Refresh the Tags page of your Red Hat Quay registry. The first image that you pushed, for
example, quay:3.7.9 should have been auto-pruned. The Tags page should now show
quay:3.6.2 and quay:3.5.1.

CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

73

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS
Red Hat Quay builds can be run on virtualized platforms. Backwards compatibility to run previous build
configurations are also available.

13.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE

The following image shows the expected design flow and architecture of the enhanced build features:

With this enhancement, the build manager first creates the Job Object. Then, the Job Object then
creates a pod using the quay-builder-image. The quay-builder-image will contain the quay-builder
binary and the Podman service. The created pod runs as unprivileged. The quay-builder binary then
builds the image while communicating status and retrieving build information from the Build Manager.

13.2. RED HAT QUAY BUILD LIMITATIONS

Running builds in Red Hat Quay in an unprivileged context might cause some commands that were
working under the previous build strategy to fail. Attempts to change the build strategy could potentially
cause performance issues and reliability with the build.

Running builds directly in a container does not have the same isolation as using virtual machines.
Changing the build environment might also caused builds that were previously working to fail.

13.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH
OPENSHIFT CONTAINER PLATFORM

The procedures in this section explain how to create a Red Hat Quay virtual builders environment with
OpenShift Container Platform.

13.3.1. OpenShift Container Platform TLS component

The tls component allows you to control TLS configuration.

NOTE

Red Hat Quay 3 Use Red Hat Quay

74

NOTE

Red Hat Quay 3 does not support builders when the TLS component is managed by the
Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support builders, you must add both the Quay route and the builder route name to the
SAN list in the cert, or use a wildcard.

To add the builder route, use the following format:

13.3.2. Using OpenShift Container Platform for Red Hat Quay builders

Builders require SSL/TLS certificates. For more information about SSL/TLS certificates, see Adding
TLS certificates to the Red Hat Quay container.

If you are using Amazon Web Service (AWS) S3 storage, you must modify your storage bucket in the
AWS console, prior to running builders. See "Modifying your AWS S3 storage bucket" in the following
section for the required parameters.

13.3.2.1. Preparing OpenShift Container Platform for virtual builders

Use the following procedure to prepare OpenShift Container Platform for Red Hat Quay virtual builders.

NOTE

This procedure assumes you already have a cluster provisioned and a Quay
Operator running.

This procedure is for setting up a virtual namespace on OpenShift Container
Platform.

Procedure

1. Log in to your Red Hat Quay cluster using a cluster administrator account.

2. Create a new project where your virtual builders will be run, for example, virtual-builders, by
running the following command:

3. Create a ServiceAccount in the project that will be used to run builds by entering the following
command:

4. Provide the created service account with editing permissions so that it can run the build:

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]:443

$ oc new-project virtual-builders

$ oc create sa -n virtual-builders quay-builder

$ oc adm policy -n virtual-builders add-role-to-user edit system:serviceaccount:virtual-
builders:quay-builder

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS

75

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#using_ssl_to_protect_connections_to_red_hat_quay

5. Grant the Quay builder anyuid scc permissions by entering the following command:

NOTE

This action requires cluster admin privileges. This is required because builders
must run as the Podman user for unprivileged or rootless builds to work.

6. Obtain the token for the Quay builder service account.

a. If using OpenShift Container Platform 4.10 or an earlier version, enter the following
command:

b. If using OpenShift Container Platform 4.11 or later, enter the following command:

NOTE

When the token expires you will need to request a new token. Optionally, you
can also add a custom expiration. For example, specify --duration 20160m to
retain the token for two weeks.

Example output

7. Determine the builder route by entering the following command:

Example output

8. Generate a self-signed SSL/TlS certificate with the .crt extension by entering the following
command:

Example output

$ oc adm policy -n virtual-builders add-scc-to-user anyuid -z quay-builder

oc sa get-token -n virtual-builders quay-builder

$ oc create token quay-builder -n virtual-builders

eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxc
DJscldSdEUtYWsifQ...

$ oc get route -n quay-enterprise

NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
...
example-registry-quay-builder example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org example-registry-quay-app grpc
edge/Redirect None
...

$ oc extract cm/kube-root-ca.crt -n openshift-apiserver

Red Hat Quay 3 Use Red Hat Quay

76

1

9. Rename the ca.crt file to extra_ca_cert_build_cluster.crt by entering the following command:

10. Locate the secret for you configuration bundle in the Console, and select Actions → Edit
Secret and add the appropriate builder configuration:

The build route is obtained by running oc get route -n with the name of your OpenShift
Operator’s namespace. A port must be provided at the end of the route, and it should use
the following format: [quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-
domain-name]:443.

If the JOB_REGISTRATION_TIMEOUT parameter is set too low, you might receive the

ca.crt

$ mv ca.crt extra_ca_cert_build_cluster.crt

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- <superusername>
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: <sample_build_route> 1
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600 2
 ORCHESTRATOR:
 REDIS_HOST: <sample_redis_hostname> 3
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: <sample_builder_namespace> 4
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 BUILDER_CONTAINER_IMAGE: <sample_builder_container_image> 5
 # Kubernetes resource options
 K8S_API_SERVER: <sample_k8s_api_server> 6
 K8S_API_TLS_CA: <sample_crt_file> 7
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 300m 8
 CONTAINER_CPU_LIMITS: 1G 9
 CONTAINER_MEMORY_REQUEST: 300m 10
 CONTAINER_CPU_REQUEST: 1G 11
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: <sample_service_account_name>
 SERVICE_ACCOUNT_TOKEN: <sample_account_token> 12

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS

77

2

3

4

5

6

7

8

9

10

11

12

If the JOB_REGISTRATION_TIMEOUT parameter is set too low, you might receive the
following error: failed to register job to build manager: rpc error: code =
Unauthenticated desc = Invalid build token: Signature has expired. It is suggested that
this parameter be set to at least 240.

If your Redis host has a password or SSL/TLS certificates, you must update accordingly.

Set to match the name of your virtual builders namespace, for example, virtual-builders.

For early access, the BUILDER_CONTAINER_IMAGE is currently
quay.io/projectquay/quay-builder:3.7.0-rc.2. Note that this might change during the
early access window. If this happens, customers are alerted.

The K8S_API_SERVER is obtained by running oc cluster-info.

You must manually create and add your custom CA cert, for example, K8S_API_TLS_CA:
/conf/stack/extra_ca_certs/build_cluster.crt.

Defaults to 5120Mi if left unspecified.

For virtual builds, you must ensure that there are enough resources in your cluster.
Defaults to 1000m if left unspecified.

Defaults to 3968Mi if left unspecified.

Defaults to 500m if left unspecified.

Obtained when running oc create sa.

Sample configuration

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org:443
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600
 ORCHESTRATOR:
 REDIS_HOST: example-registry-quay-redis
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: virtual-builders
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0

Red Hat Quay 3 Use Red Hat Quay

78

1

2

13.3.2.2. Manually adding SSL/TLS certificates

Due to a known issue with the configuration tool, you must manually add your custom SSL/TLS
certificates to properly run builders. Use the following procedure to manually add custom SSL/TLS
certificates.

For more information creating SSL/TLS certificates, see Adding TLS certificates to the Red Hat Quay
container.

13.3.2.2.1. Creating and signing certificates

Use the following procedure to create and sign an SSL/TLS certificate.

Procedure

Create a certificate authority and sign a certificate. For more information, see Create a
Certificate Authority and sign a certificate.

openssl.cnf

An alt_name for the URL of your Red Hat Quay registry must be included.

An alt_name for the BUILDMAN_HOSTNAME

 BUILDER_CONTAINER_IMAGE: quay.io/projectquay/quay-builder:3.7.0-rc.2
 # Kubernetes resource options
 K8S_API_SERVER: api.docs.quayteam.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 1G
 CONTAINER_CPU_LIMITS: 1080m
 CONTAINER_MEMORY_REQUEST: 1G
 CONTAINER_CPU_REQUEST: 580m
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: quay-builder
 SERVICE_ACCOUNT_TOKEN:
"eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxcDJs
cldSdEUtYWsifQ"

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = example-registry-quay-quay-enterprise.apps.docs.quayteam.org 1
DNS.2 = example-registry-quay-builder-quay-enterprise.apps.docs.quayteam.org 2

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS

79

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#using_ssl_to_protect_connections_to_red_hat_quay
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#create-a-ca-and-sign-a-certificate

Sample commands

13.3.2.2.2. Setting TLS to unmanaged

Use the following procedure to set king:tls to unmanaged.

Procedure

1. In your Red Hat Quay Registry YAML, set kind: tls to managed: false:

2. On the Events page, the change is blocked until you set up the appropriate config.yaml file.
For example:

13.3.2.2.3. Creating temporary secrets

Use the following procedure to create temporary secrets for the CA certificate.

Procedure

1. Create a secret in your default namespace for the CA certificate:

$ oc create secret generic -n quay-enterprise temp-crt --from-file
extra_ca_cert_build_cluster.crt

2. Create a secret in your default namespace for the ssl.key and ssl.cert files:

$ oc create secret generic -n quay-enterprise quay-config-ssl --from-file ssl.cert --from-file
ssl.key

13.3.2.2.4. Copying secret data to the configuration YAML

Use the following procedure to copy secret data to your config.yaml file.

Procedure

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem
$ openssl genrsa -out ssl.key 2048
$ openssl req -new -key ssl.key -out ssl.csr
$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

 - kind: tls
 managed: false

 - lastTransitionTime: '2022-03-28T12:56:49Z'
 lastUpdateTime: '2022-03-28T12:56:49Z'
 message: >-
 required component `tls` marked as unmanaged, but `configBundleSecret`
 is missing necessary fields
 reason: ConfigInvalid
 status: 'True'

Red Hat Quay 3 Use Red Hat Quay

80

1. Locate the new secrets in the console UI at Workloads → Secrets.

2. For each secret, locate the YAML view:

3. Locate the secret for your Red Hat Quay registry configuration bundle in the UI, or through the
command line by running a command like the following:

4. In the OpenShift Container Platform console, select the YAML tab for your configuration
bundle secret, and add the data from the two secrets you created:

kind: Secret
apiVersion: v1
metadata:
 name: temp-crt
 namespace: quay-enterprise
 uid: a4818adb-8e21-443a-a8db-f334ace9f6d0
 resourceVersion: '9087855'
 creationTimestamp: '2022-03-28T13:05:30Z'
...
data:
 extra_ca_cert_build_cluster.crt: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0l....
type: Opaque

kind: Secret
apiVersion: v1
metadata:
 name: quay-config-ssl
 namespace: quay-enterprise
 uid: 4f5ae352-17d8-4e2d-89a2-143a3280783c
 resourceVersion: '9090567'
 creationTimestamp: '2022-03-28T13:10:34Z'
...
data:
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get quayregistries.quay.redhat.com -o jsonpath="{.items[0].spec.configBundleSecret}
{'\n'}" -n quay-enterprise

kind: Secret
apiVersion: v1
metadata:
 name: init-config-bundle-secret
 namespace: quay-enterprise
 uid: 4724aca5-bff0-406a-9162-ccb1972a27c1
 resourceVersion: '4383160'
 creationTimestamp: '2022-03-22T12:35:59Z'
...
data:
 config.yaml: >-
 RkVBVFVSRV9VU0VSX0lOSVRJQUxJWkU6IHRydWUKQlJ...

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS

81

5. Click Save.

6. Enter the following command to see if your pods are restarting:

Example output

7. After your Red Hat Quay registry has reconfigured, enter the following command to check if the
Red Hat Quay app pods are running:

Example output

8. In your browser, access the registry endpoint and validate that the certificate has been updated
appropriately. For example:

 extra_ca_cert_build_cluster.crt: >-

LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0ldw....
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
...
example-registry-quay-app-6786987b99-vgg2v 0/1 ContainerCreating 0 2s
example-registry-quay-app-7975d4889f-q7tvl 1/1 Running 0 5d21h
example-registry-quay-app-7975d4889f-zn8bb 1/1 Running 0 5d21h
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 0/1 ContainerCreating 0 2s
example-registry-quay-config-editor-c6c4d9ccd-2mwg2 1/1 Running 0
5d21h
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-764d7b68d9-jmlkk 1/1 Terminating 0 5d21h
example-registry-quay-mirror-764d7b68d9-jqzwg 1/1 Terminating 0 5d21h
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pods -n quay-enterprise

example-registry-quay-app-6786987b99-sz6kb 1/1 Running 0 7m45s
example-registry-quay-app-6786987b99-vgg2v 1/1 Running 0 9m1s
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-758fc68ff7-5wxlp 1/1 Running 0 8m29s
example-registry-quay-mirror-758fc68ff7-lbl82 1/1 Running 0 8m29s
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

Common Name (CN) example-registry-quay-quay-enterprise.apps.docs.quayteam.org
Organisation (O) DOCS
Organisational Unit (OU) QUAY

Red Hat Quay 3 Use Red Hat Quay

82

13.3.2.3. Using the UI to create a build trigger

Use the following procedure to use the UI to create a build trigger.

Procedure

1. Log in to your Red Hat Quay repository.

2. Click Create New Repository and create a new registry, for example, testrepo.

3. On the Repositories page, click the Builds tab on the navigation pane. Alternatively, use the
corresponding URL directly:

https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/repository/quayadmin/testrepo?tab=builds

IMPORTANT

In some cases, the builder might have issues resolving hostnames. This issue
might be related to the dnsPolicy being set to default on the job object.
Currently, there is no workaround for this issue. It will be resolved in a future
version of Red Hat Quay.

4. Click Create Build Trigger → Custom Git Repository Push.

5. Enter the HTTPS or SSH style URL used to clone your Git repository, then click Continue. For
example:

https://github.com/gabriel-rh/actions_test.git

6. Check Tag manifest with the branch or tag name and then click Continue.

7. Enter the location of the Dockerfile to build when the trigger is invoked, for example,
/Dockerfile and click Continue.

8. Enter the location of the context for the Docker build, for example, /, and click Continue.

9. If warranted, create a Robot Account. Otherwise, click Continue.

10. Click Continue to verify the parameters.

11. On the Builds page, click Options icon of your Trigger Name, and then click Run Trigger Now.

12. Enter a commit SHA from the Git repository and click Start Build.

13. You can check the status of your build by clicking the commit in the Build History page, or by
running oc get pods -n virtual-builders. For example:

$ oc get pods -n virtual-builders

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS

83

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Terminating 0 9s

$ oc get pods -n virtual-builders

Example output

No resources found in virtual-builders namespace.

14. When the build is finished, you can check the status of the tag under Tags on the navigation
pane.

NOTE

With early access, full build logs and timestamps of builds are currently
unavailable.

13.3.2.4. Modifying your AWS S3 storage bucket

If you are using AWS S3 storage, you must change your storage bucket in the AWS console, prior to
running builders.

Procedure

1. Log in to your AWS console at s3.console.aws.com.

2. In the search bar, search for S3 and then click S3.

3. Click the name of your bucket, for example, myawsbucket.

4. Click the Permissions tab.

5. Under Cross-origin resource sharing (CORS), include the following parameters:

$ oc get pods -n virtual-builders

 [
 {
 "AllowedHeaders": [
 "Authorization"
],
 "AllowedMethods": [
 "GET"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 },
 {

Red Hat Quay 3 Use Red Hat Quay

84

https://s3.console.aws.amazon.com

13.3.2.5. Modifying your Google Cloud Platform object bucket

NOTE

Currently, modifying your Google Cloud Platform object bucket is not supported on IBM
Power and IBM Z.

Use the following procedure to configure cross-origin resource sharing (CORS) for virtual builders.

NOTE

Without CORS configuration, uploading a build Dockerfile fails.

Procedure

1. Use the following reference to create a JSON file for your specific CORS needs. For example:

Example output

 "AllowedHeaders": [
 "Content-Type",
 "x-amz-acl",
 "origin"
],
 "AllowedMethods": [
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 }
]

$ cat gcp_cors.json

[
 {
 "origin": ["*"],
 "method": ["GET"],
 "responseHeader": ["Authorization"],
 "maxAgeSeconds": 3600
 },
 {
 "origin": ["*"],
 "method": ["PUT"],
 "responseHeader": [
 "Content-Type",
 "x-goog-acl",
 "origin"],

CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS

85

2. Enter the following command to update your GCP storage bucket:

Example output

3. You can display the updated CORS configuration of your GCP bucket by running the following
command:

Example output

 "maxAgeSeconds": 3600
 }
]

$ gcloud storage buckets update gs://<bucket_name> --cors-file=./gcp_cors.json

Updating
 Completed 1

$ gcloud storage buckets describe gs://<bucket_name> --format="default(cors)"

cors:
- maxAgeSeconds: 3600
 method:
 - GET
 origin:
 - '*'
 responseHeader:
 - Authorization
- maxAgeSeconds: 3600
 method:
 - PUT
 origin:
 - '*'
 responseHeader:
 - Content-Type
 - x-goog-acl
 - origin

Red Hat Quay 3 Use Red Hat Quay

86

CHAPTER 14. USING THE V2 UI
Use the following procedures to configure, and use, the Red Hat Quay v2 UI.

14.1. V2 USER INTERFACE CONFIGURATION

With FEATURE_UI_V2 enabled, you can toggle between the current version of the user interface and
the new version of the user interface.

IMPORTANT

This UI is currently in beta and subject to change. In its current state, users can
only create, view, and delete organizations, repositories, and image tags.

When using the old UI, timed-out sessions would require that the user input their
password again in the pop-up window. With the new UI, users are returned to the
main page and required to input their username and password credentials. This is
a known issue and will be fixed in a future version of the new UI.

There is a discrepancy in how image manifest sizes are reported between the
legacy UI and the new UI. In the legacy UI, image manifests were reported in
mebibytes. The v2 UI uses the standard definition of megabyte (MB) to report
image manifest sizes.

Procedure

1. In your deployment’s config.yaml file, add the FEATURE_UI_V2 parameter and set it to true,
for example:

2. Log in to your Red Hat Quay deployment.

3. In the navigation pane of your deployment, you are given the option to toggle between Current
UI and New UI. Click the toggle button to set it to new UI, and then click Use Beta
Environment, for example:

14.1.1. Creating a new organization using the v2 UI

Prerequisites

You have toggled your deployment to use the v2 UI.

Use the following procedure to create an organization using the v2 UI.

Procedure

FEATURE_TEAM_SYNCING: false
FEATURE_UI_V2: true
FEATURE_USER_CREATION: true

CHAPTER 14. USING THE V2 UI

87

1. Click Organization in the navigation pane.

2. Click Create Organization.

3. Enter an Organization Name, for example, testorg.

4. Click Create.

Now, your example organization should populate under the Organizations page.

14.1.2. Deleting an organization using the v2 UI

Use the following procedure to delete an organization using the v2 UI.

Procedure

1. On the Organizations page, select the name of the organization you want to delete, for
example, testorg.

2. Click the More Actions drop down menu.

3. Click Delete.

NOTE

On the Delete page, there is a Search input box. With this box, users can search
for specific organizations to ensure that they are properly scheduled for deletion.
For example, if a user is deleting 10 organizations and they want to ensure that a
specific organization was deleted, they can use the Search input box to confirm
said organization is marked for deletion.

4. Confirm that you want to permanently delete the organization by typing confirm in the box.

5. Click Delete.
After deletion, you are returned to the Organizations page.

NOTE

You can delete more than one organization at a time by selecting multiple
organizations, and then clicking More Actions → Delete.

14.1.3. Creating a new repository using the v2 UI

Use the following procedure to create a repository using the v2 UI.

Procedure

1. Click Repositories on the navigation pane.

2. Click Create Repository.

3. Select a namespace, for example, quayadmin, and then enter a Repository name, for example,
testrepo.

IMPORTANT

Red Hat Quay 3 Use Red Hat Quay

88

IMPORTANT

Do not use the following words in your repository name: * build * trigger * tag

When these words are used for repository names, users are unable access the
repository, and are unable to permanently delete the repository. Attempting to
delete these repositories returns the following error: Failed to delete repository
<repository_name>, HTTP404 - Not Found.

4. Click Create.
Now, your example repository should populate under the Repositories page.

14.1.4. Deleting a repository using the v2 UI

Prerequisites

You have created a repository.

Procedure

1. On the Repositories page of the v2 UI, click the name of the image you want to delete, for
example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

14.1.5. Pushing an image to the v2 UI

Use the following procedure to push an image to the v2 UI.

Procedure

1. Pull a sample image from an external registry:

2. Tag the image:

3. Push the image to your registry:

$ podman pull busybox

$ podman tag docker.io/library/busybox quay-server.example.com/quayadmin/busybox:test

$ podman push quay-server.example.com/quayadmin/busybox:test

CHAPTER 14. USING THE V2 UI

89

4. Navigate to the Repositories page on the v2 UI and ensure that your image has been properly
pushed.

5. You can check the security details by selecting your image tag, and then navigating to the
Security Report page.

14.1.6. Deleting an image using the v2 UI

Use the following procedure to delete an image using the v2 UI.

Prerequisites

You have pushed an image to your registry.

Procedure

1. On the Repositories page of the v2 UI, click the name of the image you want to delete, for
example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

14.1.7. Creating a new team using the Red Hat Quay v2 UI

Use the following procedure to create a new team using the Red Hat Quay v2 UI.

Prerequisites

You have created an organization with a repository.

Procedure

1. On the Red Hat Quay v2 UI, click the name of an organization.

2. On your organization’s page, click Teams and membership.

3. Click the Create new team box.

4. In the Create team popup window, provide a name for your new team.

5. Optional. Provide a description for your new team.

6. Click Proceed. A new popup window appears.

7. Optional. Add this team to a repository, and set the permissions to one of Read, Write, Admin,

Red Hat Quay 3 Use Red Hat Quay

90

7. Optional. Add this team to a repository, and set the permissions to one of Read, Write, Admin,
or None.

8. Optional. Add a team member or robot account. To add a team member, enter the name of
their Red Hat Quay account.

9. Review and finish the information, then click Review and Finish. The new team appears under
the Teams and membership page. From here, you can click the kebab menu, and select one of
the following options:

Manage Team Members. On this page, you can view all members, team members, robot
accounts, or users who have been invited. You can also add a new team member by clicking
Add new member.

Set repository permissions. On this page, you can set the repository permissions to one of
Read, Write, Admin, or None.

Delete. This popup windows allows you to delete the team by clicking Delete.

10. Optional. You can click the one of the following options to reveal more information about teams,
members, and collaborators:

Team View. This menu shows all team names, the number of members, the number of
repositories, and the role for each team.

Members View. This menu shows all usernames of team members, the teams that they are
part of, the repository permissions of the user.

Collaborators View. This menu shows repository collaborators. Collaborators are users that
do not belong to any team in the organization, but who have direct permissions on one or
more repositories belonging to the organization.

14.1.8. Creating a robot account using the v2 UI

Use the following procedure to create a robot account using the v2 UI.

Procedure

1. On the v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Robot accounts tab → Create robot account.

4. In the Provide a name for your robot account box, enter a name, for example, robot1.

5. Optional. The following options are available if desired:

a. Add the robot to a team.

b. Add the robot to a repository.

c. Adjust the robot’s permissions.

6. On the Review and finish page, review the information you have provided, then click Review

CHAPTER 14. USING THE V2 UI

91

6. On the Review and finish page, review the information you have provided, then click Review
and finish. The following alert appears: Successfully created robot account with robot name:
<organization_name> + <robot_name>.
Alternatively, if you tried to create a robot account with the same name as another robot
account, you might receive the following error message: Error creating robot account.

7. Optional. You can click Expand or Collapse to reveal descriptive information about the robot
account.

8. Optional. You can change permissions of the robot account by clicking the kebab menu → Set
repository permissions. The following message appears: Successfully updated repository
permission.

9. Optional. To delete your robot account, check the box of the robot account and click the trash
can icon. A popup box appears. Type confirm in the text box, then, click Delete. Alternatively,
you can click the kebab menu → Delete. The following message appears: Successfully deleted
robot account.

14.1.8.1. Bulk managing robot account repository access using the Red Hat Quay v2 UI

Use the following procedure to manage, in bulk, robot account repository access using the Red Hat
Quay v2 UI.

Prerequisites

You have created a robot account.

You have created multiple repositories under a single organization.

Procedure

1. On the Red Hat Quay v2 UI landing page, click Organizations in the navigation pane.

2. On the Organizations page, select the name of the organization that has multiple repositories.
The number of repositories under a single organization can be found under the Repo Count
column.

3. On your organization’s page, click Robot accounts.

4. For the robot account that will be added to multiple repositories, click the kebab icon → Set
repository permissions.

5. On the Set repository permissions page, check the boxes of the repositories that the robot
account will be added to. For example:

Red Hat Quay 3 Use Red Hat Quay

92

6. Set the permissions for the robot account, for example, None, Read, Write, Admin.

7. Click save. An alert that says Success alert: Successfully updated repository permission
appears on the Set repository permissions page, confirming the changes.

8. Return to the Organizations → Robot accounts page. Now, the Repositories column of your
robot account shows the number of repositories that the robot account has been added to.

14.1.9. Creating default permissions using the Red Hat Quay v2 UI

Default permissions defines permissions that should be granted automatically to a repository when it is
created, in addition to the default of the repository’s creator. Permissions are assigned based on the
user who created the repository.

Use the following procedure to create default permissions using the Red Hat Quay v2 UI.

Procedure

1. Click the name of an organization.

2. Click Default permissions.

3. Click create default permissions. A toggle drawer appears.

4. Select either Anyone or Specific user to create a default permission when a repository is
created.

a. If selecting Anyone, the following information must be provided:

CHAPTER 14. USING THE V2 UI

93

Applied to. Search, invite, or add a user/robot/team.

Permission. Set the permission to one of Read, Write, or Admin.

b. If selecting Specific user, the following information must be provided:

Repository creator. Provide either a user or robot account.

Applied to. Provide a username, robot account, or team name.

Permission. Set the permission to one of Read, Write, or Admin.

5. Click Create default permission. A confirmation box appears, returning the following alert:
Successfully created default permission for creator.

14.1.10. Organization settings for the v2 UI

Use the following procedure to alter your organization settings using the v2 UI.

Procedure

1. On the v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Settings tab.

4. Optional. Enter the email address associated with the organization.

5. Optional. Set the allotted time for the Time Machine feature to one of the following:

1 week

1 month

1 year

Never

6. Click Save.

14.1.11. Viewing image tag information using the v2 UI

Use the following procedure to view image tag information using the v2 UI.

Procedure

1. On the v2 UI, click Repositories.

2. Click the name of a repository, for example, quayadmin/busybox.

3. Click the name of the tag, for example, test. You are taken to the Details page of the tag. The
page reveals the following information:

Name

Red Hat Quay 3 Use Red Hat Quay

94

Repository

Digest

Vulnerabilities

Creation

Modified

Size

Labels

How to fetch the image tag

4. Optional. Click Security Report to view the tag’s vulnerabilities. You can expand an advisory
column to open up CVE data.

5. Optional. Click Packages to view the tag’s packages.

6. Click the name of the repository, for example, busybox, to return to the Tags page.

7. Optional. Hover over the Pull icon to reveal the ways to fetch the tag.

8. Check the box of the tag, or multiple tags, click the Actions drop down menu, and then Delete
to delete the tag. Confirm deletion by clicking Delete in the popup box.

14.1.12. Adjusting repository settings using the v2 UI

Use the following procedure to adjust various settings for a repository using the v2 UI.

Procedure

1. On the v2 UI, click Repositories.

2. Click the name of a repository, for example, quayadmin/busybox.

3. Click the Settings tab.

4. Optional. Click User and robot permissions. You can adjust the settings for a user or robot
account by clicking the dropdown menu option under Permissions. You can change the settings
to Read, Write, or Admin.

5. Optional. Click Events and notifications. You can create an event and notification by clicking
Create Notification. The following event options are available:

Push to Repository

Package Vulnerability Found

Image build failed

Image build queued

Image build started

CHAPTER 14. USING THE V2 UI

95

Image build success

Image build cancelled
Then, issue a notification. The following options are available:

Email Notification

Flowdock Team Notification

HipChat Room Notification

Slack Notification

Webhook POST
After selecting an event option and the method of notification, include a Room ID #, a
Room Notification Token, then, click Submit.

6. Optional. Click Repository visibility. You can make the repository private, or public, by clicking
Make Public.

7. Optional. Click Delete repository. You can delete the repository by clicking Delete Repository.

14.2. VIEWING RED HAT QUAY TAG HISTORY

Use the following procedure to view tag history on the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI dashboard, click Repositories in the navigation pane.

2. Click the name of a repository that has image tags.

3. Click Tag History. On this page, you can perform the following actions:

Search by tag name

Select a date range

View tag changes

View tag modification dates and the time at which they were changed

14.3. ADDING AND MANAGING LABELS ON THE RED HAT QUAY V2 UI

Red Hat Quay administrators can add and manage labels for tags by using the following procedure.

Procedure

1. On the Red Hat Quay v2 UI dashboard, click Repositories in the navigation pane.

2. Click the name of a repository that has image tags.

3. Click the menu kebab for an image and select Edit labels.

4. In the Edit labels window, click Add new label.

5. Enter a label for the image tag using the key=value format, for example,

Red Hat Quay 3 Use Red Hat Quay

96

5. Enter a label for the image tag using the key=value format, for example,
com.example.release-date=2023-11-14.

NOTE

The following error is returned when failing to use the key=value format: Invalid
label format, must be key value separated by =.

6. Click the whitespace of the box to add the label.

7. Optional. Add a second label.

8. Click Save labels to save the label to the image tag. The following notification is returned:
Created labels successfully.

9. Optional. Click the same image tag’s menu kebab → Edit labels → X on the label to remove it;
alternatively, you can edit the text. Click Save labels. The label is now removed or edited.

14.4. SETTING TAG EXPIRATIONS ON THE RED HAT QUAY V2 UI

Red Hat Quay administrators can set expiration dates for certain tags in a repository. This helps
automate the cleanup of older or unused tags, helping to reduce storage space.

Procedure

1. On the Red Hat Quay v2 UI dashboard, click Repositories in the navigation pane.

2. Click the name of a repository that has image tags.

3. Click the menu kebab for an image and select Change expiration.

4. Optional. Alternatively, you can bulk add expiration dates by clicking the box of multiple tags,
and then select Actions → Set expiration.

5. In the Change Tags Expiration window, set an expiration date, specifying the day of the week,
month, day of the month, and year. For example, Wednesday, November 15, 2023.
Alternatively, you can click the calendar button and manually select the date.

6. Set the time, for example, 2:30 PM.

7. Click Change Expiration to confirm the date and time. The following notification is returned:
Successfully set expiration for tag test to Nov 15, 2023, 2:26 PM.

8. On the Red Hat Quay v2 UI Tags page, you can see when the tag is set to expire. For example:

CHAPTER 14. USING THE V2 UI

97

14.5. SELECTING COLOR THEME PREFERENCE ON THE RED HAT
QUAY V2 UI

Users can switch between light and dark modes when using the v2 UI. This feature also includes an
automatic mode selection, which chooses between light or dark modes depending on the user’s browser
preference.

Use the following procedure to switch between automatic, light, and dark modes.

Procedure

1. Log in to your Red Hat Quay repository.

2. In the navigation pane, click your username, for example, quayadmin.

3. Under Appearance, select between Light theme, Dark theme, and Device-based theme.
Device based theme sets the mode depending on your browser’s color preference.

14.6. VIEWING USAGE LOGS ON THE RED HAT QUAY V2 UI

Red Hat Quay logs can provide valuable information about the way that your Red Hat Quay registry is
being used. Logs can be viewed by Organization, repository, or namespace on the v2 UI by using the
following procedure.

Procedure

1. Log in to your Red Hat Quay registry.

2. Navigate to an Organization, repository, or namespace for which you are an administrator of.

3. Click Logs.

Red Hat Quay 3 Use Red Hat Quay

98

4. Optional. Set the date range for viewing log entries by adding dates to the From and To boxes.

5. Optional. Export the logs by clicking Export. You must enter an email address or a valid callback
URL that starts with http:// or https://. This process can take an hour depending on how many
logs there are.

14.7. ENABLING THE LEGACY UI

1. In the navigation pane, you are given the option to toggle between Current UI and New UI. Click
the toggle button to set it to Current UI.

CHAPTER 14. USING THE V2 UI

99

CHAPTER 15. USING THE RED HAT QUAY API
Red Hat Quay provides a full OAuth 2, RESTful API that:

Is available from endpoints of each Red Hat Quay instance from the URL
https://<yourquayhost>/api/v1

Lets you connect to endpoints, via a browser, to get, delete, post, and put Red Hat Quay
settings by enabling the Swagger UI

Can be accessed by applications that make API calls and use OAuth tokens

Sends and receives data as JSON

The following text describes how to access the Red Hat Quay API and use it to view and modify setting
in your Red Hat Quay cluster. The next section lists and describes API endpoints.

15.1. ACCESSING THE QUAY API FROM QUAY.IO

If you don’t have your own Red Hat Quay cluster running yet, you can explore the Red Hat Quay API
available from Quay.io from your web browser:

https://docs.quay.io/api/swagger/

The API Explorer that appears shows Quay.io API endpoints. You will not see superuser API endpoints
or endpoints for Red Hat Quay features that are not enabled on Quay.io (such as Repository Mirroring).

From API Explorer, you can get, and sometimes change, information on:

Billing, subscriptions, and plans

Repository builds and build triggers

Error messages and global messages

Repository images, manifests, permissions, notifications, vulnerabilities, and image signing

Usage logs

Organizations, members and OAuth applications

User and robot accounts

and more…

Select to open an endpoint to view the Model Schema for each part of the endpoint. Open an endpoint,
enter any required parameters (such as a repository name or image), then select the Try it out! button
to query or change settings associated with a Quay.io endpoint.

15.2. CREATING AN OAUTH ACCESS TOKEN

OAuth access tokens are credentials that allow you to access protected resources in a secure manner.
With Red Hat Quay, you must create an OAuth access token before you can access the API endpoints
of your organization.

Red Hat Quay 3 Use Red Hat Quay

100

https://oauth.net/2/
https:/api/v1

Use the following procedure to create an OAuth access token.

Prerequisites

You have logged in to Red Hat Quay as an administrator.

Procedure

1. On the main page, select an Organization.

2. In the navigation pane, select Applications.

3. Click Create New Application and provide a new application name, then press Enter.

4. On the OAuth Applications page, select the name of your application.

5. Optional. Enter the following information:

a. Application Name

b. Homepage URL

c. Description

d. Avatar E-mail

e. Redirect/Callback URL prefix

6. In the navigation pane, select Generate Token.

7. Check the boxes for the following options:

a. Administer Organization

b. Administer Repositories

c. Create Repositories

d. View all visible repositories

e. Read/Write to any accessible repositories

f. Super User Access

g. Administer User

h. Read User Information

8. Click Generate Access Token. You are redirected to a new page.

9. Review the permissions that you are allowing, then click Authorize Application. Confirm your
decision by clicking Authorize Application.

10. You are redirected to the Access Token page. Copy and save the access token.

IMPORTANT

CHAPTER 15. USING THE RED HAT QUAY API

101

IMPORTANT

This is the only opportunity to copy and save the access token. It cannot be
reobtained after leaving this page.

15.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER

By enabling Swagger, you can access the API for your own Red Hat Quay instance through a web
browser. This URL exposes the Red Hat Quay API explorer via the Swagger UI and this URL:

https://<yourquayhost>/api/v1/discovery.

That way of accessing the API does not include superuser endpoints that are available on Red Hat Quay
installations. Here is an example of accessing a Red Hat Quay API interface running on the local system
by running the swagger-ui container image:

export SERVER_HOSTNAME=<yourhostname>
sudo podman run -p 8888:8080 -e API_URL=https://$SERVER_HOSTNAME:8443/api/v1/discovery
docker.io/swaggerapi/swagger-ui

With the swagger-ui container running, open your web browser to localhost port 8888 to view API
endpoints via the swagger-ui container.

To avoid errors in the log such as "API calls must be invoked with an X-Requested-With header if called
from a browser," add the following line to the config.yaml on all nodes in the cluster and restart Red Hat
Quay:

BROWSER_API_CALLS_XHR_ONLY: false

15.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

You can use the curl command to GET, PUT, POST, or DELETE settings via the API for your Red Hat
Quay cluster. Replace <token> with the OAuth access token you created earlier to get or change
settings in the following examples.

15.4.1. Get superuser information

$ curl -X GET -H "Authorization: Bearer <token_here>" \
 "https://<yourquayhost>/api/v1/superuser/users/"

For example:

$ curl -X GET -H "Authorization: Bearer mFCdgS7SAIoMcnTsHCGx23vcNsTgziAa4CmmHIsg"
http://quay-server:8080/api/v1/superuser/users/ | jq

{
 "users": [
 {
 "kind": "user",
 "name": "quayadmin",
 "username": "quayadmin",
 "email": "quayadmin@example.com",
 "verified": true,

Red Hat Quay 3 Use Red Hat Quay

102

15.4.2. Creating a superuser using the API

Configure a superuser name, as described in the Deploy Quay book:

Use the configuration editor UI or

Edit the config.yaml file directly, with the option of using the configuration API to validate
(and download) the updated configuration bundle

Create the user account for the superuser name:

Obtain an authorization token as detailed above, and use curl to create the user:

$ curl -H "Content-Type: application/json" -H "Authorization: Bearer
Fava2kV9C92p1eXnMawBZx9vTqVnksvwNm0ckFKZ" -X POST --data '{
 "username": "quaysuper",
 "email": "quaysuper@example.com"
}' http://quay-server:8080/api/v1/superuser/users/ | jq

The returned content includes a generated password for the new user account:

Now, when you request the list of users , it will show quaysuper as a superuser:

 "avatar": {
 "name": "quayadmin",
 "hash": "357a20e8c56e69d6f9734d23ef9517e8",
 "color": "#5254a3",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 }
]
}

{
 "username": "quaysuper",
 "email": "quaysuper@example.com",
 "password": "EH67NB3Y6PTBED8H0HC6UVHGGGA3ODSE",
 "encrypted_password":
"fn37AZAUQH0PTsU+vlO9lS0QxPW9A/boXL4ovZjIFtlUPrBz9i4j9UDOqMjuxQ/0HTfy38go
KEpG8zYXVeQh3lOFzuOjSvKic2Vq7xdtQsU="
}

$ curl -X GET -H "Authorization: Bearer mFCdgS7SAIoMcnTsHCGx23vcNsTgziAa4CmmHIsg"
http://quay-server:8080/api/v1/superuser/users/ | jq

{
 "users": [
 {
 "kind": "user",
 "name": "quayadmin",
 "username": "quayadmin",
 "email": "quayadmin@example.com",
 "verified": true,

CHAPTER 15. USING THE RED HAT QUAY API

103

15.4.3. List usage logs

An intrnal API, /api/v1/superuser/logs, is available to list the usage logs for the current system. The
results are paginated, so in the following example, more than 20 repos were created to show how to use
multiple invocations to access the entire result set.

15.4.3.1. Example for pagination

First invocation

Initial output

 "avatar": {
 "name": "quayadmin",
 "hash": "357a20e8c56e69d6f9734d23ef9517e8",
 "color": "#5254a3",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 },
 {
 "kind": "user",
 "name": "quaysuper",
 "username": "quaysuper",
 "email": "quaysuper@example.com",
 "verified": true,
 "avatar": {
 "name": "quaysuper",
 "hash": "c0e0f155afcef68e58a42243b153df08",
 "color": "#969696",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 }
]
}

$ curl -X GET -k -H "Authorization: Bearer qz9NZ2Np1f55CSZ3RVOvxjeUdkzYuCp0pKggABCD"
https://example-registry-quay-quay-enterprise.apps.example.com/api/v1/superuser/logs | jq

{
 "start_time": "Sun, 12 Dec 2021 11:41:55 -0000",
 "end_time": "Tue, 14 Dec 2021 11:41:55 -0000",
 "logs": [
 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t21",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:41:16 -0000",

Red Hat Quay 3 Use Red Hat Quay

104

 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 },
 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t20",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:41:05 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 },
...

 {
 "kind": "create_repo",

CHAPTER 15. USING THE RED HAT QUAY API

105

Second invocation using next_page

Output from second invocation

 "metadata": {
 "repo": "t2",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:25:17 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 }
],
 "next_page":
"gAAAAABhtzGDsH38x7pjWhD8MJq1_2FAgqUw2X9S2LoCLNPH65QJqB4XAU2qAxYb6QqtlcWj9eI6
DUiMN_q3e3I0agCvB2VPQ8rY75WeaiUzM3rQlMc4i6ElR78t8oUxVfNp1RMPIRQYYZyXP9h6E8LZZhq
TMs0S-SedaQJ3kVFtkxZqJwHVjgt23Ts2DonVoYwtKgI3bCC5"
}

$ curl -X GET -k -H "Authorization: Bearer qz9NZ2Np1f55CSZ3RVOvxjeUdkzYuCp0pKggABCD"
https://example-registry-quay-quay-enterprise.apps.example.com/api/v1/superuser/logs?
next_page=gAAAAABhtzGDsH38x7pjWhD8MJq1_2FAgqUw2X9S2LoCLNPH65QJqB4XAU2qAxYb6Q
qtlcWj9eI6DUiMN_q3e3I0agCvB2VPQ8rY75WeaiUzM3rQlMc4i6ElR78t8oUxVfNp1RMPIRQYYZyXP9h
6E8LZZhqTMs0S-SedaQJ3kVFtkxZqJwHVjgt23Ts2DonVoYwtKgI3bCC5 | jq

{
 "start_time": "Sun, 12 Dec 2021 11:42:46 -0000",
 "end_time": "Tue, 14 Dec 2021 11:42:46 -0000",
 "logs": [
 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t1",
 "namespace": "namespace1"
 },

Red Hat Quay 3 Use Red Hat Quay

106

15.4.4. Directory synchronization

To enable directory synchronization for the team newteam in organization testadminorg, where the
corresponding group name in LDAP is ldapgroup:

$ curl -X POST -H "Authorization: Bearer 9rJYBR3v3pXcj5XqIA2XX6Thkwk4gld4TCYLLWDF" \
 -H "Content-type: application/json" \
 -d '{"group_dn": "cn=ldapgroup,ou=Users"}' \
 http://quay1-server:8080/api/v1/organization/testadminorg/team/newteam/syncing

To disable synchronization for the same team:

$ curl -X DELETE -H "Authorization: Bearer 9rJYBR3v3pXcj5XqIA2XX6Thkwk4gld4TCYLLWDF" \
 http://quay1-server:8080/api/v1/organization/testadminorg/team/newteam/syncing

15.4.5. Create a repository build via API

In order to build a repository from the specified input and tag the build with custom tags, users can use
requestRepoBuild endpoint. It takes the following data:

{
"docker_tags": [
 "string"
],
"pull_robot": "string",

 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:25:07 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 },
 ...
]
}

CHAPTER 15. USING THE RED HAT QUAY API

107

"subdirectory": "string",
"archive_url": "string"
}

The archive_url parameter should point to a tar or zip archive that includes the Dockerfile and other
required files for the build. The file_id parameter was apart of our older build system. It cannot be used
anymore. If Dockerfile is in a sub-directory it needs to be specified as well.

The archive should be publicly accessible. OAuth app should have "Administer Organization" scope
because only organization admins have access to the robots' account tokens. Otherwise, someone could
get robot permissions by simply granting a build access to a robot (without having access themselves),
and use it to grab the image contents. In case of errors, check the json block returned and ensure the
archive location, pull robot, and other parameters are being passed correctly. Click "Download logs" on
the top-right of the individual build’s page to check the logs for more verbose messaging.

15.4.6. Create an org robot

$ curl -X PUT https://quay.io/api/v1/organization/{orgname}/robots/{robot shortname} \
 -H 'Authorization: Bearer <token>''

15.4.7. Trigger a build

$ curl -X POST https://quay.io/api/v1/repository/YOURORGNAME/YOURREPONAME/build/ \
 -H 'Authorization: Bearer <token>'

Python with requests

import requests
r = requests.post('https://quay.io/api/v1/repository/example/example/image', headers={'content-type':
'application/json', 'Authorization': 'Bearer <redacted>'}, data={[<request-body-contents>})
print(r.text)

15.4.8. Create a private repository

$ curl -X POST https://quay.io/api/v1/repository \
 -H 'Authorization: Bearer {token}' \
 -H 'Content-Type: application/json' \
 -d '{"namespace":"yournamespace", "repository":"yourreponame",
 "description":"descriptionofyourrepo", "visibility": "private"}' | jq

15.4.9. Create a mirrored repository

Minimal configuration

curl -X POST
 -H "Authorization: Bearer ${bearer_token}"
 -H "Content-Type: application/json"
 --data '{"external_reference": "quay.io/minio/mc", "external_registry_username": "", "sync_interval":
600, "sync_start_date": "2021-08-06T11:11:39Z", "root_rule": {"rule_kind": "tag_glob_csv",
"rule_value": ["latest"]}, "robot_username": "orga+robot"}'
https://${quay_registry}/api/v1/repository/${orga}/${repo}/mirror | jq

Red Hat Quay 3 Use Red Hat Quay

108

Extended configuration

$ curl -X POST
 -H "Authorization: Bearer ${bearer_token}"
 -H "Content-Type: application/json"
 --data '{"is_enabled": true, "external_reference": "quay.io/minio/mc", "external_registry_username":
"username", "external_registry_password": "password", "external_registry_config":
{"unsigned_images":true, "verify_tls": false, "proxy": {"http_proxy": "http://proxy.tld", "https_proxy":
"https://proxy.tld", "no_proxy": "domain"}}, "sync_interval": 600, "sync_start_date": "2021-08-
06T11:11:39Z", "root_rule": {"rule_kind": "tag_glob_csv", "rule_value": ["*"]}, "robot_username":
"orga+robot"}' https://${quay_registry}/api/v1/repository/${orga}/${repo}/mirror | jq

CHAPTER 15. USING THE RED HAT QUAY API

109

	Table of Contents
	PREFACE
	CHAPTER 1. USERS AND ORGANIZATIONS
	1.1. TENANCY MODEL
	1.2. CREATING USER ACCOUNTS
	1.3. DELETING A RED HAT QUAY USER FROM THE COMMAND LINE
	1.4. CREATING ORGANIZATION ACCOUNTS

	CHAPTER 2. CREATING A REPOSITORY
	2.1. CREATING AN IMAGE REPOSITORY BY USING THE UI
	2.2. CREATING AN IMAGE REPOSITORY BY USING THE CLI

	CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
	3.1. ALLOWING ACCESS TO USER REPOSITORIES
	3.1.1. Allowing user access to a user repository
	3.1.2. Allowing robot access to a user repository

	3.2. ORGANIZATION REPOSITORIES
	3.2.1. Creating an Organization
	3.2.1.1. Creating another Organization by using the API

	3.2.2. Adding a team to an organization
	3.2.3. Setting a Team role
	3.2.4. Adding users to a Team

	3.3. DISABLING ROBOT ACCOUNTS

	CHAPTER 4. WORKING WITH TAGS
	4.1. VIEWING AND MODIFYING TAGS
	4.1.1. Adding a new image tag to an image
	4.1.2. Moving an image tag
	4.1.3. Deleting an image tag
	4.1.3.1. Viewing tag history
	4.1.3.2. Reverting tag changes

	4.1.4. Fetching an image by tag or digest

	4.2. TAG EXPIRATION
	4.2.1. Setting tag expiration from a Dockerfile
	4.2.2. Setting tag expiration from the repository

	4.3. VIEWING CLAIR SECURITY SCANS

	CHAPTER 5. VIEWING AND EXPORTING LOGS
	5.1. VIEWING LOGS USING THE UI
	5.2. EXPORTING REPOSITORY LOGS

	CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS
	6.1. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT CONTAINER PLATFORM
	6.1.1. Configuring the OpenShift Container Platform TLS component
	6.1.2. Preparing OpenShift Container Platform for Red Hat Quay Builders
	6.1.3. Configuring Red Hat Quay Builders

	6.2. OPENSHIFT CONTAINER PLATFORM ROUTES LIMITATIONS
	6.3. TROUBLESHOOTING BUILDS
	6.3.1. DEBUG config flag
	6.3.2. Troubleshooting OpenShift Container Platform and Kubernetes Builds

	6.4. SETTING UP GITHUB BUILDS

	CHAPTER 7. BUILDING CONTAINER IMAGES
	7.1. BUILD CONTEXTS
	7.2. TAG NAMING FOR BUILD TRIGGERS
	7.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
	7.4. VIEWING AND MANAGING BUILDS
	7.5. CREATING A NEW BUILD
	7.6. BUILD TRIGGERS
	7.6.1. Creating a Build trigger
	7.6.2. Manually triggering a Build

	7.7. SETTING UP A CUSTOM GIT TRIGGER
	7.7.1. Creating a trigger
	7.7.2. Custom trigger creation setup
	7.7.2.1. SSH public key access
	7.7.2.2. Webhook

	CHAPTER 8. CREATING AN OAUTH APPLICATION IN GITHUB
	8.1. CREATE NEW GITHUB APPLICATION

	CHAPTER 9. REPOSITORY NOTIFICATIONS
	9.1. CREATING NOTIFICATIONS
	9.2. REPOSITORY EVENTS DESCRIPTION
	9.2.1. Repository Push
	9.2.2. Dockerfile Build Queued
	9.2.3. Dockerfile Build started
	9.2.4. Dockerfile Build successfully completed
	9.2.5. Dockerfile Build failed
	9.2.6. Dockerfile Build cancelled
	9.2.7. Vulnerability detected

	9.3. NOTIFICATION ACTIONS
	9.3.1. Notifications added
	9.3.2. E-mail notifications
	9.3.3. Webhook POST notifications
	9.3.4. Flowdock notifications
	9.3.5. Hipchat notifications
	9.3.6. Slack notifications

	CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT
	10.1. HELM AND OCI PREREQUISITES
	10.1.1. Installing Helm
	10.1.2. Upgrading to Helm 3.8
	10.1.3. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay

	10.2. USING HELM CHARTS
	10.3. COSIGN OCI SUPPORT
	10.4. INSTALLING AND USING COSIGN
	10.5. USING OTHER ARTIFACT TYPES
	10.6. DISABLING OCI ARTIFACTS IN RED HAT QUAY

	CHAPTER 11. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
	11.1. QUOTA MANAGEMENT ARCHITECTURE
	11.2. QUOTA MANAGEMENT LIMITATIONS
	11.3. QUOTA MANAGEMENT CONFIGURATION FIELDS
	11.3.1. Example quota management configuration

	11.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API
	11.4.1. Setting the quota
	11.4.2. Viewing the quota
	11.4.3. Modifying the quota
	11.4.4. Pushing images
	11.4.4.1. Pushing ubuntu:18.04
	11.4.4.2. Using the API to view quota usage
	11.4.4.3. Pushing another image

	11.4.5. Rejecting pushes using quota limits
	11.4.5.1. Setting reject and warning limits
	11.4.5.2. Viewing reject and warning limits
	11.4.5.3. Pushing an image when the reject limit is exceeded
	11.4.5.4. Notifications for limits exceeded

	CHAPTER 12. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES
	12.1. PROXY CACHE ARCHITECTURE
	12.2. PROXY CACHE LIMITATIONS
	12.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY
	12.3.1. Leveraging storage quota limits in proxy organizations
	12.3.1.1. Testing the storage quota limits feature in proxy organizations

	CHAPTER 13. RED HAT QUAY BUILD ENHANCEMENTS
	13.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE
	13.2. RED HAT QUAY BUILD LIMITATIONS
	13.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM
	13.3.1. OpenShift Container Platform TLS component
	13.3.2. Using OpenShift Container Platform for Red Hat Quay builders
	13.3.2.1. Preparing OpenShift Container Platform for virtual builders
	13.3.2.2. Manually adding SSL/TLS certificates
	13.3.2.3. Using the UI to create a build trigger
	13.3.2.4. Modifying your AWS S3 storage bucket
	13.3.2.5. Modifying your Google Cloud Platform object bucket

	CHAPTER 14. USING THE V2 UI
	14.1. V2 USER INTERFACE CONFIGURATION
	14.1.1. Creating a new organization using the v2 UI
	14.1.2. Deleting an organization using the v2 UI
	14.1.3. Creating a new repository using the v2 UI
	14.1.4. Deleting a repository using the v2 UI
	14.1.5. Pushing an image to the v2 UI
	14.1.6. Deleting an image using the v2 UI
	14.1.7. Creating a new team using the Red Hat Quay v2 UI
	14.1.8. Creating a robot account using the v2 UI
	14.1.8.1. Bulk managing robot account repository access using the Red Hat Quay v2 UI

	14.1.9. Creating default permissions using the Red Hat Quay v2 UI
	14.1.10. Organization settings for the v2 UI
	14.1.11. Viewing image tag information using the v2 UI
	14.1.12. Adjusting repository settings using the v2 UI

	14.2. VIEWING RED HAT QUAY TAG HISTORY
	14.3. ADDING AND MANAGING LABELS ON THE RED HAT QUAY V2 UI
	14.4. SETTING TAG EXPIRATIONS ON THE RED HAT QUAY V2 UI
	14.5. SELECTING COLOR THEME PREFERENCE ON THE RED HAT QUAY V2 UI
	14.6. VIEWING USAGE LOGS ON THE RED HAT QUAY V2 UI
	14.7. ENABLING THE LEGACY UI

	CHAPTER 15. USING THE RED HAT QUAY API
	15.1. ACCESSING THE QUAY API FROM QUAY.IO
	15.2. CREATING AN OAUTH ACCESS TOKEN
	15.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER
	15.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE
	15.4.1. Get superuser information
	15.4.2. Creating a superuser using the API
	15.4.3. List usage logs
	15.4.3.1. Example for pagination

	15.4.4. Directory synchronization
	15.4.5. Create a repository build via API
	15.4.6. Create an org robot
	15.4.7. Trigger a build
	15.4.8. Create a private repository
	15.4.9. Create a mirrored repository

