
Red Hat Process Automation Manager
7.5

Designing a decision service using spreadsheet
decision tables

Last Updated: 2020-05-22

Red Hat Process Automation Manager 7.5 Designing a decision service
using spreadsheet decision tables

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to design a decision service using spreadsheet decision tables in Red
Hat Process Automation Manager 7.5.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

CHAPTER 2. SPREADSHEET DECISION TABLES

CHAPTER 3. DATA OBJECTS
3.1. CREATING DATA OBJECTS

CHAPTER 4. DECISION TABLE USE CASE

CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES
5.1. RULESET DEFINITIONS
5.2. RULETABLE DEFINITIONS
5.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS

CHAPTER 6. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL

CHAPTER 7. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION
TABLE IN BUSINESS CENTRAL

CHAPTER 8. EXECUTING RULES
8.1. EXECUTABLE RULE MODELS

8.1.1. Embedding an executable rule model in a Maven project
8.1.2. Embedding an executable rule model in a Java application

CHAPTER 9. NEXT STEPS

APPENDIX A. VERSIONING INFORMATION

3

4

8

9
9

11

13
15
17
19

23

24

25
30
30
32

35

36

Table of Contents

1

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

2

PREFACE
As a business analyst or business rules developer, you can define business rules in a tabular format in
spreadsheet decision tables and then upload the spreadsheets to your project in Business Central.
These rules are compiled into Drools Rule Language (DRL) and form the core of the decision service for
your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Process Automation Manager 7.5, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Process Automation Manager)

Prerequisites

The space and project for the decision tables have been created in Business Central. Each asset
is associated with a project assigned to a space. For details, see Getting started with decision
services.

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/getting_started_with_decision_services
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_dmn_models
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/getting_started_with_decision_services

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT
PROCESS AUTOMATION MANAGER

Red Hat Process Automation Manager supports several assets that you can use to define business
decisions for your decision service. Each decision-authoring asset has different advantages, and you
might prefer to use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Process
Automation Manager projects to help you decide or confirm the best method for defining decisions in
your decision service.

Table 1.1. Decision-authoring assets supported in Red Hat Process Automation Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
with one or more decision
requirements graphs (DRGs) to
trace business decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Can be integrated efficiently
with Business Process Model and
Notation (BPMN) process
models

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

4

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_dmn_models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

5

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_guided_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_spreadsheet_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_guided_rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat Process
Automation Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

6

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_guided_rule_templates
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_drl_rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Process
Automation Manager project or
imported into a project in
Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Process
Automation Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

7

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_pmml_models

CHAPTER 2. SPREADSHEET DECISION TABLES
Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Process
Automation Manager projects or upload them to projects in Business Central. Each row in a decision
table is a rule, and each column is a condition, an action, or another rule attribute. After you create and
upload your spreadsheet decision tables, the rules you defined are compiled into Drools Rule Language
(DRL) rules as with all other rule assets.

All data objects related to a spreadsheet decision table must be in the same project package as the
spreadsheet decision table. Assets in the same package are imported by default. Existing assets in other
packages can be imported with the decision table.

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

8

CHAPTER 3. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

3.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 3.1. Add data fields to a data object

CHAPTER 3. DATA OBJECTS

9

Figure 3.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

10

CHAPTER 4. DECISION TABLE USE CASE
An online shopping site lists the shipping charges for ordered items. The site provides free shipping
under the following conditions:

The number of items ordered is 4 or more and the checkout total is $300 or more.

Standard shipping is selected (4 or 5 business days from the date of purchase).

The following are the shipping rates under these conditions:

Table 4.1. For orders less than $300

Number of items Delivery day Shipping charge in USD, N =
Number of items

3 or fewer Next day

2nd day

Standard

35

15

10

4 or more Next day

2nd day

Standard

N*7.50

N*3.50

N*2.50

Table 4.2. For orders more than $300

Number of items Delivery day Shipping charge in USD, N =
Number of items

3 or fewer Next day

2nd day

Standard

25

10

N*1.50

4 or more Next day

2nd day

Standard

N*5

N*2

FREE

These conditions and rates are shown in the following example spreadsheet decision table:

Figure 4.1. Decision table for shipping charges

CHAPTER 4. DECISION TABLE USE CASE

11

Figure 4.1. Decision table for shipping charges

In order for a decision table to be uploaded in Business Central, the table must comply with certain
structure and syntax requirements, within an XLS or XLSX spreadsheet, as shown in this example. For
more information, see Chapter 5, Defining spreadsheet decision tables .

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

12

CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES
Spreadsheet decision tables (XLS or XLSX) require two key areas that define rule data: a RuleSet area
and a RuleTable area. The RuleSet area of the spreadsheet defines elements that you want to apply
globally to all rules in the same package (not only the spreadsheet), such as a rule set name or universal
rule attributes. The RuleTable area defines the actual rules (rows) and the conditions, actions, and other
rule attributes (columns) that constitute that rule table within the specified rule set. A spreadsheet of
decision tables can contain multiple RuleTable areas, but only one RuleSet area.

IMPORTANT

You should typically upload only one spreadsheet of decision tables, containing all
necessary RuleTable definitions, per rule package in Business Central. You can upload
separate decision table spreadsheets for separate packages, but uploading multiple
spreadsheets in the same package can cause compilation errors from conflicting RuleSet
or RuleTable attributes and is therefore not recommended.

Refer to the following sample spreadsheet as you define your decision table:

Figure 5.1. Sample spreadsheet decision table for shipping charges

Procedure

1. In a new XLS or XLSX spreadsheet, go to the second or third column and label a cell RuleSet
(row 1 in example). Reserve the column or columns to the left for descriptive metadata
(optional).

2. In the next cell to the right, enter a name for the RuleSet. This named rule set will contain all

CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES

13

2. In the next cell to the right, enter a name for the RuleSet. This named rule set will contain all
RuleTable rules defined in the rule package.

3. Under the RuleSet cell, define any rule attributes (one per cell) that you want to apply globally
to all rule tables in the package. Specify attribute values in the cells to the right. For example,
you can enter an Import label and in the cell to the right, specify relevant data objects from
other packages that you want to import into the package for the decision table (in the format
package.name.object.name). For supported cell labels and values, see Section 5.1, “RuleSet
definitions”.

4. Below the RuleSet area and in the same column as the RuleSet cell, skip a row and label a new
cell RuleTable (row 7 in example) and enter a table name in the same cell. The name is used as
the initial part of the name for all rules derived from this rule table, with the row number
appended for distinction. You can override this automatic naming by inserting a NAME attribute
column.

5. Use the next four rows to define the following elements as needed (rows 8-11 in example):

Rule attributes: Conditions, actions, or other attributes. For supported cell labels and
values, see Section 5.2, “RuleTable definitions”.

Object types: The data objects to which the rule attributes apply. If the same object type
applies to multiple columns, merge the object cells into one cell across multiple columns (as
shown in the sample decision table), instead of repeating the object type in multiple cells.
When an object type is merged, all columns below the merged range will be combined into
one set of constraints within a single pattern for matching a single fact at a time. When an
object is repeated in separate columns, the separate columns can create different patterns,
potentially matching different or identical facts.

Constraints: Constraints on the object types.

Column label: (Optional) Any descriptive label for the column, as a visual aid. Leave blank if
unused.

NOTE

As an alternative to populating both the object type and constraint cells, you
can leave the object type cell or cells empty and enter the full expression in
the corresponding constraint cell or cells. For example, instead of Order as
the object type and itemsCount > $1 as a constraint (separate cells), you can
leave the object type cell empty and enter Order(itemsCount > $1) in the
constraint cell, and then do the same for other constraint cells.

6. After you have defined all necessary rule attributes (columns), enter values for each column as
needed, row by row, to generate rules (rows 12-17 in example). Cells with no data are ignored
(such as when a condition or action does not apply).
If you need to add more rule tables to this decision table spreadsheet, skip a row after the last
rule in the previous table, label another RuleTable cell in the same column as the previous
RuleTable and RuleSet cells, and create the new table following the same steps in this section
(rows 19-29 in example).

7. Save your XLS or XLSX spreadsheet to finish.

NOTE

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

14

NOTE

Only the first worksheet in a spreadsheet workbook will be processed as a decision table
when you upload the spreadsheet in Business Central. Each RuleSet name combined
with the RuleTable name must be unique across all decision table files in the same
package.

After you upload the decision table in Business Central, the rules are rendered as DRL rules like the
following example, from the sample spreadsheet:

//row 12
rule "Basic_12"
salience 10
 when
 $order : Order(itemsCount > 0, itemsCount <= 3, deliverInDays == 1)
 then
 insert(new Charge(35));
end

ENABLING WHITE SPACE USED IN CELL VALUES

By default, any white space before or after values in decision table cells is removed
before the decision table is processed by the decision engine. To retain white space that
you use intentionally before or after values in cells, set the drools.trimCellsInDTable
system property to false in your Red Hat Process Automation Manager distribution.

For example, if you use Red Hat Process Automation Manager with Red Hat JBoss EAP,
add the following system property to your
$EAP_HOME/standalone/configuration/standalone-full.xml file:

<property name="drools.trimCellsInDTable" value="false"/>

If you use the decision engine embedded in your Java application, add the system
property with the following command:

java -jar yourApplication.jar -Ddrools.trimCellsInDTable=false

5.1. RULESET DEFINITIONS

Entries in the RuleSet area of a decision table define DRL constructs and rule attributes that you want
to apply to all rules in a package (not only in the spreadsheet). Entries must be in a vertically stacked
sequence of cell pairs, where the first cell contains a label and the cell to the right contains the value. A
decision table spreadsheet can have only one RuleSet area.

The following table lists the supported labels and values for RuleSet definitions:

Table 5.1. Supported RuleSet definitions

Label Value Usage

CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES

15

RuleSet The package name for the generated
DRL file. Optional, the default is
rule_table.

Must be the first entry.

Sequential true or false. If true, then salience is
used to ensure that rules fire from the
top down.

Optional, at most once. If
omitted, no firing order is
imposed.

SequentialMaxPriority Integer numeric value Optional, at most once. In
sequential mode, this option is
used to set the start value of
the salience. If omitted, the
default value is 65535.

SequentialMinPriority Integer numeric value Optional, at most once. In
sequential mode, this option is
used to check if this minimum
salience value is not violated.
If omitted, the default value is
0.

EscapeQuotes true or false. If true, then quotation
marks are escaped so that they appear
literally in the DRL.

Optional, at most once. If
omitted, quotation marks are
escaped.

Import A comma-separated list of Java classes
to import from another package.

Optional, may be used
repeatedly.

Variables Declarations of DRL globals (a type
followed by a variable name). Multiple
global definitions must be separated by
commas.

Optional, may be used
repeatedly.

Functions One or more function definitions,
according to DRL syntax.

Optional, may be used
repeatedly.

Queries One or more query definitions, according
to DRL syntax.

Optional, may be used
repeatedly.

Declare One or more declarative types, according
to DRL syntax.

Optional, may be used
repeatedly.

Label Value Usage

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

16

WARNING

In some cases, Microsoft Office, LibreOffice, and OpenOffice might encode a
double quotation mark differently, causing a compilation error. For example, “A” will
fail, but "A" will pass.

5.2. RULETABLE DEFINITIONS

Entries in the RuleTable area of a decision table define conditions, actions, and other rule attributes for
the rules in that rule table. A spreadsheet of decision tables can contain multiple RuleTable areas.

The following table lists the supported labels (column headers) and values for RuleTable definitions.
For column headers, you can use either the given labels or any custom labels that begin with the letters
listed in the table.

Table 5.2. Supported RuleTable definitions

Label Or custom label
that begins with

Value Usage

NAME N Provides the name for the rule
generated from that row. The
default is constructed from the text
following the RuleTable tag and
the row number.

At most one
column.

DESCRIPTION I Results in a comment within the
generated rule.

At most one
column.

CONDITION C Code snippet and interpolated
values for constructing a constraint
within a pattern in a condition.

At least one per
rule table.

ACTION A Code snippet and interpolated
values for constructing an action for
the consequence of the rule.

At least one per
rule table.

METADATA @ Code snippet and interpolated
values for constructing a metadata
entry for the rule.

Optional, any
number of
columns.

The following sections provide more details about how condition, action, and metadata columns use cell
data:

Conditions

For columns headed CONDITION, the cells in consecutive lines result in a conditional element:

First cell: Text in the first cell below CONDITION develops into a pattern for the rule



CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES

17

condition, and uses the snippet in the next line as a constraint. If the cell is merged with one
or more neighboring cells, a single pattern with multiple constraints is formed. All constraints
are combined into a parenthesized list and appended to the text in this cell.
If this cell is empty, the code snippet in the cell below it must result in a valid conditional
element on its own. For example, instead of Order as the object type and itemsCount > $1
as a constraint (separate cells), you can leave the object type cell empty and enter Order(
itemsCount > $1) in the constraint cell, and then do the same for any other constraint cells.

To include a pattern without constraints, you can write the pattern in front of the text of
another pattern, with or without an empty pair of parentheses. You can also append a from
clause to the pattern.

If the pattern ends with eval, code snippets produce boolean expressions for inclusion into a
pair of parentheses after eval.

Second cell: Text in the second cell below CONDITION is processed as a constraint on the
object reference in the first cell. The code snippet in this cell is modified by interpolating
values from cells farther down in the column. If you want to create a constraint consisting of a
comparison using == with the value from the cells below, then the field selector alone is
sufficient. Any other comparison operator must be specified as the last item within the
snippet, and the value from the cells below is appended. For all other constraint forms, you
must mark the position for including the contents of a cell with the symbol $param. Multiple
insertions are possible if you use the symbols $1, $2, and so on, and a comma-separated list
of values in the cells below. However, do not separate $1, $2, and so on, by commas, or the
table will fail to process.
To expand a text according to the pattern forall($delimiter){$snippet}, repeat the $snippet
once for each of the values of the comma-separated list in each of the cells below, insert the
value in place of the symbol $, and join these expansions by the given $delimiter. Note that
the forall construct may be surrounded by other text.

If the first cell contains an object, the completed code snippet is added to the conditional
element from that cell. A pair of parentheses is provided automatically, as well as a
separating comma if multiple constraints are added to a pattern in a merged cell. If the first
cell is empty, the code snippet in this cell must result in a valid conditional element on its own.
For example, instead of Order as the object type and itemsCount > $1 as a constraint
(separate cells), you can leave the object type cell empty and enter Order(itemsCount > $1
) in the constraint cell, and then do the same for any other constraint cells.

Third cell: Text in the third cell below CONDITION is a descriptive label that you define for
the column, as a visual aid.

Fourth cell: From the fourth row on, non-blank entries provide data for interpolation. A blank
cell omits the condition or constraint for this rule.

Actions

For columns headed ACTION, the cells in consecutive lines result in an action statement:

First cell: Text in the first cell below ACTION is optional. If present, the text is interpreted as
an object reference.

Second cell: Text in the second cell below ACTION is a code snippet that is modified by
interpolating values from cells farther down in the column. For a singular insertion, mark the
position for including the contents of a cell with the symbol $param. Multiple insertions are
possible if you use the symbols $1, $2, and so on, and a comma-separated list of values in the
cells below. However, do not separate $1, $2, and so on, by commas, or the table will fail to
process.

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

18

A text without any marker symbols can execute a method call without interpolation. In this
case, use any non-blank entry in a row below the cell to include the statement. The forall
construct is supported.

If the first cell contains an object, then the cell text (followed by a period), the text in the
second cell, and a terminating semicolon are strung together, resulting in a method call that
is added as an action statement for the consequence. If the first cell is empty, the code
snippet in this cell must result in a valid action element on its own.

Third cell: Text in the third cell below ACTION is a descriptive label that you define for the
column, as a visual aid.

Fourth cell: From the fourth row on, non-blank entries provide data for interpolation. A blank
cell omits the condition or constraint for this rule.

Metadata

For columns headed METADATA, the cells in consecutive lines result in a metadata annotation for
the generated rules:

First cell: Text in the first cell below METADATA is ignored.

Second cell: Text in the second cell below METADATA is subject to interpolation, using
values from the cells in the rule rows. The metadata marker character @ is prefixed
automatically, so you do not need to include that character in the text for this cell.

Third cell: Text in the third cell below METADATA is a descriptive label that you define for
the column, as a visual aid.

Fourth cell: From the fourth row on, non-blank entries provide data for interpolation. A blank
cell results in the omission of the metadata annotation for this rule.

5.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE
DEFINITIONS

The RuleSet and RuleTable areas also support labels and values for other rule attributes, such as
PRIORITY or NO-LOOP. Rule attributes specified in a RuleSet area will affect all rule assets in the same
package (not only in the spreadsheet). Rule attributes specified in a RuleTable area will affect only the
rules in that rule table. You can use each rule attribute only once in a RuleSet area and once in a
RuleTable area. If the same attribute is used in both RuleSet and RuleTable areas within the
spreadsheet, then RuleTable takes priority and the attribute in the RuleSet area is overridden.

The following table lists the supported labels (column headers) and values for additional RuleSet or
RuleTable definitions. For column headers, you can use either the given labels or any custom labels that
begin with the letters listed in the table.

Table 5.3. Additional rule attributes for RuleSet or RuleTable definitions

Label Or custom label
that begins with

Value

CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES

19

PRIORITY P An integer defining the salience value of the rule. Rules
with a higher salience value are given higher priority when
ordered in the activation queue. Overridden by the
Sequential flag.

Example: PRIORITY 10

DATE-EFFECTIVE V A string containing a date and time definition. The rule can
be activated only if the current date and time is after a
DATE-EFFECTIVE attribute.

Example: DATE-EFFECTIVE "4-Sep-2018"

DATE-EXPIRES Z A string containing a date and time definition. The rule
cannot be activated if the current date and time is after
the DATE-EXPIRES attribute.

Example: DATE-EXPIRES "4-Oct-2018"

NO-LOOP U A Boolean value. When this option is set to true, the rule
cannot be reactivated (looped) if a consequence of the
rule re-triggers a previously met condition.

Example: NO-LOOP true

AGENDA-GROUP G A string identifying an agenda group to which you want to
assign the rule. Agenda groups allow you to partition the
agenda to provide more execution control over groups of
rules. Only rules in an agenda group that has acquired a
focus are able to be activated.

Example: AGENDA-GROUP "GroupName"

ACTIVATION-GROUP X A string identifying an activation (or XOR) group to which
you want to assign the rule. In activation groups, only one
rule can be activated. The first rule to fire will cancel all
pending activations of all rules in the activation group.

Example: ACTIVATION-GROUP "GroupName"

DURATION D A long integer value defining the duration of time in
milliseconds after which the rule can be activated, if the
rule conditions are still met.

Example: DURATION 10000

Label Or custom label
that begins with

Value

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

20

TIMER T A string identifying either int (interval) or cron timer
definitions for scheduling the rule.

Example: TIMER "*/5 * * * *" (every 5 minutes)

CALENDAR E A Quartz calendar definition for scheduling the rule.

Example: CALENDAR "* * 0-7,18-23 ? * *" (exclude
non-business hours)

AUTO-FOCUS F A Boolean value, applicable only to rules within agenda
groups. When this option is set to true, the next time the
rule is activated, a focus is automatically given to the
agenda group to which the rule is assigned.

Example: AUTO-FOCUS true

LOCK-ON-ACTIVE L A Boolean value, applicable only to rules within rule flow
groups or agenda groups. When this option is set to true,
the next time the ruleflow group for the rule becomes
active or the agenda group for the rule receives a focus,
the rule cannot be activated again until the ruleflow group
is no longer active or the agenda group loses the focus.
This is a stronger version of the no-loop attribute,
because the activation of a matching rule is discarded
regardless of the origin of the update (not only by the rule
itself). This attribute is ideal for calculation rules where you
have a number of rules that modify a fact and you do not
want any rule re-matching and firing again.

Example: LOCK-ON-ACTIVE true

RULEFLOW-GROUP R A string identifying a rule flow group. In rule flow groups,
rules can fire only when the group is activated by the
associated rule flow.

Example: RULEFLOW-GROUP "GroupName"

Label Or custom label
that begins with

Value

Figure 5.2. Sample decision table spreadsheet with attribute columns

CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES

21

Figure 5.2. Sample decision table spreadsheet with attribute columns

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

22

CHAPTER 6. UPLOADING SPREADSHEET DECISION TABLES
TO BUSINESS CENTRAL

After you define your rules in an external XLS or XLSX spreadsheet of decision tables, you can upload
the spreadsheet file to your project in Business Central.

IMPORTANT

You should typically upload only one spreadsheet of decision tables, containing all
necessary RuleTable definitions, per rule package in Business Central. You can upload
separate decision table spreadsheets for separate packages, but uploading multiple
spreadsheets in the same package can cause compilation errors from conflicting RuleSet
or RuleTable attributes and is therefore not recommended.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Decision Table (Spreadsheet).

3. Enter an informative Decision Table name and select the appropriate Package.

4. Select the file type (xls or xlsx), click the Choose File icon, and select the spreadsheet. Click
Ok to upload.

5. In the decision tables designer, click Validate in the upper-right toolbar to validate the table. If
the table validation fails, open the XLS or XLSX file and address any syntax errors. For syntax
help, see Chapter 5, Defining spreadsheet decision tables .
You can upload a new version of the decision table or download the current version:

Figure 6.1. Uploaded decision table options

CHAPTER 6. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL

23

CHAPTER 7. CONVERTING AN UPLOADED SPREADSHEET
DECISION TABLE TO A GUIDED DECISION TABLE IN

BUSINESS CENTRAL
After you upload an XLS or XLSX spreadsheet decision table file to your project in Business Central, you
can convert the decision table to a guided decision table that you can modify directly in Business
Central.

For more information about guided decision tables, see Designing a decision service using guided
decision tables.

WARNING

Guided decision tables and spreadsheet decision tables are different decision table
formats that support different features. Any supported features that differ
between the two decision table formats are modified or lost when you convert one
decision table format to the other.

Procedure

In Business Central, navigate to the uploaded decision table asset that you want to convert and in the
upper-right toolbar of the decision tables designer, click Convert:

Figure 7.1. Convert an uploaded decision table

After the conversion, the converted decision table is then available as a guided decision table asset in
your project that you can modify directly in Business Central.



Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

24

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_guided_decision_tables

CHAPTER 8. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on Process Server to test the rules.

Prerequisites

Business Central and Process Server are installed and running. For installation options, see
Planning a Red Hat Process Automation Manager installation .

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to Process Server. If the build fails, address any problems described in the Alerts panel
at the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Process Automation Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
Process Server. The project must contain a pom.xml file and any other required components
for executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on
Process Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with Process Server

Example dependencies for Red Hat Process Automation Manager 7.5 in a client application
pom.xml file:

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.26.0.Final-redhat-00005</version>
</dependency>

<!-- For remote execution on Process Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.26.0.Final-redhat-00005</version>
</dependency>

<!-- For debug logging (optional) -->

CHAPTER 8. EXECUTING RULES

25

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_drl_rules#drl-rules-other-con

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Process Automation Manager and the Maven
library version?.

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.5.1.redhat-00001</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

26

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3405361

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of Process Server (if needed), configure the .java class to import
KIE services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.ReleaseIdImpl;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseIdImpl("com.myspace", "MyProject", "1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

CHAPTER 8. EXECUTING RULES

27

To test this rule on Process Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on Process Server

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

28

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 8. EXECUTING RULES

29

8.1. EXECUTABLE RULE MODELS

Executable rule models are embeddable models that provide a Java-based representation of a rule set
for execution at build time. The executable model is a more efficient alternative to the standard asset
packaging in Red Hat Process Automation Manager and enables KIE containers and KIE bases to be
created more quickly, especially when you have large lists of DRL (Drools Rule Language) files and other
Red Hat Process Automation Manager assets. The model is low level and enables you to provide all
necessary execution information, such as the lambda expressions for the index evaluation.

Executable rule models provide the following specific advantages for your projects:

Compile time: Traditionally, a packaged Red Hat Process Automation Manager project (KJAR)
contains a list of DRL files and other Red Hat Process Automation Manager artifacts that define
the rule base together with some pre-generated classes implementing the constraints and the
consequences. Those DRL files must be parsed and compiled when the KJAR is downloaded
from the Maven repository and installed in a KIE container. This process can be slow, especially
for large rule sets. With an executable model, you can package within the project KJAR the Java
classes that implement the executable model of the project rule base and re-create the KIE
container and its KIE bases out of it in a much faster way. In Maven projects, you use the kie-
maven-plugin to automatically generate the executable model sources from the DRL files
during the compilation process.

Run time: In an executable model, all constraints are defined as Java lambda expressions. The
same lambda expressions are also used for constraints evaluation, so you no longer need to use
mvel expressions for interpreted evaluation nor the just-in-time (JIT) process to transform the
mvel-based constraints into bytecode. This creates a quicker and more efficient run time.

Development time: An executable model enables you to develop and experiment with new
features of the decision engine without needing to encode elements directly in the DRL format
or modify the DRL parser to support them.

NOTE

For query definitions in executable rule models, you can use up to 10 arguments only.

For variables within rule consequences in executable rule models, you can use up to 13
bound variables only (including the built-in drools variable). For example, the following
rule consequence uses more than 13 bound variables and creates a compilation error:

...
then
 $input.setNo14Count(functions.sumOf(new Object[]{$no1Count_1, $no2Count_1,
$no3Count_1, ..., $no14Count_1}).intValue());
 $input.getFirings().add("fired");
 update($input);

8.1.1. Embedding an executable rule model in a Maven project

You can embed an executable rule model in your Maven project to compile your rule assets more
efficiently at build time.

Prerequisites

You have a Mavenized project that contains Red Hat Process Automation Manager business
assets.

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

30

Procedure

1. In the pom.xml file of your Maven project, ensure that the packaging type is set to kjar and add
the kie-maven-plugin build component:

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <version> is the Maven artifact version for Red Hat Process
Automation Manager currently used in your project (for example, 7.26.0.Final-redhat-00005).
These settings are required to properly package the Maven project.

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHPAM product and maven library version?.

2. Add the following dependencies to the pom.xml file to enable rule assets to be built from an
executable model:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Process Automation Manager

drools-model-compiler: Compiles the executable model into Red Hat Process Automation
Manager internal data structures so that it can be executed by the decision engine

<packaging>kjar</packaging>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>${rhpam.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.5.1.redhat-00001</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

CHAPTER 8. EXECUTING RULES

31

https://access.redhat.com/solutions/3405361

3. In a command terminal, navigate to your Maven project directory and run the following
command to build the project from an executable model:

mvn clean install -DgenerateModel=<VALUE>

The -DgenerateModel=<VALUE> property enables the project to be built as a model-based
KJAR instead of a DRL-based KJAR.

Replace <VALUE> with one of three values:

YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

WITHDRL: Generates the executable model corresponding to the DRL files in the original
project and also adds the DRL files to the generated KJAR for documentation purposes
(the KIE base is built from the executable model regardless).

NO: Does not generate the executable model.

Example build command:

mvn clean install -DgenerateModel=YES

For more information about packaging Maven projects, see Packaging and deploying a Red Hat Process
Automation Manager project.

8.1.2. Embedding an executable rule model in a Java application

You can embed an executable rule model programmatically within your Java application to compile your
rule assets more efficiently at build time.

Prerequisites

You have a Java application that contains Red Hat Process Automation Manager business
assets.

Procedure

1. Add the following dependencies to the relevant classpath for your Java project:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Process Automation Manager

drools-model-compiler: Compiles the executable model into Red Hat Process Automation

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhpam.version}</version>
</dependency>

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

32

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project#project-build-deploy-maven-proc_packaging-deploying

drools-model-compiler: Compiles the executable model into Red Hat Process Automation
Manager internal data structures so that it can be executed by the decision engine

The <version> is the Maven artifact version for Red Hat Process Automation Manager
currently used in your project (for example, 7.26.0.Final-redhat-00005).

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHPAM product and maven library version?.

2. Add rule assets to the KIE virtual file system KieFileSystem and use KieBuilder with buildAll(
ExecutableModelProject.class) specified to build the assets from an executable model:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.5.1.redhat-00001</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;

 KieServices ks = KieServices.Factory.get();
 KieFileSystem kfs = ks.newKieFileSystem()
 kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
 .write("src/main/resources/dtable.xls",
 kieServices.getResources().newInputStreamResource(dtableFileStream));

 KieBuilder kieBuilder = ks.newKieBuilder(kfs);

CHAPTER 8. EXECUTING RULES

33

https://access.redhat.com/solutions/3405361

After KieFileSystem is built from the executable model, the resulting KieSession uses
constraints based on lambda expressions instead of less-efficient mvel expressions. If buildAll()
contains no arguments, the project is built in the standard method without an executable model.

As a more manual alternative to using KieFileSystem for creating executable models, you can
define a Model with a fluent API and create a KieBase from it:

For more information about packaging projects programmatically within a Java application, see
Packaging and deploying a Red Hat Process Automation Manager project .

 // Build from an executable model
 kieBuilder.buildAll(ExecutableModelProject.class)
 assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

Model model = new ModelImpl().addRule(rule);
KieBase kieBase = KieBaseBuilder.createKieBaseFromModel(model);

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

34

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project#project-build-deploy-java-proc_packaging-deploying

CHAPTER 9. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Process Automation Manager project

CHAPTER 9. NEXT STEPS

35

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/testing_a_decision_service_using_test_scenarios
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Thursday, October 31, 2019.

Red Hat Process Automation Manager 7.5 Designing a decision service using spreadsheet decision tables

36

	Table of Contents
	PREFACE
	CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 2. SPREADSHEET DECISION TABLES
	CHAPTER 3. DATA OBJECTS
	3.1. CREATING DATA OBJECTS

	CHAPTER 4. DECISION TABLE USE CASE
	CHAPTER 5. DEFINING SPREADSHEET DECISION TABLES
	5.1. RULESET DEFINITIONS
	5.2. RULETABLE DEFINITIONS
	5.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS

	CHAPTER 6. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL
	CHAPTER 7. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION TABLE IN BUSINESS CENTRAL
	CHAPTER 8. EXECUTING RULES
	8.1. EXECUTABLE RULE MODELS
	8.1.1. Embedding an executable rule model in a Maven project
	8.1.2. Embedding an executable rule model in a Java application

	CHAPTER 9. NEXT STEPS
	APPENDIX A. VERSIONING INFORMATION

