
Red Hat Process Automation Manager
7.3

Designing a decision service using guided rules

Last Updated: 2020-05-04

Red Hat Process Automation Manager 7.3 Designing a decision service
using guided rules

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to design a decision service using guided rules in Red Hat Process
Automation Manager 7.3.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

CHAPTER 2. GUIDED RULES

CHAPTER 3. DATA OBJECTS
3.1. CREATING DATA OBJECTS

CHAPTER 4. CREATING GUIDED RULES
4.1. ADDING WHEN CONDITIONS IN GUIDED RULES
4.2. ADDING THEN ACTIONS IN GUIDED RULES
4.3. ADDING OTHER RULE OPTIONS

4.3.1. Rule attributes

CHAPTER 5. EXECUTING RULES
5.1. EXECUTABLE RULE MODELS

5.1.1. Embedding an executable rule model in a Maven project
5.1.2. Embedding an executable rule model in a Java application

CHAPTER 6. NEXT STEPS

APPENDIX A. VERSIONING INFORMATION

3

4

8

9
9

11
12
15
18
18

21
26
26
28

31

32

Table of Contents

1

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

2

PREFACE
As a business analyst or business rules developer, you can define business rules using the guided rules
designer in Business Central. These guided rules are compiled into Drools Rule Language (DRL) and
form the core of the decision service for your project.

Prerequisite

The team and project for the guided rules have been created in Business Central. Each asset is
associated with a project assigned to a team. For details, see Getting started with decision services .

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/getting_started_with_decision_services

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT
PROCESS AUTOMATION MANAGER

Red Hat Process Automation Manager supports several assets that you can use to define business
decisions for your decision service. Each decision-authoring asset has different advantages, and you
might prefer to use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Process
Automation Manager projects to help you decide or confirm the best method for defining decisions in
your decision service.

Table 1.1. Decision-authoring assets supported in Red Hat Process Automation Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
with one or more decision
requirements graphs (DRGs) to
trace business decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Can be integrated efficiently
with Business Process Model and
Notation (BPMN) process
models

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

4

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_dmn_models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

5

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_guided_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_spreadsheet_decision_tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_guided_rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat Process
Automation Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

6

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_guided_rule_templates
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_drl_rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Process
Automation Manager project or
imported into a project in
Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Process
Automation Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

7

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_pmml_models

CHAPTER 2. GUIDED RULES
Guided rules are business rules that you create in a UI-based guided rules designer in Business Central
that leads you through the rule-creation process. The guided rules designer provides fields and options
for acceptable input based on the data objects for the rule being defined. The guided rules that you
define are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided rule must be in the same project package as the guided rule. Assets
in the same package are imported by default. After you create the necessary data objects and the
guided rule, you can use the Data Objects tab of the guided rules designer to verify that all required
data objects are listed or to import other existing data objects by adding a New item.

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

8

CHAPTER 3. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

3.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designer. Select the relevant rule asset within the project and in the asset
designer, go to Data Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: Select this check box to enable the field to hold multiple items for the specified type.

Figure 3.1. Add data fields to a data object

CHAPTER 3. DATA OBJECTS

9

Figure 3.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

10

CHAPTER 4. CREATING GUIDED RULES
Guided rules enable you to define business rules in a structured format, based on the data objects
associated with the rules. You can create and define guided rules individually for your project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter an informative Guided Rule name and select the appropriate Package. The package that
you specify must be the same package where the required data objects have been assigned or
will be assigned.
You can also select Show declared DSL sentences if any domain specific language (DSL)
assets have been defined in your project. These DSL assets will then become usable objects for
conditions and actions that you define in the guided rules designer.

4. Click Ok to create the rule asset.
The new guided rule is now listed in the Guided Rules panel of the Project Explorer, or in the
Guided Rules (with DSL) panel if you selected the Show declared DSL sentences option.

5. Click the Data Objects tab and confirm that all data objects required for your rules are listed. If
not, click New item to import data objects from other packages, or create data objects within
your package.

6. After all data objects are in place, return to the Model tab of the guided rules designer and use
the buttons on the right side of the window to add and define the WHEN (condition) and THEN
(action) sections of the rule, based on the available data objects.

Figure 4.1. The guided rules designer

The WHEN part of the rule contains the conditions that must be met to execute an action. For
example, if a bank requires loan applicants to have over 21 years of age, then the WHEN
condition of an Underage rule would be Age | less than | 21.

The THEN part of the rule contains the actions to be performed when the conditional part of
the rule has been met. For example, when the loan applicant is under 21 years old, the THEN
action would set approved to false, declining the loan because the applicant is under age.

You can also specify exceptions for more complex rules, such as if a bank may approve of an
under-aged applicant when a guarantor is involved. In that case, you would create or import a
guarantor data object and then add the field to the guided rule.

CHAPTER 4. CREATING GUIDED RULES

11

7. After you define all components of the rule, click Validate in the upper-right toolbar of the
guided rules designer to validate the guided rule. If the rule validation fails, address any
problems described in the error message, review all components in the rule, and try again to
validate the rule until the rule passes.

8. Click Save in the guided rules designer to save your work.

4.1. ADDING WHEN CONDITIONS IN GUIDED RULES

The WHEN part of the rule contains the conditions that must be met to execute an action. For example,
if a bank requires loan applicants to have over 21 years of age, then the WHEN condition of an Underage
rule would be Age | less than | 21. You can set simple or complex conditions to determine how and
when your rules are applied.

Prerequisite

All data objects required for your rules have been created or imported and are listed in the Data
Objects tab of the guided rules designer.

Procedure

1. In the guided rules designer, click the plus icon () on the right side of the WHEN section.
The Add a condition to the rule window with the available condition elements opens.

Figure 4.2. Add a condition to the rule

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

12

Figure 4.2. Add a condition to the rule

The list includes the data objects from the Data Objects tab of the guided rules designer, any
DSL objects defined for the package (if you selected Show declared DSL sentences when you
created this guided rule), and the following standard options:

The following does not exist: Use this to specify facts and constraints that must not exist.

The following exists: Use this to specify facts and constraints that must exist. This option is
triggered on only the first match, not subsequent matches.

Any of the following are true: Use this to list any facts or constraints that must be true.

CHAPTER 4. CREATING GUIDED RULES

13

From: Use this to define a From conditional element for the rule.

From Accumulate: Use this to define an Accumulate conditional element for the rule.

From Collect: Use this to define a Collect conditional element for the rule.

From Entry Point: Use this to define an Entry Point for the pattern.

Free form DRL: Use this to insert a free-form DRL field where you can define condition
elements freely, without the guided rules designer.

2. Choose a condition element (for example, LoanApplication) and click Ok.

3. Click the condition element in the guided rules designer and use the Modify constraints for
LoanApplication window to add a restriction on a field, apply multiple field constraints, add a
new formula style expression, apply an expression editor, or set a variable name.

Figure 4.3. Modify a condition

NOTE

A variable name enables you to identify a fact or field in other constructs within
the guided rule. For example, you could set the variable of LoanApplication to a
and then reference a in a separate Bankruptcy constraint that specifies which
application the bankruptcy is based on.

a : LoanApplication()
Bankruptcy(application == a).

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

14

After you select a constraint, the window closes automatically.

4. Choose an operator for the restriction (for example, greater than) from the drop-down menu
next to the added restriction.

5. Click the edit icon () to define the field value. The field value can be a literal value, a
formula, or a full MVEL expression.

6. To apply multiple field constraints, click the condition and in the Modify constraints for
LoanApplication window, select All of(And) or Any of(Or) from the Multiple field constraint
drop-down menu.

Figure 4.4. Add multiple field constraints

7. Click the constraint in the guided rules designer and further define the field value.

8. After you define all condition components of the rule, click Validate in the upper-right toolbar of
the guided rules designer to validate the guided rule conditions. If the rule validation fails,
address any problems described in the error message, review all components in the rule, and try
again to validate the rule until the rule passes.

9. Click Save in the guided rules designer to save your work.

4.2. ADDING THEN ACTIONS IN GUIDED RULES

The THEN part of the rule contains the actions to be performed when the WHEN condition of the rule
has been met. For example, when a loan applicant is under 21 years old, the THEN action might set
approved to false, declining the loan because the applicant is under age. You can set simple or complex
actions to determine how and when your rules are applied.

CHAPTER 4. CREATING GUIDED RULES

15

Prerequisite

All data objects required for your rules have been created or imported and are listed in the Data
Objects tab of the guided rules designer.

Procedure

1. In the guided rules designer, click the plus icon () on the right side of the THEN section.
The Add a new action window with the available action elements opens.

Figure 4.5. Add a new action to the rule

The list includes insertion and modification options based on the data objects in the Data

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

16

The list includes insertion and modification options based on the data objects in the Data
Objects tab of the guided rules designer, and on any DSL objects defined for the package (if
you selected Show declared DSL sentences when you created this guided rule):

Change field values of: Use this to set the value of fields on a fact (such as
LoanApplication) without notifying the decision engine of the change.

Delete: Use this to delete a fact.

Modify: Use this to specify fields to be modified for a fact and to notify the decision engine
of the change.

Insert fact: Use this to insert a fact and define resulting fields and values for the fact.

Logically Insert fact: Use this to insert a fact logically into the decision engine and define
resulting fields and values for the fact. The decision engine is responsible for logical
decisions on insertions and retractions of facts. After regular or stated insertions, facts have
to be retracted explicitly. After logical insertions, facts are automatically retracted when the
conditions that originally asserted the facts are no longer true.

Add free form DRL: Use this to insert a free-form DRL field where you can define condition
elements freely, without the guided rules designer.

Call method on: Use this to invoke a method from another fact.

2. Choose an action element (for example, Modify) and click Ok.

3. Click the action element in the guided rules designer and use the Add a field window to select a
field.

Figure 4.6. Add a field

After you select a field, the window closes automatically.

4. Click the edit icon () to define the field value. The field value can be a literal value or a
formula.

5. After you define all action components of the rule, click Validate in the upper-right toolbar of
the guided rules designer to validate the guided rule actions. If the rule validation fails, address
any problems described in the error message, review all components in the rule, and try again to
validate the rule until the rule passes.

6. Click Save in the guided rules designer to save your work.

CHAPTER 4. CREATING GUIDED RULES

17

4.3. ADDING OTHER RULE OPTIONS

You can also use the rule designer to add metadata within a rule, define additional rule attributes (such
as salience and no-loop), and freeze areas of the rule to restrict modifications to conditions or actions.

Procedure

1. In the rule designer, click (show options…) under the THEN section.

2. Click the plus icon () on the right side of the window to add options.

3. Select an option to be added to the rule:

Metadata: Enter a metadata label and click the plus icon (). Then enter any needed
data in the field provided in the rule designer.

Attribute: Select from the list of rule attributes. Then further define the value in the field or
option displayed in the rule designer.

Freeze areas for editing: Select Conditions or Actions to restrict the area from being
modified in the rule designer.

Figure 4.7. Rule options

4. Click Save in the rule designer to save your work.

4.3.1. Rule attributes

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.
The following table lists the names and supported values of the attributes that you can assign to rules:

Table 4.1. Rule attributes

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

18

Attribute Value

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation
group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definition for
scheduling the rule.

Example: timer "*/5 * * * *" (every 5 minutes)

CHAPTER 4. CREATING GUIDED RULES

19

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the no-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

Attribute Value

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

20

CHAPTER 5. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on Process Server to test the rules.

Prerequisites

Business Central and Process Server are installed and running. For installation options, see
Planning a Red Hat Process Automation Manager installation .

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to Process Server. If the build fails, address any problems described in the Alerts panel
at the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Process Automation Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
Process Server. The project must contain a pom.xml file and any other required components
for executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on
Process Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with Process Server

Example dependencies for Red Hat Process Automation Manager 7.3 in a client application
pom.xml file:

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.18.0.Final-redhat-00002</version>
</dependency>

<!-- For remote execution on Process Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.18.0.Final-redhat-00002</version>
</dependency>

<!-- For debug logging (optional) -->

CHAPTER 5. EXECUTING RULES

21

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/designing_a_decision_service_using_drl_rules#drl-rules-other-con

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Process Automation Manager and the Maven
library version?.

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.3.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

22

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3405361

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of Process Server (if desired), configure the .java class to import
KIE services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseId();
 rid.setGroupId("com.myspace");
 rid.setArtifactId("MyProject");
 rid.setVersion("1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

CHAPTER 5. EXECUTING RULES

23

To test this rule on Process Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on Process Server

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

24

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat JBoss Developer Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 5. EXECUTING RULES

25

5.1. EXECUTABLE RULE MODELS

Executable rule models are embeddable models that provide a Java-based representation of a rule set
for execution at build time. The executable model is a more efficient alternative to the standard asset
packaging in Red Hat Process Automation Manager and enables KIE containers and KIE bases to be
created more quickly, especially when you have large lists of DRL (Drools Rule Language) files and other
Red Hat Process Automation Manager assets. The model is low level and enables you to provide all
necessary execution information, such as the lambda expressions for the index evaluation.

Executable rule models provide the following specific advantages for your projects:

Compile time: Traditionally, a packaged Red Hat Process Automation Manager project (KJAR)
contains a list of DRL files and other Red Hat Process Automation Manager artifacts that define
the rule base together with some pre-generated classes implementing the constraints and the
consequences. Those DRL files must be parsed and compiled when the KJAR is downloaded
from the Maven repository and installed in a KIE container. This process can be slow, especially
for large rule sets. With an executable model, you can package within the project KJAR the Java
classes that implement the executable model of the project rule base and re-create the KIE
container and its KIE bases out of it in a much faster way. In Maven projects, you use the kie-
maven-plugin to automatically generate the executable model sources from the DRL files
during the compilation process.

Run time: In an executable model, all constraints are defined as Java lambda expressions. The
same lambda expressions are also used for constraints evaluation, so you no longer need to use
mvel expressions for interpreted evaluation nor the just-in-time (JIT) process to transform the
mvel-based constraints into bytecode. This creates a quicker and more efficient run time.

Development time: An executable model enables you to develop and experiment with new
features of the decision engine without needing to encode elements directly in the DRL format
or modify the DRL parser to support them.

NOTE

For query definitions in executable rule models, you can use up to 10 arguments only.

For variables within rule consequences in executable rule models, you can use up to 12
bound variables only (including the built-in drools variable). For example, the following
rule consequence uses more than 12 bound variables and creates a compilation error:

...
then
 $input.setNo13Count(functions.sumOf(new Object[]{$no1Count_1, $no2Count_1,
$no3Count_1, ..., $no13Count_1}).intValue());
 $input.getFirings().add("fired");
 update($input);

5.1.1. Embedding an executable rule model in a Maven project

You can embed an executable rule model in your Maven project to compile your rule assets more
efficiently at build time.

Prerequisite

You have a Mavenized project that contains Red Hat Process Automation Manager business assets.

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

26

Procedure

1. In the pom.xml file of your Maven project, ensure that the packaging type is set to kjar and add
the kie-maven-plugin build component:

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <version> is the Maven artifact version for Red Hat Process
Automation Manager currently used in your project (for example, 7.18.0.Final-redhat-00002).
These settings are required to properly package the Maven project.

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHPAM product and maven library version?.

2. Add the following dependencies to the pom.xml file to enable rule assets to be built from an
executable model:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Process Automation Manager

drools-model-compiler: Compiles the executable model into Red Hat Process Automation
Manager internal data structures so that it can be executed by the decision engine

<packaging>kjar</packaging>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>${rhpam.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.3.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

CHAPTER 5. EXECUTING RULES

27

https://access.redhat.com/solutions/3405361

3. In a command terminal, navigate to your Maven project directory and run the following
command to build the project from an executable model:

mvn clean install -DgenerateModel=<VALUE>

The -DgenerateModel=<VALUE> property enables the project to be built as a model-based
KJAR instead of a DRL-based KJAR.

Replace <VALUE> with one of three values:

YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

WITHDRL: Generates the executable model corresponding to the DRL files in the original
project and also adds the DRL files to the generated KJAR for documentation purposes
(the KIE base is built from the executable model regardless).

NO: Does not generate the executable model.

Example build command:

mvn clean install -DgenerateModel=YES

For more information about packaging Maven projects, see Packaging and deploying a Red Hat Process
Automation Manager project.

5.1.2. Embedding an executable rule model in a Java application

You can embed an executable rule model programmatically within your Java application to compile your
rule assets more efficiently at build time.

Prerequisite

You have a Java application that contains Red Hat Process Automation Manager business assets.

Procedure

1. Add the following dependencies to the relevant classpath for your Java project:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Process Automation Manager

drools-model-compiler: Compiles the executable model into Red Hat Process Automation

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhpam.version}</version>
</dependency>

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

28

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project#project-build-deploy-maven-proc_packaging-deploying

drools-model-compiler: Compiles the executable model into Red Hat Process Automation
Manager internal data structures so that it can be executed by the decision engine

The <version> is the Maven artifact version for Red Hat Process Automation Manager
currently used in your project (for example, 7.18.0.Final-redhat-00002).

NOTE

Instead of specifying a Red Hat Process Automation Manager <version> for
individual dependencies, consider adding the Red Hat Business Automation bill
of materials (BOM) dependency to your project pom.xml file. The Red Hat
Business Automation BOM applies to both Red Hat Decision Manager and Red
Hat Process Automation Manager. When you add the BOM files, the correct
versions of transitive dependencies from the provided Maven repositories are
included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHPAM product and maven library version?.

2. Add rule assets to the KIE virtual file system KieFileSystem and use KieBuilder with buildAll(
ExecutableModelProject.class) specified to build the assets from an executable model:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhpam.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.3.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

import org.kie.api.KieServices;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;

 KieServices ks = KieServices.Factory.get();
 KieFileSystem kfs = ks.newKieFileSystem()
 kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
 .write("src/main/resources/dtable.xls",
 kieServices.getResources().newInputStreamResource(dtableFileStream));

 KieBuilder kieBuilder = ks.newKieBuilder(kfs);

CHAPTER 5. EXECUTING RULES

29

https://access.redhat.com/solutions/3405361

After KieFileSystem is built from the executable model, the resulting KieSession uses
constraints based on lambda expressions instead of less-efficient mvel expressions. If buildAll()
contains no arguments, the project is built in the standard method without an executable model.

As a more manual alternative to using KieFileSystem for creating executable models, you can
define a Model with a fluent API and create a KieBase from it:

For more information about packaging projects programmatically within a Java application, see
Packaging and deploying a Red Hat Process Automation Manager project .

 // Build from an executable model
 kieBuilder.buildAll(ExecutableModelProject.class)
 assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

Model model = new ModelImpl().addRule(rule);
KieBase kieBase = KieBaseBuilder.createKieBaseFromModel(model);

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

30

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project#project-build-deploy-java-proc_packaging-deploying

CHAPTER 6. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Process Automation Manager project

CHAPTER 6. NEXT STEPS

31

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/testing_a_decision_service_using_test_scenarios
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.3/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Wednesday, May 8, 2019.

Red Hat Process Automation Manager 7.3 Designing a decision service using guided rules

32

	Table of Contents
	PREFACE
	CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 2. GUIDED RULES
	CHAPTER 3. DATA OBJECTS
	3.1. CREATING DATA OBJECTS

	CHAPTER 4. CREATING GUIDED RULES
	4.1. ADDING WHEN CONDITIONS IN GUIDED RULES
	4.2. ADDING THEN ACTIONS IN GUIDED RULES
	4.3. ADDING OTHER RULE OPTIONS
	4.3.1. Rule attributes

	CHAPTER 5. EXECUTING RULES
	5.1. EXECUTABLE RULE MODELS
	5.1.1. Embedding an executable rule model in a Maven project
	5.1.2. Embedding an executable rule model in a Java application

	CHAPTER 6. NEXT STEPS
	APPENDIX A. VERSIONING INFORMATION

