& RedHat

Red Hat Process Automation Manager
7.12

Developing decision services in Red Hat
Process Automation Manager

Last Updated: 2023-02-02

Red Hat Process Automation Manager 7.12 Developing decision services in
Red Hat Process Automation Manager

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to develop decision services with Red Hat Process Automation
Manager using Decision Model and Notation (DMN) models, Drools Rule Language (DRL) files,
guided decision tables, and other decision-authoring assets.

Table of Contents

Table of Contents

[3 2 Y o P 1
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt ittt ettt et eaeeaneeraneeaneeeaneeeaness 12
PART |. DESIGNING A DECISION SERVICEUSING DMN MODELS iiitiiiiiiiiiiiiiienneennnnns 13
CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER 14
CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS 18
2.1.INSTALLING THE RED HAT PROCESS AUTOMATION MANAGER VS CODE EXTENSION BUNDLE 18
2.2. CONFIGURING THE RED HAT PROCESS AUTOMATION MANAGER STANDALONE EDITORS 19
CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN 23
CHAPTER 4. DECISION MODEL AND NOTATION (DMN) .ttt ittt eie e eeaeaneenneenn, 25
4.1. DMN CONFORMANCE LEVELS 25
4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS 25
4.3. RULE EXPRESSIONS IN FEEL 29
4.3.1. Data typesin FEEL 30
4.3.2. Built-in functions in FEEL 34
4.3.2.1. Conversion functions 35
4.3.2.2. Boolean functions 39
4.3.2.3. String functions 39
4.3.2.4. List functions 44
4.3.2.5. Numeric functions 52
4.3.2.6. Date and time functions 56
4.3.2.7. Range functions 56
4.3.2.8. Temporal functions 64
4.3.2.9. Sort functions 66
4.3.2.10. Context functions 66

4.3.3. Variable and function names in FEEL 67

4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS 68
4.4.1. DMN decision tables 68
4.4.1.1. Hit policies in DMN decision tables 70

4.4.2. Boxed literal expressions 71
4.4.3. Boxed context expressions 71
4.4.4, Boxed relation expressions 72
4.4.5. Boxed function expressions 73
4.4.6. Boxed invocation expressions 75
4.4.7. Boxed list expressions 76

4.5. DMN MODEL EXAMPLE 77
CHAPTER 5. DMN SUPPORT IN RED HAT PROCESS AUTOMATION MANAGERccovvune... 86
5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT PROCESS AUTOMATION MANAGER 87
5.2. CONFIGURABLE DMN VALIDATION IN RED HAT PROCESS AUTOMATION MANAGER 88
CHAPTER 6. CREATING AND EDITING DMN MODELSINBUSINESSCENTRALcvviiiiiiieeennnn. 91
6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN BUSINESS CENTRAL 99
6.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN BUSINESS CENTRAL 108
6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL 18
6.3.1. Including other DMN models within a DMN file in Business Central n8
6.3.2. Including PMML models within a DMN file in Business Central 121

6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN BUSINESS CENTRAL 127

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

6.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL 132
6.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS CENTRAL 133
CHAPTER 7.DMN MODEL EXECUTION ...t ittititttiittit et taneeeaeennneeaneeeaneernneennnns 140
7.1.EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION 140
7.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA CLIENT API 142
7.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API 145
7.4. REST ENDPOINTS FOR SPECIFIC DMN MODELS 150
CHAPTER 8. ADDITIONAL RESOURCES ..ottt ettt et ea e eaeennneeaneeraneennneenn 161
PART Il. DESIGNING A DECISION SERVICE USING PMML MODELSttt iiiiieiinannennns 162
CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER 163
CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE (PMML) ...ttt iiiieeaienneens 167
10.1. PMML CONFORMANCE LEVELS 167
CHAPTER 11. PMML MODEL EXAMPLES ..ttt ittt ittt ea et eateeaneeaneeeaneeenneennnens 168
CHAPTER 12. PMML SUPPORT IN RED HAT PROCESS AUTOMATION MANAGER 176
12.1. PMML TRUSTY SUPPORT AND NAMING CONVENTIONS IN RED HAT PROCESS AUTOMATION
MANAGER 176
Known limitations of PMML trusty implementation 177
12.2. PMML LEGACY SUPPORT AND NAMING CONVENTIONS IN RED HAT PROCESS AUTOMATION
MANAGER 179
12.2.1. PMML extensions in Red Hat Process Automation Manager 179
CHAPTER 13. PMML MODEL EXECUTION ... \ttititttiittett ettt eaneeeaneennneeanneeaneennneenn 181
13.1. EMBEDDING A PMML TRUSTY CALL DIRECTLY IN A JAVA APPLICATION 181
13.2. EMBEDDING A PMML LEGACY CALL DIRECTLY IN A JAVA APPLICATION 183
13.2.1. PMML execution helper class 187
13.3. EXECUTING A PMML MODEL USING KIE SERVER 190
CHAPTER 14. ADDITIONAL RESOURCES ... ittt ittt e ittt eieeanneenneeenneennnens 197
PART Ill. DESIGNING A DECISION SERVICEUSING DRLRULESciiutiiitiiiiiinieennnennnn, 198
CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER 199
CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULESttt iei e eenneennnns 203
16.1. PACKAGES IN DRL 204
16.2. IMPORT STATEMENTS IN DRL 204
16.3. FUNCTIONS IN DRL 204
16.4. QUERIES IN DRL 205
16.5. TYPE DECLARATIONS AND METADATA IN DRL 206
16.5.1. Type declarations without metadata in DRL 206
16.5.2. Enumerative type declarations in DRL 208
16.5.3. Extended type declarations in DRL 208
16.5.4. Type declarations with metadata in DRL 208
16.5.5. Metadata tags for fact type and attribute declarations in DRL 209
16.5.6. Property-change settings and listeners for fact types 215
16.5.7. Access to DRL declared types in application code 217
16.6. GLOBAL VARIABLES IN DRL 218
16.7. RULE ATTRIBUTES IN DRL 219
16.7.1. Timer and calendar rule attributes in DRL 221
16.8. RULE CONDITIONS IN DRL (WHEN) 225

Table of Contents

16.8.1. Patterns and constraints 226
16.8.2. Bound variables in patterns and constraints 230
16.8.3. Nested constraints and inline casts 231
16.8.4. Date literal in constraints 232
16.8.5. Supported operators in DRL pattern constraints 232
16.8.6. Operator precedence in DRL pattern constraints 236
16.8.7. Supported rule condition elements in DRL (keywords) 237
16.8.8. OOPath syntax with graphs of objects in DRL rule conditions 247
16.9. RULE ACTIONS IN DRL (THEN) 250
16.9.1. Supported rule action methods in DRL 251
16.9.2. Other rule action methods from drools variable 253
16.9.3. Advanced rule actions with conditional and named consequences 254
16.10. COMMENTS IN DRL FILES 255
16.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING 256
CHAPTER 17. DAT A OBUE CT S ittt ittt ettt ettt et e eateeaneeeaneennneeaneesaneennneenn 261
17.1. CREATING DATA OBJECTS 261
CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL ...\ttt i i eaieennneennnns 263
18.1. ADDING WHEN CONDITIONS IN DRL RULES 267
18.2. ADDING THEN ACTIONS IN DRL RULES 271
CHAPTER19. EXECUTING RULES ... ittt iti et et et ennneeaneeraneennneennens 273
CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRLRULES 279
20.1. CREATING AND EXECUTING DRL RULES USING JAVA 279
20.2. CREATING AND EXECUTING DRL RULES USING MAVEN 282
CHAPTER 21. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGERFORANIDE ... 288
21.1. IMPORTING AND EXECUTING RED HAT PROCESS AUTOMATION MANAGER EXAMPLE DECISIONS IN
AN IDE 288
21.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING) 291
21.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION) 294
State example using salience 297
State example using agenda groups 300
Dynamic facts in the State example 301
21.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION) 302
21.5. PRICING EXAMPLE DECISIONS (DECISION TABLES) 308
Spreadsheet decision table setup 309
Base pricing rules 312
Promotional discount rules 313
21.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION) 313
Rule execution behavior in the Pet Store example 314
Pet Store rule file imports, global variables, and Java functions 316
Pet Store rules with agenda groups 317
Pet Store example execution 321
21.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE) 325
Politician and Hope classes 326
Rule definitions for politician honesty 327
Example execution and audit trail 328
21.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION) 331
Sudoku example execution and interaction 331
Sudoku example classes 337

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Sudoku validation rules (validate.drl) 337
Sudoku solving rules (sudoku.drl) 338
21.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION) 345
Conway example execution and interaction 346
Conway example rules with ruleflow groups 347
21.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION) 351
Recursive query and related rules 355
Transitive closure rule 356
Reactive query rule 357
Queries with unbound arguments in rules 358
CHAPTER 22. PERFORMANCE TUNING CONSIDERATIONSWITHDRLoiiiiiiiiii i eennn 360
CHAPTER 23. NEXT STE P S oottt ettt ettt et ettt et aeenaneeaneeeaneennneennnns 363
PART IV. DESIGNING A DECISION SERVICE USING GUIDED DECISIONTABLES cccvvvvinnn.. 364
CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER 365
CHAPTER 25. GUIDED DECISION TABLES . ..ttt ittt ettt i et aieeeneennens 369
CHAPTER 26. DAT A OBUECT S ittt it ettt ettt et aaeeaneeeaneennneeaneeraneesnneennnns 370
26.1. CREATING DATA OBJECTS 370
CHAPTER 27. CREATING GUIDED DECISION TABLES ...ttt i ii et e eneennnes 372
CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES ...ttt eieeiieennees 374
28.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS 375
28.1.1. Types of guided decision tables 377
CHAPTER 29. ADDING COLUMNS TO GUIDED DECISION TABLES iiiiiiiii i 379
CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLESciiiiiiiiiiii i eiiiennnens 381
30.1."ADD A CONDITION" 381
30.1.1. Inserting an any other value in condition column cells 383
30.2."ADD A CONDITION BRL FRAGMENT" 383
30.3."ADD A METADATA COLUMN" 386
30.4."ADD AN ACTION BRL FRAGMENT" 386
30.5."ADD AN ATTRIBUTE COLUMN" 389
30.6. "DELETE AN EXISTING FACT" 390
30.7."EXECUTE A WORK ITEM" 390
30.8."SET THE VALUE OF A FIELD" 391
30.9."SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT" 391
CHAPTER 31. VIEWING RULE NAME COLUMN IN GUIDED DECISIONTABLEScciiiiieenn... 393
CHAPTER 32. SORTING COLUMN VALUES IN GUIDED DECISIONTABLEScciiiiiiiiiiinennn.. 394
CHAPTER 33. EDITING OR DELETING COLUMNS IN GUIDED DECISIONTABLES ccvv..... 395
CHAPTER 34. ADDING ROWS AND DEFINING RULES IN GUIDED DECISIONTABLES 396
CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN LISTSINRULE ASSETS 398
35.1. ADVANCED ENUMERATION OPTIONS FOR RULE ASSETS 399
CHAPTER 36. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES 402
36.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES 402
36.2. TYPES OF NOTIFICATIONS 403

Table of Contents

36.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES
CHAPTER 37. CONVERTING A GUIDED DECISION TABLE TO A SPREADSHEET DECISION TABLE
CHAPTER 38. EXECUTING RULES ... i i e e et
CHAPTER 30. NEXT STEPS .o i i i it i it
PART V. DESIGNING A DECISION SERVICE USING SPREADSHEET DECISIONTABLES
CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER
CHAPTER 41. SPREADSHEET DECISION TABLES ... i i i

CHAPTER 42, DAT A OBUEC T S i i i e i i et et i
42.1. CREATING DATA OBJECTS

CHAPTER 43. DECISION TABLE USE CASE i e i it

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES i
44.1. RULESET DEFINITIONS
44.2. RULETABLE DEFINITIONS
44.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS

CHAPTER 45. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL

CHAPTER 46. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION
TABLE IN BUSINESS CENT RAL .o i i e e et et it

CHAPTER 47. EXECUTING RULES ... i i i it
CHAPTER 48. NEXT STEPS .o i i i e i e
PART VI. DESIGNING A DECISION SERVICEUSING GUIDED RULES ...t
CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER
CHAPTERS0.GUIDED RULES ... i i i i et e et ciie e

CHAPTER 51 DAT A OBUEC TS i i i e i i et ettt
51.1. CREATING DATA OBJECTS

CHAPTER52. CREATING GUIDED RULESttt ittt eit e i eie e ennneennens
52.1. ADDING WHEN CONDITIONS IN GUIDED RULES
52.2. ADDING THEN ACTIONS IN GUIDED RULES
52.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS
52.3.1. Advanced enumeration options for rule assets
52.4. ADDING OTHER RULE OPTIONS
52.4.1. Rule attributes

CHAPTERS3.EXECUTING RULES ... i e e et
CHAPTER 54. NEXT STEPS .o i i i e et
PART VII. DESIGNING A DECISION SERVICE USING GUIDED RULE TEMPLATESl
CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER
CHAPTER 56. GUIDED RULE TEMPLATES ..o i i i it

CHAPTER 57. DATA OBUEC TS i i i i i i et it

403

405

421

423
425
427
430

433

434

435

441

442

443

447

448
448

450

451
454
457
458
460

461

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

57.1. CREATING DATA OBJECTS 477
CHAPTER 58. CREATING GUIDED RULE TEMPLATES ...ttt i eieeiteeaneennneennnns 479
58.1. ADDING WHEN CONDITIONS IN GUIDED RULE TEMPLATES 480
58.2. ADDING THEN ACTIONS IN GUIDED RULE TEMPLATES 483
58.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS 485
58.3.1. Advanced enumeration options for rule assets 487
58.4. ADDING OTHER RULE OPTIONS 488
58.4.1. Rule attributes 489
CHAPTER 59. DEFINING DATA TABLES FORGUIDED RULE TEMPLATESciiiiiii e 492
CHAPTER 60. EXECUTING RULES ... iittttitttiittteiteieenieeaeeeaneennneeaneeeaneesaneennnns 495
CHAPTER BT NEXT ST E P S ..ottt ittt ettt ettt et aat et aneeeaneenneeeanneeaneeenneennnens 501
PART VIIl. TESTING A DECISION SERVICE USING TESTSCENARIOS iiiiiiiiiiiiiiiiieiennns 502
CHAPTER 62. TEST SCENARIOS .o ittt ettt e ett e aeeaaeeeaneeraneennneennnns 503
CHAPTER 63. DAT A OBUEC TS ittt ettt ettt ettt et eaneeeaneeeaneennneeaneeeaneeeaneennnns 504
63.1. CREATING DATA OBJECTS 504
CHAPTER 64. TEST SCENARIOS DESIGNERIN BUSINESS CENTRAL ...cvittiiiiiiiiienieennnn, 506
64.1. IMPORTING DATA OBJECTS 506
64.2. IMPORTING A TEST SCENARIO 507
64.3. SAVING A TEST SCENARIO 507
64.4. COPYING A TEST SCENARIO 507
64.5. DOWNLOADING A TEST SCENARIO 508
64.6. SWITCHING BETWEEN VERSIONS OF A TEST SCENARIO 508
64.7. VIEW OR HIDE THE ALERTS PANEL 508
64.8. CONTEXTUAL MENU OPTIONS 509
64.9. GLOBAL SETTINGS FOR TEST SCENARIOS 510
64.9.1. Configuring global settings for rule-based test scenarios 510
64.9.2. Configuring global settings for DMN-based test scenarios 51
CHAPTER 65. TEST SCENARIO TEMP LATE ...ttt ettt ittt et e eeieeaeeaneeeaneennneens 512
65.1. CREATING A TEST SCENARIO TEMPLATE FOR RULE-BASED TEST SCENARIOS 512
65.2. USING ALIASES IN RULE-BASED TEST SCENARIOS 513
CHAPTER 66. TEST TEMPLATE FORDMN-BASED TESTSCENARIOS ...ttt 514
66.1. CREATING A TEST SCENARIO TEMPLATE FOR DMN-BASED TEST SCENARIOS 514
CHAPTER 67.DEFINING A TEST SCENARIO ...ttt ittt eaeeeneeeaneennnenns 515
CHAPTER 68. BACKGROUND INSTANCEIN TESTSCENARIOS ..ottt iiieeniennnens 516
68.1. ADDING A BACKGROUND DATA IN RULE-BASED TEST SCENARIOS 516
68.2. ADDING A BACKGROUND DATA IN DMN-BASED TEST SCENARIOS 517
CHAPTER 69. USING LIST AND MAP COLLECTIONSIN TESTSCENARIOSottt 519
CHAPTER 70. EXPRESSION SYNTAXIN TEST SCENARIOS ... ittt ieieeanennnens 521
70.1. EXPRESSION SYNTAX IN RULE-BASED TEST SCENARIOS 521
70.2. EXPRESSION SYNTAX IN DMN-BASED TEST SCENARIOS 522
CHAPTER 71. RUNNING THE TEST SCENARIOS ...ttt it eaeneeraneennneennens 524
CHAPTER 72. RUNNING A TEST SCENARIO LOCALLY ..ttt iet e eiit et aieeenneennnes 525

Table of Contents

CHAPTER 73. EXPORTING AND IMPORTING TEST SCENARIO SPREADSHEETScccvvvenn... 526
73.1. EXPORTING A TEST SCENARIO SPREADSHEET 526
73.2. IMPORTING A TEST SCENARIO SPREADSHEET 526

CHAPTER 74. COVERAGE REPORTS FOR TEST SCENARIOS ... ittt it 527
74.1. GENERATING COVERAGE REPORTS FOR RULE-BASED TEST SCENARIOS 527
74.2. GENERATING COVERAGE REPORTS FOR DMN-BASED TEST SCENARIOS 528

CHAPTER 75. EXECUTING A TEST SCENARIO USING THEKIESERVERRESTAPIccivvvenn... 529

CHAPTER 76. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT 537

CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNERIN BUSINESS CENTRAL cviinvnenn... 540
77.1. CREATING AND RUNNING A TEST SCENARIO (LEGACY) 540

77.1.1. Adding GIVEN facts in test scenarios (legacy) 542
77.1.2. Adding EXPECT results in test scenarios (legacy) 543

CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER 546

CHAPTER 7. NEXT STE PSS .ottt ettt ettt et ettt et e eaneennneeaneeraneesaneennens 550

PART IX. DECISION ENGINE IN RED HAT PROCESS AUTOMATION MANAGERccviviiinnn... 551

CHAPTER 80. DECISION ENGINE IN RED HAT PROCESS AUTOMATION MANAGER 552

CHAPTER 81 KIE SESSIONS .ottt ittt ittt e e aneeeeenneeeessannaneessennnneeennns 553
81.1. STATELESS KIE SESSIONS 553

81.1.1. Global variables in stateless KIE sessions 556
81.2. STATEFUL KIE SESSIONS 557
81.3. KIE SESSION POOLS 560

CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISIONENGINE 562
82.1. FACT EQUALITY MODES IN THE DECISION ENGINE 566

CHAPTER 83. EXECUTION CONTROL INTHEDECISIONENGINEciiiiiiiiiiiiiieiiinennnn 568
83.1. SALIENCE FOR RULES 568
83.2. AGENDA GROUPS FOR RULES 569
83.3. ACTIVATION GROUPS FOR RULES 570
83.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE 571
83.5. FACT PROPAGATION MODES IN THE DECISION ENGINE 573
83.6. AGENDA EVALUATION FILTERS 574

CHAPTER 84. PHREAK RULE ALGORITHMIN THEDECISIONENGINEccoiiiiiiiiiiiiinennnn. 575
84.1. RULE EVALUATION IN PHREAK 575

84.1.1. Rule evaluation with forward and backward chaining 579
84.2. RULE BASE CONFIGURATION 580
84.3. SEQUENTIAL MODE IN PHREAK 582

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP) ...ttt ieiieaiennneennnes 585
85.1. EVENTS IN COMPLEX EVENT PROCESSING 586
85.2. DECLARING FACTS AS EVENTS 586
85.3. METADATA TAGS FOR EVENTS 587
85.4. EVENT PROCESSING MODES IN THE DECISION ENGINE 589

85.4.1. Negative patterns in decision engine stream mode 591
85.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES 592
85.6. TEMPORAL OPERATORS FOR EVENTS 595
85.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE 603

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

85.8. EVENT STREAMS AND ENTRY POINTS 605
85.8.1. Declaring entry points for rule data 605
85.9. SLIDING WINDOWS OF TIME OR LENGTH 607
85.9.1. Declaring sliding windows for rule data 607
85.10. MEMORY MANAGEMENT FOR EVENTS 608
CHAPTER 86. DECISION ENGINE QUERIESAND LIVEQUERIESottt eean, 610
CHAPTER 87. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING ccoiivvvennn.. 612
87.1. PRACTICES FOR DEVELOPMENT OF EVENT LISTENERS 613
CHAPTER 88. CONFIGURING A LOGGING UTILITY IN THEDECISIONENGINE cccoviuat., 614
CHAPTER 89. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGERFORANIDE 615
89.1. IMPORTING AND EXECUTING RED HAT PROCESS AUTOMATION MANAGER EXAMPLE DECISIONS IN
AN IDE 615
89.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING) 618
89.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION) 621
State example using salience 624
State example using agenda groups 627
Dynamic facts in the State example 628
89.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION) 629
89.5. PRICING EXAMPLE DECISIONS (DECISION TABLES) 635
Spreadsheet decision table setup 636
Base pricing rules 639
Promotional discount rules 640
89.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION) 640
Rule execution behavior in the Pet Store example 641
Pet Store rule file imports, global variables, and Java functions 643
Pet Store rules with agenda groups 644
Pet Store example execution 648
89.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE) 652
Politician and Hope classes 653
Rule definitions for politician honesty 654
Example execution and audit trail 655
89.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION) 658
Sudoku example execution and interaction 658
Sudoku example classes 664
Sudoku validation rules (validate.drl) 664
Sudoku solving rules (sudoku.drl) 665
89.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
672
Conway example execution and interaction 673
Conway example rules with ruleflow groups 674
89.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION) 678
Recursive query and related rules 682
Transitive closure rule 683
Reactive query rule 684
Queries with unbound arguments in rules 685
CHAPTER 90. PERFORMANCE TUNING CONSIDERATIONS WITH THE DECISION ENGINE 687
CHAPTER 91. ADDITIONAL RESOURCES ... iittittttitttit et eanteeaneennneeaneeraneernneennens 689

Table of Contents

PART X. INTEGRATING MACHINE LEARNING WITH RED HAT PROCESS AUTOMATION MANAGER ... 690
CHAPTER 92. PRAGMATIC Al i i i e e ettt 691
CHAPTER 93. CREDIT CARD FRAUD DISPUTEUSE CASE i 694
93.1. USING A PMML MODEL WITH A DMN MODEL TO RESOLVE CREDIT CARD TRANSACTION DISPUTES
700
93.2. CREDIT CARD TRANSACTION DISPUTE EXERCISE PMML FILE 71
CHAPTER 94. ADDITIONAL RESOURCES i i e et 720
APPENDIX A. VERSIONING INFORMATION ... e i i e 721
APPENDIX B. CONTACT INFORMATION ... i i i 722

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

10

PREFACE

PREFACE

As a developer of business decisions, you can use Red Hat Process Automation Manager to develop
decision services using Decision Model and Notation (DMN) models, Drools Rule Language (DRL) rules,
guided decision tables, and other rule-authoring assets.

1

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message .

12

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. DESIGNING A DECISION SERVICE USING DMN MODELS

PART |. DESIGNING A DECISION SERVICE USING DMN
MODELS

As a business analyst or business rules developer, you can use Decision Model and Notation (DMN) to
model a decision service graphically. The decision requirements of a DMN decision model are
determined by a decision requirements graph (DRG) that is depicted in one or more decision
requirements diagrams (DRDs). A DRD can represent part or all of the overall DRG for the DMN model.
DRDs trace business decisions from start to finish, with each decision node using logic defined in DMN
boxed expressions such as decision tables.

Red Hat Process Automation Manager provides design and runtime support for DMN 1.2 models at
conformance level 3, and runtime-only support for DMN 1.1and 1.3 models at conformance level 3. You
can design your DMN models directly in Business Central or with the Red Hat Process Automation
Manager DMN modeler in VS Code, or import existing DMN models into your Red Hat Process
Automation Manager projects for deployment and execution. Any DMN 1.1 and 1.3 models (do not
contain DMN 1.3 features) that you import into Business Central, open in the DMN designer, and save
are converted to DMN 1.2 models.

For more information about DMN, see the Object Management Group (OMG) Decision Model and
Notation specification.

For a step-by-step tutorial with an example DMN decision service, see Getting started with decision
services.

13

https://www.omg.org/spec/DMN
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-decision-services

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT

PROCESS AUTOMATION MANAGER

Red Hat Process Automation Manager supports several assets that you can use to define business
decisions for your decision service. Each decision-authoring asset has different advantages, and you
might prefer to use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Process
Automation Manager projects to help you decide or confirm the best method for defining decisions in

your decision service.

Table 1.1. Decision-authoring assets supported in Red Hat Process Automation Manager

Highlights

Authoring tools Documentation

Decision Model
and Notation
(DMN) models

14

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Can be integrated efficiently
with Business Process Model and
Notation (BPMN) process
models

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central Designing a
or other DMN- decision service
compliant editor using DMN models

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-dmn-models

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

Highlights

Authoring tools Documentation

Guided decision
tables

Spreadsheet
decision tables

Guided rules

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

15

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-guided-rules

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Arereusable rule structures that . .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9)
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat Process
Automation Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

16

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-drl-rules

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT PROCESS AUTOMATION MANAGER

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation)

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

e Can beincluded with a
standalone Red Hat Process
Automation Manager project or
imported into a projectin
Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Process
Automation Manager

When you define business decisions, you can also consider using Red Hat build of Kogito for your cloud-
native decision services. For more information about getting started with Red Hat build of Kogito
microservices, see Getting started with Red Hat build of Kogito in Red Hat Process Automation Manager .

17

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-pmml-models
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_process_automation_manager

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER
BPMN AND DMN MODELERS

Red Hat Process Automation Manager provides the following extensions or applications that you can
use to design Business Process Model and Notation (BPMN) process models and Decision Model and
Notation (DMN) decision models using graphical modelers.

® Business Central Enables you to view and design BPMN models, DMN models, and test
scenario files in a related embedded designer.
To use Business Central, you can set up a development environment containing a Business
Central to design business rules and processes, and a KIE Server to execute and test the
created business rules and processes.

® Red Hat Process Automation Manager VS Code extension Enables you to view and design
BPMN models, DMN models, and test scenario files in Visual Studio Code (VS Code). The VS
Code extension requires VS Code 1.46.0 or later.
To install the Red Hat Process Automation Manager VS Code extension, select the Extensions
menu option in VS Code and search for and install the Red Hat Business Automation Bundle
extension.

e Standalone BPMN and DMN editors Enable you to view and design BPMN and DMN models
embedded in your web applications. To download the necessary files, you can either use the
NPM artifacts from the NPM registry or download the JavaScript files directly for the DMN
standalone editor library at https://<YOUR_PAGE>/dmn/index.js and for the BPMN
standalone editor library at https://<YOUR_PAGE>/bpmn/index.js.

2.1.INSTALLING THE RED HAT PROCESS AUTOMATION MANAGER VS
CODE EXTENSION BUNDLE

Red Hat Process Automation Manager provides a Red Hat Business Automation BundleVS Code
extension that enables you to design Decision Model and Notation (DMN) decision models, Business
Process Model and Notation (BPMN) 2.0 business processes, and test scenarios directly in VS Code. VS
Code is the preferred integrated development environment (IDE) for developing new business
applications. Red Hat Process Automation Manager also provides individual DMN Editor and BPMN
Editor VS Code extensions for DMN or BPMN support only, if needed.

IMPORTANT

The editors in the VS Code are partially compatible with the editors in the Business
Central, and several Business Central features are not supported in the VS Code.

Prerequisites

® The latest stable version of VS Code is installed.

Procedure

1. Inyour VS Code IDE, select the Extensions menu option and search for Red Hat Business
Automation Bundle for DMN, BPMN, and test scenario file support.
For DMN or BPMN file support only, you can also search for the individual DMN Editor or
BPMN Editor extensions.

2. When the Red Hat Business Automation Bundleextension appears in VS Code, select it and
click Install.

18

https://www.npmjs.com/package/@kogito-tooling/kie-editors-standalone
https://code.visualstudio.com/

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS

3. For optimal VS Code editor behavior, after the extension installation is complete, reload or
close and re-launch your instance of VS Code.

After you install the VS Code extension bundle, any .dmn, .bpmn, or .bpmn2 files that you open or
create in VS Code are automatically displayed as graphical models. Additionally, any .scesim files that
you open or create are automatically displayed as tabular test scenario models for testing the
functionality of your business decisions.

If the DMN, BPMN, or test scenario modelers open only the XML source of a DMN, BPMN, or test

scenario file and displays an error message, review the reported errors and the model file to ensure that
all elements are correctly defined.

NOTE
For new DMN or BPMN models, you can also enter dmn.new or bpmn.new in a web
browser to design your DMN or BPMN model in the online modeler. When you finish

creating your model, you can click Download in the online modeler page to import your
DMN or BPMN file into your Red Hat Process Automation Manager project in VS Code.

2.2. CONFIGURING THE RED HAT PROCESS AUTOMATION MANAGER
STANDALONE EDITORS

Red Hat Process Automation Manager provides standalone editors that are distributed in a self-
contained library providing an all-in-one JavaScript file for each editor. The JavaScript file uses a
comprehensive API to set and control the editor.

You can install the standalone editors using the following methods:

® Download each JavaScript file manually

® Use the NPM package

Procedure

1. Install the standalone editors using one of the following methods:
Download each JavaScript file manually For this method, follow these steps:

a. Download the JavaScript files.
b. Add the downloaded Javascript files to your hosted application.
c. Add the following <script> tag to your HTML page:

Script tag for your HTML page for the DMN editor

I <script sre="https://<YOUR_PAGE>/dmn/index.js"></script>
Script tag for your HTML page for the BPMN editor

I <script src="https://<YOUR_PAGE>/bpmn/index.js"></script>

Use the NPM package: For this method, follow these steps:

a. Add the NPM package to your package.json file:

19

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Adding the NPM package
I npm install @kogito-tooling/kie-editors-standalone

b. Import each editor library to your TypeScript file:

Importing each editor

import * as DmnEditor from "@kogito-tooling/kie-editors-standalone/dist/dmn"
import * as BpmnEditor from "@kogito-tooling/kie-editors-standalone/dist/bpmn"

2. After you install the standalone editors, open the required editor by using the provided editor
API, as shown in the following example for opening a DMN editor. The APl is the same for each
editor.

Opening the DMN standalone editor

const editor = DmnEditor.open({
container: document.getElementByld("dmn-editor-container"),
initialContent: Promise.resolve(™),
readOnly: false,
origin: ",
resources: new Map([
[
"MyIncludedModel.dmn",

{

contentType: "text",
content: Promise.resolve(™)

}

)
hE

Use the following parameters with the editor API:

Table 2.1. Example parameters

Parameter Description

container HTML element in which the editor is appended.

initialContent Promise to a DMN model content. This parameter can be
empty, as shown in the following examples:

e Promise.resolve("")

e Promise.resolve("
<DIAGRAM_CONTENT _DIRECTLY_HERE>")

o fetch("MyDmnModel.dmn™").then(content =
content.text())

20

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS

Parameter Description

readOnly (Optional) Enables you to allow changes in the editor. Set to false
(default) to allow content editing and true for read-only
mode in editor.

origin (Optional) Origin of the repository. The default value is
window.location.origin.

resources (Optional) Map of resources for the editor. For example, this
parameter is used to provide included models for the DMN
editor or work item definitions for the BPMN editor. Each
entry in the map contains a resource name and an object
that consists of content-type (text orbinary) and
content (similar to theinitialContent parameter).

The returned object contains the methods that are required to manipulate the editor.

Table 2.2. Returned object methods

Method Description

getContent(): Promise<string> Returns a promise containing the editor content.

setContent(path: string, content: Sets the content of the editor.
string): void

getPreview(): Promise<string> Returns a promise containing an SVG string of the current
diagram.

subscribeToContentChanges(ca Sets a callback to be called when the content changes in
liback: (isDirty: boolean) = the editor and returns the same callback to be used for
void): (isDirty: boolean) = void unsubscription.

unsubscribeToContentChanges(Unsubscribes the passed callback when the content
callback: (isDirty: boolean) = changes in the editor.
void): void

markAsSaved(): void Resets the editor state that indicates that the content in
the editor is saved. Also, it activates the subscribed
callbacks related to content change.

undo(): void Undoes the last change in the editor. Also, it activates the
subscribed callbacks related to content change.

redo(): void Redoes the last undone change in the editor. Also, it
activates the subscribed callbacks related to content
change.

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Method Description

close(): void Closes the editor.
getElementPosition(selector: Provides an alternative to extend the standard query
string): Promise<Rect> selector when an element lives inside a canvas or a video

component. The selector parameter must follow the
<PROVIDER>:::<SELECT> format, such as
Canvas:::MySquare or Video:::PresenterHand. This
method returns a Rect representing the element position.

envelopeApi: This is an advanced editor API. For more information about
MessageBusClientApi<KogitoEd advanced editor API, see MessageBusClientApi and
itorEnvelopeApi> KogitoEditorEnvelopeApi.

22

https://github.com/kiegroup/kogito-tooling/blob/master/packages/envelope-bus/src/api/index.ts#L43-L56
https://github.com/kiegroup/kogito-tooling/blob/master/packages/editor/src/api/KogitoEditorEnvelopeApi.ts#L34-L41

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN
MODELS USING MAVEN

You can use Maven archetypes to develop DMN and BPMN models in VS Code using the Red Hat
Process Automation Manager VS Code extension instead of Business Central. You can then integrate
your archetypes with your Red Hat Process Automation Manager decision and process services in
Business Central as needed. This method of developing DMN and BPMN models is helpful for building
new business applications using the Red Hat Process Automation Manager VS Code extension.

Procedure

1. Ina command terminal, navigate to a local folder where you want to store the new Red Hat
Process Automation Manager project.

2. Enter the following command to use a Maven archtype to generate a project within a defined
folder:

Generating a project using Maven archetype

mvn archetype:generate \
-DarchetypeGroupld=org.kie \
-DarchetypeAtrtifactld=kie-kjar-archetype \
-DarchetypeVersion=7.59.0.Final-redhat-00006

This command generates a Maven project with required dependencies and generates required
directories and files to build your business application. You can use the Git version control
system (recommended) when developing a project.

If you want to generate multiple projects in the same directory, specify the artifactld and
groupld of the generated business application by adding -Dgroupld=<groupid> -Dartifactld=
<artifactld> to the previous command.

3. Inyour VS Code IDE, click File, select Open Folder, and navigate to the folder that is generated
using the previous command.

4. Before creating the first asset, set a package for your business application, for example,
org.kie.businessapp, and create respective directories in the following paths:

e PROJECT_HOME/src/main/java
e PROJECT_HOME/src/main/resources
e PROJECT_HOME/src/test/resources

For example, you can create PROJECT_HOME/src/main/java/org/kie/businessapp for
org.kie.businessapp package.

5. Use VS Code to create assets for your business application. You can create the assets
supported by Red Hat Process Automation Manager VS Code extension using the following
ways:

® To create a business process, create a new file with .bpmn or .bpmn2 in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as Process.bpmn.

23

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

® To create a DMN model, create a new file with .dmnin
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as
AgeDecision.dmn.

® To create a test scenario simulation model, create a new file with .scesim in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as
TestAgeScenario.scesim.

6. After you create the assets in your Maven archetype, navigate to the root directory (contains

pom.xml) of the project in the command line and run the following command to build the
knowledge JAR (KJAR) of your project:

I mvn clean install

If the build fails, address any problems described in the command line error messages and try
again to validate the project until the build is successful. However, if the build is successful, you
can find the artifact of your business application in PROJECT_HOME/target directory.

NOTE

Use mvn clean install command often to validate your project after each major
change during development.

You can deploy the generated knowledge JAR (KJAR) of your business application on a running KIE
Server using the REST API. For more information about using REST API, see Interacting with Red Hat
Process Automation Manager using KIE APIs.

24

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#assembly-kie-apis

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Decision Model and Notation (DMN) is a standard established by the Object Management Group
(OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables
DMN models to be shared between DMN-compliant platforms and across organizations so that
business analysts and business rules developers can collaborate in designing and implementing DMN
decision services. The DMN standard is similar to and can be used together with the Business Process
Model and Notation (BPMN) standard for designing and modeling business processes.

For more information about the background and applications of DMN, see the OMG Decision Model and
Notation specification.

4.1. DMN CONFORMANCE LEVELS

The DMN specification defines three incremental levels of conformance in a software implementation. A
product that claims compliance at one level must also be compliant with any preceding levels. For
example, a conformance level 3 implementation must also include the supported components in
conformance levels 1and 2. For the formal definitions of each conformance level, see the OMG Decision
Model and Notation specification.

The following list summarizes the three DMN conformance levels:

Conformance level 1

A DMN conformance level 1implementation supports decision requirement diagrams (DRDs),
decision logic, and decision tables, but decision models are not executable. Any language can be used
to define the expressions, including natural, unstructured languages.

Conformance level 2

A DMN conformance level 2 implementation includes the requirements in conformance level 1, and
supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully
executable decision models.

Conformance level 3

A DMN conformance level 3 implementation includes the requirements in conformance levels 1and
2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed
expressions, and fully executable decision models.

Red Hat Process Automation Manager provides design and runtime support for DMN 1.2 models at
conformance level 3, and runtime-only support for DMN 1.1and 1.3 models at conformance level 3. You
can design your DMN models directly in Business Central or with the Red Hat Process Automation
Manager DMN modeler in VSCode, or import existing DMN models into your Red Hat Process
Automation Manager projects for deployment and execution. Any DMN 1.1and 1.3 models (do not
contain DMN 1.3 features) that you import into Business Central, open in the DMN designer, and save
are converted to DMN 1.2 models.

4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
A decision requirements diagram (DRD) is a visual representation of your DMN model. A DRD can
represent part or all of the overall decision requirements graph (DRG) for the DMN model. DRDs trace
business decisions using decision nodes, business knowledge models, sources of business knowledge,
input data, and decision services.

The following table summarizes the components in a DRD:

Table 4.1. DRD components

25

https://www.omg.org/spec/DMN
https://www.omg.org/spec/DMN

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Component

Notation

Description

Elements Decision

Business
knowledge model

Knowledge source

Input data

Decision service

Information
requirement

Requirement
connectors

Knowledge
requirement

Authority
requirement

26

Node where one or more input elements
determine an output based on defined
decision logic.

Decision

Reusable function with one or more
decision elements. Decisions that have
the same logic but depend on different
sub-input data or sub-decisions use
business knowledge models to determine
which procedure to follow.

External authorities, documents,
committees, or policies that regulate a
decision or business knowledge model.
Knowledge sources are references to
real-world factors rather than executable
business rules.

Information used in a decision node or a
business knowledge model. Input data
usually includes business-level concepts
or objects relevant to the business, such
as loan applicant data used in a lending
strategy.

Top-level decision containing a set of
reusable decisions published as a service
for invocation. A decision service can be
invoked from an external application or a
BPMN business process.

I Decision service l

Connection from an input data node or
decision node to another decision node
that requires the information.

Connection from a business knowledge
model to a decision node or to another
business knowledge model that invokes
the decision logic.

Connection from an input data node or a
decision node to a dependent knowledge
source or from a knowledge source to a
decision node, business knowledge
model, or another knowledge source.

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Description Notation

Artifacts Text annotation Explanatory note associated with an input
data node, decision node, business m"“
knowledge model, or knowledge source.

Association Connection from an input datanode, -« - - - - - - -
decision node, business knowledge
model, or knowledge source to a text
annotation.

The following table summarizes the permitted connectors between DRD elements:

Table 4.2. DRD connector rules

Starts from Connects to Connection type Example

Decision Decision Information
requirement Decision |———» Decision
Business Decision Knowledge
Busi
knowledge model requirement k"ﬁ‘ -----21 Decision

Business Bus) B
knowledge model krﬁa krﬁ.

Decision service Decision Knowledge rD i | 1
. ecision service | _ _ _ _ -
requirement > Decision

NN

Business Sl Busi
Decision service |.____: k
knowledge model |] &
Input data Decision Information
requirement Decision

27

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Starts from Connects to Connection type Example
Knowledge source Authorit
g | y ------ meuz.
requirement source

Knowledge source Decision Authority
requirement msuum“hdm‘. ------ Decision
Business Bust
knowledge model K“mﬂ ------ krﬁ.
Knowledge source
Knowledge |______ Knowledge
source source
Decision Text annotation Association
fon e ulmmiﬁon
Business Bust —_—
Text
knowledge model krﬁa ------- annotath

Knowledge source
Knowled Text
— “‘.
Input data
Text

The following example DRD illustrates some of these DMN components in practice:

28

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.1. Example DRD: Loan prequalification

quul'fﬁlhcaﬂun

£
5

2

Fl

Totes [Notes

Applicant -‘;L\c'tﬁa‘f;h i

The following example DRD illustrates DMN components that are part of a reusable decision service:

Figure 4.2. Example DRD: Phone call handling as a decision service

/ Call can be handled \

Call conditions
satisfied
Suitable
Sttt office
A
Banned
phone — s banned Is office open
numbers

-] r

1 nzmggr] ' Office , tlncomingcall ,

In a DMN decision service node, the decision nodes in the bottom segment incorporate input data from
outside of the decision service to arrive at a final decision in the top segment of the decision service
node. The resulting top-level decisions from the decision service are then implemented in any
subsequent decisions or business knowledge requirements of the DMN model. You can reuse DMN
decision services in other DMN models to apply the same decision logic with different input data and
different outgoing connections.

4.3. RULE EXPRESSIONS IN FEEL

Friendly Enough Expression Language (FEEL) is an expression language defined by the Object
Management Group (OMG) DMN specification. FEEL expressions define the logic of a decision in a
DMN model. FEEL is designed to facilitate both decision modeling and execution by assigning
semantics to the decision model constructs. FEEL expressions in decision requirements diagrams
(DRDs) occupy table cells in boxed expressions for decision nodes and business knowledge models.

29

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

For more information about FEEL in DMN, see the OMG Decision Model and Notation specification.

4.3.1. Data typesin FEEL

Friendly Enough Expression Language (FEEL) supports the following data types:
® Numbers
® Strings
® Boolean values
® Dates
® Time
® Date and time
® Days and time duration
® Years and months duration
® Functions
® Contexts
® Ranges (orintervals)

® |sts

NOTE

The DMN specification currently does not provide an explicit way of declaring a variable
as a function, context, range, or list, but Red Hat Process Automation Manager extends
the DMN built-in types to support variables of these types.

The following list describes each data type:

Numbers

Numbers in FEEL are based on the [EEE 754-2008 Decimal 128 format, with 34 digits of precision.
Internally, numbers are represented in Java as BigDecimals with MathContext DECIMAL128. FEEL
supports only one number data type, so the same type is used to represent both integers and
floating point numbers.

FEEL numbers use a dot (.) as a decimal separator. FEEL does not support -INF, +INF, or NaN. FEEL
uses null to represent invalid numbers.

Red Hat Process Automation Manager extends the DMN specification and supports additional
number notations:

® Scientific: You can use scientific notation with the suffix e<exps> or E<exps. For example,
1.2e3 is the same as writing the expression 1.2*10**3, but is a literal instead of an expression.

® Hexadecimal: You can use hexadecimal numbers with the prefix 0x. For example, Oxff is the

same as the decimal number 255. Both uppercase and lowercase letters are supported. For
example, OXFF is the same as Oxff.

30

https://www.omg.org/spec/DMN
http://ieeexplore.ieee.org/document/4610935/
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

e Type suffixes: You can use the type suffixes f, F, d, D, I, and L. These suffixes are ignored.

Strings

Strings in FEEL are any sequence of characters delimited by double quotation marks.

Example

I "John Doe"

Boolean values

FEEL uses three-valued boolean logic, so a boolean logic expression may have values true, false, or
null.

Dates

Date literals are not supported in FEEL, but you can use the built-in date() function to construct date
values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The formatis "YYYY-MM-DD" where YYYY is the year with four digits, MM is the number
of the month with two digits, and DD is the number of the day.

Example:

I date("2017-06-23")

Date objects have time equal to "00:00:00", which is midnight. The dates are considered to be local,
without a timezone.

Time
Time literals are not supported in FEEL, but you can use the built-in time() function to construct time
values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "hh:mm:ss[.uuu][(+-)hh:mm]" where hh s the hour of the day (from 00 to
23), mm is the minutes in the hour, and ss is the number of seconds in the minute. Optionally, the
string may define the number of milliseconds (uuu) within the second and contain a positive (+) or
negative () offset from UTC time to define its timezone. Instead of using an offset, you can use the
letter z to represent the UTC time, which is the same as an offset of -00:00. If no offset is defined,
the time is considered to be local.
Examples:

time("04:25:12")

time("14:10:00+02:00")
time("22:35:40.345-05:00")
time("15:00:30z")

Time values that define an offset or a timezone cannot be compared to local times that do not define
an offset or a timezone.

Date and time

Date and time literals are not supported in FEEL, but you can use the built-in date and time()
function to construct date and time values. Date and time strings in FEEL follow the format defined
in the XML Schema Part 2: Datatypes document. The format is "<date>T<time>", where <date> and
<time> follow the prescribed XML schema formatting, conjoined by T.

Examples:

I date and time("2017-10-22T723:59:00")

31

https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#dateTime

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

date and time("2017-06-13T14:10:00+02:00")
date and time("2017-02-05T722:35:40.345-05:00")
date and time("2017-06-13T15:00:30z")

Date and time values that define an offset or a timezone cannot be compared to local date and time
values that do not define an offset or a timezone.

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dateTime as a synonym of date and time.

Days and time duration

Days and time duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow
the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days,
hours, minutes and seconds. Months and years are not supported.

Examples:

duration("P1DT23H12M30S")
duration("P23D")

duration("PT12H")

duration("PT35M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dayTimeDuration as a synonym of days and time
duration.

Years and months duration

Years and months duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Years and months duration strings in FEEL
follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only
years and months. Days, hours, minutes, or seconds are not supported.

Examples:
duration("P3Y5M")
duration("P2Y")
duration("P10M")
duration("P25M")
IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword yearMonthDuration as a synonym of years and months
duration.

Functions

32

https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#duration

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

FEEL has function literals (or anonymous functions) that you can use to create functions. The DMN
specification currently does not provide an explicit way of declaring a variable as a function, but Red
Hat Process Automation Manager extends the DMN built-in types to support variables of functions.

Example:

I function(a,b)a +b

In this example, the FEEL expression creates a function that adds the parameters a and b and
returns the result.

Contexts

FEEL has context literals that you can use to create contexts. A contextin FEEL is a list of key and
value pairs, similar to maps in languages like Java. The DMN specification currently does not provide
an explicit way of declaring a variable as a context, but Red Hat Process Automation Manager
extends the DMN built-in types to support variables of contexts.

Example:

I {x:5,y:3}

In this example, the expression creates a context with two entries, X and y, representing a coordinate
in a chart.

In DMN 1.2, another way to create contexts is to create an item definition that contains the list of
keys as attributes, and then declare the variable as having that item definition type.

The Red Hat Process Automation Manager DMN API supports DMN IltemDefinition structural types
in a DMNContext represented in two ways:

e User-defined Java type: Must be a valid JavaBeans object defining properties and getters
for each of the components in the DMN ItemDefinition. If necessary, you can also use the
@FEELProperty annotation for those getters representing a component name which would
result in an invalid Java identifier.

e java.util.Map interface: The map needs to define the appropriate entries, with the keys
corresponding to the component name in the DMN ItemDefinition.

Ranges (or intervals)

FEEL has range literals that you can use to create ranges or intervals. A range in FEEL is a value that
defines a lower and an upper bound, where either can be open or closed. The DMN specification
currently does not provide an explicit way of declaring a variable as a range, but Red Hat Process
Automation Manager extends the DMN built-in types to support variables of ranges.

The syntax of a range is defined in the following formats:

range := interval_start endpoint '.." endpoint interval_end
interval_start := open_start | closed_start
open_start ="("|"T

closed start =T
interval_end :=open_end | closed_end

open_end =0T
closed_end =7
endpoint = expression

The expression for the endpoint must return a comparable value, and the lower bound endpoint
must be lower than the upper bound endpoint.

33

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

For example, the following literal expression defines an interval between 1 and 10, including the
boundaries (a closed interval on both endpoints):

I [1..10]

The following literal expression defines an interval between 1hour and 12 hours, including the lower
boundary (a closed interval), but excluding the upper boundary (an open interval):

I [duration("PT1H") .. duration("PT12H"))

You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal
expressions. For example, the following literal expression returns true if the value of a variable xis
between 0 and 100:

I xin[1..100]

Lists

FEEL has list literals that you can use to create lists of items. A listin FEEL is represented by a
comma-separated list of values enclosed in square brackets. The DMN specification currently does
not provide an explicit way of declaring a variable as a list, but Red Hat Process Automation Manager
extends the DMN built-in types to support variables of lists.

Example:

I [2,3,4,5]
All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be
accessed by index, where the first element is 1. Negative indexes can access elements starting from

the end of the list so that -1 is the last element.

For example, the following expression returns the second element of a list x:

I x[2]

The following expression returns the second-to-last element of a list x:

I x[-2]

Elements in a list can also be counted by the function count, which uses the list of elements as the
parameter.

For example, the following expression returns 4:

I count([2, 3,4,5]))

4.3.2. Built-in functions in FEEL

To promote interoperability with other platforms and systems, Friendly Enough Expression Language
(FEEL) includes a library of built-in functions. The built-in FEEL functions are implemented in the
Drools Decision Model and Notation (DMN) engine so that you can use the functions in your DMN
decision services.

34

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

The following sections describe each built-in FEEL function, listed in the format NAME(PARAMETERS
). For more information about FEEL functions in DMN, see the OMG Decision Model and Notation
specification.

4.3.2.1. Conversion functions

The following functions support conversion between values of different types. Some of these functions
use specific string formats, such as the following examples:

e date string: Follows the format defined in the XML Schema Part 2: Datatypes document, such
as 2020-06-01

® time string: Follows one of the following formats:
o Format defined in the XML Schema Part 2: Datatypes document, such as 23:59:00z

o Format for a local time defined by ISO 8601 followed by @ and an IANA Timezone, such as
00:01:00@Etc/UTC

e date time string: Follows the format of a date string followed by T and a time string, such as
2012-12-25T11:00:00Z

e duration string: Follows the format of days and time duration and years and months
duration defined in the XQuery 1.0 and XPath 2.0 Data Model , such as P1Y2M

date(from) -using date

Converts from to a date value.

Table 4.3. Parameters

Parameter Type Format
from string date string
Example

I date("2012-12-25") - date("2012-12-24") = duration("P1D")

date(from) -using date and time

Converts from to a date value and sets time components to null.

Table 4.4. Parameters

Parameter Type

from date and time

Example

I date(date and time("2012-12-25T11:00:00Z")) = date("2012-12-25")

https://www.omg.org/spec/DMN
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xpath-datamodel/#types

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

date(year, month, day)
Produces a date from the specified year, month, and day values.

Table 4.5. Parameters

Parameter Type

year number

month number

day number
Example

I date(2012, 12, 25) = date("2012-12-25")

date and time(date, time)
Produces a date and time from the specified date and ignores any time components and the
specified time.

Table 4.6. Parameters

Parameter Type
date date ordate and time
time time

Example

I date and time ("2012-12-24T23:59:00") = date and time(date("2012-12-24"), time("23:59:00"))

date and time(from)
Produces a date and time from the specified string.

Table 4.7. Parameters

Parameter Type Format
from string date time string
Example

date and time("2012-12-24T23:59:00") + duration("PT1M") = date and time("2012-12-
25T00:00:00")

36

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

time(from)

Produces a time from the specified string.

Table 4.8. Parameters

Parameter Type Format
from string time string
Example

time("23:59:002") + duration("PT2M") = time("00:01:00@Etc/UTC")

time(from)

Produces a time from the specified parameter and ignores any date components.

Table 4.9. Parameters

Parameter Type
from time ordate and time
Example

I time(date and time("2012-12-25T11:00:00Z")) = time("11:00:00Z")

time(hour, minute, second, offset?)

Produces a time from the specified hour, minute, and second component values.

Table 4.10. Parameters

Parameter Type

hour number

minute number

second number

offset (Optional) days and time duration or null
Example

time("23:59:00z") = time(23, 59, 0, duration("PTOH"))

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

number(from, grouping separator, decimal separator)

Converts from to a number using the specified separators.

Table 4.11. Parameters

Parameter Type

from string representing a valid number

grouping separator Space (), comma (,), period (.), or null

decimal separator Same types as grouping separator, but the values cannot match
Example
I number("1 000,0","",",") = number("1,000.0", ",", ".")

string(from)

Provides a string representation of the specified parameter.

Table 4.12. Parameters

Parameter Type

from Non-null value

Examples

string(1.1)="1.1"
string(null') = null

duration(from)

Converts from to a days and time duration value or years and months duration value.

Table 4.13. Parameters

Parameter Type Format
from string duration string
Examples

date and time("2012-12-24T23:59:00") - date and time("2012-12-22T03:45:00") = duration(
"P2DT20H14M")
duration("P2Y2M") = duration("P26M")

38

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

years and months duration(from, to)

Calculates the years and months duration between the two specified parameters.

Table 4.14. Parameters

Parameter Type

from date ordate and time
to date ordate and time
Example

I years and months duration(date("2011-12-22"), date("2013-08-24")) = duration("P1Y8M")

4.3.2.2. Boolean functions

The following functions support Boolean operations.

not(negand)
Performs the logical negation of the negand operand.

Table 4.15. Parameters

Parameter Type

negand boolean

Examples

not(true) = false
not(null) = null
4.3.2.3. String functions

The following functions support string operations.

NOTE
In FEEL, Unicode characters are counted based on their code points.

substring(string, start position, length?)

Returns the substring from the start position for the specified length. The first character is at
position value 1.

Table 4.16. Parameters

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Parameter Type

string string
start position number
length (Optional) number
Examples
substring("testing",3) = "sting"
substring("testing",3,3) = "sti"
substring("testing", -2, 1) ="n"
substring("\UO1F40Eab", 2) = "ab"

NOTE

L

In FEEL, the string literal "\UO1F40Eab" is the ab string (horse symbol followed by a
and b).

string length(string)
Calculates the length of the specified string.

Table 4.17. Parameters

Parameter Type

string string
Examples

string length("tes") = 3
string length("UO1F40Eab") = 3

upper case(string)

Produces an uppercase version of the specified string.

Table 4.18. Parameters

Parameter Type

string string

Example

I upper case("aBc4") = "ABC4"

40

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

lower case(string)

Produces a lowercase version of the specified string.

Table 4.19. Parameters

Parameter Type

string string

Example
I lower case("aBc4") = "abc4"

substring before(string, match)

Calculates the substring before the match.

Table 4.20. Parameters

Parameter Type

string string
match string
Examples

substring before("testing”, "ing") = "test"
substring before("testing", "xyz") ="

substring after(string, match)

Calculates the substring after the match.

Table 4.21. Parameters

Parameter Type

string string
match string
Examples

substring after("testing", "test") = "ing"
Substrlng after(llll, ||a||) —_m

41

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

replace(input, pattern, replacement, flags?)

Calculates the regular expression replacement.

Table 4.22. Parameters

Parameter Type

input string
pattern string
replacement string
flags (Optional) string
; NOTE
y This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.
Example

I replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") = "[1=ab][2=]cd"

contains(string, match)

Returns true if the string contains the match.

Table 4.23. Parameters

Parameter Type

string string
match string
Example

I contains("testing”, "to") = false
starts with(string, match)

Returns true if the string starts with the match

Table 4.24. Parameters

42

https://www.w3.org/TR/xquery-operators/#regex-syntax

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

string string
match string
Example

I starts with("testing", "te") = true

ends with(string, match)
Returns true if the string ends with the match.

Table 4.25. Parameters

Parameter Type

string string
match string
Example

I ends with("testing”, "g") = true

matches(input, pattern, flags?)

Returns true if the input matches the regular expression.

Table 4.26. Parameters

Parameter Type

input string
pattern string
flags (Optional) string
NOTE
4 This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.
Example

I matches("teeesting", "Me*sting") = true

https://www.w3.org/TR/xquery-operators/#regex-syntax

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

split(string, delimiter)

Returns a list of the original string and splits it at the delimiter regular expression pattern.

Table 4.27. Parameters

Parameter Type

string string
delimiter string for a regular expression pattern
NOTE
) This function uses regular expression parameters as defined in XQuery 1.0 and XPath
p 2.0 Functions and Operators.
Examples

split("John Doe", "\s") = ["John", "Doe"]
Split("a;b;c;;ll’ ";ll) = [llall,llbll,"cll,llll,ll"]

4.3.2.4. List functions

The following functions support list operations.

NOTE

In FEEL, the index of the first elementin alistis 1. The index of the last element in a list
can be identified as -1.

list contains(list, element)

Returns true if the list contains the element.

Table 4.28. Parameters

Parameter Type

list list
element Any type, including null
Example

I list contains([1,2,3], 2) = true

count(list)

Counts the elements in the list.

44

https://www.w3.org/TR/xquery-operators/#regex-syntax

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Table 4.29. Parameters

Parameter

list list

Examples

count([1,2,3]) =3
count([])=0
count([1,[2,3]]) =2

min(list)

Returns the minimum comparable element in the list.

Table 4.30. Parameters

Parameter Type

list list

Alternative signature

I min(e, e2, ...,eN)

max(list)

Returns the maximum comparable element in the list.

Table 4.31. Parameters

Parameter Type

list list

Alternative signature
I max(el, e2, ...,eN)
Examples

max(1,2,3) =3
max([]) = null

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

sum(list)

Returns the sum of the numbers in the list.

Table 4.32. Parameters

Parameter Type

list list of number elements

Alternative signature

I sum(ni, n2,....,nN)

mean(list)

Calculates the average (arithmetic mean) of the elements in the list.

Table 4.33. Parameters

Parameter Type

list list of number elements

Alternative signature

I mean(ni, n2, ..., nN)

all(list)

Returns true if all elements in the list are true.

Table 4.34. Parameters

46

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

list list ofboolean elements

Alternative signature
I all(b1, b2, ..., bN)
Examples

all([false,null,true]) = false
all(true) = true
all([true]) = true

(

(

all([]) = true
all(0) =null
any(list)

Returns true if any element in the list is true.

Table 4.35. Parameters

Parameter Type

list list ofboolean elements

Alternative signature
I any(b1,b2,...,bN)
Examples

any([false,null,true]) = true

(
any(false) = false
any([]) = false
any(0) =null

sublist(list, start position, length?)

Returns the sublist from the start position, limited to the length elements.

Table 4.36. Parameters

Parameter Type

list list

start position number

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Parameter Type

length (Optional) number

Example

sublist([4,5,6], 1, 2) = [4,5]

append(list, item)

Creates a list that is appended to the item or items.

Table 4.37. Parameters

Parameter Type

list list
item Any type
Example

append([1],2,3) =[1,2,3]

concatenate(list)

Creates a list that is the result of the concatenated lists.

Table 4.38. Parameters

Parameter

list list

Example

concatenate([1,2],[3]) = [1,2,3]

insert before(list, position, newltem)

Creates a list with the newltem inserted at the specified position.

Table 4.39. Parameters

Parameter Type

list list

position number

48

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

newltem Any type

Example

I insert before([1,3],1,2) =[2,1,3]

remove(list, position)

Creates a list with the removed element excluded from the specified position.

Table 4.40. Parameters

Parameter Type

list list
position number
Example

remove([1,2,3],2) =[1,3]

reverse(list)

Returns a reversed list.

Table 4.41. Parameters

Parameter

list list

Example

I reverse([1,2,3]) = [3,2,1]

index of(list, match)

Returns indexes matching the element.

Parameters

e list of type list
e match of any type

Table 4.42. Parameters

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Parameter Type

list list
match Any type
Example

index of([1,2,3,2],2) = [2,4]

union(list)
Returns a list of all the elements from multiple lists and excludes duplicates.

Table 4.43. Parameters

Parameter Type

list list

Example

union([1,2],[2,3]) = [1,2,3]

distinct values(list)
Returns a list of elements from a single list and excludes duplicates.

Table 4.44. Parameters

Parameter

list list

Example

I distinct values([1,2,3,2,1]) =[1,2,3]

flatten(list)
Returns a flattened list.

Table 4.45. Parameters

Parameter

list list

Example

50

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

I flatten([[1,2],[[3]], 4]) = [1,2,3,4]

product(list)

Returns the product of the numbers in the list.

Table 4.46. Parameters

Parameter Type

list list of number elements

Alternative signature

I product(n1, n2, ..., nN)

Examples
product([2, 3, 4]) = 24
product(2, 3,4) =24

median(list)
Returns the median of the numbers in the list. If the number of elements is odd, the result is the
middle element. If the number of elements is even, the result is the average of the two middle
elements.

Table 4.47. Parameters

Parameter Type

list list of number elements

Alternative signature
I median(n1, n2, ..., nN)

Examples

median(
median(

stddev(list)

Returns the standard deviation of the numbers in the list.

Table 4.48. Parameters

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Parameter Type

list list of number elements

Alternative signature

stddev(n1, n2, ..., nN)

Examples
stddev(2, 4,7,5) = 2.081665999466132735282297706979931
stddev([47]) = null
stddev(47) = null
stddev([]) = null
mode(list)

Returns the mode of the numbers in the list. If multiple elements are returned, the numbers are
sorted in ascending order.

Table 4.49. Parameters

Parameter Type

list list of number elements

Alternative signature

I mode(n1, n2, ..., nN)

4.3.2.5. Numeric functions

The following functions support number operations.

decimal(n, scale)

Returns a number with the specified scale.

Table 4.50. Parameters

Parameter

n number

52

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

scale number in the range [-6111..6176]
NOTE
4 This function is implemented to be consistent with the FEEL:number definition for
rounding decimal numbers to the nearest even decimal number.
Examples
decimal(1/3,2) = .33
decimal(1.5,0)=2
decimal(2.5,0)=2
decimal(1. 035 2)=1.04
decimal(1.045,2) = 1.04
decimal(1.055,2) = 1.06
decimal(1.065,2) = 1.06
floor(n)

Returns the greatest integer that is less than or equal to the specified number.

Table 4.51. Parameters

Parameter Type

n number

Examples

floor(1.5) =
floor(-1.5)=-2

ceiling(n)

Returns the smallest integer that is greater than or equal to the specified number.

Table 4.52. Parameters

Parameter Type

n number
Examples
ceiling(1.5) =
ceiling(-1.5) = -1

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager
abs(n)
Returns the absolute value.

Table 4.53. Parameters

Parameter Type

n number, days and time duration, oryears and months duration

Examples

abs(10) =

abs(-1)— 10

abs(@"PT5H") = @"PT5H"
abs(@"-PT5H") = @"PT5H"

modulo(dividend, divisor)

Returns the remainder of the division of the dividend by the divisor. If either the dividend or divisor is
negative, the result is of the same sign as the divisor.

NOTE

? This function is also expressed as modulo(dividend, divisor) = dividend -
divisor*floor(dividen d/divisor).

Table 4.54. Parameters

Parameter Type

dividend number
divisor number
Examples

modulo(12,5) =2

modulo(-12,5)=3

modulo(12,-5)= -3

modulo(-12,-5)= -2

modulo(10.1, 4.5)=

modulo(-10.1,4.5)= 3.4

modulo(10.1, -4.5)=-3.4

modulo(-10.1, -4.5)=-1.1

sqrt(number)

Returns the square root of the specified number.

Table 4.55. Parameters

54

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

n number
Example
I sqri(16) =4

log(number)

Returns the logarithm of the specified number.

Table 4.56. Parameters

Parameter Type
n number
Example

I decimal(log(10),2)=2.30

exp(number)

Returns Euler's number e raised to the power of the specified number.

Table 4.57. Parameters

Parameter

n number
Example
I decimal(exp(5),2) = 148.41

odd(number)

Returns true if the specified number is odd.

Table 4.58. Parameters

Parameter Type
n number
Examples

Ul

5

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

odd(5) = true
odd(2) = false

even(number)

Returns true if the specified number is even.

Table 4.59. Parameters

Parameter

n number

Examples

even(5) = false
even (2) = true

4.3.2.6. Date and time functions

The following functions support date and time operations.

is(valuel, value2)
Returns true if both values are the same element in the FEEL semantic domain.

Table 4.60. Parameters

Parameter Type

value1 Any type
value2 Any type
Examples

is(date("2012-12-25"), time("23:00:50")) = false
is(date("2012-12-25"), date("2012-12-25")) = true
is(time("23:00:502"), time("23:00:50")) = false

4.3.2.7. Range functions

The following functions support temporal ordering operations to establish relationships between single
scalar values and ranges of such values. These functions are similar to the components in the Health
Level Seven (HL7) International Clinical Quality Language (CQL) 1.4 syntax.

before()

Returns true when an element A is before an element B and when the relevant requirements for
evaluating to true are also met.

56

https://cql.hl7.org/08-a-cqlsyntax.html

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Signatures

a. before(point1 point2)
b. before(point range)
c. before(range point)

d. before(range1,range2)

Requirements for evaluating totrue
a. point1 < point2
b. point < range.start or (point = range.start and not(range.start included))
c. range.end < point or (range.end = point and not(range.end included))

d. rangel.end < range2.start or ((not(range1.end included) or not(range2.start included))
and range1.end = range2.start)

Examples

before(1, 10) = true

before(10, 1) = false

before(1, [1..10]) = false

before(1, (1..10]) = true

before(1, [5..10]) = true

before([1..10], 10) = false

before([1..10), 10) = true

before([1..10], 15) = true

before([1..10], [15..20]) = true

before([1..10], [10..20]) = false

before([1..10), [10..20]) = true

before([1..10], (10..20]) = true
after()

Returns true when an element A is after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. after(point1 point2)
b. after(point range)
c. after(range, point)

d. after(range1l range2)

Requirements for evaluating totrue
a. point1 > point2

b. point > range.end or (point = range.end and not(range.end included))

57

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

c. range.start > point or (range.start = point and not(range.start included))

d. range1l.start > range2.end or ((not(range1.start included) or not(range2.end included))
and range1.start = range2.end)

Examples
after(10, 5) = true
after(5,10) = false
after(12, [1..10]) = true

after(10, [1..10)) = true

(

(

(1

(1
after(10, [1..10]) = false
after([11..20], 12) = false
after([11..20], 10) = true
after((11..20], 11) = true
after([11..20], 11) = false
after([11..20], [1..10]) = true
after([1..10], [11..20]) = false
after([11..20], [1..11)) = true
after((11..20], [1..11]) = true

meets()

Returns true when an element A meets an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. meets(rangei, range2)

Requirements for evaluating totrue

a. rangel.end included and range2.start included and range1.end = range2.start

Examples
meets([1..5], [5..10]) = tru
meets([1..5), [5..10]) = false
meets([1..5], (5..10]) = false
meets([1..5], [6..10]) = false
met by()

Returns true when an element A is met by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. met by(range1, range2)

Requirements for evaluating totrue
a. range1l.start included and range2.end included and range1.start = range2.end

Examples

58

met by([5..10], [1..5])

met by([5..10], [1..5))

met by((5..10],[1..5]) =

met by([6..10], [1..5]) =
overlaps()

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Returns true when an element A overlaps an element B and when the relevant requirements for

evaluating to true are also met.

Signatures

a. overlaps(range1, range2)

Requirements for evaluating totrue

a. (rangeil.end > range2.start or (range1l.end = range2.start and (range1.end included or
range2.end included))) and (range1.start < range2.end or (range1.start = range2.end
and range1.start included and range2.end included))

Examples
overlaps([1..5], [3..8])
overlaps([3..8], [1..5])
overlaps([1..8], [3..5])
overlaps([3..5], [1..8])
overlaps([1..5], [6..8])
overlaps([6..8], [1..5])
overlaps([1..5], [5..8])
overlaps([1..5], (5..8])
overlaps([1..5), [5..8])
overlaps([1..5), (5..8])
overlaps([5..8], [1..5])
overlaps((5..8], [1..5])
overlaps([5..8], [1..5))
overlaps((5..8], [1..5))

overlaps before()

Returns true when an element A overlaps before an element B and when the relevant requirements

for evaluating to true are also met.

Signatures

a. overlaps before(range1 range2)

Requirements for evaluating totrue

a. (rangei.start < range2.start or (rangei.start = range2.start and range1.start included
and range2.start included)) and (range1.end > range2.start or (range1.end =
range2.start and rangei.end included and range2.start included)) and (rangei.end <
range2.end or (rangel.end = range2.end and (not(range1.end included) or range2.end

included)))

Examples

59

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

overlaps before([1..5], [3..8]) = true
overlaps before([1..5], [6..8]) = false
overlaps before([1..5], [5..8]) = true
overlaps before([1..5], (5..8]) = false
overlaps before([1..5), [5..8]) = false
overlaps before([1..5), (1..5]) = true
overlaps before([1..5], (1..5]) = true
overlaps before([1..5), [1..5]) = false
overlaps before([1..5], [1..5]) = false

overlaps after()

Returns true when an element A overlaps after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. overlaps after(range1 range2)

Requirements for evaluating totrue

a. (range2.start < range1.start or (range2.start = range1.start and range2.start included
and not(range1.start included))) and (range2.end > range1.start or (range2.end =
rangel.start and range2.end included and range1.start included)) and (range2.end <
range1.end or (range2.end = rangei.end and (not(range2.end included) or range1.end

included)))
Examples
overlaps after([3..8], [1..5])= true
overlaps after([6..8], [1..5])= false
overlaps after([5..8], [1..5])= true
overlaps after((5..8], [1..5])= false
overlaps after([5..8], [1..5))= false
overlaps after((1..5], [1..5))= true
overlaps after((1..5], [1..5])= true
overlaps after([1..5], [1..5))= false
overlaps after([1..5], [1..5])= false
overlaps after((1..5), [1..5])= false
overlaps after((1..5], [1..6])= false
overlaps after((1..5], (1..5])= false
overlaps after((1..5], [2..5])= false

finishes()

Returns true when an element A finishes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. finishes(point, range)

b. finishes(range1, range2)

Requirements for evaluating totrue

60

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

a. range.end included and range.end = point

b. rangel.end included = range2.end included and range1.end = range2.end and (
range1l.start > range2.start or (range1.start = range2.start and (not(range1.start
included) or range2.start included)))

Examples

finishes(10, [1..10]) = true
finishes(10, [1..10)) = false

(

(
finishes([5..10], [1..10]) = true
finishes([5..10), [1..10]) = false
finishes([5..10), [1..10)) = true
finishes([1..10], [1..10]) = true
finishes((1..10], [1..10]) = true

finished by()

Returns true when an element A is finished by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. finished by(range, point)

b. finished by(range1 range2)

Requirements for evaluating totrue

a. range.end included and range.end = point

b. rangei.end included = range2.end included and rangei.end = range2.end and (
range1l.start < range2.start or (rangei.start = range2.start and (range1.start included or
not(range2.start included))))

Examples
finished by([1..10], 10) = true
finished by([1..10), 10) = false
finished by([1..10], [5..10]) = true
finished by([1..10], [5..10)) = false
finished by([1..10), [5..10)) = true
finished by([1..10], [1..10]) = true
finished by([1..10], (1..10]) = true
includes()

Returns true when an element A includes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. includes(range, point)

b. includes(range1, range2)

61

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Requirements for evaluating totrue

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range1l.start < range2.start or (range1.start = range2.start and (range1.start included
or not(range2.start included)))) and (range1.end > range2.end or (rangei.end =
range2.end and (range1.end included or not(range2.end included))))

Examples
includes([1..10], 5) = true
includes([1..10], 12) = false
includes([1..10], 1) = true
includes([1..10], 10) = true
includes((1..10], 1) = false
includes([1..10), 10) = false
includes([1..10], [4..6]) = true
includes([1..10], [1..5]) = true
includes((1..10], (1..5]) = true
includes([1..10], (1..10)) = true
includes([1..10), [5..10)) = true
includes([1..10], [1..10)) = true
includes([1..10], (1..10]) = true
includes([1..10], [1..10]) = true
during()

Returns true when an element A is during an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. during(point, range)

b. during(range1 range2)

Requirements for evaluating totrue

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range2.start < rangei.start or (range2.start = range1.start and (range2.start included
or not(range1.start included)))) and (range2.end > range1.end or (range2.end =
rangei.end and (range2.end included or not(range1.end included))))

Examples
during(5, [1..10]) = true
during(12, [1..10]) = false
during(1, [1..10]) = true
during(10, [1..10]) = true
during(1, (1..10]) = false
during(10, [1..10)) = false
during([4..6], [1..10]) = true
during([1..5], [1..10]) = true

62

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

during((1..5], (1..10]) = true

during((1..10), [1..10]) = true

during([5..10), [1..10)) = true

during([1..10), [1..10]) = true

during((1..10], [1..10]) = true

during([1..10], [1..10]) = true
starts()

Returns true when an element A starts an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. starts(point, range)

b. starts(range1l, range2)

Requirements for evaluating totrue

a. range.start = point and range.start included

b. range1l.start = range2.start and range1.start included = range2.start included and (
rangel.end < range2.end or (rangei.end = range2.end and (not(range1.end included)
or range2.end included)))

Examples

= true

(

starts(1, (1..10]) = false
starts(2, [1..10]) = false
starts([1..5], [1..10]) = true
starts((1..5], (1..10]) = true
starts((1..5], [1..10]) = false
starts([1..5], (1..10]) = false
starts([1..10], [1..10]) = true
starts([1..10), [1..10]) = true
starts((1..10), (1..10)) = true

started by()

Returns true when an element A is started by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. started by(range, point)

b. started by(rangei, range2)

Requirements for evaluating totrue

a. range.start = point and range.start included

63

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

b. range1l.start = range2.start and range1.start included = range2.start included and (
range2.end < range1.end or (range2.end = rangei.end and (not(range2.end included)
or rangel.end included)))

Examples
started by([1..10], 1) = true
started by((1..10], 1) = false
started by([1..10], 2) = false
started by([1..10], [1..5]) = true
started by((1..10], (1..5]) = true
started by([1..10], (1..5]) = false
started by((1..10], [1..5]) = false
started by([1..10], [1..10]) = true
started by([1..10], [1..10)) = true
started by((1..10), (1..10)) = true
coincides()

Returns true when an element A coincides with an element B and when the relevant requirements
for evaluating to true are also met.

Signatures

a. coincides(point1, point2)

b. coincides(range1, range2)

Requirements for evaluating totrue
a. point1 = point2

b. range1l.start = range2.start and range1.start included = range2.start included and
rangel.end = range2.end and range1.end included = range2.end included

Examples
coincides(5, 5) = true
coincides(3, 4) = false
coincides([1..5], [1..5]) = true
coincides((1..5), [1..5]) = false
coincides([1..5], [2..6]) = false

4.3.2.8. Temporal functions
The following functions support general temporal operations.

day of year(date)

Returns the Gregorian number of the day of the year.

Table 4.61. Parameters

64

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

date date ordate and time

Example

I day of year(date(2019, 9, 17)) = 260

day of week(date)

Returns the Gregorian day of the week: "Monday", "Tuesday”, "Wednesday", "Thursday",
"Friday", "Saturday", or "Sunday".

Table 4.62. Parameters

Parameter Type

date date ordate and time

Example

I day of week(date(2019, 9, 17)) = "Tuesday"

month of year(date)

Returns the Gregorian month of the year: "January”, "February", "March”, "April”, "May", "June",
"July", "August”, "September”, "October”, "November", or "December".

Table 4.63. Parameters

Parameter Type

date date ordate and time

Example

month of year(date(2019, 9, 17)) = "September"

month of year(date)
Returns the Gregorian week of the year as defined by ISO 8601.

Table 4.64. Parameters

Parameter Type

date date ordate and time

Examples

o))

5

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

week of year(date
week of year(date
week of year(date

(2019, 9, 1

(

(
week of year(date

(

(

7)) =38

2003, 12, 29)) =

2004, 1,4)) = 1
)) 53
))
))

2005, 1, 1
2005, 1, 3
2005, 1,9

week of year(date
week of year(date

P

4.3.2.9. Sort functions
The following functions support sorting operations.

sort(list, precedes)

Returns a list of the same elements but ordered according to the sorting function.

Table 4.65. Parameters

Parameter Type

list list
precedes function
Example

sort(list: [3,1,4,5,2], precedes: function(x,y) x <y) = [1,2,3,4,5]

4.3.2.10. Context functions
The following functions support context operations.

get value(m, key)

Returns the value from the context for the specified entry key.

Table 4.66. Parameters

Parameter Type

m context
key string
Examples

get value({key1 : "value1"}, "key1") = "value1"
get value({key1 : "value1"}, "unexistent-key") = null

get entries(m)

66

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Returns a list of key-value pairs for the specified context.

Table 4.67. Parameters

Parameter Type

m context

Example

get entries({key1 : "value1", key2 : "value2"}) = [{ key : "key1", value : "valuei" }, {key : "key2",
value : "value2"} |

4.3.3. Variable and function names in FEEL

Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports
spaces and a few special characters as part of variable and function names. A FEEL name must start with
aletter, ?, or _ element. The unicode letter characters are also allowed. Variable names cannot start with
a language keyword, such as and, true, or every. The remaining characters in a variable name can be any
of the starting characters, as well as digits, white spaces, and special characters such as +,-,/,% ', and ..

For example, the following names are all valid FEEL names:
® Age
® Birth Date
® Flight 234 pre-check procedure
Several limitations apply to variable and function names in FEEL:

Ambiguity
The use of spaces, keywords, and other special characters as part of names can make FEEL
ambiguous. The ambiguities are resolved in the context of the expression, matching names from left
to right. The parser resolves the variable name as the longest name matched in scope. You can use (
) to disambiguate names if necessary.

Spaces in names

The DMN specification limits the use of spaces in FEEL names. According to the DMN specification,
names can contain multiple spaces but not two consecutive spaces.

In order to make the language easier to use and avoid common errors due to spaces, Red Hat
Process Automation Manager removes the limitation on the use of consecutive spaces. Red Hat
Process Automation Manager supports variable names with any number of consecutive spaces, but
normalizes them into a single space. For example, the variable references First Name with one space
and First Name with two spaces are both acceptable in Red Hat Process Automation Manager.

Red Hat Process Automation Manager also normalizes the use of other white spaces, like the non-
breakable white space that is common in web pages, tabs, and line breaks. From a Red Hat Process

Automation Manager FEEL engine perspective, all of these characters are normalized into a single
white space before processing.

The keyword in

67

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

The keyword in is the only keyword in the language that cannot be used as part of a variable name.
Although the specifications allow the use of keywords in the middle of variable names, the use of in
in variable names conflicts with the grammar definition of for, every and some expression
constructs.

4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic
of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

The following are the types of DMN boxed expressions:
® Decision tables
® |iteral expressions
® Contexts
® Relations
® Functions
® |nvocations

® |sts

NOTE

Red Hat Process Automation Manager does not provide boxed list expressions in
Business Central, but supports a FEEL list data type that you can use in boxed literal
expressions. For more information about the list data type and other FEEL data types in
Red Hat Process Automation Manager, see Section 4.3.1, “Data types in FEEL".

All Friendly Enough Expression Language (FEEL) expressions that you use in your boxed expressions
must conform to the FEEL syntax requirements in the OMG Decision Model and Notation specification.

4.4.1. DMN decision tables

A decision table in DMN is a visual representation of one or more business rules in a tabular format. You
use decision tables to define rules for a decision node that applies those rules at a given pointin the
decision model. Each rule consists of a single row in the table, and includes columns that define the
conditions (input) and outcome (output) for that particular row. The definition of each row is precise
enough to derive the outcome using the values of the conditions. Input and output values can be FEEL
expressions or defined data type values.

For example, the following decision table determines credit score ratings based on a defined range of a
loan applicant’s credit score:

68

https://www.omg.org/spec/DMN

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.3. Decision table for credit score rating

Hit policy

Rules

Decision Tabhle l

Input colurmn

Output column

|

Credit Score.FICO

(number)

== 750

[700..750)

[650. . 700)

[600. .650)

< 608

Credit Score Rating
(Credit_Score_Rating)

"Excellent"

"Good"

"Fair"

"FPoor"

"Bad"

Input and output names

-
Description s and data types

- ‘/alues

The following decision table determines the next step in a lending strategy for applicants depending on
applicant loan eligibility and the bureau call type:

Figure 4.4. Decision table for lending strategy

Strategy (Decision

Table)

Eligibility
fstring]

"IMELIGIBLE"

"ELIGIBLE"

"ELIGIBLE"

BureauCallType Strategy
{string) (tStrategy)
- "DECLINE"
"FULL", "MINI" "BUREAU"
"MONE" "THROUGH"

Description

Disregard BureauCallType when ineligible.

The following decision table determines applicant qualification for a loan as the concluding decision
node in a loan prequalification decision model:

69

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 4.5. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)
Loan Pre-Qualification
ot
E Credit Score Rating . Back End Ratio Front End Ratio s i Description
(Credit_Score_Rating) (Back_End_Ratio) (Front_End_Ratio) Qualification FETsam P
(string) (string)
"Poor", "Bad" - - "Mot Qualified" "Credit Score too low."
1
"Insufficient" |"Sufficient" "Not Qualified" "Debt to income ratio is too high."
2
- "Sufficient" "Insufficient" "Mot Qualified" '_'Hortga%e ﬁayment to income ratio
3 is tod Righ."
- "Insufficient" | "Insufficient" "Not Qualified" "Debt to income ratio is too high
4 AND mortgage payment to income
ratio 1s too high."
"Fair!", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,,
5 "Excellent™ prequalified for the requested loan.

Decision tables are a popular way of modeling rules and decision logic, and are used in many
methodologies (such as DMN) and implementation frameworks (such as Drools).

IMPORTANT

Red Hat Process Automation Manager supports both DMN decision tables and Drools-
native decision tables, but they are different types of assets with different syntax
requirements and are not interchangeable. For more information about Drools-native
decision tables in Red Hat Process Automation Manager, see Designing a decision service
using spreadsheet decision tables.

4.4.1.1. Hit policies in DMN decision tables

Hit policies determine how to reach an outcome when multiple rules in a decision table match the
provided input values. For example, if one rule in a decision table applies a sales discount to military
personnel and another rule applies a discount to students, then when a customer is both a student and in
the military, the decision table hit policy must indicate whether to apply one discount or the other
(Unique, First) or both discounts (Collect Sum). You specify the single character of the hit policy (U, F,
C+) in the upper-left corner of the decision table.

The following decision table hit policies are supported in DMN:
® Unique (U): Permits only one rule to match. Any overlap raises an error.

® Any (A): Permits multiple rules to match, but they must all have the same output. If multiple
matching rules do not have the same output, an error is raised.

® Priority (P): Permits multiple rules to match, with different outputs. The output that comes first
in the output values list is selected.

® First (F): Uses the first match in rule order.

® Collect (C+, C>, C<, C#):Aggregates output from multiple rules based on an aggregation
function.

o Collect (C): Aggregates values in an arbitrary list.

o Collect Sum (C+): Outputs the sum of all collected values. Values must be numeric.

70

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-decision-tables

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

o Collect Min (C<): Outputs the minimum value among the matches. The resulting values
must be comparable, such as numbers, dates, or text (lexicographic order).

o Collect Max (C>): Outputs the maximum value among the matches. The resulting values
must be comparable, such as numbers, dates or text (lexicographic order).

o Collect Count (C#): Outputs the number of matching rules.

4.4.2. Boxed literal expressions

A boxed literal expression in DMN is a literal FEEL expression as text in a table cell, typically with a
labeled column and an assigned data type. You use boxed literal expressions to define simple or
complex node logic or decision data directly in FEEL for a particular node in a decision. Literal FEEL
expressions must conform to FEEL syntax requirements in the OMG Decision Model and Notation
specification.

For example, the following boxed literal expression defines the minimum acceptable PITI calculation
(principal, interest, taxes, and insurance) in a lending decision, where acceptable rate is a variable
defined in the DMN model:

Figure 4.6. Boxed literal expression for minimum PITI value

Lender Acceptable PITI (Literal expression)

Lender Acceptable PITI
frAumber)

decimal(acceptable rate, 2)

The following boxed literal expression sorts a list of possible dating candidates (soul mates) in an online
dating application based on their score on criteria such as age, location, and interests:

Figure 4.7. Boxed literal expression for matching online dating candidates

Sorted Souls (Literal expression)

Sorted Souls
(tCandidates)

sort(Candidate Souls, function(cl, c2) cl.Score >= c2,5core)

4.4.3. Boxed context expressions

A boxed context expression in DMN is a set of variable names and values with a result value. Each name-

71

https://www.omg.org/spec/DMN

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

value pair is a context entry. You use context expressions to represent data definitions in decision logic
and set a value for a desired decision element within the DMN decision model. A value in a boxed context
expression can be a data type value or FEEL expression, or can contain a nested sub-expression of any
type, such as a decision table, a literal expression, or another context expression.

For example, the following boxed context expression defines the factors for sorting delayed passengers
in a flight-rebooking decision model, based on defined data types (tPassengerTable,
tFlightNumberList):

Figure 4.8. Boxed context expression for flight passenger waiting list

Prioritized Waiting List (Conrext)

Prioritized Waiting List
(tPassengerTable)

Cancelled Flights Flight List[Status = "cancelled"].Flight Number
(tFlightNumbert ist)

Waiting List Passenger List[list contains(Cancelled Flights, Flight Number)]
(tPassengerTable)

sort{ Waiting List, Passenger Priority)

<result>

The following boxed context expression defines the factors that determine whether a loan applicant can
meet minimum mortgage payments based on principal, interest, taxes, and insurance (PITI), represented
as a front-end ratio calculation with a sub-context expression:

Figure 4.9. Boxed context expression for front-end client PITI ratio

Front End Ratio (Context)

Front End Ratio

(Front_End_Ratio)
PITI
pmt ERe uested Product, Amount"‘%(Requested Product.Rate/100)/12))/
1 1-(1/(1+{Requested Product Rate/100)/12)**-Requested Product.Term))
fnumiber)
Client PITI tax Applicant Data.Monthly. Tax
1 (number) 2 (number)

insurance | Applicant Data.Monthly. Insurance
(number)

income Applicant Data.Monthly. Income
(number)

if client PITI <= Lender Acceptable PITI()
<resulft> then "Sufficient"
else "Insufficient"

4.4.4. Boxed relation expressions

A boxed relation expression in DMN is a traditional data table with information about given entities, listed
as rows. You use boxed relation tables to define decision data for relevant entities in a decision at a
particular node. Boxed relation expressions are similar to context expressions in that they set variable
names and values, but relation expressions contain no result value and list all variable values based on a
single defined variable in each column.

72

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

For example, the following boxed relation expression provides information about employees in an
employee rostering decision:

Figure 4.10. Boxed relation expression with employee information

Employee Information (relation)

Mame Dept Salary
{string) {string) frumber)
"John" "Sales” 100000
1
"Mary" "Finances" 120000
2

4.4.5. Boxed function expressions

A boxed function expression in DMN is a parameterized boxed expression containing a literal FEEL
expression, a nested context expression of an external JAVA or PMML function, or a nested boxed
expression of any type. By default, all business knowledge models are defined as boxed function
expressions. You use boxed function expressions to call functions on your decision logic and to define all
business knowledge models.

For example, the following boxed function expression determines airline flight capacity in a flight-
rebooking decision model:

Figure 4.11. Boxed function expression for flight capacity

Flight Capacity (function)

Flight Capacity
{boolean)

(flight, rebooked list)

flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number])

The following boxed function expression contains a basic Java function as a context expression for
determining absolute value in a decision model calculation:

73

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 4.12. Boxed function expression for absolute value

Absolute (Function)

Absolute
frumber)
]
(value)
class "Java. lang.Math"
l {(string)
method signature "abs(double)"
2 .
{(string)

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 4.13. Boxed function expression for installment calculation in business knowledge model

InstallmentCalculation (Function)

InstallmentCalculation
fnumber)

(ProductType, Rate, Term, Amount)

MonthlyFee if ProductType ="STANDARD LOAN" then 20,00

(number) else 1f ProductType ="SPECIAL LOAN" then 25.00 else null

MonthlyRepayment (Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)
fnumber)

MonthlyRepayment+MonthlyFee

The following boxed function expression uses a PMML model included in the DMN file to define the
minimum acceptable PITI calculation (principal, interest, taxes, and insurance) in a lending decision:

74

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.14. Boxed function expression with an included PMML model in business knowledge model

PITI ¢Function)

PITI
frumber)

(fid1, fid2, fld3)

document

1 (string) PITI Model
model i "
2 (string) LinReg

4.4.6. Boxed invocation expressions

A boxed invocation expression in DMN is a boxed expression that invokes a business knowledge model.
A boxed invocation expression contains the name of the business knowledge model to be invoked and a
list of parameter bindings. Each binding is represented by two boxed expressions on a row: The box on
the left contains the name of a parameter and the box on the right contains the binding expression
whose value is assigned to the parameter to evaluate the invoked business knowledge model. You use
boxed invocations to invoke at a particular decision node a business knowledge model defined in the
decision model.

For example, the following boxed invocation expression invokes a Reassign Next Passenger business
knowledge model as the concluding decision node in a flight-rebooking decision model:

75

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 4.15. Boxed invocation expression to reassign flight passengers

Rebooked Passengers (invocation)

Rebooked Passengers
(tPassengerTable)
#
Reassign Next Passenger
Waiting List Frioritized Waiting List
1
(tPassengerTable)
5 Reassigned Passengers List []
(tPassengerTabia)
3
{tFlight Table)

The following boxed invocation expression invokes an InstallmentCalculation business knowledge
model to calculate a monthly installment amount for a loan before proceeding to affordability decisions:

Figure 4.16. Boxed invocation expression for required monthly installment

RequiredMonthlyInstallment (invocation)

RequiredMonthlylnstallment
fnumber)
#
InstallmentCalculation

, ProductType RequestedProduct. ProductType
[string)

5 Rate ReguestedProduct. Rate
(number)

2 Term RequestedProduct. Term
(strig)

4 Amount ReguestedProduct. Amount
fnumber)

4.4.7. Boxed list expressions

A boxed list expression in DMN represents a FEEL list of items. You use boxed lists to define lists of
relevant items for a particular node in a decision. You can also use literal FEEL expressions for list items
in cells to create more complex lists.

76

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

For example, the following boxed list expression identifies approved credit score agencies in a loan
application decision service:

Figure 4.17. Boxed list expression for approved credit score agencies

Approved credit score agencies (List)

: "Acme Agency, Inc."
5 "Top Scores, Inc."
3 "Global Scoring, Inc."

The following boxed list expression also identifies approved credit score agencies but uses FEEL logic
to define the agency status (Inc., LLC, SA, GA) based on a DMN input node:

Figure 4.18. Boxed list expression using FEEL logic for approved credit score agency status

Approved credit score agencies (List)

: "Acme Agency" + suffix
5 "Top Scores" + suffix
3 "Global Scoring" + suffix

Approved credit
sCore agencies

4.5. DMN MODEL EXAMPLE

The following is a real-world DMN model example that demonstrates how you can use decision
modeling to reach a decision based on input data, circumstances, and company guidelines. In this
scenario, a flight from San Diego to New York is canceled, requiring the affected airline to find alternate
arrangements for its inconvenienced passengers.

77

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

First, the airline collects the information necessary to determine how best to get the travelers to their
destinations:

Input data

e List of flights

® List of passengers

Decisions

® Prioritize the passengers who will get seats on a new flight

® Determine which flights those passengers will be offered

Business knowledge models

® The company process for determining passenger priority

® Any flights that have space available

® Company rules for determining how best to reassign inconvenienced passengers
The airline then uses the DMN standard to model its decision process in the following decision
requirements diagram (DRD) for determining the best rebooking solution:

Figure 4.19. DRD for flight rebooking

Rebooked
FPassengers
. "‘\
'\-\.\"‘
k3 "‘\
Prioritized Reassign Next
Waiting List Passenger

Passenger Passenger List Flight Capacity

Flight List Priority

Similar to flowcharts, DRDs use shapes to represent the different elements in a process. Ovals contain
the two necessary input data, rectangles contain the decision points in the model, and rectangles with
clipped corners (business knowledge models) contain reusable logic that can be repeatedly invoked.

78

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

The DRD draws logic for each element from boxed expressions that provide variable definitions using
FEEL expressions or data type values.

Some boxed expressions are basic, such as the following decision for establishing a prioritized waiting
list:

Figure 4.20. Boxed context expression example for prioritized wait list

Prioritized Waiting List (Conrext)

Prioritized Waiting List
(tPassengerTable)

Cancelled Flights Flight List[Status = "cancelled"].Flight Number
(tFlightNumbert ist)

Waiting List Passenger List[list contains(Cancelled Flights, Flight Number)]
(tPassengerTable)

sort{ Waiting List, Passenger Priority)
<resulft>

Some boxed expressions are more complex with greater detail and calculation, such as the following
business knowledge model for reassigning the next delayed passenger:

Figure 4.21. Boxed function expression for passenger reassignment

Reassign Next Passenger (Function)

Reassign Mext Passenger
(tPassengerTable)
F
(Waiting List, Reassigned Passengers List, Flights)
- Next Passenger Waiting List[1]
(tPassenger)
Original Flight Flights[Flight Number = Next Passenger.Flight Mumber][1]
2 [Flight)
Flights[From = Orlglnal Flight.From and
3 BestlternarelElisht Depz:lrgﬂr%glgaérgli%g} -Ili—glaglﬂg Departure and
(tFlight) Status = “scﬁedule i
Flight Capac1ty(1tem, R93551gned Passengers List)][1]
Name Next Passenger.Name
l (string)
Status Next Passenger.Status
= (string)
Reassigned Passenger Miles Next Passenger.Miles
4 3
(tPassenger] (numéber)
Flight Number | Best Alternate Flight.Flight Number
4 (string)
<result> Select expression
g Remaining Waiting List remove(Waiting List, 1)
(tPassengerTable)
Updated Reassigned Passengers List | append(Reassigned Passengers List, Reassigned Passenger)
6 (tPassengerTable)
ir count(tRemaining Waiting List) = @
Reassign Next Passenger(Remalnlnﬂ Waiting List,
<results dated Reassigned Passengers List,
e Flights)
else
Updated Reassigned Passengers List

The following is the DMN source file for this decision model:

79

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

80

<dmn:definitions xmIns="https://www.drools.org/kie-dmn/Flight-rebooking"
xmins:dmn="http://www.omg.org/spec/DMN/20151101/dmn.xsd"
xmins:feel="http://www.omg.org/spec/FEEL/20140401" id="_0019_flight_rebooking" name="0019-
flight-rebooking" namespace="https://www.drools.org/kie-dmn/Flight-rebooking">
<dmn:itemDefinition id="_tFlight" name="tFlight">
<dmn:itemComponent id="_tFlight_Flight" name="Flight Number">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight From" name="From">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_To" name="To">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Dep" name="Departure">
<dmn:typeRef>feel:dateTime</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Arr" name="Arrival">
<dmn:typeRef>feel:dateTime</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Capacity" name="Capacity">
<dmn:typeRef>feel:number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Status" name="Status">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tFlightTable" isCollection="true" name="tFlightTable">
<dmn:typeRef>tFlight</dmn:typeRef>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tPassenger" name="tPassenger">
<dmn:itemComponent id="_tPassenger_Name" name="Name">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Status" name="Status">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Miles" nhame="Miles">
<dmn:typeRef>feel:number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Flight" name="Flight Number">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tPassengerTable" isCollection="true" name="tPassengerTable">
<dmn:typeRef>tPassenger</dmn:typeRef>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tFlightNumberList" isCollection="true" name="tFlightNumberList">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemDefinition>
<dmn:inputData id="i_Flight_List" name="Flight List">
<dmn:variable name="Flight List" typeRef="tFlightTable"/>
</dmn:inputData>
<dmn:inputData id="i_Passenger_List" name="Passenger List">
<dmn:variable name="Passenger List" typeRef="tPassengerTable"/>
</dmn:inputData>

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

<dmn:decision name="Prioritized Waiting List" id="d_PrioritizedWaitingList">
<dmn:variable name="Prioritized Waiting List" typeRef="tPassengerTable"/>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Passenger_List"/>
</dmn:informationRequirement>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Flight_List"/>
</dmn:informationRequirement>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_PassengerPriority"/>
</dmn:knowledgeRequirement>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Cancelled Flights" typeRef="tFlightNumberList"/>
<dmn:literalExpression>
<dmn:text>Flight List[Status = "cancelled"].Flight Number</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Waiting List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>Passenger List[list contains(Cancelled Flights, Flight Number)]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:literalExpression>
<dmn:text>sort(Waiting List, passenger priority)</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:decision>
<dmn:decision name="Rebooked Passengers" id="d_RebookedPassengers">
<dmn:variable name="Rebooked Passengers" typeRef="tPassengerTable"/>
<dmn:informationRequirement>
<dmn:requiredDecision href="#d_PrioritizedWaitingList"/>
</dmn:informationRequirement>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Flight_List"/>
</dmn:informationRequirement>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_ReassignNextPassenger"/>
</dmn:knowledgeRequirement>
<dmn:invocation>
<dmn:literalExpression>
<dmn:text>reassign next passenger</dmn:text>
</dmn:literalExpression>
<dmn:binding>
<dmn:parameter name="Waiting List"/>
<dmn:literalExpression>
<dmn:text>Prioritized Waiting List</dmn:text>
</dmn:literalExpression>
</dmn:binding>
<dmn:binding>
<dmn:parameter name="Reassigned Passengers List"/>
<dmn:literalExpression>
<dmn:text>[]</dmn:text>

81

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

</dmn:literalExpression>
</dmn:binding>
<dmn:binding>
<dmn:parameter name="Flights"/>
<dmn:literalExpression>
<dmn:text>Flight List</dmn:text>
</dmn:literalExpression>
</dmn:binding>
</dmn:invocation>
</dmn:decision>
<dmn:businessKnowledgeModel id="b_PassengerPriority" name="passenger priority">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="Passengeri" typeRef="tPassenger"/>
<dmn:formalParameter name="Passenger2" typeRef="tPassenger"/>
<dmn:decisionTable hitPolicy="UNIQUE">
<dmn:input id="b_Passenger_Priority_dt i P1_Status" label="Passengeri.Status">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passengeri.Status</dmn:text>
</dmn:inputExpression>
<dmn:inputValues>
<dmn:text>"gold", "silver", "bronze"</dmn:text>
</dmn:inputValues>
</dmn:input>
<dmn:input id="b_Passenger_Priority_dt i P2_Status" label="Passenger2.Status">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passenger2.Status</dmn:text>
</dmn:inputExpression>
<dmn:inputValues>
<dmn:text>"gold", "silver", "bronze"</dmn:text>
</dmn:inputValues>
</dmn:input>
<dmn:input id="b_Passenger_Priority_dt i P1_Miles" label="Passengeri.Miles">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passengeri.Miles</dmn:text>
</dmn:inputExpression>
</dmn:input>
<dmn:output id="b_Status_Priority_dt 0" label="Passenger1 has priority">
<dmn:outputValues>
<dmn:text>true, false</dmn:text>
</dmn:outputValues>
<dmn:defaultOutputEntry>
<dmn:text>false</dmn:text>
</dmn:defaultOutputEntry>
</dmn:output>
<dmn:rule id="b_Passenger_Priority_dt _r1">
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i1">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i2">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r1_o1">
<dmn:text>true</dmn:text>

82

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt_r2">
<dmn:inputEntry id="b_Passenger_Priority_dt r2_i1">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r2_i2">
<dmn:text>"silver","bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r2_i3">
<dmn:text>-</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r2_o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r3">
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i1">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i2">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r3 o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r4">
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i1">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i2">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i3">
<dmn:text>-</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r4 o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt_r5">
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i1">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i2">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r5 o1">
<dmn:text>true</dmn:text>

83

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

</dmn:outputEntry>
</dmn:rule>
</dmn:decisionTable>
</dmn:encapsulatedLogic>
<dmn:variable name="passenger priority" typeRef="feel:boolean"/>
</dmn:businessKnowledgeModel>
<dmn:businessKnowledgeModel id="b_ReassignNextPassenger" name="reassign next passenger">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="Waiting List" typeRef="tPassengerTable"/>
<dmn:formalParameter name="Reassigned Passengers List" typeRef="tPassengerTable"/>
<dmn:formalParameter name="Flights" typeRef="tFlightTable"/>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Next Passenger" typeRef="tPassenger"/>
<dmn:literalExpression>
<dmn:text>Waiting List[1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Original Flight" typeRef="tFlight"/>
<dmn:literalExpression>
<dmn:text>Flights[Flight Number = Next Passenger.Flight Number][1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Best Alternate Flight" typeRef="tFlight"/>
<dmn:literalExpression>
<dmn:text>Flights[From = Original Flight.From and To = Original Flight.To and Departure >
Original Flight.Departure and Status = "scheduled" and has capacity(item, Reassigned Passengers
List)][1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Reassigned Passenger" typeRef="tPassenger"/>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Name" typeRef="feel:string"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Name</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Status" typeRef="feel:string"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Status</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Miles" typeRef="feel:number"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Miles</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Flight Number" typeRef="feel:string"/>
<dmn:literalExpression>

84

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

<dmn:text>Best Alternate Flight.Flight Number</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Remaining Waiting List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>remove(Waiting List, 1)</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Updated Reassigned Passengers List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>append(Reassigned Passengers List, Reassigned Passenger)</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:literalExpression>
<dmn:text>if count(Remaining Waiting List) > 0 then reassign next passenger(Remaining
Waiting List, Updated Reassigned Passengers List, Flights) else Updated Reassigned Passengers
List</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:encapsulatedLogic>
<dmn:variable name="reassign next passenger" typeRef="tPassengerTable"/>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_HasCapacity"/>
</dmn:knowledgeRequirement>
</dmn:businessKnowledgeModel>
<dmn:businessKnowledgeModel id="b_HasCapacity" name="has capacity">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="flight" typeRef="tFlight"/>
<dmn:formalParameter name="rebooked list" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number]
)</dmn:text>
</dmn:literalExpression>
</dmn:encapsulatedLogic>
<dmn:variable name="has capacity" typeRef="feel:boolean"/>
</dmn:businessKnowledgeModel>
</dmn:definitions>

85

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

CHAPTER 5. DMN SUPPORT IN RED HAT PROCESS
AUTOMATION MANAGER

Red Hat Process Automation Manager provides design and runtime support for DMN 1.2 models at
conformance level 3, and runtime-only support for DMN 1.1and 1.3 models at conformance level 3. You
can integrate DMN models with your Red Hat Process Automation Manager decision services in several
ways:

® Design your DMN models directly in Business Central using the DMN designer.

® |mport DMN files into your project in Business Central (Menu - Design - Projects = Import
Asset). Any DMN 1.1and 1.3 models (do not contain DMN 1.3 features) that you import into
Business Central, open in the DMN designer, and save are converted to DMN 1.2 models.

® Package DMN files as part of your project knowledge JAR (KJAR) file without Business Central.

The following table summarizes the design and runtime support for each DMN version in Red Hat
Process Automation Manager:

Table 5.1. DMN support in Red Hat Process Automation Manager

DMN version DMN engine support DMN modeler support
Execution

DMN 11

DMN 1.2

DMN 1.3

In addition to all DMN conformance level 3 requirements, Red Hat Process Automation Manager also
includes enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Process Automation Manager. From a platform
perspective, DMN models are like any other business asset in Red Hat Process Automation Manager,
such as DRL files or spreadsheet decision tables, that you can include in your Red Hat Process
Automation Manager project and deploy to KIE Server in order to start your DMN decision services.

For more information about including external DMN files with your Red Hat Process Automation
Manager project packaging and deployment method, see Packaging and deploying a Red Hat Process
Automation Manager project.

You can design a new DMN decision service using a Red Hat build of Kogito microservice as an
alternative for the cloud-native capabilities of DMN decision services. You can migrate your DMN
service to a Red Hat build of Kogito microservice. For more information about migrating to Red Hat build
of Kogito microservices, see Migrating to Red Hat build of Kogito microservices .

86

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_process_automation_manager#assembly-migration-to-kogito-microservices

CHAPTER 5. DMN SUPPORT IN RED HAT PROCESS AUTOMATION MANAGER

5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT PROCESS
AUTOMATION MANAGER

Red Hat Process Automation Manager provides the following DMN properties that you can configure
when you execute your DMN models on KIE Server or on your client application. You can configure some
of these properties using the kmodule.xml file in your Red Hat Process Automation Manager project
when you deploy your project on KIE Server.

org.kie.dmn.strictConformance

When enabled, this property disables by default any extensions or profiles provided beyond the DMN
standard, such as some helper functions or enhanced features of DMN 1.2 backported into DMN 1.1.
You can use this property to configure the decision engine to support only pure DMN features, such
as when running the DMN Technology Compatibility Kit (TCK).

Default value: false

I -Dorg.kie.dmn.strictConformance=true

org.kie.dmn.runtime.typecheck

When enabled, this property enables verification of actual values conforming to their declared types
in the DMN model, as input or output of DRD elements. You can use this property to verify whether

data supplied to the DMN model or produced by the DMN model is compliant with what is specified

in the model.

Default value: false

I -Dorg.kie.dmn.runtime.typecheck=true

org.kie.dmn.decisionservice.coercesingleton

By default, this property makes the result of a decision service defining a single output decision be
the single value of the output decision value. When disabled, this property makes the result of a
decision service defining a single output decision be a context with the single entry for that decision.
You can use this property to adjust your decision service outputs according to your project
requirements.

Default value: true

I -Dorg.kie.dmn.decisionservice.coercesingleton=false

org.kie.dmn.profiles.$PROFILE_NAME

When valorized with a Java fully qualified name, this property loads a DMN profile onto the decision
engine at start time. You can use this property to implement a predefined DMN profile with
supported features different from or beyond the DMN standard. For example, if you are creating
DMN models using the Signavio DMN modeller, use this property to implement features from the
Signavio DMN profile into your DMN decision service.

I -Dorg.kie.dmn.profiles.signavio=org.kie.dmn.signavio.KieDMNSignavioProfile

org.kie.dmn.runtime.listeners.$LISTENER_NAME

When valorized with a Java fully qualified name, this property loads and registers a DMN Runtime
Listener onto the decision engine at start time. You can use this property to register a DMN listener
in order to be notified of several events during DMN model evaluations.

87

https://dmn-tck.github.io/tck/

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

To configure this property when deploying your project on KIE Server, modify this property in the
kmodule.xml file of your project. This approach is helpful when the listener is specific to your project
and when the configuration must be applied in KIE Server only to your deployed project.

<kmodule xmiIns="http://www.drools.org/xsd/kmodule">
<configuration>
<property key="org.kie.dmn.runtime.listeners.mylistener" value="org.acme.MyDMNListener"/>
</configuration>
</kmodule>

To configure this property globally for your Red Hat Process Automation Manager environment,
modify this property using a command terminal or any other global application configuration
mechanism. This approach is helpful when the decision engine is embedded as part of your Java
application.

I -Dorg.kie.dmn.runtime.listeners.mylistener=org.acme.MyDMNListener

org.kie.dmn.compiler.execmodel

When enabled, this property enables DMN decision table logic to be compiled into executable rule
models during run time. You can use this property to evaluate DMN decision table logic more
efficiently. This property is helpful when the executable model compilation was not originally
performed during project compile time. Enabling this property may result in added compile time
during the first evaluation by the decision engine, but subsequent compilations are more efficient.
Default value: false

I -Dorg.kie.dmn.compiler.execmodel=true

5.2. CONFIGURABLE DMN VALIDATION IN RED HAT PROCESS
AUTOMATION MANAGER

By default, the kie-maven-plugin component in the pom.xml file of your Red Hat Process Automation
Manager project uses the following <validateDMN> configurations to perform pre-compilation
validation of DMN model assets and to perform DMN decision table static analysis:

e VALIDATE_SCHEMA: DMN model files are verified against the DMN specification XSD schema
to ensure that the files are valid XML and compliant with the specification.

e VALIDATE_MODEL: The pre-compilation analysis is performed for the DMN model to ensure
that the basic semantic is aligned with the DMN specification.

e ANALYZE_DECISION_TABLE: DMN decision tables are statically analyzed for gaps or overlaps
and to ensure that the semantic of the decision table follows best practices.

You can modify the default DMN validation and DMN decision table analysis behavior to perform only a
specified validation during the project build, or you can disable this default behavior completely, as
shown in the following examples:

Default configuration for DMN validation and decision table analysis

88

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactid>

CHAPTER 5. DMN SUPPORT IN RED HAT PROCESS AUTOMATION MANAGER

<extensions>true</extensions>
<configuration>

<validateDMN>VALIDATE_SCHEMA,VALIDATE_MODEL,ANALYZE_DECISION_TABLE</validateD
MN>

</configuration>
</plugin>

Configuration to perform only the DMN decision table static analysis

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactld>
<extensions>true</extensions>
<configuration>

<validateDMN>ANALYZE_DECISION_TABLE</validateDMN>

</configuration>

</plugin>

Configuration to perform only the XSD schema validation

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactld>
<extensions>true</extensions>
<configuration>

<validateDMN>VALIDATE_SCHEMA</NalidateDMN>

</configuration>

</plugin>

Configuration to perform only the DMN model validation

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactld>
<extensions>true</extensions>
<configuration>

<validateDMN>VALIDATE_MODEL</validateDMN>

</configuration>

</plugin>

Configuration to disable all DMN validation

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactid>
<extensions>true</extensions>
<configuration>

<validateDMN>disable</validateDMN>

</configuration>

</plugin>

89

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

NOTE

If you enter an unrecognized <validateDMN> configuration flag, all pre-compilation
validation is disabled and the Maven plugin emits related log messages.

90

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

CHAPTER 6. CREATING AND EDITING DMN MODELS IN
BUSINESS CENTRAL

You can use the DMN designer in Business Central to design DMN decision requirements diagrams
(DRDs) and define decision logic for a complete and functional DMN decision model. Red Hat Process
Automation Manager provides design and runtime support for DMN 1.2 models at conformance level 3,
and includes enhancements and fixes to FEEL and DMN model components to optimize the experience
of implementing DMN decision services with Red Hat Process Automation Manager. Red Hat Process
Automation Manager also provides runtime-only support for DMN 1.1 and 1.3 models at conformance
level 3, but any DMN 1.1 and 1.3 models (do not contain DMN 1.3 features) that you import into Business
Central, open in the DMN designer, and save are converted to DMN 1.2 models.

Procedure
1. In Business Central, go to Menu - Design = Projects and click the project name.

2. Create orimport a DMN file in your Business Central project.
To create a DMN file, click Add Asset = DMN, enter an informative DMN model name, select
the appropriate Package, and click Ok.

To import an existing DMN file, click Import Asset, enter the DMN model name, select the
appropriate Package, select the DMN file to upload, and click Ok.

The new DMN file is now listed in the DMN panel of the Project Explorer, and the DMN decision
requirements diagram (DRD) canvas appears.

NOTE

If you imported a DMN file that does not contain layout information, the
imported decision requirements diagram (DRD) is formatted automatically in the
DMN designer. Click Save in the DMN designer to save the DRD layout.

If an imported DRD is not automatically formatted, you can select the Perform
automatic layout icon in the upper-right toolbar in the DMN designer to format
the DRD.

3. Begin adding components to your new or imported DMN decision requirements diagram (DRD)
by clicking and dragging one of the DMN nodes from the left toolbar:

o1

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager
Figure 6.1. Adding DRD components
My DMN model.dmn - DMN -

Model Overview Documentation Data Types

i

O (g oy 9 o

DMMN Decision

The following DRD components are available:

® Decision: Use this node for a DMN decision, where one or more input elements determine
an output based on defined decision logic.

® Business knowledge model: Use this node for reusable functions with one or more decision
elements. Decisions that have the same logic but depend on different sub-input data or
sub-decisions use business knowledge models to determine which procedure to follow.

e Knowledge source: Use this node for external authorities, documents, committees, or
policies that regulate a decision or business knowledge model. Knowledge sources are
references to real-world factors rather than executable business rules.

® Input data: Use this node for information used in a decision node or a business knowledge
model. Input data usually includes business-level concepts or objects relevant to the
business, such as loan applicant data used in a lending strategy.

e Text annotation: Use this node for explanatory notes associated with an input data node,
decision node, business knowledge model, or knowledge source.

® Decision service: Use this node to enclose a set of reusable decisions implemented as a
decision service for invocation. A decision service can be used in other DMN models and can

be invoked from an external application or a BPMN business process.

4. In the DMN designer canvas, double-click the new DRD node to enter an informative node
name.

92

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

5. If the node is a decision or business knowledge model, select the node to display the node
options and click the Edit icon to open the DMN boxed expression designer to define the

decision logic for the node:
Figure 6.2. Opening a new decision node boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

AE]w

& |
ng

Figure 6.3. Opening a new business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A
PITI 0 &=
< o

=

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,

or a nested boxed expression of any type.

93

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 6.4. Selecting the logic type for a decision node

« Backto My DMN M3 cojact logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

For business knowledge models, you click the top-left function cell to select the function type,
or right-click the function value cell, select Clear, and select a boxed expression of another type.

94

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.5. Selecting the function or other logic type for a business knowledge model

« Back to My DMN model

PITI (Function)

FITI
c Select Function Kind
FEEL
JAVA
PRINL

&« Back to My DMN model

PITI (Function)

PITI
fAnyl

Edit parameters

| Clear
#« Back to My DMN model
PITI (Function)
PITI
fAnyt .
E Select logic type
Edit parameters
Literal expression
) Context
Select expression
Decision Table
Relation
Function
Invocation

6. Inthe selected boxed expression designer for either a decision node (any expression type) or

95

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

96

business knowledge model (function expression), click the applicable table cells to define the
table name, variable data types, variable names and values, function parameters and bindings,
or FEEL expressions to include in the decision logic.

You can right-click cells for additional actions where applicable, such as inserting or removing
table rows and columns or clearing table contents.

The following is an example decision table for a decision node that determines credit score
ratings based on a defined range of a loan applicant’s credit score:

Figure 6.6. Decision node decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.,FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
= 750 "Excellent"
1
[7o0..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GEO "Bad"
5

The following is an example boxed function expression for a business knowledge model that
calculates mortgage payments based on principal, interest, taxes, and insurance (PITI) as a
literal expression:

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.7. Business knowledge model function for PITI calculation

« Back to Loan Pre-Qualification

- 11
PITI (Function)

PITI
frumber)

{pmt, tax, insurance, income)

(pmt+tax+insurance)/income

7. After you define the decision logic for the selected node, click Back to "<MODEL_NAME>"to
return to the DRD view.

8. For the selected DRD node, use the available connection options to create and connect to the
next node in the DRD, or click and drag a new node onto the DRD canvas from the left toolbar.
The node type determines which connection options are supported. For example, an Input data
node can connect to a decision node, knowledge source, or text annotation using the applicable
connection type, whereas a Knowledge source node can connect to any DRD element. A
Decision node can connect only to another decision or a text annotation.

The following connection types are available, depending on the node type:

® Information requirement: Use this connection from an input data node or decision node to
another decision node that requires the information.

e Knowledge requirement: Use this connection from a business knowledge model to a
decision node or to another business knowledge model that invokes the decision logic.

® Authority requirement: Use this connection from an input data node or a decision node to a
dependent knowledge source or from a knowledge source to a decision node, business

knowledge model, or another knowledge source.

® Association: Use this connection from an input data node, decision node, business
knowledge model, or knowledge source to a text annotation.

97

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 6.8. Connecting credit score input to the credit score rating decision

i

Create DMN Information Requirement

$ ul
i

o
re
ng

o

9. Continue adding and defining the remaining DRD components of your decision model.
Periodically click Save in the DMN designer to save your work.

NOTE

As you periodically save a DRD, the DMN designer performs a static validation of
the DMN model and might produce error messages until the model is defined
completely. After you finish defining the DMN model completely, if any errors
remain, troubleshoot the specified problems accordingly.

10. After you add and define all components of the DRD, click Save to save and validate the
completed DRD.
To adjust the DRD layout, you can select the Perform automatic layouticon in the upper-right
toolbar of the DMN designer.

The following is an example DRD for a loan prequalification decision model:

98

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.9. Completed DRD for loan prequalification

Prequalification|

o g
| | & = ST

The following is an example DRD for a phone call handling decision model using a reusable
decision service:

Figure 6.10. Completed DRD for phone call handling with a decision service

(Call can be handled \

Call conditions
satisfied
Suitable
R office
A
Banned
hone —» Is banned Is office open
numbers

-] r

l nir;ﬁggr J ' Office , 'Incomingcall ’

In a DMN decision service node, the decision nodes in the bottom segment incorporate input
data from outside of the decision service to arrive at a final decision in the top segment of the
decision service node. The resulting top-level decisions from the decision service are then
implemented in any subsequent decisions or business knowledge requirements of the DMN
model. You can reuse DMN decision services in other DMN models to apply the same decision
logic with different input data and different outgoing connections.

6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN
BUSINESS CENTRAL

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic

99

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

You can use the DMN designer in Business Central to define decision logic for your DRD components
using built-in boxed expressions.

Prerequisites

o A DMN file is created or imported in Business Central.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer canvas, select a decision node or business knowledge model node that you
want to define and click the Edit icon to open the DMN boxed expression designer:

Figure 6.11. Opening a new decision node boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

100

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.12. Opening a new business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A
PITI 0 &=
< o

=

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 6.13. Selecting the logic type for a decision node

« Back to My DMN mao select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

For business knowledge model nodes, you click the top-left function cell to select the function
type, or right-click the function value cell, select Clear, and select a boxed expression of another

type.

101

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 6.14. Selecting the function or other logic type for a business knowledge model

« Back to My DMN model

PITI (Function)

PITI
c Select Function Kind
FEEL
JAVA
PRINL

&« Back to My DMN model

PITI (Function)

PITI
fAnyl

Edit parameters

| Clear
#« Back to My DMN model
PITI (Function)
PITI
fAnyt .
E Select logic type
Edit parameters
Literal expression
) Context
Select expression
Decision Table
Relation
Function
Invocation

3. For this example, use a decision node and select Decision Table as the boxed expression type.

102

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

A decision table in DMN is a visual representation of one or more rules in a tabular format. Each
rule consists of a single row in the table, and includes columns that define the conditions (input)
and outcome (output) for that particular row.

4. Click the input column header to define the name and data type for the input condition. For
example, name the input column Credit Score.FICO with a number data type. This column
specifies numeric credit score values or ranges of loan applicants.

5. Click the output column header to define the name and data type for the output values. For
example, name the output column Credit Score Rating and next to the Data Type option, click
Manage to go to the Data Types page where you can create a custom data type with score
ratings as constraints.

Figure 6.15. Managing data types for a column header value

% Back to Loan Pre-Qualification

. . ".'_"""l".""-‘l"n' :":_-:'li I,' = .
Credit Score Rating (Decision Table) Edit Output Clause

MName
A Credi;niif;;ﬂct] Credit S;?;f Credit Score Rating

Data Type
: Any i

6. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.

If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

Figure 6.16. Adding a new data type

Model Documentation Data Types Included Models Overview Q

Custom Data Types

New Data Type Import Data Object Search d yo Q | Expand all | Collapse all

* Name * Type

Credit_Score_Rating string - B List # Add Constraints @ v x

7. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

e "Excellent"
. "Good"

e "Fair”

103

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

e "Poor"
o "Bad"

Figure 6.17. Adding constraints to the new data type

Data Type constraints

Add constraints to limit and define valid input for the string data type.

Select constraint type
Enumeration

i "Excellent”

i "Good"

£ "Fair"

i "Poor"

i "Bad"

Clear all

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

104

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.18. Dragging constraints to change constraint order

Data Type constraints

Add constraints to limit and define valid input for the string data type.
Select constraint type

Enumeration

!J"Excellent"
i "Good"

it "Fair"
it "Poor"

it "Bad"

8 8 e

m

-

For information about constraint types and syntax requirements for the specified data type, see

the Decision Model and Notation specification.

8. Click OK to save the constraints and click the check mark to the right of the data type to save

the data type.

9. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,

and set the data type to this new custom data type.

10. Use the Credit Score.FICO input column to define credit score values or ranges of values, and

use the Credit Score Rating column to specify one of the corresponding ratings you defined in

the Credit_Score_Rating data type.
Right-click any value cell to insert or delete rows (rules) or columns (clauses).

105

https://www.omg.org/spec/DMN

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager
Figure 6.19. Decision node decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.,FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
== 750 "Excellent"
1
[7o0..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GO0 "Bad"
5

1. After you define all rules, click the top-left corner of the decision table to define the rule Hit
Policy and Builtin Aggregator (for COLLECT hit policy only).
The hit policy determines how to reach an outcome when multiple rules in a decision table match
the provided input values. The built-in aggregator determines how to aggregate rule values
when you use the COLLECT hit policy.

106

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.20. Defining the decision table hit policy

« Back to Loan Pre-Qualification

Credit Score Rating (pecision Table)

Edit Hit Policy

Hit Policy
UNIQUE

Builtin Aggregator

<Mone=

[700, . T50)
2

[650., . TO0)
3

[6DO, 650)
4

< GAQ
5

“GDUd“

"Fair"

"Poor"

“Bad“

Description

LT

The following example is a more complex decision table that determines applicant qualification
for aloan as the concluding decision node in the same loan prequalification decision model:

Figure 6.21. Decision table for loan prequalification

Loan Pre-Qualification (pecision

Table)

E Credit Score Rating | Back End Ratio
(Credit Score Rating) (Back_End_Ratio)
"Poor", "Bad"

1
- "Insufficient"

2
- "Sufficient"

3
- "Insufficient"

4
"Fair', "Good", "Sufficient"

5 "Excelient”

Front End Ratio

Front_End_Ratio,
f .) Qualification

(string)

"Not Qualified"

"sufficient" "Mot Qualified"
"Insufficient" |"Mot Qualified"
"Insufficient" |"Not Qualified"
"Sufficient" "Qualified"

Loan Pre-Qualification
(Loan_Qualification)

Reason
(string)

"Credit Score too low."
"Debt to income ratio is too high."

"Mortgage payment to income ratio
is tog %igﬁ.)‘Ir

"Debt to income ratio is too high
AND mortgage ﬁayment to income
ratio is”tdo high."

"The borrower has been successfully,
prequalified for the requested loan.

Description

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define variables and parameters for decision logic, but according to the
requirements of the boxed expression type. Some boxed expressions, such as boxed literal expressions,
can be single-column tables, while other boxed expressions, such as function, context, and invocation
expressions, can be multi-column tables with nested boxed expressions of other types.

107

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

For example, the following boxed context expression defines the parameters that determine whether a
loan applicant can meet minimum mortgage payments based on principal, interest, taxes, and insurance
(PITI), represented as a front-end ratio calculation with a sub-context expression:

Figure 6.22. Boxed context expression for front-end client PITI ratio

Front End Ratio (Context)

Front End Ratio

(Front_End_Ratio)
PITI
pmt ERe uested Product.Amount*%(Requested Product.Rate/100)/12))/
1 1-(1/(1+{Requested Product Rate/100)/12)**-Requested Product.Term))
fnumiber)
Client PITI tax Applicant Data.Monthly. Tax
1 (number) 2 (number)

insurance | Applicant Data.Monthly. Insurance

("5}

(number)

income Applicant Data.Monthly. Income

(number)

if Client PITI <= Lender Acceptable PITI()

<resulft> then "Sufficient
else "Insufficient"

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 6.23. Boxed function expression for installment calculation in business knowledge model

InstallmentCalculation (Function)

InstallmentCalculation
(number)

(ProductType, Rate, Term, Amount)

if ProductType ="STANDARD LOAN" then 20,00
M;’:ﬁ:{"};‘*e slse if ProdhctType ="SPECIAL LOANT then 25.00 else null

MonthlyRepayment (Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)

fnumber)

MonthlyRepayment+MonthlyFee

<result=

For more information and examples of each boxed expression type, see Section 4.4, "DMN decision
logic in boxed expressions”.

6.2. CREATING CUSTOM DATATYPES FOR DMN BOXED
EXPRESSIONS IN BUSINESS CENTRAL

In DMN boxed expressions in Business Central, data types determine the structure of the data that you
use within an associated table, column, or field in the boxed expression. You can use default DMN data

types (such as String, Number, Boolean) or you can create custom data types to specify additional
fields and constraints that you want to implement for the boxed expression values.

108

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Custom data types that you create for a boxed expression can be simple or structured:
® Simple data types have only a name and a type assignment. Example: Age (number).

® Structured data types contain multiple fields associated with a parent data type. Example: A
single type Person containing the fields Name (string), Age (humber), Email (string).

Prerequisites

o A DMN file is created or imported in Business Central.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. Inthe DMN designer canvas, select a decision node or business knowledge model for which you
want to define the data types and click the Edit icon to open the DMN boxed expression
designer.

3. If the boxed expression is for a decision node that is not yet defined, click the undefined table to
select the type of boxed expression you want to use, such as a boxed literal expression, boxed
context expression, decision table, or other DMN boxed expression.

Figure 6.24. Selecting the logic type for a decision node

« Back to My DMN mao select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

4. Click the cell for the table header, column header, or parameter field (depending on the boxed
expression type) for which you want to define the data type and click Manage to go to the Data
Types page where you can create a custom data type.

109

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager
Figure 6.25. Managing data types for a column header value
« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table) O e

MName
A CFEdi;ﬂii?;;HCD Credit 5’(’;??;*: Credit Score Rating

Data Type
, Any et

You can also set and manage custom data types for a specified decision node or business
knowledge model node by selecting the Properties icon in the upper-right corner of the DMN
designer:

110

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.26. Managing data types in decision requirements diagram (DRD) properties

& X Properties > (£
-
N _4341 aa5f-4d20-48d3-b8e2-3cdb 27606600
Description

<p>This decision logic converts the borrower’s Credit Score numl

Documentation Links ©Add

None

Mame

Credit Score Rating

Question

What is borrower's credit rating based on FICO score (Borrower FICO5c

Allowed Answers

Excellent, Good, Fair, Poor, Bad
R v Information item

Lend
Accept

IT Data type fanage

Any ~

The data type that you define for a specified cell in a boxed expression determines the structure
of the data that you use within that associated table, column, or field in the boxed expression.

In this example, an output column Credit Score Rating for a DMN decision table defines a set of
custom credit score ratings based on an applicant’s credit score.

. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.

If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

m

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 6.27. Adding a new data type

Model Documentation Data Types Included Models Overview Q

Custom Data Types

New Data Type Import Data Object Search data types Q | Expand all | Collapse all
* Name * Type -
Credit_Score_Rating string - = List # Add Constraints @ v x

If the data type requires a list of items, enable the List setting.

6. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

e "Excellent"”
e "Good"

e "Fair"

e "Poor"

e "Bad"

Figure 6.28. Adding constraints to the new data type

Data Type constraints

Add constraints to limit and define valid input for the string data type.

Select constraint type

Enumeration

i "Excellent”

s "Good”

5 "Fairt

i "Poor"

i "Bad"

Clear all

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

12

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.29. Dragging constraints to change constraint order

Data Type constraints

Add constraints to limit and define valid input for the string data type.
Select constraint type

Enumeration

i!J"Ex-::eIIent"
i "Good"

it "Fair"
it "Poor"

it "Bad"

8 8 e

m

-

Clear all “ Cancel

For information about constraint types and syntax requirements for the specified data type, see

the Decision Model and Notation specification.

7. Click OK to save the constraints and click the check mark to the right of the data type to save

the data type.

8. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,

set the data type to this new custom data type, and define the rule values for that column with

the rating constraints that you specified.

13

https://www.omg.org/spec/DMN

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager
Figure 6.30. Decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
>= 750 "Excellent"
1
[7o0..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GO0 "Bad"
5

In the DMN decision model for this scenario, the Credit Score Rating decision flows into the
following Loan Prequalification decision that also requires custom data types:

Figure 6.31. Decision table for loan prequalification

Loan Pre-Qualification (pecision Table)

Loan Pre-Qualification

Undefined.
Credit Score Rating | Back End Ratio | Front End Ratio {lindefinec>)

) 5 ; Description
o, <Undefined>, <Undefined>
(<Undefined>) r) |’ / Qualification Reason

(string) (string)

9. Continuing with this example, return to the Data Types window, click New Data Type, and
create a Loan_Qualification data type as a Structure with no constraints.
When you save the new structured data type, the first sub-field appears so that you can begin
defining nested data fields in this parent data type. You can use these sub-fields in association
with the parent structured data type in boxed expressions, such as nested column headers in
decision tables or nested table parameters in context or function expressions.

For additional sub-fields, select the addition icon next to the Loan_Qualification data type:

14

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.32. Adding a new structured data type with nested fields

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object Search data typ Q | Expand all | Collapse all
Credit_Score_Rating (string) # "Excellent”, "Good", “Fair”, "Poor”, & [+ i}
i1 ¥ Loan_Qualification (Structure) & % i}

10. For this example, under the structured Loan_Qualification data type, add a Qualification field
with "Qualified" and "Not Qualified" enumeration constraints, and a Reason field with no
constraints. Add also a simple Back_End_Ratio and a Front_End_Ratio data type, both with
"Sufficient" and "Insufficient” enumeration constraints.

Click the check mark to the right of each data type that you create to save your changes.

Figure 6.33. Adding nested data types with constraints

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object earch data typ Q | Expandall | Collapse all
Credit_Score_Rating (string) # “Excellent”, "Good", “Fair”, "Poor”.... & o o :
Back_End_Ratio (string) & “Sufficient”, "Insufficient™ V4 [+] o
Front_End_Ratio (string) # “Sufficient”, "Insufficient™ ’ 0 ﬂ

v Loan_Qualification (Structure) V4 (+] o
Qualification (string) # "Qualified”, "Not Qualified" S O o
Reason (string) ' (+] @

To change the order or nesting of data types, you can click the left end of the data type row and
drag the row as needed:

115

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 6.34. Dragging data types to change data type order or nesting

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object g Q | Expand all | Collapse all
Credit_Score Rating (siring) & “Excellent”, "Good", "Fair”, "Poor~,... rd +] ﬁ .
- Back_End_Ratio (string) - “sufficient”, “Insufficient” s O W
Front_End_Ratio (string) & "“Sufficient™, "Insufficient” ’ 0 ﬂ'
v Loan_Qualification (Structure) 4 [+ ﬁ
Qualification (string) # "Qualified”, "Not Qualified” ' (+] i
Reason (string) 4 [+ o

11. Return to the decision table and, for each column, click the column header cell, set the data type
to the new corresponding custom data type, and define the rule values as needed for the
column with the constraints that you specified, if applicable.

Figure 6.35. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)

Loan Pre-Qualification
lificati
E Credit Score Rating | Back End Ratio Front End Ratio LGN Description
(Credit Score Rating) (Back_End_Ratio) (Front_End_Ratio) qualification eTsan
(string) (string)
. "Poor", "Bad" - - "Not Qualified" "Credit Score too low."
- "Insufficient" |"Sufficient" "Mot Qualified" "Debt to income ratio is too high."
2
- "sufficient" "Insufficient" |"Mot Qualified" '_'Mortga%e ﬁayment to income ratio
3 is too high.”
- "Insufficient" |"Insufficient" |"Not Qualified" |"Debt to income ratio is too high
4 AND mortgage ﬁayment to income
ratio is”tdo high."
"Fair", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,
5 "Excellent” prequalified for the requested loah.

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define custom data types as needed.

For example, the following boxed function expression uses custom tCandidate and tProfile structured
data types to associate data for online dating compatibility:

16

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.36. Boxed function expression for online dating compatibility

Evaluate Match (Function)

Evaluate Match
{tCandidate)

{Lonely Soul, Candidate)

Profilel Lonely Soul
(tPrafile)

Profile? Candidate

(tPrafile)
Is Soul a Match(LlLonely Soul, Candidate) and

3 Is Match Is Soul a Match(Candidate, Lonely Soul

fboolean)

Score Number of Matching Interests(Lonely Soul, Candidate) -
4 absolute(Lonely Soul.Age - Candidate. Age)

fnumber)

<resuft> Select expression

Figure 6.37. Custom data type definitions for online dating compatibility
Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object arch data fype Q | Expand all | Collapse all
-

> tProfiles (tProfile) = List v Yes s L]]
v tCandidate (Structure) & [+ i
v Profile1 (tProfile) S O W

MName (string) & [+ i}

Gender (tGender) 4 o o

City (string) S © 1w

17

Red Hat Process Automation Manager 7.12 Developing decision services in Red Hat Process Automation Manager

Figure 6.38. Parameter definitions with custom data types for online dating compatibility

Edit Parameters

Evaluate Match (runction)
Add parameter

Evaluate Match .
{tCandidate) Lonely Soul tProfile ~

Candidate tProfile ~

(Lonely Soul, Candidate)

Profilel Lonely Soul
(tProfile)

Profile2 Candidate
(tProfile)

Is Soul a Match(Lonely Soul, ¢
Is Match Is Soul a Match(candidate, Lonely Soul]

fbooclean)

Score Number of Matching Interests(Lonely Soul, Candidate) -
4 absolute(Lonely Soul.Age - Candidate.Age)

frumber)

<result> Select expression

6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Included Models tab to include other DMN
models and Predictive Model Markup Language (PMML) models from your project in a specified DMN
file. When you include a DMN model within another DMN file, you can use all of the nodes and logic from
both models in the same decision requirements diagram (DRD). When you include a PMML model within
a DMN file, you can invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node.

You cannot include DMN or PMML models from other projects in Business Central.

6.3.1. Including other DMN models within a DMN file in Business Central

In Business Central, you can include other DMN models from your project in a specified DMN file. When
you include a DMN model within another DMN file, you can use all of the nodes and logic from both
models in the same decision requirements diagram (DRD), but you cannot edit the nodes from the
included model. To edit nodes from included models, you must update the source file for the included
model directly. If you update the source file for an included DMN model, open the DMN file where the
DMN model is included (or close an re-open) to verify the changes.

You cannot include DMN models from other projects in Business Central.

Prerequisites

® The DMN models are created or imported (as .dmn files) in the same project in Business
Central as the DMN file in which you want to include the models.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer, click the Included Models tab.

18

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

3. Click Include Model, select a DMN model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 6.39. Including a DMN model

Include model

Models that have been added to the project directory may be included in this DMN file, Decision
requirements diagram components of included DMN models will be available to use in this DMN file.
PMML models will be available for invocation through DMN functions.

Models

Lending.dmn

Provide a unique name

Lending Strategy

Include Cancel

The DMN model is added to this DMN file, and all DRD nodes from the included model are listed
under Decision Componentsin the Decision Navigator view:

Figure 6.40. DMN file with decision components from the included DMN model

%= Decision Navigator < @ Loan pre