
Red Hat OpenStack Platform 8

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an

OpenStack cloud

Last Updated: 2018-05-21





Red Hat OpenStack Platform  8 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack
cloud

OpenStack Documentation Team
Red Hat Customer Content Services
rhos-docs@redhat.com



Legal Notice

Copyright © 2015 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to install Red Hat OpenStack Platform 8 in an enterprise environment
using the Red Hat OpenStack Platform Director. This includes installing the director, planning
your environment, and creating an OpenStack environment with the director.

http://creativecommons.org/licenses/by-sa/3.0/


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. UNDERCLOUD
1.2. OVERCLOUD
1.3. HIGH AVAILABILITY
1.4. CEPH STORAGE

CHAPTER 2. REQUIREMENTS
2.1. ENVIRONMENT REQUIREMENTS
2.2. UNDERCLOUD REQUIREMENTS
2.3. NETWORKING REQUIREMENTS
2.4. OVERCLOUD REQUIREMENTS
2.5. REPOSITORY REQUIREMENTS

CHAPTER 3. PLANNING YOUR OVERCLOUD
3.1. PLANNING NODE DEPLOYMENT ROLES
3.2. PLANNING NETWORKS
3.3. PLANNING STORAGE

CHAPTER 4. INSTALLING THE UNDERCLOUD
4.1. CREATING A DIRECTOR INSTALLATION USER
4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
4.3. SETTING THE HOSTNAME FOR THE SYSTEM
4.4. REGISTERING YOUR SYSTEM
4.5. INSTALLING THE DIRECTOR PACKAGES
4.6. CONFIGURING THE DIRECTOR
4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
4.8. SETTING A NAMESERVER ON THE UNDERCLOUD'S NEUTRON SUBNET
4.9. BACKING UP THE UNDERCLOUD
4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS
5.1. REGISTERING NODES FOR THE OVERCLOUD
5.2. INSPECTING THE HARDWARE OF NODES
5.3. TAGGING NODES INTO PROFILES
5.4. DEFINING THE ROOT DISK FOR NODES
5.5. COMPLETING BASIC CONFIGURATION

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD
6.1. UNDERSTANDING HEAT TEMPLATES
6.2. ISOLATING NETWORKS
6.3. CONTROLLING NODE PLACEMENT
6.4. CONFIGURING CONTAINERIZED COMPUTE NODES
6.5. CONFIGURING EXTERNAL LOAD BALANCING
6.6. CONFIGURING IPV6 NETWORKING
6.7. CONFIGURING NFS STORAGE
6.8. CONFIGURING CEPH STORAGE
6.9. CONFIGURING THIRD PARTY STORAGE
6.10. CONFIGURING THE OVERCLOUD TIME ZONE
6.11. ENABLING SSL/TLS ON THE OVERCLOUD
6.12. REGISTERING THE OVERCLOUD
6.13. CUSTOMIZING CONFIGURATION ON FIRST BOOT
6.14. CUSTOMIZING OVERCLOUD PRE-CONFIGURATION
6.15. CUSTOMIZING OVERCLOUD POST-CONFIGURATION

5
5
6
6
7

8
8
8
9
11
13

15
15
16

20

22
22
22
22
23
24
24
27
28
28
29

30
31
32
33
34
35

37
37
39
52
56
60
60
60
62
62
63
64
67
69
70
72

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.16. CUSTOMIZING PUPPET CONFIGURATION DATA
6.17. APPLYING CUSTOM PUPPET CONFIGURATION
6.18. USING CUSTOMIZED CORE HEAT TEMPLATES

CHAPTER 7. CREATING THE OVERCLOUD
7.1. SETTING OVERCLOUD PARAMETERS
7.2. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
7.3. OVERCLOUD CREATION EXAMPLE
7.4. MONITORING THE OVERCLOUD CREATION
7.5. ACCESSING THE OVERCLOUD
7.6. COMPLETING THE OVERCLOUD CREATION

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION
8.1. CREATING THE OVERCLOUD TENANT NETWORK
8.2. CREATING THE OVERCLOUD EXTERNAL NETWORK
8.3. CREATING ADDITIONAL FLOATING IP NETWORKS
8.4. CREATING THE OVERCLOUD PROVIDER NETWORK
8.5. VALIDATING THE OVERCLOUD
8.6. FENCING THE CONTROLLER NODES
8.7. MODIFYING THE OVERCLOUD ENVIRONMENT
8.8. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
8.9. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE
8.10. PROTECTING THE OVERCLOUD FROM REMOVAL
8.11. REMOVING THE OVERCLOUD

CHAPTER 9. SCALING AND REPLACING NODES
9.1. ADDING COMPUTE OR CEPH STORAGE NODES
9.2. REMOVING COMPUTE NODES
9.3. REPLACING COMPUTE NODES
9.4. REPLACING CONTROLLER NODES
9.5. REPLACING CEPH STORAGE NODES
9.6. REPLACING OBJECT STORAGE NODES

CHAPTER 10. REBOOTING THE OVERCLOUD
10.1. REBOOTING THE DIRECTOR
10.2. REBOOTING CONTROLLER NODES
10.3. REBOOTING CEPH STORAGE NODES
10.4. REBOOTING COMPUTE NODES
10.5. REBOOTING OBJECT STORAGE NODES

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES
11.1. TROUBLESHOOTING NODE REGISTRATION
11.2. TROUBLESHOOTING HARDWARE INTROSPECTION
11.3. TROUBLESHOOTING OVERCLOUD CREATION
11.4. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
11.5. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
11.6. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
11.7. TUNING THE UNDERCLOUD
11.8. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
CREATING A CERTIFICATE AUTHORITY
CREATING AN SSL/TLS CERTIFICATE
USING THE CERTIFICATE WITH THE UNDERCLOUD
USING THE CERTIFICATE WITH THE OVERCLOUD

74
75
75

77
77
81
82
83
83
84

85
85
85
86
86
87
89
91
92
92
93
94

95
95
97
98
99
111
112

116
116
116
117
118
119

120
120
120
123
126
127
128
130
131

133
133
133
134
135

Director Installation and Usage

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

APPENDIX B. POWER MANAGEMENT DRIVERS
B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
B.2. INTEGRATED LIGHTS-OUT (ILO)
B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
B.5. SSH AND VIRSH
B.6. FAKE PXE DRIVER

APPENDIX C. AUTOMATIC PROFILE TAGGING
DESCRIPTION
CONDITIONS
ACTIONS
POLICY FILE EXAMPLE
IMPORTING POLICY FILES
MATCHING NODES TO ROLES
AUTOMATIC PROFILE TAGGING PROPERTIES

APPENDIX D. NETWORK INTERFACE PARAMETERS

APPENDIX E. NETWORK INTERFACE TEMPLATE EXAMPLES
E.1. CONFIGURING INTERFACES
E.2. CONFIGURING ROUTES AND DEFAULT ROUTES
E.3. USING THE NATIVE VLAN FOR FLOATING IPS
E.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
E.5. CONFIGURING JUMBO FRAMES

APPENDIX F. NETWORK ENVIRONMENT OPTIONS

APPENDIX G. OPEN VSWITCH BONDING OPTIONS

APPENDIX H. REVISION HISTORY

136
136
136
137
137
138
139

140
140
140
141
141
143
143
144

145

149
149
149
150
151
151

153

156

159

Table of Contents

3



Director Installation and Usage

4



CHAPTER 1. INTRODUCTION
The Red Hat OpenStack Platform director is a toolset for installing and managing a complete
OpenStack environment. It is based primarily on the OpenStack project TripleO, which is an
abbreviation for "OpenStack-On-OpenStack". This project takes advantage of OpenStack components
to install a fully operational OpenStack environment; this includes new OpenStack components that
provision and control bare metal systems to use as OpenStack nodes. This provides a simple method
for installing a complete Red Hat OpenStack Platform environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an Undercloud and an Overcloud.
The Undercloud installs and configures the Overcloud. The next few sections outline the concept of
each.

Figure 1.1. Basic Layout of Undercloud and Overcloud

1.1. UNDERCLOUD

The Undercloud is the main director node. It is a single-system OpenStack installation that includes
components for provisioning and managing the OpenStack nodes that form your OpenStack
environment (the Overcloud). The components that form the Undercloud provide the following
functions:

Environment planning - The Undercloud provides planning functions for users to assign Red
Hat OpenStack Platform roles, including Compute, Controller, and various storage roles.

Bare metal system control - The Undercloud uses the Intelligent Platform Management
Interface (IPMI) of each node for power management control and a PXE-based service to
discover hardware attributes and install OpenStack to each node. This provides a method to
provision bare metal systems as OpenStack nodes.

Orchestration - The Undercloud provides and reads a set of YAML templates to create an
OpenStack environment.

The Red Hat OpenStack Platform director performs these Undercloud functions through a terminal-
based command line interface.

The Undercloud consists of the following components:

CHAPTER 1. INTRODUCTION

5



OpenStack Bare Metal (ironic) and OpenStack Compute (nova) - Manages bare metal nodes.

OpenStack Networking (neutron) and Open vSwitch - Controls networking for bare metal
nodes.

OpenStack Image Service (glance) - Stores images that are written to bare metal machines.

OpenStack Orchestration (heat) and Puppet - Provides orchestration of nodes and
configuration of nodes after the director writes the Overcloud image to disk.

OpenStack Telemetry (ceilometer) - Performs monitoring and data collection.

OpenStack Identity (keystone) - Provides authentication and authorization for the director's
components.

MariaDB - The database back end for the director.

RabbitMQ - Messaging queue for the director's components.

1.2. OVERCLOUD

The Overcloud is the resulting Red Hat OpenStack Platform environment created using the
Undercloud. This includes one or more of the following node types:

Controller - Nodes that provide administration, networking, and high availability for the
OpenStack environment. An ideal OpenStack environment recommends three of these nodes
together in a high availability cluster.

A default Controller node contains the following components: horizon, keystone, nova API,
neutron server, Open vSwitch, glance, cinder volume, cinder API, swift storage, swift proxy,
heat engine, heat API, ceilometer, MariaDB, RabbitMQ. The Controller also uses Pacemaker
and Galera for high availability services.

Compute - These nodes provide computing resources for the OpenStack environment. You can
add more Compute nodes to scale out your environment over time.

A default Compute node contains the following components: nova Compute, nova KVM,
ceilometer agent, Open vSwitch

Storage - Nodes that provide storage for the OpenStack environment. This includes nodes for:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). In addition, the director installs Ceph Monitor onto the Controller
nodes in situations where it deploys Ceph Storage nodes.

Block storage (cinder) - Used as external block storage for HA Controller nodes. This node
contains the following components: cinder volume, ceilometer agent, Open vSwitch.

Object storage (swift) - These nodes provide a external storage layer for Openstack Swift.
The Controller nodes access these nodes through the Swift proxy. This node contains the
following components: swift storage, ceilometer agent, Open vSwitch.

1.3. HIGH AVAILABILITY

The Red Hat OpenStack Platform director uses a Controller node cluster to provide high availability
services to your OpenStack Platform environment. The director installs a duplicate set of components

Director Installation and Usage

6



on each Controller node and manages them together as a single service. This type of cluster
configuration provides a fallback in the event of operational failures on a single Controller node; this
provides OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

HAProxy - Provides load balancing and proxy services to the cluster.

Galera - Replicates the Red Hat OpenStack Platform database across the cluster.

Memcached - Provides database caching.

NOTE

Red Hat OpenStack Platform director automatically configures the bulk of high
availability on Controller nodes. However, the nodes require some manual configuration
to enable fencing and power management controls. This guide includes these
instructions.

1.4. CEPH STORAGE

It is common for large organizations using OpenStack to serve thousands of clients or more. Each
OpenStack client is likely to have their own unique needs when consuming block storage resources.
Deploying glance (images), cinder (volumes) and/or nova (Compute) on a single node can become
impossible to manage in large deployments with thousands of clients. Scaling OpenStack externally
resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red
Hat Ceph Storage so that you can scale the Red Hat OpenStack Platform storage layer from tens of
terabytes to petabytes (or even exabytes) of storage. Red Hat Ceph Storage provides this storage
virtualization layer with high availability and high performance while running on commodity hardware.
While virtualization might seem like it comes with a performance penalty, Ceph stripes block device
images as objects across the cluster; this means large Ceph Block Device images have better
performance than a standalone disk. Ceph Block devices also support caching, copy-on-write cloning,
and copy-on-read cloning for enhanced performance.

See Red Hat Ceph Storage  for additional information about Red Hat Ceph Storage.

CHAPTER 1. INTRODUCTION

7

https://access.redhat.com/products/red-hat-ceph-storage


CHAPTER 2. REQUIREMENTS
This chapter outlines the main requirements for setting up an environment to provision Red Hat
OpenStack Platform using the director. This includes the requirements for setting up the director,
accessing it, and the hardware requirements for hosts that the director provisions for OpenStack
services.

NOTE

Prior to deploying Red Hat OpenStack Platform, it is important to consider the
characteristics of the available deployment methods. For more information, refer to the
recommended best practices for installing Red Hat OpenStack Platform .

2.1. ENVIRONMENT REQUIREMENTS

Minimum Requirements

1 host machine for the Red Hat OpenStack Platform director

1 host machine for a Red Hat OpenStack Platform Compute node

1 host machine for a Red Hat OpenStack Platform Controller node

Recommended Requirements

1 host machine for the Red Hat OpenStack Platform director

3 host machines for Red Hat OpenStack Platform Compute nodes

3 host machines for Red Hat OpenStack Platform Controller nodes in a cluster

3 host machines for Red Hat Ceph Storage nodes in a cluster

Note the following:

It is recommended to use bare metal systems for all nodes. At minimum, the Compute nodes
require bare metal systems.

All Overcloud bare metal systems require an Intelligent Platform Management Interface
(IPMI). This is because the director controls the power management.

2.2. UNDERCLOUD REQUIREMENTS

The Undercloud system hosting the director provides provisioning and management for all nodes in
the Overcloud.

An 8-core 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

A minimum of 16 GB of RAM.

A minimum of 40 GB of available disk space. Make sure to leave at least 10 GB free space
before attempting an Overcloud deployment or update. This free space accommodates image
conversion and caching during the node provisioning process.

Director Installation and Usage

8

https://access.redhat.com/articles/2477851


A minimum of 2 x 1 Gbps Network Interface Cards. However, it is recommended to use a 10
Gbps interface for Provisioning network traffic, especially if provisioning a large number
of nodes in your Overcloud environment.

Red Hat Enterprise Linux 7.2 or later installed as the host operating system.

IMPORTANT

Ensure the Undercloud's file system only contains a root and swap partitions if using
Logical Volume Management (LVM). For more information, see the Red Hat Customer
Portal article "Director node fails to boot after undercloud installation" .

2.3. NETWORKING REQUIREMENTS

The Undercloud host requires at least two networks:

Provisioning Network - This is a private network the director uses to provision and
manage the Overcloud nodes. The Provisioning network provides DHCP and PXE boot
functions to help discover bare metal systems for use in the Overcloud. This network must use
a native VLAN on a trunked interface so that the director serves PXE boot and DHCP requests.
This is also the network you use to control power management through Intelligent Platform
Management Interface (IPMI) on all Overcloud nodes.

External Network - A separate network for remote connectivity to all nodes. The interface
connecting to this network requires a routable IP address, either defined statically, or
dynamically through an external DHCP service.

This represents the minimum number of networks required. However, the director can isolate other
Red Hat OpenStack Platform network traffic into other networks. Red Hat OpenStack Platform
supports both physical interfaces and tagged VLANs for network isolation. For more information on
network isolation, see Section 3.2, “Planning Networks” .

Note the following:

Typical minimal Overcloud network configuration can include:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different Overcloud network types.

Dual NIC configuration - One NIC for the Provisioning network and the other NIC for the
External network.

Dual NIC configuration - One NIC for the Provisioning network on the native VLAN and the
other NIC for tagged VLANs that use subnets for the different Overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different Overcloud network
type.

Additional physical NICs can be used for isolating individual networks, creating bonded
interfaces, or for delegating tagged VLAN traffic.

If using VLANs to isolate your network traffic types, use a switch that supports 802.1Q
standards to provide tagged VLANs.

During the Overcloud creation, you will refer to NICs using a single name across all Overcloud
machines. Ideally, you should use the same NIC on each Overcloud node for each respective

CHAPTER 2. REQUIREMENTS

9

https://access.redhat.com/solutions/2327921


network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Make sure the Provisioning network NIC is not the same NIC used for remote connectivity on
the director machine. The director installation creates a bridge using the Provisioning NIC,
which drops any remote connections. Use the External NIC for remote connections to the
director system.

The Provisioning network requires an IP range that fits your environment size. Use the
following guidelines to determine the total number of IP addresses to include in this range:

Include at least one IP address per node connected to the Provisioning network.

If planning a high availability configuration, include an extra IP address for the virtual IP of
the cluster.

Include additional IP addresses within the range for scaling the environment.

NOTE

Duplicate IP addresses should be avoided on the Provisioning network. For more
information, see Section 11.4, “Troubleshooting IP Address Conflicts on the
Provisioning Network”.

NOTE

For more information on planning your IP address usage, for example, for
storage, provider, and tenant networks, see the Networking Guide.

Set all Overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC (and any other NICs on the system). Also ensure that the Provisioning NIC has 
PXE boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All Overcloud bare metal systems require an Intelligent Platform Management Interface (IPMI)
connected to the Provisioning network, as this allows the director to control the power
management of each node.

Make a note of the following details for each Overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information will be useful later when setting up the Overcloud nodes.

If an instance needs to be accessible from the external internet, you can allocate a floating IP
address from a public network and associate it with an instance. The instance still retains its
private IP but network traffic uses NAT to traverse through to the floating IP address. Note
that a floating IP address can only be assigned to a single instance rather than multiple private
IP addresses. However, the floating IP address is reserved only for use by a single tenant,
allowing the tenant to associate or disassociate with a particular instance as required. This
configuration exposes your infrastructure to the external internet. As a result, you might need
to check that you are following suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
may be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

Director Installation and Usage

10

https://access.redhat.com/documentation/en/red-hat-openstack-platform/version-8/networking-guide/#sec-planning-ip


IMPORTANT

Your OpenStack Platform implementation is only as secure as its environment. Follow
good security principles in your networking environment to ensure that network access
is properly controlled. For example:

Use network segmentation to mitigate network movement and isolate sensitive
data; a flat network is much less secure.

Restrict services access and ports to a minimum.

Ensure proper firewall rules and password usage.

Ensure that SELinux is enabled.

For details on securing your system, see:

Red Hat Enterprise Linux 7 Security Guide

Red Hat Enterprise Linux 7 SELinux User's and Administrator's Guide

2.4. OVERCLOUD REQUIREMENTS

The following sections detail the requirements for individual systems and nodes in the Overcloud
installation.

NOTE

Booting an overcloud node from the SAN (FC-AL, FCoE, iSCSI) is not yet supported.

2.4.1. Compute Node Requirements

Compute nodes are responsible for running virtual machine instances after they are launched.
Compute nodes must support hardware virtualization. Compute nodes must also have enough memory
and disk space to support the requirements of the virtual machine instances they host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the AMD-V or
Intel VT hardware virtualization extensions enabled. It is recommended this processor has a
minimum of 4 cores.

Memory

A minimum of 6 GB of RAM.

Add additional RAM to this requirement based on the amount of memory that you intend to make
available to virtual machine instances.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

CHAPTER 2. REQUIREMENTS

11

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html


A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or
to delegate tagged VLAN traffic.

Intelligent Platform Management Interface (IPMI)

Each Compute node requires IPMI functionality on the server's motherboard.

2.4.2. Controller Node Requirements

Controller nodes are responsible for hosting the core services in a RHEL OpenStack Platform
environment, such as the Horizon dashboard, the back-end database server, Keystone authentication,
and High Availability services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

A minimum of 32 GB of RAM for each Controller node. For optimal performance, it is recommended
to use 64 GB for each Controller node.

IMPORTANT

The amount of recommended memory depends on the number of CPU cores. A
greater number of CPU cores requires more memory. For more information on
measuring memory requirements, see "Red Hat OpenStack Platform Hardware
Requirements for Highly Available Controllers" on the Red Hat Customer Portal.

Disk Space

A minimum of 40 GB of available disk space.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for
bonded interfaces or to delegate tagged VLAN traffic.

Intelligent Platform Management Interface (IPMI)

Each Controller node requires IPMI functionality on the server's motherboard.

2.4.3. Ceph Storage Node Requirements

Ceph Storage nodes are responsible for providing object storage in a RHEL OpenStack Platform
environment.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space.

Director Installation and Usage

12

https://access.redhat.com/articles/2431181


Disk Space

Storage requirements depends on the amount of memory. Ideally, use at minimum 1 GB of memory
per 1 TB of hard disk space.

Disk Layout

The recommended Red Hat Ceph Storage node configuration requires a disk layout similar to the
following:

/dev/sda - The root disk. The director copies the main Overcloud image to the disk.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a
solid state drive (SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

This guide contains the necessary instructions to map your Ceph Storage disks into the director.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or
to delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Intelligent Platform Management Interface (IPMI)

Each Ceph node requires IPMI functionality on the server's motherboard.

IMPORTANT

The director does not create partitions on the journal disk. You must manually create
these journal partitions before the Director can deploy the Ceph Storage nodes.

The Ceph Storage OSDs and journals partitions require GPT disk labels, which you also
configure prior to customization. For example, use the following command on the
potential Ceph Storage host to create a GPT disk label for a disk or partition:

# parted [device] mklabel gpt

2.5. REPOSITORY REQUIREMENTS

Both the Undercloud and Overcloud require access to Red Hat repositories either through the Red Hat
Content Delivery Network, or through Red Hat Satellite 5 or 6. If using a Red Hat Satellite Server,
synchronize the required repositories to your OpenStack Platform environment. Use the following list
of CDN channel names as a guide:

Table 2.1. OpenStack Platform Repositories

CHAPTER 2. REQUIREMENTS

13



Name Repository Description of Requirement

Red Hat Enterprise Linux 7
Server (RPMs)

rhel-7-server-rpms Base operating system
repository.

Red Hat Enterprise Linux 7
Server - Extras (RPMs)

rhel-7-server-extras-
rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 7
Server - RH Common (RPMs)

rhel-7-server-rh-
common-rpms

Contains tools for deploying and
configuring Red Hat OpenStack
Platform.

Red Hat Satellite Tools for RHEL
7 Server RPMs x86_64

rhel-7-server-
satellite-tools-6.1-
rpms

Tools for managing hosts with
Red Hat Satellite 6.

Red Hat Enterprise Linux High
Availability (for RHEL 7 Server)
(RPMs)

rhel-ha-for-rhel-7-
server-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Enterprise Linux
OpenStack Platform 8 director
for RHEL 7 (RPMs)

rhel-7-server-
openstack-8-director-
rpms

Red Hat OpenStack Platform
director repository. Red Hat
OpenStack Platform director
repository. Also provides some
tools for use on director-deployed
Overclouds.

Red Hat Enterprise Linux
OpenStack Platform 8 for RHEL 7
(RPMs)

rhel-7-server-
openstack-8-rpms

Core Red Hat OpenStack
Platform repository.

Red Hat Ceph Storage OSD 1.3
for Red Hat Enterprise Linux 7
Server (RPMs)

rhel-7-server-rhceph-
1.3-osd-rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Object Storage daemon. Installed
on Ceph Storage nodes.

Red Hat Ceph Storage MON 1.3
for Red Hat Enterprise Linux 7
Server (RPMs)

rhel-7-server-rhceph-
1.3-mon-rpms

(For Ceph Storage Nodes)
Repository for Ceph Storage
Monitor daemon. Installed on
Controller nodes in OpenStack
environments using Ceph Storage
nodes.

NOTE

To configure repositories for your Red Hat OpenStack Platform environment in an
offline network, see "Configuring Red Hat OpenStack Platform Director in an Offline
Environment" on the Red Hat Customer Portal.

Director Installation and Usage

14

https://access.redhat.com/articles/2377701


CHAPTER 3. PLANNING YOUR OVERCLOUD
The following section provides some guidelines on planning various aspects of your Red Hat OpenStack
Platform environment. This includes defining node roles, planning your network topology, and storage.

3.1. PLANNING NODE DEPLOYMENT ROLES

The director provides multiple default node types for building your Overcloud. These node types are:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services.

NOTE

Environments with one node can be used for testing purposes. Environments with
two nodes or more than three nodes are not supported.

Compute

A physical server that acts as a hypervisor, and provides the processing capabilities required for
running virtual machines in the environment. A basic Red Hat OpenStack Platform environment
requires at least one Compute node.

Ceph-Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Cinder-Storage

A host that provides external block storage for OpenStack's cinder service. This deployment role is
optional.

Swift-Storage

A host that provides external object storage for OpenStack's Swift service. This deployment role is
optional.

The following table provides some example of different Overclouds and defines the node types for
each scenario.

Table 3.1. Node Deployment Roles for Scenarios

Controll
er

Comput
e

Ceph-
Storage

Swift-
Storage

Cinder-
Storage

Total

Small Overcloud 1 1 - - - 2

Medium Overcloud 1 3 - - - 4

CHAPTER 3. PLANNING YOUR OVERCLOUD

15



Medium Overcloud with
additional Object and Block
storage

1 3 - 1 1 6

Medium Overcloud with High
Availability

3 3 - - - 6

Medium Overcloud with High
Availability and Ceph Storage

3 3 3 - - 9

Controll
er

Comput
e

Ceph-
Storage

Swift-
Storage

Cinder-
Storage

Total

3.2. PLANNING NETWORKS

It is important to plan your environment's networking topology and subnets so that you can properly
map roles and services to correctly communicate with each other. Red Hat OpenStack Platform uses
the neutron networking service, which operates autonomously and manages software-based networks,
static and floating IP addresses, and DHCP. The director deploys this service on each Controller node in
an Overcloud environment.

Red Hat OpenStack Platform maps the different services onto separate network traffic types, which
are assigned to the various subnets in your environments. These network traffic types include:

Table 3.2. Network Type Assignments

Network Type Description Used By

IPMI Network used for power
management of nodes. This
network is predefined before the
installation of the Undercloud.

All nodes

Provisioning The director uses this network
traffic type to deploy new nodes
over PXE boot and orchestrate
the installation of OpenStack
Platform on the Overcloud bare
metal servers.  This network is
predefined before the installation
of the Undercloud.

All nodes

Internal API The Internal API network is used
for communication between the
OpenStack services using API
communication, RPC messages,
and database communication.

Controller, Compute, Cinder
Storage, Swift Storage

Director Installation and Usage

16



Tenant Neutron provides each tenant
with their own networks using
either VLAN segregation (where
each tenant network is a network
VLAN), or tunneling (through
VXLAN or GRE). Network traffic
is isolated within each tenant
network. Each tenant network
has an IP subnet associated with
it, and network namespaces
means that multiple tenant
networks can use the same
address range without causing
conflicts.

Controller, Compute

Storage Block Storage, NFS, iSCSI, and
others. Ideally, this would be
isolated to an entirely separate
switch fabric for performance
reasons.

All nodes

Storage Management OpenStack Object Storage (swift)
uses this network to synchronize
data objects between
participating replica nodes. The
proxy service acts as the
intermediary interface between
user requests and the underlying
storage layer. The proxy receives
incoming requests and locates
the necessary replica to retrieve
the requested data. Services that
use a Ceph backend connect
over the Storage Management
network, since they do not
interact with Ceph directly but
rather use the frontend service.
Note that the RBD driver is an
exception, as this traffic connects
directly to Ceph.

Controller, Ceph Storage, Cinder
Storage, Swift Storage

External Hosts the OpenStack Dashboard
(horizon) for graphical system
management, the public APIs for
OpenStack services, and
performs SNAT for incoming
traffic destined for instances. If
the external network uses private
IP addresses (as per RFC-1918),
then further NAT must be
performed for traffic originating
from the internet.

Controller

Network Type Description Used By

CHAPTER 3. PLANNING YOUR OVERCLOUD

17



Floating IP Allows incoming traffic to reach
instances using 1-to-1 IP address
mapping between the floating IP
address, and the IP address
actually assigned to the instance
in the tenant network. If hosting
the Floating IPs on a VLAN
separate from External, you
can trunk the Floating IP VLAN to
the Controller nodes and add the
VLAN through Neutron after
Overcloud creation. This provides
a means to create multiple
Floating IP networks attached to
multiple bridges. The VLANs are
trunked but are not configured as
interfaces. Instead, neutron
creates an OVS port with the
VLAN segmentation ID on the
chosen bridge for each Floating
IP network.

Controller

Management Provides access for system
administration functions such as
SSH access, DNS traffic, and NTP
traffic. This network also acts as
a gateway for non-Controller
nodes.

All nodes

Network Type Description Used By

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the
Overcloud uses VLAN tagging to deliver more than one network per interface. Most of the networks
are isolated subnets but some require a Layer 3 gateway to provide routing for Internet access or
infrastructure network connectivity.

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN)
even if you intend to use a neutron VLAN mode (with tunneling disabled) at deployment
time. This requires minor customization at deployment time and leaves the option
available to use tunnel networks as utility networks or virtualization networks in the
future. You still create Tenant networks using VLANs, but you can also create VXLAN
tunnels for special-use networks without consuming tenant VLANs. It is possible to add
VXLAN capability to a deployment with a Tenant VLAN, but it is not possible to add a
Tenant VLAN to an existing Overcloud without causing disruption.

The director provides a method for mapping six of these traffic types to certain subnets or VLANs.
These traffic types include:

Internal API

Storage

Director Installation and Usage

18



Storage Management

Tenant Networks

External

Management

Any unassigned networks are automatically assigned to the same subnet as the Provisioning network.

The diagram below provides an example of a network topology where the networks are isolated on
separate VLANs. Each Overcloud node uses two interfaces (nic2 and nic3) in a bond to deliver these
networks over their respective VLANs. Meanwhile, each Overcloud node communicates with the
Undercloud over the Provisioning network through a native VLAN using nic1.

Figure 3.1. Example VLAN Topology using Bonded Interfaces

CHAPTER 3. PLANNING YOUR OVERCLOUD

19



The following table provides examples of network traffic mappings different network layouts:

Table 3.3. Network Mappings

Mappings Total
Interfaces

Total VLANs

Flat Network
with External
Access

Network 1 - Provisioning, Internal API, Storage,
Storage Management, Tenant Networks

Network 2 - External, Floating IP (mapped after
Overcloud creation)

2 2

Isolated
Networks

Network 1 - Provisioning

Network 2 - Internal API

Network 3 - Tenant Networks

Network 4 - Storage

Network 5 - Storage Management

Network 6 - Management

Network 7 - External, Floating IP (mapped after
Overcloud creation)

3 (includes 2
bonded
interfaces)

7

3.3. PLANNING STORAGE

The director provides different storage options for the Overcloud environment. This includes:

Ceph Storage Nodes

The director creates a set of scalable storage nodes using Red Hat Ceph Storage. The Overcloud
uses these nodes for:

Images - Glance manages images for VMs. Images are immutable. OpenStack treats images
as binary blobs and downloads them accordingly. You can use glance to store images in a
Ceph Block Device.

Volumes - Cinder volumes are block devices. OpenStack uses volumes to boot VMs, or to
attach volumes to running VMs. OpenStack manages volumes using Cinder services. You
can use Cinder to boot a VM using a copy-on-write clone of an image.

Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with nova, its disk appears as a file on the filesystem of the hypervisor
(usually under /var/lib/nova/instances/<uuid>/). It is possible to boot every virtual
machine inside Ceph directly without using cinder, which is advantageous because it allows
you to perform maintenance operations easily with the live-migration process. Additionally,
if your hypervisor dies it is also convenient to trigger nova evacuate and run the virtual
machine elsewhere almost seamlessly.

Director Installation and Usage

20



IMPORTANT

If you want to boot virtual machines in Ceph (ephemeral backend or boot from
volume), the glance image format must be RAW format. Ceph does not support other
image formats such as QCOW2 or VMDK for hosting a virtual machine disk.

See Red Hat Ceph Storage Architecture Guide  for additional information.

Swift Storage Nodes

The director creates an external object storage node. This is useful in situations where you need to
scale or replace controller nodes in your Overcloud environment but need to retain object storage
outside of a high availability cluster.

CHAPTER 3. PLANNING YOUR OVERCLOUD

21

https://access.redhat.com/beta/documentation/en/red-hat-ceph-storage-13-red-hat-ceph-architecture/red-hat-ceph-architecture


CHAPTER 4. INSTALLING THE UNDERCLOUD
The first step to creating your Red Hat OpenStack Platform environment is to install the director on
the Undercloud system. This involves a few prerequisite steps to enable the necessary subscriptions
and repositories.

4.1. CREATING A DIRECTOR INSTALLATION USER

The director installation process requires a non-root user to execute commands. Use the following
commands to create the user named stack and set a password:

[root@director ~]# useradd stack
[root@director ~]# passwd stack  # specify a password

Disable password requirements for this user when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a 
/etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

Continue the director installation as the stack user.

4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES

The director uses system images and Heat templates to create the Overcloud environment. To keep
these files organized, we recommend creating directories for images and templates:

$ mkdir ~/images
$ mkdir ~/templates

Other sections in this guide use these two directories to store certain files.

4.3. SETTING THE HOSTNAME FOR THE SYSTEM

The director requires a fully qualified domain name for its installation and configuration process. This
means you may need to set the hostname of your director's host. Check the hostname of your host:

$ hostname    # Checks the base hostname
$ hostname -f # Checks the long hostname (FQDN)

If either commands do not report the correct hostname or report an error, use hostnamectl to set a
hostname:

$ sudo hostnamectl set-hostname manager.example.com
$ sudo hostnamectl set-hostname --transient manager.example.com

Director Installation and Usage

22



The director also requires an entry for the system's hostname and base name in /etc/hosts. For
example, if the system is named manager.example.com, then /etc/hosts requires an entry like:

127.0.0.1   manager.example.com manager localhost localhost.localdomain 
localhost4 localhost4.localdomain4

4.4. REGISTERING YOUR SYSTEM

To install the Red Hat OpenStack Platform director, first register the host system using Red Hat
Subscription Manager, and subscribe to the required channels.

Procedure 4.1. Subscribing to the Required Channels Using Subscription Manager

1. Register your system with the Content Delivery Network, entering your Customer Portal user
name and password when prompted:

$ sudo subscription-manager register

2. Find the entitlement pool for the Red Hat OpenStack Platform director.

$ sudo subscription-manager list --available --all

3. Use the pool ID located in the previous step to attach the Red Hat OpenStack Platform 8
entitlements:

$ sudo subscription-manager attach --pool=pool_id

4. Disable all default repositories, and then enable the required Red Hat Enterprise Linux
repositories:

$ sudo subscription-manager repos --disable=*
$ sudo subscription-manager repos --enable=rhel-7-server-rpms --
enable=rhel-7-server-extras-rpms --enable=rhel-7-server-openstack-8-
rpms --enable=rhel-7-server-openstack-8-director-rpms --enable rhel-
7-server-rh-common-rpms

These repositories contain packages the director installation requires.

IMPORTANT

Only enable the repositories listed above. Additional repositories can cause
package and software conflicts. Do not enable any additional repositories.

5. Perform an update on your system to make sure you have the latest base system packages:

$ sudo yum update -y
$ sudo reboot

The system is now ready for the director installation.

CHAPTER 4. INSTALLING THE UNDERCLOUD

23



4.5. INSTALLING THE DIRECTOR PACKAGES

Use the following command to install the required command line tools for director installation and
configuration:

[stack@director ~]$ sudo yum install -y python-tripleoclient

This installs all packages required for the director installation.

4.6. CONFIGURING THE DIRECTOR

The director installation process requires certain settings to determine your network configurations.
The settings are stored in a template located in the stack user's home directory as 
undercloud.conf.

Red Hat provides a basic template to help determine the required settings for your installation. Copy
this template to the stack user's home directory:

$ cp /usr/share/instack-undercloud/undercloud.conf.sample 
~/undercloud.conf

The basic template contains the following parameters:

local_ip

The IP address defined for the director's Provisioning NIC. This is also the IP address the director
uses for its DHCP and PXE boot services. Leave this value as the default 192.0.2.1/24 unless you
are using a different subnet for the Provisioning network, for example, if it conflicts with an existing
IP address or subnet in your environment.

network_gateway

The gateway for the Overcloud instances. This is the Undercloud host, which forwards traffic to the
External network. Leave this as the default 192.0.2.1 unless you are either using a different IP
address for the director or want to directly use an external gateway.

NOTE

The director's configuration script also automatically enables IP forwarding using the
relevant sysctl kernel parameter.

undercloud_public_vip

The IP address defined for the director's Public API. Use an IP address on the Provisioning network
that does not conflict with any other IP addresses or address ranges. For example, 192.0.2.2. The
director configuration attaches this IP address to its software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_admin_vip

The IP address defined for the director's Admin API. Use an IP address on the Provisioning network
that does not conflict with any other IP addresses or address ranges. For example, 192.0.2.3. The
director configuration attaches this IP address to its software bridge as a routed IP address, which
uses the /32 netmask.

Director Installation and Usage

24



undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL communication. Ideally, you obtain
this certificate from a trusted certificate authority. Otherwise generate your own self-signed
certificate using the guidelines in Appendix A, SSL/TLS Certificate Configuration. These guidelines
also contain instructions on setting the SELinux context for your certificate, whether self-signed or
from an authority.

local_interface

The chosen interface for the director's Provisioning NIC. This is also the device the director uses for
its DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
state UP qlen 1000
    link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic 
eth0
       valid_lft 3462sec preferred_lft 3462sec
    inet6 fe80::5054:ff:fe75:2409/64 scope link
       valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state 
DOWN
    link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently
not configured. In this case, set the local_interface to eth1. The configuration script attaches
this interface to a custom bridge defined with the inspection_interface parameter.

network_cidr

The network that the director uses to manage Overcloud instances. This is the Provisioning
network. Leave this as the default 192.0.2.0/24 unless you are using a different subnet for the
Provisioning network.

masquerade_network

Defines the network that will masquerade for external access. This provides the Provisioning
network with a degree of network address translation (NAT) so that it has external access through
the director. Leave this as the default (192.0.2.0/24) unless you are using a different subnet for
the Provisioning network.

dhcp_start, dhcp_end

The start and end of the DHCP allocation range for Overcloud nodes. Ensure this range contains
enough IP addresses to allocate your nodes.

inspection_interface

The bridge the director uses for node introspection. This is custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default 
br-ctlplane.

inspection_iprange

A range of IP address that the director's introspection service uses during the PXE boot and
provisioning process. Use comma-separated values to define the start and end of this range. For

CHAPTER 4. INSTALLING THE UNDERCLOUD

25



example, 192.0.2.100,192.0.2.120. Make sure this range contains enough IP addresses for
your nodes and does not conflict with the range for dhcp_start and dhcp_end.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. Requires 
python-hardware or python-hardware-detect package on the introspection image.

inspection_runbench

Runs a set of benchmarks during node introspection. Set to true to enable. This option is necessary
if you intend to perform benchmark analysis when inspecting the hardware of registered nodes. See
Appendix C, Automatic Profile Tagging for more details.

undercloud_debug

Sets the log level of Undercloud services to DEBUG. Set this value to true to enable.

enable_tempest

Defines whether to install the validation tools. The default is set to false, but you can can enable
using true.

ipxe_deploy

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to 
false to set to standard PXE. For more information, see "Changing from iPXE to PXE in Red Hat
OpenStack Platform director" on the Red Hat Customer Portal.

store_events

Defines whether to store events in Ceilometer on the Undercloud.

undercloud_db_password, undercloud_admin_token, undercloud_admin_password,
undercloud_glance_password, etc

The remaining parameters are the access details for all of the director's services. No change is
required for the values. The director's configuration script automatically generates these values if
blank in undercloud.conf. You can retrieve all values after the configuration script completes.

IMPORTANT

The configuration file examples for these parameters use <None> as a placeholder
value. Setting these values to <None> leads to a deployment error.

Modify the values for these parameters to suit your network. When complete, save the file and run the
following command:

$ openstack undercloud install

This launches the director's configuration script. The director installs additional packages and
configures its services to suit the settings in the undercloud.conf. This script takes several minutes
to complete.

The configuration script generates two files when complete:

Director Installation and Usage

26

https://access.redhat.com/articles/2142881


undercloud-passwords.conf - A list of all passwords for the director's services.

stackrc - A set of initialization variables to help you access the director's command line tools.

To initialize the stack user to use the command line tools, run the following command:

$ source ~/stackrc

You can now use the director's command line tools.

4.7. OBTAINING IMAGES FOR OVERCLOUD NODES

The director requires several disk images for provisioning Overcloud nodes. This includes:

An introspection kernel and ramdisk - Used for bare metal system introspection over PXE
boot.

A deployment kernel and ramdisk - Used for system provisioning and deployment.

An Overcloud kernel, ramdisk, and full image - A base Overcloud system that is written to the
node's hard disk.

Obtain these images from the rhosp-director-images and rhosp-director-images-ipa
packages:

$ sudo yum install rhosp-director-images rhosp-director-images-ipa

Copy the new image archives to the images directory on the stack user's home
(/home/stack/images):

$ cp /usr/share/rhosp-director-images/overcloud-full-latest-8.0.tar 
~/images/.
$ cp /usr/share/rhosp-director-images/ironic-python-agent-latest-8.0.tar 
~/images/.

Extract the images from the archives:

$ cd ~/images
$ for tarfile in *.tar; do tar -xf $tarfile; done

Import these images into the director:

$ openstack overcloud image upload --image-path /home/stack/images/

This uploads the following images into the director: bm-deploy-kernel, bm-deploy-ramdisk, 
overcloud-full, overcloud-full-initrd, overcloud-full-vmlinuz. These are the images
for deployment and the Overcloud. The script also installs the introspection images on the director's
PXE server.

View a list of the images in the CLI:

$ openstack image list
+--------------------------------------+------------------------+

CHAPTER 4. INSTALLING THE UNDERCLOUD

27



| ID                                   | Name                   |
+--------------------------------------+------------------------+
| 765a46af-4417-4592-91e5-a300ead3faf6 | bm-deploy-ramdisk      |
| 09b40e3d-0382-4925-a356-3a4b4f36b514 | bm-deploy-kernel       |
| ef793cd0-e65c-456a-a675-63cd57610bd5 | overcloud-full         |
| 9a51a6cb-4670-40de-b64b-b70f4dd44152 | overcloud-full-initrd  |
| 4f7e33f4-d617-47c1-b36f-cbe90f132e5d | overcloud-full-vmlinuz |
+--------------------------------------+------------------------+

This list will not show the introspection PXE images (discovery-ramdisk.*). The director copies
these files to /httpboot.

[stack@host1 ~]$ ls -l /httpboot
total 341460
-rwxr-xr-x. 1 root root   5153184 Mar 31 06:58 agent.kernel
-rw-r--r--. 1 root root 344491465 Mar 31 06:59 agent.ramdisk
-rw-r--r--. 1 root root       337 Mar 31 06:23 inspector.ipxe

4.8. SETTING A NAMESERVER ON THE UNDERCLOUD'S NEUTRON
SUBNET

Overcloud nodes require a nameserver so that they can resolve hostnames through DNS. For a
standard Overcloud without network isolation, the nameserver is defined using the Undercloud's 
neutron subnet. Use the following commands to define the nameserver for the environment:

$ neutron subnet-list
$ neutron subnet-update [subnet-uuid] --dns-nameserver [nameserver-ip]

View the subnet to verify the nameserver:

$ neutron subnet-show [subnet-uuid]
+-------------------+-----------------------------------------------+
| Field             | Value                                         |
+-------------------+-----------------------------------------------+
| ...               |                                               |
| dns_nameservers   | 8.8.8.8                                       |
| ...               |                                               |
+-------------------+-----------------------------------------------+

IMPORTANT

If you aim to isolate service traffic onto separate networks, the Overcloud nodes use the
DnsServer parameter in your network environment templates. This is covered in the
advanced configuration scenario in Section 6.2.2, “Creating a Network Environment
File”.

4.9. BACKING UP THE UNDERCLOUD

Red Hat provides a process to back up important data from the Undercloud host and the Red Hat
OpenStack Platform director. For more information about Undercloud backups, see the Back Up and
Restore Red Hat OpenStack Platform guide.

Director Installation and Usage

28

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/back-up-and-restore-red-hat-openstack-platform/back-up-and-restore-red-hat-openstack-platform


4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

This completes the Undercloud configuration. The next chapter explores basic Overcloud
configuration, including registering nodes, inspecting them, and then tagging them into various node
roles.

CHAPTER 4. INSTALLING THE UNDERCLOUD

29



CHAPTER 5. CONFIGURING BASIC OVERCLOUD
REQUIREMENTS
This chapter provides the basic configuration steps for an enterprise-level OpenStack Platform
environment. An Overcloud with a basic onfiguration contains no custom features. However, you can
add advanced configuration options to this basic Overcloud and customize it to your specifications
using the instructions in Chapter 6, Configuring Advanced Customizations for the Overcloud.

For the examples in this chapter, all nodes in this chapter are bare metal systems using IPMI for power
management. For more supported power management types and their options, see Appendix B, Power
Management Drivers.

Workflow

1. Create a node definition template and register blank nodes in the director.

2. Inspect hardware of all nodes.

3. Tag nodes into roles.

4. Define additional node properties.

Requirements

The director node created in Chapter 4, Installing the Undercloud

A set of bare metal machines for your nodes. The number of node required depends on the
type of Overcloud you intend to create (see Section 3.1, “Planning Node Deployment Roles” for
information on Overcloud roles). These machines also must comply with the requirements set
for each node type. For these requirements, see Section 2.4, “Overcloud Requirements”. These
nodes do not require an operating system. The director copies a Red Hat Enterprise Linux 7
image to each node.

One network connection for our Provisioning network, which is configured as a native VLAN.
All nodes must connect to this network and comply with the requirements set in Section 2.3,
“Networking Requirements”. For the examples in this chapter, we use 192.0.2.0/24 as the
Provisioning subnet with the following IP address assignments:

Table 5.1. Provisioning Network IP Assignments

Node Name IP Address MAC Address IPMI IP Address

Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller DHCP defined bb:bb:bb:bb:bb:bb 192.0.2.205

Compute DHCP defined cc:cc:cc:cc:cc:cc 192.0.2.206

All other network types use the Provisioning network for OpenStack services. However, you
can create additional networks for other network traffic types. For more information, see
Section 6.2, “Isolating Networks” .

Director Installation and Usage

30



5.1. REGISTERING NODES FOR THE OVERCLOUD

The director requires a node definition template. This file (instackenv.json) uses the JSON format
file, and contains the hardware and power management details for your nodes.

This template uses the following attributes:

pm_type

The power management driver to use. This example uses the IPMI driver (pxe_ipmitool).

pm_user, pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

mac

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the MAC
address for the Provisioning NIC of each system.

cpu

(Optional) The number of CPUs on the node.

memory

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

For example, a template for registering two nodes might look like this:

{
    "nodes":[
        {
            "mac":[
                "bb:bb:bb:bb:bb:bb"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.205"
        },
        {

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS

31



            "mac":[
                "cc:cc:cc:cc:cc:cc"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.206"
        }
    ]
}

NOTE

For more supported power management types and their options, see Appendix B, Power
Management Drivers.

After creating the template, save the file to the stack user's home directory
(/home/stack/instackenv.json), then import it into the director using the following command:

$ openstack baremetal import --json ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:

$ openstack baremetal configure boot

The nodes are now registered and configured in the director. View a list of these nodes in the CLI :

$ ironic node-list

5.2. INSPECTING THE HARDWARE OF NODES

The director can run an introspection process on each node. This process causes each node to boot an
introspection agent over PXE. This agent collects hardware data from the node and sends it back to the
director. The director then stores this introspection data in the OpenStack Object Storage (swift)
service running on the director. The director uses hardware information for various purposes such as
profile tagging, benchmarking, and manual root disk assignment.

NOTE

You can also create policy files to automatically tag nodes into profiles immediately
after introspection. For more information on creating policy files and including them in
the introspection process, see Appendix C, Automatic Profile Tagging. Alternatively, you
can manually tag nodes into profiles as per the instructions in Section 5.3, “Tagging
Nodes into Profiles”.

Run the following command to inspect the hardware attributes of each node:

Director Installation and Usage

32



$ openstack baremetal introspection bulk start

Monitor the progress of the introspection using the following command in a separate terminal window:

$ sudo journalctl -l -u openstack-ironic-inspector -u openstack-ironic-
inspector-dnsmasq -u openstack-ironic-conductor -f

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for
bare metal nodes.

Alternatively, perform a single introspection on each node individually. Set the node to maintenance
mode, perform the introspection, then move the node out of maintenance mode:

$ ironic node-set-maintenance [NODE UUID] true
$ openstack baremetal introspection start [NODE UUID]
$ ironic node-set-maintenance [NODE UUID] false

5.3. TAGGING NODES INTO PROFILES

After registering and inspecting the hardware of each node, you will tag them into specific profiles.
These profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment
role. Default profile flavors compute, control, swift-storage, ceph-storage, and block-
storage are created during Undercloud installation and are usable without modification in most
environments.

NOTE

For a large number of nodes, use automatic profile tagging. See Appendix C, Automatic
Profile Tagging for more details.

To tag a node into a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag your nodes to use Controller and Compute profiles
respectively, use the following commands:

$ ironic node-update 58c3d07e-24f2-48a7-bbb6-6843f0e8ee13 add 
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 add 
properties/capabilities='profile:control,boot_option:local'

The addition of the profile:compute and profile:control options tag the two nodes into each
respective profiles.

These commands also set the boot_option:local parameter, which defines the boot mode for each
node.

IMPORTANT

The director currently does not support UEFI boot mode.

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS

33



After completing node tagging, check the assigned profiles or possible profiles:

$ openstack overcloud profiles list

5.4. DEFINING THE ROOT DISK FOR NODES

Some nodes might use multiple disks. This means the director needs to identify the disk to use for the
root disk during provisioning. There are several properties you can use to help the director identify the
root disk:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

wwn (String): Unique storage identifier.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

In this example, you specify the drive to deploy the Overcloud image using the serial number of the
disk to determine the root device.

First, collect a copy of each node's hardware information that the director obtained from the
introspection. This information is stored in the OpenStack Object Storage server (swift). Download this
information to a new directory:

$ mkdir swift-data
$ cd swift-data
$ export IRONIC_DISCOVERD_PASSWORD=`sudo grep admin_password /etc/ironic-
inspector/inspector.conf | awk '! /^#/ {print $NF}'`
$ for node in $(ironic node-list | awk '!/UUID/ {print $2}'); do swift -U 
service:ironic -K $IRONIC_DISCOVERD_PASSWORD download ironic-inspector 
inspector_data-$node; done

This downloads the data from each inspector_data object from introspection. All objects use the
node UUID as part of the object name:

$ ls -1
inspector_data-15fc0edc-eb8d-4c7f-8dc0-a2a25d5e09e3
inspector_data-46b90a4d-769b-4b26-bb93-50eaefcdb3f4
inspector_data-662376ed-faa8-409c-b8ef-212f9754c9c7
inspector_data-6fc70fe4-92ea-457b-9713-eed499eda206
inspector_data-9238a73a-ec8b-4976-9409-3fcff9a8dca3
inspector_data-9cbfe693-8d55-47c2-a9d5-10e059a14e07
inspector_data-ad31b32d-e607-4495-815c-2b55ee04cdb1
inspector_data-d376f613-bc3e-4c4b-ad21-847c4ec850f8

Check the disk information for each node. The following command displays each node ID and the disk
information:

Director Installation and Usage

34



$ for node in $(ironic node-list | awk '!/UUID/ {print $2}'); do echo 
"NODE: $node" ; cat inspector_data-$node | jq '.inventory.disks' ; echo "-
----" ; done

For example, the data for one node might show three disk:

NODE: 46b90a4d-769b-4b26-bb93-50eaefcdb3f4
[
  {
    "size": 1000215724032,
    "vendor": "ATA",
    "name": "/dev/sda",
    "model": "WDC WD1002F9YZ",
    "wwn": "0x0000000000000001",
    "serial": "WD-000000000001"
  },
  {
    "size": 1000215724032,
    "vendor": "ATA",
    "name": "/dev/sdb",
    "model": "WDC WD1002F9YZ",
    "wwn": "0x0000000000000002",
    "serial": "WD-000000000002"
  },
  {
    "size": 1000215724032,
    "vendor": "ATA",
    "name": "/dev/sdc",
    "model": "WDC WD1002F9YZ",
    "wwn": "0x0000000000000003",
    "serial": "WD-000000000003"
  },
]

For this example, set the root device to disk 2, which has WD-000000000002 as the serial number.
This requires a change to the root_device parameter for the node definition:

$ ironic node-update 97e3f7b3-5629-473e-a187-2193ebe0b5c7 add 
properties/root_device='{"serial": "WD-000000000002"}'

This helps the director identify the specific disk to use as the root disk. When we initiate our Overcloud
creation, the director provisions this node and writes the Overcloud image to this disk.

NOTE

Make sure to configure the BIOS of each node to include booting from the chosen root
disk. The recommended boot order is network boot, then root disk boot.

IMPORTANT

Do not use name to set the root disk as this value can change when the node boots.

5.5. COMPLETING BASIC CONFIGURATION

CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS

35



This concludes the required steps for basic configuration of your Overcloud. You can now either:

Customize your environment using advanced configuration step. See Chapter 6, Configuring
Advanced Customizations for the Overcloud for more information.

Or deploy a basic Overcloud. See Chapter 7, Creating the Overcloud for more information.

IMPORTANT

A basic Overcloud uses local LVM storage for block storage, which is not a supported
configuration. It is recommended to use an external storage solution for block storage.
For example, see Section 6.7, “Configuring NFS Storage”  for configuring an NFS share
for block storage.

Director Installation and Usage

36



CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS
FOR THE OVERCLOUD
This chapter follows on from Chapter 5, Configuring Basic Overcloud Requirements. At this point, the
director has registered the nodes and configured the necessary services for Overcloud creation. Now
you can customize your Overcloud using the methods in this chapter.

NOTE

The examples in this chapter are optional steps for configuring the Overcloud. These
steps are only required to provide the Overcloud with additional functionality. Use only
the steps that apply to the needs of your environment.

6.1. UNDERSTANDING HEAT TEMPLATES

The custom configurations in this chapter use Heat templates and environment files to define certain
aspects of the Overcloud, such as network isolation and network interface configuration. This section
provides a basic introduction to heat templates so that you can understand the structure and format of
these templates in the context of the Red Hat OpenStack Platform director.

6.1.1. Heat Templates

The director uses Heat Orchestration Templates (HOT) as a template format for its Overcloud
deployment plan. Templates in HOT format are mostly expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that heat creates, and the
configuration of the resources. Resources are objects in OpenStack and can include compute
resources, network configuration, security groups, scaling rules, and custom resources.

The structure of a Heat template has three main sections:

Parameters - These are settings passed to heat, which provides a way to customize a stack,
and any default values for parameters without passed values. These are defined in the 
parameters section of a template.

Resources - These are the specific objects to create and configure as part of a stack.
OpenStack contains a set of core resources that span across all components. These are
defined in the resources section of a template.

Output - These are values passed from heat after the stack's creation. You can access these
values either through the heat API or client tools. These are defined in the output section of a
template.

Here is an example of a basic heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
  key_name:
    type: string
    default: lars
    description: Name of an existing key pair to use for the instance
  flavor:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

37



    type: string
    description: Instance type for the instance to be created
    default: m1.small
  image:
    type: string
    default: cirros
    description: ID or name of the image to use for the instance

resources:
  my_instance:
    type: OS::Nova::Server
    properties:
      name: My Cirros Instance
      image: { get_param: image }
      flavor: { get_param: flavor }
      key_name: { get_param: key_name }

output:
  instance_name:
    description: Get the instance's name
    value: { get_attr: [ my_instance, name ] }

This template uses the resource type type: OS::Nova::Server to create an instance called 
my_instance with a particular flavor, image, and key. The stack can return the value of 
instance_name, which is called My Cirros Instance.

When Heat processes a template it creates a stack for the template and a set of child stacks for
resource templates. This creates a hierarchy of stacks that descend from the main stack you define
with your template. You can view the stack hierarchy using this following command:

$ heat stack-list --show-nested

6.1.2. Environment Files

An environment file is a special type of template that provides customization for your Heat templates.
This includes three key parts:

Resource Registry - This section defines custom resource names, linked to other heat
templates. This essentially provides a method to create custom resources that do not exist
within the core resource collection. These are defined in the resource_registry section of
an environment file.

Parameters - These are common settings you apply to the top-level template's parameters.
For example, if you have a template that deploys nested stacks, such as resource registry
mappings, the parameters only apply to the top-level template and not templates for the
nested resources. Parameters are defined in the parameters section of an environment file.

Parameter Defaults - These parameters modify the default values for parameters in all
templates. For example, if you have a Heat template that deploys nested stacks, such as
resource registry mappings,the parameter defaults apply to all templates. In other words, the
top-level template and those defining all nested resources. The parameter defaults are defined
in the parameter_defaults section of an environment file.

Director Installation and Usage

38



IMPORTANT

It is recommended to use parameter_defaults instead of parameters When
creating custom environment files for your Overcloud. This is so the parameters apply to
all stack templates for the Overcloud.

An example of a basic environment file:

resource_registry:
  OS::Nova::Server::MyServer: myserver.yaml

parameter_defaults:
  NetworkName: my_network

parameters:
  MyIP: 192.168.0.1

For example, this environment file (my_env.yaml) might be included when creating a stack from a
certain Heat template (my_template.yaml). The my_env.yaml files creates a new resource type
called OS::Nova::Server::MyServer. The myserver.yaml file is a Heat template file that
provides an implementation for this resource type that overrides any built-in ones. You can include the
OS::Nova::Server::MyServer resource in your my_template.yaml file.

The MyIP applies a parameter only to the main Heat template that deploys along with this
environment file. In this example, it only applies to the parameters in my_template.yaml.

The NetworkName applies to both the main Heat template (in this example, my_template.yaml) and
the templates associated with resources included the main template, such as the 
OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

6.1.3. Core Overcloud Heat Templates

The director contains a core heat template collection for the Overcloud. This collection is stored in 
/usr/share/openstack-tripleo-heat-templates.

There are many heat templates and environment files in this collection. However, the main files and
directories to note in this template collection are:

overcloud.yaml - This is the main template file used to create the Overcloud environment.

overcloud-resource-registry-puppet.yaml - This is the main environment file used to
create the Overcloud environment. It provides a set of configurations for Puppet modules
stored on the Overcloud image. After the director writes the Overcloud image to each node,
heat starts the Puppet configuration for each node using the resources registered in this
environment file.

environments - A directory that contains example environment files to apply to your
Overcloud deployment.

6.2. ISOLATING NETWORKS

The director provides methods to configure isolated Overcloud networks. This means the Overcloud
environment separates network traffic types into different networks, which in turn assigns network
traffic to specific network interfaces or bonds. After configuring isolated networks, the director

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

39



configures the OpenStack services to use the isolated networks. If no isolated networks are
configured, all services run on the Provisioning network.

This example uses separate networks for all services:

Network 1 - Provisioning

Network 2 - Internal API

Network 3 - Tenant Networks

Network 4 - Storage

Network 5 - Storage Management

Network 6 - Management

Network 7 - External and Floating IP (mapped after Overcloud creation)

In this example, each Overcloud node uses two network interfaces in a bond to serve networks in
tagged VLANs. The following network assignments apply to this bond:

Table 6.1. Network Subnet and VLAN Assignments

Network Type Subnet VLAN

Internal API 172.16.0.0/24 201

Tenant 172.17.0.0/24 202

Storage 172.18.0.0/24 203

Storage Management 172.19.0.0/24 204

Management 172.20.0.0/24 205

External / Floating IP 10.1.1.0/24 100

For more examples of network configuration, see Appendix E, Network Interface Template Examples.

6.2.1. Creating Custom Interface Templates

The Overcloud network configuration requires a set of the network interface templates. You customize
these templates to configure the node interfaces on a per role basis. These templates are standard
heat templates in YAML format (see Section 6.1, “Understanding Heat Templates” ). The director
contains a set of example templates to get you started:

/usr/share/openstack-tripleo-heat-templates/network/config/single-nic-
vlans - Directory containing templates for single NIC with VLANs configuration on a per role
basis.

/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans - Directory containing templates for bonded NIC configuration on a per role basis.

Director Installation and Usage

40



/usr/share/openstack-tripleo-heat-templates/network/config/multiple-
nics - Directory containing templates for multiple NIC configuration using one NIC per role.

/usr/share/openstack-tripleo-heat-templates/network/config/single-nic-
linux-bridge-vlans - Directory containing templates for single NIC with VLANs
configuration on a per role basis and using a Linux bridge instead of an Open vSwitch bridge.

For this example, use the default bonded NIC example configuration as a basis. Copy the version
located at /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans.

$ cp -r /usr/share/openstack-tripleo-heat-templates/network/config/bond-
with-vlans ~/templates/nic-configs

This creates a local set of heat templates that define a bonded network interface configuration for each
role. Each template contains the standard parameters, resources, and output sections. For this
example, you would only edit the resources section. Each resources section begins with the
following:

resources:
OsNetConfigImpl:
  type: OS::Heat::StructuredConfig
  properties:
    group: os-apply-config
    config:
      os_net_config:
        network_config:

This creates a request for the os-apply-config command and os-net-config subcommand to
configure the network properties for a node. The network_config section contains your custom
interface configuration arranged in a sequence based on type, which includes the following:

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3").

          - type: interface
            name: nic2

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

          - type: vlan
            vlan_id: {get_param: ExternalNetworkVlanID}
            addresses:
              - ip_netmask: {get_param: ExternalIpSubnet}

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with
redundancy and increases bandwidth.

          - type: ovs_bond

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

41



            name: bond1
            members:
            - type: interface
              name: nic2
            - type: interface
              name: nic3

ovs_bridge

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond and vlan
objects together.

          - type: ovs_bridge
            name: {get_input: bridge_name}
            members:
              - type: ovs_bond
                name: bond1
                members:
                  - type: interface
                    name: nic2
                    primary: true
                  - type: interface
                    name: nic3
              - type: vlan
                device: bond1
                vlan_id: {get_param: ExternalNetworkVlanID}
                addresses:
                  - ip_netmask: {get_param: ExternalIpSubnet}

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Make sure to include the kernel-based bonding options in the 
bonding_options parameter. For more information on Linux bonding options, see 4.5.1. Bonding
Module Directives in the Red Hat Enterprise Linux 7 Networking Guide.

            - type: linux_bond
              name: bond1
              members:
              - type: interface
                name: nic2
              - type: interface
                name: nic3
              bonding_options: "mode=802.3ad"

linux_bridge

Defines a Linux bridge, which connects multiple interface, linux_bond and vlan objects
together.

            - type: linux_bridge
              name: bridge1
              addresses:
                - ip_netmask:
                    list_join:
                      - '/'

Director Installation and Usage

42

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives


                      - - {get_param: ControlPlaneIp}
                        - {get_param: ControlPlaneSubnetCidr}
              members:
                - type: interface
                  name: nic1
                  primary: true
            - type: vlan
              vlan_id: {get_param: ExternalNetworkVlanID}
              device: bridge1
              addresses:
                - ip_netmask: {get_param: ExternalIpSubnet}
              routes:
                - ip_netmask: 0.0.0.0/0
                  default: true
                  next_hop: {get_param: ExternalInterfaceDefaultRoute}

See Appendix D, Network Interface Parameters for a full list of parameters for each of these items.

For this example, you use the default bonded interface configuration. For example, the 
/home/stack/templates/nic-configs/controller.yaml template uses the following 
network_config:

resources:
  OsNetConfigImpl:
    type: OS::Heat::StructuredConfig
    properties:
      group: os-apply-config
      config:
        os_net_config:
          network_config:
            - type: interface
              name: nic1
              use_dhcp: false
              addresses:
                - ip_netmask:
                    list_join:
                      - '/'
                      - - {get_param: ControlPlaneIp}
                        - {get_param: ControlPlaneSubnetCidr}
              routes:
                - ip_netmask: 169.254.169.254/32
                  next_hop: {get_param: EC2MetadataIp}
            - type: ovs_bridge
              name: {get_input: bridge_name}
              dns_servers: {get_param: DnsServers}
              members:
                - type: ovs_bond
                  name: bond1
                  ovs_options: {get_param: BondInterfaceOvsOptions}
                  members:
                    - type: interface
                      name: nic2
                      primary: true
                    - type: interface
                      name: nic3

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

43



                - type: vlan
                  device: bond1
                  vlan_id: {get_param: ExternalNetworkVlanID}
                  addresses:
                    - ip_netmask: {get_param: ExternalIpSubnet}
                  routes:
                    - default: true
                      next_hop: {get_param: 
ExternalInterfaceDefaultRoute}
                - type: vlan
                  device: bond1
                  vlan_id: {get_param: InternalApiNetworkVlanID}
                  addresses:
                    - ip_netmask: {get_param: InternalApiIpSubnet}
                - type: vlan
                  device: bond1
                  vlan_id: {get_param: StorageNetworkVlanID}
                  addresses:
                    - ip_netmask: {get_param: StorageIpSubnet}
                - type: vlan
                  device: bond1
                  vlan_id: {get_param: StorageMgmtNetworkVlanID}
                  addresses:
                    - ip_netmask: {get_param: StorageMgmtIpSubnet}
                - type: vlan
                  device: bond1
                  vlan_id: {get_param: TenantNetworkVlanID}
                  addresses:
                    - ip_netmask: {get_param: TenantIpSubnet}
                - type: vlan
                  device: bond1
                  vlan_id: {get_param: ManagementNetworkVlanID}
                  addresses:
                    - ip_netmask: {get_param: ManagementIpSubnet}

NOTE

The Management network section is commented in the network interface Heat
templates. Uncomment this section to enable the Management network.

This template defines a bridge (usually the external bridge named br-ex) and creates a bonded
interface called bond1 from two numbered interfaces: nic2 and nic3. The bridge also contains a
number of tagged VLAN devices, which use bond1 as a parent device. The template also include an
interface that connects back to the director (nic1).

For more examples of network interface templates, see Appendix E, Network Interface Template
Examples.

Note that a lot of these parameters use the get_param function. You would define these in an
environment file you create specifically for your networks.

Director Installation and Usage

44



IMPORTANT

Unused interfaces can cause unwanted default routes and network loops. For example,
your template might contain a network interface (nic4) that does not use any IP
assignments for OpenStack services but still uses DHCP and/or a default route. To avoid
network conflicts, remove any unused interfaces from ovs_bridge devices and disable
the DHCP and default route settings:

- type: interface
  name: nic4
  use_dhcp: false
  defroute: false

6.2.2. Creating a Network Environment File

The network environment file is a Heat environment file that describes the Overcloud's network
environment and points to the network interface configuration templates from the previous section.
You can define the subnets and VLANs for your network along with IP address ranges. You can then
customize these values for the local environment.

The director contains a set of example environment files to get you started. Each environment file
corresponds to the example network interface files in /usr/share/openstack-tripleo-heat-
templates/network/config/:

/usr/share/openstack-tripleo-heat-templates/environments/net-single-
nic-with-vlans.yaml - Example environment file for single NIC with VLANs configuration
in the single-nic-vlans) network interface directory. Environment files for disabling the
External network (net-single-nic-with-vlans-no-external.yaml) or enabling IPv6
(net-single-nic-with-vlans-v6.yaml) are also available.

/usr/share/openstack-tripleo-heat-templates/environments/net-bond-with-
vlans.yaml - Example environment file for bonded NIC configuration in the bond-with-
vlans network interface directory. Environment files for disabling the External network ( net-
bond-with-vlans-no-external.yaml) or enabling IPv6 ( net-bond-with-vlans-
v6.yaml) are also available.

/usr/share/openstack-tripleo-heat-templates/environments/net-multiple-
nics.yaml - Example environment file for a multiple NIC configuration in the multiple-
nics network interface directory. An environment file for enabling IPv6 ( net-multiple-
nics-v6.yaml) is also available.

/usr/share/openstack-tripleo-heat-templates/environments/net-single-
nic-linux-bridge-with-vlans.yaml - Example environment file for single NIC with
VLANs configuration using a Linux bridge instead of an Open vSwitch bridge, which uses the
the single-nic-linux-bridge-vlans network interface directory.

This scenario uses a modified version of the /usr/share/openstack-tripleo-heat-
templates/environments/net-bond-with-vlans.yaml file. Copy this file to the stack user's 
templates directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/net-bond-
with-vlans.yaml /home/stack/templates/network-environment.yaml

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

45



The environment file contains the following modified sections:

resource_registry:
  OS::TripleO::BlockStorage::Net::SoftwareConfig: 
/home/stack/templates/nic-configs/cinder-storage.yaml
  OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
  OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml
  OS::TripleO::ObjectStorage::Net::SoftwareConfig: 
/home/stack/templates/nic-configs/swift-storage.yaml
  OS::TripleO::CephStorage::Net::SoftwareConfig: 
/home/stack/templates/nic-configs/ceph-storage.yaml

parameter_defaults:
  InternalApiNetCidr: 172.16.0.0/24
  TenantNetCidr: 172.17.0.0/24
  StorageNetCidr: 172.18.0.0/24
  StorageMgmtNetCidr: 172.19.0.0/24
  StorageMgmtNetCidr: 172.19.0.0/24
  ManagementNetCidr: 172.20.0.0/24
  ExternalNetCidr: 10.1.1.0/24
  InternalApiAllocationPools: [{'start': '172.16.0.10', 'end': 
'172.16.0.200'}]
  TenantAllocationPools: [{'start': '172.17.0.10', 'end': '172.17.0.200'}]
  StorageAllocationPools: [{'start': '172.18.0.10', 'end': 
'172.18.0.200'}]
  StorageMgmtAllocationPools: [{'start': '172.19.0.10', 'end': 
'172.19.0.200'}]
  ManagementAllocationPools: [{'start': '172.20.0.10', 'end': 
'172.20.0.200'}]
  # Leave room for floating IPs in the External allocation pool
  ExternalAllocationPools: [{'start': '10.1.1.10', 'end': '10.1.1.50'}]
  # Set to the router gateway on the external network
  ExternalInterfaceDefaultRoute: 10.1.1.1
  # Gateway router for the provisioning network (or Undercloud IP)
  ControlPlaneDefaultRoute: 192.0.2.254
  # The IP address of the EC2 metadata server. Generally the IP of the 
Undercloud
  EC2MetadataIp: 192.0.2.1
  # Define the DNS servers (maximum 2) for the overcloud nodes
  DnsServers: ["8.8.8.8","8.8.4.4"]
  InternalApiNetworkVlanID: 201
  StorageNetworkVlanID: 202
  StorageMgmtNetworkVlanID: 203
  TenantNetworkVlanID: 204
  ManagementNetworkVlanID: 205
  ExternalNetworkVlanID: 100
  # Set to "br-ex" if using floating IPs on native VLAN on bridge br-ex
  NeutronExternalNetworkBridge: "''"
  # Customize bonding options if required
  BondInterfaceOvsOptions:
    "bond_mode=balance-tcp"

The resource_registry section contains modified links to the custom network interface templates
for each node role. See Section 6.2.1, “Creating Custom Interface Templates” .

Director Installation and Usage

46



The parameter_defaults section contains a list of parameters that define the network options for
each network type. For a full reference of these options, see Appendix F, Network Environment Options.

This scenario defines options for each network. All network types use an individual VLAN and subnet
used for assigning IP addresses to hosts and virtual IPs. In the example above, the allocation pool for
the Internal API network starts at 172.16.0.10 and continues to 172.16.0.200 using VLAN 201. This
results in static and virtual IPs assigned starting at 172.16.0.10 and upwards to 172.16.0.200 while
using VLAN 201 in your environment.

The External network hosts the Horizon dashboard and Public API. If using the External network for
both cloud administration and floating IPs, make sure there is room for a pool of IPs to use as floating
IPs for VM instances. In this example, you only have IPs from 10.1.1.10 to 10.1.1.50 assigned to the
External network, which leaves IP addresses from 10.1.1.51 and above free to use for Floating IP
addresses. Alternately, place the Floating IP network on a separate VLAN and configure the Overcloud
after creation to use it.

The BondInterfaceOvsOptions option provides options for our bonded interface using nic2 and 
nic3. For more information on bonding options, see Appendix G, Open vSwitch Bonding Options.

IMPORTANT

Changing the network configuration after creating the Overcloud can cause
configuration problems due to the availability of resources. For example, if a user
changes a subnet range for a network in the network isolation templates, the
reconfiguration might fail due to the subnet already being in use.

6.2.3. Assigning OpenStack Services to Isolated Networks

Each OpenStack service is assigned to a default network type in the resource registry. These services
are then bound to IP addresses within the network type's assigned network. Although the OpenStack
services are divided among these networks, the number of actual physical networks might differ as
defined in the network environment file. You can reassign OpenStack services to different network
types by defining a new network map in your network environment file
(/home/stack/templates/network-environment.yaml). The ServiceNetMap parameter
determines the network types used for each service.

For example, you can reassign the Storage Management network services to the Storage Network by
modifying the highlighted sections:

parameter_defaults:
  ...
  ServiceNetMap:
    NeutronTenantNetwork: tenant
    CeilometerApiNetwork: internal_api
    MongoDbNetwork: internal_api
    CinderApiNetwork: internal_api
    CinderIscsiNetwork: storage
    GlanceApiNetwork: storage
    GlanceRegistryNetwork: internal_api
    KeystoneAdminApiNetwork: internal_api
    KeystonePublicApiNetwork: internal_api
    NeutronApiNetwork: internal_api
    HeatApiNetwork: internal_api
    NovaApiNetwork: internal_api
    NovaMetadataNetwork: internal_api

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

47



    NovaVncProxyNetwork: internal_api
    SwiftMgmtNetwork: storage_mgmt
    SwiftProxyNetwork: storage
    HorizonNetwork: internal_api
    MemcachedNetwork: internal_api
    RabbitMqNetwork: internal_api
    RedisNetwork: internal_api
    MysqlNetwork: internal_api
    CephClusterNetwork: storage_mgmt
    CephPublicNetwork: storage
    # Define which network will be used for hostname resolution
    ControllerHostnameResolveNetwork: internal_api
    ComputeHostnameResolveNetwork: internal_api
    BlockStorageHostnameResolveNetwork: internal_api
    ObjectStorageHostnameResolveNetwork: internal_api
    CephStorageHostnameResolveNetwork: storage
    ...

Changing these parameters to storage places these services on the Storage network instead of the
Storage Management network. This means you only need to define a set of parameter_defaults for
the Storage network and not the Storage Management network.

6.2.4. Selecting Networks to Deploy

The settings in the resource_registry section of the environment file for networks and ports do
not ordinarily need to be changed. The list of networks can be changed if only a subset of the networks
are desired.

NOTE

When specifying custom networks and ports, do not include the 
environments/network-isolation.yaml on the deployment command line.
Instead, specify all the networks and ports in the network environment file.

In order to use isolated networks, the servers must have IP addresses on each network. You can use
neutron in the Undercloud to manage IP addresses on the isolated networks, so you will need to enable
neutron port creation for each network. You can override the resource registry in your environment
file.

First, this is the complete set of networks and ports that can be deployed:

resource_registry:
  # This section is usually not modified, if in doubt stick to the 
defaults
  # TripleO overcloud networks
  OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-
templates/network/external.yaml
  OS::TripleO::Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml
  OS::TripleO::Network::StorageMgmt: /usr/share/openstack-tripleo-heat-
templates/network/storage_mgmt.yaml
  OS::TripleO::Network::Storage: /usr/share/openstack-tripleo-heat-
templates/network/storage.yaml
  OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-

Director Installation and Usage

48



templates/network/tenant.yaml
  OS::TripleO::Network::Management: /usr/share/openstack-tripleo-heat-
templates/network/management.yaml

  # Port assignments for the VIPs
  OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
  OS::TripleO::Network::Ports::InternalApiVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
  OS::TripleO::Network::Ports::TenantVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml
  OS::TripleO::Network::Ports::ManagementVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml
  OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/vip.yaml

  # Port assignments for the controller role
  OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
  OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
  OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml
  OS::TripleO::Controller::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

  # Port assignments for the compute role
  OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml
  OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml
  OS::TripleO::Compute::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

  # Port assignments for the ceph storage role
  OS::TripleO::CephStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::CephStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
  OS::TripleO::CephStorage::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

  # Port assignments for the swift storage role
  OS::TripleO::SwiftStorage::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::SwiftStorage::Ports::StoragePort: /usr/share/openstack-

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

49



tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::SwiftStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
  OS::TripleO::SwiftStorage::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

  # Port assignments for the block storage role
  OS::TripleO::BlockStorage::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::BlockStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::BlockStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
  OS::TripleO::BlockStorage::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

The first section of this file has the resource registry declaration for the 
OS::TripleO::Network::* resources. By default these resources point at a noop.yaml file that
does not create any networks. By pointing these resources at the YAML files for each network, you
enable the creation of these networks.

The next several sections create the IP addresses for the nodes in each role. The controller nodes have
IPs on each network. The compute and storage nodes each have IPs on a subset of the networks.

To deploy without one of the pre-configured networks, disable the network definition and the
corresponding port definition for the role. For example, all references to storage_mgmt.yaml could
be replaced with noop.yaml:

resource_registry:
  # This section is usually not modified, if in doubt stick to the 
defaults
  # TripleO overcloud networks
  OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-
templates/network/external.yaml
  OS::TripleO::Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml
  OS::TripleO::Network::StorageMgmt: /usr/share/openstack-tripleo-heat-
templates/network/noop.yaml
  OS::TripleO::Network::Storage: /usr/share/openstack-tripleo-heat-
templates/network/storage.yaml
  OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-
templates/network/tenant.yaml

  # Port assignments for the VIPs
  OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
  OS::TripleO::Network::Ports::InternalApiVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
  OS::TripleO::Network::Ports::TenantVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml
  OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/vip.yaml

Director Installation and Usage

50



  # Port assignments for the controller role
  OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
  OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
  OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml

  # Port assignments for the compute role
  OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml
  OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml

  # Port assignments for the ceph storage role
  OS::TripleO::CephStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::CephStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml

  # Port assignments for the swift storage role
  OS::TripleO::SwiftStorage::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::SwiftStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::SwiftStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml

  # Port assignments for the block storage role
  OS::TripleO::BlockStorage::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
  OS::TripleO::BlockStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
  OS::TripleO::BlockStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml

parameter_defaults:
  ServiceNetMap:
    NeutronTenantNetwork: tenant
    CeilometerApiNetwork: internal_api
    MongoDbNetwork: internal_api
    CinderApiNetwork: internal_api
    CinderIscsiNetwork: storage
    GlanceApiNetwork: storage
    GlanceRegistryNetwork: internal_api
    KeystoneAdminApiNetwork: ctlplane # Admin connection for Undercloud
    KeystonePublicApiNetwork: internal_api
    NeutronApiNetwork: internal_api
    HeatApiNetwork: internal_api

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

51



    NovaApiNetwork: internal_api
    NovaMetadataNetwork: internal_api
    NovaVncProxyNetwork: internal_api
    SwiftMgmtNetwork: storage # Changed from storage_mgmt
    SwiftProxyNetwork: storage
    HorizonNetwork: internal_api
    MemcachedNetwork: internal_api
    RabbitMqNetwork: internal_api
    RedisNetwork: internal_api
    MysqlNetwork: internal_api
    CephClusterNetwork: storage # Changed from storage_mgmt
    CephPublicNetwork: storage
    ControllerHostnameResolveNetwork: internal_api
    ComputeHostnameResolveNetwork: internal_api
    BlockStorageHostnameResolveNetwork: internal_api
    ObjectStorageHostnameResolveNetwork: internal_api
    CephStorageHostnameResolveNetwork: storage

By using noop.yaml, no network or ports are created, so the services on the Storage Management
network would default to the Provisioning network. This can be changed in the ServiceNetMap in
order to move the Storage Management services to another network, such as the Storage network.

6.3. CONTROLLING NODE PLACEMENT

The default behavior for the director is to randomly select nodes for each role, usually based on their
profile tag. However, the director provides the ability to define specific node placement. This is a useful
method to:

Assign specific node IDs e.g. controller-0, controller-1, etc

Assign custom hostnames

Assign specific IP addresses

Assign specific Virtual IP addresses

NOTE

Manually setting predictable IP addresses, virtual IP addresses, and ports for a network
alleviates the need for allocation pools. However, it is recommended to retain allocation
pools for each network to ease with scaling new nodes. Make sure that any statically
defined IP addresses fall outside the allocation pools. For more information on setting
allocation pools, see Section 6.2.2, “Creating a Network Environment File” .

6.3.1. Assigning Specific Node IDs

This procedure assigns node ID to specific nodes. Examples of node IDs include controller-0, 
controller-1, compute-0, compute-1, and so forth.

The first step is to assign the ID as a per-node capability that the Nova scheduler matches on
deployment. For example:

ironic node-update <id> replace properties/capabilities='node:controller-
0,boot_option:local'

Director Installation and Usage

52



This assigns the capability node:controller-0 to the node. Repeat this pattern using a unique
continuous index, starting from 0, for all nodes. Make sure all nodes for a given role (Controller,
Compute, or each of the storage roles) are tagged in the same way or else the Nova scheduler will not
match the capabilities correctly.

The next step is to create a Heat environment file (for example, scheduler_hints_env.yaml) that
uses scheduler hints to match the capabilities for each node. For example:

parameter_defaults:
  ControllerSchedulerHints:
    'capabilities:node': 'controller-%index%'

To use these scheduler hints, include the  scheduler_hints_env.yaml environment file with the 
overcloud deploy command during Overcloud creation.

The same approach is possible for each role via these parameters:

ControllerSchedulerHints for Controller nodes.

NovaComputeSchedulerHints for Compute nodes.

BlockStorageSchedulerHints for Block Storage nodes.

ObjectStorageSchedulerHints for Object Storage nodes.

CephStorageSchedulerHints for Ceph Storage nodes.

NOTE

Node placement takes priority over profile matching. To avoid scheduling failures, use
the default baremetal flavor for deployment and not the flavors designed for profile
matching (compute, control, etc). For example:

$ openstack overcloud deploy ... --control-flavor baremetal --
compute-flavor baremetal ...

6.3.2. Assigning Custom Hostnames

In combination with the node ID configuration in Section 6.3.1, “Assigning Specific Node IDs” , the
director can also assign a specific custom hostname to each node. This is useful when you need to
define where a system is located (e.g. rack2-row12), match an inventory identifier, or other situations
where a custom hostname is desired.

To customize node hostnames, use the HostnameMap parameter in an environment file, such as the  
scheduler_hints_env.yaml file from Section 6.3.1, “Assigning Specific Node IDs” . For example:

parameter_defaults:
  ControllerSchedulerHints:
    'capabilities:node': 'controller-%index%'
  NovaComputeSchedulerHints:
    'capabilities:node': 'compute-%index%'
  HostnameMap:
    overcloud-controller-0: overcloud-controller-prod-123-0
    overcloud-controller-1: overcloud-controller-prod-456-0

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

53



    overcloud-controller-2: overcloud-controller-prod-789-0
    overcloud-compute-0: overcloud-compute-prod-abc-0

Define the HostnameMap in the parameter_defaults section, and set each mapping as the original
hostname that Heat defines using HostnameFormat parameters (e.g. overcloud-controller-0)
and the second value is the desired custom hostname for that node (e.g. overcloud-controller-
prod-123-0).

Using this method in combination with the node ID placement ensures each node has a custom
hostname.

6.3.3. Assigning Predictable IPs

For further control over the resulting environment, the director can assign Overcloud nodes with
specific IPs on each network as well. Use the environments/ips-from-pool-all.yaml
environment file in the core Heat template collection. Copy this file to the stack user's templates
directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/ips-from-
pool-all.yaml ~/templates/.

There are two major sections in the ips-from-pool-all.yaml file.

The first is a set of resource_registry references that override the defaults. These tell the director
to use a specific IP for a given port on a node type. Modify each resource to use the absolute path of its
respective template. For example:

  OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external_from_pool.yaml
  OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api_from_pool.yaml
  OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_from_pool.yaml
  OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt_from_pool.yaml
  OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant_from_pool.yaml

The default configuration sets all networks on all node types to use pre-assigned IPs. To allow a
particular network or node type to use default IP assignment instead, simply remove the 
resource_registry entries related to that node type or network from the environment file.

The second section is parameter_defaults, where the actual IP addresses are assigned. Each node type
has an associated parameter:

ControllerIPs for Controller nodes.

NovaComputeIPs for Compute nodes.

CephStorageIPs for Ceph Storage nodes.

BlockStorageIPs for Block Storage nodes.

SwiftStorageIPs for Object Storage nodes.

Director Installation and Usage

54



Each parameter is a map of network names to a list of addresses. Each network type must have at least
as many addresses as there will be nodes on that network. The director assigns addresses in order. The
first node of each type receives the first address on each respective list, the second node receives the
second address on each respective lists, and so forth.

For example, if an Overcloud will contain three Ceph Storage nodes, the CephStorageIPs parameter
might look like:

CephStorageIPs:
  storage:
  - 172.16.1.100
  - 172.16.1.101
  - 172.16.1.102
  storage_mgmt:
  - 172.16.3.100
  - 172.16.3.101
  - 172.16.3.102

The first Ceph Storage node receives two addresses: 172.16.1.100 and 172.16.3.100. The second
receives 172.16.1.101 and 172.16.3.101, and the third receives 172.16.1.102 and 172.16.3.102. The same
pattern applies to the other node types.

Make sure the chosen IP addresses fall outside the allocation pools for each network defined in your
network environment file (see Section 6.2.2, “Creating a Network Environment File” ). For example,
make sure the internal_api assignments fall outside of the InternalApiAllocationPools
range. This avoids conflicts with any IPs chosen automatically. Likewise, make sure the IP assignments
do not conflict with the VIP configuration, either for standard predictable VIP placement (see
Section 6.3.4, “Assigning Predictable Virtual IPs” ) or external load balancing (see Section 6.5,
“Configuring External Load Balancing”).

To apply this configuration during a deployment, include the environment file with the openstack 
overcloud deploy command. If using network isolation (see Section 6.2, “Isolating Networks” ),
include this file after the network-isolation.yaml file. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e ~/templates/ips-
from-pool-all.yaml [OTHER OPTIONS]

6.3.4. Assigning Predictable Virtual IPs

In addition to defining predictable IP addresses for each node, the director also provides a similar
ability to define predictable Virtual IPs (VIPs) for clustered services. To accomplish this, edit the
network environment file from Section 6.2.2, “Creating a Network Environment File”  and add the VIP
parameters in the parameter_defaults section:

parameter_defaults:
  ...
  ControlFixedIPs: [{'ip_address':'192.168.201.101'}]
  InternalApiVirtualFixedIPs: [{'ip_address':'172.16.0.9'}]
  PublicVirtualFixedIPs: [{'ip_address':'10.1.1.9'}]
  StorageVirtualFixedIPs: [{'ip_address':'172.18.0.9'}]
  StorageMgmtVirtualFixedIPs: [{'ip_address':'172.19.0.9'}]
  RedisVirtualFixedIPs: [{'ip_address':'172.16.0.8'}]

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

55



Select these IPs from outside of their respective allocation pool ranges. For example, select an IP
address for InternalApiVirtualFixedIPs that is not within the InternalApiAllocationPools
range.

6.4. CONFIGURING CONTAINERIZED COMPUTE NODES

The director provides an option to integrate services from OpenStack's containerization project (kolla)
into the Overcloud's Compute nodes. This includes creating Compute nodes that use Red Hat
Enterprise Linux Atomic Host as a base operating system and individual containers to run different
OpenStack services.

IMPORTANT

Containerized Compute nodes are a Technology Preview feature. Technology Preview
features are not fully supported under Red Hat Subscription Service Level Agreements
(SLAs), may not be functionally complete, and are not intended for production use.
However, these features provide early access to upcoming product innovations,
enabling customers to test functionality and provide feedback during the development
process. For more information on the support scope for features marked as technology
previews, see https://access.redhat.com/support/offerings/techpreview/.

The director's core Heat template collection includes environment files to aid the configuration of
containerized Compute nodes. These files include:

docker.yaml - The main environment file for configuring containerized Compute nodes.

docker-network.yaml - The environment file for containerized Compute nodes networking
without network isolation.

docker-network-isolation.yaml - The environment file for containerized Compute
nodes using network isolation.

6.4.1. Examining the Containerized Compute Environment File (docker.yaml)

The docker.yaml file is the main environment file for the containerized Compute node configuration.
It includes the entries in the resource_registry:

resource_registry:
  OS::TripleO::ComputePostDeployment: ../docker/compute-post.yaml
  OS::TripleO::NodeUserData: 
../docker/firstboot/install_docker_agents.yaml

OS::TripleO::NodeUserData

Provides a Heat template that uses custom configuration on first boot. In this case, it installs the 
openstack-heat-docker-agents container on the Compute nodes when they first boot. This
container provides a set of initialization scripts to configure the containerized Compute node and
Heat hooks to communicate with the director.

OS::TripleO::ComputePostDeployment

Provides a Heat template with a set of post-configuration resources for Compute nodes. This
includes a software configuration resource that provides a set of tags to Puppet:

Director Installation and Usage

56

https://access.redhat.com/support/offerings/techpreview/


  ComputePuppetConfig:
    type: OS::Heat::SoftwareConfig
    properties:
      group: puppet
      options:
        enable_hiera: True
        enable_facter: False
        tags: 
package,file,concat,file_line,nova_config,neutron_config,neutron_agent_o
vs,neutron_plugin_ml2
      inputs:
      - name: tripleo::packages::enable_install
        type: Boolean
        default: True
      outputs:
      - name: result
      config:
        get_file: ../puppet/manifests/overcloud_compute.pp

These tags define the Puppet modules to pass to the openstack-heat-docker-agents
container.

The docker.yaml file includes a parameter called NovaImage that replaces the standard 
overcloud-full image with a different image ( atomic-image) when provisioning Compute nodes.
See in Section 6.4.2, “Uploading the Atomic Host Image”  for instructions on uploading this new image.

The docker.yaml file also includes a parameter_defaults section that defines the Docker
registry and images to use for our Compute node services. You can modify this section to use a local
registry instead of the default registry.access.redhat.com. See Section 6.4.3, “Using a Local
Registry” for instructions on configuring a local repository.

6.4.2. Uploading the Atomic Host Image

The director requires a copy of the Cloud Image for Red Hat Enterprise Linux 7 Atomic Host imported
into its image store as atomic-image. This is because the Compute node requires this image for the
base OS during the provisioning phase of the Overcloud creation.

Download a copy of the Cloud Image  from the Red Hat Enterprise Linux 7 Atomic Host product page
(https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-
software) and save it to the images subdirectory in the stack user's home directory.

Once the image download completes, import the image into the director as the stack user.

$ glance image-create --name atomic-image --file ~/images/rhel-atomic-
cloud-7.2-12.x86_64.qcow2 --disk-format qcow2 --container-format bare

This imports the image alongside the other Overcloud images.

$ glance image-list
+--------------------------------------+------------------------+
| ID                                   | Name                   |
+--------------------------------------+------------------------+
| 27b5bad7-f8b2-4dd8-9f69-32dfe84644cf | atomic-image           |
| 08c116c6-8913-427b-b5b0-b55c18a01888 | bm-deploy-kernel       |

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

57

https://access.redhat.com/downloads/content/271/ver=/rhel---7/7.2.2-2/x86_64/product-software


| aec4c104-0146-437b-a10b-8ebc351067b9 | bm-deploy-ramdisk      |
| 9012ce83-4c63-4cd7-a976-0c972be747cd | overcloud-full         |
| 376e95df-c1c1-4f2a-b5f3-93f639eb9972 | overcloud-full-initrd  |
| 0b5773eb-4c64-4086-9298-7f28606b68af | overcloud-full-vmlinuz |
+--------------------------------------+------------------------+

6.4.3. Using a Local Registry

The default configuration uses Red Hat's container registry for image downloads. However, as an
optional step, you can use a local registry to conserve bandwidth during the Overcloud creation
process.

You can use an existing local registry or install a new one. To install a new registry, use the instructions
in Chapter 2. Get Started with Docker Formatted Container Images  in Getting Started with Containers.

Pull the required images into your registry:

$ sudo docker pull registry.access.redhat.com/openstack-nova-
compute:latest
$ sudo docker pull registry.access.redhat.com/openstack-data:latest
$ sudo docker pull registry.access.redhat.com/openstack-nova-
libvirt:latest
$ sudo docker pull registry.access.redhat.com/openstack-neutron-
openvswitch-agent:latest
$ sudo docker pull registry.access.redhat.com/openstack-openvswitch-
vswitchd:latest
$ sudo docker pull registry.access.redhat.com/openstack-openvswitch-db-
server:latest
$ sudo docker pull registry.access.redhat.com/openstack-heat-docker-
agents:latest

After pulling the images, tag them with the proper registry host:

$ sudo docker tag registry.access.redhat.com/openstack-nova-compute:latest 
localhost:8787/registry.access.redhat.com/openstack-nova-compute:latest
$ sudo docker tag registry.access.redhat.com/openstack-data:latest 
localhost:8787/registry.access.redhat.com/openstack-data:latest
$ sudo docker tag registry.access.redhat.com/openstack-nova-libvirt:latest 
localhost:8787/registry.access.redhat.com/openstack-nova-libvirt:latest
$ sudo docker tag registry.access.redhat.com/openstack-neutron-
openvswitch-agent:latest 
localhost:8787/registry.access.redhat.com/openstack-neutron-openvswitch-
agent:latest
$ sudo docker tag registry.access.redhat.com/openstack-openvswitch-
vswitchd:latest localhost:8787/registry.access.redhat.com/openstack-
openvswitch-vswitchd:latest
$ sudo docker tag registry.access.redhat.com/openstack-openvswitch-db-
server:latest localhost:8787/registry.access.redhat.com/openstack-
openvswitch-db-server:latest
$ sudo docker tag registry.access.redhat.com/openstack-heat-docker-
agents:latest localhost:8787/registry.access.redhat.com/openstack-heat-
docker-agents:latest

Push them to the registry:

Director Installation and Usage

58

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-2-get-started-with-docker-formatted-container-images


$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
nova-compute:latest
$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
data:latest
$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
nova-libvirt:latest
$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
neutron-openvswitch-agent:latest
$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
openvswitch-vswitchd:latest
$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
openvswitch-db-server:latest
$ sudo docker push localhost:8787/registry.access.redhat.com/openstack-
heat-docker-agents:latest

Create a copy of the main docker.yaml environment file in the templates subdirectory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/docker.yaml 
~/templates/.

Edit the file and modify the resource_registry to use absolute paths:

resource_registry:
  OS::TripleO::ComputePostDeployment: /usr/share/openstack-tripleo-heat-
templates/docker/compute-post.yaml
  OS::TripleO::NodeUserData: /usr/share/openstack-tripleo-heat-
templates/docker/firstboot/install_docker_agents.yaml

Set DockerNamespace in parameter_defaults to your registry URL. Also set 
DockerNamespaceIsRegistry to true For example:

parameter_defaults:
  DockerNamespace: registry.example.com:8787/registry.access.redhat.com
  DockerNamespaceIsRegistry: true

Your local registry now has the required docker images and the containerized Compute configuration
is now set to use that registry.

6.4.4. Including Environment Files in the Overcloud Deployment

When running the Overcloud creation, include the main environment file (docker.yaml) and the
network environment file (docker-network.yaml) for the containerized Compute nodes along with
the openstack overcloud deploy command. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/docker.yaml -e /usr/share/openstack-tripleo-
heat-templates/environments/docker-network.yaml [OTHER OPTIONS] ...

The containerized Compute nodes also function in an Overcloud with network isolation. This also
requires the main environment file along with the network isolation file (docker-network-
isolation.yaml). Add these files before the network isolation files from Section 6.2, “Isolating
Networks”. For example:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

59



openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/docker.yaml -e /usr/share/openstack-tripleo-
heat-templates/environments/docker-network-isolation.yaml -e 
/usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-
with-vlans.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml [OTHER OPTIONS] ...

The director creates an Overcloud with containerized Compute nodes.

6.5. CONFIGURING EXTERNAL LOAD BALANCING

An Overcloud uses multiple Controllers together as a high availability cluster, which ensures maximum
operational performance for your OpenStack services. In addition, the cluster provides load balancing
for access to the OpenStack services, which evenly distributes traffic to the Controller nodes and
reduces server overload for each node. It is also possible to use an external load balancer to perform
this distribution. For example, an organization might use their own hardware-based load balancer to
handle traffic distribution to the Controller nodes.

For more information about configuring external load balancing, see the dedicated External Load
Balancing for the Overcloud guide for full instructions.

6.6. CONFIGURING IPV6 NETWORKING

As a default, the Overcloud uses Internet Protocol version 4 (IPv4) to configure the service endpoints.
However, the Overcloud also supports Internet Protocol version 6 (IPv6) endpoints, which is useful for
organizations that support IPv6 infrastructure. The director includes a set of environment files to help
with creating IPv6-based Overclouds.

For more information about configuring IPv6 in the Overcloud, see the dedicated IPv6 Networking for
the Overcloud guide for full instructions.

6.7. CONFIGURING NFS STORAGE

This section describes configuring the Overcloud to use an NFS share. The installation and
configuration process is based on the modification of an existing environment file in the core Heat
template collection.

The core heat template collection contains a set of environment files in /usr/share/openstack-
tripleo-heat-templates/environments/. These environment templates help with custom
configuration of some of the supported features in a director-created Overcloud. This includes an
environment file to help configure storage. This file is located at /usr/share/openstack-
tripleo-heat-templates/environments/storage-environment.yaml. Copy this file to the 
stack user's template directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-
environment.yaml ~/templates/.

The environment file contains some parameters to help configure different storage options for
Openstack's block and image storage components, cinder and glance. In this example, you will
configure the Overcloud to use an NFS share. Modify the following parameters:

CinderEnableIscsiBackend

Enables the iSCSI backend. Set to false.

Director Installation and Usage

60

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/external-load-balancing-for-the-overcloud/external-load-balancing-for-the-overcloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/ipv6-networking-for-the-overcloud/ipv6-networking-for-the-overcloud


CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to false.

CinderEnableNfsBackend

Enables the NFS backend. Set to true.

NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to false.

GlanceBackend

Define the back end to use for Glance. Set to file to use file-based storage for images. The
Overcloud will save these files in a mounted NFS share for Glance.

CinderNfsMountOptions

The NFS mount options for the volume storage.

CinderNfsServers

The NFS share to mount for volume storage. For example, 192.168.122.1:/export/cinder.

GlanceFilePcmkManage

Enables Pacemaker to manage the share for image storage. If disabled, the Overcloud stores
images in the Controller node's file system. Set to true.

GlanceFilePcmkFstype

Defines the file system type that Pacemaker uses for image storage. Set to nfs.

GlanceFilePcmkDevice

The NFS share to mount for image storage. For example, 192.168.122.1:/export/glance.

GlanceFilePcmkOptions

The NFS mount options for the image storage.

The environment file's options should look similar to the following:

parameter_defaults:
CinderEnableIscsiBackend: false
CinderEnableRbdBackend: false
CinderEnableNfsBackend: true
NovaEnableRbdBackend: false
GlanceBackend: 'file'

CinderNfsMountOptions: 'rw,sync'
CinderNfsServers: '192.0.2.230:/cinder'

GlanceFilePcmkManage: true
GlanceFilePcmkFstype: 'nfs'

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

61



GlanceFilePcmkDevice: '192.0.2.230:/glance'
GlanceFilePcmkOptions: 
'rw,sync,context=system_u:object_r:glance_var_lib_t:s0'

IMPORTANT

Include the context=system_u:object_r:glance_var_lib_t:s0 in the 
GlanceFilePcmkOptions parameter to allow glance access to the /var/lib
directory. Without this SELinux content, glance will fail to write to the mount point.

These parameters are integrated as part of the heat template collection. Setting them as such creates
two NFS mount points for cinder and glance to use.

Save this file for inclusion in the Overcloud creation.

6.8. CONFIGURING CEPH STORAGE

The director provides two main methods for integrating Red Hat Ceph Storage into an Overcloud.

Creating an Overcloud with its own Ceph Storage Cluster

The director has the ability to create a Ceph Storage Cluster during the creation on the Overcloud.
The director creates a set of Ceph Storage nodes that use the Ceph OSD to store the data. In
addition, the director install the Ceph Monitor service on the Overcloud's Controller nodes. This
means if an organization creates an Overcloud with three highly available controller nodes, the
Ceph Monitor also becomes a highly available service.

Integrating a Existing Ceph Storage into an Overcloud

If you already have an existing Ceph Storage Cluster, you can integrate this during an Overcloud
deployment. This means you manage and scale the cluster outside of the Overcloud configuration.

For more information about configuring Overcloud Ceph Storage, see the dedicated Red Hat Ceph
Storage for the Overcloud guide for full instructions on both scenarios.

6.9. CONFIGURING THIRD PARTY STORAGE

The director include a couple of environment files to help configure third-party storage providers. This
includes:

Dell Storage Center

Deploys a single Dell Storage Center back end for the Block Storage (cinder) service.

The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellsc-config.yaml.

See the Dell Storage Center Back End Guide  for full configuration information.

Dell EqualLogic

Deploys a single Dell EqualLogic back end for the Block Storage (cinder) service.

The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-eqlx-config.yaml.

Director Installation and Usage

62

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/red-hat-ceph-storage-for-the-overcloud/red-hat-ceph-storage-for-the-overcloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/dell-storage-center-back-end-guide/dell-storage-center-back-end-guide


See the Dell EqualLogic Back End Guide  for full configuration information.

NetApp Block Storage

Deploys a NetApp storage appliance as a back end for the Block Storage (cinder) service.

The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellsc-config.yaml/cinder-netapp-config.yaml.

See the NetApp Block Storage Back End Guide  for full configuration information.

6.10. CONFIGURING THE OVERCLOUD TIME ZONE

You can set the time zone of your Overcloud deployment using the TimeZone parameter in an
environment file. If you leave the TimeZone parameter blank, the Overcloud will default to UTC time.

Director recognizes the standard timezone names defined in the timezone database
/usr/share/zoneinfo/. For example, if you wanted to set your time zone to Japan, you would examine
the contents of /usr/share/zoneinfo to locate a suitable entry:

$ ls /usr/share/zoneinfo/
Africa      Asia       Canada   Cuba   EST      GB       GMT-0      HST      
iso3166.tab  Kwajalein  MST      NZ-CHAT   posix       right      Turkey     
UTC       Zulu
America     Atlantic   CET      EET    EST5EDT  GB-Eire  GMT+0      
Iceland  Israel       Libya      MST7MDT  Pacific   posixrules  ROC        
UCT        WET
Antarctica  Australia  Chile    Egypt  Etc      GMT      Greenwich  
Indian   Jamaica      MET        Navajo   Poland    PRC         ROK        
Universal  W-SU
Arctic      Brazil     CST6CDT  Eire   Europe   GMT0     Hongkong   Iran     
Japan        Mexico     NZ       Portugal  PST8PDT     Singapore  US         
zone.tab

The output listed above includes time zone files, and directories containing additional time zone files.
For example, Japan is an individual time zone file in this result, but Africa is a directory containing
additional time zone files:

$ ls /usr/share/zoneinfo/Africa/
Abidjan      Algiers  Bamako  Bissau       Bujumbura   Ceuta    
Dar_es_Salaam  El_Aaiun  Harare        Kampala   Kinshasa    Lome        
Lusaka  Maseru     Monrovia  Niamey       Porto-Novo  Tripoli
Accra        Asmara   Bangui  Blantyre     Cairo       Conakry  Djibouti       
Freetown  Johannesburg  Khartoum  Lagos       Luanda      Malabo  Mbabane    
Nairobi   Nouakchott   Sao_Tome    Tunis
Addis_Ababa  Asmera   Banjul  Brazzaville  Casablanca  Dakar    Douala         
Gaborone  Juba          Kigali    Libreville  Lubumbashi  Maputo  
Mogadishu  Ndjamena  Ouagadougou  Timbuktu    Windhoek

Once you have determined the time zone to use, you can enter its name into an environment file
processing. For example, add the entry in a file named 'timezone.yaml' to set your timezone to Japan:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

63

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/dell-equallogic-back-end-guide/dell-equallogic-back-end-guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/netapp-block-storage-back-end-guide/netapp-block-storage-back-end-guide


parameter_defaults:
  TimeZone: 'Japan'

Next, use the overcloud deploy process to run the template and apply the setting:

$ openstack overcloud deploy --templates -e timezone.yaml

6.11. ENABLING SSL/TLS ON THE OVERCLOUD

By default, the Overcloud uses unencrypted endpoints for its services; this means that the Overcloud
configuration requires an additional environment file to enable SSL/TLS for its Public API endpoints.

NOTE

This process only enables SSL/TLS for Public API endpoints. The Internal and Admin
APIs remain unencrypted.

This process requires network isolation to define the endpoints for the Public API. See Section 6.2,
“Isolating Networks” for instruction on network isolation.

Ensure you have a private key and certificate authority created. See Appendix A, SSL/TLS Certificate
Configuration for more information on creating a valid SSL/TLS key and certificate authority file.

Enabling SSL/TLS
Copy the enable-tls.yaml environment file from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/enable-
tls.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

parameter_defaults:

SSLCertificate:

Copy the contents of the certificate file into the SSLCertificate parameter. For example:

parameter_defaults:
  SSLCertificate: |
    -----BEGIN CERTIFICATE-----
    MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGSIb3DQEBCwUAMFgxCzAJBgNV
    ...
    sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQbIxEpIzrgvp
    -----END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

SSLKey:

Copy the contents of the private key into the SSLKey parameter. For example>

Director Installation and Usage

64



parameter_defaults:
  ...
  SSLKey: |
    -----BEGIN RSA PRIVATE KEY-----
    MIIEowIBAAKCAQEAqVw8lnQ9RbeI1EdLN5PJP0lVO9hkJZnGP6qb6wtYUoy1bVP7
    ...
    ctlKn3rAAdyumi4JDjESAXHIKFjJNOLrBmpQyES4XpZUC7yhqPaU
    -----END RSA PRIVATE KEY-----

IMPORTANT

The private key contents require the same indentation level for all new lines.

EndpointMap:

The EndpointMap contains a mapping of the services using HTTPS and HTTP communication. If
using DNS for SSL communication, leave this section with the defaults. However, if using an IP
address for the SSL certificate's common name (see Appendix A, SSL/TLS Certificate Configuration),
replace all instances of CLOUDNAME with IP_ADDRESS. Use the following command to accomplish
this:

$ sed -i 's/CLOUDNAME/IP_ADDRESS/' ~/templates/enable-tls.yaml

IMPORTANT

Do not substitute IP_ADDRESS or CLOUDNAME for actual values. Heat replaces these
variables with the appropriate value during the Overcloud creation.

resource_registry:

OS::TripleO::NodeTLSData:

Change the resource path for OS::TripleO::NodeTLSData: to an absolute path:

resource_registry:
OS::TripleO::NodeTLSData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/tls-cert-inject.yaml

Injecting a Root Certificate
If the certificate signer is not in the default trust store on the Overcloud image, you must inject the
certificate authority into the Overcloud image. Copy the inject-trust-anchor.yaml environment
file from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/inject-
trust-anchor.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

parameter_defaults:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

65



SSLRootCertificate:

Copy the contents of the root certificate authority file into the SSLRootCertificate parameter.
For example:

parameter_defaults:
  SSLRootCertificate: |
    -----BEGIN CERTIFICATE-----
    MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGSIb3DQEBCwUAMFgxCzAJBgNV
    ...
    sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQbIxEpIzrgvp
    -----END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

resource_registry:

OS::TripleO::NodeTLSCAData:

Change the resource path for OS::TripleO::NodeTLSCAData: to an absolute path:

resource_registry:
  OS::TripleO::NodeTLSCAData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/ca-inject.yaml

Configuring DNS Endpoints
If using a DNS hostname to access the Overcloud through SSL/TLS, create a new environment file
(~/templates/cloudname.yaml) to define the hostname of the Overcloud's endpoints. Use the
following parameters:

parameter_defaults:

CloudName:

The DNS hostname of the Overcloud endpoints.

DnsServers:

A list of DNS servers to use. The configured DNS servers must contain an entry for the configured 
CloudName that matches the IP address of the Public API.

An example of the contents for this file:

parameter_defaults:
CloudName: overcloud.example.com
DnsServers: ["10.0.0.1"]

Adding Environment Files During Overcloud Creation

Director Installation and Usage

66



The deployment command (openstack overcloud deploy) in Chapter 7, Creating the Overcloud
uses the -e option to add environment files. Add the environment files from this section in the
following order:

The environment file to enable SSL/TLS (enable-tls.yaml)

The environment file to set the DNS hostname (cloudname.yaml)

The environment file to inject the root certificate authority (inject-trust-anchor.yaml)

For example:

$ openstack overcloud deploy --templates [...] -e 
/home/stack/templates/enable-tls.yaml -e ~/templates/cloudname.yaml -e 
~/templates/inject-trust-anchor.yaml

6.12. REGISTERING THE OVERCLOUD

The Overcloud provides a method to register nodes to either the Red Hat Content Delivery Network, a
Red Hat Satellite 5 server, or a Red Hat Satellite 6 server. You can either achieve this through
environment files or the command line.

Method 1 - Command Line
The deployment command (openstack overcloud deploy) uses a set of options to define your
registration details. The table in Section 7.1, “Setting Overcloud Parameters”  contains these options
and their descriptions. Include these options when running the deployment command in Chapter 7,
Creating the Overcloud. For example:

# openstack overcloud deploy --templates --rhel-reg --reg-method satellite 
--reg-sat-url http://example.satellite.com  --reg-org MyOrg --reg-
activation-key MyKey --reg-force [...]

Method 2 - Environment File
Copy the registration files from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-
templates/extraconfig/pre_deploy/rhel-registration ~/templates/.

Edit the ~/templates/rhel-registration/environment-rhel-registration.yaml and
modify the following values to suit your registration method and details.

rhel_reg_method

Choose the registration method. Either portal, satellite, or disable.

rhel_reg_type

The type of unit to register. Leave blank to register as a system

rhel_reg_auto_attach

Automatically attach compatible subscriptions to this system. Set to true to enable.

rhel_reg_service_level

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

67



The service level to use for auto attachment.

rhel_reg_release

Use this parameter to set a release version for auto attachment. Leave blank to use the default
from Red Hat Subscription Manager.

rhel_reg_pool_id

The subscription pool ID to use. Use this if not auto-attaching subscriptions.

rhel_reg_sat_url

The base URL of the Satellite server to register Overcloud nodes. Use the Satellite's HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and
not https://satellite.example.com. The Overcloud creation process uses this URL to
determine whether the server is a Red Hat Satellite 5 or Red Hat Satellite 6 server. If a Red Hat
Satellite 6 server, the Overcloud obtains the katello-ca-consumer-latest.noarch.rpm file,
registers with subscription-manager, and installs katello-agent. If a Red Hat Satellite 5
server, the Overcloud obtains the RHN-ORG-TRUSTED-SSL-CERT file and registers with 
rhnreg_ks.

rhel_reg_server_url

The hostname of the subscription service to use. The default is for Customer Portal Subscription
Management, subscription.rhn.redhat.com. If this option is not used, the system is
registered with Customer Portal Subscription Management. The subscription server URL uses the
form of https://hostname:port/prefix.

rhel_reg_base_url

Gives the hostname of the content delivery server to use to receive updates. The default is 
https://cdn.redhat.com. Since Satellite 6 hosts its own content, the URL must be used for
systems registered with Satellite 6. The base URL for content uses the form of 
https://hostname:port/prefix.

rhel_reg_org

The organization to use for registration.

rhel_reg_environment

The environment to use within the chosen organization.

rhel_reg_repos

A comma-separated list of repositories to enable. See Section 2.5, “Repository Requirements”  for
repositories to enable.

rhel_reg_activation_key

The activation key to use for registration.

rhel_reg_user, rhel_reg_password

The username and password for registration. If possible, use activation keys for registration.

rhel_reg_machine_name

Director Installation and Usage

68



The machine name. Leave this as blank to use the hostname of the node.

rhel_reg_force

Set to true to force your registration options. For example, when re-registering nodes.

rhel_reg_sat_repo

The repository containing Red Hat Satellite 6's management tools, such as katello-agent. For
example, rhel-7-server-satellite-tools-6.1-rpms.

The deployment command (openstack overcloud deploy) in Chapter 7, Creating the Overcloud
uses the -e option to add environment files. Add both ~/templates/rhel-
registration/environment-rhel-registration.yaml and ~/templates/rhel-
registration/rhel-registration-resource-registry.yaml. For example:

$ openstack overcloud deploy --templates [...] -e 
/home/stack/templates/rhel-registration/environment-rhel-registration.yaml 
-e /home/stack/templates/rhel-registration/rhel-registration-resource-
registry.yaml

IMPORTANT

Registration is set as the OS::TripleO::NodeExtraConfig Heat resource. This
means you can only use this resource for registration. See Section 6.14, “Customizing
Overcloud Pre-Configuration” for more information.

6.13. CUSTOMIZING CONFIGURATION ON FIRST BOOT

The director provides a mechanism to perform configuration on all nodes upon the initial creation of
the Overcloud. The director achieves this through cloud-init, which you can call using the 
OS::TripleO::NodeUserData resource type.

In this example, you will update the nameserver with a custom IP address on all nodes. You must first
create a basic heat template (/home/stack/templates/nameserver.yaml) that runs a script to
append each node's resolv.conf with a specific nameserver. You can use the 
OS::TripleO::MultipartMime resource type to send the configuration script.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

resources:
  userdata:
    type: OS::Heat::MultipartMime
    properties:
      parts:
      - config: {get_resource: nameserver_config}

  nameserver_config:
    type: OS::Heat::SoftwareConfig
    properties:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

69



      config: |
        #!/bin/bash
        echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:
  OS::stack_id:
    value: {get_resource: userdata}

Next, create an environment file (/home/stack/templates/firstboot.yaml) that registers your
heat template as the OS::TripleO::NodeUserData resource type.

resource_registry:
  OS::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

To add the first boot configuration, add the environment file to the stack when first creating the
Overcloud. For example:

$ openstack overcloud deploy --templates -e 
/home/stack/templates/firstboot.yaml

The -e applies the environment file to the Overcloud stack.

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusions of these templates, such as updating the Overcloud stack, does not run these
scripts.

IMPORTANT

You can only register the OS::TripleO::NodeUserData to one heat template.
Subsequent usage overrides the heat template to use.

6.14. CUSTOMIZING OVERCLOUD PRE-CONFIGURATION

The Overcloud uses Puppet for the core configuration of OpenStack components. The director provides
a set of resources to provide custom configuration after the first boot completes and before the core
configuration begins. These resources include:

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to CephStorage nodes before the core Puppet configuration.

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

Director Installation and Usage

70



In this example, you first create a basic heat template
(/home/stack/templates/nameserver.yaml) that runs a script to append each node's 
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

parameters:
  server:
    type: string
  nameserver_ip:
    type: string
  DeployIdentifier:
    type: string

resources:
  ExtraPreConfig:
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config:
        str_replace:
          template: |
            #!/bin/sh
            echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
          params:
            _NAMESERVER_IP_: {get_param: nameserver_ip}

  ExtraPreDeployment:
    type: OS::Heat::SoftwareDeployment
    properties:
      config: {get_resource: ExtraPreConfig}
      server: {get_param: server}
      actions: ['CREATE','UPDATE']
      input_values:
        deploy_identifier: {get_param: DeployIdentifier}

outputs:
  deploy_stdout:
    description: Deployment reference, used to trigger pre-deploy on 
changes
    value: {get_attr: [ExtraPreDeployment, deploy_stdout]}

In this example, the `resources` section contains the following:

ExtraPreConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces 
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

ExtraPreDeployments

This executes a software configuration, which is the software configuration from the 
ExtraPreConfig resource. Note the following:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

71



The server parameter is provided by the parent template and is mandatory in templates
for this hook.

input_values contains a parameter called deploy_identifier, which stores the 
DeployIdentifier from the parent template. This parameter provides a timestamp to
the resource for each deployment update. This ensures the resource reapplies on
subsequent overcloud updates.

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your
heat template as the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
  OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
  nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack when creating or updating the
Overcloud. For example:

$ openstack overcloud deploy --templates -e 
/home/stack/templates/pre_config.yaml

This applies the configuration to all nodes before the core configuration begins on either the initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register these resources to only one Heat template each. Subsequent
usage overrides the heat template to use per resource.

6.15. CUSTOMIZING OVERCLOUD POST-CONFIGURATION

A situation might occur where you have completed the creation of your Overcloud but want to add
additional configuration, either on initial creation or on a subsequent update of the Overcloud. In this
case, you use the OS::TripleO::NodeExtraConfigPost resource to apply configuration using the
standard OS::Heat::SoftwareConfig types. This applies additional configuration after the main
Overcloud configuration completes.

In this example, you first create a basic heat template
(/home/stack/templates/nameserver.yaml) that runs a script to append each node's 
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

parameters:
  servers:
    type: json
  nameserver_ip:
    type: string

Director Installation and Usage

72



  DeployIdentifier:
    type: string

resources:
  ExtraConfig:
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config:
        str_replace:
          template: |
            #!/bin/sh
            echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
          params:
            _NAMESERVER_IP_: {get_param: nameserver_ip}

  ExtraDeployments:
    type: OS::Heat::SoftwareDeployments
    properties:
      config: {get_resource: ExtraConfig}
      servers:  {get_param: servers}
      actions: ['CREATE','UPDATE']
      input_values:
        deploy_identifier: {get_param: DeployIdentifier}

In this example, the `resources` section contains the following:

ExtraConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces 
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

ExtraDeployments

This executes a software configuration, which is the software configuration from the ExtraConfig
resource. Note the following:

The servers parameter is provided by the parent template and is mandatory in templates
for this hook.

input_values contains a parameter called deploy_identifier, which stores the 
DeployIdentifier from the parent template. This parameter provides a timestamp to
the resource for each deployment update. This ensures the resource reapplies on
subsequent overcloud updates.

Next, create an environment file (/home/stack/templates/post_config.yaml) that registers
your heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
  OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
  nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack when creating or updating the
Overcloud. For example:

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

73



$ openstack overcloud deploy --templates -e 
/home/stack/templates/post_config.yaml

This applies the configuration to all nodes after the core configuration completes on either initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfigPost to only one heat
template. Subsequent usage overrides the heat template to use.

6.16. CUSTOMIZING PUPPET CONFIGURATION DATA

The Heat template collection contains a set of parameters to pass extra configuration to certain node
types. These parameters save the configuration as hieradata for the node's Puppet configuration.
These parameters are:

ExtraConfig

Configuration to add to all nodes.

controllerExtraConfig

Configuration to add to all Controller nodes.

NovaComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes

CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes

To add extra configuration to the post-deployment configuration process, create an environment file
that contains these parameters in the parameter_defaults section. For example, to increase the
reserved memory for Compute hosts to 1024 MB and set the VNC keymap to Japanese:

parameter_defaults:
  NovaComputeExtraConfig:
    nova::compute::reserved_host_memory: 1024
    nova::compute::vnc_keymap: ja

Include this environment file when running openstack overcloud deploy.

IMPORTANT

You can only define each parameter once. Subsequent usage overrides previous values.

Director Installation and Usage

74



6.17. APPLYING CUSTOM PUPPET CONFIGURATION

In certain circumstances, you might need to install and configure some additional components to your
Overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes on after
the main configuration completes. As a basic example, you might intend to install motd to each node.
The process for accomplishing is to first create a Heat template
(/home/stack/templates/custom_puppet_config.yaml) that launches Puppet configuration.

heat_template_version: 2014-10-16

description: >
  Run Puppet extra configuration to set new MOTD

parameters:
  servers:
    type: json

resources:
  ExtraPuppetConfig:
    type: OS::Heat::SoftwareConfig
    properties:
      config: {get_file: motd.pp}
      group: puppet
      options:
        enable_hiera: True
        enable_facter: False

  ExtraPuppetDeployments:
    type: OS::Heat::SoftwareDeployments
    properties:
      config: {get_resource: ExtraPuppetConfig}
      servers: {get_param: servers}

This includes the /home/stack/templates/motd.pp within the template and passes it to nodes for
configuration. The motd.pp file itself contains the Puppet classes to install and configure motd.

Next, create an environment file (/home/stack/templates/puppet_post_config.yaml) that
registers your heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
  OS::TripleO::NodeExtraConfigPost: 
/home/stack/templates/custom_puppet_config.yaml

And finally include this environment file when creating or updating the Overcloud stack:

$ openstack overcloud deploy --templates -e 
/home/stack/templates/puppet_post_config.yaml

This applies the configuration from motd.pp to all nodes in the Overcloud.

6.18. USING CUSTOMIZED CORE HEAT TEMPLATES

When creating the Overcloud, the director uses a core set of heat templates. You can copy the
standard heat templates into a local directory and use these templates for creating your Overcloud.

CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD

75



Copy the heat template collection in /usr/share/openstack-tripleo-heat-templates to the 
stack user's templates directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates ~/templates/my-
overcloud

This creates a clone of the Overcloud Heat templates. When running openstack overcloud 
deploy, we use the --templates option to specify your local template directory. This occurs later in
this scenario (see Chapter 7, Creating the Overcloud).

NOTE

The director uses the default template directory (/usr/share/openstack-tripleo-
heat-templates) if you specify the --templates option without a directory.

IMPORTANT

Red Hat provides updates to the heat template collection over subsequent releases.
Using a modified template collection can lead to a divergence between your custom
copy and the original copy in /usr/share/openstack-tripleo-heat-templates.
Red Hat recommends using the methods from the following section instead of modifying
the heat template collection:

Section 6.13, “Customizing Configuration on First Boot”

Section 6.14, “Customizing Overcloud Pre-Configuration”

Section 6.15, “Customizing Overcloud Post-Configuration”

Section 6.16, “Customizing Puppet Configuration Data”

If creating a copy of the heat template collection, you should track changes to the
templates using a version control system such as git.

Director Installation and Usage

76



CHAPTER 7. CREATING THE OVERCLOUD
The final stage in creating your OpenStack environment is to run the openstack overcloud 
deploy command to create it. Before running this command, you should familiarize yourself with key
options and how to include custom environment files. This chapter discusses the openstack 
overcloud deploy command and the options associated with it.

WARNING

Do not run openstack overcloud deploy as a background process. The
Overcloud creation might hang in mid-deployment if started as a background
process.

7.1. SETTING OVERCLOUD PARAMETERS

The following table lists the additional parameters when using the openstack overcloud deploy
command.

Table 7.1. Deployment Parameters

Parameter Description Example

--templates [TEMPLATES] The directory containing the Heat
templates to deploy. If blank, the
command uses the default
template location at 
/usr/share/openstack-
tripleo-heat-templates/

~/templates/my-overcloud

--stack STACK The name of the stack to create
or update

overcloud

-t [TIMEOUT], --timeout
[TIMEOUT]

Deployment timeout in minutes 240

--control-scale
[CONTROL_SCALE]

The number of Controller nodes
to scale out

3

--compute-scale
[COMPUTE_SCALE]

The number of Compute nodes to
scale out

3

--ceph-storage-scale
[CEPH_STORAGE_SCALE]

The number of Ceph Storage
nodes to scale out

3

--block-storage-scale
[BLOCK_STORAGE_SCALE]

The number of Cinder nodes to
scale out

3



CHAPTER 7. CREATING THE OVERCLOUD

77



--swift-storage-scale
[SWIFT_STORAGE_SCALE]

The number of Swift nodes to
scale out

3

--control-flavor
[CONTROL_FLAVOR]

The flavor to use for Controller
nodes

control

--compute-flavor
[COMPUTE_FLAVOR]

The flavor to use for Compute
nodes

compute

--ceph-storage-flavor
[CEPH_STORAGE_FLAVOR]

The flavor to use for Ceph
Storage nodes

ceph-storage

--block-storage-flavor
[BLOCK_STORAGE_FLAVOR]

The flavor to use for Cinder nodes cinder-storage

--swift-storage-flavor
[SWIFT_STORAGE_FLAVOR]

The flavor to use for Swift storage
nodes

swift-storage

--neutron-flat-networks
[NEUTRON_FLAT_NETWORKS]

(DEPRECATED) Defines the flat
networks to configure in neutron
plugins. Defaults to "datacentre"
to permit external network
creation

datacentre

--neutron-physical-bridge
[NEUTRON_PHYSICAL_BRIDGE]

(DEPRECATED) An Open vSwitch
bridge to create on each
hypervisor. This defaults to "br-
ex". Typically, this should not
need to be changed

br-ex

--neutron-bridge-mappings
[NEUTRON_BRIDGE_MAPPINGS]

(DEPRECATED) The logical to
physical bridge mappings to use.
Defaults to mapping the external
bridge on hosts (br-ex) to a
physical name (datacentre). You
would use this for the default
floating network

datacentre:br-ex

--neutron-public-interface
[NEUTRON_PUBLIC_INTERFACE
]

(DEPRECATED) Defines the
interface to bridge onto br-ex for
network nodes

nic1, eth0

--neutron-network-type
[NEUTRON_NETWORK_TYPE]

(DEPRECATED) The tenant
network type for Neutron

gre or vxlan

--neutron-tunnel-types
[NEUTRON_TUNNEL_TYPES]

(DEPRECATED) The tunnel types
for the Neutron tenant network.
To specify multiple values, use a
comma separated string

'vxlan' 'gre,vxlan'

--neutron-tunnel-id-ranges
[NEUTRON_TUNNEL_ID_RANGE
S]

(DEPRECATED) Ranges of GRE
tunnel IDs to make available for
tenant network allocation

1:1000

Parameter Description Example

Director Installation and Usage

78



--neutron-vni-ranges
[NEUTRON_VNI_RANGES]

(DEPRECATED) Ranges of
VXLAN VNI IDs to make available
for tenant network allocation

1:1000

--neutron-disable-tunneling (DEPRECATED) Disables
tunneling in case you aim to use a
VLAN segmented network or flat
network with Neutron

--neutron-network-vlan-ranges
[NEUTRON_NETWORK_VLAN_R
ANGES]

(DEPRECATED) The Neutron ML2
and Open vSwitch VLAN mapping
range to support. Defaults to
permitting any VLAN on the
'datacentre' physical network

datacentre:1:1000

--neutron-mechanism-drivers
[NEUTRON_MECHANISM_DRIVE
RS]

(DEPRECATED) The mechanism
drivers for the neutron tenant
network. Defaults to
"openvswitch". To specify
multiple values, use a comma-
separated string

'openvswitch,l2population'

--libvirt-type [LIBVIRT_TYPE] Virtualization type to use for
hypervisors

kvm,qemu

--ntp-server [NTP_SERVER] Network Time Protocol (NTP)
server to use to synchronize
time. You can also specify
multiple NTP servers in a comma-
separated list, for example: --
ntp-server 
0.centos.pool.org,1.cen
tos.pool.org. For a high
availability cluster deployment, it
is essential that your controllers
are consistently referring to the
same time source. Note that a
typical environment might
already have a designated NTP
time source with established
practices.

pool.ntp.org

--no-proxy [NO_PROXY] Defines custom values for the
environment variable no_proxy,
which excludes certain domain
extensions from proxy
communication

--overcloud-ssh-user
OVERCLOUD_SSH_USER

Defines the SSH user to access
the Overcloud nodes. Normally
SSH access occurs through the 
heat-admin user.

ocuser

Parameter Description Example

CHAPTER 7. CREATING THE OVERCLOUD

79



-e [EXTRA HEAT TEMPLATE], --
extra-template [EXTRA HEAT
TEMPLATE]

Extra environment files to pass to
the Overcloud deployment. Can
be specified more than once.
Note that the order of
environment files passed to the 
openstack overcloud 
deploy command is important.
For example, parameters from
each sequential environment file
override the same parameters
from earlier environment files.

-e ~/templates/my-config.yaml

--validation-errors-fatal The Overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
errors occur from the pre-
deployment checks. It is
advisable to use this option as
any errors can cause your
deployment to fail.

--validation-warnings-fatal The Overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
non-critical warnings occur from
the pre-deployment checks.

--dry-run Performs validation check on the
Overcloud but does not actually
create the Overcloud.

--rhel-reg Register Overcloud nodes to the
Customer Portal or Satellite 6

--reg-method Registration method to use for
the overcloud nodes

satellite for Red Hat Satellite
6 or Red Hat Satellite 5, portal
for Customer Portal

--reg-org [REG_ORG] Organization to use for
registration

--reg-force Register the system even if it is
already registered

Parameter Description Example

Director Installation and Usage

80



--reg-sat-url [REG_SAT_URL] The base URL of the Satellite
server to register Overcloud
nodes. Use the Satellite's HTTP
URL and not the HTTPS URL for
this parameter. For example, use 
http://satellite.exampl
e.com and not 
https://satellite.examp
le.com. The Overcloud creation
process uses this URL to
determine whether the server is
a Red Hat Satellite 5 or Red Hat
Satellite 6 server. If a Red Hat
Satellite 6 server, the Overcloud
obtains the katello-ca-
consumer-
latest.noarch.rpm file,
registers with subscription-
manager, and installs 
katello-agent. If a Red Hat
Satellite 5 server, the Overcloud
obtains the RHN-ORG-
TRUSTED-SSL-CERT file and
registers with rhnreg_ks.

--reg-activation-key
[REG_ACTIVATION_KEY]

Activation key to use for
registration

Parameter Description Example

NOTE

Run the following command for a full list of options:

$ openstack help overcloud deploy

7.2. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

The -e includes an environment file to customize your Overcloud. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources defined in subsequent environment files take precedence. Use the following
list as an example of the environment file order:

Any network isolation files, including the initialization file (environments/network-
isolation.yaml) from the heat template collection and then your custom NIC configuration
file. See Section 6.2, “Isolating Networks”  for more information on network isolation.

Any external load balancing environment files.

Any storage environment files such as Ceph Storage, NFS, iSCSI, etc.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

CHAPTER 7. CREATING THE OVERCLOUD

81



Any environment files added to the Overcloud using the -e option become part of your Overcloud's
stack definition. The director requires these environment files for re-deployment and post-deployment
functions in Chapter 8, Performing Tasks after Overcloud Creation. Failure to include these files can
result in damage to your Overcloud.

If you aim to later modify the Overcloud configuration, you should:

1. Modify parameters in the custom environment files and Heat templates

2. Run the openstack overcloud deploy command again with the same environment files

Do not edit the Overcloud configuration directly as such manual configuration gets overridden by the
director's configuration when updating the Overcloud stack with the director.

IMPORTANT

Save the original deployment command for later use and modification. For example,
save your deployment command in a script file called deploy-overcloud.sh:

#!/bin/bash
openstack overcloud deploy --templates \
  -e /usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml \
  -e ~/templates/network-environment.yaml \
  -e ~/templates/storage-environment.yaml \
  -t 150 \
  --control-scale 3 \
  --compute-scale 3 \
  --ceph-storage-scale 3 \
  --swift-storage-scale 0 \
  --block-storage-scale 0 \
  --compute-flavor compute \
  --control-flavor control \
  --ceph-storage-flavor ceph-storage \
  --swift-storage-flavor swift-storage \
  --block-storage-flavor block-storage \
  --ntp-server pool.ntp.org \
  --libvirt-type qemu

This retains the Overcloud deployment command's parameters and environment files
for future use, such as Overcloud modifications and scaling. You can then edit and rerun
this script to suit future customizations to the Overcloud.

7.3. OVERCLOUD CREATION EXAMPLE

The following command is an example of how to start the Overcloud creation with custom environment
files included:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e ~/templates/network-
environment.yaml -e ~/templates/storage-environment.yaml --control-scale 3 
--compute-scale 3 --ceph-storage-scale 3 --control-flavor control --
compute-flavor compute --ceph-storage-flavor ceph-storage --ntp-server 
pool.ntp.org

Director Installation and Usage

82



This command contains the following additional options:

--templates - Creates the Overcloud using the Heat template collection in 
/usr/share/openstack-tripleo-heat-templates.

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml - The -e option adds an additional environment file to the Overcloud
deployment. In this case, it is an environment file that initializes network isolation
configuration.

-e ~/templates/network-environment.yaml - The -e option adds an additional
environment file to the Overcloud deployment. In this case, it is the network environment file
from Section 6.2.2, “Creating a Network Environment File” .

-e ~/templates/storage-environment.yaml - The -e option adds an additional
environment file to the Overcloud deployment. In this case, it is a custom environment file that
initializes our storage configuration.

--control-scale 3 - Scale the Controller nodes to three.

--compute-scale 3 - Scale the Compute nodes to three.

--ceph-storage-scale 3 - Scale the Ceph Storage nodes to three.

--control-flavor control - Use the a specific flavor for the Controller nodes.

--compute-flavor compute - Use the a specific flavor for the Compute nodes.

--ceph-storage-flavor ceph-storage - Use the a specific flavor for the Ceph Storage
nodes.

--ntp-server pool.ntp.org - Use an NTP server for time synchronization. This is useful
for keeping the Controller node cluster in synchronization.

7.4. MONITORING THE OVERCLOUD CREATION

The Overcloud creation process begins and the director provisions your nodes. This process takes
some time to complete. To view the status of the Overcloud creation, open a separate terminal as the 
stack user and run:

$ source ~/stackrc                # Initializes the stack user to use the 
CLI commands
$ heat stack-list --show-nested

The heat stack-list --show-nested command shows the current stage of the Overcloud
creation.

7.5. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your Overcloud
from the director host. The director saves this file, overcloudrc, in your stack user's home director.
Run the following command to use this file:

$ source ~/overcloudrc

CHAPTER 7. CREATING THE OVERCLOUD

83



This loads the necessary environment variables to interact with your Overcloud from the director
host's CLI. To return to interacting with the director's host, run the following command:

$ source ~/stackrc

Each node in the Overcloud also contains a user called heat-admin. The stack user has SSH access
to this user on each node. To access a node over SSH, find the IP address of the desired node:

$ nova list

Then connect to the node using the heat-admin user and the node's IP address:

$ ssh heat-admin@192.0.2.23

7.6. COMPLETING THE OVERCLOUD CREATION

This concludes the creation of the Overcloud. For post-creation functions, see Chapter 8, Performing
Tasks after Overcloud Creation.

Director Installation and Usage

84



CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD
CREATION
This chapter explores some of the functions you perform after creating your Overcloud of choice.

8.1. CREATING THE OVERCLOUD TENANT NETWORK

The Overcloud requires a Tenant network for instances. Source the overcloud and create an initial
Tenant network in Neutron. For example:

$ source ~/overcloudrc
$ neutron net-create default
$ neutron subnet-create --name default --gateway 172.20.1.1 default 
172.20.0.0/16

This creates a basic Neutron network called default. The Overcloud automatically assigns IP
addresses from this network using an internal DHCP mechanism.

Confirm the created network with neutron net-list:

$ neutron net-list
+-----------------------+-------------+-------------------------------
---------------------+
| id                    | name        | subnets                                            
|
+-----------------------+-------------+-------------------------------
---------------------+
| 95fadaa1-5dda-4777... | default     | 7e060813-35c5-462c-a56a-
1c6f8f4f332f 172.20.0.0/16 |
+-----------------------+-------------+-------------------------------
---------------------+

8.2. CREATING THE OVERCLOUD EXTERNAL NETWORK

You previously configured the node interfaces to use the External network in Section 6.2, “Isolating
Networks”. However, you still need to create this network on the Overcloud so that you can assign
floating IP addresses to instances.

Using a Native VLAN
This procedure assumes a dedicated interface or native VLAN for the External network.

Source the overcloud and create an External network in Neutron. For example:

$ source ~/overcloudrc
$ neutron net-create nova --router:external --provider:network_type flat -
-provider:physical_network datacentre
$ neutron subnet-create --name nova --enable_dhcp=False --allocation-
pool=start=10.1.1.51,end=10.1.1.250 --gateway=10.1.1.1 nova 10.1.1.0/24

In this example, you create a network with the name nova. The Overcloud requires this specific name
for the default floating IP pool. This is also important for the validation tests in Section 8.5, “Validating
the Overcloud”.

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

85



This command also maps the network to the datacentre physical network. As a default, datacentre
maps to the br-ex bridge. Leave this option as the default unless you have used custom neutron
settings during the Overcloud creation.

Using a Non-Native VLAN
If not using the native VLAN, assign the network to a VLAN using the following commands:

$ source ~/overcloudrc
$ neutron net-create nova --router:external --provider:network_type vlan -
-provider:physical_network datacentre --provider:segmentation_id 104
$ neutron subnet-create --name nova --enable_dhcp=False --allocation-
pool=start=10.1.1.51,end=10.1.1.250 --gateway=10.1.1.1 nova 10.1.1.0/24

The provider:segmentation_id value defines the VLAN to use. In this case, you can use 104.

Confirm the created network with neutron net-list:

$ neutron net-list
+-----------------------+-------------+-------------------------------
--------------------+
| id                    | name        | subnets                                           
|
+-----------------------+-------------+-------------------------------
--------------------+
| d474fe1f-222d-4e32... | nova        | 01c5f621-1e0f-4b9d-9c30-
7dc59592a52f 10.1.1.0/24  |
+-----------------------+-------------+-------------------------------
--------------------+

8.3. CREATING ADDITIONAL FLOATING IP NETWORKS

Floating IP networks can use any bridge, not just br-ex, as long as you meet the following conditions:

NeutronExternalNetworkBridge is set to "''" in your network environment file.

You have mapped the additional bridge during deployment. For example, to map a new bridge
called br-floating to the floating physical network:

$ openstack overcloud deploy --templates -e /usr/share/openstack-
tripleo-heat-templates/environments/network-isolation.yaml -e 
~/templates/network-environment.yaml --neutron-bridge-mappings 
datacentre:br-ex,floating:br-floating

Create the Floating IP network after creating the Overcloud:

$ neutron net-create ext-net --router:external --provider:physical_network 
floating --provider:network_type vlan --provider:segmentation_id 105
$ neutron subnet-create --name ext-subnet --enable_dhcp=False --
allocation-pool start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 ext-net 
10.1.2.0/24

8.4. CREATING THE OVERCLOUD PROVIDER NETWORK

Director Installation and Usage

86



A provider network is a network attached physically to a network existing outside of the deployed
Overcloud. This can be an existing infrastructure network or a network that provides external access
directly to instances through routing instead of floating IPs.

When creating a provider network, you associate it with a physical network, which uses a bridge
mapping. This is similar to floating IP network creation. You add the provider network to both the
Controller and the Compute nodes because the Compute nodes attach VM virtual network interfaces
directly to the attached network interface.

For example, if the desired provider network is a VLAN on the br-ex bridge, use the following command
to add a provider network on VLAN 201:

$ neutron net-create --provider:physical_network datacentre --
provider:network_type vlan --provider:segmentation_id 201 --shared 
provider_network

This command creates a shared network. It is also possible to specify a tenant instead of specifying --
shared. That network will only be available to the specified tenant. If you mark a provider network as
external, only the operator may create ports on that network.

Add a subnet to a provider network if you want neutron to provide DHCP services to the tenant
instances:

$ neutron subnet-create --name provider-subnet --enable_dhcp=True --
allocation-pool start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254 
provider_network 10.9.101.0/24

8.5. VALIDATING THE OVERCLOUD

The Overcloud uses Tempest to conduct a series of integration tests. This procedure shows how to
validate your Overcloud using Tempest. If running this test from the Undercloud, ensure the
Undercloud host has access to the Overcloud's Internal API network. For example, add a temporary
VLAN on the Undercloud host to access the Internal API network (ID: 201) using the 172.16.0.201/24
address:

$ source ~/stackrc
$ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set interface 
vlan201 type=internal
$ sudo ip l set dev vlan201 up; sudo ip addr add 172.16.0.201/24 dev 
vlan201

Before running Tempest, check that the heat_stack_owner role exists in your Overcloud:

$ source ~/overcloudrc
$ openstack role list
+----------------------------------+------------------+
| ID                               | Name             |
+----------------------------------+------------------+
| 6226a517204846d1a26d15aae1af208f | swiftoperator    |
| 7c7eb03955e545dd86bbfeb73692738b | heat_stack_owner |
+----------------------------------+------------------+

If the role does not exist, create it:

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

87



$ keystone role-create --name heat_stack_owner

Set up a tempest directory in your stack user's home directory and install a local version of the
Tempest suite:

$ mkdir ~/tempest
$ cd ~/tempest
$ /usr/share/openstack-tempest-liberty/tools/configure-tempest-directory

This creates a local version of the Tempest tool set.

After the Overcloud creation process completed, the director created a file named ~/tempest-
deployer-input.conf. This file provides a set of Tempest configuration options relevant to your
Overcloud. Run the following command to use this file to configure Tempest:

$ tools/config_tempest.py --deployer-input ~/tempest-deployer-input.conf -
-debug --create identity.uri $OS_AUTH_URL identity.admin_password 
$OS_PASSWORD --network-id d474fe1f-222d-4e32-9242-cd1fefe9c14b

The $OS_AUTH_URL and $OS_PASSWORD environment variables use values set from the 
overcloudrc file sourced previously. The --network-id is the UUID of the external network
created in Section 8.2, “Creating the Overcloud External Network” .

IMPORTANT

The configuration script downloads the Cirros image for the Tempest tests. Make sure
the director has access to the Internet or uses a proxy with access to the Internet. Set
the http_proxy environment variable to use a proxy for command line operations.

Run the full suite of Tempest tests with the following command:

$ tools/run-tests.sh

NOTE

The full Tempest test suite might take hours. Alternatively, run part of the tests using
the '.*smoke' option.

$ tools/run-tests.sh '.*smoke'

Each test runs against the Overcloud, and the subsequent output displays each test and its result. You
can see more information about each test in the tempest.log file generated in the same directory.
For example, the output might show the following failed test:

      {2} 
tempest.api.compute.servers.test_servers.ServersTestJSON.test_create_speci
fy_keypair [18.305114s] ... FAILED

This corresponds to a log entry that contains more information. Search the log for the last two parts of
the test namespace separated with a colon. In this example, search for 
ServersTestJSON:test_create_specify_keypair in the log:

Director Installation and Usage

88



$ grep "ServersTestJSON:test_create_specify_keypair" tempest.log -A 4
2016-03-17 14:49:31.123 10999 INFO tempest_lib.common.rest_client [req-
a7a29a52-0a52-4232-9b57-c4f953280e2c ] Request 
(ServersTestJSON:test_create_specify_keypair): 500 POST 
http://192.168.201.69:8774/v2/2f8bef15b284456ba58d7b149935cbc8/os-keypairs 
4.331s
2016-03-17 14:49:31.123 10999 DEBUG tempest_lib.common.rest_client [req-
a7a29a52-0a52-4232-9b57-c4f953280e2c ] Request - Headers: {'Content-Type': 
'application/json', 'Accept': 'application/json', 'X-Auth-Token': 
'<omitted>'}
        Body: {"keypair": {"name": "tempest-key-722237471"}}
    Response - Headers: {'status': '500', 'content-length': '128', 'x-
compute-request-id': 'req-a7a29a52-0a52-4232-9b57-c4f953280e2c', 
'connection': 'close', 'date': 'Thu, 17 Mar 2016 04:49:31 GMT', 'content-
type': 'application/json; charset=UTF-8'}
        Body: {"computeFault": {"message": "The server has either erred or 
is incapable of performing the requested operation.", "code": 500}} 
_log_request_full /usr/lib/python2.7/site-
packages/tempest_lib/common/rest_client.py:414

NOTE

The -A 4 option shows the next four lines, which are usually the request header and
body and response header and body.

After completing the validation, remove any temporary connections to the Overcloud's Internal API. In
this example, use the following commands to remove the previously created VLAN on the Undercloud:

$ source ~/stackrc
$ sudo ovs-vsctl del-port vlan201

8.6. FENCING THE CONTROLLER NODES

Fencing is the process of isolating a node to protect a cluster and its resources. Without fencing, a
faulty node can cause data corruption in a cluster.

The director uses Pacemaker to provide a highly available cluster of Controller nodes. Pacemaker uses
a process called STONITH (Shoot-The-Other-Node-In-The-Head) to help fence faulty nodes. By
default, STONITH is disabled on your cluster and requires manual configuration so that Pacemaker can
control the power management of each node in the cluster.

NOTE

Login to each node as the heat-admin user from the stack user on the director. The
Overcloud creation automatically copies the stack user's SSH key to each node's 
heat-admin.

Verify you have a running cluster with pcs status:

  $ sudo pcs status
  Cluster name: openstackHA
  Last updated: Wed Jun 24 12:40:27 2015

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

89



  Last change: Wed Jun 24 11:36:18 2015
  Stack: corosync
  Current DC: lb-c1a2 (2) - partition with quorum
  Version: 1.1.12-a14efad
  3 Nodes configured
  141 Resources configured

Verify that stonith is disabled with pcs property show:

$ sudo pcs property show
Cluster Properties:
cluster-infrastructure: corosync
cluster-name: openstackHA
dc-version: 1.1.12-a14efad
have-watchdog: false
stonith-enabled: false

The Controller nodes contain a set of fencing agents for the various power management devices the
director supports. This includes:

Table 8.1. Fence Agents

Device Type

fence_ipmilan The Intelligent Platform Management Interface
(IPMI)

fence_idrac, fence_drac5 Dell Remote Access Controller (DRAC)

fence_ilo Integrated Lights-Out (iLO)

fence_ucs Cisco UCS - For more information, see Configuring
Cisco Unified Computing System (UCS) Fencing on
an OpenStack High Availability Environment

fence_xvm, fence_virt Libvirt and SSH

The rest of this section uses the IPMI agent (fence_ipmilan) as an example.

View a full list of IPMI options that Pacemaker supports:

$ sudo pcs stonith describe fence_ipmilan

Each node requires configuration of IPMI devices to control the power management. This involves
adding a stonith device to Pacemaker for each node. Use the following commands for the cluster:

NOTE

The second command in each example is to prevent the node from asking to fence itself.

For Controller node 0:

Director Installation and Usage

90

https://access.redhat.com/articles/1981813


$ sudo pcs stonith create my-ipmilan-for-controller-0 fence_ipmilan 
pcmk_host_list=overcloud-controller-0 ipaddr=192.0.2.205 login=admin 
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller-0 avoids 
overcloud-controller-0

For Controller node 1:

$ sudo pcs stonith create my-ipmilan-for-controller-1 fence_ipmilan 
pcmk_host_list=overcloud-controller-1 ipaddr=192.0.2.206 login=admin 
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller-1 avoids 
overcloud-controller-1

For Controller node 2:

$ sudo pcs stonith create my-ipmilan-for-controller-2 fence_ipmilan 
pcmk_host_list=overcloud-controller-2 ipaddr=192.0.2.207 login=admin 
passwd=p@55w0rd! lanplus=1 cipher=1 op monitor interval=60s
$ sudo pcs constraint location my-ipmilan-for-controller-2 avoids 
overcloud-controller-2

Run the following command to see all stonith resources:

$ sudo pcs stonith show

Run the following command to see a specific stonith resource:

$ sudo pcs stonith show [stonith-name]

Finally, enable fencing by setting the stonith property to true:

$ sudo pcs property set stonith-enabled=true

Verify the property:

$ sudo pcs property show

8.7. MODIFYING THE OVERCLOUD ENVIRONMENT

Sometimes you might intend to modify the Overcloud to add additional features, or change the way it
operates. To modify the Overcloud, make modifications to your custom environment files and Heat
templates, then rerun the openstack overcloud deploy command from your initial Overcloud
creation. For example, if you created an Overcloud using Chapter 7, Creating the Overcloud, you would
rerun the following command:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e ~/templates/network-
environment.yaml -e ~/templates/storage-environment.yaml --control-scale 3 
--compute-scale 3 --ceph-storage-scale 3 --control-flavor control --
compute-flavor compute --ceph-storage-flavor ceph-storage --ntp-server 
pool.ntp.org

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

91



The director checks the overcloud stack in heat, and then updates each item in the stack with the
environment files and heat templates. It does not recreate the Overcloud, but rather changes the
existing Overcloud.

If you aim to include a new environment file, add it to the openstack overcloud deploy command
with a -e option. For example:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/network-isolation.yaml -e ~/templates/network-
environment.yaml -e ~/templates/storage-environment.yaml -e 
~/templates/new-environment.yaml --control-scale 3 --compute-scale 3 --
ceph-storage-scale 3 --control-flavor control --compute-flavor compute --
ceph-storage-flavor ceph-storage --ntp-server pool.ntp.org

This includes the new parameters and resources from the environment file into the stack.

IMPORTANT

It is advisable not to make manual modifications to the Overcloud's configuration as the
director might overwrite these modifications later.

8.8. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

Use the following procedure if you have an existing OpenStack environment and aim to migrate its
virtual machines to your Red Hat OpenStack Platform environment.

Create a new image by taking a snapshot of a running server and download the image.

$ nova image-create instance_name image_name
$ glance image-download image_name --file exported_vm.qcow2

Upload the exported image into the Overcloud and launch a new instance.

$ glance image-create --name imported_image --file exported_vm.qcow2 --
disk-format qcow2 --container-format bare
$ nova boot --poll --key-name default --flavor m1.demo --image 
imported_image --nic net-id=net_id imported

IMPORTANT

Each VM disk has to be copied from the existing OpenStack environment and into the
new Red Hat OpenStack Platform. Snapshots using QCOW will lose their original layering
system.

8.9. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE

In some situations, you might perform maintenance on an Overcloud Compute node. To prevent
downtime, migrate the VMs on the Compute node to another Compute node in the Overcloud using the
following procedures.

Director Installation and Usage

92



The director configures all Compute nodes to provide secure migration. All Compute nodes also
require a shared SSH key to provide each host's nova user with access to other Compute nodes during
the migration process. The director creates this key automatically.

IMPORTANT

The latest update of Red Hat OpenStack Platform 8 includes patches required for live
migration capabilities. The director's core template collection did not include this
functionality in the initial release but is now included in the openstack-tripleo-
heat-templates-0.8.14-29.el7ost package and later versions.

Update your environment to use the Heat templates from the openstack-tripleo-
heat-templates-0.8.14-29.el7ost package or later versions.

For more information, see "Red Hat OpenStack Platform director (TripleO) CVE-2017-
2637 bug and Red Hat OpenStack Platform".

Procedure 8.1. Migrating Instances off the Compute Node

1. From the director, source the overcloudrc and obtain a list of the current nova services:

$ source ~/stack/overcloudrc
$ nova service-list

2. Disable the nova-compute service on the node you intend to migrate.

$ nova service-disable [hostname] nova-compute

This prevents new instances from being scheduled on it.

3. Begin the process of migrating instances off the node:

$ nova host-servers-migrate [hostname]

4. The current status of the migration process can be retrieved with the command:

$ nova migration-list

5. When migration of each instance completes, its state in nova will change to VERIFY_RESIZE.
This gives you an opportunity to confirm that the migration completed successfully, or to roll it
back. To confirm the migration, use the command:

$ nova resize-confirm [server-name]

This migrates all instances from a host. You can now perform maintenance on the host without any
instance downtime. To return the host to an enabled state, run the following command:

$ nova service-enable [hostname] nova-compute

8.10. PROTECTING THE OVERCLOUD FROM REMOVAL

CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION

93

https://access.redhat.com/node/3022771/


To avoid accidental removal of the Overcloud with the heat stack-delete overcloud command,
Heat contains a set of policies to restrict certain actions. Edit the /etc/heat/policy.json and find
the following parameter:

"stacks:delete": "rule:deny_stack_user"

Change it to:

"stacks:delete": "rule:deny_everybody"

Save the file.

This prevents removal of the Overcloud with the heat client. To allow removal of the Overcloud, revert
the policy to the original value.

8.11. REMOVING THE OVERCLOUD

The whole Overcloud can be removed when desired.

Procedure 8.2. Removing the Overcloud

1. Delete any existing Overcloud:

$ heat stack-delete overcloud

2. Confirm the deletion of the Overcloud:

$ heat stack-list

Deletion takes a few minutes.

Once the removal completes, follow the standard steps in the deployment scenarios to recreate your
Overcloud.

Director Installation and Usage

94



CHAPTER 9. SCALING AND REPLACING NODES
There might be situations where you need to add or remove nodes after the creation of the Overcloud.
For example, you might need to add more Compute nodes to the Overcloud. This situation requires
updating the Overcloud.

WARNING

With High Availaibility for Compute instances (or Instance HA, as described in High
Availability for Compute Instances), upgrades or scale-up operations are not
possible. Any attempts to do so will fail.

If you have Instance HA enabled, disable it before performing an upgrade or scale-
up. To do so, perform a rollback as described in Rollback.

Use the following table to determine support for scaling each node type:

Table 9.1. Scale Support for Each Node Type

Node Type Scale Up? Scale Down? Notes

Controller N N

Compute Y Y

Ceph Storage Nodes Y N You must have at least 1 Ceph
Storage node from the initial
Overcloud creation.

Block Storage Nodes N N

Object Storage
Nodes

Y Y Requires manual ring
management, which is described
in Section 9.6, “Replacing Object
Storage Nodes”.

IMPORTANT

Make sure to leave at least 10 GB free space before scaling the Overcloud. This free
space accommodates image conversion and caching during the node provisioning
process.

9.1. ADDING COMPUTE OR CEPH STORAGE NODES

To add more nodes to the director's node pool, create a new JSON file (for example, newnodes.json)
containing the new node details to register:



CHAPTER 9. SCALING AND REPLACING NODES

95

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/8/html-single/high_availability_for_compute_instances/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/8/html-single/high_availability_for_compute_instances/#rollback


{
  "nodes":[
    {
        "mac":[
            "dd:dd:dd:dd:dd:dd"
        ],
        "cpu":"4",
        "memory":"6144",
        "disk":"40",
        "arch":"x86_64",
        "pm_type":"pxe_ipmitool",
        "pm_user":"admin",
        "pm_password":"p@55w0rd!",
        "pm_addr":"192.0.2.207"
    },
    {
        "mac":[
            "ee:ee:ee:ee:ee:ee"
        ],
        "cpu":"4",
        "memory":"6144",
        "disk":"40",
        "arch":"x86_64",
        "pm_type":"pxe_ipmitool",
        "pm_user":"admin",
        "pm_password":"p@55w0rd!",
        "pm_addr":"192.0.2.208"
    }
  ]
}

See Section 5.1, “Registering Nodes for the Overcloud” for an explanation of these parameters.

Run the following command to register these nodes:

$ openstack baremetal import --json newnodes.json

After registering the new nodes, launch the introspection process for them. Use the following
commands for each new node:

$ ironic node-list
$ ironic node-set-maintenance [NODE UUID] true
$ openstack baremetal introspection start [NODE UUID]
$ ironic node-set-maintenance [NODE UUID] false

This detects and benchmarks the hardware properties of the nodes.

After the introspection process completes, tag each new node for its desired role. For example, for a
Compute node, use the following command:

$ ironic node-update [NODE UUID] add 
properties/capabilities='profile:compute,boot_option:local'

Alternatively, you can automatically tag new nodes into desired roles using the Automated Health
Check (AHC) Tools. See Appendix C, Automatic Profile Tagging for more information.

Director Installation and Usage

96



Set the boot images to use during the deployment. Find the UUIDs for the bm-deploy-kernel and 
bm-deploy-ramdisk images:

$ glance image-list
+--------------------------------------+------------------------+
| ID                                   | Name                   |
+--------------------------------------+------------------------+
| 09b40e3d-0382-4925-a356-3a4b4f36b514 | bm-deploy-kernel       |
| 765a46af-4417-4592-91e5-a300ead3faf6 | bm-deploy-ramdisk      |
| ef793cd0-e65c-456a-a675-63cd57610bd5 | overcloud-full         |
| 9a51a6cb-4670-40de-b64b-b70f4dd44152 | overcloud-full-initrd  |
| 4f7e33f4-d617-47c1-b36f-cbe90f132e5d | overcloud-full-vmlinuz |
+--------------------------------------+------------------------+

Set these UUIDs for the new node's deploy_kernel and deploy_ramdisk settings:

$ ironic node-update [NODE UUID] add driver_info/deploy_kernel='09b40e3d-
0382-4925-a356-3a4b4f36b514'
$ ironic node-update [NODE UUID] add driver_info/deploy_ramdisk='765a46af-
4417-4592-91e5-a300ead3faf6'

Scaling the Overcloud requires running the openstack overcloud deploy again with the desired
number of nodes for a role. For example, to scale to 5 Compute nodes:

$ openstack overcloud deploy --templates --compute-scale 5 [OTHER_OPTIONS]

This updates the entire Overcloud stack. Note that this only updates the stack. It does not delete the
Overcloud and replace the stack.

IMPORTANT

Make sure to include all environment files and options from your initial Overcloud
creation. This includes the same scale parameters for non-Compute nodes.

9.2. REMOVING COMPUTE NODES

There might be situations where you need to remove Compute nodes from the Overcloud. For example,
you might need to replace a problematic Compute node.

IMPORTANT

Before removing a Compute node from the Overcloud, migrate the workload from the
node to other Compute nodes. See Section 8.9, “Migrating VMs from an Overcloud
Compute Node” for more details.

Next, disable the node's Compute service on the Overcloud. This stops the node from scheduling new
instances.

$ source ~/stack/overcloudrc
$ nova service-list
$ nova service-disable [hostname] nova-compute
$ source ~/stack/stackrc

CHAPTER 9. SCALING AND REPLACING NODES

97



Removing Overcloud nodes requires an update to the overcloud stack in the director using the local
template files. First identify the UUID of the Overcloud stack:

$ heat stack-list

Identify the UUIDs of the nodes to delete:

$ nova list

Run the following command to delete the nodes from the stack and update the plan accordingly:

$ openstack overcloud node delete --stack [STACK_UUID] --templates -e 
[ENVIRONMENT_FILE] [NODE1_UUID] [NODE2_UUID] [NODE3_UUID]

IMPORTANT

If you passed any extra environment files when you created the Overcloud, pass them
here again using the -e or --environment-file option to avoid making undesired
manual changes to the Overcloud.

IMPORTANT

Make sure the openstack overcloud node delete command runs to completion
before you continue. Use the openstack stack list command and check the 
overcloud stack has reached an UPDATE_COMPLETE status.

Finally, remove the node's Compute service:

$ source ~/stack/overcloudrc
$ nova service-list
$ nova service-delete [service-id]
$ source ~/stack/stackrc

And remove the node's Open vSwitch agent:

$ source ~/stack/overcloudrc
$ neutron agent-list
$ neutron agent-delete [openvswitch-agent-id]
$ source ~/stack/stackrc

You are now free to remove the node from the Overcloud and re-provision it for other purposes.

9.3. REPLACING COMPUTE NODES

If a Compute node fails, you can replace the node with a working one. Replacing a Compute node uses
the following process:

1. Migrate workload off the existing Compute node and shutdown the node. See Section 8.9,
“Migrating VMs from an Overcloud Compute Node” for this process.

2. Remove the Compute node from the Overcloud. See Section 9.2, “Removing Compute Nodes”
for this process.

Director Installation and Usage

98



3. Scale out the Overcloud with a new Compute node. See Chapter 9, Scaling and Replacing Nodes
for this process.

This process ensures that a node can be replaced without affecting the availability of any instances.

9.4. REPLACING CONTROLLER NODES

In certain circumstances a Controller node in a high availability cluster might fail. In these situations,
you must remove the node from the cluster and replace it with a new Controller node. This also
includes ensuring the node connects to the other nodes in the cluster.

This section provides instructions on how to replace a Controller node. The process involves running
the openstack overcloud deploy command to update the Overcloud with a request to replace a
controller node. Note that this process is not completely automatic; during the Overcloud stack update
process, the openstack overcloud deploy command will at some point report a failure and halt
the Overcloud stack update. At this point, the process requires some manual intervention. Then the 
openstack overcloud deploy process can continue.

IMPORTANT

The following procedure only applies to high availability environments. Do not use this
procedure if only using one Controller node.

9.4.1. Preliminary Checks

Before attempting to replace an Overcloud Controller node, it is important to check the current state
of your Red Hat OpenStack Platform environment. Checking the current state can help avoid
complications during the Controller replacement process. Use the following list of preliminary checks
to determine if it is safe to perform a Controller node replacement. Run all commands for these checks
on the Undercloud.

1. Check the current status of the overcloud stack on the Undercloud:

$ source stackrc
$ heat stack-list --show-nested

The overcloud stack and its subsequent child stacks should have either a 
CREATE_COMPLETE or UPDATE_COMPLETE.

2. Perform a backup of the Undercloud databases:

$ mkdir /home/stack/backup
$ sudo mysqldump --all-databases --quick --single-transaction | gzip 
> /home/stack/backup/dump_db_undercloud.sql.gz
$ sudo systemctl stop openstack-ironic-api.service openstack-ironic-
conductor.service openstack-ironic-inspector.service openstack-
ironic-inspector-dnsmasq.service
$ sudo cp /var/lib/ironic-inspector/inspector.sqlite 
/home/stack/backup
$ sudo systemctl start openstack-ironic-api.service openstack-
ironic-conductor.service openstack-ironic-inspector.service 
openstack-ironic-inspector-dnsmasq.service

CHAPTER 9. SCALING AND REPLACING NODES

99



3. Check your Undercloud contains 10 GB free storage to accomodate for image caching and
conversion when provisioning the new node.

4. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to get the Pacemaker
status:

$ ssh heat-admin@192.168.0.47 'sudo pcs status'

The output should show all services running on the existing nodes and stopped on the failed
node.

5. Check the following parameters on each node of the Overcloud's MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2

Use the following command to check these parameters on each running Controller node
(respectively using 192.168.0.47 and 192.168.0.46 for IP addresses):

$ for i in 192.168.0.47 192.168.0.46 ; do echo "*** $i ***" ; ssh 
heat-admin@$i "sudo mysql --exec=\"SHOW STATUS LIKE 
'wsrep_local_state_comment'\" ; sudo mysql --exec=\"SHOW STATUS LIKE 
'wsrep_cluster_size'\""; done

6. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to get the status

$ ssh heat-admin@192.168.0.47 "sudo rabbitmqctl cluster_status"

The running_nodes key should only show the two available nodes and not the failed node.

7. Disable fencing, if enabled. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to disable fencing:

$ ssh heat-admin@192.168.0.47 "sudo pcs property set stonith-
enabled=false"

Check the fencing status with the following command:

$ ssh heat-admin@192.168.0.47 "sudo pcs property show stonith-
enabled"

8. Check the nova-compute service on the director node:

$ sudo systemctl status openstack-nova-compute
$ nova hypervisor-list

The output should show all non-maintenance mode nodes as up.

9. Make sure all Undercloud services are running:

Director Installation and Usage

100



$ sudo systemctl list-units httpd\* mariadb\* neutron\* openstack\* 
openvswitch\* rabbitmq\*

9.4.2. Node Replacement

Identify the index of the node to remove. The node index is the suffix on the instance name from nova 
list output.

[stack@director ~]$ nova list
+--------------------------------------+------------------------+
| ID                                   | Name                   |
+--------------------------------------+------------------------+
| 861408be-4027-4f53-87a6-cd3cf206ba7a | overcloud-compute-0    |
| 0966e9ae-f553-447a-9929-c4232432f718 | overcloud-compute-1    |
| 9c08fa65-b38c-4b2e-bd47-33870bff06c7 | overcloud-compute-2    |
| a7f0f5e1-e7ce-4513-ad2b-81146bc8c5af | overcloud-controller-0 |
| cfefaf60-8311-4bc3-9416-6a824a40a9ae | overcloud-controller-1 |
| 97a055d4-aefd-481c-82b7-4a5f384036d2 | overcloud-controller-2 |
+--------------------------------------+------------------------+

In this example, the aim is to remove the overcloud-controller-1 node and replace it with 
overcloud-controller-3. First, set the node into maintenance mode so the director does not
reprovision the failed node. Correlate the instance ID from nova list with the node ID from ironic 
node-list

[stack@director ~]$ ironic node-list
+--------------------------------------+------+-----------------------
---------------+
| UUID                                 | Name | Instance UUID                        
|
+--------------------------------------+------+-----------------------
---------------+
| 36404147-7c8a-41e6-8c72-a6e90afc7584 | None | 7bee57cf-4a58-4eaf-b851-
2a8bf6620e48 |
| 91eb9ac5-7d52-453c-a017-c0e3d823efd0 | None | None                                 
|
| 75b25e9a-948d-424a-9b3b-f0ef70a6eacf | None | None                                 
|
| 038727da-6a5c-425f-bd45-fda2f4bd145b | None | 763bfec2-9354-466a-ae65-
2401c13e07e5 |
| dc2292e6-4056-46e0-8848-d6e96df1f55d | None | 2017b481-706f-44e1-852a-
2ee857c303c4 |
| c7eadcea-e377-4392-9fc3-cf2b02b7ec29 | None | 5f73c7d7-4826-49a5-b6be-
8bfd558f3b41 |
| da3a8d19-8a59-4e9d-923a-6a336fe10284 | None | cfefaf60-8311-4bc3-9416-
6a824a40a9ae |
| 807cb6ce-6b94-4cd1-9969-5c47560c2eee | None | c07c13e6-a845-4791-9628-
260110829c3a |
+--------------------------------------+------+-----------------------
---------------+

Set the node into maintenance mode:

[stack@director ~]$ ironic node-set-maintenance da3a8d19-8a59-4e9d-923a-

CHAPTER 9. SCALING AND REPLACING NODES

101



6a336fe10284 true

Tag the new node as with the control profile.

[stack@director ~]$ ironic node-update 75b25e9a-948d-424a-9b3b-
f0ef70a6eacf add 
properties/capabilities='profile:control,boot_option:local'

Create a YAML file (~/templates/remove-controller.yaml) that defines the node index to
remove:

parameters:
  ControllerRemovalPolicies:
    [{'resource_list': ['1']}]

IMPORTANT

If replacing the node with index 0, edit the heat templates and change the bootstrap
node index and node validation index before starting replacement. Create a copy of the
director's Heat template collection (see Section 6.18, “Using Customized Core Heat
Templates” and run the following command on the overcloud.yaml file:

$ sed -i "s/resource\.0/resource.1/g" ~/templates/my-
overcloud/overcloud.yaml

This changes the node index for the following resources:

ControllerBootstrapNodeConfig:
  type: OS::TripleO::BootstrapNode::SoftwareConfig
    properties:
      bootstrap_nodeid: {get_attr: [Controller, 
resource.0.hostname]}
      bootstrap_nodeid_ip: {get_attr: [Controller, 
resource.0.ip_address]}

And:

AllNodesValidationConfig:
  type: OS::TripleO::AllNodes::Validation
  properties:
    PingTestIps:
      list_join:
      - ' '
      - - {get_attr: [Controller, 
resource.0.external_ip_address]}
        - {get_attr: [Controller, 
resource.0.internal_api_ip_address]}
        - {get_attr: [Controller, 
resource.0.storage_ip_address]}
        - {get_attr: [Controller, 
resource.0.storage_mgmt_ip_address]}
        - {get_attr: [Controller, 
resource.0.tenant_ip_address]}

Director Installation and Usage

102



NOTE

You can speed up the replacement process by reducing the number for tries for settle in
Corosync. Include the following hieradata in the `ExtraConfig` parameter in an
environment file:

parameter_defaults:
  ExtraConfig:
    pacemaker::corosync::settle_tries: 5

After identifying the node index, redeploy the Overcloud and include the remove-controller.yaml
environment file:

[stack@director ~]$ openstack overcloud deploy --templates --control-scale 
3 -e ~/templates/remove-controller.yaml [OTHER OPTIONS]

IMPORTANT

If you passed any extra environment files or options when you created the Overcloud,
pass them again here to avoid making undesired changes to the Overcloud.

However, note that -e ~/templates/remove-controller.yaml is only required
once in this instance. This is because node removal process happens only once and
should not run on subsequent runs.

The director removes the old node, creates a new one, and updates the Overcloud stack. You can check
the status of the Overcloud stack with the following command:

[stack@director ~]$ heat stack-list --show-nested

IMPORTANT

The removal process might cause the RHELUnregistrationDeployment resource to
hang due to the removed Controller node being unavailable. If this occurs, send a signal
to the resource using the following commands:

# heat resource-list -n 5 -f name=RHELUnregistrationDeployment 
overcloud
# heat resource-signal [STACK_NAME] 
RHELUnregistrationDeployment

Replace [STACK_NAME] with the removed Controller's substack. For example, 
overcloud-Controller-yfbet6xh6oov-1-f5v5pmcfvv2k-NodeExtraConfig-
zuiny44lei3w for Controller node 1.

During the ControllerNodesPostDeployment stage, the Overcloud stack will time out and halt
with an UPDATE_FAILED error at ControllerLoadBalancerDeployment_Step1. This is expected
behavior and manual intervention is required as per the next section.

9.4.3. Manual Intervention

CHAPTER 9. SCALING AND REPLACING NODES

103



During the ControllerNodesPostDeployment stage, wait until the Overcloud stack times out and
halts with an UPDATE_FAILED error at ControllerLoadBalancerDeployment_Step1. This is
because some Puppet modules do not support nodes replacement. This point in the process requires
some manual intervention. Follow these configuration steps:

1. Get a list of IP addresses for the Controller nodes. For example:

[stack@director ~]$ nova list
... +------------------------+ ... +-------------------------+
... | Name                   | ... | Networks                |
... +------------------------+ ... +-------------------------+
... | overcloud-compute-0    | ... | ctlplane=192.168.0.44   |
... | overcloud-controller-0 | ... | ctlplane=192.168.0.47   |
... | overcloud-controller-2 | ... | ctlplane=192.168.0.46   |
... | overcloud-controller-3 | ... | ctlplane=192.168.0.48   |
... +------------------------+ ... +-------------------------+

2. Check the nodeid value of the removed node in the /etc/corosync/corosync.conf file
on an existing node. For example, the existing node is overcloud-controller-0 at
192.168.0.47:

[stack@director ~]$ ssh heat-admin@192.168.0.47 "sudo cat 
/etc/corosync/corosync.conf"

This displays a nodelist that contains the ID for the removed node ( overcloud-
controller-1):

nodelist {
  node {
    ring0_addr: overcloud-controller-0
    nodeid: 1
  }
  node {
    ring0_addr: overcloud-controller-1
    nodeid: 2
  }
  node {
    ring0_addr: overcloud-controller-2
    nodeid: 3
  }
}

Note the nodeid value of the removed node for later. In this example, it is 2.

3. Delete the failed node from the Corosync configuration on each node and restart Corosync.
For this example, log into overcloud-controller-0 and overcloud-controller-2 and
run the following commands:

[stack@director] ssh heat-admin@192.168.201.47 "sudo pcs cluster 
localnode remove overcloud-controller-1"
[stack@director] ssh heat-admin@192.168.201.47 "sudo pcs cluster 
reload corosync"
[stack@director] ssh heat-admin@192.168.201.46 "sudo pcs cluster 

Director Installation and Usage

104



localnode remove overcloud-controller-1"
[stack@director] ssh heat-admin@192.168.201.46 "sudo pcs cluster 
reload corosync"

4. Log into one of the remaining nodes and delete the node from the cluster with the crm_node
command:

[stack@director] ssh heat-admin@192.168.201.47
[heat-admin@overcloud-controller-0 ~]$ sudo crm_node -R overcloud-
controller-1 --force

Stay logged into this node.

5. Delete the failed node from the RabbitMQ cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo rabbitmqctl 
forget_cluster_node rabbit@overcloud-controller-1

6. Delete the failed node from MongoDB. First, find the IP address for the node's Interal API
connection.

[heat-admin@overcloud-controller-0 ~]$ sudo netstat -tulnp | grep 
27017
tcp        0      0 192.168.0.47:27017    0.0.0.0:*               
LISTEN      13415/mongod

Check that the node is the primary replica set:

[root@overcloud-controller-0 ~]# echo "db.isMaster()" | mongo --host 
192.168.0.47:27017
MongoDB shell version: 2.6.11
connecting to: 192.168.0.47:27017/echo
{
  "setName" : "tripleo",
  "setVersion" : 1,
  "ismaster" : true,
  "secondary" : false,
  "hosts" : [
    "192.168.0.47:27017",
    "192.168.0.46:27017",
    "192.168.0.45:27017"
  ],
  "primary" : "192.168.0.47:27017",
  "me" : "192.168.0.47:27017",
  "electionId" : ObjectId("575919933ea8637676159d28"),
  "maxBsonObjectSize" : 16777216,
  "maxMessageSizeBytes" : 48000000,
  "maxWriteBatchSize" : 1000,
  "localTime" : ISODate("2016-06-09T09:02:43.340Z"),
  "maxWireVersion" : 2,
  "minWireVersion" : 0,
  "ok" : 1
}
bye

CHAPTER 9. SCALING AND REPLACING NODES

105



This should indicate if the current node is the primary. If not, use the IP address of the node
indicated in the primary key.

Connect to MongoDB on the primary node:

[heat-admin@overcloud-controller-0 ~]$ mongo --host 192.168.0.47
MongoDB shell version: 2.6.9
connecting to: 192.168.0.47:27017/test
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
http://docs.mongodb.org/
Questions? Try the support group
http://groups.google.com/group/mongodb-user
tripleo:PRIMARY>

Check the status of the MongoDB cluster:

tripleo:PRIMARY> rs.status()

Identify the node using the _id key and remove the failed node using the name key. In this
case, we remove Node 1, which has 192.168.0.45:27017 for name:

tripleo:PRIMARY> rs.remove('192.168.0.45:27017')

IMPORTANT

You must run the command against the PRIMARY replica set. If you see the
following message:

"replSetReconfig command must be sent to the current 
replica set primary."

Relog into MongoDB on the node designated as PRIMARY.

NOTE

The following output is normal when removing the failed node's replica set:

2016-05-07T03:57:19.541+0000 DBClientCursor::init call() 
failed
2016-05-07T03:57:19.543+0000 Error: error doing query: 
failed at src/mongo/shell/query.js:81
2016-05-07T03:57:19.545+0000 trying reconnect to 
192.168.0.47:27017 (192.168.0.47) failed
2016-05-07T03:57:19.547+0000 reconnect 192.168.0.47:27017 
(192.168.0.47) ok

Exit MongoDB:

tripleo:PRIMARY> exit

Director Installation and Usage

106



7. Update list of nodes in the Galera cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource update 
galera wsrep_cluster_address=gcomm://overcloud-controller-
0,overcloud-controller-3,overcloud-controller-2

8. Configure the Galera cluster check on the new node. Copy the 
/etc/sysconfig/clustercheck from the existing node to the same location on the new
node.

9. Configure the root user's Galera access on the new node. Copy the /root/.my.cnf from the
existing node to the same location on the new node.

10. Add the new node to the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster node add 
overcloud-controller-3

11. Check the /etc/corosync/corosync.conf file on each node. If the nodeid of the new
node is the same as the removed node, update the value to a new nodeid value. For example,
the /etc/corosync/corosync.conf file contains an entry for the new node ( overcloud-
controller-3):

nodelist {
  node {
    ring0_addr: overcloud-controller-0
    nodeid: 1
  }
  node {
    ring0_addr: overcloud-controller-2
    nodeid: 3
  }
  node {
    ring0_addr: overcloud-controller-3
    nodeid: 2
  }
}

Note that in this example, the new node uses the same nodeid of the removed node. Update
this value to a unused node ID value. For example:

node {
  ring0_addr: overcloud-controller-3
  nodeid: 4
}

Update this nodeid value on each Controller node's /etc/corosync/corosync.conf file,
including the new node.

12. Restart the Corosync service on the existing nodes only. For example, on overcloud-
controller-0:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster reload 
corosync

CHAPTER 9. SCALING AND REPLACING NODES

107



And on overcloud-controller-2:

[heat-admin@overcloud-controller-2 ~]$ sudo pcs cluster reload 
corosync

Do not run this command on the new node.

13. Start the new Controller node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster start 
overcloud-controller-3

14. Enable the keystone service on the new node. Copy the /etc/keystone directory from a
remaining node to the director host:

[heat-admin@overcloud-controller-0 ~]$ sudo -i
[root@overcloud-controller-0 ~]$ scp -r /etc/keystone 
stack@192.168.0.1:~/.

Log in to the new Controller node. Remove the /etc/keystone directory from the new
Controller node and copy the keystone files from the director host:

[heat-admin@overcloud-controller-3 ~]$ sudo -i
[root@overcloud-controller-3 ~]$ rm -rf /etc/keystone
[root@overcloud-controller-3 ~]$ scp -r stack@192.168.0.1:~/keystone 
/etc/.
[root@overcloud-controller-3 ~]$ chown -R keystone: /etc/keystone
[root@overcloud-controller-3 ~]$ chown root 
/etc/keystone/logging.conf /etc/keystone/default_catalog.templates

Edit /etc/keystone/keystone.conf and set the admin_bind_host and 
public_bind_host parameters to new Controller node's IP address. To find these IP
addresses, use the ip addr command and look for the IP address within the following
networks:

admin_bind_host - Provisioning network

public_bind_host - Internal API network

NOTE

These networks might differ if you deployed the Overcloud using a custom 
ServiceNetMap parameter.

For example, if the Provisioning network uses the 192.168.0.0/24 subnet and the Internal API
uses the 172.17.0.0/24 subnet, use the following commands to find the node’s IP addresses on
those networks:

[root@overcloud-controller-3 ~]$ ip addr | grep "192\.168\.0\..*/24"
[root@overcloud-controller-3 ~]$ ip addr | grep "172\.17\.0\..*/24"

Director Installation and Usage

108



15. Enable and restart some services through Pacemaker. The cluster is currently in maintenance
mode and you will need to temporarily disable it to enable the service. For example:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs property set 
maintenance-mode=false --wait

16. Wait until the Galera service starts on all nodes.

[heat-admin@overcloud-controller-3 ~]$ sudo pcs status | grep galera 
-A1
Master/Slave Set: galera-master [galera]
Masters: [ overcloud-controller-0 overcloud-controller-2 overcloud-
controller-3 ]

If need be, perform a `cleanup` on the new node:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs resource cleanup 
galera --node overcloud-controller-3

17. Wait until the Keystone service starts on all nodes.

[heat-admin@overcloud-controller-3 ~]$ sudo pcs status | grep 
keystone -A1
Clone Set: openstack-keystone-clone [openstack-keystone]
Started: [ overcloud-controller-0 overcloud-controller-2 overcloud-
controller-3 ]

If need be, perform a `cleanup` on the new node:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs resource cleanup 
openstack-keystone-clone --node overcloud-controller-3

18. Switch the cluster back into maintenance mode:

[heat-admin@overcloud-controller-3 ~]$ sudo pcs property set 
maintenance-mode=true --wait

The manual configuration is complete. Re-run the Overcloud deployment command to continue the
stack update:

[stack@director ~]$ openstack overcloud deploy --templates --control-scale 
3 [OTHER OPTIONS]

IMPORTANT

If you passed any extra environment files or options when you created the Overcloud,
pass them again here to avoid making undesired changes to the Overcloud.

However, note that the remove-controller.yaml file is no longer needed.

9.4.4. Finalizing Overcloud Services

CHAPTER 9. SCALING AND REPLACING NODES

109



After the Overcloud stack update completes, some final configuration is required. Log in to one of the
Controller nodes and refresh any stopped services in Pacemaker:

[heat-admin@overcloud-controller-0 ~]$ for i in `sudo pcs status|grep -B2 
Stop |grep -v "Stop\|Start"|awk -F"[" '/\[/ {print 
substr($NF,0,length($NF)-1)}'`; do echo $i; sudo pcs resource cleanup $i; 
done

Perform a final status check to make sure services are running correctly:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource cleanup command to restart them
after resolving them.

Add the fencing details for the new node using the procedure in Section 8.6, “Fencing the Controller
Nodes” as a guide, then reenable fencing. Use the following command to enable fencing:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs property set stonith-
enabled=true

Exit to the director

[heat-admin@overcloud-controller-0 ~]$ exit

9.4.5. Finalizing Overcloud Network Agents

Source the overcloudrc file so that you can interact with the Overcloud. Check your routers to make
sure the L3 agents are properly hosting the routers in your Overcloud environment. In this example,
we use a router with the name r1:

[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ neutron l3-agent-list-hosting-router r1

This list might still show the old node instead of the new node. To replace it, list the L3 network agents
in your environment:

[stack@director ~]$ neutron agent-list | grep "neutron-l3-agent"

Identify the UUID for the agents on the new node and the old node. Add the router to the agent on the
new node and remove the router from old node. For example:

[stack@director ~]$ neutron l3-agent-router-add fd6b3d6e-7d8c-4e1a-831a-
4ec1c9ebb965 r1
[stack@director ~]$ neutron l3-agent-router-remove b40020af-c6dd-4f7a-
b426-eba7bac9dbc2 r1

Perform a final check on the router and make all are active:

Director Installation and Usage

110



[stack@director ~]$ neutron l3-agent-list-hosting-router r1

Delete the existing Neutron agents that point to old Controller node. For example:

[stack@director ~]$ neutron agent-list -F id -F host | grep overcloud-
controller-1
| ddae8e46-3e8e-4a1b-a8b3-c87f13c294eb | overcloud-controller-
1.localdomain |
[stack@director ~]$ neutron agent-delete ddae8e46-3e8e-4a1b-a8b3-
c87f13c294eb

9.4.6. Finalizing Compute Services

Compute services for the removed node still exist in the Overcloud and require removal. Source the 
overcloudrc file so that you can interact with the Overcloud. Check the compute services for the
removed node:

[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ nova service-list | grep "overcloud-controller-
1.localdomain"

Remove the compute services for the node. For example, if the nova-scheduler service for 
overcloud-controller-1.localdomain has an ID of 5, run the following command:

[stack@director ~]$ nova service-delete 5

Perform this task for each service of the removed node.

Check the openstack-nova-consoleauth service on the new node.

[stack@director ~]$ nova service-list | grep consoleauth

If the service is not running, log into a Controller node and restart the service:

[stack@director] ssh heat-admin@192.168.201.47
[heat-admin@overcloud-controller-0 ~]$ pcs resource restart openstack-
nova-consoleauth

9.4.7. Conclusion

The failed Controller node and its related services are now replaced with a new node.

IMPORTANT

If you disabled automatic ring building for Object Storage, like in Section 9.6, “Replacing
Object Storage Nodes”, you need to manually build the Object Storage ring files for the
new node. See Section 9.6, “Replacing Object Storage Nodes”  for more information on
manually building ring files.

9.5. REPLACING CEPH STORAGE NODES

CHAPTER 9. SCALING AND REPLACING NODES

111



The director provides a method to replace Ceph Storage nodes in a director-created cluster. You can
find these instructions in the Red Hat Ceph Storage for the Overcloud .

9.6. REPLACING OBJECT STORAGE NODES

To replace nodes on the Object Storage cluster, you need to:

Update the Overcloud with the new Object Storage nodes and prevent Director from creating
the ring files.

Manually add/remove the nodes to the cluster using swift-ring-builder.

The following procedure describes how to replace nodes while maintaining the integrity of the cluster.
In this example, we have a two node Object Storage cluster. The aim is to add an additional node, then
replace the faulty node.

First, create an environment file called ~/templates/swift-ring-prevent.yaml with the
following content:

parameter_defaults:
  SwiftRingBuild: false
  RingBuild: false
  ObjectStorageCount: 3

The SwiftRingBuild and RingBuild parameters define whether the Overcloud automatically builds
the ring files for Object Storage and Controller nodes respectively. The ObjectStorageCount
defines how many Object Storage nodes in our environment. In this situation, we scale from 2 to 3
nodes.

Include the swift-ring-prevent.yaml file with the rest of your Overcloud’s environment files as
part of the openstack overcloud deploy:

$ openstack overcloud deploy --templates [ENVIRONMENT_FILES] -e swift-
ring-prevent.yaml

NOTE

Add this file to the end of the environment file list so its parameters supercede previous
environment file parameters.

After redeployment completes, the Overcloud now contains an additional Object Storage node.
However, the node's storage directory has not been created and ring files for the node's object store
are unbuilt. This means you must create the storage directory and build the ring files manually.

NOTE

Use the following procedure to also build ring files on Controller nodes.

Login to the new node and create the storage directory:

$ sudo mkdir -p /srv/node/d1
$ sudo chown -R swift:swift /srv/node/d1

Director Installation and Usage

112

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/red-hat-ceph-storage-for-the-overcloud/red-hat-ceph-storage-for-the-overcloud


NOTE

You can also mount an external storage device at this directory.

Copy the existing ring files to the node. Log into a Controller node as the heat-admin user and then
change to the superuser. For example, given a Controller node with an IP address of 192.168.201.24.

$ ssh heat-admin@192.168.201.24
$ sudo -i

Copy the /etc/swift/*.builder files from the Controller node to the new Object Storage node's 
/etc/swift/ directory. If necessary, transfer the files to the director host:

[root@overcloud-controller-0 ~]# scp /etc/swift/*.builder 
stack@192.1.2.1:~/.

Then transfer the files to the new node:

[stack@director ~]$ scp ~/*.builder heat-admin@192.1.2.24:~/.

Log into the new Object Storage node as the heat-admin user and then change to the superuser. For
example, given a Object Storage node with an IP address of 192.168.201.29.

$ ssh heat-admin@192.168.201.29
$ sudo -i

Copy the files to the /etc/swift directory:

# cp /home/heat-admin/*.builder /etc/swift/.

Add the new Object Storage node to the account, container, and object rings. Run the following
commands for the new node:

# swift-ring-builder /etc/swift/account.builder add zX-IP:6002/d1 weight
# swift-ring-builder /etc/swift/container.builder add zX-IP:6001/d1 weight
# swift-ring-builder /etc/swift/object.builder add zX-IP:6000/d1 weight

Replace the following values in these commands:

zX

Replace X with the corresponding integer of a specified zone (for example, z1 for Zone 1).

IP

The IP that the account, container, and object services use to listen. This should match the IP
address of each storage node; specifically, the value of bind_ip in the DEFAULT sections of 
/etc/swift/object-server.conf, /etc/swift/account-server.conf, and 
/etc/swift/container-server.conf.

weight

Describes relative weight of the device in comparison to other devices. This is usually 100.

CHAPTER 9. SCALING AND REPLACING NODES

113



NOTE

Check the existing values of the current nodes in the ring file using the swift-ring-
builder on the rings files alone:

# swift-ring-builder /etc/swift/account.builder

Remove the node you aim to replace from the account, container, and object rings. Run the following
commands for each node:

# swift-ring-builder /etc/swift/account.builder remove IP
# swift-ring-builder /etc/swift/container.builder remove IP
# swift-ring-builder /etc/swift/object.builder remove IP

Replace IP with the IP address of the node.

Redistribute the partitions across all the nodes:

# swift-ring-builder /etc/swift/account.builder rebalance
# swift-ring-builder /etc/swift/container.builder rebalance
# swift-ring-builder /etc/swift/object.builder rebalance

Change the ownership of all /etc/swift/ contents to the root user and swift group:

# chown -R root:swift /etc/swift

Restart the openstack-swift-proxy service:

# systemctl restart openstack-swift-proxy.service

At this point, the ring files (*.ring.gz and *.builder) should be updated on the new node:

/etc/swift/account.builder
/etc/swift/account.ring.gz
/etc/swift/container.builder
/etc/swift/container.ring.gz
/etc/swift/object.builder
/etc/swift/object.ring.gz

Copy these files to /etc/swift/ on the Controller nodes and the existing Object Storage nodes
(except for the node to remove). If necessary, transfer the files to the director host:

[root@overcloud-objectstorage-2 swift]# scp *.builder stack@192.1.2.1:~/
[root@overcloud-objectstorage-2 swift]# scp *.ring.gz stack@192.1.2.1:~/

Then copy the files to the /etc/swift/ on each node.

On each node, change the ownership of all /etc/swift/ contents to the root user and swift group:

# chown -R root:swift /etc/swift

Director Installation and Usage

114



The new node is added and a part of the ring. Before removing the old node from the ring, check that
the new node completes a full data replication pass.

To remove the old node from the ring, reduce the ObjectStorageCount to the omit the old ring. In
this case, we reduce from 3 to 2:

parameter_defaults:
  SwiftRingBuild: false
  RingBuild: false
  ObjectStorageCount: 2

Create a new environment file (remove-object-node.yaml) to identify and remove the old Object
Storage node. In this case, we remove overcloud-objectstorage-1:

parameter_defaults:
  ObjectStorageRemovalPolicies:
    [{'resource_list': ['1']}]

Include both environment files with the deployment command:

$ openstack overcloud deploy --templates -e swift-ring-prevent.yaml -e 
remove-object-node.yaml ...

The director deletes the Object Storage node from the Overcloud and updates the rest of the nodes on
the Overcloud to accommodate the node removal.

CHAPTER 9. SCALING AND REPLACING NODES

115



CHAPTER 10. REBOOTING THE OVERCLOUD

Some situations require a reboot of nodes in the undercloud and overcloud. The following procedures
show how to reboot different node types. Be aware of the following notes:

If rebooting all nodes in one role, it is advisable to reboot each node individually. This helps
retain services for that role during the reboot.

If rebooting all nodes in your OpenStack Platform environment, use the following list to guide
the reboot order:

Recommended Node Reboot Order

1. Reboot the director

2. Reboot Controller nodes

3. Reboot Ceph Storage nodes

4. Reboot Compute nodes

5. Reboot object Storage nodes

10.1. REBOOTING THE DIRECTOR

To reboot the director node, follow this process:

1. Reboot the node:

$ sudo reboot

2. Wait until the node boots.

When the node boots, check the status of all services:

$ sudo systemctl list-units "openstack*" "neutron*" "openvswitch*"

Verify the existence of your Overcloud and its nodes:

$ source ~/stackrc
$ nova list
$ ironic node-list
$ heat stack-list

10.2. REBOOTING CONTROLLER NODES

To reboot the Controller nodes, follow this process:

1. Select a node to reboot. Log into it and reboot it:

$ sudo reboot

Director Installation and Usage

116



The remaining Controller Nodes in the cluster retain the high availability services during the
reboot.

2. Wait until the node boots.

3. Log into the node and check the cluster status:

$ sudo pcs status

The node rejoins the cluster.

NOTE

If any services fail after the reboot, run sudo pcs resource cleanup, which
cleans the errors and sets the state of each resource to Started. If any errors
persist, contact Red Hat and request guidance and assistance.

4. Log out of the node, select the next Controller Node to reboot, and repeat this procedure until
you have rebooted all Controller Nodes.

10.3. REBOOTING CEPH STORAGE NODES

To reboot the Ceph Storage nodes, follow this process:

1. Select the first Ceph Storage node to reboot and log into it.

2. Disable Ceph Storage cluster rebalancing temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo ceph -s

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to make sure the cluster reports HEALTH_OK:

CHAPTER 10. REBOOTING THE OVERCLOUD

117



$ sudo ceph status

10.4. REBOOTING COMPUTE NODES

Reboot each Compute node individually and ensure zero downtime of instances in your OpenStack
Platform environment. This involves the following workflow:

1. Select a Compute node to reboot

2. Migrate its instances to another Compute node

3. Reboot the empty Compute node

From the undercloud, list all Compute nodes and their UUIDs:

$ source ~/stackrc
$ nova list | grep "compute"

Select a Compute node to reboot and first migrate its instances using the following process:

1. From the undercloud, select a Compute Node to reboot and disable it:

$ source ~/overcloudrc
$ nova service-list
$ nova service-disable [hostname] nova-compute

2. List all instances on the Compute node:

$ nova list --host [hostname]

3. Select a second Compute Node to act as the target host for migrating instances. This host
needs enough resources to host the migrated instances. From the undercloud, migrate each
instance from the disabled host to the target host.

$ nova live-migration [instance-name] [target-hostname]
$ nova migration-list
$ nova resize-confirm [instance-name]

4. Repeat this step until you have migrated all instances from the Compute Node.

IMPORTANT

For full instructions on configuring and migrating instances, see Section 8.9, “Migrating
VMs from an Overcloud Compute Node”.

Reboot the Compute node using the following process

1. Log into the Compute Node and reboot it:

$ sudo reboot

Director Installation and Usage

118



2. Wait until the node boots.

3. Enable the Compute Node again:

$ source ~/overcloudrc
$ nova service-enable [hostname] nova-compute

4. Select the next node to reboot.

10.5. REBOOTING OBJECT STORAGE NODES

To reboot the Object Storage nodes, follow this process:

1. Select a Object Storage node to reboot. Log into it and reboot it:

$ sudo reboot

2. Wait until the node boots.

3. Log into the node and check the status:

$ sudo systemctl list-units "openstack-swift*"

4. Log out of the node and repeat this process on the next Object Storage node.

CHAPTER 10. REBOOTING THE OVERCLOUD

119



CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES
An error can occur at certain stages of the director's processes. This section provides some
information for diagnosing common problems.

Note the common logs for the director's components:

The /var/log directory contains logs for many common OpenStack Platform components as
well as logs for standard Red Hat Enterprise Linux applications.

The journald service provides logs for various components. Note that ironic uses two units: 
openstack-ironic-api and openstack-ironic-conductor. Likewise, ironic-
inspector uses two units as well: openstack-ironic-inspector and openstack-
ironic-inspector-dnsmasq. Use both units for each respective component. For example:

$ sudo journalctl -u openstack-ironic-inspector -u openstack-ironic-
inspector-dnsmasq

ironic-inspector also stores the ramdisk logs in /var/log/ironic-
inspector/ramdisk/ as gz-compressed tar files. Filenames contain date, time, and the IPMI
address of the node. Use these logs for diagnosing introspection issues.

11.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually arise from issues with incorrect node details. In this case, use 
ironic to fix problems with node data registered. Here are a few examples:

Procedure 11.1. Fixing an Incorrect MAC Address

1. Find out the assigned port UUID:

$ ironic node-port-list [NODE UUID]

2. Update the MAC address:

$ ironic port-update [PORT UUID] replace address=[NEW MAC]

Procedure 11.2. Fix an Incorrect IPMI Address

Run the following command:

$ ironic node-update [NODE UUID] replace driver_info/ipmi_address=
[NEW IPMI ADDRESS]

11.2. TROUBLESHOOTING HARDWARE INTROSPECTION

The discovery and introspection process must run to completion. However, ironic's Discovery daemon
(ironic-inspector) times out after a default 1 hour period if the discovery ramdisk provides no
response. Sometimes this might indicate a bug in the discovery ramdisk but usually it happens due to
an environment misconfiguration, particularly BIOS boot settings.

Here are some common scenarios where environment misconfiguration occurs and advice on how to

Director Installation and Usage

120



diagnose and resolve them.

Errors with Starting Node Introspection
Normally the introspection process uses the baremetal introspection, which acts an an umbrella
command for ironic's services. However, if running the introspection directly with ironic-
inspector, it might fail to discover nodes in the AVAILABLE state, which is meant for deployment and
not for discovery. Change the node status to the MANAGEABLE state before discovery:

$ ironic node-set-provision-state [NODE UUID] manage

Then, when discovery completes, change back to AVAILABLE before provisioning:

$ ironic node-set-provision-state [NODE UUID] provide

Introspected node is not booting in PXE
Before a node reboots, ironic-inspector adds the MAC address of the node to the Undercloud
firewall's ironic-inspector chain. This allows the node to boot over PXE. To verify the correct
configuration, run the following command:

$ sudo iptables -L

The output should display the following chain table with the MAC address:

Chain ironic-inspector (1 references)
target     prot opt source               destination
DROP       all  --  anywhere             anywhere             MAC 
xx:xx:xx:xx:xx:xx
ACCEPT     all  --  anywhere             anywhere

If the MAC address is not there, the most common cause is a corruption in the ironic-inspector
cache, which is in an SQLite database. To fix it, delete the SQLite file:

$ sudo rm /var/lib/ironic-inspector/inspector.sqlite

And recreate it:

$ sudo ironic-inspector-dbsync --config-file /etc/ironic-
inspector/inspector.conf upgrade
$ sudo systemctl restart openstack-ironic-inspector

Stopping the Discovery Process
Currently ironic-inspector does not provide a direct means for stopping discovery. The
recommended path is to wait until the process times out. If necessary, change the timeout setting in 
/etc/ironic-inspector/inspector.conf to change the timeout period to another period in
minutes.

In worst case scenarios, you can stop discovery for all nodes using the following process:

Procedure 11.3. Stopping the Discovery Process

1. Change the power state of each node to off:

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

121



$ ironic node-set-power-state [NODE UUID] off

2. Remove ironic-inspector cache and restart it:

$ rm /var/lib/ironic-inspector/inspector.sqlite
$ sudo systemctl restart openstack-ironic-inspector

3. Resynchronize the ironic-inspector cache:

$ sudo ironic-inspector-dbsync --config-file /etc/ironic-
inspector/inspector.conf upgrade

Accessing the Introspection Ramdisk
The introspection ramdisk uses a dynamic login element. This means you can provide either a
temporary password or an SSH key to access the node during introspection debugging. Use the
following process to set up ramdisk access:

1. Provide a temporary password to the openssl passwd -1 command to generate an MD5
hash. For example:

$ openssl passwd -1 mytestpassword
$1$enjRSyIw$/fYUpJwr6abFy/d.koRgQ/

2. Edit the /httpboot/inspector.ipxe file, find the line starting with kernel, and append
the rootpwd parameter and the MD5 hash. For example:

kernel http://192.2.0.1:8088/agent.kernel ipa-inspection-callback-
url=http://192.168.0.1:5050/v1/continue ipa-inspection-
collectors=default,extra-hardware,logs 
systemd.journald.forward_to_console=yes BOOTIF=${mac} ipa-debug=1 
ipa-inspection-benchmarks=cpu,mem,disk 
rootpwd="$1$enjRSyIw$/fYUpJwr6abFy/d.koRgQ/" selinux=0

Alternatively, you can append the sshkey parameter with your public SSH key.

NOTE

Quotation marks are required for both the rootpwd and sshkey parameters.

3. Start the introspection and find the IP address from either the arp command or the DHCP logs:

$ arp
$ sudo journalctl -u openstack-ironic-inspector-dnsmasq

4. SSH as a root user with the temporary password or the SSH key.

$ ssh root@192.0.2.105

Checking the Introspection Storage
The director uses OpenStack Object Storage (swift) to save the hardware data obtained during the
introspection process. If this service is not running, the introspection can fail. Check all services related

Director Installation and Usage

122



to OpenStack Object Storage to ensure the service is running:

$ sudo systemctl list-units openstack-swift*

11.3. TROUBLESHOOTING OVERCLOUD CREATION

There are three layers where the deployment can fail:

Orchestration (heat and nova services)

Bare Metal Provisioning (ironic service)

Post-Deployment Configuration (Puppet)

If an Overcloud deployment has failed at any of these levels, use the OpenStack clients and service log
files to diagnose the failed deployment.

11.3.1. Orchestration

In most cases, Heat shows the failed Overcloud stack after the Overcloud creation fails:

$ heat stack-list

+-----------------------+------------+--------------------+------------
----------+
| id                    | stack_name | stack_status       | creation_time        
|
+-----------------------+------------+--------------------+------------
----------+
| 7e88af95-535c-4a55... | overcloud  | CREATE_FAILED      | 2015-04-
06T17:57:16Z |
+-----------------------+------------+--------------------+------------
----------+

If the stack list is empty, this indicates an issue with the initial Heat setup. Check your Heat templates
and configuration options, and check for any error messages that presented after running openstack 
overcloud deploy.

11.3.2. Bare Metal Provisioning

Check ironic to see all registered nodes and their current status:

$ ironic node-list

+----------+------+---------------+-------------+-----------------+----
---------+
| UUID     | Name | Instance UUID | Power State | Provision State | 
Maintenance |
+----------+------+---------------+-------------+-----------------+----
---------+
| f1e261...| None | None          | power off   | available       | False       
|
| f0b8c1...| None | None          | power off   | available       | False       

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

123



|
+----------+------+---------------+-------------+-----------------+----
---------+

Here are some common issues that arise from the provisioning process.

Review the Provision State and Maintenance columns in the resulting table. Check for
the following:

An empty table, or fewer nodes than you expect

Maintenance is set to True

Provision State is set to manageable

This usually indicates an issue with the registration or discovery processes. For example, if 
Maintenance sets itself to True automatically, the nodes are usually using the wrong power
management credentials.

If Provision State is available, then the problem occurred before bare metal
deployment has even started.

If Provision State is active and Power State is power on, the bare metal deployment
has finished successfully. This means that the problem occurred during the post-deployment
configuration step.

If Provision State is wait call-back for a node, the bare metal provisioning process
has not yet finished for this node. Wait until this status changes, otherwise, connect to the
virtual console of the failed node and check the output.

If Provision State is error or deploy failed, then bare metal provisioning has failed
for this node. Check the bare metal node's details:

$ ironic node-show [NODE UUID]

Look for last_error field, which contains error description. If the error message is vague,
you can use logs to clarify it:

$ sudo journalctl -u openstack-ironic-conductor -u openstack-ironic-
api

If you see wait timeout error and the node Power State is power on, connect to the
virtual console of the failed node and check the output.

11.3.3. Post-Deployment Configuration

Many things can occur during the configuration stage. For example, a particular Puppet module could
fail to complete due to an issue with the setup. This section provides a process to diagnose such issues.

Procedure 11.4. Diagnosing Post-Deployment Configuration Issues

1. List all the resources from the Overcloud stack to see which one failed:

$ heat resource-list overcloud

Director Installation and Usage

124



This shows a table of all resources and their states. Look for any resources with a 
CREATE_FAILED.

2. Show the failed resource:

$ heat resource-show overcloud [FAILED RESOURCE]

Check for any information in the resource_status_reason field that can help your
diagnosis.

3. Use the nova command to see the IP addresses of the Overcloud nodes.

$ nova list

Log in as the heat-admin user to one of the deployed nodes. For example, if the stack's
resource list shows the error occurred on a Controller node, log in to a Controller node. The 
heat-admin user has sudo access.

$ ssh heat-admin@192.0.2.14

4. Check the os-collect-config log for a possible reason for the failure.

$ sudo journalctl -u os-collect-config

5. In some cases, nova fails deploying the node in entirety. This situation would be indicated by a
failed OS::Heat::ResourceGroup for one of the Overcloud role types. Use nova to see the
failure in this case.

$ nova list
$ nova show [SERVER ID]

The most common error shown will reference the error message No valid host was 
found. See Section 11.5, “Troubleshooting "No Valid Host Found" Errors”  for details on
troubleshooting this error. In other cases, look at the following log files for further
troubleshooting:

/var/log/nova/*

/var/log/heat/*

/var/log/ironic/*

6. Use the SOS toolset, which gathers information about system hardware and configuration. Use
this information for diagnostic purposes and debugging. SOS is commonly used to help support
technicians and developers. SOS is useful on both the Undercloud and Overcloud. Install the 
sos package:

$ sudo yum install sos

Generate a report:

$ sudo sosreport --all-logs

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

125



The post-deployment process for Controller nodes uses six main steps for the deployment. This
includes:

Table 11.1. Controller Node Configuration Steps

Step Description

ControllerLoadBalancerDeployment_Ste
p1

Initial load balancing software configuration,
including Pacemaker, RabbitMQ, Memcached, Redis,
and Galera.

ControllerServicesBaseDeployment_Ste
p2

Initial cluster configuration, including Pacemaker
configuration, HAProxy, MongoDB, Galera, Ceph
Monitor, and database initialization for OpenStack
Platform services.

ControllerRingbuilderDeployment_Step
3

Initial ring build for OpenStack Object Storage
(swift).

ControllerOvercloudServicesDeploymen
t_Step4

Configuration of all OpenStack Platform services
(nova, neutron, cinder, sahara, 
ceilometer, heat, horizon, aodh, gnocchi).

ControllerOvercloudServicesDeploymen
t_Step5

Configure service start up settings in Pacemaker,
including constraints to determine service start up
order and service start up parameters.

ControllerOvercloudServicesDeploymen
t_Step6

Final pass of the Overcloud configuration.

11.4. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE
PROVISIONING NETWORK

Discovery and deployment tasks will fail if the destination hosts are allocated an IP address which is
already in use. To avoid this issue, you can perform a port scan of the Provisioning network to
determine whether the discovery IP range and host IP range are free.

Perform the following steps from the Undercloud host:

Procedure 11.5. Identify active IP addresses

1. Install nmap:

# yum install nmap

2. Use nmap to scan the IP address range for active addresses. This example scans the 
192.0.2.0/24 range, replace this with the IP subnet of the Provisioning network (using CIDR
bitmask notation):

# nmap -sn 192.0.2.0/24

3. Review the output of the nmap scan:

Director Installation and Usage

126



For example, you should see the IP address(es) of the Undercloud, and any other hosts that are
present on the subnet. If any of the active IP addresses conflict with the IP ranges in 
undercloud.conf, you will need to either change the IP address ranges or free up the IP
addresses before introspecting or deploying the Overcloud nodes.

# nmap -sn 192.0.2.0/24

Starting Nmap 6.40 ( http://nmap.org ) at 2015-10-02 15:14 EDT
Nmap scan report for 192.0.2.1
Host is up (0.00057s latency).
Nmap scan report for 192.0.2.2
Host is up (0.00048s latency).
Nmap scan report for 192.0.2.3
Host is up (0.00045s latency).
Nmap scan report for 192.0.2.5
Host is up (0.00040s latency).
Nmap scan report for 192.0.2.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

11.5. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

NoValidHost: No valid host was found. There are not enough hosts 
available.

This means the nova Scheduler could not find a bare metal node suitable for booting the new instance.
This in turn usually means a mismatch between resources that nova expects to find and resources that
ironic advertised to nova. Check the following in this case:

1. Make sure introspection succeeds for you. Otherwise check that each node contains the
required ironic node properties. For each node:

$ ironic node-show [NODE UUID]

Check the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb and
local_gb.

2. Check that the nova flavor used does not exceed the ironic node properties above for a
required number of nodes:

$ nova flavor-show [FLAVOR NAME]

3. Check that sufficient nodes are in the available state according to ironic node-list.
Nodes in manageable state usually mean a failed introspection.

4. Check the nodes are not in maintenance mode. Use ironic node-list to check. A node
automatically changing to maintenance mode usually means incorrect power credentials.
Check them and then remove maintenance mode:

$ ironic node-set-maintenance [NODE UUID] off

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

127



5. If you're using the Automated Health Check (AHC) tools to perform automatic node tagging,
check that you have enough nodes corresponding to each flavor/profile. Check the 
capabilities key in properties field for ironic node-show. For example, a node
tagged for the Compute role should contain profile:compute.

6. It takes some time for node information to propagate from ironic to nova after introspection.
The director's tool usually accounts for it. However, if you performed some steps manually,
there might be a short period of time when nodes are not available to nova. Use the following
command to check the total resources in your system.:

$ nova hypervisor-stats

11.6. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION

After creating your Overcloud, you might want to perform certain Overcloud operations in the future.
For example, you might aim to scale your available nodes, or replace faulty nodes. Certain issues might
arise when performing these operations. This section provides some advice to diagnose and
troubleshoot failed post-creation operations.

11.6.1. Overcloud Stack Modifications

Problems can occur when modifying the overcloud stack through the director. Example of stack
modifications include:

Scaling Nodes

Removing Nodes

Replacing Nodes

Modifying the stack is similar to the process of creating the stack, in that the director checks the
availability of the requested number of nodes, provisions additional or removes existing nodes, and
then applies the Puppet configuration. Here are some guidelines to follow in situations when modifying
the overcloud stack.

As an initial step, follow the advice set in Section 11.3, “Troubleshooting Overcloud Creation” . These
same steps can help diagnose problems with updating the Overcloud heat stack. In particular, use the
following command to help identify problematic resources:

heat stack-list --show-nested

List all stacks. The --show-nested displays all child stacks and their respective parent stacks.
This command helps identify the point where a stack failed.

heat resource-list overcloud

List all resources in the overcloud stack and their current states. This helps identify which
resource is causing failures in the stack. You can trace this resource failure to its respective
parameters and configuration in the heat template collection and the Puppet modules.

heat event-list overcloud

List all events related to the overcloud stack in chronological order. This includes the initiation,
completion, and failure of all resources in the stack. This helps identify points of resource failure.

Director Installation and Usage

128



The next few sections provide advice to diagnose issues on specific node types.

11.6.2. Controller Service Failures

The Overcloud Controller nodes contain the bulk of Red Hat OpenStack Platform services. Likewise,
you might use multiple Controller nodes in a high availability cluster. If a certain service on a node is
faulty, the high availability cluster provides a certain level of failover. However, it then becomes
necessary to diagnose the faulty service to ensure your Overcloud operates at full capacity.

The Controller nodes use Pacemaker to manage the resources and services in the high availability
cluster. The Pacemaker Configuration System (pcs) command is a tool that manages a Pacemaker
cluster. Run this command on a Controller node in the cluster to perform configuration and monitoring
functions. Here are few commands to help troubleshoot Overcloud services on a high availability
cluster:

pcs status

Provides a status overview of the entire cluster including enabled resources, failed resources, and
online nodes.

pcs resource show

Shows a list of resources, and their respective nodes.

pcs resource disable [resource]

Stop a particular resource.

pcs resource enable [resource]

Start a particular resource.

pcs cluster standby [node]

Place a node in standby mode. The node is no longer available in the cluster. This is useful for
performing maintenance on a specific node without affecting the cluster.

pcs cluster unstandby [node]

Remove a node from standby mode. The node becomes available in the cluster again.

Use these Pacemaker commands to identify the faulty component and/or node. After identifying the
component, view the respective component log file in /var/log/.

11.6.3. Compute Service Failures

Compute nodes use the Compute service to perform hypervisor-based operations. This means the main
diagnosis for Compute nodes revolves around this service. For example:

View the status of the service using the following systemd function:

$ sudo systemctl status openstack-nova-compute.service

Likewise, view the systemd journal for the service using the following command:

$ sudo journalctl -u openstack-nova-compute.service

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

129



The primary log file for Compute nodes is /var/log/nova/nova-compute.log. If issues
occur with Compute node communication, this log file is usually a good place to start a
diagnosis.

If performing maintenance on the Compute node, migrate the existing instances from the host
to an operational Compute node, then disable the node. See Section 8.9, “Migrating VMs from
an Overcloud Compute Node” for more information on node migrations.

11.6.4. Ceph Storage Service Failures

For any issues that occur with Red Hat Ceph Storage clusters, see Part X. Logging and Debugging  in
the Red Hat Ceph Storage Configuration Guide. This section provides information on diagnosing logs
for all Ceph storage services.

11.7. TUNING THE UNDERCLOUD

The advice in this section aims to help increase the performance of your Undercloud. Implement the
recommendations as necessary.

The OpenStack Authentication service (keystone) uses a token-based system for access to
other OpenStack services. After a certain period, the database accumulates many unused
tokens. It is recommended you create a cronjob to flush the token table in the database. For
example, to flush the token table at 4 a.m. each day:

0 04 * * * /bin/keystone-manage token_flush

Heat stores a copy of all template files in its database's raw_template table each time you
run openstack overcloud deploy. The raw_template table retains all past templates
and grows in size. To remove unused templates in the raw_templates table, create a daily
cronjob that clears unused templates that exist in the database for longer than a day:

0 04 * * * /bin/heat-manage purge_deleted -g days 1

The openstack-heat-engine and openstack-heat-api services might consume too
many resources at times. If so, set max_resources_per_stack=-1 in 
/etc/heat/heat.conf and restart the heat services:

$ sudo systemctl restart openstack-heat-engine openstack-heat-api

Sometimes the director might not have enough resources to perform concurrent node
provisioning. The default is 10 nodes at the same time. To reduce the number of concurrent
nodes, set the max_concurrent_builds parameter in /etc/nova/nova.conf to a value
less than 10 and restart the nova services:

$ sudo systemctl restart openstack-nova-api openstack-nova-scheduler

Edit the /etc/my.cnf.d/server.cnf file. Some recommended values to tune include:

max_connections

Number of simultaneous connections to the database. The recommended value is 4096.

innodb_additional_mem_pool_size

Director Installation and Usage

130

https://access.redhat.com/documentation/en/red-hat-ceph-storage/version-/red-hat-ceph-storage-13-ceph-configuration-guide/part-x-logging-and-debugging


The size in bytes of a memory pool the database uses to store data dictionary information
and other internal data structures. The default is usually 8M and an ideal value is 20M for
the Undercloud.

innodb_buffer_pool_size

The size in bytes of the buffer pool, the memory area where the database caches table and
index data. The default is usually 128M and an ideal value is 1000M for the Undercloud.

innodb_flush_log_at_trx_commit

Controls the balance between strict ACID compliance for commit operations, and higher
performance that is possible when commit-related I/O operations are rearranged and done
in batches. Set to 1.

innodb_lock_wait_timeout

The length of time in seconds a database transaction waits for a row lock before giving up.
Set to 50.

innodb_max_purge_lag

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge
operations are lagging. Set to 10000.

innodb_thread_concurrency

The limit of concurrent operating system threads. Ideally, provide at least two threads for
each CPU and disk resource. For example, if using a quad-core CPU and a single disk, use 10
threads.

Ensure that heat has enough workers to perform an Overcloud creation. Usually, this depends
on how many CPUs the Undercloud has. To manually set the number of workers, edit the 
/etc/heat/heat.conf file, set the num_engine_workers parameter to the number of
workers you need (ideally 4), and restart the heat engine:

$ sudo systemctl restart openstack-heat-engine

11.8. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

Use the following logs to find out information about the Undercloud and Overcloud when
troubleshooting.

Table 11.2. Important Logs for Undercloud and Overcloud

Information Underclou
d or
Overcloud

Log Location

General director
services

Underclou
d

/var/log/nova/*

/var/log/heat/*

/var/log/ironic/*

CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES

131



Introspection Underclou
d

/var/log/ironic/*

/var/log/ironic-inspector/*

Provisioning Underclou
d

/var/log/ironic/*

Cloud-Init Log Overcloud /var/log/cloud-init.log

Overcloud
Configuration
(Summary of Last
Puppet Run)

Overcloud /var/lib/puppet/state/last_run_summary.yaml

Overcloud
Configuration (Report
from Last Puppet Run)

Overcloud /var/lib/puppet/state/last_run_report.yaml

Overcloud
Configuration (All
Puppet Reports)

Overcloud /var/lib/puppet/reports/overcloud-*/*

General Overcloud
services

Overcloud /var/log/ceilometer/*

/var/log/ceph/*

/var/log/cinder/*

/var/log/glance/*

/var/log/heat/*

/var/log/horizon/*

/var/log/httpd/*

/var/log/keystone/*

/var/log/libvirt/*

/var/log/neutron/*

/var/log/nova/*

/var/log/openvswitch/*

/var/log/rabbitmq/*

/var/log/redis/*

/var/log/swift/*

High availability log Overcloud /var/log/pacemaker.log

Information Underclou
d or
Overcloud

Log Location

Director Installation and Usage

132



APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
As an optional part of the processes outlined in Section 4.6, “Configuring the Director” or Section 6.11,
“Enabling SSL/TLS on the Overcloud”, you can set SSL/TLS for communication on either the
Undercloud or Overcloud. However, if using an SSL/TLS certificate with your own certificate authority,
the certificate requires a certain configuration for use.

CREATING A CERTIFICATE AUTHORITY
Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations,
you might aim to use your own certificate authority. For example, you might aim to have an internal-
only certificate authority.

For example, generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req  -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -
out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details.

This creates the a certificate file called ca.crt.pem. Copy this file to each client that aims to access
your Red Hat Openstack Platform environment and run the following command to add it to the
certificate authority trust bundle:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

CREATING AN SSL/TLS CERTIFICATE
This next procedure creates a signed certificate for either the Undercloud and Overcloud.

Copy the default OpenSSL configuration file for customization.

$ cp /etc/pki/tls/openssl.cnf .

Edit the custom openssl.cnf file and set SSL parameters to use for the director. An example of the
types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

133



[ v3_req ]
# Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = 192.168.0.1
DNS.2 = instack.localdomain
DNS.3 = vip.localdomain

IMPORTANT

Set the commonName_default to the IP address, or fully qualified domain name if using
one, of the Public API:

For the Undercloud, use the undercloud_public_vip parameter in 
undercloud.conf. If using a fully qualified domain name for this IP address,
use the domain name instead.

For the Overcloud, use the IP address for the Public API, which is the first
address for the ExternalAllocationPools parameter in your network
isolation environment file. If using a fully qualified domain name for this IP
address, use the domain name instead.

Include the same Public API IP address as an IP entry and a DNS entry in the 
alt_names section. If also using DNS, include the hostname for the server as DNS
entries in the same section. For more information about openssl.cnf, run man 
openssl.cnf.

Run the following commands to generate the key (server.key.pem), the certificate signing request
(server.csr.pem), and the signed certificate (server.crt.pem):

$ openssl genrsa -out server.key.pem 2048
$ openssl req -config openssl.cnf -key server.key.pem -new -out 
server.csr.pem
$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in 
server.csr.pem -out server.crt.pem -cert ca.cert.pem

IMPORTANT

The openssl req command asks for several details for the certificate, including the
Common Name. Make sure the Common Name is set to the IP address of the Public API
for the Undercloud or Overcloud (depending on which certificate set you are creating).
The openssl.cnf file should use this IP address as a default value.

Use this key pair to create a SSL/TLS certificate for either the Undercloud or Overcloud.

USING THE CERTIFICATE WITH THE UNDERCLOUD
Run the following command to create the certificate:

Director Installation and Usage

134



$ cat server.crt.pem server.key.pem > undercloud.pem

This creates a undercloud.pem for use with the undercloud_service_certificate option in
the undercloud.conf file. This file also requires a special SELinux context so that the HAProxy tool
can read it. Use the following example as a guide:

$ sudo mkdir /etc/pki/instack-certs
$ sudo cp ~/undercloud.pem /etc/pki/instack-certs/.
$ sudo semanage fcontext -a -t etc_t "/etc/pki/instack-certs(/.*)?"
$ sudo restorecon -R /etc/pki/instack-certs

Add the certificate authority to the Undercloud's list of trusted Certificate Authorities:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Add the undercloud.pem file location to the undercloud_service_certificate option in the 
undercloud.conf file. For example:

undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem

Continue installing the Undercloud as per the instructions in Section 4.6, “Configuring the Director”.

USING THE CERTIFICATE WITH THE OVERCLOUD
Use the certificate with the enable-tls.yaml file from Section 6.11, “Enabling SSL/TLS on the
Overcloud”.

APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION

135



APPENDIX B. POWER MANAGEMENT DRIVERS
Although IPMI is the main method the director uses for power management control, the director also
supports other power management types. This appendix provides a list of the supported power
management features. Use these power management settings for Section 5.1, “Registering Nodes for
the Overcloud”.

B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to pxe_drac.

pm_user, pm_password

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

B.2. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to pxe_ilo.

pm_user, pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

Additional Notes

Edit the /etc/ironic/ironic.conf file and add pxe_ilo to the enabled_drivers
option to enable this driver.

The director also requires an additional set of utilities for iLo. Install the python-
proliantutils package and restart the openstack-ironic-conductor service:

$ sudo yum install python-proliantutils
$ sudo systemctl restart openstack-ironic-conductor.service

HP nodes must a 2015 firmware version for successful introspection. The director has been
successfully tested with nodes using firmware version 1.85 (May 13 2015).

Director Installation and Usage

136



Using a shared iLO port is not supported.

B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)

UCS from Cisco is a data center platform that unites compute, network, storage access, and
virtualization resources. This driver focuses on the power management for bare metal systems
connected to the UCS.

pm_type

Set this option to pxe_ucs.

pm_user, pm_password

The UCS username and password.

pm_addr

The IP address of the UCS interface.

pm_service_profile

The UCS service profile to use. Usually takes the format of org-root/ls-
[service_profile_name]. For example:

"pm_service_profile": "org-root/ls-Nova-1"

Additional Notes

Edit the /etc/ironic/ironic.conf file and add pxe_ucs to the enabled_drivers
option to enable this driver.

The director also requires an additional set of utilities for UCS. Install the python-UcsSdk
package and restart the openstack-ironic-conductor service:

$ sudo yum install python-UcsSdk
$ sudo systemctl restart openstack-ironic-conductor.service

B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu's iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems
connected to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to pxe_irmc.

APPENDIX B. POWER MANAGEMENT DRIVERS

137



pm_user, pm_password

The username and password for the iRMC interface.

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

The authentication method for iRMC operations. Use either basic or digest. The default is basic

pm_client_timeout (Optional)

Timeout (in seconds) for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

Additional Notes

Edit the /etc/ironic/ironic.conf file and add pxe_irmc to the enabled_drivers
option to enable this driver.

The director also requires an additional set of utilities if you enabled SCCI as the sensor
method. Install the python-scciclient package and restart the openstack-ironic-
conductor service:

$ yum install python-scciclient
$ sudo systemctl restart openstack-ironic-conductor.service

B.5. SSH AND VIRSH

The director can access a host running libvirt through SSH and use virtual machines as nodes. The
director uses virsh to control the power management of these nodes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to pxe_ssh.

pm_user, pm_password

The SSH username and contents of the SSH private key. The private key must be on one line with
new lines replaced with escape characters (\n). For example:

-----BEGIN RSA PRIVATE KEY-----\nMIIEogIBAAKCAQEA .... kk+WXt9Y=\n-----

Director Installation and Usage

138



END RSA PRIVATE KEY-----

Add the SSH public key to the libvirt server's authorized_keys collection.

pm_addr

The IP address of the virsh host.

Additional Notes

The server hosting libvirt requires an SSH key pair with the public key set as the 
pm_password attribute.

Ensure the chosen pm_user has full access to the libvirt environment.

B.6. FAKE PXE DRIVER

This driver provides a method to use bare metal devices without power management. This means the
director does not control the registered bare metal devices and as such require manual control of
power at certain points in the introspect and deployment processes.

IMPORTANT

This option is available for testing and evaluation purposes only. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to fake_pxe.

Additional Notes

This driver does not use any authentication details because it does not control power
management.

Edit the /etc/ironic/ironic.conf file and add fake_pxe to the enabled_drivers
option to enable this driver. Restart the baremetal services after editing the file:

$ sudo systemctl restart openstack-ironic-api openstack-ironic-
conductor

When performing introspection on nodes, manually power the nodes after running the 
openstack baremetal introspection bulk start command.

When performing Overcloud deployment, check the node status with the ironic node-list
command. Wait until the node status changes from deploying to deploy wait-callback
and then manually power the nodes.

After the Overcloud provisioning process completes, reboot the nodes. To check the
completion of provisioning, check the node status with the ironic node-list command,
wait until the node status changes to active, then manually reboot all Overcloud nodes.

APPENDIX B. POWER MANAGEMENT DRIVERS

139



APPENDIX C. AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. The director saves the data from
these tests. You can create a set of policies that use this data in various ways. For example:

The policies can identify and isolate underperforming or unstable nodes from use in the
Overcloud.

The policies can define whether to automatically tag nodes into specific profiles.

These policy files use a JSON format that contains a set of rules. Each rule defines a description, a
condition, and an action.

DESCRIPTION
This is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

CONDITIONS
A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate.

op

Defines the operation to use for the evaluation. This includes the following:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression;

is-empty - Checks that field is empty.

invert

Boolean value to define whether to invert the result of the evaluation.

multiple

Director Installation and Usage

140



Defines the evaluation to use if multiple results exist. This includes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return
a true result. If not, the condition returns false.

Example:

"conditions": [
  {
    "field": "local_gb",
    "op": "ge",
    "value": 1024
  }
],

ACTIONS
An action is performed if the condition returns as true. It uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an Ironic node. Requires a path field, which is the path
to an Ironic attribute (e.g. /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an Ironic node. Requires name and value fields,
which are the name and the value for a new capability accordingly. The existing value for this
same capability is replaced. For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and
appends value to it. If the optional unique parameter is set to True, nothing is added if the
given value is already in a list.

Example:

"actions": [
  {
    "action": "set-capability",
    "name": "profile",
    "value": "swift-storage"
  }
]

POLICY FILE EXAMPLE
The following is an example JSON file (rules.json) with the introspection rules to apply:

[

APPENDIX C. AUTOMATIC PROFILE TAGGING

141



  {
    "description": "Fail introspection for unexpected nodes",
    "conditions": [
      {
        "op": "lt",
        "field": "memory_mb",
        "value": 4096
      }
    ],
    "actions": [
      {
        "action": "fail",
        "message": "Memory too low, expected at least 4 GiB"
      }
    ]
  },
  {
    "description": "Assign profile for object storage",
    "conditions": [
      {
        "op": "ge",
        "field": "local_gb",
        "value": 1024
      }
    ],
    "actions": [
      {
        "action": "set-capability",
        "name": "profile",
        "value": "swift-storage"
      }
    ]
  },
  {
    "description": "Assign possible profiles for compute and controller",
    "conditions": [
      {
        "op": "lt",
        "field": "local_gb",
        "value": 1024
      },
      {
        "op": "ge",
        "field": "local_gb",
        "value": 40
      }
    ],
    "actions": [
      {
        "action": "set-capability",
        "name": "compute_profile",
        "value": "1"
      },
      {
        "action": "set-capability",
        "name": "control_profile",

Director Installation and Usage

142



        "value": "1"
      },
      {
        "action": "set-capability",
        "name": "profile",
        "value": null
      }
    ]
  }
]

This example consists of three rules:

Fail introspection if memory is lower is 4096 MiB. Such rules can be applied to exclude nodes
that should not become part of your cloud.

Nodes with hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with hard drive less than 1 TiB but more than 40 GiB can be either Compute or
Controller nodes. We assign two capabilities (compute_profile and control_profile) so
that the openstack overcloud profiles match command can later make the final
choice. For that to work, we remove the existing profile capability, otherwise it will have
priority.

Other nodes are not changed.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes with an
existing profile capability.

IMPORTING POLICY FILES
Import the policy file into the director with the following command:

$ openstack baremetal introspection rule import rules.json

Then run the introspection process.

$ openstack baremetal introspection bulk start

After introspection completes, check the nodes and their assigned profiles:

$ openstack overcloud profiles list

If you made a mistake in introspection rules, you can delete them all:

$ openstack baremetal introspection rule purge

MATCHING NODES TO ROLES
To automatically assign a certain number of nodes to appropriate roles, use the openstack 
overcloud profiles match command to specify how many nodes to assign to a certain role. For

APPENDIX C. AUTOMATIC PROFILE TAGGING

143



example, to automatically match three Controller nodes, three Compute nodes, and three Ceph
Storage nodes, use the following command:

$ openstack overcloud profiles match --control-flavor control --control-
scale 3 --compute-flavor compute --compute-scale 3 --ceph-storage-flavor 
ceph-storage --ceph-storage-scale 3

This assigns the nodes to appropriate roles based on the rules in the previously imported policy file.

AUTOMATIC PROFILE TAGGING PROPERTIES
Automatic Profile Tagging evaluates the following node properties for the field attribute of each
condition:

Property Description

memory_mb The amount of memory for the node in MB.

cpus The total number of cores for the node’s CPUs.

cpu_arch The architecture of the node’s CPUs.

local_gb The total storage space of the node’s root disk. See
Section 5.4, “Defining the Root Disk for Nodes” for
more information about setting the root disk for a
node.

Director Installation and Usage

144



APPENDIX D. NETWORK INTERFACE PARAMETERS
The following table defines the Heat template parameters for network interface types.

Table D.1. Interface options

Option Default Description

name Name of the Interface

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the interface

routes A sequence of routes assigned to the interface

mtu 1500 The maximum transmission unit (MTU) of the connection

primary False Defines the interface as the primary interface

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

dhclient_args None Arguments to pass to the DHCP client

dns_servers None List of DNS servers to use for the interface

Table D.2. VLAN options

Option Default Description

vlan_id The VLAN ID

device The VLAN's parent device to attach the VLAN. For example, use this
parameter to attach the VLAN to a bonded interface device.

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the VLAN

routes A sequence of routes assigned to the VLAN

mtu 1500 The maximum transmission unit (MTU) of the connection

APPENDIX D. NETWORK INTERFACE PARAMETERS

145



primary False Defines the VLAN as the primary interface

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

dhclient_args None Arguments to pass to the DHCP client

dns_servers None List of DNS servers to use for the VLAN

Option Default Description

Table D.3. OVS Bond options

Option Default Description

name Name of the bond

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the bond

routes A sequence of routes assigned to the bond

mtu 1500 The maximum transmission unit (MTU) of the connection

primary False Defines the interface as the primary interface

members A sequence of interface objects to use in the bond

ovs_options A set of options to pass to OVS when creating the bond

ovs_extra A set of options to to set as the OVS_EXTRA parameter in the bond's
network configuration file

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

dhclient_args None Arguments to pass to the DHCP client

dns_servers None List of DNS servers to use for the bond

Table D.4. OVS Bridge options

Director Installation and Usage

146



Option Default Description

name Name of the bridge

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the bridge

routes A sequence of routes assigned to the bridge

mtu 1500 The maximum transmission unit (MTU) of the connection

members A sequence of interface, VLAN, and bond objects to use in the bridge

ovs_options A set of options to pass to OVS when creating the bridge

ovs_extra A set of options to to set as the OVS_EXTRA parameter in the bridge's
 network configuration file

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

dhclient_args None Arguments to pass to the DHCP client

dns_servers None List of DNS servers to use for the bridge

Table D.5. Linux Bond options

Option Default Description

name Name of the bond

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the bond

routes A sequence of routes assigned to the bond

mtu 1500 The maximum transmission unit (MTU) of the connection

primary False Defines the interface as the primary interface

APPENDIX D. NETWORK INTERFACE PARAMETERS

147



members A sequence of interface objects to use in the bond

bonding_optio
ns

A set of options when creating the bond. For more information on
Linux bonding options, see 4.5.1. Bonding Module Directives in the Red
Hat Enterprise Linux 7 Networking Guide.

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

dhclient_args None Arguments to pass to the DHCP client

dns_servers None List of DNS servers to use for the bond

Option Default Description

Table D.6. Linux Bridge options

Option Default Description

name Name of the bridge

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses A sequence of IP addresses assigned to the bridge

routes A sequence of routes assigned to the bridge

mtu 1500 The maximum transmission unit (MTU) of the connection

members A sequence of interface, VLAN, and bond objects to use in the bridge

defroute True Use this interface as the default route

persist_mappin
g

False Write the device alias configuration instead of the system names

dhclient_args None Arguments to pass to the DHCP client

dns_servers None List of DNS servers to use for the bridge

Director Installation and Usage

148

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives


APPENDIX E. NETWORK INTERFACE TEMPLATE EXAMPLES
This appendix provides a few example Heat templates to demonstrate network interface configuration.

E.1. CONFIGURING INTERFACES

Individual interfaces might require modification. The example below shows modifications required to
use the second NIC to connect to an infrastructure network with DHCP addresses, and to use the third
and fourth NICs for the bond:

network_config:
  # Add a DHCP infrastructure network to nic2
  -
    type: interface
    name: nic2
    use_dhcp: true
  -
    type: ovs_bridge
    name: br-bond
    members:
      -
        type: ovs_bond
        name: bond1
        ovs_options: {get_param: BondInterfaceOvsOptions}
        members:
          # Modify bond NICs to use nic3 and nic4
          -
            type: interface
            name: nic3
            primary: true
          -
            type: interface
            name: nic4

The network interface template uses either the actual interface name ("eth0", "eth1", "enp0s25") or a
set of numbered interfaces ("nic1", "nic2", "nic3"). The network interfaces of hosts within a role do not
have to be exactly the same when using numbered interfaces (nic1, nic2, etc.) instead of named
interfaces (eth0, eno2, etc.). For example, one host might have interfaces em1 and em2, while another
has eno1 and eno2, but you can refer to both hosts' NICs as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

enoX interfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are
usually add-on interfaces.

The numbered NIC scheme only takes into account the interfaces that are live, for example, if they
have a cable attached to the switch. If you have some hosts with four interfaces and some with six
interfaces, you should use nic1 to nic4 and only plug four cables on each host.

E.2. CONFIGURING ROUTES AND DEFAULT ROUTES

APPENDIX E. NETWORK INTERFACE TEMPLATE EXAMPLES

149



There are two ways a host has default routes set. If the interface is using DHCP and the DHCP server
offers a gateway address, the system uses a default route for that gateway. Otherwise, you can set a
default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it only uses the one with the lowest
metric. If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this
case, it is recommended to set defroute=no for interfaces other than the one using the default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
to disable the default route on another DHCP interface (nic2):

# No default route on this DHCP interface
- type: interface
  name: nic2
  use_dhcp: true
  defroute: false
# Instead use this DHCP interface as the default route
- type: interface
  name: nic3
  use_dhcp: true

NOTE

The defroute parameter only applies to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

    - type: vlan
      device: bond1
      vlan_id: {get_param: InternalApiNetworkVlanID}
      addresses:
      - ip_netmask: {get_param: InternalApiIpSubnet}
      routes:
      - ip_netmask: 10.1.2.0/24
        next_hop: 172.17.0.1

E.3. USING THE NATIVE VLAN FOR FLOATING IPS

Neutron uses a default empty string for its external bridge mapping. This maps the physical interface to
the br-int instead of using br-ex directly. This model allows multiple Floating IP networks using
either VLANs or multiple physical connections.

Use the NeutronExternalNetworkBridge parameter in the parameter_defaults section of
your network isolation environment file:

  parameter_defaults:
    # Set to "br-ex" when using floating IPs on the native VLAN
    NeutronExternalNetworkBridge: "''"

Using only one Floating IP network on the native VLAN of a bridge means you can optionally set the
neutron external bridge. This results in the packets only having to traverse one bridge instead of two,
which might result in slightly lower CPU usage when passing traffic over the Floating IP network.

Director Installation and Usage

150



The next section contains changes to the NIC config to put the External network on the native VLAN. If
the External network is mapped to br-ex, you can use the External network for Floating IPs in addition
to the horizon dashboard, and Public APIs.

E.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there will be no VLAN interface.

For example, if the External network is on the native VLAN, a bonded configuration looks like this:

network_config:
  - type: ovs_bridge
    name: {get_input: bridge_name}
    dns_servers: {get_param: DnsServers}
    addresses:
      - ip_netmask: {get_param: ExternalIpSubnet}
    routes:
      - ip_netmask: 0.0.0.0/0
        next_hop: {get_param: ExternalInterfaceDefaultRoute}
    members:
      - type: ovs_bond
        name: bond1
        ovs_options: {get_param: BondInterfaceOvsOptions}
        members:
          - type: interface
            name: nic3
            primary: true
          - type: interface
            name: nic4

NOTE

When moving the address (and possibly route) statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires
a change. The Storage network on the other hand is attached to all roles, so if the
Storage network is on the default VLAN, all roles require modifications.

E.5. CONFIGURING JUMBO FRAMES

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead since each frame adds data
in the form of a header. The default value is 1500 and using a higher value requires the configuration of
the switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Make sure to include the MTU
value on the bond and/or interface.

The Storage, Storage Management, Internal API, and Tenant networking all benefit from jumbo frames.
In testing, Tenant networking throughput was over 300% greater when using jumbo frames in
conjunction with VXLAN tunnels.

APPENDIX E. NETWORK INTERFACE TEMPLATE EXAMPLES

151



NOTE

It is recommended that the Provisioning interface, External interface, and any floating IP
interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3
boundaries.

- type: ovs_bond
  name: bond1
  mtu: 9000
  ovs_options: {get_param: BondInterfaceOvsOptions}
  members:
    - type: interface
      name: nic3
      mtu: 9000
      primary: true
    - type: interface
      name: nic4
      mtu: 9000

# The external interface should stay at default
- type: vlan
  device: bond1
  vlan_id: {get_param: ExternalNetworkVlanID}
  addresses:
    - ip_netmask: {get_param: ExternalIpSubnet}
  routes:
    - ip_netmask: 0.0.0.0/0
      next_hop: {get_param: ExternalInterfaceDefaultRoute}

# MTU 9000 for Internal API, Storage, and Storage Management
- type: vlan
  device: bond1
  mtu: 9000
  vlan_id: {get_param: InternalApiNetworkVlanID}
  addresses:
  - ip_netmask: {get_param: InternalApiIpSubnet}

Director Installation and Usage

152



APPENDIX F. NETWORK ENVIRONMENT OPTIONS

Table F.1. Network Environment Options

Parameter Description Example

InternalApiNetCidr The network and subnet for the
Internal API network

172.17.0.0/24

StorageNetCidr The network and subnet for the
Storage network

StorageMgmtNetCidr The network and subnet for the
Storage Management network

TenantNetCidr The network and subnet for the
Tenant network

ExternalNetCidr The network and subnet for the
External network

InternalApiAllocationPools The allocation pool for the
Internal API network in a tuple
format

[{'start': '172.17.0.10', 'end':
'172.17.0.200'}]

StorageAllocationPools The allocation pool for the
Storage network in a tuple format

StorageMgmtAllocationPools The allocation pool for the
Storage Management network in
a tuple format

TenantAllocationPools The allocation pool for the Tenant
network in a tuple format

ExternalAllocationPools The allocation pool for the
External network in a tuple
format

InternalApiNetworkVlanID The VLAN ID for the Internal API
network

200

StorageNetworkVlanID The VLAN ID for the Storage
network

StorageMgmtNetworkVlanID The VLAN ID for the Storage
Management network

TenantNetworkVlanID The VLAN ID for the Tenant
network

ExternalNetworkVlanID The VLAN ID for the External
network

APPENDIX F. NETWORK ENVIRONMENT OPTIONS

153



ExternalInterfaceDefaultRoute The gateway IP address for the
External network

10.1.2.1

ControlPlaneDefaultRoute Gateway router for the
Provisioning network (or
Undercloud IP)

ControlPlaneDefaultRoute:
192.0.2.254

ControlPlaneSubnetCidr CIDR subnet mask length for
provisioning network

ControlPlaneSubnetCidr: 24

EC2MetadataIp The IP address of the EC2
metadata server. Generally the IP
of the Undercloud.

EC2MetadataIp: 192.0.2.1

DnsServers Define the DNS servers for the
Overcloud nodes. Include a
maximum of two.

DnsServers: ["8.8.8.8","8.8.4.4"]

BondInterfaceOvsOptions The options for bonding
interfaces

BondInterfaceOvsOptions:"bond_
mode=balance-tcp"

NeutronFlatNetworks Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to
permit external network creation

NeutronFlatNetworks:
"datacentre"

NeutronExternalNetworkBridge An Open vSwitch bridge to create
on each hypervisor. This defaults
to "br-ex". Set to "br-ex" if
using floating IPs on native VLAN
on bridge br-ex. Typically, this
should not need to be changed.

NeutronExternalNetworkBridge:
"br-ex"

NeutronBridgeMappings The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would use this
for the default floating network

NeutronBridgeMappings:
"datacentre:br-ex"

NeutronPublicInterface Defines the interface to bridge
onto br-ex for network nodes

NeutronPublicInterface: "eth0"

NeutronNetworkType The tenant network type for
Neutron

NeutronNetworkType: "vxlan"

NeutronTunnelTypes The tunnel types for the neutron
tenant network. To specify
multiple values, use a comma
separated string.

NeutronTunnelTypes: 'gre,vxlan'

Parameter Description Example

Director Installation and Usage

154



NeutronTunnelIdRanges Ranges of GRE tunnel IDs to
make available for tenant
network allocation

NeutronTunnelIdRanges "1:1000"

NeutronVniRanges Ranges of VXLAN VNI IDs to
make available for tenant
network allocation

NeutronVniRanges: "1:1000"

NeutronEnableTunnelling Defines whether to enable or
disable tunneling in case you aim
to use a VLAN segmented
network or flat network with
Neutron. Defaults to enabled

NeutronNetworkVLANRanges The neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting
any VLAN on the 'datacentre'
physical network.

NeutronNetworkVLANRanges:
"datacentre:1:1000"

NeutronMechanismDrivers The mechanism drivers for the
neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma-
separated string

NeutronMechanismDrivers:
'openvswitch,l2population'

Parameter Description Example

APPENDIX F. NETWORK ENVIRONMENT OPTIONS

155



APPENDIX G. OPEN VSWITCH BONDING OPTIONS
The Overcloud provides networking through Open vSwitch (OVS), which provides several options for
bonded interfaces. In Section 6.2.2, “Creating a Network Environment File” , you can configure a bonded
interface in the network environment file using the following parameter:

  BondInterfaceOvsOptions:
    "bond_mode=balance-tcp"

The following table provides some explanation of these options and some alternatives depending on
your hardware.

IMPORTANT

Do not use LACP with OVS-based bonds, as this configuration is problematic and
unsupported. Instead, consider using bond_mode=balance-slb as a replacement for this
functionality. In addition, you can still use LACP with Linux bonding in your network
interface templates:

      - type: linux_bond
        name: bond1
        members:
        - type: interface
          name: nic2
        - type: interface
          name: nic3
        bonding_options: "mode=802.3ad"

For more information on Linux bonding options, see 4.5.1. Bonding Module Directives in
the Red Hat Enterprise Linux 7 Networking Guide.

For the technical details behind this requirement, see BZ#1267291.

Table G.1. Bonding Options

bond_mode=balance-tcp This mode will perform load balancing by taking
layer 2 to layer 4 data into consideration. For
example, destination MAC address, IP address, and
TCP port. In addition, balance-tcp requires that
LACP be configured on the switch. This mode is
similar to mode 4 bonds used by the Linux bonding
driver. balance-tcp is recommended when
possible, as LACP provides the highest resiliency for
link failure detection, and supplies additional
diagnostic information about the bond.

The recommended option is to configure balance-
tcp with LACP. This setting attempts to configure
LACP, but will fallback to active-backup if LACP
cannot be negotiated with the physical switch.

Director Installation and Usage

156

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives
https://bugzilla.redhat.com/show_bug.cgi?id=1267291


bond_mode=balance-slb Balances flows based on source MAC address and
output VLAN, with periodic rebalancing as traffic
patterns change. Bonding with balance-slb
allows a limited form of load balancing without the
remote switch's knowledge or cooperation. SLB
assigns each source MAC and VLAN pair to a link
and transmits all packets from that MAC and VLAN
through that link. This mode uses a simple hashing
algorithm based on source MAC address and VLAN
number, with periodic rebalancing as traffic patterns
change. This mode is similar to mode 2 bonds used
by the Linux bonding driver. This mode is used when
the switch is configured with bonding but is not
configured to use LACP (static instead of dynamic
bonds).

bond_mode=active-backup This mode offers active/standby failover where the
standby NIC resumes network operations when the
active connection fails. Only one MAC address is
presented to the physical switch. This mode does
not require any special switch support or
configuration, and works when the links are
connected to separate switches. This mode does not
provide load balancing.

lacp=[active|passive|off] Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use 
bond_mode=balance-slb or 
bond_mode=active-backup.

Do not use LACP with OVS-based bonds, as this
configuration is problematic and unsupported.
Instead, consider using bond_mode=balance-slb as a
replacement for this functionality. In addition, you
can still use LACP with Linux bonding. For the
technical details behind this requirement, see
BZ#1267291.

other-config:lacp-fallback-ab=true Sets the LACP behavior to switch to
bond_mode=active-backup as a fallback.

other_config:lacp-time=[fast|slow] Set the LACP heartbeat to 1 second (fast) or 30
seconds (slow). The default is slow.

other_config:bond-detect-mode=
[miimon|carrier]

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-
interval=100

If using miimon, set the heartbeat interval in
milliseconds.

other_config:bond_updelay=1000 Number of milliseconds a link must be up to be
activated to prevent flapping.

other_config:bond-rebalance-
interval=10000

Milliseconds between rebalancing flows between
bond members. Set to zero to disable.

APPENDIX G. OPEN VSWITCH BONDING OPTIONS

157

https://bugzilla.redhat.com/show_bug.cgi?id=1267291


IMPORTANT

If you experience packet drops or performance issues using Linux bonds with Provider
networks, consider disabling Large Receive Offload (LRO) on the standby interfaces.

Avoid adding a Linux bond to an OVS bond, as port-flapping and loss of connectivity can
occur. This is a result of a packet-loop through the standby interface.

Director Installation and Usage

158



APPENDIX H. REVISION HISTORY

Revision 8.0-0 Tue Nov 24 2015 Dan Macpherson
OpenStack Platform 8 Beta release

APPENDIX H. REVISION HISTORY

159


	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. UNDERCLOUD
	1.2. OVERCLOUD
	1.3. HIGH AVAILABILITY
	1.4. CEPH STORAGE

	CHAPTER 2. REQUIREMENTS
	2.1. ENVIRONMENT REQUIREMENTS
	2.2. UNDERCLOUD REQUIREMENTS
	2.3. NETWORKING REQUIREMENTS
	2.4. OVERCLOUD REQUIREMENTS
	2.4.1. Compute Node Requirements
	2.4.2. Controller Node Requirements
	2.4.3. Ceph Storage Node Requirements

	2.5. REPOSITORY REQUIREMENTS

	CHAPTER 3. PLANNING YOUR OVERCLOUD
	3.1. PLANNING NODE DEPLOYMENT ROLES
	3.2. PLANNING NETWORKS
	3.3. PLANNING STORAGE

	CHAPTER 4. INSTALLING THE UNDERCLOUD
	4.1. CREATING A DIRECTOR INSTALLATION USER
	4.2. CREATING DIRECTORIES FOR TEMPLATES AND IMAGES
	4.3. SETTING THE HOSTNAME FOR THE SYSTEM
	4.4. REGISTERING YOUR SYSTEM
	4.5. INSTALLING THE DIRECTOR PACKAGES
	4.6. CONFIGURING THE DIRECTOR
	4.7. OBTAINING IMAGES FOR OVERCLOUD NODES
	4.8. SETTING A NAMESERVER ON THE UNDERCLOUD'S NEUTRON SUBNET
	4.9. BACKING UP THE UNDERCLOUD
	4.10. COMPLETING THE UNDERCLOUD CONFIGURATION

	CHAPTER 5. CONFIGURING BASIC OVERCLOUD REQUIREMENTS
	5.1. REGISTERING NODES FOR THE OVERCLOUD
	5.2. INSPECTING THE HARDWARE OF NODES
	5.3. TAGGING NODES INTO PROFILES
	5.4. DEFINING THE ROOT DISK FOR NODES
	5.5. COMPLETING BASIC CONFIGURATION

	CHAPTER 6. CONFIGURING ADVANCED CUSTOMIZATIONS FOR THE OVERCLOUD
	6.1. UNDERSTANDING HEAT TEMPLATES
	6.1.1. Heat Templates
	6.1.2. Environment Files
	6.1.3. Core Overcloud Heat Templates

	6.2. ISOLATING NETWORKS
	6.2.1. Creating Custom Interface Templates
	6.2.2. Creating a Network Environment File
	6.2.3. Assigning OpenStack Services to Isolated Networks
	6.2.4. Selecting Networks to Deploy

	6.3. CONTROLLING NODE PLACEMENT
	6.3.1. Assigning Specific Node IDs
	6.3.2. Assigning Custom Hostnames
	6.3.3. Assigning Predictable IPs
	6.3.4. Assigning Predictable Virtual IPs

	6.4. CONFIGURING CONTAINERIZED COMPUTE NODES
	6.4.1. Examining the Containerized Compute Environment File (docker.yaml)
	6.4.2. Uploading the Atomic Host Image
	6.4.3. Using a Local Registry
	6.4.4. Including Environment Files in the Overcloud Deployment

	6.5. CONFIGURING EXTERNAL LOAD BALANCING
	6.6. CONFIGURING IPV6 NETWORKING
	6.7. CONFIGURING NFS STORAGE
	6.8. CONFIGURING CEPH STORAGE
	6.9. CONFIGURING THIRD PARTY STORAGE
	6.10. CONFIGURING THE OVERCLOUD TIME ZONE
	6.11. ENABLING SSL/TLS ON THE OVERCLOUD
	Enabling SSL/TLS
	Injecting a Root Certificate
	Configuring DNS Endpoints
	Adding Environment Files During Overcloud Creation

	6.12. REGISTERING THE OVERCLOUD
	Method 1 - Command Line
	Method 2 - Environment File

	6.13. CUSTOMIZING CONFIGURATION ON FIRST BOOT
	6.14. CUSTOMIZING OVERCLOUD PRE-CONFIGURATION
	6.15. CUSTOMIZING OVERCLOUD POST-CONFIGURATION
	6.16. CUSTOMIZING PUPPET CONFIGURATION DATA
	6.17. APPLYING CUSTOM PUPPET CONFIGURATION
	6.18. USING CUSTOMIZED CORE HEAT TEMPLATES

	CHAPTER 7. CREATING THE OVERCLOUD
	7.1. SETTING OVERCLOUD PARAMETERS
	7.2. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	7.3. OVERCLOUD CREATION EXAMPLE
	7.4. MONITORING THE OVERCLOUD CREATION
	7.5. ACCESSING THE OVERCLOUD
	7.6. COMPLETING THE OVERCLOUD CREATION

	CHAPTER 8. PERFORMING TASKS AFTER OVERCLOUD CREATION
	8.1. CREATING THE OVERCLOUD TENANT NETWORK
	8.2. CREATING THE OVERCLOUD EXTERNAL NETWORK
	Using a Native VLAN
	Using a Non-Native VLAN

	8.3. CREATING ADDITIONAL FLOATING IP NETWORKS
	8.4. CREATING THE OVERCLOUD PROVIDER NETWORK
	8.5. VALIDATING THE OVERCLOUD
	8.6. FENCING THE CONTROLLER NODES
	8.7. MODIFYING THE OVERCLOUD ENVIRONMENT
	8.8. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	8.9. MIGRATING VMS FROM AN OVERCLOUD COMPUTE NODE
	8.10. PROTECTING THE OVERCLOUD FROM REMOVAL
	8.11. REMOVING THE OVERCLOUD

	CHAPTER 9. SCALING AND REPLACING NODES
	9.1. ADDING COMPUTE OR CEPH STORAGE NODES
	9.2. REMOVING COMPUTE NODES
	9.3. REPLACING COMPUTE NODES
	9.4. REPLACING CONTROLLER NODES
	9.4.1. Preliminary Checks
	9.4.2. Node Replacement
	9.4.3. Manual Intervention
	9.4.4. Finalizing Overcloud Services
	9.4.5. Finalizing Overcloud Network Agents
	9.4.6. Finalizing Compute Services
	9.4.7. Conclusion

	9.5. REPLACING CEPH STORAGE NODES
	9.6. REPLACING OBJECT STORAGE NODES

	CHAPTER 10. REBOOTING THE OVERCLOUD
	10.1. REBOOTING THE DIRECTOR
	10.2. REBOOTING CONTROLLER NODES
	10.3. REBOOTING CEPH STORAGE NODES
	10.4. REBOOTING COMPUTE NODES
	10.5. REBOOTING OBJECT STORAGE NODES

	CHAPTER 11. TROUBLESHOOTING DIRECTOR ISSUES
	11.1. TROUBLESHOOTING NODE REGISTRATION
	11.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	Errors with Starting Node Introspection
	Introspected node is not booting in PXE
	Stopping the Discovery Process
	Accessing the Introspection Ramdisk
	Checking the Introspection Storage

	11.3. TROUBLESHOOTING OVERCLOUD CREATION
	11.3.1. Orchestration
	11.3.2. Bare Metal Provisioning
	11.3.3. Post-Deployment Configuration

	11.4. TROUBLESHOOTING IP ADDRESS CONFLICTS ON THE PROVISIONING NETWORK
	11.5. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	11.6. TROUBLESHOOTING THE OVERCLOUD AFTER CREATION
	11.6.1. Overcloud Stack Modifications
	11.6.2. Controller Service Failures
	11.6.3. Compute Service Failures
	11.6.4. Ceph Storage Service Failures

	11.7. TUNING THE UNDERCLOUD
	11.8. IMPORTANT LOGS FOR UNDERCLOUD AND OVERCLOUD

	APPENDIX A. SSL/TLS CERTIFICATE CONFIGURATION
	CREATING A CERTIFICATE AUTHORITY
	CREATING AN SSL/TLS CERTIFICATE
	USING THE CERTIFICATE WITH THE UNDERCLOUD
	USING THE CERTIFICATE WITH THE OVERCLOUD

	APPENDIX B. POWER MANAGEMENT DRIVERS
	B.1. DELL REMOTE ACCESS CONTROLLER (DRAC)
	B.2. INTEGRATED LIGHTS-OUT (ILO)
	B.3. CISCO UNIFIED COMPUTING SYSTEM (UCS)
	B.4. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	B.5. SSH AND VIRSH
	B.6. FAKE PXE DRIVER

	APPENDIX C. AUTOMATIC PROFILE TAGGING
	DESCRIPTION
	CONDITIONS
	ACTIONS
	POLICY FILE EXAMPLE
	IMPORTING POLICY FILES
	MATCHING NODES TO ROLES
	AUTOMATIC PROFILE TAGGING PROPERTIES

	APPENDIX D. NETWORK INTERFACE PARAMETERS
	APPENDIX E. NETWORK INTERFACE TEMPLATE EXAMPLES
	E.1. CONFIGURING INTERFACES
	E.2. CONFIGURING ROUTES AND DEFAULT ROUTES
	E.3. USING THE NATIVE VLAN FOR FLOATING IPS
	E.4. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
	E.5. CONFIGURING JUMBO FRAMES

	APPENDIX F. NETWORK ENVIRONMENT OPTIONS
	APPENDIX G. OPEN VSWITCH BONDING OPTIONS
	APPENDIX H. REVISION HISTORY

