
Red Hat OpenStack Platform 16.2

Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform
director

Last Updated: 2023-11-23

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform director

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure certain advanced features for a Red Hat OpenStack Platform (RHOSP) enterprise
environment with Red Hat OpenStack Platform director. This includes features such as network
isolation, storage configuration, SSL communication, and general configuration methods.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO OVERCLOUD CONFIGURATION

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
2.1. HEAT TEMPLATES
2.2. ENVIRONMENT FILES
2.3. CORE OVERCLOUD HEAT TEMPLATES
2.4. PLAN ENVIRONMENT METADATA
2.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
2.6. USING CUSTOMIZED CORE HEAT TEMPLATES
2.7. JINJA2 RENDERING

CHAPTER 3. HEAT PARAMETERS
3.1. EXAMPLE 1: CONFIGURING THE TIME ZONE
3.2. EXAMPLE 2: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
3.3. EXAMPLE 3: ENABLING AND DISABLING PARAMETERS
3.4. EXAMPLE 4: ROLE-BASED PARAMETERS
3.5. IDENTIFYING PARAMETERS THAT YOU WANT TO MODIFY

CHAPTER 4. CONFIGURATION HOOKS
4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
4.7. PUPPET: APPLYING CUSTOM MANIFESTS

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION
5.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE
5.2. RHSMVARS SUB-PARAMETERS
5.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
5.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES
5.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER
5.6. SWITCHING TO THE RHSM COMPOSABLE SERVICE
5.7. RHEL-REGISTRATION TO RHSM MAPPINGS
5.8. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
5.9. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
6.1. SUPPORTED ROLE ARCHITECTURE
6.2. EXAMINING THE ROLES_DATA FILE
6.3. CREATING A ROLES_DATA FILE
6.4. SUPPORTED CUSTOM ROLES
6.5. EXAMINING ROLE PARAMETERS
6.6. CREATING A NEW ROLE
6.7. GUIDELINES AND LIMITATIONS
6.8. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
6.9. ADDING AND REMOVING SERVICES FROM ROLES
6.10. ENABLING DISABLED SERVICES

6

7

8

9
9

10
11

12
13
14
17

20
20
20
20
21
21

23
23
24
26
28
31
31
32

34
34
34
36
36
38
38
39
40
40

42
42
42
43
44
47
49
52
52
54
55

Table of Contents

1

. .

. .

. .

. .

. .

. .

6.11. CREATING A GENERIC NODE WITH NO SERVICES

CHAPTER 7. CONTAINERIZED SERVICES
7.1. CONTAINERIZED SERVICE ARCHITECTURE
7.2. CONTAINERIZED SERVICE PARAMETERS
7.3. PREPARING CONTAINER IMAGES
7.4. CONTAINER IMAGE PREPARATION PARAMETERS
7.5. GUIDELINES FOR CONTAINER IMAGE TAGGING
7.6. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
7.7. LAYERING IMAGE PREPARATION ENTRIES
7.8. MODIFYING IMAGES DURING PREPARATION
7.9. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
7.10. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
7.11. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
7.12. DEPLOYING A VENDOR PLUGIN

CHAPTER 8. BASIC NETWORK ISOLATION
8.1. NETWORK ISOLATION
8.2. MODIFYING ISOLATED NETWORK CONFIGURATION
8.3. NETWORK INTERFACE TEMPLATES
8.4. DEFAULT NETWORK INTERFACE TEMPLATES
8.5. ENABLING BASIC NETWORK ISOLATION

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS
9.1. COMPOSABLE NETWORKS
9.2. ADDING A COMPOSABLE NETWORK
9.3. INCLUDING A COMPOSABLE NETWORK IN A ROLE
9.4. ASSIGNING OPENSTACK SERVICES TO COMPOSABLE NETWORKS
9.5. ENABLING CUSTOM COMPOSABLE NETWORKS
9.6. RENAMING THE DEFAULT NETWORKS

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES
10.1. CUSTOM NETWORK ARCHITECTURE
10.2. RENDERING DEFAULT NETWORK INTERFACE TEMPLATES FOR CUSTOMIZATION
10.3. NETWORK INTERFACE ARCHITECTURE
10.4. NETWORK INTERFACE REFERENCE
10.5. EXAMPLE NETWORK INTERFACE LAYOUT
10.6. NETWORK INTERFACE TEMPLATE CONSIDERATIONS FOR CUSTOM NETWORKS
10.7. CUSTOM NETWORK ENVIRONMENT FILE
10.8. NETWORK ENVIRONMENT PARAMETERS
10.9. EXAMPLE CUSTOM NETWORK ENVIRONMENT FILE
10.10. ENABLING NETWORK ISOLATION WITH CUSTOM NICS

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION
11.1. CONFIGURING CUSTOM INTERFACES
11.2. CONFIGURING ROUTES AND DEFAULT ROUTES
11.3. CONFIGURING POLICY-BASED ROUTING
11.4. CONFIGURING JUMBO FRAMES
11.5. CONFIGURING ML2/OVN NORTHBOUND PATH MTU DISCOVERY FOR JUMBO FRAME
FRAGMENTATION
11.6. CONFIGURING THE NATIVE VLAN ON A TRUNKED INTERFACE
11.7. INCREASING THE MAXIMUM NUMBER OF CONNECTIONS THAT NETFILTER TRACKS

CHAPTER 12. NETWORK INTERFACE BONDING
12.1. NETWORK INTERFACE BONDING FOR OVERCLOUD NODES

55

57
57
57
58
59
62
64
66
66
67
68
68
69

71
71
72
73
74
75

77
77
78
80
80
81

82

83
83
84
84
85
94
97
98
98

102
102

104
104
106
106
108

109
110
111

114
114

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

2

. .

. .

. .

. .

. .

12.2. CREATING OPEN VSWITCH (OVS) BONDS
12.3. OPEN VSWITCH (OVS) BONDING OPTIONS
12.4. USING LINK AGGREGATION CONTROL PROTOCOL (LACP) WITH OPEN VSWITCH (OVS) BONDING
MODES
12.5. CREATING LINUX BONDS

CHAPTER 13. CONTROLLING NODE PLACEMENT
13.1. ASSIGNING SPECIFIC NODE IDS
13.2. ASSIGNING CUSTOM HOST NAMES
13.3. ASSIGNING PREDICTABLE IPS
13.4. ASSIGNING PREDICTABLE VIRTUAL IPS

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS
14.1. INITIALIZING THE SIGNING HOST
14.2. CREATING A CERTIFICATE AUTHORITY
14.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
14.4. CREATING AN SSL/TLS KEY
14.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
14.6. CREATING THE SSL/TLS CERTIFICATE
14.7. ENABLING SSL/TLS
14.8. INJECTING A ROOT CERTIFICATE
14.9. CONFIGURING DNS ENDPOINTS
14.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
14.11. MANUALLY UPDATING SSL/TLS CERTIFICATES

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

15.1. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS FOR OPENSTACK
15.2. IMPLEMENTING TLS-E WITH ANSIBLE
15.3. ENROLLING NODES IN RED HAT IDENTITY MANAGER (IDM) WITH NOVAJOIN
15.4. ADDING THE UNDERCLOUD NODE TO THE CERTIFICATE AUTHORITY
15.5. ADDING THE UNDERCLOUD NODE TO RED HAT IDENTITY MANAGER (IDM)
15.6. SETTING RED HAT IDENTITY MANAGER (IDM) AS THE DNS SERVER FOR THE OVERCLOUD
15.7. PREPARING ENVIRONMENT FILES AND DEPLOYING THE OVERCLOUD WITH NOVAJOIN
ENROLLMENT

CHAPTER 16. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED STAGING AREA
16.1. CREATING AND DEPLOYING THE GLANCE-SETTINGS.YAML FILE
16.2. CONTROLLING IMAGE WEB-IMPORT SOURCES
16.3. IMAGE IMPORT EXAMPLE
16.4. DEFAULT IMAGE IMPORT BLOCKLIST AND ALLOWLIST SETTINGS
16.5. INJECTING METADATA ON IMAGE IMPORT TO CONTROL WHERE VMS LAUNCH

CHAPTER 17. STORAGE CONFIGURATION
17.1. CONFIGURING NFS STORAGE

17.1.1. Supported configurations and limitations
17.1.2. Configuring NFS storage
17.1.3. Configuring an external NFS share for conversion

17.2. CONFIGURING CEPH STORAGE
17.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER
17.4. CONFIGURING CEPH OBJECT STORE TO USE EXTERNAL CEPH OBJECT GATEWAY
17.5. CONFIGURING CINDER BACK END FOR THE IMAGE SERVICE
17.6. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES TO ATTACH TO ONE INSTANCE
17.7. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING
17.8. CONFIGURING THIRD PARTY STORAGE

114
115

116
117

120
120
121
121

124

125
125
125
126
126
126
128
129
130
131
132
132

134
134
135
137
138
138
140

140

144
144
145
146
146
146

148
148
148
148
149
150
150
151

153
154
155
155

Table of Contents

3

. .

. .

. .

. .

CHAPTER 18. SECURITY ENHANCEMENTS
18.1. USING SECURE ROOT USER ACCESS
18.2. MANAGING THE OVERCLOUD FIREWALL
18.3. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
18.4. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
18.5. USING THE OPEN VSWITCH FIREWALL

CHAPTER 19. CONFIGURING NETWORK PLUGINS
19.1. FUJITSU CONVERGED FABRIC (C-FABRIC)
19.2. FUJITSU FOS SWITCH

CHAPTER 20. CONFIGURING IDENTITY
20.1. REGION NAME

CHAPTER 21. MISCELLANEOUS OVERCLOUD CONFIGURATION
21.1. DEBUG MODES
21.2. CONFIGURING THE KERNEL ON OVERCLOUD NODES
21.3. CONFIGURING THE SERVER CONSOLE
21.4. CONFIGURING EXTERNAL LOAD BALANCING
21.5. CONFIGURING IPV6 NETWORKING

157
157
157
158
159
160

162
162
162

164
164

165
165
165
166
167
168

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INTRODUCTION TO OVERCLOUD
CONFIGURATION

Red Hat OpenStack Platform (RHOSP) director provides a set of tools that you can use to provision
and create a fully featured OpenStack environment, also known as the overcloud. The Director
Installation and Usage Guide covers the preparation and configuration of a basic overcloud. However, a
production-level overcloud might require additional configuration:

Basic network configuration to integrate the overcloud into your existing network infrastructure.

Network traffic isolation on separate VLANs for certain OpenStack network traffic types.

SSL configuration to secure communication on public endpoints

Storage options such as NFS, iSCSI, Red Hat Ceph Storage, and multiple third-party storage
devices.

Red Hat Content Delivery Network node registration, or registration with your internal Red Hat
Satellite 5 or 6 server.

Various system-level options.

Various OpenStack service options.

NOTE

The examples in this guide are optional steps to configure the overcloud. These steps are
necessary only if you want to provide the overcloud with additional functionality. Use the
steps that apply to the requirements of your environment.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

8

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
The custom configurations in this guide use heat templates and environment files to define certain
aspects of the overcloud. This chapter provides a basic introduction to heat templates so that you can
understand the structure and format of these templates in the context of Red Hat OpenStack Platform
director.

2.1. HEAT TEMPLATES

Director uses Heat Orchestration Templates (HOT) as the template format for the overcloud
deployment plan. Templates in HOT format are usually expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that OpenStack Orchestration
(heat) creates, and the configuration of the resources. Resources are objects in Red Hat OpenStack
Platform (RHOSP) and can include compute resources, network configuration, security groups, scaling
rules, and custom resources.

A heat template has three main sections:

parameters

These are settings passed to heat, which provide a way to customize a stack, and any default values
for parameters without passed values. These settings are defined in the parameters section of a
template.

resources

Use the resources section to define the resources, such as compute instances, networks, and
storage volumes, that you can create when you deploy a stack using this template. Red Hat
OpenStack Platform (RHOSP) contains a set of core resources that span across all components.
These are the specific objects to create and configure as part of a stack.

outputs

Use the outputs section to declare the output parameters that your cloud users can access after the
stack is created. Your cloud users can use these parameters to request details about the stack, such
as the IP addresses of deployed instances, or URLs of web applications deployed as part of the stack.

Example of a basic heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
 key_name:
 type: string
 default: lars
 description: Name of an existing key pair to use for the instance
 flavor:
 type: string
 description: Instance type for the instance to be created
 default: m1.small
 image:
 type: string
 default: cirros
 description: ID or name of the image to use for the instance

resources:

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

9

 my_instance:
 type: OS::Nova::Server
 properties:
 name: My Cirros Instance
 image: { get_param: image }
 flavor: { get_param: flavor }
 key_name: { get_param: key_name }

output:
 instance_name:
 description: Get the instance's name
 value: { get_attr: [my_instance, name] }

This template uses the resource type type: OS::Nova::Server to create an instance called
my_instance with a particular flavor, image, and key that the cloud user specifies. The stack can return
the value of instance_name, which is called My Cirros Instance.

When heat processes a template, it creates a stack for the template and a set of child stacks for
resource templates. This creates a hierarchy of stacks that descend from the main stack that you define
with your template. You can view the stack hierarchy with the following command:

$ openstack stack list --nested

2.2. ENVIRONMENT FILES

An environment file is a special type of template that you can use to customize your heat templates. You
can include environment files in the deployment command, in addition to the core heat templates. An
environment file contains three main sections:

resource_registry

This section defines custom resource names, linked to other heat templates. This provides a method
to create custom resources that do not exist within the core resource collection.

parameters

These are common settings that you apply to the parameters of the top-level template. For
example, if you have a template that deploys nested stacks, such as resource registry mappings, the
parameters apply only to the top-level template and not to templates for the nested resources.

parameter_defaults

These parameters modify the default values for parameters in all templates. For example, if you have
a heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates.

IMPORTANT

Use parameter_defaults instead of parameters when you create custom environment
files for your overcloud, so that your parameters apply to all stack templates for the
overcloud.

Example of a basic environment file:

resource_registry:
 OS::Nova::Server::MyServer: myserver.yaml

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

10

parameter_defaults:
 NetworkName: my_network

parameters:
 MyIP: 192.168.0.1

This environment file (my_env.yaml) might be included when creating a stack from a certain heat
template (my_template.yaml). The my_env.yaml file creates a new resource type called
OS::Nova::Server::MyServer. The myserver.yaml file is a heat template file that provides an
implementation for this resource type that overrides any built-in ones. You can include the
OS::Nova::Server::MyServer resource in your my_template.yaml file.

MyIP applies a parameter only to the main heat template that deploys with this environment file. In this
example, MyIP applies only to the parameters in my_template.yaml.

NetworkName applies to both the main heat template, my_template.yaml, and the templates that are
associated with the resources that are included in the main template, such as the
OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

NOTE

For RHOSP to use the heat template file as a custom template resource, the file
extension must be either .yaml or .template.

2.3. CORE OVERCLOUD HEAT TEMPLATES

Director contains a core heat template collection and environment file collection for the overcloud. This
collection is stored in /usr/share/openstack-tripleo-heat-templates.

The main files and directories in this template collection are:

overcloud.j2.yaml

This is the main template file that director uses to create the overcloud environment. This file uses
Jinja2 syntax to iterate over certain sections in the template to create custom roles. The Jinja2
formatting is rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file that director uses to create the overcloud environment. It provides a
set of configurations for Puppet modules stored on the overcloud image. After director writes the
overcloud image to each node, heat starts the Puppet configuration for each node by using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml

This file contains the definitions of the roles in an overcloud and maps services to each role.

network_data.yaml

This file contains the definitions of the networks in an overcloud and their properties such as subnets,
allocation pools, and VIP status. The default network_data.yaml file contains the default networks:
External, Internal Api, Storage, Storage Management, Tenant, and Management. You can create a
custom network_data.yaml file and add it to your openstack overcloud deploy command with the
-n option.

plan-environment.yaml

This file contains the definitions of the metadata for your overcloud plan. This includes the plan

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

11

This file contains the definitions of the metadata for your overcloud plan. This includes the plan
name, main template to use, and environment files to apply to the overcloud.

capabilities-map.yaml

This file contains a mapping of environment files for an overcloud plan.

deployment

This directory contains heat templates. The overcloud-resource-registry-puppet.j2.yaml
environment file uses the files in this directory to drive the application of the Puppet configuration
on each node.

environments

This directory contains additional heat environment files that you can use for your overcloud
creation. These environment files enable extra functions for your resulting Red Hat OpenStack
Platform (RHOSP) environment. For example, the directory contains an environment file to enable
Cinder NetApp backend storage (cinder-netapp-config.yaml).

network

This directory contains a set of heat templates that you can use to create isolated networks and
ports.

puppet

This directory contains templates that control Puppet configuration. The overcloud-resource-
registry-puppet.j2.yaml environment file uses the files in this directory to drive the application of
the Puppet configuration on each node.

puppet/services

This directory contains legacy heat templates for all service configuration. The templates in the
deployment directory replace most of the templates in the puppet/services directory.

extraconfig

This directory contains templates that you can use to enable extra functionality.

firstboot

This directory contains example first_boot scripts that director uses when initially creating the
nodes.

2.4. PLAN ENVIRONMENT METADATA

You can define metadata for your overcloud plan in a plan environment metadata file. Director applies
metadata during the overcloud creation, and when importing and exporting your overcloud plan.

Use plan environment files to define workflows which director can execute with the OpenStack
Workflow (Mistral) service. A plan environment metadata file includes the following parameters:

version

The version of the template.

name

The name of the overcloud plan and the container in OpenStack Object Storage (swift) that you
want to use to store the plan files.

template

The core parent template that you want to use for the overcloud deployment. This is most often
overcloud.yaml, which is the rendered version of the overcloud.yaml.j2 template.

environments

Defines a list of environment files that you want to use. Specify the name and relative locations of
each environment file with the path sub-parameter.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

12

parameter_defaults

A set of parameters that you want to use in your overcloud. This functions in the same way as the
parameter_defaults section in a standard environment file.

passwords

A set of parameters that you want to use for overcloud passwords. This functions in the same way as
the parameter_defaults section in a standard environment file. Usually, the director populates this
section automatically with randomly generated passwords.

workflow_parameters

Use this parameter to provide a set of parameters to OpenStack Workflow (mistral) namespaces.
You can use this to calculate and automatically generate certain overcloud parameters.

The following snippet is an example of the syntax of a plan environment file:

version: 1.0
name: myovercloud
description: 'My Overcloud Plan'
template: overcloud.yaml
environments:
- path: overcloud-resource-registry-puppet.yaml
- path: environments/containers-default-parameters.yaml
- path: user-environment.yaml
parameter_defaults:
 ControllerCount: 1
 ComputeCount: 1
 OvercloudComputeFlavor: compute
 OvercloudControllerFlavor: control
workflow_parameters:
 tripleo.derive_params.v1.derive_parameters:
 num_phy_cores_per_numa_node_for_pmd: 2

You can include the plan environment metadata file with the openstack overcloud deploy command
with the -p option:

(undercloud) $ openstack overcloud deploy --templates \
 -p /my-plan-environment.yaml \
 [OTHER OPTIONS]

You can also view plan metadata for an existing overcloud plan with the following command:

(undercloud) $ openstack object save overcloud plan-environment.yaml --file -

2.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

Include environment files in the deployment command with the -e option. You can include as many
environment files as necessary. However, the order of the environment files is important as the
parameters and resources that you define in subsequent environment files take precedence. For
example, you have two environment files that contain a common resource type
OS::TripleO::NodeExtraConfigPost, and a common parameter TimeZone:

environment-file-1.yaml

resource_registry:

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

13

 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-1.yaml

parameter_defaults:
 RabbitFDLimit: 65536
 TimeZone: 'Japan'

environment-file-2.yaml

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-2.yaml

parameter_defaults:
 TimeZone: 'Hongkong'

You include both environment files in the deployment command:

$ openstack overcloud deploy --templates -e environment-file-1.yaml -e environment-file-2.yaml

The openstack overcloud deploy command runs through the following process:

1. Loads the default configuration from the core heat template collection.

2. Applies the configuration from environment-file-1.yaml, which overrides any common settings
from the default configuration.

3. Applies the configuration from environment-file-2.yaml, which overrides any common settings
from the default configuration and environment-file-1.yaml.

This results in the following changes to the default configuration of the overcloud:

OS::TripleO::NodeExtraConfigPost resource is set to /home/stack/templates/template-
2.yaml, as defined in environment-file-2.yaml.

TimeZone parameter is set to Hongkong, as defined in environment-file-2.yaml.

RabbitFDLimit parameter is set to 65536, as defined in environment-file-1.yaml.
environment-file-2.yaml does not change this value.

You can use this mechanism to define custom configuration for your overcloud without values from
multiple environment files conflicting.

2.6. USING CUSTOMIZED CORE HEAT TEMPLATES

When creating the overcloud, director uses a core set of heat templates located in
/usr/share/openstack-tripleo-heat-templates. If you want to customize this core template collection,
use the following Git workflows to manage your custom template collection:

Procedure

Create an initial Git repository that contains the heat template collection:

a. Copy the template collection to the /home/stack/templates directory:

$ cd ~/templates
$ cp -r /usr/share/openstack-tripleo-heat-templates .

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

14

b. Change to the custom template directory and initialize a Git repository:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git init .

c. Configure your Git user name and email address:

$ git config --global user.name "<USER_NAME>"
$ git config --global user.email "<EMAIL_ADDRESS>"

Replace <USER_NAME> with the user name that you want to use. Replace
<EMAIL_ADDRESS> with your email address.

d. Stage all templates for the initial commit:

$ git add *

e. Create an initial commit:

$ git commit -m "Initial creation of custom core heat templates"

This creates an initial master branch that contains the latest core template collection. Use
this branch as the basis for your custom branch and merge new template versions to this
branch.

Use a custom branch to store your changes to the core template collection. Use the following
procedure to create a my-customizations branch and add customizations:

a. Create the my-customizations branch and switch to it:

$ git checkout -b my-customizations

b. Edit the files in the custom branch.

c. Stage the changes in git:

$ git add [edited files]

d. Commit the changes to the custom branch:

$ git commit -m "[Commit message for custom changes]"

This adds your changes as commits to the my-customizations branch. When the master
branch updates, you can rebase my-customizations off master, which causes git to add
these commits on to the updated template collection. This helps track your customizations
and replay them on future template updates.

When you update the undercloud, the openstack-tripleo-heat-templates package might also
receive updates. When this occurs, you must also update your custom template collection:

a. Save the openstack-tripleo-heat-templates package version as an environment variable:

$ export PACKAGE=$(rpm -qv openstack-tripleo-heat-templates)

b. Change to your template collection directory and create a new branch for the updated

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

15

b. Change to your template collection directory and create a new branch for the updated
templates:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git checkout -b $PACKAGE

c. Remove all files in the branch and replace them with the new versions:

$ git rm -rf *
$ cp -r /usr/share/openstack-tripleo-heat-templates/* .

d. Add all templates for the initial commit:

$ git add *

e. Create a commit for the package update:

$ git commit -m "Updates for $PACKAGE"

f. Merge the branch into master. If you use a Git management system (such as GitLab), use
the management workflow. If you use git locally, merge by switching to the master branch
and run the git merge command:

$ git checkout master
$ git merge $PACKAGE

The master branch now contains the latest version of the core template collection. You can now rebase
the my-customization branch from this updated collection.

Update the my-customization branch,:

a. Change to the my-customizations branch:

$ git checkout my-customizations

b. Rebase the branch off master:

$ git rebase master

This updates the my-customizations branch and replays the custom commits made to this
branch.

Resolve any conflicts that occur during the rebase:

a. Check which files contain the conflicts:

$ git status

b. Resolve the conflicts of the template files identified.

c. Add the resolved files:

$ git add [resolved files]

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

16

d. Continue the rebase:

$ git rebase --continue

Deploy the custom template collection:

a. Ensure that you have switched to the my-customization branch:

git checkout my-customizations

b. Run the openstack overcloud deploy command with the --templates option to specify
your local template directory:

$ openstack overcloud deploy --templates /home/stack/templates/openstack-tripleo-heat-
templates [OTHER OPTIONS]

NOTE

Director uses the default template directory (/usr/share/openstack-tripleo-heat-
templates) if you specify the --templates option without a directory.

IMPORTANT

Red Hat recommends using the methods in Chapter 4, Configuration hooks instead of
modifying the heat template collection.

2.7. JINJA2 RENDERING

The core heat templates in /usr/share/openstack-tripleo-heat-templates contain a number of files that
have the j2.yaml file extension. These files contain Jinja2 template syntax and director renders these
files to their static heat template equivalents that have the .yaml extension. For example, the main
overcloud.j2.yaml file renders into overcloud.yaml. Director uses the resulting overcloud.yaml file.

The Jinja2-enabled heat templates use Jinja2 syntax to create parameters and resources for iterative
values. For example, the overcloud.j2.yaml file contains the following snippet:

parameters:
...
{% for role in roles %}
 ...
 {{role.name}}Count:
 description: Number of {{role.name}} nodes to deploy
 type: number
 default: {{role.CountDefault|default(0)}}
 ...
{% endfor %}

When director renders the Jinja2 syntax, director iterates over the roles defined in the roles_data.yaml
file and populates the {{role.name}}Count parameter with the name of the role. The default
roles_data.yaml file contains five roles and results in the following parameters from our example:

ControllerCount

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

17

ComputeCount

BlockStorageCount

ObjectStorageCount

CephStorageCount

A example rendered version of the parameter looks like this:

parameters:
 ...
 ControllerCount:
 description: Number of Controller nodes to deploy
 type: number
 default: 1
 ...

Director renders Jinja2-enabled templates and environment files only from within the directory of your
core heat templates. The following use cases demonstrate the correct method to render the Jinja2
templates.

Use case 1: Default core templates

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.j2.yaml

Director uses the default core template location (--templates) and renders the network-
isolation.j2.yaml file into network-isolation.yaml. When you run the openstack overcloud deploy
command, use the -e option to include the name of the rendered network-isolation.yaml file.

$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml
 ...

Use case 2: Custom core templates

Template directory: /home/stack/tripleo-heat-templates

Environment file: /home/stack/tripleo-heat-templates/environments/network-isolation.j2.yaml

Director uses a custom core template location (--templates /home/stack/tripleo-heat-templates) and
director renders the network-isolation.j2.yaml file within the custom core templates into network-
isolation.yaml. When you run the openstack overcloud deploy command, use the -e option to include
the name of the rendered network-isolation.yaml file.

$ openstack overcloud deploy --templates /home/stack/tripleo-heat-templates \
 -e /home/stack/tripleo-heat-templates/environments/network-isolation.yaml
 ...

Use case 3: Incorrect usage

Template directory: /usr/share/openstack-tripleo-heat-templates/

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

18

Environment file: /home/stack/tripleo-heat-templates/environments/network-isolation.j2.yaml

Director uses a default core template location (--templates /usr/share/openstack-tripleo-heat-
templates). However, the chosen network-isolation.j2.yaml is not located within the custom core
templates, so it will not render into network-isolation.yaml. This causes the deployment to fail.

Processing Jinja2 syntax into static templates

Use the process-templates.py script to render the Jinja2 syntax of the openstack-tripleo-heat-
templates into a set of static templates. To render a copy of the openstack-tripleo-heat-templates
collection with the process-templates.py script, change to the openstack-tripleo-heat-templates
directory:

$ cd /usr/share/openstack-tripleo-heat-templates

Run the process-templates.py script, which is located in the tools directory, along with the -o option to
define a custom directory to save the static copy:

$./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered

This converts all Jinja2 templates to their rendered YAML versions and saves the results to
~/openstack-tripleo-heat-templates-rendered.

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

19

CHAPTER 3. HEAT PARAMETERS
Each heat template in the director template collection contains a parameters section. This section
contains definitions for all parameters specific to a particular overcloud service. This includes the
following:

overcloud.j2.yaml - Default base parameters

roles_data.yaml - Default parameters for composable roles

deployment/*.yaml - Default parameters for specific services

You can modify the values for these parameters using the following method:

1. Create an environment file for your custom parameters.

2. Include your custom parameters in the parameter_defaults section of the environment file.

3. Include the environment file with the openstack overcloud deploy command.

3.1. EXAMPLE 1: CONFIGURING THE TIME ZONE

The Heat template for setting the timezone (puppet/services/time/timezone.yaml) contains a
TimeZone parameter. If you leave the TimeZone parameter blank, the overcloud sets the time to UTC
as a default.

To obtain lists of timezones run the timedatectl list-timezones command. The following example
command retrieves the timezones for Asia:

$ sudo timedatectl list-timezones|grep "Asia"

After you identify your timezone, set the TimeZone parameter in an environment file. The following
example environment file sets the value of TimeZone to Asia/Tokyo:

parameter_defaults:
 TimeZone: 'Asia/Tokyo'

3.2. EXAMPLE 2: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT

For certain configurations, you might need to increase the file descriptor limit for the RabbitMQ server.
Use the deployment/rabbitmq/rabbitmq-container-puppet.yaml heat template to set a new limit in
the RabbitFDLimit parameter. Add the following entry to an environment file:

parameter_defaults:
 RabbitFDLimit: 65536

3.3. EXAMPLE 3: ENABLING AND DISABLING PARAMETERS

You might need to initially set a parameter during a deployment, then disable the parameter for a future
deployment operation, such as updates or scaling operations. For example, to include a custom RPM
during the overcloud creation, include the following entry in an environment file:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

20

parameter_defaults:
 DeployArtifactURLs: ["http://www.example.com/myfile.rpm"]

To disable this parameter from a future deployment, it is not sufficient to remove the parameter.
Instead, you must set the parameter to an empty value:

parameter_defaults:
 DeployArtifactURLs: []

This ensures the parameter is no longer set for subsequent deployments operations.

3.4. EXAMPLE 4: ROLE-BASED PARAMETERS

Use the [ROLE]Parameters parameters, replacing [ROLE] with a composable role, to set parameters
for a specific role.

For example, director configures sshd on both Controller and Compute nodes. To set a different sshd
parameters for Controller and Compute nodes, create an environment file that contains both the
ControllerParameters and ComputeParameters parameter and set the sshd parameters for each
specific role:

parameter_defaults:
 ControllerParameters:
 BannerText: "This is a Controller node"
 ComputeParameters:
 BannerText: "This is a Compute node"

3.5. IDENTIFYING PARAMETERS THAT YOU WANT TO MODIFY

Red Hat OpenStack Platform director provides many parameters for configuration. In some cases, you
might experience difficulty identifying a certain option that you want to configure, and the
corresponding director parameter. If there is an option that you want to configure with director, use the
following workflow to identify and map the option to a specific overcloud parameter:

1. Identify the option that you want to configure. Make a note of the service that uses the option.

2. Check the corresponding Puppet module for this option. The Puppet modules for Red Hat
OpenStack Platform are located under /etc/puppet/modules on the director node. Each
module corresponds to a particular service. For example, the keystone module corresponds to
the OpenStack Identity (keystone).

If the Puppet module contains a variable that controls the chosen option, move to the next
step.

If the Puppet module does not contain a variable that controls the chosen option, no
hieradata exists for this option. If possible, you can set the option manually after the
overcloud completes deployment.

3. Check the core heat template collection for the Puppet variable in the form of hieradata. The
templates in deployment/* usually correspond to the Puppet modules of the same services. For
example, the deployment/keystone/keystone-container-puppet.yaml template provides
hieradata to the keystone module.

If the heat template sets hieradata for the Puppet variable, the template should also

CHAPTER 3. HEAT PARAMETERS

21

If the heat template sets hieradata for the Puppet variable, the template should also
disclose the director-based parameter that you can modify.

If the heat template does not set hieradata for the Puppet variable, use the configuration
hooks to pass the hieradata using an environment file. See Section 4.5, “Puppet:
Customizing hieradata for roles” for more information on customizing hieradata.

Procedure

1. To change the notification format for OpenStack Identity (keystone), use the workflow and
complete the following steps:

a. Identify the OpenStack parameter that you want to configure (notification_format).

b. Search the keystone Puppet module for the notification_format setting:

$ grep notification_format /etc/puppet/modules/keystone/manifests/*

In this case, the keystone module manages this option using the
keystone::notification_format variable.

c. Search the keystone service template for this variable:

$ grep "keystone::notification_format" /usr/share/openstack-tripleo-heat-
templates/deployment/keystone/keystone-container-puppet.yaml

The output shows that director uses the KeystoneNotificationFormat parameter to set
the keystone::notification_format hieradata.

The following table shows the eventual mapping:

Director parameter Puppet hieradata OpenStack Identity (keystone)
option

KeystoneNotificationFormat keystone::notification_forma
t

notification_format

You set the KeystoneNotificationFormat in an overcloud environment file, which then sets the
notification_format option in the keystone.conf file during the overcloud configuration.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

22

CHAPTER 4. CONFIGURATION HOOKS
Use configuration hooks to inject your own custom configuration functions into the overcloud
deployment process. You can create hooks to inject custom configuration before and after the main
overcloud services configuration, and hooks for modifying and including Puppet-based configuration.

4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION

Director uses cloud-init to perform configuration on all nodes after the initial creation of the overcloud.
You can use the NodeUserData resource types to call cloud-init.

OS::TripleO::NodeUserData

cloud-init configuration to apply to all nodes.

OS::TripleO::Controller::NodeUserData

cloud-init configuration to apply to Controller nodes.

OS::TripleO::Compute::NodeUserData

cloud-init configuration to apply to Compute nodes.

OS::TripleO::CephStorage::NodeUserData

cloud-init configuration to apply to Ceph Storage nodes.

OS::TripleO::ObjectStorage::NodeUserData

cloud-init configuration to apply to Object Storage nodes.

OS::TripleO::BlockStorage::NodeUserData

cloud-init configuration to apply to Block Storage nodes.

OS::TripleO::[ROLE]::NodeUserData

cloud-init configuration to apply to custom nodes. Replace [ROLE] with the composable role name.

In this example, update the nameserver with a custom IP address on all nodes:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file on each node with a specific nameserver. You can use the
OS::TripleO::MultipartMime resource type to send the configuration script.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

resources:
 userdata:
 type: OS::Heat::MultipartMime
 properties:
 parts:
 - config: {get_resource: nameserver_config}

 nameserver_config:
 type: OS::Heat::SoftwareConfig
 properties:
 config: |

CHAPTER 4. CONFIGURATION HOOKS

23

 #!/bin/bash
 echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:
 OS::stack_id:
 value: {get_resource: userdata}

2. Create an environment file ~/templates/firstboot.yaml that registers your heat template as the
OS::TripleO::NodeUserData resource type.

resource_registry:
 OS::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

3. To add the first boot configuration to your overcloud, add the environment file to the stack,
along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/firstboot.yaml \
 ...

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusion of these templates, such as updating the overcloud stack, does not run
these scripts.

IMPORTANT

You can only register the NodeUserData resources to one heat template per resource.
Subsequent usage overrides the heat template to use.

4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD
ROLES

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a
set of hooks that you can use to perform custom configuration for specific node roles after the first
boot completes and before the core configuration begins. These hooks include:

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PreConfig resources
to provide pre-configuration hooks on a per role basis. The heat template collection
requires dedicated use of these hooks, which means that you should not use them for
custom use. Instead, use the OS::TripleO::*ExtraConfigPre hooks outlined here.

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.

OS::TripleO::ObjectStorageExtraConfigPre

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

24

Additional configuration applied to Object Storage nodes before the core Puppet configuration.

OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.

OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace
[ROLE] with the composable role name.

In this example, append the resolv.conf file on all nodes of a particular role with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to write a
variable nameserver to the resolv.conf file of a node:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" > /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

CHAPTER 4. CONFIGURATION HOOKS

25

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and heat
replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

The config parameter references the CustomExtraConfigPre resource so that heat
knows which configuration to apply.

The server parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you want to
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update to ensure that the resource reapplies on
subsequent overcloud updates.

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template to
the role-based resource type. For example, to apply the configuration only to Controller nodes,
use the ControllerExtraConfigPre hook:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all Controller nodes before the core configuration begins on
either the initial overcloud creation or subsequent updates.

IMPORTANT

You can register each resource to only one heat template per hook. Subsequent usage
overrides the heat template to use.

4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

26

The overcloud uses Puppet for the core configuration of OpenStack components. Director provides a
hook that you can use to configure all node types after the first boot completes and before the core
configuration begins:

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, append the resolv.conf file on each node with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file of each node with a variable nameserver:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CHAPTER 4. CONFIGURATION HOOKS

27

CustomExtraConfigPre

This parameter defines a software configuration. In this example, you define a Bash script
and heat replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip
parameter.

CustomExtraDeploymentPre

This parameter executes a software configuration, which is the software configuration from
the CustomExtraConfigPre resource. Note the following:

The config parameter references the CustomExtraConfigPre resource so that heat
knows which configuration to apply.

The server parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you only
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

The input_values parameter contains a sub-parameter called deploy_identifier, which
stores the DeployIdentifier from the parent template. This parameter provides a
timestamp to the resource for each deployment update to ensure that the resource
reapplies on subsequent overcloud updates.

2. Create an environment file ~/templates/pre_config.yaml that registers your heat template as
the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
 OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all nodes before the core configuration begins on either the
initial overcloud creation or subsequent updates.

IMPORTANT

You can register the OS::TripleO::NodeExtraConfig to only one heat template.
Subsequent usage overrides the heat template to use.

4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

IMPORTANT

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

28

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PostConfig
resources to provide post-configuration hooks on a per role basis. The heat template
collection requires dedicated use of these hooks, which means that you should not use
them for custom use. Instead, use the OS::TripleO::NodeExtraConfigPost hook
outlined here.

A situation might occur where you have completed the creation of your overcloud but you want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the overcloud.
In this case, use the following post-configuration hook:

OS::TripleO::NodeExtraConfigPost

Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, append the resolv.conf file on each node with a variable nameserver:

Procedure

1. Create a basic heat template ~/templates/nameserver.yaml that runs a script to append the
resolv.conf file of each node with a variable nameserver:

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 servers:
 type: json
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string
 EndpointMap:
 default: {}
 type: json

resources:
 CustomExtraConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 servers: {get_param: servers}

CHAPTER 4. CONFIGURATION HOOKS

29

 config: {get_resource: CustomExtraConfig}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

In this example, the resources section contains the following parameters:

CustomExtraConfig

This defines a software configuration. In this example, you define a Bash script and heat
replaces _NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the
CustomExtraConfig resource. Note the following:

The config parameter references the CustomExtraConfig resource so that heat knows
which configuration to apply.

The servers parameter retrieves a map of the overcloud nodes. This parameter is
provided by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, you want
apply the configuration when the overcloud is created. Possible actions include
CREATE, UPDATE, DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update to ensure that the resource reapplies on
subsequent overcloud updates.

2. Create an environment file ~/templates/post_config.yaml that registers your heat template as
the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

3. Add the environment file to the stack, along with your other environment files:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/post_config.yaml \
 ...

This applies the configuration to all nodes after the core configuration completes on either
initial overcloud creation or subsequent updates.

IMPORTANT

You can register the OS::TripleO::NodeExtraConfigPost to only one heat template.
Subsequent usage overrides the heat template to use.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

30

4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES

The heat template collection contains a set of parameters that you can use to pass extra configuration
to certain node types. These parameters save the configuration as hieradata for the Puppet
configuration on the node:

ControllerExtraConfig

Configuration to add to all Controller nodes.

ComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes.

CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes.

[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.

ExtraConfig

Configuration to add to all nodes.

Procedure

1. To add extra configuration to the post-deployment configuration process, create an
environment file that contains these parameters in the parameter_defaults section. For
example, to increase the reserved memory for Compute hosts to 1024 MB and set the VNC
keymap to Japanese, use the following entries in the ComputeExtraConfig parameter:

parameter_defaults:
 ComputeExtraConfig:
 nova::compute::reserved_host_memory: 1024
 nova::compute::vnc_keymap: ja

2. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

IMPORTANT

You can define each parameter only once. Subsequent usage overrides previous values.

4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES

You can set Puppet hieradata for individual nodes using the heat template collection:

Procedure

1. Identify the system UUID from the introspection data for a node:

CHAPTER 4. CONFIGURATION HOOKS

31

$ openstack baremetal introspection data save 9dcc87ae-4c6d-4ede-81a5-9b20d7dc4a14 |
jq .extra.system.product.uuid

This command returns a system UUID. For example:

"f5055c6c-477f-47fb-afe5-95c6928c407f"

2. Create an environment file to define node-specific hieradata and register the per_node.yaml
template to a pre-configuration hook. Include the system UUID of the node that you want to
configure in the NodeDataLookup parameter:

resource_registry:
 OS::TripleO::ComputeExtraConfigPre: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/pre_deploy/per_node.yaml
parameter_defaults:
 NodeDataLookup: '{"f5055c6c-477f-47fb-afe5-95c6928c407f":
{"nova::compute::vcpu_pin_set": ["2", "3"]}}'

3. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

The per_node.yaml template generates a set of hieradata files on nodes that correspond to each
system UUID and contains the hieradata that you define. If a UUID is not defined, the resulting hieradata
file is empty. In this example, the per_node.yaml template runs on all Compute nodes as defined by the
OS::TripleO::ComputeExtraConfigPre hook, but only the Compute node with system UUID f5055c6c-
477f-47fb-afe5-95c6928c407f receives hieradata.

You can use this mechanism to tailor each node according to specific requirements.

For more information about NodeDataLookup, see Altering the disk layout in Ceph Storage nodes in
the Deploying an overcloud with containerized Red Hat Ceph guide.

4.7. PUPPET: APPLYING CUSTOM MANIFESTS

In certain circumstances, you might want to install and configure some additional components on your
overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes after the
main configuration completes. As a basic example, you might want to install motd on each node

Procedure

1. Create a heat template ~/templates/custom_puppet_config.yaml that launches Puppet
configuration.

heat_template_version: 2014-10-16

description: >
 Run Puppet extra configuration to set new MOTD

parameters:
 servers:
 type: json
 DeployIdentifier:
 type: string
 EndpointMap:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/#proc_altering-disk-layout_deployingcontainerizedrhcs

 default: {}
 type: json

resources:
 ExtraPuppetConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 config: {get_file: motd.pp}
 group: puppet
 options:
 enable_hiera: True
 enable_facter: False

 ExtraPuppetDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 config: {get_resource: ExtraPuppetConfig}
 servers: {get_param: servers}

This example includes the /home/stack/templates/motd.pp within the template and passes it to
nodes for configuration. The motd.pp file contains the Puppet classes necessary to install and
configure motd.

2. Create an environment file ~templates/puppet_post_config.yaml that registers your heat
template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/custom_puppet_config.yaml

3. Include this environment file in the openstack overcloud deploy command, along with any
other environment files relevant to your deployment.

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/puppet_post_config.yaml \
 ...

This applies the configuration from motd.pp to all nodes in the overcloud.

CHAPTER 4. CONFIGURATION HOOKS

33

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION
Director uses Ansible-based methods to register overcloud nodes to the Red Hat Customer Portal or to
a Red Hat Satellite Server.

If you used the rhel-registration method from previous Red Hat OpenStack Platform versions, you must
disable it and switch to the Ansible-based method. For more information, see Switching to the rhsm
composable service and RHEL-Registration to rhsm mappings .

In addition to the director-based registration method, you can also manually register after deployment.
For more information, see Section 5.9, “Running Ansible-based registration manually”

5.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE
SERVICE

You can use the rhsm composable service to register overcloud nodes through Ansible. Each role in the
default roles_data file contains a OS::TripleO::Services::Rhsm resource, which is disabled by default.
To enable the service, register the resource to the rhsm composable service file:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-
baremetal-ansible.yaml

The rhsm composable service accepts a RhsmVars parameter, which you can use to define multiple
sub-parameters relevant to your registration:

parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - rhel-8-for-x86_64-baseos-eus-rpms
 - rhel-8-for-x86_64-appstream-eus-rpms
 - rhel-8-for-x86_64-highavailability-eus-rpms
 …
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_release: 8.4

You can also use the RhsmVars parameter in combination with role-specific parameters, for example,
ControllerParameters, to provide flexibility when enabling specific repositories for different nodes
types.

5.2. RHSMVARS SUB-PARAMETERS

Use the following sub-parameters as part of the RhsmVars parameter when you configure the rhsm
composable service. For more information about the Ansible parameters that are available, see the role
documentation.

rhsm Description

rhsm_method Choose the registration method. Either portal, satellite, or disable.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

34

https://github.com/openstack/ansible-role-redhat-subscription/

rhsm_org_id The organization that you want to use for registration. To locate this ID, run
sudo subscription-manager orgs from the undercloud node. Enter your
Red Hat credentials at the prompt, and use the resulting Key value. For more
information on your organization ID, see Understanding the Red Hat
Subscription Management Organization ID.

rhsm_pool_ids The subscription pool ID that you want to use. Use this parameter if you do
not want to auto-attach subscriptions. To locate this ID, run sudo
subscription-manager list --available --all --matches="*Red Hat
OpenStack*" from the undercloud node, and use the resulting Pool ID
value. Use a list format to pass multiple IDs to this parameter.

rhsm_activation_key The activation key that you want to use for registration.

rhsm_autosubscribe Use this parameter to attach compatible subscriptions to this system
automatically. Set the value to true to enable this feature.

rhsm_baseurl The base URL for obtaining content. The default URL is the Red Hat Content
Delivery Network. If you use a Satellite server, change this value to the base
URL of your Satellite server content repositories.

rhsm_server_hostname The hostname of the subscription management service for registration. The
default is the Red Hat Subscription Management hostname. If you use a
Satellite server, change this value to your Satellite server hostname.

rhsm_repos A list of repositories that you want to enable.

rhsm_username The username for registration. If possible, use activation keys for registration.

rhsm_password The password for registration. If possible, use activation keys for registration.

rhsm_release Red Hat Enterprise Linux release for pinning the repositories. This is set to
8.4 for Red Hat OpenStack Platform

rhsm_rhsm_proxy_host
name

The hostname for the HTTP proxy. For example: proxy.example.com.

rhsm_rhsm_proxy_port The port for HTTP proxy communication. For example: 8080.

rhsm_rhsm_proxy_user The username to access the HTTP proxy.

rhsm_rhsm_proxy_pass
word

The password to access the HTTP proxy.

rhsm Description

IMPORTANT

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

35

https://access.redhat.com/articles/3047431

IMPORTANT

You can use rhsm_activation_key and rhsm_repos together only if rhsm_method is
set to portal. If rhsm_method is set to satellite, you can only use either
rhsm_activation_key or rhsm_repos.

5.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE
SERVICE

Create an environment file that enables and configures the rhsm composable service. Director uses this
environment file to register and subscribe your nodes.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 RhsmVars:
 rhsm_repos:
 - rhel-8-for-x86_64-baseos-eus-rpms
 - rhel-8-for-x86_64-appstream-eus-rpms
 - rhel-8-for-x86_64-highavailability-eus-rpms
 …
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
 rhsm_method: "portal"
 rhsm_release: 8.4

The resource_registry section associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat
registration.

3. Save the environment file.

5.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT
ROLES

You can apply the rhsm composable service on a per-role basis. For example, you can apply different
sets of configurations to Controller nodes, Compute nodes, and Ceph Storage nodes.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

36

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 ControllerParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-8-for-x86_64-baseos-eus-rpms
 - rhel-8-for-x86_64-appstream-eus-rpms
 - rhel-8-for-x86_64-highavailability-eus-rpms
 - ansible-2.9-for-rhel-8-x86_64-rpms
 - openstack-16.2-for-rhel-8-x86_64-rpms
 - fast-datapath-for-rhel-8-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 8.4
 ComputeParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-8-for-x86_64-baseos-eus-rpms
 - rhel-8-for-x86_64-appstream-eus-rpms
 - rhel-8-for-x86_64-highavailability-eus-rpms
 - ansible-2.9-for-rhel-8-x86_64-rpms
 - openstack-16.2-for-rhel-8-x86_64-rpms
 - fast-datapath-for-rhel-8-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "55d251f1490556f3e75aa37e89e10ce5"
 rhsm_method: "portal"
 rhsm_release: 8.4
 CephStorageParameters:
 RhsmVars:
 rhsm_repos:
 - rhel-8-for-x86_64-baseos-rpms
 - rhel-8-for-x86_64-appstream-rpms
 - rhel-8-for-x86_64-highavailability-rpms
 - ansible-2.9-for-rhel-8-x86_64-rpms
 - openstack-16.2-deployment-tools-for-rhel-8-x86_64-rpms
 rhsm_username: "myusername"
 rhsm_password: "p@55w0rd!"
 rhsm_org_id: "1234567"
 rhsm_pool_ids: "68790a7aa2dc9dc50a9bc39fabc55e0d"
 rhsm_method: "portal"
 rhsm_release: 8.4

The resource_registry associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The ControllerParameters, ComputeParameters, and CephStorageParameters parameters
each use a separate RhsmVars parameter to pass subscription details to their respective roles.

NOTE

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

37

NOTE

Set the RhsmVars parameter within the CephStorageParameters parameter to
use a Red Hat Ceph Storage subscription and repositories specific to Ceph
Storage. Ensure the rhsm_repos parameter contains the standard Red Hat
Enterprise Linux repositories instead of the Extended Update Support (EUS)
repositories that Controller and Compute nodes require.

3. Save the environment file.

5.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER

Create an environment file that enables and configures the rhsm composable service to register nodes
to Red Hat Satellite instead of the Red Hat Customer Portal.

Procedure

1. Create an environment file named templates/rhsm.yml to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
 RhsmVars:
 rhsm_activation_key: "myactivationkey"
 rhsm_method: "satellite"
 rhsm_org_id: "ACME"
 rhsm_server_hostname: "satellite.example.com"
 rhsm_baseurl: "https://satellite.example.com/pulp/repos"
 rhsm_release: 8.4

The resource_registry associates the rhsm composable service with the
OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat registration.

3. Save the environment file.

5.6. SWITCHING TO THE RHSM COMPOSABLE SERVICE

The previous rhel-registration method runs a bash script to handle the overcloud registration. The
scripts and environment files for this method are located in the core heat template collection at
/usr/share/openstack-tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/.

Complete the following steps to switch from the rhel-registration method to the rhsm composable
service.

Procedure

1. Exclude the rhel-registration environment files from future deployments operations. In most
cases, exclude the following files:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

38

rhel-registration/environment-rhel-registration.yaml

rhel-registration/rhel-registration-resource-registry.yaml

2. If you use a custom roles_data file, ensure that each role in your roles_data file contains the
OS::TripleO::Services::Rhsm composable service. For example:

- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 ...
 ServicesDefault:
 ...
 - OS::TripleO::Services::Rhsm
 ...

3. Add the environment file for rhsm composable service parameters to future deployment
operations.

This method replaces the rhel-registration parameters with the rhsm service parameters and changes
the heat resource that enables the service from:

resource_registry:
 OS::TripleO::NodeExtraConfig: rhel-registration.yaml

To:

resource_registry:
 OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-
baremetal-ansible.yaml

You can also include the /usr/share/openstack-tripleo-heat-templates/environments/rhsm.yaml
environment file with your deployment to enable the service.

5.7. RHEL-REGISTRATION TO RHSM MAPPINGS

To help transition your details from the rhel-registration method to the rhsm method, use the following
table to map your parameters and values.

rhel-registration rhsm / RhsmVars

rhel_reg_method rhsm_method

rhel_reg_org rhsm_org_id

rhel_reg_pool_id rhsm_pool_ids

rhel_reg_activation_key rhsm_activation_key

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

39

rhel_reg_auto_attach rhsm_autosubscribe

rhel_reg_sat_url rhsm_satellite_url

rhel_reg_repos rhsm_repos

rhel_reg_user rhsm_username

rhel_reg_password rhsm_password

rhel_reg_release rhsm_release

rhel_reg_http_proxy_host rhsm_rhsm_proxy_hostname

rhel_reg_http_proxy_port rhsm_rhsm_proxy_port

rhel_reg_http_proxy_username rhsm_rhsm_proxy_user

rhel_reg_http_proxy_password rhsm_rhsm_proxy_password

rhel-registration rhsm / RhsmVars

5.8. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE
SERVICE

Deploy the overcloud with the rhsm composable service so that Ansible controls the registration
process for your overcloud nodes.

Procedure

1. Include rhsm.yml environment file with the openstack overcloud deploy command:

openstack overcloud deploy \
 <other cli args> \
 -e ~/templates/rhsm.yaml

This enables the Ansible configuration of the overcloud and the Ansible-based registration.

2. Wait until the overcloud deployment completes.

3. Check the subscription details on your overcloud nodes. For example, log in to a Controller node
and run the following commands:

$ sudo subscription-manager status
$ sudo subscription-manager list --consumed

5.9. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

You can perform manual Ansible-based registration on a deployed overcloud with the dynamic

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

40

inventory script on the director node. Use this script to define node roles as host groups and then run a
playbook against them with ansible-playbook. Use the following example playbook to register
Controller nodes manually.

Procedure

1. Create a playbook that uses the redhat_subscription modules to register your nodes. For
example, the following playbook applies to Controller nodes:

- name: Register Controller nodes
 hosts: Controller
 become: yes
 vars:
 repos:
 - rhel-8-for-x86_64-baseos-eus-rpms
 - rhel-8-for-x86_64-appstream-eus-rpms
 - rhel-8-for-x86_64-highavailability-eus-rpms
 - ansible-2.9-for-rhel-8-x86_64-rpms
 - openstack-beta-for-rhel-8-x86_64-rpms
 - fast-datapath-for-rhel-8-x86_64-rpms
 tasks:
 - name: Register system
 redhat_subscription:
 username: myusername
 password: p@55w0rd!
 org_id: 1234567
 release: 8.4
 pool_ids: 1a85f9223e3d5e43013e3d6e8ff506fd
 - name: Disable all repos
 command: "subscription-manager repos --disable *"
 - name: Enable Controller node repos
 command: "subscription-manager repos --enable {{ item }}"
 with_items: "{{ repos }}"

This play contains three tasks:

Register the node.

Disable any auto-enabled repositories.

Enable only the repositories relevant to the Controller node. The repositories are listed
with the repos variable.

2. After you deploy the overcloud, you can run the following command so that Ansible executes
the playbook (ansible-osp-registration.yml) against your overcloud:

$ ansible-playbook -i /usr/bin/tripleo-ansible-inventory ansible-osp-registration.yml

This command performs the following actions:

Runs the dynamic inventory script to get a list of host and their groups.

Applies the playbook tasks to the nodes in the group defined in the hosts parameter of the
playbook, which in this case is the Controller group.

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

41

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
The overcloud usually consists of nodes in predefined roles such as Controller nodes, Compute nodes,
and different storage node types. Each of these default roles contains a set of services defined in the
core heat template collection on the director node. However, you can also create custom roles that
contain specific sets of services.

You can use this flexibility to create different combinations of services on different roles. This chapter
explores the architecture of custom roles, composable services, and methods for using them.

6.1. SUPPORTED ROLE ARCHITECTURE

The following architectures are available when you use custom roles and composable services:

Default architecture

Uses the default roles_data files. All controller services are contained within one Controller role.

Supported standalone roles

Use the predefined files in /usr/share/openstack-tripleo-heat-templates/roles to generate a
custom roles_data file. For more information, see Section 6.4, “Supported custom roles” .

Custom composable services

Create your own roles and use them to generate a custom roles_data file. Note that only a limited
number of composable service combinations have been tested and verified and Red Hat cannot
support all composable service combinations.

6.2. EXAMINING THE ROLES_DATA FILE

The roles_data file contains a YAML-formatted list of the roles that director deploys onto nodes. Each
role contains definitions of all of the services that comprise the role. Use the following example snippet
to understand the roles_data syntax:

- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...
- name: Compute
 description: |
 Basic Compute Node role
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...

The core heat template collection contains a default roles_data file located at /usr/share/openstack-
tripleo-heat-templates/roles_data.yaml. The default file contains definitions of the following role
types:

Controller

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

42

Compute

BlockStorage

ObjectStorage

CephStorage.

The openstack overcloud deploy command includes the default roles_data.yaml file during
deployment. However, you can use the -r argument to override this file with a custom roles_data file:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-custom.yaml

6.3. CREATING A ROLES_DATA FILE

Although you can create a custom roles_data file manually, you can also generate the file automatically
using individual role templates. Director provides several commands to manage role templates and
automatically generate a custom roles_data file.

Procedure

1. List the default role templates:

$ openstack overcloud roles list
BlockStorage
CephStorage
Compute
ComputeHCI
ComputeOvsDpdk
Controller
...

2. View the role definition in YAML format with the openstack overcloud roles show command:

$ openstack overcloud roles show Compute

3. Generate a custom roles_data file. Use the openstack overcloud roles generate command to
join multiple predefined roles into a single file. For example, run the following command to
generate a roles_data.yaml file that contains the Controller, Compute, and Networker roles:

$ openstack overcloud roles generate -o ~/roles_data.yaml Controller Compute Networker

Use the -o option to define the name out of the output file.

This command creates a custom roles_data file. However, the previous example uses the
Controller and Networker roles, which both contain the same networking agents. This means
that the networking services scale from the Controller role to the Networker role and the
overcloud balances the load for networking services between the Controller and Networker
nodes.

To make this Networker role standalone, you can create your own custom Controller role, as
well as any other role that you require. This allows you to generate a roles_data file from your
own custom roles.

4. Copy the directory from the core heat template collection to the home directory of the stack

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

43

4. Copy the directory from the core heat template collection to the home directory of the stack
user:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

5. Add or modify the custom role files in this directory. Use the --roles-path option with any of the
role sub-commands to use this directory as the source for your custom roles:

$ openstack overcloud roles generate -o my_roles_data.yaml \
 --roles-path ~/roles \
 Controller Compute Networker

This command generates a single my_roles_data.yaml file from the individual roles in the
~/roles directory.

NOTE

The default roles collection also contains the ControllerOpenStack role, which does not
include services for Networker, Messaging, and Database roles. You can use the
ControllerOpenStack in combination with the standalone Networker, Messaging, and
Database roles.

6.4. SUPPORTED CUSTOM ROLES

The following table contains information about the available custom roles. You can find custom role
templates in the /usr/share/openstack-tripleo-heat-templates/roles directory.

Role Description File

BlockStorage OpenStack Block Storage (cinder) node. BlockStorage.yaml

CephAll Full standalone Ceph Storage node. Includes OSD,
MON, Object Gateway (RGW), Object Operations
(MDS), Manager (MGR), and RBD Mirroring.

CephAll.yaml

CephFile Standalone scale-out Ceph Storage file role. Includes
OSD and Object Operations (MDS).

CephFile.yaml

CephObject Standalone scale-out Ceph Storage object role.
Includes OSD and Object Gateway (RGW).

CephObject.yaml

CephStorage Ceph Storage OSD node role. CephStorage.yaml

ComputeAlt Alternate Compute node role. ComputeAlt.yaml

ComputeDVR DVR enabled Compute node role. ComputeDVR.yaml

ComputeHCI Compute node with hyper-converged infrastructure.
Includes Compute and Ceph OSD services.

ComputeHCI.yaml

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

44

ComputeInstanceHA Compute Instance HA node role. Use in conjunction
with the environments/compute-
instanceha.yaml` environment file.

ComputeInstanceHA
.yaml

ComputeLiquidio Compute node with Cavium Liquidio Smart NIC. ComputeLiquidio.ya
ml

ComputeOvsDpdkR
T

Compute OVS DPDK RealTime role. ComputeOvsDpdkR
T.yaml

ComputeOvsDpdk Compute OVS DPDK role. ComputeOvsDpdk.y
aml

ComputePPC64LE Compute role for ppc64le servers. ComputePPC64LE.y
aml

ComputeRealTime Compute role optimized for real-time behaviour.
When using this role, it is mandatory that an
overcloud-realtime-compute image is available
and the role specific parameters IsolCpusList,
NovaComputeCpuDedicatedSet and
NovaComputeCpuSharedSet are set according
to the hardware of the real-time compute nodes.

ComputeRealTime.y
aml

ComputeSriovRT Compute SR-IOV RealTime role. ComputeSriovRT.ya
ml

ComputeSriov Compute SR-IOV role. ComputeSriov.yaml

Compute Standard Compute node role. Compute.yaml

ControllerAllNovaSta
ndalone

Controller role that does not contain the database,
messaging, networking, and OpenStack Compute
(nova) control components. Use in combination with
the Database, Messaging, Networker, and
Novacontrol roles.

ControllerAllNovaSta
ndalone.yaml

ControllerNoCeph Controller role with core Controller services loaded
but no Ceph Storage (MON) components. This role
handles database, messaging, and network functions
but not any Ceph Storage functions.

ControllerNoCeph.ya
ml

ControllerNovaStand
alone

Controller role that does not contain the OpenStack
Compute (nova) control component. Use in
combination with the Novacontrol role.

ControllerNovaStand
alone.yaml

Role Description File

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

45

ControllerOpenstack Controller role that does not contain the database,
messaging, and networking components. Use in
combination with the Database, Messaging, and
Networker roles.

ControllerOpenstack
.yaml

ControllerStorageNf
s

Controller role with all core services loaded and uses
Ceph NFS. This roles handles database, messaging,
and network functions.

ControllerStorageNf
s.yaml

Controller Controller role with all core services loaded. This roles
handles database, messaging, and network functions.

Controller.yaml

ControllerSriov
(ML2/OVN)

Same as the normal Controller role but with the OVN
Metadata agent deployed.

ControllerSriov.yaml

Database Standalone database role. Database managed as a
Galera cluster using Pacemaker.

Database.yaml

HciCephAll Compute node with hyper-converged infrastructure
and all Ceph Storage services. Includes OSD, MON,
Object Gateway (RGW), Object Operations (MDS),
Manager (MGR), and RBD Mirroring.

HciCephAll.yaml

HciCephFile Compute node with hyper-converged infrastructure
and Ceph Storage file services. Includes OSD and
Object Operations (MDS).

HciCephFile.yaml

HciCephMon Compute node with hyper-converged infrastructure
and Ceph Storage block services. Includes OSD,
MON, and Manager.

HciCephMon.yaml

HciCephObject Compute node with hyper-converged infrastructure
and Ceph Storage object services. Includes OSD and
Object Gateway (RGW).

HciCephObject.yaml

IronicConductor Ironic Conductor node role. IronicConductor.ya
ml

Messaging Standalone messaging role. RabbitMQ managed with
Pacemaker.

Messaging.yaml

Networker Standalone networking role. Runs OpenStack
networking (neutron) agents on their own. If your
deployment uses the ML2/OVN mechanism driver,
see additional steps in Deploying a Custom Role with
ML2/OVN in the Networking Guide.

Networker.yaml

Role Description File

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/networking_guide/assembly_work-with-ovn_rhosp-network#create-custom-network-role-ovn_work-ovn

NetworkerSriov Same as the normal Networker role but with the OVN
Metadata agent deployed. See additional steps in
Deploying a Custom Role with ML2/OVN in the
Networking Guide.

NetworkerSriov.yaml

Novacontrol Standalone nova-control role to run OpenStack
Compute (nova) control agents on their own.

Novacontrol.yaml

ObjectStorage Swift Object Storage node role. ObjectStorage.yaml

Telemetry Telemetry role with all the metrics and alarming
services.

Telemetry.yaml

Role Description File

6.5. EXAMINING ROLE PARAMETERS

Each role contains the following parameters:

name

(Mandatory) The name of the role, which is a plain text name with no spaces or special characters.
Check that the chosen name does not cause conflicts with other resources. For example, use
Networker as a name instead of Network.

description

(Optional) A plain text description for the role.

tags

(Optional) A YAML list of tags that define role properties. Use this parameter to define the primary
role with both the controller and primary tags together:

- name: Controller
 ...
 tags:
 - primary
 - controller
 ...

IMPORTANT

If you do not tag the primary role, the first role that you define becomes the primary role.
Ensure that this role is the Controller role.

networks

A YAML list or dictionary of networks that you want to configure on the role. If you use a YAML list,
list each composable network:

 networks:
 - External
 - InternalApi

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

47

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/networking_guide/assembly_work-with-ovn_rhosp-network#create-custom-network-role-ovn_work-ovn

 - Storage
 - StorageMgmt
 - Tenant

If you use a dictionary, map each network to a specific subnet in your composable networks.

 networks:
 External:
 subnet: external_subnet
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 StorageMgmt:
 subnet: storage_mgmt_subnet
 Tenant:
 subnet: tenant_subnet

Default networks include External, InternalApi, Storage, StorageMgmt, Tenant, and Management.

CountDefault

(Optional) Defines the default number of nodes that you want to deploy for this role.

HostnameFormatDefault

(Optional) Defines the default hostname format for the role. The default naming convention uses
the following format:

[STACK NAME]-[ROLE NAME]-[NODE ID]

For example, the default Controller nodes are named:

overcloud-controller-0
overcloud-controller-1
overcloud-controller-2
...

disable_constraints

(Optional) Defines whether to disable OpenStack Compute (nova) and OpenStack Image Storage
(glance) constraints when deploying with director. Use this parameter when you deploy an overcloud
with pre-provisioned nodes. For more information, see Configuring a Basic Overcloud with Pre-
Provisioned Nodes in the Director Installation and Usage guide.

update_serial

(Optional) Defines how many nodes to update simultaneously during the OpenStack update
options. In the default roles_data.yaml file:

The default is 1 for Controller, Object Storage, and Ceph Storage nodes.

The default is 25 for Compute and Block Storage nodes.

If you omit this parameter from a custom role, the default is 1.

ServicesDefault

(Optional) Defines the default list of services to include on the node. For more information, see

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

48

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/assembly_configuring-a-basic-overcloud-with-pre-provisioned-nodes

(Optional) Defines the default list of services to include on the node. For more information, see
Section 6.8, “Examining composable service architecture” .

You can use these parameters to create new roles and also define which services to include in your roles.

The openstack overcloud deploy command integrates the parameters from the roles_data file into
some of the Jinja2-based templates. For example, at certain points, the overcloud.j2.yaml heat
template iterates over the list of roles from roles_data.yaml and creates parameters and resources
specific to each respective role.

For example, the following snippet contains the resource definition for each role in the
overcloud.j2.yaml heat template:

 {{role.name}}:
 type: OS::Heat::ResourceGroup
 depends_on: Networks
 properties:
 count: {get_param: {{role.name}}Count}
 removal_policies: {get_param: {{role.name}}RemovalPolicies}
 resource_def:
 type: OS::TripleO::{{role.name}}
 properties:
 CloudDomain: {get_param: CloudDomain}
 ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
 EndpointMap: {get_attr: [EndpointMap, endpoint_map]}
...

This snippet shows how the Jinja2-based template incorporates the {{role.name}} variable to define
the name of each role as an OS::Heat::ResourceGroup resource. This in turn uses each name
parameter from the roles_data file to name each respective OS::Heat::ResourceGroup resource.

6.6. CREATING A NEW ROLE

You can use the composable service architecture to create new roles according to the requirements of
your deployment. For example, you might want to create a new Horizon role to host only the OpenStack
Dashboard (horizon).

NOTE

Role names must start with a letter, end with a letter or digit, and contain only letters,
digits, and hyphens. Underscores must never be used in role names.

Procedure

1. Create a custom copy of the default roles directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

2. Create a new file called ~/roles/Horizon.yaml and create a new Horizon role that contains base
and core OpenStack Dashboard services:

- name: Horizon
 CountDefault: 1
 HostnameFormatDefault: '%stackname%-horizon-%index%'

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

49

 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::FluentdClient
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::Apache
 - OS::TripleO::Services::Horizon

Set the name parameter to the name of the custom role. Custom role names have a
maximum length of 47 characters.

Set the CountDefault parameter to 1 so that a default overcloud always includes the
Horizon node.

3. Optional: If you want to scale the services in an existing overcloud, retain the existing services on
the Controller role. If you want to create a new overcloud and you want the OpenStack
Dashboard to remain on the standalone role, remove the OpenStack Dashboard components
from the Controller role definition:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 ...
 - OS::TripleO::Services::GnocchiMetricd
 - OS::TripleO::Services::GnocchiStatsd
 - OS::TripleO::Services::HAproxy
 - OS::TripleO::Services::HeatApi
 - OS::TripleO::Services::HeatApiCfn
 - OS::TripleO::Services::HeatApiCloudwatch
 - OS::TripleO::Services::HeatEngine
 # - OS::TripleO::Services::Horizon # Remove this service
 - OS::TripleO::Services::IronicApi
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Keepalived
 ...

4. Generate the new roles_data-horizon.yaml file using the ~/roles directory as the source:

$ openstack overcloud roles generate -o roles_data-horizon.yaml \
 --roles-path ~/roles \
 Controller Compute Horizon

5. Define a new flavor for this role so that you can tag specific nodes. For this example, use the
following commands to create a horizon flavor:

a. Create a horizon flavor:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

50

(undercloud)$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 horizon

NOTE

These properties are not used for scheduling instances, however, the
Compute scheduler does use the disk size to determine the root partition
size.

b. Tag each bare metal node that you want to designate for the Dashboard service (horizon)
with a custom resource class:

(undercloud)$ openstack baremetal node set --resource-class baremetal.HORIZON
<NODE>

Replace <NODE> with the ID of the bare metal node.

c. Associate the horizon flavor with the custom resource class:

(undercloud)$ openstack flavor set --property
resources:CUSTOM_BAREMETAL_HORIZON=1 horizon

To determine the name of a custom resource class that corresponds to a resource class of a
bare metal node, convert the resource class to uppercase, replace punctuation with an
underscore, and prefix the value with CUSTOM_.

NOTE

A flavor can request only one instance of a bare metal resource class.

d. Set the following flavor properties to prevent the Compute scheduler from using the bare
metal flavor properties for scheduling instances:

(undercloud)$ openstack flavor set --property resources:VCPU=0 --property
resources:MEMORY_MB=0 --property resources:DISK_GB=0 horizon

6. Define the Horizon node count and flavor using the following environment file snippet:

parameter_defaults:
 OvercloudHorizonFlavor: horizon
 HorizonCount: 1

7. Include the new roles_data-horizon.yaml file and environment file in the openstack
overcloud deploy command, along with any other environment files relevant to your
deployment:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-horizon.yaml -e
~/templates/node-count-flavor.yaml

This configuration creates a three-node overcloud that consists of one Controller node, one
Compute node, and one Networker node. To view the list of nodes in your overcloud, run the
following command:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

51

$ openstack server list

6.7. GUIDELINES AND LIMITATIONS

Note the following guidelines and limitations for the composable role architecture.

For services not managed by Pacemaker:

You can assign services to standalone custom roles.

You can create additional custom roles after the initial deployment and deploy them to scale
existing services.

For services managed by Pacemaker:

You can assign Pacemaker-managed services to standalone custom roles.

Pacemaker has a 16 node limit. If you assign the Pacemaker service
(OS::TripleO::Services::Pacemaker) to 16 nodes, subsequent nodes must use the Pacemaker
Remote service (OS::TripleO::Services::PacemakerRemote) instead. You cannot have the
Pacemaker service and Pacemaker Remote service on the same role.

Do not include the Pacemaker service (OS::TripleO::Services::Pacemaker) on roles that do
not contain Pacemaker-managed services.

You cannot scale up or scale down a custom role that contains
OS::TripleO::Services::Pacemaker or OS::TripleO::Services::PacemakerRemote services.

General limitations:

You cannot change custom roles and composable services during a major version upgrade.

You cannot modify the list of services for any role after deploying an overcloud. Modifying the
service lists after Overcloud deployment can cause deployment errors and leave orphaned
services on nodes.

6.8. EXAMINING COMPOSABLE SERVICE ARCHITECTURE

The core heat template collection contains two sets of composable service templates:

deployment contains the templates for key OpenStack services.

puppet/services contains legacy templates for configuring composable services. In some cases,
the composable services use templates from this directory for compatibility. In most cases, the
composable services use the templates in the deployment directory.

Each template contains a description that identifies its purpose. For example, the deployment/time/ntp-
baremetal-puppet.yaml service template contains the following description:

description: >
 NTP service deployment using puppet, this YAML file
 creates the interface between the HOT template
 and the puppet manifest that actually installs
 and configure NTP.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

52

These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means that you can call each resource using a unique heat resource namespace
defined in the overcloud-resource-registry-puppet.j2.yaml file. All services use the
OS::TripleO::Services namespace for their resource type.

Some resources use the base composable service templates directly:

resource_registry:
 ...
 OS::TripleO::Services::Ntp: deployment/time/ntp-baremetal-puppet.yaml
 ...

However, core services require containers and use the containerized service templates. For example, the
keystone containerized service uses the following resource:

resource_registry:
 ...
 OS::TripleO::Services::Keystone: deployment/keystone/keystone-container-puppet.yaml
 ...

These containerized templates usually reference other templates to include dependencies. For
example, the deployment/keystone/keystone-container-puppet.yaml template stores the output of
the base template in the ContainersCommon resource:

resources:
 ContainersCommon:
 type: ../containers-common.yaml

The containerized template can then incorporate functions and data from the containers-
common.yaml template.

The overcloud.j2.yaml heat template includes a section of Jinja2-based code to define a service list for
each custom role in the roles_data.yaml file:

{{role.name}}Services:
 description: A list of service resources (configured in the heat
 resource_registry) which represent nested stacks
 for each service that should get installed on the {{role.name}} role.
 type: comma_delimited_list
 default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices,
ComputeServices, BlockStorageServices, ObjectStorageServices, and CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRgw

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

53

 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackup
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Core
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
...

These services are then defined as the default list for the ControllerServices parameter.

NOTE

You can also use an environment file to override the default list for the service
parameters. For example, you can define ControllerServices as a parameter_default in
an environment file to override the services list from the roles_data.yaml file.

6.9. ADDING AND REMOVING SERVICES FROM ROLES

The basic method of adding or removing services involves creating a copy of the default service list for a
node role and then adding or removing services. For example, you might want to remove OpenStack
Orchestration (heat) from the Controller nodes.

Procedure

1. Create a custom copy of the default roles directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

2. Edit the ~/roles/Controller.yaml file and modify the service list for the ServicesDefault
parameter. Scroll to the OpenStack Orchestration services and remove them:

 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
 - OS::TripleO::Services::HeatApi # Remove this service
 - OS::TripleO::Services::HeatApiCfn # Remove this service
 - OS::TripleO::Services::HeatApiCloudwatch # Remove this service
 - OS::TripleO::Services::HeatEngine # Remove this service
 - OS::TripleO::Services::MySQL
 - OS::TripleO::Services::NeutronDhcpAgent

3. Generate the new roles_data file:

$ openstack overcloud roles generate -o roles_data-no_heat.yaml \
 --roles-path ~/roles \
 Controller Compute Networker

4. Include this new roles_data file when you run the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-no_heat.yaml

This command deploys an overcloud without OpenStack Orchestration services installed on the

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

54

This command deploys an overcloud without OpenStack Orchestration services installed on the
Controller nodes.

NOTE

You can also disable services in the roles_data file using a custom environment file.
Redirect the services to disable to the OS::Heat::None resource. For example:

resource_registry:
 OS::TripleO::Services::HeatApi: OS::Heat::None
 OS::TripleO::Services::HeatApiCfn: OS::Heat::None
 OS::TripleO::Services::HeatApiCloudwatch: OS::Heat::None
 OS::TripleO::Services::HeatEngine: OS::Heat::None

6.10. ENABLING DISABLED SERVICES

Some services are disabled by default. These services are registered as null operations
(OS::Heat::None) in the overcloud-resource-registry-puppet.j2.yaml file. For example, the Block
Storage backup service (cinder-backup) is disabled:

 OS::TripleO::Services::CinderBackup: OS::Heat::None

To enable this service, include an environment file that links the resource to its respective heat
templates in the puppet/services directory. Some services have predefined environment files in the
environments directory. For example, the Block Storage backup service uses the
environments/cinder-backup.yaml file, which contains the following entry:

Procedure

1. Add an entry in an environment file that links the CinderBackup service to the heat template
that contains the cinder-backup configuration:

resource_registry:
 OS::TripleO::Services::CinderBackup: ../podman/services/pacemaker/cinder-backup.yaml
...

This entry overrides the default null operation resource and enables the service.

2. Include this environment file when you run the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/cinder-backup.yaml

6.11. CREATING A GENERIC NODE WITH NO SERVICES

You can create generic Red Hat Enterprise Linux 8.4 nodes without any OpenStack services configured.
This is useful when you need to host software outside of the core Red Hat OpenStack Platform
(RHOSP) environment. For example, RHOSP provides integration with monitoring tools such as Kibana
and Sensu. For more information, see the Monitoring Tools Configuration Guide . While Red Hat does not
provide support for the monitoring tools themselves, director can create a generic Red Hat Enterprise
Linux 8.4 node to host these tools.

NOTE

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

55

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/monitoring_tools_configuration_guide

NOTE

The generic node still uses the base overcloud-full image rather than a base Red Hat
Enterprise Linux 8 image. This means the node has some Red Hat OpenStack Platform
software installed but not enabled or configured.

Procedure

1. Create a generic role in your custom roles_data.yaml file that does not contain a
ServicesDefault list:

- name: Generic
- name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...
- name: Compute
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 ...

Ensure that you retain the existing Controller and Compute roles.

2. Create an environment file generic-node-params.yaml to specify how many generic Red Hat
Enterprise Linux 8 nodes you require and the flavor when selecting nodes to provision:

parameter_defaults:
 OvercloudGenericFlavor: baremetal
 GenericCount: 1

3. Include both the roles file and the environment file when you run the openstack overcloud
deploy command:

$ openstack overcloud deploy --templates \
-r ~/templates/roles_data_with_generic.yaml \
-e ~/templates/generic-node-params.yaml

This configuration deploys a three-node environment with one Controller node, one Compute
node, and one generic Red Hat Enterprise Linux 8 node.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

56

CHAPTER 7. CONTAINERIZED SERVICES
Director installs the core OpenStack Platform services as containers on the overcloud. This section
provides some background information on how containerized services work.

7.1. CONTAINERIZED SERVICE ARCHITECTURE

Director installs the core OpenStack Platform services as containers on the overcloud. The templates
for the containerized services are located in the /usr/share/openstack-tripleo-heat-
templates/deployment/.

You must enable the OS::TripleO::Services::Podman service in the role for all nodes that use
containerized services. When you create a roles_data.yaml file for your custom roles configuration,
include the OS::TripleO::Services::Podman service along with the base composable services. For
example, the IronicConductor role uses the following role definition:

- name: IronicConductor
 description: |
 Ironic Conductor node role
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 HostnameFormatDefault: '%stackname%-ironic-%index%'
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::IronicPxe
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned

7.2. CONTAINERIZED SERVICE PARAMETERS

CHAPTER 7. CONTAINERIZED SERVICES

57

Each containerized service template contains an outputs section that defines a data set passed to the
OpenStack Orchestration (heat) service. In addition to the standard composable service parameters
(see Section 6.5, “Examining role parameters”), the template contains a set of parameters specific to
the container configuration.

puppet_config

Data to pass to Puppet when configuring the service. In the initial overcloud deployment steps,
director creates a set of containers used to configure the service before the actual containerized
service runs. This parameter includes the following sub-parameters:

config_volume - The mounted volume that stores the configuration.

puppet_tags - Tags to pass to Puppet during configuration. OpenStack uses these tags to
restrict the Puppet run to the configuration resource of a particular service. For example, the
OpenStack Identity (keystone) containerized service uses the keystone_config tag to
ensure that all require only the keystone_config Puppet resource run on the configuration
container.

step_config - The configuration data passed to Puppet. This is usually inherited from the
referenced composable service.

config_image - The container image used to configure the service.

kolla_config

A set of container-specific data that defines configuration file locations, directory permissions, and
the command to run on the container to launch the service.

docker_config

Tasks to run on the configuration container for the service. All tasks are grouped into the following
steps to help director perform a staged deployment:

Step 1 - Load balancer configuration

Step 2 - Core services (Database, Redis)

Step 3 - Initial configuration of OpenStack Platform service

Step 4 - General OpenStack Platform services configuration

Step 5 - Service activation

host_prep_tasks

Preparation tasks for the bare metal node to accommodate the containerized service.

7.3. PREPARING CONTAINER IMAGES

The overcloud installation requires an environment file to determine where to obtain container images
and how to store them. Generate and customize this environment file that you can use to prepare your
container images.

NOTE

If you need to configure specific container image versions for your overcloud, you must
pin the images to a specific version. For more information, see Pinning container images
for the overcloud.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

58

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#ref_pinning-container-images-for-the-overcloud_assembly_performing-advanced-overcloud-container-image-management

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ sudo openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means that director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. Director uses this registry as
the container image source. To pull directly from the Red Hat Container Catalog, omit this
option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is
containers-prepare-parameter.yaml.

NOTE

You can use the same containers-prepare-parameter.yaml file to define a
container image source for both the undercloud and the overcloud.

3. Modify the containers-prepare-parameter.yaml to suit your requirements.

7.4. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerImagePrepare heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
 ContainerImagePrepare:
 - (strategy one)
 - (strategy two)
 - (strategy three)
 ...

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the
images. The following table contains information about the sub-parameters that you can use with each
ContainerImagePrepare strategy:

Parameter Description

excludes List of regular expressions to exclude image names
from a strategy.

CHAPTER 7. CONTAINERIZED SERVICES

59

includes List of regular expressions to include in a strategy. At
least one image name must match an existing image.
All excludes are ignored if includes is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 16.2.3-
5.161 and set the modify_append_tag to -hotfix,
the director tags the final image as 16.2.3-5.161-
hotfix.

modify_only_with_labels A dictionary of image labels that filter the images
that you want to modify. If an image matches the
labels defined, the director includes the image in the
modification process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination Defines the namespace of the registry that you want
to push images to during the upload process.

If set to true, the push_destination is set
to the undercloud registry namespace using
the hostname, which is the recommended
method.

If set to false, the push to a local registry
does not occur and nodes pull images
directly from the source.

If set to a custom value, director pushes
images to an external local registry.

If you set this parameter to false in production
environments while pulling images directly from Red
Hat Container Catalog, all overcloud nodes will
simultaneously pull the images from the Red Hat
Container Catalog over your external connection,
which can cause bandwidth issues. Only use false to
pull directly from a Red Hat Satellite Server hosting
the container images.

If the push_destination parameter is set to false
or is not defined and the remote registry requires
authentication, set the
ContainerImageRegistryLogin parameter to
true and include the credentials with the
ContainerImageRegistryCredentials
parameter.

Parameter Description

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

60

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Use the value of specified container image metadata
labels to create a tag for every image and pull that
tagged image. For example, if you set
tag_from_label: {version}-{release}, director
uses the version and release labels to construct a
new tag. For one container, version might be set to
16.2.3 and release might be set to 5.161, which
results in the tag 16.2.3-5.161. Director uses this
parameter only if you have not defined tag in the set
dictionary.

Parameter Description

IMPORTANT

When you push images to the undercloud, use push_destination: true instead of
push_destination: UNDERCLOUD_IP:PORT. The push_destination: true method
provides a level of consistency across both IPv4 and IPv6 addresses.

The set parameter accepts a set of key: value definitions:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

ceph_alertmanager_image

ceph_alertmanager_namespace

ceph_alertmanager_tag

The name, namespace, and tag of the Ceph Storage
Alert Manager container image.

ceph_grafana_image

ceph_grafana_namespace

ceph_grafana_tag

The name, namespace, and tag of the Ceph Storage
Grafana container image.

CHAPTER 7. CONTAINERIZED SERVICES

61

ceph_node_exporter_image

ceph_node_exporter_namespace

ceph_node_exporter_tag

The name, namespace, and tag of the Ceph Storage
Node Exporter container image.

ceph_prometheus_image

ceph_prometheus_namespace

ceph_prometheus_tag

The name, namespace, and tag of the Ceph Storage
Prometheus container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

tag Sets a specific tag for all images from the source. If
not defined, director uses the Red Hat OpenStack
Platform version number as the default value. This
parameter takes precedence over the
tag_from_label value.

Key Description

NOTE

The container images use multi-stream tags based on the Red Hat OpenStack Platform
version. This means that there is no longer a latest tag.

7.5. GUIDELINES FOR CONTAINER IMAGE TAGGING

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform
container images. This format follows the label metadata for each container, which is version-release.

version

Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as
streams that contain one or more releases.

release

Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 16.2.3 and the release for the
container image is 5.161, then the resulting tag for the container image is 16.2.3-5.161.

The Red Hat Container Registry also uses a set of major and minor version tags that link to the latest
release for that container image version. For example, both 16.2 and 16.2.3 link to the latest release in

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

62

the 16.2.3 container stream. If a new minor release of 16.2 occurs, the 16.2 tag links to the latest release
for the new minor release stream while the 16.2.3 tag continues to link to the latest release within the
16.2.3 stream.

The ContainerImagePrepare parameter contains two sub-parameters that you can use to determine
which container image to download. These sub-parameters are the tag parameter within the set
dictionary, and the tag_from_label parameter. Use the following guidelines to determine whether to use
tag or tag_from_label.

The default value for tag is the major version for your OpenStack Platform version. For this
version it is 16.2. This always corresponds to the latest minor version and release.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 16.2
 ...

To change to a specific minor version for OpenStack Platform container images, set the tag to a
minor version. For example, to change to 16.2.2, set tag to 16.2.2.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 16.2.2
 ...

When you set tag, director always downloads the latest container image release for the version
set in tag during installation and updates.

If you do not set tag, director uses the value of tag_from_label in conjunction with the latest
major version.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 # tag: 16.2
 ...
 tag_from_label: '{version}-{release}'

The tag_from_label parameter generates the tag from the label metadata of the latest
container image release it inspects from the Red Hat Container Registry. For example, the labels
for a certain container might use the following version and release metadata:

 "Labels": {
 "release": "5.161",
 "version": "16.2.3",
 ...
 }

The default value for tag_from_label is {version}-{release}, which corresponds to the version
and release metadata labels for each container image. For example, if a container image has

CHAPTER 7. CONTAINERIZED SERVICES

63

16.2.3 set for version and 5.161 set for release, the resulting tag for the container image is
16.2.3-5.161.

The tag parameter always takes precedence over the tag_from_label parameter. To use
tag_from_label, omit the tag parameter from your container preparation configuration.

A key difference between tag and tag_from_label is that director uses tag to pull an image only
based on major or minor version tags, which the Red Hat Container Registry links to the latest
image release within a version stream, while director uses tag_from_label to perform a
metadata inspection of each container image so that director generates a tag and pulls the
corresponding image.

7.6. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES

The registry.redhat.io registry requires authentication to access and pull images. To authenticate with
registry.redhat.io and other private registries, include the ContainerImageRegistryCredentials and
ContainerImageRegistryLogin parameters in your containers-prepare-parameter.yaml file.

ContainerImageRegistryCredentials

Some container image registries require authentication to access images. In this situation, use the
ContainerImageRegistryCredentials parameter in your containers-prepare-parameter.yaml
environment file. The ContainerImageRegistryCredentials parameter uses a set of keys based on the
private registry URL. Each private registry URL uses its own key and value pair to define the username
(key) and password (value). This provides a method to specify credentials for multiple private registries.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and
using those credentials to access registry.redhat.io content.

To specify authentication details for multiple registries, set multiple key-pair values for each registry in
ContainerImageRegistryCredentials:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 - push_destination: true
 set:
 namespace: registry.internalsite.com/...
 ...
 ...
 ContainerImageRegistryCredentials:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

64

 registry.redhat.io:
 myuser: 'p@55w0rd!'
 registry.internalsite.com:
 myuser2: '0th3rp@55w0rd!'
 '192.0.2.1:8787':
 myuser3: '@n0th3rp@55w0rd!'

IMPORTANT

The default ContainerImagePrepare parameter pulls container images from
registry.redhat.io, which requires authentication.

For more information, see Red Hat Container Registry Authentication .

ContainerImageRegistryLogin

The ContainerImageRegistryLogin parameter is used to control whether an overcloud node system
needs to log in to the remote registry to fetch the container images. This situation occurs when you
want the overcloud nodes to pull images directly, rather than use the undercloud to host images.

You must set ContainerImageRegistryLogin to true if push_destination is set to false or not used for
a given strategy.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: true

However, if the overcloud nodes do not have network connectivity to the registry hosts defined in
ContainerImageRegistryCredentials and you set ContainerImageRegistryLogin to true, the
deployment might fail when trying to perform a login. If the overcloud nodes do not have network
connectivity to the registry hosts defined in the ContainerImageRegistryCredentials, set
push_destination to true and ContainerImageRegistryLogin to false so that the overcloud nodes
pull images from the undercloud.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: false

CHAPTER 7. CONTAINERIZED SERVICES

65

https://access.redhat.com/RegistryAuthentication

7.7. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means that you can specify
multiple entries.

The following example demonstrates two entries where director uses the latest version of all images
except for the nova-api image, which uses the version tagged with 16.2.1-hotfix:

parameter_defaults:
 ContainerImagePrepare:
 - tag_from_label: "{version}-{release}"
 push_destination: true
 excludes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel8
 name_prefix: openstack-
 name_suffix: ''
 tag:16.2
 - push_destination: true
 includes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel8
 tag: 16.2.1-hotfix

The includes and excludes parameters use regular expressions to control image filtering for each
entry. The images that match the includes strategy take precedence over excludes matches. The
image name must match the includes or excludes regular expression value to be considered a match.

A similar technique is used if your Block Storage (cinder) driver requires a vendor supplied cinder-
volume image known as a plugin. If your Block Storage driver requires a plugin, see Deploying a vendor
plugin in the Advanced Overcloud Customization guide.

7.8. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, and then immediately deploy the overcloud
with modified images.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying images during
preparation for RHOSP containers, not for Ceph containers.

Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes must be deployed for testing and
development.

When changes must be deployed but are not available through an image build pipeline. For
example, adding proprietary add-ons or emergency fixes.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization/index#deploying-a-vendor-plugin
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface and provides the
behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. Change modify_append_tag
whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, run the image
prepare command without any additional options to confirm that the image is modified as you expect:

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml

IMPORTANT

To use the openstack tripleo container image prepare command, your undercloud
must contain a running image-serve registry. As a result, you cannot run this command
before a new undercloud installation because the image-serve registry will not be
installed. You can run this command after a successful undercloud installation.

7.9. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

NOTE

Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on
container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry updates in all packages on the container
images by using the dnf repository configuration of the undercloud host:

ContainerImagePrepare:
- push_destination: true
 ...
 modify_role: tripleo-modify-image
 modify_append_tag: "-updated"
 modify_vars:
 tasks_from: yum_update.yml

CHAPTER 7. CONTAINERIZED SERVICES

67

 compare_host_packages: true
 yum_repos_dir_path: /etc/yum.repos.d
 ...

7.10. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package that is not available through a package repository.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files
to container images for RHOSP containers, not for Ceph containers.

NOTE

When you modify container images in existing deployments, you must then perform a
minor update to apply the changes to your overcloud. For more information, see Keeping
Red Hat OpenStack Platform Updated.

Procedure

The following example ContainerImagePrepare entry installs some hotfix packages on only the
nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: rpm_install.yml
 rpms_path: /home/stack/nova-hotfix-pkgs
 ...

7.11. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

You can specify a directory that contains a Dockerfile to make the required changes. When you invoke
the tripleo-modify-image role, the role generates a Dockerfile.modified file that changes the FROM
directive and adds extra LABEL directives.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying container images
with a custom Dockerfile for RHOSP containers, not for Ceph containers.

Procedure

1. The following example runs the custom Dockerfile on the nova-compute image:

ContainerImagePrepare:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/keeping_red_hat_openstack_platform_updated/index

- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: modify_image.yml
 modify_dir_path: /home/stack/nova-custom
 ...

2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any
USER root directives, you must switch back to the original image default user:

FROM registry.redhat.io/rhosp-rhel8/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

7.12. DEPLOYING A VENDOR PLUGIN

To use some third-party hardware as a Block Storage back end, you must deploy a vendor plugin. The
following example demonstrates how to deploy a vendor plugin to use Dell EMC hardware as a Block
Storage back end.

For more information about supported back end appliances and drivers, see Third-Party Storage
Providers in the Storage Guide.

Procedure

1. Create a new container images file for your overcloud:

$ sudo openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter-dellemc.yaml

2. Edit the containers-prepare-parameter-dellemc.yaml file.

3. Add an exclude parameter to the strategy for the main Red Hat OpenStack Platform container
images. Use this parameter to exclude the container image that the vendor container image will
replace. In the example, the container image is the cinder-volume image:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 excludes:
 - cinder-volume
 set:
 namespace: registry.redhat.io/rhosp-rhel8
 name_prefix: openstack-

CHAPTER 7. CONTAINERIZED SERVICES

69

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/storage_guide/ch-cinder#third_party_storage_providers

 name_suffix: ''
 tag: 16.2
 ...
 tag_from_label: "{version}-{release}"

4. Add a new strategy to the ContainerImagePrepare parameter that includes the replacement
container image for the vendor plugin:

parameter_defaults:
 ContainerImagePrepare:
 ...
 - push_destination: true
 includes:
 - cinder-volume
 set:
 namespace: registry.connect.redhat.com/dellemc
 name_prefix: openstack-
 name_suffix: -dellemc-rhosp16
 tag: 16.2-2
 ...

5. Add the authentication details for the registry.connect.redhat.com registry to the
ContainerImageRegistryCredentials parameter:

parameter_defaults:
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 [service account username]: [service account password]
 registry.connect.redhat.com:
 [service account username]: [service account password]

6. Save the containers-prepare-parameter-dellemc.yaml file.

7. Include the containers-prepare-parameter-dellemc.yaml file with any deployment commands,
such as as openstack overcloud deploy:

$ openstack overcloud deploy --templates
 ...
 -e containers-prepare-parameter-dellemc.yaml
 ...

When director deploys the overcloud, the overcloud uses the vendor container image instead of
the standard container image.

IMPORTANT

The containers-prepare-parameter-dellemc.yaml file replaces the standard containers-
prepare-parameter.yaml file in your overcloud deployment. Do not include the standard
containers-prepare-parameter.yaml file in your overcloud deployment. Retain the standard
containers-prepare-parameter.yaml file for your undercloud installation and updates.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

70

CHAPTER 8. BASIC NETWORK ISOLATION
Configure the overcloud to use isolated networks so that you can host specific types of network traffic
in isolation. Red Hat OpenStack Platform (RHOSP) includes a set of environment files that you can use
to configure this network isolation. You might also require additional environment files to further
customize your networking parameters:

An environment file that you can use to enable network isolation (/usr/share/openstack-
tripleo-heat-templates/environments/network-isolation.yaml).

NOTE

Before you deploy RHOSP with director, the files network-isolation.yaml and
network-environment.yaml are only in Jinja2 format and have a .j2.yaml
extension. Director renders these files to .yaml versions during deployment.

An environment file that you can use to configure network defaults (/usr/share/openstack-
tripleo-heat-templates/environments/network-environment.yaml).

A network_data file that you can use to define network settings such as IP ranges, subnets, and
virtual IPs. This example shows you how to create a copy of the default and edit it to suit your
own network.

Templates that you can use to define your NIC layout for each node. The overcloud core
template collection contains a set of defaults for different use cases.

An environment file that you can use to enable NICs. This example uses a default file located in
the environments directory.

8.1. NETWORK ISOLATION

The overcloud assigns services to the provisioning network by default. However, director can divide
overcloud network traffic into isolated networks. To use isolated networks, the overcloud contains an
environment file that enables this feature. The environments/network-isolation.j2.yaml file in the core
heat templates is a Jinja2 file that defines all ports and VIPs for each network in your composable
network file. When rendered, it results in a network-isolation.yaml file in the same location with the full
resource registry:

resource_registry:
 # networks as defined in network_data.yaml
 OS::TripleO::Network::Storage: ../network/storage.yaml
 OS::TripleO::Network::StorageMgmt: ../network/storage_mgmt.yaml
 OS::TripleO::Network::InternalApi: ../network/internal_api.yaml
 OS::TripleO::Network::Tenant: ../network/tenant.yaml
 OS::TripleO::Network::External: ../network/external.yaml

 # Port assignments for the VIPs
 OS::TripleO::Network::Ports::StorageVipPort: ../network/ports/storage.yaml
 OS::TripleO::Network::Ports::StorageMgmtVipPort: ../network/ports/storage_mgmt.yaml
 OS::TripleO::Network::Ports::InternalApiVipPort: ../network/ports/internal_api.yaml
 OS::TripleO::Network::Ports::ExternalVipPort: ../network/ports/external.yaml
 OS::TripleO::Network::Ports::RedisVipPort: ../network/ports/vip.yaml

 # Port assignments by role, edit role definition to assign networks to roles.

CHAPTER 8. BASIC NETWORK ISOLATION

71

 # Port assignments for the Controller
 OS::TripleO::Controller::Ports::StoragePort: ../network/ports/storage.yaml
 OS::TripleO::Controller::Ports::StorageMgmtPort: ../network/ports/storage_mgmt.yaml
 OS::TripleO::Controller::Ports::InternalApiPort: ../network/ports/internal_api.yaml
 OS::TripleO::Controller::Ports::TenantPort: ../network/ports/tenant.yaml
 OS::TripleO::Controller::Ports::ExternalPort: ../network/ports/external.yaml

 # Port assignments for the Compute
 OS::TripleO::Compute::Ports::StoragePort: ../network/ports/storage.yaml
 OS::TripleO::Compute::Ports::InternalApiPort: ../network/ports/internal_api.yaml
 OS::TripleO::Compute::Ports::TenantPort: ../network/ports/tenant.yaml

 # Port assignments for the CephStorage
 OS::TripleO::CephStorage::Ports::StoragePort: ../network/ports/storage.yaml
 OS::TripleO::CephStorage::Ports::StorageMgmtPort: ../network/ports/storage_mgmt.yaml

The first section of this file has the resource registry declaration for the OS::TripleO::Network::*
resources. By default, these resources use the OS::Heat::None resource type, which does not create
any networks. By redirecting these resources to the YAML files for each network, you enable the
creation of these networks.

The next several sections create the IP addresses for the nodes in each role. The controller nodes have
IPs on each network. The compute and storage nodes each have IPs on a subset of the networks.

Other functions of overcloud networking, such as Chapter 9, Custom composable networks and
Chapter 10, Custom network interface templates rely on the network-isolation.yaml environment file.
Therefore you must include the the rendered environment file in your deployment commands:

$ openstack overcloud deploy --templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 ...

8.2. MODIFYING ISOLATED NETWORK CONFIGURATION

Copy the default network_data.yaml file and modify the copy to configure the default isolated
networks.

Procedure

1. Copy the default network_data.yaml file:

$ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml /home/stack/.

2. Edit the local copy of the network_data.yaml file and modify the parameters to suit your
networking requirements. For example, the Internal API network contains the following default
network details:

- name: InternalApi
 name_lower: internal_api
 vip: true
 vlan: 201
 ip_subnet: '172.16.2.0/24'
 allocation_pools: [{'start': '172.16.2.4', 'end': '172.16.2.250'}]

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

72

Edit the following values for each network:

vlan defines the VLAN ID that you want to use for this network.

ip_subnet and ip_allocation_pools set the default subnet and IP range for the network.

gateway sets the gateway for the network. Use this value to define the default route for the
External network, or for other networks if necessary.

Include the custom network_data.yaml file with your deployment using the -n option. Without the -n
option, the deployment command uses the default network details.

8.3. NETWORK INTERFACE TEMPLATES

The overcloud network configuration requires a set of the network interface templates. These templates
are standard heat templates in YAML format. Each role requires a NIC template so that director can
configure each node within that role correctly.

All NIC templates contain the same sections as standard heat templates:

heat_template_version

The syntax version to use.

description

A string description of the template.

parameters

Network parameters to include in the template.

resources

Takes parameters defined in parameters and applies them to a network configuration script.

outputs

Renders the final script used for configuration.

The default NIC templates in /usr/share/openstack-tripleo-heat-templates/network/config use Jinja2
syntax to render the template. For example, the following snippet from the single-nic-vlans
configuration renders a set of VLANs for each network:

{%- for network in networks if network.enabled|default(true) and network.name in role.networks %}
- type: vlan
 vlan_id:
 get_param: {{network.name}}NetworkVlanID
 addresses:
 - ip_netmask:
 get_param: {{network.name}}IpSubnet
{%- if network.name in role.default_route_networks %}

For default Compute nodes, this renders only the network information for the Storage, Internal API, and
Tenant networks:

- type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: bridge_name
 addresses:

CHAPTER 8. BASIC NETWORK ISOLATION

73

 - ip_netmask:
 get_param: StorageIpSubnet
- type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bridge_name
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
- type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bridge_name
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

Chapter 10, Custom network interface templates explores how to render the default Jinja2-based
templates to standard YAML versions, which you can use as a basis for customization.

8.4. DEFAULT NETWORK INTERFACE TEMPLATES

Director contains templates in /usr/share/openstack-tripleo-heat-templates/network/config/ to suit
most common network scenarios. The following table outlines each NIC template set and the respective
environment file that you must use to enable the templates.

NOTE

Each environment file for enabling NIC templates uses the suffix .j2.yaml. This is the
unrendered Jinja2 version. Ensure that you include the rendered file name, which uses the
.yaml suffix, in your deployment.

NIC directory Description Environment file

single-nic-vlans Single NIC (nic1) with control
plane and VLANs attached to
default Open vSwitch bridge.

environments/net-single-nic-
with-vlans.j2.yaml

single-nic-linux-bridge-vlans Single NIC (nic1) with control
plane and VLANs attached to
default Linux bridge.

environments/net-single-nic-
linux-bridge-with-vlans

bond-with-vlans Control plane attached to nic1.
Default Open vSwitch bridge with
bonded NIC configuration (nic2
and nic3) and VLANs attached.

environments/net-bond-with-
vlans.yaml

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

74

multiple-nics Control plane attached to nic1.
Assigns each sequential NIC to
each network defined in the
network_data.yaml file. By
default, this is Storage to nic2,
Storage Management to nic3,
Internal API to nic4, Tenant to
nic5 on the br-tenant bridge,
and External to nic6 on the
default Open vSwitch bridge.

environments/net-multiple-
nics.yaml

NIC directory Description Environment file

NOTE

Environment files exist for deploying the overcloud without an external network, for
example, net-bond-with-vlans-no-external.yaml, and for IPv6 deployments, for
example, net-bond-with-vlans-v6.yaml. These are provided for backwards compatibility
and do not function with composable networks.

Each default NIC template set contains a role.role.j2.yaml template. This file uses Jinja2 to render
additional files for each composable role. For example, if your overcloud uses Compute, Controller, and
Ceph Storage roles, the deployment renders new templates based on role.role.j2.yaml, such as the
following templates:

compute.yaml

controller.yaml

ceph-storage.yaml.

8.5. ENABLING BASIC NETWORK ISOLATION

Director includes templates that you can use to enable basic network isolation. These files are located in
the /usr/share/openstack-tripleo-heat-templates/environments directory. For example, you can use
the templates to deploy an overcloud on a single NIC with VLANs with basic network isolation. In this
scenario, use the net-single-nic-with-vlans template.

Procedure

1. When you run the openstack overcloud deploy command, ensure that you include the
following rendered environment files:

The custom network_data.yaml file.

The rendered file name of the default network isolation file.

The rendered file name of the default network environment file.

The rendered file name of the default network interface configuration file.

Any additional environment files relevant to your configuration.

CHAPTER 8. BASIC NETWORK ISOLATION

75

For example:

$ openstack overcloud deploy --templates \
 ...
 -n /home/stack/network_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-with-vlans.yaml \
 ...

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

76

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS
You can create custom composable networks if you want to host specific network traffic on different
networks. To configure the overcloud with an additional composable network, you must configure the
following files and templates:

The environment file to enable network isolation (/usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml).

The environment file to configure network defaults (/usr/share/openstack-tripleo-heat-
templates/environments/network-environment.yaml).

A custom network_data file to create additional networks outside of the defaults.

A custom roles_data file to assign custom networks to roles.

Templates to define your NIC layout for each node. The overcloud core template collection
contains a set of defaults for different use cases.

An environment file to enable NICs. This example uses a default file that is located in the
environments directory.

Any additional environment files to customize your networking parameters. This example uses
an environment file to customize OpenStack service mappings to composable networks.

NOTE

Some of the files in the previous list are Jinja2 format files and have a .j2.yaml extension.
Director renders these files to .yaml versions during deployment.

9.1. COMPOSABLE NETWORKS

The overcloud uses the following pre-defined set of network segments by default:

Control Plane

Internal API

Storage

Storage Management

Tenant

External

Management (optional)

You can use composable networks to add networks for various services. For example, if you have a
network that is dedicated to NFS traffic, you can present it to multiple roles.

Director supports the creation of custom networks during the deployment and update phases. You can
use these additional networks for ironic bare metal nodes, system management, or to create separate
networks for different roles. You can also use them to create multiple sets of networks for split
deployments where traffic is routed between networks.

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS

77

A single data file (network_data.yaml) manages the list of networks that you want to deploy. Include
this file with your deployment command using the -n option. Without this option, the deployment uses
the default /usr/share/openstack-tripleo-heat-templates/network_data.yaml file.

9.2. ADDING A COMPOSABLE NETWORK

Use composable networks to add networks for various services. For example, if you have a network that
is dedicated to storage backup traffic, you can present the network to multiple roles.

Procedure

1. Copy the default network_data.yaml file:

$ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml /home/stack/.

2. Edit the local copy of the network_data.yaml file and add a section for your new network:

- name: StorageBackup
 name_lower: storage_backup
 vlan: 21
 vip: true
 ip_subnet: '172.21.1.0/24'
 allocation_pools: [{'start': '171.21.1.4', 'end': '172.21.1.250'}]
 gateway_ip: '172.21.1.1'

You can use the following parameters in your network_data.yaml file:

name

Sets the human readable name of the network. This parameter is the only mandatory
parameter. You can also use name_lower to normalize names for readability. For example,
change InternalApi to internal_api.

name_lower

Sets the lowercase version of the name, which director maps to respective networks
assigned to roles in the roles_data.yaml file.

vlan

Sets the VLAN that you want to use for this network.

vip: true

Creates a virtual IP address (VIP) on the new network. This IP is used as the target IP for
services listed in the service-to-network mapping parameter (ServiceNetMap). Note that
VIPs are used only by roles that use Pacemaker. The overcloud load-balancing service
redirects traffic from these IPs to their respective service endpoint.

ip_subnet

Sets the default IPv4 subnet in CIDR format.

allocation_pools

Sets the IP range for the IPv4 subnet

gateway_ip

Sets the gateway for the network.

routes

Adds additional routes to the network. Uses a JSON list that contains each additional route.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

78

Adds additional routes to the network. Uses a JSON list that contains each additional route.
Each list item contains a dictionary value mapping. Use the following example syntax:

 routes: [{'destination':'10.0.0.0/16', 'nexthop':'10.0.2.254'}]

subnets

Creates additional routed subnets that fall within this network. This parameter accepts a dict
value that contains the lowercase name of the routed subnet as the key and the vlan,
ip_subnet, allocation_pools, and gateway_ip parameters as the value mapped to the
subnet. The following example demonstrates this layout:

- name: StorageBackup
 name_lower: storage_backup
 vlan: 200
 vip: true
 ip_subnet: '172.21.0.0/24'
 allocation_pools: [{'start': '171.21.0.4', 'end': '172.21.0.250'}]
 gateway_ip: '172.21.0.1'
 subnets:
 storage_backup_leaf1:
 vlan: 201
 ip_subnet: '172.21.1.0/24'
 allocation_pools: [{'start': '171.21.1.4', 'end': '172.21.1.250'}]
 gateway_ip: '172.19.1.254'

This mapping is common in spine leaf deployments. For more information, see the Spine
Leaf Networking guide.

3. When you add an extra composable network that contains a virtual IP, and want to map some
API services to this network, use the CloudName{network.name} definition to set the DNS
name for the API endpoint:

CloudName{{network.name}}

Here is an example:

parameter_defaults:
 ...
 CloudNameOcProvisioning: baremetal-vip.example.com

4. Include the custom network_data.yaml file in your deployment command using the -n option.
Without the -n option, the deployment command uses the default set of networks.

5. If you want a predictable virtual IP address (VIP), add a VirtualFixedIPs parameter for your
custom network to the parameter_defaults section of a heat environment file, for example,
my_network_vips.yaml:

<% my_customer_network %>VirtualFixedIPs: [{'ip_address':'<% ipaddres %>'}]

Here is an example:

parameter_defaults:
 ...

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/spine_leaf_networking/index

 # Predictable VIPs
 StorageBackuptVirtualFixedIPs: [{'ip_address':'172.21.1.9'}]

6. Include the heat environment file, my_network_vips.yaml, in your deployment command by
using the -e option.

Additional resources

Assigning predictable Virtual IPs

Environment files

overcloud deploy in the Command line interface reference

9.3. INCLUDING A COMPOSABLE NETWORK IN A ROLE

You can assign composable networks to the overcloud roles defined in your environment. For example,
you might include a custom StorageBackup network with your Ceph Storage nodes.

Procedure

1. If you do not already have a custom roles_data.yaml file, copy the default to your home
directory:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml /home/stack/.

2. Edit the custom roles_data.yaml file.

3. Include the network name in the networks list for the role that you want to add the network to.
For example, to add the StorageBackup network to the Ceph Storage role, use the following
example snippet:

- name: CephStorage
 description: |
 Ceph OSD Storage node role
 networks:
 - Storage
 - StorageMgmt
 - StorageBackup

4. After you add custom networks to their respective roles, save the file.

When you run the openstack overcloud deploy command, include the custom roles_data.yaml file
using the -r option. Without the -r option, the deployment command uses the default set of roles with
their respective assigned networks.

9.4. ASSIGNING OPENSTACK SERVICES TO COMPOSABLE
NETWORKS

Each OpenStack service is assigned to a default network type in the resource registry. These services
are bound to IP addresses within the network type’s assigned network. Although the OpenStack services
are divided among these networks, the number of actual physical networks can differ as defined in the
network environment file. You can reassign OpenStack services to different network types by defining a

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

80

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_controlling-node-placement#proc_assigning-predictable-virtual-ips_controlling-node-placement
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_understanding-heat-templates#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/command_line_interface_reference/overcloud#overcloud_deploy

new network map in an environment file, for example, /home/stack/templates/service-
reassignments.yaml. The ServiceNetMap parameter determines the network types that you want to
use for each service.

For example, you can reassign the Storage Management network services to the Storage Backup
Network by modifying the highlighted sections:

parameter_defaults:
 ServiceNetMap:
 SwiftMgmtNetwork: storage_backup
 CephClusterNetwork: storage_backup

Changing these parameters to storage_backup places these services on the Storage Backup network
instead of the Storage Management network. This means that you must define a set of
parameter_defaults only for the Storage Backup network and not the Storage Management network.

Director merges your custom ServiceNetMap parameter definitions into a pre-defined list of defaults
that it obtains from ServiceNetMapDefaults and overrides the defaults. Director returns the full list,
including customizations, to ServiceNetMap, which is used to configure network assignments for
various services.

Service mappings apply to networks that use vip: true in the network_data.yaml file for nodes that use
Pacemaker. The overcloud load balancer redirects traffic from the VIPs to the specific service
endpoints.

NOTE

You can find a full list of default services in the ServiceNetMapDefaults parameter in the
/usr/share/openstack-tripleo-heat-templates/network/service_net_map.j2.yaml file.

9.5. ENABLING CUSTOM COMPOSABLE NETWORKS

Enable custom composable networks using one of the default NIC templates. In this example, use the
Single NIC with VLANs template (net-single-nic-with-vlans).

Procedure

1. When you run the openstack overcloud deploy command, ensure that you include the
following files:

The custom network_data.yaml file.

The custom roles_data.yaml file with network-to-role assignments.

The rendered file name of the default network isolation.

The rendered file name of the default network environment file.

The rendered file name of the default network interface configuration.

Any additional environment files related to your network, such as the service reassignments.

For example:

$ openstack overcloud deploy --templates \

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS

81

 ...
 -n /home/stack/network_data.yaml \
 -r /home/stack/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-with-vlans.yaml \
 -e /home/stack/templates/service-reassignments.yaml \
 ...

This example command deploys the composable networks, including your additional custom networks,
across nodes in your overcloud.

IMPORTANT

Remember that you must render the templates again if you are introducing a new custom
network, such as a management network. Simply adding the network name to the
roles_data.yaml file is not sufficient.

9.6. RENAMING THE DEFAULT NETWORKS

You can use the network_data.yaml file to modify the user-visible names of the default networks:

InternalApi

External

Storage

StorageMgmt

Tenant

To change these names, do not modify the name field. Instead, change the name_lower field to the
new name for the network and update the ServiceNetMap with the new name.

Procedure

1. In your network_data.yaml file, enter new names in the name_lower parameter for each
network that you want to rename:

- name: InternalApi
 name_lower: MyCustomInternalApi

2. Include the default value of the name_lower parameter in the service_net_map_replace
parameter:

- name: InternalApi
 name_lower: MyCustomInternalApi
 service_net_map_replace: internal_api

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

82

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES
After you configure Chapter 8, Basic network isolation , you can create a set of custom network interface
templates to suit the nodes in your environment. For example, you can include the following files:

The environment file to enable network isolation (/usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml).

The environment file to configure network defaults (/usr/share/openstack-tripleo-heat-
templates/environments/network-environment.yaml).

Templates to define your NIC layout for each node. The overcloud core template collection
contains a set of defaults for different use cases. To create a custom NIC template, render a
default Jinja2 template as the basis for your custom templates.

A custom environment file to enable NICs. This example uses a custom environment file
(/home/stack/templates/custom-network-configuration.yaml) that references your custom
interface templates.

Any additional environment files to customize your networking parameters.

If you customize your networks, a custom network_data.yaml file.

If you create additional or custom composable networks, a custom network_data.yaml file and
a custom roles_data.yaml file.

NOTE

Some of the files in the previous list are Jinja2 format files and have a .j2.yaml extension.
Director renders these files to .yaml versions during deployment.

10.1. CUSTOM NETWORK ARCHITECTURE

The default NIC templates might not suit a specific network configuration. For example, you might want
to create your own custom NIC template that suits a specific network layout. You might want to
separate the control services and data services on to separate NICs. In this situation, you can map the
service to NIC assignments in the following way:

NIC1 (Provisioning)

Provisioning / Control Plane

NIC2 (Control Group)

Internal API

Storage Management

External (Public API)

NIC3 (Data Group)

Tenant Network (VXLAN tunneling)

Tenant VLANs / Provider VLANs

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

83

Storage

External VLANs (Floating IP/SNAT)

NIC4 (Management)

Management

10.2. RENDERING DEFAULT NETWORK INTERFACE TEMPLATES FOR
CUSTOMIZATION

To simplify the configuration of custom interface templates, render the Jinja2 syntax of a default NIC
template and use the rendered templates as the basis for your custom configuration.

Procedure

1. Render a copy of the openstack-tripleo-heat-templates collection with the process-
templates.py script:

$ cd /usr/share/openstack-tripleo-heat-templates
$./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered

This converts all Jinja2 templates to their rendered YAML versions and saves the results to
~/openstack-tripleo-heat-templates-rendered.

If you use a custom network file or custom roles file, you can include these files using the -n and
-r options respectively:

$./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered -n
/home/stack/network_data.yaml -r /home/stack/roles_data.yaml

2. Copy the multiple NIC example:

$ cp -r ~/openstack-tripleo-heat-templates-rendered/network/config/multiple-nics/
~/templates/custom-nics/

3. Edit the template set in custom-nics to suit your own network configuration.

10.3. NETWORK INTERFACE ARCHITECTURE

The custom NIC templates that you render in Section 10.2, “Rendering default network interface
templates for customization” contain the parameters and resources sections.

Parameters

The parameters section contains all network configuration parameters for network interfaces. This
includes information such as subnet ranges and VLAN IDs. This section should remain unchanged as the
heat template inherits values from its parent template. However, you can use a network environment file
to modify the values for some parameters.

Resources

The resources section is where the main network interface configuration occurs. In most cases, the

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

84

The resources section is where the main network interface configuration occurs. In most cases, the
resources section is the only one that requires modification. Each resources section begins with the
following header:

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:

This snippet runs a script (run-os-net-config.sh) that creates a configuration file for os-net-config to
use to configure network properties on a node. The network_config section contains the custom
network interface data sent to the run-os-net-config.sh script. You arrange this custom interface data
in a sequence based on the type of device.

IMPORTANT

If you create custom NIC templates, you must set the run-os-net-config.sh script
location to an absolute path for each NIC template. The script is located at
/usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh on
the undercloud.

10.4. NETWORK INTERFACE REFERENCE

Network interface configuration contains the following parameters:

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3"):

 - type: interface
 name: nic2

Table 10.1. interface options

Option Default Description

name Name of the interface.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the interface.

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

85

routes A list of routes assigned to the
interface. For more information,
see routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the interface.

ethtool_opts Set this option to "rx-flow-hash
udp4 sdfn" to improve
throughput when you use VXLAN
on certain NICs.

Option Default Description

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

For example:

 - type: vlan
 vlan_id:{get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask: {get_param: ExternalIpSubnet}

Table 10.2. vlan options

Option Default Description

vlan_id The VLAN ID.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

86

device The parent device to attach the
VLAN. Use this parameter when
the VLAN is not a member of an
OVS bridge. For example, use this
parameter to attach the VLAN to
a bonded interface device.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the VLAN.

routes A list of routes assigned to the
VLAN. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the VLAN as the primary
interface.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the VLAN.

Option Default Description

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with redundancy
and increases bandwidth.

For example:

 - type: ovs_bond
 name: bond1
 members:

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

87

 - type: interface
 name: nic2
 - type: interface
 name: nic3

Table 10.3. ovs_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

ovs_options A set of options to pass to OVS
when creating the bond.

ovs_extra A set of options to set as the
OVS_EXTRA parameter in the
network configuration file of the
bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

88

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

ovs_bridge

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond, and vlan objects
together.

The network interface type, ovs_bridge, takes a parameter name.

NOTE

If you have multiple bridges, you must use distinct bridge names other than accepting the
default name of bridge_name. If you do not use distinct names, then during the converge
phase, two network bonds are placed on the same bridge.

If you are defining an OVS bridge for the external tripleo network, then retain the values bridge_name
and interface_name as your deployment framework automatically replaces these values with an external
bridge name and an external interface name, respectively.

For example:

 - type: ovs_bridge
 name: bridge_name
 addresses:
 - ip_netmask:
 list_join:
 - /
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 members:
 - type: interface
 name: interface_name
 - type: vlan
 device: bridge_name
 vlan_id:
 {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask:
 {get_param: ExternalIpSubnet}

NOTE

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

89

NOTE

The OVS bridge connects to the Networking service (neutron) server to obtain
configuration data. If the OpenStack control traffic, typically the Control Plane and
Internal API networks, is placed on an OVS bridge, then connectivity to the neutron
server is lost whenever you upgrade OVS, or the OVS bridge is restarted by the admin
user or process. This causes some downtime. If downtime is not acceptable in these
circumstances, then you must place the Control group networks on a separate interface
or bond rather than on an OVS bridge:

You can achieve a minimal setting when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

To implement bonding, you need at least two bonds (four network interfaces).
Place the control group on a Linux bond (Linux bridge). If the switch does not
support LACP fallback to a single interface for PXE boot, then this solution
requires at least five NICs.

Table 10.4. ovs_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

ovs_options A set of options to pass to OVS
when creating the bridge.

ovs_extra A set of options to to set as the
OVS_EXTRA parameter in the
network configuration file of the
bridge.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

90

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Ensure that you include the kernel-based bonding options in the
bonding_options parameter.

For example:

 - type: linux_bond
 name: bond1
 members:
 - type: interface
 name: nic2
 primary: true
 - type: interface
 name: nic3
 bonding_options: "mode=802.3ad"

Note that nic2 uses primary: true to ensure that the bond uses the MAC address for nic2.

Table 10.5. linux_bond options

Option Default Description

name Name of the bond.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

91

addresses A list of IP addresses assigned to
the bond.

routes A list of routes assigned to the
bond. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

primary False Defines the interface as the
primary interface.

members A sequence of interface objects
that you want to use in the bond.

bonding_options A set of options when creating
the bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

dns_servers None List of DNS servers that you want
to use for the bond.

Option Default Description

linux_bridge

Defines a Linux bridge, which connects multiple interface, linux_bond, and vlan objects together. The
external bridge also uses two special values for parameters:

bridge_name, which is replaced with the external bridge name.

interface_name, which is replaced with the external interface.

For example:

 - type: linux_bridge
 name: bridge_name
 addresses:
 - ip_netmask:
 list_join:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

92

 - /
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 members:
 - type: interface
 name: interface_name
 - type: vlan
 device: bridge_name
 vlan_id:
 {get_param: ExternalNetworkVlanID}
 addresses:
 - ip_netmask:
 {get_param: ExternalIpSubnet}

Table 10.6. linux_bridge options

Option Default Description

name Name of the bridge.

use_dhcp False Use DHCP to get an IP address.

use_dhcpv6 False Use DHCP to get a v6 IP address.

addresses A list of IP addresses assigned to
the bridge.

routes A list of routes assigned to the
bridge. For more information, see
routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection.

members A sequence of interface, VLAN,
and bond objects that you want
to use in the bridge.

defroute True Use a default route provided by
the DHCP service. Only applies
when you enable use_dhcp or
use_dhcpv6.

persist_mapping False Write the device alias
configuration instead of the
system names.

dhclient_args None Arguments that you want to pass
to the DHCP client.

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

93

dns_servers None List of DNS servers that you want
to use for the bridge.

Option Default Description

routes

Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.

For example:

 - type: interface
 name: nic2
 ...
 routes:
 - ip_netmask: 10.1.2.0/24
 gateway_ip: 10.1.2.1

Option Default Description

ip_netmask None IP and netmask of the destination
network.

default False Sets this route to a default route.
Equivalent to setting
ip_netmask: 0.0.0.0/0.

next_hop None The IP address of the router used
to reach the destination network.

10.5. EXAMPLE NETWORK INTERFACE LAYOUT

The following snippet for an example Controller node NIC template demonstrates how to configure the
custom network scenario to keep the control group separate from the OVS bridge:

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
 params:
 $network_config:
 network_config:
 - type: interface
 name: nic1
 mtu:
 get_param: ControlPlaneMtu

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

94

 use_dhcp: false
 addresses:
 - ip_netmask:
 list_join:
 - /
 - - get_param: ControlPlaneIp
 - get_param: ControlPlaneSubnetCidr
 routes:
 list_concat_unique:
 - get_param: ControlPlaneStaticRoutes
 - type: ovs_bridge
 name: bridge_name
 dns_servers:
 get_param: DnsServers
 domain:
 get_param: DnsSearchDomains
 members:
 - type: ovs_bond
 name: bond1
 mtu:
 get_attr: [MinViableMtu, value]
 ovs_options:
 get_param: BondInterfaceOvsOptions
 members:
 - type: interface
 name: nic2
 mtu:
 get_attr: [MinViableMtu, value]
 primary: true
 - type: interface
 name: nic3
 mtu:
 get_attr: [MinViableMtu, value]
 - type: vlan
 mtu:
 get_param: StorageMtu
 vlan_id:
 get_param: StorageNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet
 routes:
 list_concat_unique:
 - get_param: StorageInterfaceRoutes
 - type: vlan
 mtu:
 get_param: StorageMgmtMtu
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: StorageMgmtIpSubnet
 routes:
 list_concat_unique:
 - get_param: StorageMgmtInterfaceRoutes
 - type: vlan

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

95

 mtu:
 get_param: InternalApiMtu
 vlan_id:
 get_param: InternalApiNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 routes:
 list_concat_unique:
 - get_param: InternalApiInterfaceRoutes
 - type: vlan
 mtu:
 get_param: TenantMtu
 vlan_id:
 get_param: TenantNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
 routes:
 list_concat_unique:
 - get_param: TenantInterfaceRoutes
 - type: vlan
 mtu:
 get_param: ExternalMtu
 vlan_id:
 get_param: ExternalNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 routes:
 list_concat_unique:
 - get_param: ExternalInterfaceRoutes
 - - default: true
 next_hop:
 get_param: ExternalInterfaceDefaultRoute

This template uses three network interfaces and assigns a number of tagged VLAN devices to the
numbered interfaces, nic1 to nic3. On nic2 and nic3 this template creates the OVS bridge that hosts
the Storage, Tenant, and External networks. As a result, it creates the following layout:

NIC1 (Provisioning)

Provisioning / Control Plane

NIC2 and NIC3 (Management)

Internal API

Storage

Storage Management

Tenant Network (VXLAN tunneling)

Tenant VLANs / Provider VLANs

External (Public API)

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

96

External VLANs (Floating IP/SNAT)

10.6. NETWORK INTERFACE TEMPLATE CONSIDERATIONS FOR
CUSTOM NETWORKS

When you use composable networks, the process-templates.py script renders the static templates to
include networks and roles that you define in your network_data.yaml and roles_data.yaml files.
Ensure that your rendered NIC templates contain the following items:

A static file for each role, including custom composable networks.

The correct network definitions in the static file for each role.

Each static file requires all of the parameter definitions for any custom networks, even if the network is
not used on the role. Ensure that the rendered templates contain these parameters. For example, if you
add a StorageBackup network only to the Ceph nodes, you must also include this definition in the
parameters section in the NIC configuration templates for all roles:

parameters:
 ...
 StorageBackupIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 ...

You can also include the parameters definitions for VLAN IDs and/or gateway IP, if necessary:

parameters:
 ...
 StorageBackupNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 StorageBackupDefaultRoute:
 description: The default route of the storage backup network.
 type: string
 ...

The IpSubnet parameter for the custom network appears in the parameter definitions for each role.
However, since the Ceph role might be the only role that uses the StorageBackup network, only the
NIC configuration template for the Ceph role uses the StorageBackup parameters in the
network_config section of the template.

 $network_config:
 network_config:
 - type: interface
 name: nic1
 use_dhcp: false
 addresses:
 - ip_netmask:
 get_param: StorageBackupIpSubnet

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

97

10.7. CUSTOM NETWORK ENVIRONMENT FILE

The custom network environment file (in this case, /home/stack/templates/custom-network-
configuration.yaml) is a heat environment file that describes the overcloud network environment and
points to the custom network interface configuration templates. You can define the subnets and VLANs
for your network along with IP address ranges. You can then customize these values for the local
environment.

The resource_registry section contains references to the custom network interface templates for each
node role. Each resource registered uses the following format:

OS::TripleO::[ROLE]::Net::SoftwareConfig: [FILE]

[ROLE] is the role name and [FILE] is the respective network interface template for that particular role.
For example:

resource_registry:
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/custom-nics/controller.yaml

The parameter_defaults section contains a list of parameters that define the network options for each
network type.

10.8. NETWORK ENVIRONMENT PARAMETERS

The following table is a list of parameters that you can use in the parameter_defaults section of a
network environment file to override the default parameter values in your NIC templates.

Parameter Description Type

ControlPlaneDefaultRoute The IP address of the router on
the Control Plane, which is used
as a default route for roles other
than the Controller nodes. Set this
value to the undercloud IP if you
use IP masquerade instead of a
router.

string

ControlPlaneSubnetCidr The CIDR netmask of the IP
network used on the Control
Plane. If the Control Plane
network uses 192.168.24.0/24, the
CIDR is 24.

string (though is always a
number)

*NetCidr The full network and CIDR
netmask for a particular network.
The default is automatically set to
the network ip_subnet setting in
the network_data.yaml file. For
example, InternalApiNetCidr:
172.16.0.0/24.

string

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

98

*AllocationPools The IP allocation range for a
particular network. The default is
automatically set to the network
allocation_pools setting in the
network_data.yaml file. For
example,
InternalApiAllocationPools:
[{'start': '172.16.0.10', 'end':
'172.16.0.200'}].

hash

*NetworkVlanID The VLAN ID for a node on a
particular network. The default is
set automatically to the network
vlan setting in the
network_data.yaml file. For
example,
InternalApiNetworkVlanID:
201.

number

*InterfaceDefaultRoute The router address for a particular
network, which you can use as a
default route for roles or for
routes to other networks. The
default is automatically set to the
network gateway_ip setting in
the network_data.yaml file. For
example,
InternalApiInterfaceDefaultR
oute: 172.16.0.1.

string

DnsServers A list of DNS servers added to
resolv.conf. Usually allows a
maximum of 2 servers.

comma delimited list

BondInterfaceOvsOptions The options for bonding
interfaces. For example,
BondInterfaceOvsOptions:
"bond_mode=balance-slb".

string

NeutronExternalNetworkBrid
ge

Legacy value for the name of the
external bridge that you want to
use for OpenStack Networking
(neutron). This value is empty by
default, which means that you can
define multiple physical bridges in
the NeutronBridgeMappings.
In normal circumstances, do not
override this value.

string

Parameter Description Type

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

99

NeutronFlatNetworks Defines the flat networks that you
want to configure in neutron
plugins. The default value is
datacentre to permit external
network creation. For example,
NeutronFlatNetworks:
"datacentre".

string

NeutronBridgeMappings The logical to physical bridge
mappings that you want to use.
The default value maps the
external bridge on hosts (br-ex)
to a physical name (datacentre).
Refer to the logical name when
you create OpenStack
Networking (neutron) provider
networks or floating IP networks.
For example
NeutronBridgeMappings:
"datacentre:br-ex,tenant:br-
tenant".

string

NeutronPublicInterface Defines the interface that you
want to bridge onto br-ex for
network nodes when you do not
use network isolation. Usually not
used except in small deployments
with only two networks. For
example:
NeutronPublicInterface:
"eth0".

string

NeutronNetworkType The tenant network type for
OpenStack Networking (neutron).
To specify multiple values, use a
comma separated list. The first
type that you specify is used until
all available networks are
exhausted, then the next type is
used. For example,
NeutronNetworkType:
"vxlan". Note that vxlan is not
supported by the ML2/OVN
mechanism driver, which is the
default ML2 mechanism driver.

string

Parameter Description Type

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

100

NeutronTunnelTypes The tunnel types for the neutron
tenant network. To specify
multiple values, use a comma
separated string. For example,
NeutronTunnelTypes:
'gre,vxlan'. Note that vxlan is not
supported by the ML2/OVN
mechanism driver, which is the
default ML2 mechanism driver.

string / comma separated list

NeutronTunnelIdRanges Ranges of GRE tunnel IDs that
you want to make available for
tenant network allocation. For
example,
NeutronTunnelIdRanges
"1:1000".

string

NeutronVniRanges Ranges of VXLAN VNI IDs that
you want to make available for
tenant network allocation. For
example, NeutronVniRanges:
"1:1000".

string

NeutronEnableTunnelling Defines whether to enable or
completely disable all tunnelled
networks. Leave this enabled
unless you are sure that you do
not want to create tunnelled
networks in future. The default
value is true.

Boolean

NeutronNetworkVLANRange
s

The ML2 and Open vSwitch VLAN
mapping range that you want to
support. Defaults to permitting
any VLAN on the datacentre
physical network. To specify
multiple values, use a comma
separated list. For example,
NeutronNetworkVLANRange
s:
"datacentre:1:1000,tenant:10
0:299,tenant:310:399".

string

NeutronMechanismDrivers The mechanism drivers for the
neutron tenant network. The
default value is ovn. To specify
multiple values, use a comma-
separated string. For example,
NeutronMechanismDrivers:
'openvswitch,l2population'.

string / comma separated list

Parameter Description Type

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

101

10.9. EXAMPLE CUSTOM NETWORK ENVIRONMENT FILE

The following snippet is an example of an environment file that you can use to enable your NIC
templates and set custom parameters.

resource_registry:
 OS::TripleO::BlockStorage::Net::SoftwareConfig:
 /home/stack/templates/nic-configs/cinder-storage.yaml
 OS::TripleO::Compute::Net::SoftwareConfig:
 /home/stack/templates/nic-configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig:
 /home/stack/templates/nic-configs/controller.yaml
 OS::TripleO::ObjectStorage::Net::SoftwareConfig:
 /home/stack/templates/nic-configs/swift-storage.yaml
 OS::TripleO::CephStorage::Net::SoftwareConfig:
 /home/stack/templates/nic-configs/ceph-storage.yaml

parameter_defaults:
 # Gateway router for the provisioning network (or Undercloud IP)
 ControlPlaneDefaultRoute: 192.0.2.254
 # Define the DNS servers (maximum 2) for the overcloud nodes
 DnsServers: ["8.8.8.8","8.8.4.4"]
 NeutronExternalNetworkBridge: "''"

10.10. ENABLING NETWORK ISOLATION WITH CUSTOM NICS

To deploy the overcloud with network isolation and custom NIC templates, include all of the relevant
networking environment files in the overcloud deployment command.

Procedure

1. When you run the openstack overcloud deploy command, include the following files:

The custom network_data.yaml file.

The rendered file name of the default network isolation.

The rendered file name of the default network environment file.

The custom environment network configuration that includes resource references to your
custom NIC templates.

Any additional environment files relevant to your configuration.

For example:

$ openstack overcloud deploy --templates \
 ...
 -n /home/stack/network_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
 -e /home/stack/templates/custom-network-configuration.yaml \
 ...

Include the network-isolation.yaml file first, then the network-environment.yaml file. The

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

102

Include the network-isolation.yaml file first, then the network-environment.yaml file. The
subsequent custom-network-configuration.yaml overrides the OS::TripleO::
[ROLE]::Net::SoftwareConfig resources from the previous two files.

If you use composable networks, include the network_data.yaml and roles_data.yaml files
with this command.

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

103

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION
This chapter follows on from the concepts and procedures outlined in Chapter 10, Custom network
interface templates and provides some additional information to help configure parts of your overcloud
network.

11.1. CONFIGURING CUSTOM INTERFACES

Individual interfaces might require modification. The following example shows the modifications that are
necessary to use a second NIC to connect to an infrastructure network with DHCP addresses, and to
use a third and fourth NIC for the bond:

network_config:
 # Add a DHCP infrastructure network to nic2
 - type: interface
 name: nic2
 use_dhcp: true
 - type: ovs_bridge
 name: br-bond
 members:
 - type: ovs_bond
 name: bond1
 ovs_options:
 get_param: BondInterfaceOvsOptions
 members:
 # Modify bond NICs to use nic3 and nic4
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

The network interface template uses either the actual interface name (eth0, eth1, enp0s25) or a set of
numbered interfaces (nic1, nic2, nic3). The network interfaces of hosts within a role do not have to be
exactly the same when you use numbered interfaces (nic1, nic2, etc.) instead of named interfaces
(eth0, eno2, etc.). For example, one host might have interfaces em1 and em2, while another has eno1
and eno2, but you can refer to the NICs of both hosts as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

enoX interfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are usually
add-on interfaces.

The numbered NIC scheme includes only live interfaces, for example, if the interfaces have a cable
attached to the switch. If you have some hosts with four interfaces and some with six interfaces, use
nic1 to nic4 and attach only four cables on each host.

You can configure os-net-config mappings for specific nodes, and assign aliases to the physical
interfaces on each node to pre-determine which physical NIC maps to specific aliases, such as nic1 or
nic2. You can also map a MAC address to a specified alias. You map interfaces to aliases in an
environment file. You can map specific nodes by using the MAC address or DMI keyword, or you can map

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

104

1

2

3

4

a group of nodes by using a DMI keyword. The following example configures three nodes and two node
groups with aliases to the physical interfaces. The resulting configuration is applied by os-net-config.
On each node, you can see the applied configuration in the interface_mapping section of the /etc/os-
net-config/mapping.yaml file.

Example os-net-config-mappings.yaml

resource_registry:
 OS::TripleO::NodeUserData: /usr/share/openstack-tripleo-heat-templates/firstboot/os-net-config-
mappings.yaml
parameter_defaults:
 NetConfigDataLookup:
 node1: 1
 nic1: "00:c8:7c:e6:f0:2e"
 node2:
 nic1: "00:18:7d:99:0c:b6"
 node3: 2
 dmiString: "system-uuid" 3
 id: 'A8C85861-1B16-4803-8689-AFC62984F8F6'
 nic1: em3
 # Dell PowerEdge
 nodegroup1: 4
 dmiString: "system-product-name"
 id: "PowerEdge R630"
 nic1: em3
 nic2: em1
 nic3: em2
 # Cisco UCS B200-M4"
 nodegroup2:
 dmiString: "system-product-name"
 id: "UCSB-B200-M4"
 nic1: enp7s0
 nic2: enp6s0

Maps node1 to the specified MAC address, and assigns nic1 as the alias for the MAC address on
this node.

Maps node3 to the node with the system UUID "A8C85861-1B16-4803-8689-AFC62984F8F6",
and assigns nic1 as the alias for em3 interface on this node.

The dmiString parameter must be set to a valid string keyword. For a list of the valid string
keywords, see the DMIDECODE(8) man page.

Maps all the nodes in nodegroup1 to nodes with the product name "PowerEdge R630", and
assigns nic1, nic2, and nic3 as the alias for the named interfaces on these nodes.

NOTE

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

105

NOTE

If you want to use the NetConfigDataLookup configuration, you must also
include the os-net-config-mappings.yaml file in the NodeUserData resource
registry.

Normally, os-net-config registers only the interfaces that are already connected
in an UP state. However, if you hardcode interfaces with a custom mapping file,
the interface is registered even if it is in a DOWN state.

11.2. CONFIGURING ROUTES AND DEFAULT ROUTES

You can set the default route of a host in one of two ways. If the interface uses DHCP and the DHCP
server offers a gateway address, the system uses a default route for that gateway. Otherwise, you can
set a default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it uses only the gateway with the lowest
metric. If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this
case, it is recommended to set defroute: false for interfaces other than the interface that uses the
default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
snippet to disable the default route on another DHCP interface (nic2):

No default route on this DHCP interface
- type: interface
 name: nic2
 use_dhcp: true
 defroute: false
Instead use this DHCP interface as the default route
- type: interface
 name: nic3
 use_dhcp: true

NOTE

The defroute parameter applies only to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

 - type: vlan
 device: bond1
 vlan_id:
 get_param: InternalApiNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 routes:
 - ip_netmask: 10.1.2.0/24
 next_hop: 172.17.0.1

11.3. CONFIGURING POLICY-BASED ROUTING

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

106

On Controller nodes, to configure unlimited access from different networks, configure policy-based
routing. Policy-based routing uses route tables where, on a host with multiple interfaces, you can send
traffic through a particular interface depending on the source address. You can route packets that come
from different sources to different networks, even if the destinations are the same.

For example, you can configure a route to send traffic to the Internal API network, based on the source
address of the packet, even when the default route is for the External network. You can also define
specific route rules for each interface.

Red Hat OpenStack Platform uses the os-net-config tool to configure network properties for your
overcloud nodes. The os-net-config tool manages the following network routing on Controller nodes:

Routing tables in the /etc/iproute2/rt_tables file

IPv4 rules in the /etc/sysconfig/network-scripts/rule-{ifname} file

IPv6 rules in the /etc/sysconfig/network-scripts/rule6-{ifname} file

Routing table specific routes in the /etc/sysconfig/network-scripts/route-{ifname}

Prerequisites

You have installed the undercloud successfully. For more information, see Installing director in
the Director Installation and Usage guide.

You have rendered the default .j2 network interface templates from the openstack-tripleo-
heat-templates directory. For more information, see Section 10.2, “Rendering default network
interface templates for customization”.

Procedure

1. Create route_table and interface entries in a custom NIC template from the
~/templates/custom-nics directory, define a route for the interface, and define rules that are
relevant to your deployment:

$network_config:
 network_config:

 - type: route_table
 name: custom
 table_id: 200

 - type: interface
 name: em1
 use_dhcp: false
 addresses:
 - ip_netmask: 192.0.2.1/24

 routes:
 - ip_netmask: 10.1.3.0/24
 next_hop: 192.0.2.5
 route_options: "metric 10"
 table: 200
 rules:
 - rule: "iif em1 table 200"
 comment: "Route incoming traffic to em1 with table 200"

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

107

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#installing-the-undercloud

 - rule: "from 192.0.2.0/24 table 200"
 comment: "Route all traffic from 192.0.2.0/24 with table 200"
 - rule: "add blackhole from 172.19.40.0/24 table 200"
 - rule: "add unreachable iif em1 from 192.168.1.0/24"

2. Set the run-os-net-config.sh script location to an absolute path in each custom NIC template
that you create. The script is located in the /usr/share/openstack-tripleo-heat-
templates/network/scripts/ directory on the undercloud:

resources:
 OsNetConfigImpl:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template:
 get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-
config.sh

3. Include your custom NIC configuration and network environment files in the deployment
command, along with any other environment files relevant to your deployment:

$ openstack overcloud deploy --templates \
-e ~/templates/<custom-nic-template>
-e <OTHER_ENVIRONMENT_FILES>

Verification

Enter the following commands on a Controller node to verify that the routing configuration is
functioning correctly:

$ cat /etc/iproute2/rt_tables
$ ip route
$ ip rule

11.4. CONFIGURING JUMBO FRAMES

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead because each frame adds data
in the form of a header. The default value is 1500 and using a higher value requires the configuration of
the switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Ensure that you include the MTU
value on the bond or interface.

The Storage, Storage Management, Internal API, and Tenant networks all benefit from jumbo frames.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

108

WARNING

Routers typically cannot forward jumbo frames across Layer 3 boundaries. To avoid
connectivity issues, do not change the default MTU for the Provisioning interface,
External interface, and any floating IP interfaces.

- type: ovs_bond
 name: bond1
 mtu:
 get_param: [MaxViableMtu, value]
 ovs_options:
 get_param: BondInterfaceOvsOptions
 members:
 - type: interface
 name: nic2
 mtu: 9000
 primary: true
 - type: interface
 name: nic3
 mtu: 9000

The external interface should stay at default
- type: vlan
 device: bond1
 vlan_id:
 get_param: ExternalNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 routes:
 list_concat_unique
 - get_param: ExternalInterfaceRoutes
 - - default: true
 next_hop:
 get_param: ExternalInterfaceDefaultRoute

MTU 9000 for Internal API, Storage, and Storage Management
- type: vlan
 device: bond1
 mtu: 9000
 vlan_id:
 get_param: InternalApiNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

11.5. CONFIGURING ML2/OVN NORTHBOUND PATH MTU DISCOVERY
FOR JUMBO FRAME FRAGMENTATION

If a VM on your internal network sends jumbo frames to an external network, and the maximum

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

109

If a VM on your internal network sends jumbo frames to an external network, and the maximum
transmission unit (MTU) of the internal network exceeds the MTU of the external network, a northbound
frame can easily exceed the capacity of the external network.

ML2/OVS automatically handles this oversized packet issue, and ML2/OVN handles it automatically for
TCP packets.

But to ensure proper handling of oversized northbound UDP packets in a deployment that uses the
ML2/OVN mechanism driver, you need to perform additional configuration steps.

These steps configure ML2/OVN routers to return ICMP "fragmentation needed" packets to the
sending VM, where the sending application can break the payload into smaller packets.

NOTE

In east/west traffic, a RHOSP ML2/OVN deployment does not support fragmentation of
packets that are larger than the smallest MTU on the east/west path. For example:

VM1 is on Network1 with an MTU of 1300.

VM2 is on Network2 with an MTU of 1200.

A ping in either direction between VM1 and VM2 with a size of 1171 or less
succeeds. A ping with a size greater than 1171 results in 100 percent packet loss.
With no identified customer requirements for this type of fragmentation, Red
Hat has no plans to add support.

Prerequisites

RHEL 8.2.0.4 or later with kernel-4.18.0-193.20.1.el8_2 or later.

Procedure

1. Check the kernel version.

ovs-appctl -t ovs-vswitchd dpif/show-dp-features br-int

2. If the output includes Check pkt length action: No, or if there is no Check pkt length action
string in the output, upgrade to RHEL 8.2.0.4 or later, or do not send jumbo frames to an
external network that has a smaller MTU.

3. If the output includes Check pkt length action: Yes, set the following value in the [ovn] section
of ml2_conf.ini.

ovn_emit_need_to_frag = True

11.6. CONFIGURING THE NATIVE VLAN ON A TRUNKED INTERFACE

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there is no VLAN interface.

For example, if the External network is on the native VLAN, a bonded configuration looks like this:

network_config:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

110

 - type: ovs_bridge
 name: bridge_name
 dns_servers:
 get_param: DnsServers
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 routes:
 list_concat_unique:
 - get_param: ExternalInterfaceRoutes
 - - default: true
 next_hop:
 get_param: ExternalInterfaceDefaultRoute
 members:
 - type: ovs_bond
 name: bond1
 ovs_options:
 get_param: BondInterfaceOvsOptions
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

NOTE

When you move the address or route statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network is attached to all roles, so if the Storage network is on the
default VLAN, all roles require modifications.

11.7. INCREASING THE MAXIMUM NUMBER OF CONNECTIONS THAT
NETFILTER TRACKS

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) uses netfilter connection
tracking to build stateful firewalls and to provide network address translation (NAT) on virtual networks.
There are some situations that can cause the kernel space to reach the maximum connection limit and
result in errors such as nf_conntrack: table full, dropping packet. You can increase the limit for
connection tracking (conntrack) and avoid these types of errors. You can increase the conntrack limit
for one or more roles, or across all the nodes, in your RHOSP deployment.

Prerequisites

A successful RHOSP undercloud installation.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

111

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-environment.yaml

4. Your environment file must contain the keywords parameter_defaults and
ExtraSysctlSettings. Enter a new value for the maximum number of connections that netfilter
can track in the variable, net.nf_conntrack_max.

Example

In this example, you can set the conntrack limit across all hosts in your RHOSP deployment:

parameter_defaults:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: 500000

Use the <role>Parameter parameter to set the conntrack limit for a specific role:

parameter_defaults:
 <role>Parameters:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: <simultaneous_connections>

Replace <role> with the name of the role.
For example, use ControllerParameters to set the conntrack limit for the Controller role, or
ComputeParameters to set the conntrack limit for the Compute role.

Replace <simultaneous_connections> with the quantity of simultaneous connections that
you want to allow.

Example

In this example, you can set the conntrack limit for only the Controller role in your RHOSP
deployment:

parameter_defaults:
 ControllerParameters:
 ExtraSysctlSettings:
 net.nf_conntrack_max:
 value: 500000

NOTE

The default value for net.nf_conntrack_max is 500000 connections. The
maximum value is: 4294967295.

5. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

IMPORTANT

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

112

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e /home/stack/templates/my-environment.yaml

Additional resources

Environment files

Including environment files in overcloud creation

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

113

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization/index#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization/index#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

CHAPTER 12. NETWORK INTERFACE BONDING
You can use various bonding options in your custom network configuration.

12.1. NETWORK INTERFACE BONDING FOR OVERCLOUD NODES

You can bundle multiple physical NICs together to form a single logical channel known as a bond. You
can configure bonds to provide redundancy for high availability systems or increased throughput.

Red Hat OpenStack Platform supports Open vSwitch (OVS) kernel bonds, OVS-DPDK bonds, and
Linux kernel bonds.

Table 12.1. Supported interface bonding types

Bond type Type value Allowed bridge types Allowed members

OVS kernel bonds ovs_bond ovs_bridge interface

OVS-DPDK bonds ovs_dpdk_bond ovs_user_bridge ovs_dpdk_port

Linux kernel bonds linux_bond ovs_bridge or
linux_bridge

interface

IMPORTANT

Do not combine ovs_bridge and ovs_user_bridge on the same node.

12.2. CREATING OPEN VSWITCH (OVS) BONDS

You create OVS bonds in your network interface templates. For example, you can create a bond as part
of an OVS user space bridge:

...
 params:
 $network_config:
 network_config:
 - type: ovs_user_bridge
 name: br-ex
 use_dhcp: false
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 2140
 ovs_options: {get_param: BondInterfaceOvsOptions}
 rx_queue:
 get_param: NumDpdkInterfaceRxQueues
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 mtu: 2140
 members:
 - type: interface

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

114

 name: p1p1
 - type: ovs_dpdk_port
 name: dpdk1
 mtu: 2140
 members:
 - type: interface
 name: p1p2

In this example, you create the bond from two DPDK ports.

The ovs_options parameter contains the bonding options. You can configure a bonding options in a
network environment file with the BondInterfaceOvsOptions parameter:

parameter_defaults:
 BondInterfaceOvsOptions: "bond_mode=balance-slb"

12.3. OPEN VSWITCH (OVS) BONDING OPTIONS

You can set various Open vSwitch (OVS) bonding options with the ovs_options heat parameter in your
NIC template files.

bond_mode=balance-slb

Source load balancing (slb) balances flows based on source MAC address and output VLAN, with
periodic rebalancing as traffic patterns change. When you configure a bond with the balance-slb
bonding option, there is no configuration required on the remote switch. The Networking service
(neutron) assigns each source MAC and VLAN pair to a link and transmits all packets from that MAC
and VLAN through that link. A simple hashing algorithm based on source MAC address and VLAN
number is used, with periodic rebalancing as traffic patterns change. The balance-slb mode is
similar to mode 2 bonds used by the Linux bonding driver. You can use this mode to provide load
balancing even when the switch is not configured to use LACP.

bond_mode=active-backup

When you configure a bond using active-backup bond mode, the Networking service keeps one NIC
in standby. The standby NIC resumes network operations when the active connection fails. Only one
MAC address is presented to the physical switch. This mode does not require switch configuration,
and works when the links are connected to separate switches. This mode does not provide load
balancing.

lacp=[active | passive | off]

Controls the Link Aggregation Control Protocol (LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use bond_mode=balance-slb or bond_mode=active-
backup.

other-config:lacp-fallback-ab=true

Set active-backup as the bond mode if LACP fails.

other_config:lacp-time=[fast | slow]

Set the LACP heartbeat to one second (fast) or 30 seconds (slow). The default is slow.

other_config:bond-detect-mode=[miimon | carrier]

Set the link detection to use miimon heartbeats (miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-interval=100

If using miimon, set the heartbeat interval (milliseconds).

bond_updelay=1000

CHAPTER 12. NETWORK INTERFACE BONDING

115

Set the interval (milliseconds) that a link must be up to be activated to prevent flapping.

other_config:bond-rebalance-interval=10000

Set the interval (milliseconds) that flows are rebalancing between bond members. Set this value to
zero to disable flow rebalancing between bond members.

12.4. USING LINK AGGREGATION CONTROL PROTOCOL (LACP) WITH
OPEN VSWITCH (OVS) BONDING MODES

You can use bonds with the optional Link Aggregation Control Protocol (LACP). LACP is a negotiation
protocol that creates a dynamic bond for load balancing and fault tolerance.

Use the following table to understand support compatibility for OVS kernel and OVS-DPDK bonded
interfaces in conjunction with LACP options.

IMPORTANT

The OVS/OVS-DPDK balance-tcp mode is available as a technology preview only.

IMPORTANT

On control and storage networks, Red Hat recommends that you use Linux bonds with
VLAN and LACP, because OVS bonds carry the potential for control plane disruption
that can occur when OVS or the neutron agent is restarted for updates, hot fixes, and
other events. The Linux bond/LACP/VLAN configuration provides NIC management
without the OVS disruption potential.

Table 12.2. LACP options for OVS kernel and OVS-DPDK bond modes

Objective OVS bond mode Compatible LACP
options

Notes

High availability (active-
passive)

active-backup active, passive, or off

Increased throughput
(active-active)

balance-slb active, passive, or off
Performance is
affected by
extra parsing
per packet.

There is a
potential for
vhost-user lock
contention.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

116

balance-tcp active or passive
Tech preview
only. Not
recommended
for use in
production.

Recirculation
needed for L4
hashing has a
performance
impact.

As with
balance-slb,
performance is
affected by
extra parsing
per packet and
there is a
potential for
vhost-user lock
contention.

LACP must be
enabled.

12.5. CREATING LINUX BONDS

You create linux bonds in your network interface templates. For example, you can create a linux bond
that bond two interfaces:

...
 params:
 $network_config:
 network_config:
 - type: linux_bond
 name: bond1
 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3
 bonding_options: "mode=802.3ad lacp_rate=[fast|slow] updelay=1000 miimon=100"

The bonding_options parameter sets the specific bonding options for the Linux bond.

mode

Sets the bonding mode, which in the example is 802.3ad or LACP mode. For more information about
Linux bonding modes, see "Upstream Switch Configuration Depending on the Bonding Modes" in
the Red Hat Enterprise Linux 8 Configuring and Managing Networking guide.

lacp_rate

Defines whether LACP packets are sent every 1 second, or every 30 seconds.

updelay

Defines the minimum amount of time that an interface must be active before it is used for traffic.

CHAPTER 12. NETWORK INTERFACE BONDING

117

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-network-bonding_configuring-and-managing-networking#upstream-switch-configuration-depending-on-the-bonding-modes_configuring-network-bonding

Defines the minimum amount of time that an interface must be active before it is used for traffic.
This minimum configuration helps to mitigate port flapping outages.

miimon

The interval in milliseconds that is used for monitoring the port state using the MIIMON functionality
of the driver.

Use the following additional examples as guides to configure your own Linux bonds:

Linux bond set to active-backup mode with one VLAN:

....
 params:
 $network_config:
 network_config:
 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

Linux bond on OVS bridge. Bond set to 802.3ad LACP mode with one VLAN:

...
 params:
 $network_config:
 network_config:
 - type: ovs_bridge
 name: br-tenant
 use_dhcp: false
 mtu: 9000
 members:
 - type: linux_bond
 name: bond_tenant
 bonding_options: "mode=802.3ad updelay=1000 miimon=100"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: p1p1

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

118

 primary: true
 - type: interface
 name: p1p2
 - type: vlan
 device: bond_tenant
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}

CHAPTER 12. NETWORK INTERFACE BONDING

119

CHAPTER 13. CONTROLLING NODE PLACEMENT
By default, director selects nodes for each role randomly, usually according to the profile tag of the
node. However, you can also define specific node placement. This is useful in the following scenarios:

Assign specific node IDs, for example, controller-0, controller-1

Assign custom host names

Assign specific IP addresses

Assign specific Virtual IP addresses

NOTE

Manually setting predictable IP addresses, virtual IP addresses, and ports for a network
alleviates the need for allocation pools. However, it is recommended to retain allocation
pools for each network to ease with scaling new nodes. Ensure that any statically defined
IP addresses fall outside the allocation pools.

13.1. ASSIGNING SPECIFIC NODE IDS

You can assign node IDs to specific nodes, for example, controller-0, controller-1, compute-0, and
compute-1.

Procedure

1. Assign the ID as a per-node capability that the Compute scheduler matches on deployment:

openstack baremetal node set --property capabilities='node:controller-0,boot_option:local'
<id>

This command assigns the capability node:controller-0 to the node. Repeat this pattern using a
unique continuous index, starting from 0, for all nodes. Ensure that all nodes for a given role
(Controller, Compute, or each of the storage roles) are tagged in the same way, or the
Compute scheduler cannot match the capabilities correctly.

2. Create a heat environment file (for example, scheduler_hints_env.yaml) that uses scheduler
hints to match the capabilities for each node:

parameter_defaults:
 ControllerSchedulerHints:
 'capabilities:node': 'controller-%index%'

Use the following parameters to configure scheduler hints for other role types:

ControllerSchedulerHints for Controller nodes.

ComputeSchedulerHints for Compute nodes.

BlockStorageSchedulerHints for Block Storage nodes.

ObjectStorageSchedulerHints for Object Storage nodes.

CephStorageSchedulerHints for Ceph Storage nodes.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

120

[ROLE]SchedulerHints for custom roles. Replace [ROLE] with the role name.

3. Include the scheduler_hints_env.yaml environment file in the overcloud deploy command.

NOTE

Node placement takes priority over profile matching. To avoid scheduling failures, use
the default baremetal flavor for deployment and not the flavors that are designed for
profile matching (compute, control):. Set the respective flavor parameters to baremetal
in an environment file:

parameter_defaults:
 OvercloudControllerFlavor: baremetal
 OvercloudComputeFlavor: baremetal

13.2. ASSIGNING CUSTOM HOST NAMES

In combination with the node ID configuration in Section 13.1, “Assigning specific node IDs” , director can
also assign a specific custom host name to each node. This is useful when you need to define where a
system is located (for example, rack2-row12), match an inventory identifier, or other situations where a
custom hostname is desirable.

IMPORTANT

Do not rename a node after it has been deployed. Renaming a node after deployment
creates issues with instance management.

Procedure

Use the HostnameMap parameter in an environment file, such as the
scheduler_hints_env.yaml file from Section 13.1, “Assigning specific node IDs” :

parameter_defaults:
 ControllerSchedulerHints:
 'capabilities:node': 'controller-%index%'
 ComputeSchedulerHints:
 'capabilities:node': 'compute-%index%'
 HostnameMap:
 overcloud-controller-0: overcloud-controller-prod-123-0
 overcloud-controller-1: overcloud-controller-prod-456-0
 overcloud-controller-2: overcloud-controller-prod-789-0
 overcloud-novacompute-0: overcloud-compute-prod-abc-0

Define the HostnameMap in the parameter_defaults section, and set each mapping as the
original hostname that heat defines with HostnameFormat parameters (for example,
overcloud-controller-0) and the second value is the desired custom hostname for that node
(overcloud-controller-prod-123-0).

Use this method in combination with the node ID placement to ensure that each node has a custom
hostname.

13.3. ASSIGNING PREDICTABLE IPS

For further control over the resulting environment, director can assign overcloud nodes with specific IP

CHAPTER 13. CONTROLLING NODE PLACEMENT

121

For further control over the resulting environment, director can assign overcloud nodes with specific IP
addresses on each network.

Procedure

1. Create an environment file to define the predictive IP addressing:

$ touch ~/templates/predictive_ips.yaml

2. Create a parameter_defaults section in the ~/templates/predictive_ips.yaml file and use the
following syntax to define predictive IP addressing for each node on each network:

parameter_defaults:
 <role_name>IPs:
 <network>:
 - <IP_address>
 <network>:
 - <IP_address>

Each node role has a unique parameter. Replace <role_name>IPs with the relevant parameter:

ControllerIPs for Controller nodes.

ComputeIPs for Compute nodes.

CephStorageIPs for Ceph Storage nodes.

BlockStorageIPs for Block Storage nodes.

SwiftStorageIPs for Object Storage nodes.

[ROLE]IPs for custom roles. Replace [ROLE] with the role name.
Each parameter is a map of network names to a list of addresses. Each network type must
have at least as many addresses as there will be nodes on that network. Director assigns
addresses in order. The first node of each type receives the first address on each respective
list, the second node receives the second address on each respective lists, and so forth.

For example, use the following example syntax if you want to deploy three Ceph Storage
nodes in your overcloud with predictive IP addresses:

parameter_defaults:
 CephStorageIPs:
 storage:
 - 172.16.1.100
 - 172.16.1.101
 - 172.16.1.102
 storage_mgmt:
 - 172.16.3.100
 - 172.16.3.101
 - 172.16.3.102

The first Ceph Storage node receives two addresses: 172.16.1.100 and 172.16.3.100. The
second receives 172.16.1.101 and 172.16.3.101, and the third receives 172.16.1.102 and
172.16.3.102. The same pattern applies to the other node types.

To configure predictable IP addresses on the control plane, copy the

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

122

To configure predictable IP addresses on the control plane, copy the
/usr/share/openstack-tripleo-heat-templates/environments/ips-from-pool-
ctlplane.yaml file to the templates directory of the stack user:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/ips-from-pool-
ctlplane.yaml ~/templates/.

Configure the new ips-from-pool-ctlplane.yaml file with the following parameter example.
You can combine the control plane IP address declarations with the IP address declarations
for other networks and use only one file to declare the IP addresses for all networks on all
roles. You can also use predictable IP addresses for spine/leaf. Each node must have IP
addresses from the correct subnet.

parameter_defaults:
 ControllerIPs:
 ctlplane:
 - 192.168.24.10
 - 192.168.24.11
 - 192.168.24.12
 internal_api:
 - 172.16.1.20
 - 172.16.1.21
 - 172.16.1.22
 external:
 - 10.0.0.40
 - 10.0.0.57
 - 10.0.0.104
 ComputeLeaf1IPs:
 ctlplane:
 - 192.168.25.100
 - 192.168.25.101
 internal_api:
 - 172.16.2.100
 - 172.16.2.101
 ComputeLeaf2IPs:
 ctlplane:
 - 192.168.26.100
 - 192.168.26.101
 internal_api:
 - 172.16.3.100
 - 172.16.3.101

Ensure that the IP addresses that you choose fall outside the allocation pools for each
network that you define in your network environment file. For example, ensure that the
internal_api assignments fall outside of the InternalApiAllocationPools range to avoid
conflicts with any IPs chosen automatically. Also ensure that the IP assignments do not
conflict with the VIP configuration, either for standard predictable VIP placement (see
Section 13.4, “Assigning predictable Virtual IPs”) or external load balancing (see
Section 21.4, “Configuring external load balancing”).

IMPORTANT

CHAPTER 13. CONTROLLING NODE PLACEMENT

123

IMPORTANT

If an overcloud node is deleted, do not remove its entries in the IP lists. The
IP list is based on the underlying heat indices, which do not change even if
you delete nodes. To indicate a given entry in the list is no longer used,
replace the IP value with a value such as DELETED or UNUSED. Entries
should never be removed from the IP lists, only changed or added.

3. To apply this configuration during a deployment, include the predictive_ips.yaml environment
file with the openstack overcloud deploy command.

IMPORTANT

If you use network isolation, include the predictive_ips.yaml file after the
network-isolation.yaml file:

$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \
 -e ~/templates/predictive_ips.yaml \
 [OTHER OPTIONS]

13.4. ASSIGNING PREDICTABLE VIRTUAL IPS

In addition to defining predictable IP addresses for each node, you can also define predictable Virtual
IPs (VIPs) for clustered services.

Procedure

Edit the network environment file and add the VIP parameters in the parameter_defaults
section:

parameter_defaults:
 ...
 # Predictable VIPs
 ControlFixedIPs: [{'ip_address':'192.168.201.101'}]
 InternalApiVirtualFixedIPs: [{'ip_address':'172.16.0.9'}]
 PublicVirtualFixedIPs: [{'ip_address':'10.1.1.9'}]
 StorageVirtualFixedIPs: [{'ip_address':'172.18.0.9'}]
 StorageMgmtVirtualFixedIPs: [{'ip_address':'172.19.0.9'}]
 RedisVirtualFixedIPs: [{'ip_address':'172.16.0.8'}]
 OVNDBsVirtualFixedIPs: [{'ip_address':'172.16.0.7'}]

Select these IPs from outside of their respective allocation pool ranges. For example, select an
IP address for InternalApiVirtualFixedIPs that is not within the InternalApiAllocationPools
range.

NOTE

This step is only for overclouds that use the default internal load balancing configuration.
If you want to assign VIPs with an external load balancer, use the procedure in the
dedicated External Load Balancing for the Overcloud guide.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

124

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/external_load_balancing_for_the_overcloud

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC
ENDPOINTS

By default, the overcloud uses unencrypted endpoints for the overcloud services. To enable SSL/TLS in
your overcloud, Red Hat recommends that you use a certificate authority (CA) solution.

When you use a certificate authority (CA) solution, you have production ready solutions such as a
certificate renewals, certificate revocation lists (CRLs), and industry accepted cryptography. For
information on using Red Hat Identity Manager (IdM) as a CA, see Implementing TLS-e with Ansible .

You can use the following manual process to enable SSL/TLS for Public API endpoints only, the Internal
and Admin APIs remain unencrypted. You must also manually update SSL/TLS certificates if you do not
use a CA. For more information, see Manually updating SSL/TLS certificates .

Prerequisites

Network isolation to define the endpoints for the Public API.

The openssl-perl package is installed.

You have an SSL/TLS certificate. For more information see Configuring custom SSL/TLS
certificates.

14.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates and signs new certificates with a certificate authority. If you
have never created SSL certificates on the chosen signing host, you might need to initialize the host so
that it can sign new certificates.

Procedure

1. The /etc/pki/CA/index.txt file contains records of all signed certificates. Ensure that the
filesystem path and index.txt file are present:

$ sudo mkdir -p /etc/pki/CA
$ sudo touch /etc/pki/CA/index.txt

2. The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to
sign. Check if this file exists. If the file does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

14.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might want to use your own certificate authority. For example, you might want to have an internal-only
certificate authority.

Procedure

1. Generate a key and certificate pair to act as the certificate authority:

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

125

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/index#assembly_configuring-custom-ssl-tls-certificates

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

2. The openssl req command requests certain details about your authority. Enter these details at
the prompt. These commands create a certificate authority file called ca.crt.pem.

3. Set the certificate location as the value for the PublicTLSCAFile parameter in the enable-
tls.yaml file. When you set the certificate location as the value for the PublicTLSCAFile
parameter, you ensure that the CA certificate path is added to the clouds.yaml authentication
file.

parameter_defaults:
 PublicTLSCAFile: /etc/pki/ca-trust/source/anchors/cacert.pem

14.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access to your Red Hat OpenStack Platform environment.

Procedure

1. Copy the certificate authority to the client system:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

2. After you copy the certificate authority file to each client, run the following command on each
client to add the certificate to the certificate authority trust bundle:

$ sudo update-ca-trust extract

14.4. CREATING AN SSL/TLS KEY

Enabling SSL/TLS on an OpenStack environment requires an SSL/TLS key to generate your
certificates.

Procedure

1. Run the following command to generate the SSL/TLS key (server.key.pem):

$ openssl genrsa -out server.key.pem 2048

14.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

Complete the following steps to create a certificate signing request.

Procedure

1. Copy the default OpenSSL configuration file:

$ cp /etc/pki/tls/openssl.cnf .

2. Edit the new openssl.cnf file and configure the SSL parameters that you want to use for

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

126

2. Edit the new openssl.cnf file and configure the SSL parameters that you want to use for
director. An example of the types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = instack.localdomain
DNS.2 = vip.localdomain
DNS.3 = 192.168.0.1

Set the commonName_default to one of the following entries:

If you are using an IP address to access director over SSL/TLS, use the
undercloud_public_host parameter in the undercloud.conf file.

If you are using a fully qualified domain name to access director over SSL/TLS, use the
domain name.

Edit the alt_names section to include the following entries:

IP - A list of IP addresses that clients use to access director over SSL.

DNS - A list of domain names that clients use to access director over SSL. Also include the
Public API IP address as a DNS entry at the end of the alt_names section.

NOTE

For more information about openssl.cnf, run the man openssl.cnf command.

3. Run the following command to generate a certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

127

Ensure that you include your OpenStack SSL/TLS key with the -key option.

This command generates a server.csr.pem file, which is the certificate signing request. Use this file to
create your OpenStack SSL/TLS certificate.

14.6. CREATING THE SSL/TLS CERTIFICATE

To generate the SSL/TLS certificate for your OpenStack environment, the following files must be
present:

openssl.cnf

The customized configuration file that specifies the v3 extensions.

server.csr.pem

The certificate signing request to generate and sign the certificate with a certificate authority.

ca.crt.pem

The certificate authority, which signs the certificate.

ca.key.pem

The certificate authority private key.

Procedure

1. Create the newcerts directory if it does not already exist:

sudo mkdir -p /etc/pki/CA/newcerts

2. Run the following command to create a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses the following options:

-config

Use a custom configuration file, which is the openssl.cnf file with v3 extensions.

-extensions v3_req

Enabled v3 extensions.

-days

Defines how long in days until the certificate expires.

-in'

The certificate signing request.

-out

The resulting signed certificate.

-cert

The certificate authority file.

-keyfile

The certificate authority private key.

This command creates a new certificate named server.crt.pem. Use this certificate in conjunction with

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

128

This command creates a new certificate named server.crt.pem. Use this certificate in conjunction with
your OpenStack SSL/TLS key

14.7. ENABLING SSL/TLS

To enable SSL/TLS in your overcloud, you must create an environment file that contains parameters for
your SSL/TLS certiciates and private key.

Procedure

1. Copy the enable-tls.yaml environment file from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-tls.yaml
~/templates/.

2. Edit this file and make the following changes for these parameters:

SSLCertificate

Copy the contents of the certificate file (server.crt.pem) into the SSLCertificate
parameter:

parameter_defaults:
 SSLCertificate: |
 -----BEGIN CERTIFICATE-----
 MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGS
 ...
 sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQ
 -----END CERTIFICATE-----

IMPORTANT

The certificate contents require the same indentation level for all new lines.

SSLIntermediateCertificate

If you have an intermediate certificate, copy the contents of the intermediate certificate into
the SSLIntermediateCertificate parameter:

parameter_defaults:
 SSLIntermediateCertificate: |
 -----BEGIN CERTIFICATE-----
 sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQbIxEpIzrgvpBCwUAMFgxCzAJB
 ...
 MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGSIb3DQE
 -----END CERTIFICATE-----

IMPORTANT

The certificate contents require the same indentation level for all new lines.

SSLKey

Copy the contents of the private key (server.key.pem) into the SSLKey parameter:

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

129

parameter_defaults:
 ...
 SSLKey: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEAqVw8lnQ9RbeI1EdLN5PJP0lVO
 ...
 ctlKn3rAAdyumi4JDjESAXHIKFjJNOLrBmpQyES4X
 -----END RSA PRIVATE KEY-----

IMPORTANT

The private key contents require the same indentation level for all new
lines.

14.8. INJECTING A ROOT CERTIFICATE

If the certificate signer is not in the default trust store on the overcloud image, you must inject the
certificate authority into the overcloud image.

Procedure

1. Copy the inject-trust-anchor-hiera.yaml environment file from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/ssl/inject-trust-anchor-
hiera.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

CAMap

Lists each certificate authority content (CA) to inject into the overcloud. The overcloud requires the
CA files used to sign the certificates for both the undercloud and the overcloud. Copy the contents
of the root certificate authority file (ca.crt.pem) into an entry. For example, your CAMap parameter
might look like the following:

parameter_defaults:
 CAMap:
 ...
 undercloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCS
 BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBw
 UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBA
 -----END CERTIFICATE-----
 overcloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDBzCCAe+gAwIBAgIJAIc75A7FD++DMA0GCS
 BAMMD3d3dy5leGFtcGxlLmNvbTAeFw0xOTAxMz
 Um54yGCARyp3LpkxvyfMXX1DokpS1uKi7s6CkF
 -----END CERTIFICATE-----

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

130

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

You can also inject additional CAs with the CAMap parameter.

14.9. CONFIGURING DNS ENDPOINTS

If you use a DNS hostname to access the overcloud through SSL/TLS, copy the /usr/share/openstack-
tripleo-heat-templates/environments/predictable-placement/custom-domain.yaml file into the
/home/stack/templates directory.

NOTE

It is not possible to redeploy with a TLS-everywhere architecture if this environment file
is not included in the initial deployment.

Configure the host and domain names for all fields, adding parameters for custom networks if needed:

CloudDomain

the DNS domain for hosts.

CloudName

The DNS hostname of the overcloud endpoints.

CloudNameCtlplane

The DNS name of the provisioning network endpoint.

CloudNameInternal

The DNS name of the Internal API endpoint.

CloudNameStorage

The DNS name of the storage endpoint.

CloudNameStorageManagement

The DNS name of the storage management endpoint.

DnsServers

A list of DNS servers that you want to use. The configured DNS servers must contain an entry for the
configured CloudName that matches the IP address of the Public API.

Procedure

Add a list of DNS servers to use under parameter defaults, in either a new or existing
environment file:

parameter_defaults:
 DnsServers: ["10.0.0.254"]

TIP

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

131

TIP

You can use the CloudName{network.name} definition to set the DNS name for an API
endpoint on a composable network that uses a virtual IP.

For more information, see Adding a composable network .

14.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION

Use the -e option with the deployment command openstack overcloud deploy to include environment
files in the deployment process. Add the environment files from this section in the following order:

The environment file to enable SSL/TLS (enable-tls.yaml)

The environment file to set the DNS hostname (custom-domain.yaml)

The environment file to inject the root certificate authority (inject-trust-anchor-hiera.yaml)

The environment file to set the public endpoint mapping:

If you use a DNS name for accessing the public endpoints, use /usr/share/openstack-
tripleo-heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

If you use a IP address for accessing the public endpoints, use /usr/share/openstack-
tripleo-heat-templates/environments/ssl/tls-endpoints-public-ip.yaml

Procedure

Use the following deployment command snippet as an example of how to include your SSL/TLS
environment files:

$ openstack overcloud deploy --templates \
[...]
-e /home/stack/templates/enable-tls.yaml \
-e ~/templates/custom-domain.yaml \
-e ~/templates/inject-trust-anchor-hiera.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

14.11. MANUALLY UPDATING SSL/TLS CERTIFICATES

Complete the following steps if you are using your own SSL/TLS certificates that are not auto-
generated from the TLS everywhere (TLS-e) process.

Procedure

1. Edit your heat templates with the following content:

Edit the enable-tls.yaml file and update the SSLCertificate, SSLKey, and
SSLIntermediateCertificate parameters.

If your certificate authority has changed, edit the inject-trust-anchor-hiera.yaml file and
update the CAMap parameter.

2. Rerun the deployment command:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

132

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_custom-composable-networks#adding-a-composable-network

$ openstack overcloud deploy --templates \
[...]
-e /home/stack/templates/enable-tls.yaml \
-e ~/templates/custom-domain.yaml \
-e ~/templates/inject-trust-anchor-hiera.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-endpoints-public-
dns.yaml

3. On the director, run the following command for each Controller:

ssh heat-admin@<controller> sudo podman \
restart $(podman ps --format="{{.Names}}" | grep -w -E 'haproxy(-bundle-.*-[0-9]+)?')

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

133

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC
ENDPOINTS WITH IDENTITY MANAGEMENT

You can enable SSL/TLS on certain overcloud endpoints. Due to the number of certificates required,
director integrates with a Red Hat Identity Management (IdM) server to act as a certificate authority
and manage the overcloud certificates.

To check the status of TLS support across the OpenStack components, refer to the TLS Enablement
status matrix.

15.1. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS
FOR OPENSTACK

Red Hat provides the following information to help you integrate your IdM server and OpenStack
environment.

For information on preparing Red Hat Enterprise Linux for an IdM installation, see Installing Identity
Management.

Run the ipa-server-install command to install and configure IdM. You can use command parameters to
skip interactive prompts. Use the following recommendations so that your IdM server can integrate with
your Red Hat OpenStack Platform environment:

Table 15.1. Parameter recommendations

Option Recommendation

--admin-password Note the value you provide. You will need this
password when configuring Red Hat OpenStack
Platform to work with IdM.

--ip-address Note the value you provide. The undercloud and
overcloud nodes require network access to this ip
address.

--setup-dns Use this option to install an integrated DNS service
on the IdM server. The undercloud and overcloud
nodes use the IdM server for domain name resolution.

--auto-forwarders Use this option to use the addresses in
/etc/resolv.conf as DNS forwarders.

--auto-reverse Use this option to resolve reverse records and zones
for the IdM server IP addresses. If neither reverse
records or zones are resolvable, IdM creates the
reverse zones. This simplifies the IdM deployment.

--ntp-server, --ntp-pool You can use both or either of these options to
configure your NTP source. Both the IdM server and
your OpenStack environment must have correct and
synchronized time.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

134

https://access.redhat.com/articles/4039501
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-idm

You must open the firewall ports required by IdM to enable communication with Red Hat OpenStack
Platform nodes. For more information, see Opening the ports required by IdM .

Additional resources

Configuring and Managing Identity Management

Red Hat Identity Management Documentation

15.2. IMPLEMENTING TLS-E WITH ANSIBLE

You can use the new tripleo-ipa method to enable SSL/TLS on overcloud endpoints, called TLS
everywhere (TLS-e). Due to the number of certificates required, Red Hat OpenStack Platform
integrates with Red Hat Identity management (IdM). When you use tripleo-ipa to configure TLS-e, IdM
is the certificate authority.

Prerequisites

Ensure that all configuration steps for the undercloud, such as the creation of the stack user, are
complete. For more details, see Director Installation and Usage for more details

Procedure

Use the following procedure to implement TLS-e on a new installation of Red Hat OpenStack Platform,
or an existing deployment that you want to configure with TLS-e. You must use this method if you
deploy Red Hat OpenStack Platform with TLS-e on pre-provisioned nodes.

NOTE

If you are implementing TLS-e for an existing environment, you are required to run
commands such as openstack undercloud install, and openstack overcloud deploy.
These procedures are idempotent and only adjust your existing deployment configuration
to match updated templates and configuration files.

1. Configure the /etc/resolv.conf file:
Set the appropriate search domains and the nameserver on the undercloud in /etc/resolv.conf.
For example, if the deployment domain is example.com, and the domain of the FreeIPA server
is bigcorp.com, then add the following lines to /etc/resolv.conf:

search example.com bigcorp.com
nameserver $IDM_SERVER_IP_ADDR

2. Install required software:

sudo dnf install -y python3-ipalib python3-ipaclient krb5-devel

3. Export environmental variables with values specific to your environment.:

export IPA_DOMAIN=bigcorp.com
export IPA_REALM=BIGCORP.COM
export IPA_ADMIN_USER=$IPA_USER 1
export IPA_ADMIN_PASSWORD=$IPA_PASSWORD 2
export IPA_SERVER_HOSTNAME=ipa.bigcorp.com

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

135

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-server-installation_installing-identity-management#opening-the-ports-required-by-idm_preparing-the-system-for-ipa-server-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/index
https://access.redhat.com/articles/1586893
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/director_installation_and_usage/index

1 2

3

export UNDERCLOUD_FQDN=undercloud.example.com 3
export USER=stack
export CLOUD_DOMAIN=example.com

The IdM user credentials are an administrative user that can add new hosts and services.

The value of the UNDERCLOUD_FQDN parameter matches the first hostname-to-IP
address mapping in /etc/hosts.

4. Run the undercloud-ipa-install.yaml ansible playbook on the undercloud:

ansible-playbook \
--ssh-extra-args "-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" \
/usr/share/ansible/tripleo-playbooks/undercloud-ipa-install.yaml

5. Add the following parameters to undercloud.conf

undercloud_nameservers = $IDM_SERVER_IP_ADDR
overcloud_domain_name = example.com

6. [Optional] If your IPA realm does not match your IPA domain, set the value of the
certmonger_krb_realm parameter:

a. Set the value of the certmonger_krb_realm in /home/stack/hiera_override.yaml:

parameter_defaults:
 certmonger_krb_realm = EXAMPLE.COMPANY.COM

b. Set the value of the custom_env_files parameter in undercloud.conf to
/home/stack/hiera_override.yaml:

custom_env_files = /home/stack/hiera_override.yaml

7. Deploy the undercloud:

openstack undercloud install

Verification

Verify that the undercloud was enrolled correctly by completing the following steps:

1. List the hosts in IdM:

$ kinit admin
$ ipa host-find

2. Confirm that /etc/novajoin/krb5.keytab exists on the undercloud.

ls /etc/novajoin/krb5.keytab

NOTE

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

136

NOTE

The novajoin directory name is for legacy naming purposes only.

Configuring TLS-e on the overcloud

When you deploy the overcloud with TLS everywhere (TLS-e), IP addresses from the Undercloud and
Overcloud will automatically be registered with IdM.

1. Before deploying the overcloud, create a YAML file tls-parameters.yaml with contents similar
to the following. The values you select will be specific for your environment:

parameter_defaults:
 DnsSearchDomains: ["example.com"]
 DnsServers: ["192.168.1.13"]
 CloudDomain: example.com
 CloudName: overcloud.example.com
 CloudNameInternal: overcloud.internalapi.example.com
 CloudNameStorage: overcloud.storage.example.com
 CloudNameStorageManagement: overcloud.storagemgmt.example.com
 CloudNameCtlplane: overcloud.ctlplane.example.com
 IdMServer: freeipa-0.redhat.local
 IdMDomain: redhat.local
 IdMInstallClientPackages: False

resource_registry:
 OS::TripleO::Services::IpaClient: /usr/share/openstack-tripleo-heat-
templates/deployment/ipa/ipaservices-baremetal-ansible.yaml

The shown value of the OS::TripleO::Services::IpaClient parameter overrides the default
setting in the enable-internal-tls.yaml file. You must ensure the tls-parameters.yaml file
follows enable-internal-tls.yaml in the openstack overcloud deploy command.

2. Deploy the overcloud. You will need to include the tls-parameters.yaml in the deployment
command:

DEFAULT_TEMPLATES=/usr/share/openstack-tripleo-heat-templates/
CUSTOM_TEMPLATES=/home/stack/templates

openstack overcloud deploy \
-e ${DEFAULT_TEMPLATES}/environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e ${DEFAULT_TEMPLATES}/environments/services/haproxy-public-tls-certmonger.yaml \
-e ${DEFAULT_TEMPLATES}/environments/ssl/enable-internal-tls.yaml \
-e ${CUSTOM_TEMPLATES}/tls-parameters.yaml \
...

3. Confirm each endpoint is using HTTPS by querying keystone for a list of endpoints:

openstack endpoint list

15.3. ENROLLING NODES IN RED HAT IDENTITY MANAGER (IDM) WITH
NOVAJOIN

Novajoin is the default tool that you use to enroll your nodes with Red Hat Identity Manager (IdM) as

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

137

part of the deployment process. Red Hat recommends the new ansible-based tripleo-ipa solution over
the default novajoin solution to configure your undercloud and overcloud with TLS-e. For more
information see Implementing TLS-e with Ansible .

You must perform the enrollment process before you proceed with the rest of the IdM integration. The
enrollment process includes the following steps:

1. Adding the undercloud node to the certificate authority (CA)

2. Adding the undercloud node to IdM

3. Optional: Setting the IdM server as the DNS server for the overcloud

4. Preparing the environment files and deploying the overcloud

5. Testing the overcloud enrollment in IdM and in RHOSP

6. Optional: Adding DNS entries for novajoin in IdM

NOTE

IdM enrollment with novajoin is currently only available for the undercloud and overcloud
nodes. Novajoin integration for overcloud instances is expected to be supported in a later
release.

15.4. ADDING THE UNDERCLOUD NODE TO THE CERTIFICATE
AUTHORITY

Before you deploy the overcloud, add the undercloud to the certificate authority (CA) by installing the
python3-novajoin package on the undercloud node and running the novajoin-ipa-setup script.

Procedure

1. On the undercloud node, install the python3-novajoin package:

$ sudo dnf install python3-novajoin

2. On the undercloud node, run the novajoin-ipa-setup script, and adjust the values to suit your
deployment:

$ sudo /usr/libexec/novajoin-ipa-setup \
 --principal admin \
 --password <IdM admin password> \
 --server <IdM server hostname> \
 --realm <realm> \
 --domain <overcloud cloud domain> \
 --hostname <undercloud hostname> \
 --precreate

Use the resulting One-Time Password (OTP) to enroll the undercloud.

15.5. ADDING THE UNDERCLOUD NODE TO RED HAT IDENTITY
MANAGER (IDM)

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

138

After you add the undercloud node to the certificate authority (CA), register the undercloud with IdM
and configure novajoin. Configure the following settings in the [DEFAULT] section of the
undercloud.conf file.

Procedure

1. Enable the novajoin service:

[DEFAULT]
enable_novajoin = true

2. Set a One-Time Password (OTP) so that you can register the undercloud node with IdM:

ipa_otp = <otp>

3. Set the overcloud’s domain name to be served by neutron’s DHCP server:

overcloud_domain_name = <domain>

4. Set the hostname for the undercloud:

undercloud_hostname = <undercloud FQDN>

5. Set IdM as the nameserver for the undercloud:

undercloud_nameservers = <IdM IP>

6. For larger environments, review the novajoin connection timeout values. In the
undercloud.conf file, add a reference to a new file called undercloud-timeout.yaml:

hieradata_override = /home/stack/undercloud-timeout.yaml

Add the following options to undercloud-timeout.yaml. You can specify the timeout value in
seconds, for example, 5:

nova::api::vendordata_dynamic_connect_timeout: <timeout value>
nova::api::vendordata_dynamic_read_timeout: <timeout value>

7. Optional: If you want the local openSSL certificate authority to generate the SSL certificates for
the public endpoints in director, set the generate_service_certificate parameter to true:

generate_service_certificate = true

8. Save the undercloud.conf file.

9. Run the undercloud deployment command to apply the changes to your existing undercloud:

$ openstack undercloud install

Verification

Verify that the undercloud was enrolled correctly by completing the following steps:

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

139

1. List the hosts in IdM:

$ kinit admin
$ ipa host-find

2. Confirm that /etc/novajoin/krb5.keytab exists on the undercloud.

ls /etc/novajoin/krb5.keytab

15.6. SETTING RED HAT IDENTITY MANAGER (IDM) AS THE DNS
SERVER FOR THE OVERCLOUD

To enable automatic detection of your IdM environment and easier enrollment, set IdM as your DNS
server. This procedure is optional but recommended.

Procedure

1. Connect to your undercloud:

$ source ~/stackrc

2. Configure the control plane subnet to use IdM as the DNS name server:

$ openstack subnet set ctlplane-subnet --dns-nameserver <idm_server_address>

3. Set the DnsServers parameter in an environment file to use your IdM server:

parameter_defaults:
 DnsServers: ["<idm_server_address>"]

This parameter is usually defined in a custom network-environment.yaml file.

15.7. PREPARING ENVIRONMENT FILES AND DEPLOYING THE
OVERCLOUD WITH NOVAJOIN ENROLLMENT

To deploy the overcloud with IdM integration, you create and edit environment files to configure the
overcloud to use the custom domain parameters CloudDomain and CloudName based on the domains
that you define in the overcloud. You then deploy the overcloud with all the environment files and any
additional environment files that you need for the deployment.

Procedure

1. Create a copy of the /usr/share/openstack-tripleo-heat-
templates/environments/predictable-placement/custom-domain.yaml environment file:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/predictable-
placement/custom-domain.yaml \
 /home/stack/templates/custom-domain.yaml

2. Edit the /home/stack/templates/custom-domain.yaml environment file and set the
CloudDomain and CloudName* values to suit your deployment:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

140

parameter_defaults:
 CloudDomain: lab.local
 CloudName: overcloud.lab.local
 CloudNameInternal: overcloud.internalapi.lab.local
 CloudNameStorage: overcloud.storage.lab.local
 CloudNameStorageManagement: overcloud.storagemgmt.lab.local
 CloudNameCtlplane: overcloud.ctlplane.lab.local

3. Choose the implementation of TLS appropriate for your environment:

Use the enable-tls.yaml environment file to protect external endpoints with your custom
certificate:

a. Copy /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-
tls.yaml to /home/stack/templates.

b. Modify the /home/stack/enable-tls.yaml environment file to include your custom
certificate and key.

c. Include the following environment files in your deployment to protect internal and
external endpoints:

enable-internal-tls.yaml

tls-every-endpoints-dns.yaml

custom-domain.yaml

enable-tls.yaml

openstack overcloud deploy \
 --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-
internal-tls.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-
everywhere-endpoints-dns.yaml \
 -e /home/stack/templates/custom-domain.yaml \
 -e /home/stack/templates/enable-tls.yaml

Use the haproxy-public-tls-certmonger.yaml environment file to protect external
endpoints with an IdM issued certificate. For this implementation, you must create DNS
entries for the VIP endpoints used by novajoin:

a. You must create DNS entries for the VIP endpoints used by novajoin. Identify the
overcloud networks located in your custom network-environment.yaml file in
`/home/stack/templates:

parameter_defaults:
 ControlPlaneDefaultRoute: 192.168.24.1
 ExternalAllocationPools:
 - end: 10.0.0.149
 start: 10.0.0.101
 InternalApiAllocationPools:
 - end: 172.17.1.149
 start: 172.17.1.10
 StorageAllocationPools:

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

141

 - end: 172.17.3.149
 start: 172.17.3.10
 StorageMgmtAllocationPools:
 - end: 172.17.4.149
 start: 172.17.4.10

b. Create a list of virtual IP addresses for each overcloud network in a heat template, for
example, /home/stack/public_vip.yaml.

parameter_defaults:
 ControlFixedIPs: [{'ip_address':'192.168.24.101'}]
 PublicVirtualFixedIPs: [{'ip_address':'10.0.0.101'}]
 InternalApiVirtualFixedIPs: [{'ip_address':'172.17.1.101'}]
 StorageVirtualFixedIPs: [{'ip_address':'172.17.3.101'}]
 StorageMgmtVirtualFixedIPs: [{'ip_address':'172.17.4.101'}]
 RedisVirtualFixedIPs: [{'ip_address':'172.17.1.102'}]

c. Add DNS entries to the IdM for each of the VIPs, and zones as needed:

ipa dnsrecord-add lab.local overcloud --a-rec 10.0.0.101
ipa dnszone-add ctlplane.lab.local
ipa dnsrecord-add ctlplane.lab.local overcloud --a-rec 192.168.24.101
ipa dnszone-add internalapi.lab.local
ipa dnsrecord-add internalapi.lab.local overcloud --a-rec 172.17.1.101
ipa dnszone-add storage.lab.local
ipa dnsrecord-add storage.lab.local overcloud --a-rec 172.17.3.101
ipa dnszone-add storagemgmt.lab.local
ipa dnsrecord-add storagemgmt.lab.local overcloud --a-rec 172.17.4.101

d. Include the following environment files in your deployment to protect internal and
external endpoints:

enable-internal-tls.yaml

tls-everywhere-endpoints-dns.yaml

haproxy-public-tls-certmonger.yaml

custom-domain.yaml

public_vip.yaml

openstack overcloud deploy \
 --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-
internal-tls.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-
everywhere-endpoints-dns.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/haproxy-
public-tls-certmonger.yaml \
 -e /home/stack/templates/custom-domain.yaml \
 -e /home/stack/templates/public-vip.yaml

NOTE

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

142

NOTE

You cannot use novajoin to implement TLS everywhere (TLS-e) on a pre-existing
deployment.

Additional resources

Implementing TLS-e with Ansible

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

143

CHAPTER 16. CONFIGURING THE IMAGE IMPORT METHOD
AND SHARED STAGING AREA

The default settings for the OpenStack Image service (glance) are determined by the heat templates
that you use when you install Red Hat OpenStack Platform. The Image service heat template is
deployment/glance/glance-api-container-puppet.yaml.

You can import images with the following methods:

web-download

Use the web-download method to import an image from a URL.

glance-direct

Use the glance-direct method to import an image from a local volume.

16.1. CREATING AND DEPLOYING THE GLANCE-SETTINGS.YAML FILE

Use a custom environment file to configure the import parameters. These parameters override the
default values that are present in the core heat template collection. The example environment content
contains parameters for the interoperable image import.

parameter_defaults:
 # Configure NFS backend
 GlanceBackend: file
 GlanceNfsEnabled: true
 GlanceNfsShare: 192.168.122.1:/export/glance

 # Enable glance-direct import method
 GlanceEnabledImportMethods: glance-direct,web-download

 # Configure NFS staging area (required for glance-direct import method)
 GlanceStagingNfsShare: 192.168.122.1:/export/glance-staging

The GlanceBackend, GlanceNfsEnabled, and GlanceNfsShare parameters are defined in the Storage
Configuration section in the Advanced Overcloud Customization Guide .

Use two new parameters for interoperable image import to define the import method and a shared NFS
staging area.

GlanceEnabledImportMethods

Defines the available import methods, web-download (default) and glance-direct. This parameter is
necessary only if you want to enable additional methods besides web-download.

GlanceStagingNfsShare

Configures the NFS staging area that the glance-direct import method uses. This space can be
shared among nodes in a high-availability cluster configuration. If you want to use this parameter, you
must also set the GlanceNfsEnabled parameter to true.

Procedure

1. Create a new file, for example, glance-settings.yaml. Use the syntax from the example to
populate this file.

2. Include the glance-settings.yaml file in the openstack overcloud deploy command, as well as

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

144

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_storage-configuration

2. Include the glance-settings.yaml file in the openstack overcloud deploy command, as well as
any other environment files that are relevant to your deployment:

$ openstack overcloud deploy --templates -e glance-settings.yaml

For more information about using environment files, see the Including Environment Files in Overcloud
Creation section in the Advanced Overcloud Customization Guide .

16.2. CONTROLLING IMAGE WEB-IMPORT SOURCES

You can limit the sources of web-import image downloads by adding URI blocklists and allowlists to the
optional glance-image-import.conf file.

You can allow or block image source URIs at three levels:

scheme (allowed_schemes, disallowed_schemes)

host (allowed_hosts, disallowed_hosts)

port (allowed_ports, disallowed_ports)

If you specify both allowlist and blocklist at any level, the allowlist is honored and the blocklist is ignored.

The Image service (glance) applies the following decision logic to validate image source URIs:

1. The scheme is checked.

a. Missing scheme: reject

b. If there is an allowlist, and the scheme is not present in the allowlist: reject. Otherwise, skip C
and continue on to 2.

c. If there is a blocklist, and the scheme is present in the blocklist: reject.

2. The host name is checked.

a. Missing host name: reject

b. If there is an allowlist, and the host name is not present in the allowlist: reject. Otherwise,
skip C and continue on to 3.

c. If there is a blocklist, and the host name is present in the blocklist: reject.

3. If there is a port in the URI, the port is checked.

a. If there is a allowlist, and the port is not present in the allowlist: reject. Otherwise, skip B and
continue on to 4.

b. If there is a blocklist, and the port is present in the blocklist: reject.

4. The URI is accepted as valid.

If you allow a scheme, either by adding it to an allowlist or by not adding it to a blocklist, any URI that uses
the default port for that scheme by not including a port in the URI is allowed. If it does include a port in
the URI, the URI is validated according to the default decision logic.

CHAPTER 16. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED STAGING AREA

145

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/advanced_overcloud_customization/assembly_understanding-heat-templates#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

16.3. IMAGE IMPORT EXAMPLE

For example, the default port for FTP is 21. Because ftp is an allowlisted scheme, this URL is allowed:
ftp://example.org/some/resource But because 21 is not in the port allowlist, this URL to the same
resource is rejected: ftp://example.org:21/some/resource

allowed_schemes = [http,https,ftp]
disallowed_schemes = []
allowed_hosts = []
disallowed_hosts = []
allowed_ports = [80,443]
disallowed_ports = []

16.4. DEFAULT IMAGE IMPORT BLOCKLIST AND ALLOWLIST
SETTINGS

The glance-image-import.conf file is an optional file that contains the following default options:

allowed_schemes - [http, https]

disallowed_schemes - empty list

allowed_hosts - empty list

disallowed_hosts - empty list

allowed_ports - [80, 443]

disallowed_ports - empty list

If you use the defaults, end users can access URIs by using only the http or https scheme. The only ports
that users can specify are 80 and 443. Users do not have to specify a port, but if they do, it must be
either 80 or 443.

You can find the glance-image-import.conf file in the etc/ subdirectory of the Image service source
code tree. Ensure that you are looking in the correct branch for your release of Red Hat OpenStack
Platform.

16.5. INJECTING METADATA ON IMAGE IMPORT TO CONTROL
WHERE VMS LAUNCH

End users can upload images to the Image service and use these images to launch VMs. These user-
provided (non-admin) images must be launched on a specific set of compute nodes. The assignment of
an instance to a compute node is controlled by image metadata properties.

The Image Property Injection plugin injects metadata properties to images during import. Specify the
properties by editing the [image_import_opts] and [inject_metadata_properties] sections of the glance-
image-import.conf file.

To enable the Image Property Injection plugin, add the following line to the [image_import_opts]
section:

[image_import_opts]
image_import_plugins = [inject_image_metadata]

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

146

ftp://example.org/some/resource
ftp://example.org:21/some/resource

To limit the metadata injection to images provided by a certain set of users, set the ignore_user_roles
parameter. For example, use the following configuration to inject one value for property1 and two
values for property2 into images downloaded by any non-admin user.

[DEFAULT]
[image_conversion]
[image_import_opts]
image_import_plugins = [inject_image_metadata]
[import_filtering_opts]
[inject_metadata_properties]
ignore_user_roles = admin
inject = PROPERTY1:value,PROPERTY2:value;another value

The parameter ignore_user_roles is a comma-separated list of the Identity service (keystone) roles
that the plugin ignores. This means that if the user that makes the image import call has any of these
roles, the plugin does not inject any properties into the image.

The parameter inject is a comma-separated list of properties and values that are injected into the
image record for the imported image. Each property and value must be quoted and separated by a colon
(‘:’).

You can find the glance-image-import.conf file in the etc/ subdirectory of the Image service source
code tree. Ensure that you are looking in the correct branch for your release of Red Hat OpenStack
Platform.

CHAPTER 16. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED STAGING AREA

147

CHAPTER 17. STORAGE CONFIGURATION
This chapter outlines several methods that you can use to configure storage options for your overcloud.

IMPORTANT

The overcloud uses local ephemeral storage and Logical Volume Manager (LVM) storage
for the default storage options. Local ephemeral storage is supported in production
environments but LVM storage is not supported.

17.1. CONFIGURING NFS STORAGE

You can configure the overcloud to use shared NFS storage.

17.1.1. Supported configurations and limitations

Supported NFS storage

Red Hat recommends that you use a certified storage back end and driver. Red Hat does not
recommend that you use NFS storage that comes from the generic NFS back end, because its
capabilities are limited compared to a certified storage back end and driver. For example, the
generic NFS back end does not support features such as volume encryption and volume multi-
attach. For information about supported drivers, see the Red Hat Ecosystem Catalog .

For Block Storage (cinder) and Compute (nova) services, you must use NFS version 4.0 or later.
Red Hat OpenStack Platform (RHOSP) does not support earlier versions of NFS.

Unsupported NFS configuration

RHOSP does not support the NetApp feature NAS secure, because it interferes with normal
volume operations. Director disables the feature by default. Therefore, do not edit the following
heat parameters that control whether an NFS back end or a NetApp NFS Block Storage back
end supports NAS secure:

CinderNetappNasSecureFileOperations

CinderNetappNasSecureFilePermissions

CinderNasSecureFileOperations

CinderNasSecureFilePermissions

Limitations when using NFS shares

Instances that have a swap disk cannot be resized or rebuilt when the back end is an NFS share.

17.1.2. Configuring NFS storage

You can configure the overcloud to use shared NFS storage.

Procedure

1. Create an environment file to configure your NFS storage, for example, nfs_storage.yaml.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

148

https://catalog.redhat.com/platform/red-hat-openstack/software

2. Add the following parameters to your new environment file to configure NFS storage:

parameter_defaults:
 CinderEnableIscsiBackend: false
 CinderEnableNfsBackend: true
 GlanceBackend: file
 CinderNfsServers: 192.0.2.230:/cinder
 GlanceNfsEnabled: true
 GlanceNfsShare: 192.0.2.230:/glance

NOTE

Do not configure the CinderNfsMountOptions and GlanceNfsOptions
parameters, as their default values enable NFS mount options that are suitable
for most Red Hat OpenStack Platform (RHOSP) environments. You can see the
value of the GlanceNfsOptions parameter in the
environments/storage/glance-nfs.yaml file. If you experience issues when you
configure multiple services to share the same NFS server, contact Red Hat
Support.

3. Add your NFS storage environment file to the stack with your other environment files and
deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/nfs_storage.yaml

17.1.3. Configuring an external NFS share for conversion

When the Block Storage service (cinder) performs image format conversion on the overcloud Controller
nodes, and the space is limited, conversion of large Image service (glance) images can cause the node
root disk space to be completely used. You can use an external NFS share for the conversion to prevent
the space on the node from being completely filled.

There are two director heat parameters that control the external NFS share configuration:

CinderImageConversionNfsShare

CinderImageConversionNfsOptions

Procedure

1. Log in to the undercloud as the stack user and source the stackrc credentials file.

$ source ~/stackrc

2. In a new or existing storage-related environment file, add information about the external NFS
share.

parameter_defaults:
 CinderImageConversionNfsShare: 192.168.10.1:/convert

NOTE

CHAPTER 17. STORAGE CONFIGURATION

149

NOTE

The default value of the CinderImageConversionNfsOptions parameter, that
controls the NFS mount options, is sufficient for most environments.

3. Include the environment file that contains your new configuration in the openstack overcloud
deploy command with any other environment files that are relevant to your environment.

$ openstack overcloud deploy \
--templates \
…
-e <existing_overcloud_environment_files> \
-e <new_environment_file> \
…

Replace <existing_overcloud_environment_files> with the list of environment files that
are part of your existing deployment.

Replace <new_environment_file> with the new or edited environment file that contains
your NFS share configuration.

17.2. CONFIGURING CEPH STORAGE

Use one of the following methods to integrate Red Hat Ceph Storage into a Red Hat OpenStack
Platform overcloud.

Creating an overcloud with its own Ceph Storage cluster

You can create a Ceph Storage Cluster during the creation on the overcloud. Director creates a set
of Ceph Storage nodes that use the Ceph OSD to store data. Director also installs the Ceph Monitor
service on the overcloud Controller nodes. This means that if an organization creates an overcloud
with three highly available Controller nodes, the Ceph Monitor also becomes a highly available
service. For more information, see the Deploying an Overcloud with Containerized Red Hat Ceph .

Integrating an existing Ceph Storage cluster into an overcloud

If you have an existing Ceph Storage Cluster, you can integrate this cluster into a Red Hat
OpenStack Platform overcloud during deployment. This means that you can manage and scale the
cluster outside of the overcloud configuration. For more information, see the Integrating an
Overcloud with an Existing Red Hat Ceph Cluster.

17.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER

You can reuse an external OpenStack Object Storage (swift) cluster by disabling the default Object
Storage service deployment on your Controller nodes. This disables both the proxy and storage services
for Object Storage and configures haproxy and OpenStack Identify (keystone) to use the given external
Object Storage endpoint.

NOTE

You must manage user accounts on the external Object Storage (swift) cluster manually.

Prerequisites

You need the endpoint IP address of the external Object Storage cluster as well as the

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

150

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/integrating_an_overcloud_with_an_existing_red_hat_ceph_storage_cluster/index

You need the endpoint IP address of the external Object Storage cluster as well as the
authtoken password from the external Object Storage proxy-server.conf file. You can find this
information by using the openstack endpoint list command.

Procedure

1. Create a new file named swift-external-params.yaml with the following content:

Replace EXTERNAL.IP:PORT with the IP address and port of the external proxy and

Replace AUTHTOKEN with the authtoken password for the external proxy on the
SwiftPassword line.

parameter_defaults:
 ExternalSwiftPublicUrl: 'https://EXTERNAL.IP:PORT/v1/AUTH_%(tenant_id)s'
 ExternalSwiftInternalUrl: 'http://192.168.24.9:8080/v1/AUTH_%(tenant_id)s'
 ExternalSwiftAdminUrl: 'http://192.168.24.9:8080'
 ExternalSwiftUserTenant: 'service'
 SwiftPassword: AUTHTOKEN

2. Save this file as swift-external-params.yaml.

3. Deploy the overcloud with the following external Object Storage service environment files, as
well as any other environment files that are relevant to your deployment:

openstack overcloud deploy --templates \
-e [your environment files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/swift-external.yaml \
-e swift-external-params.yaml

17.4. CONFIGURING CEPH OBJECT STORE TO USE EXTERNAL CEPH
OBJECT GATEWAY

Red Hat OpenStack Platform (RHOSP) director supports configuring an external Ceph Object Gateway
(RGW) as an Object Store service. To authenticate with the external RGW service, you must configure
RGW to verify users and their roles in the Identity service (keystone).

For more information about how to configure an external Ceph Object Gateway, see Configuring the
Ceph Object Gateway to use Keystone authentication in the Using Keystone with the Ceph Object
Gateway Guide.

Procedure

1. Add the following parameter_defaults to a custom environment file, for example, swift-
external-params.yaml, and adjust the values to suit your deployment:

parameter_defaults:
 ExternalSwiftPublicUrl: 'http://<Public RGW endpoint or
loadbalancer>:8080/swift/v1/AUTH_%(project_id)s'
 ExternalSwiftInternalUrl: 'http://<Internal RGW endpoint>:8080/swift/v1/AUTH_%
(project_id)s'
 ExternalSwiftAdminUrl: 'http://<Admin RGW endpoint>:8080/swift/v1/AUTH_%(project_id)s'
 ExternalSwiftUserTenant: 'service'
 SwiftPassword: 'choose_a_random_password'

CHAPTER 17. STORAGE CONFIGURATION

151

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/using_keystone_with_the_ceph_object_gateway_guide/index#configuring-the-ceph-object-getaway-to-use-keystone-authentication_rgw-keystone

NOTE

The example code snippet contains parameter values that might differ from
values that you use in your environment:

The default port where the remote RGW instance listens is 8080. The port
might be different depending on how the external RGW is configured.

The swift user created in the overcloud uses the password defined by the
SwiftPassword parameter. You must configure the external RGW instance
to use the same password to authenticate with the Identity service by using
the rgw_keystone_admin_password.

2. Add the following code to the Ceph config file to configure RGW to use the Identity service.
Replace the variable values to suit your environment:

 rgw_keystone_api_version = 3
 rgw_keystone_url = http://<public Keystone endpoint>:5000/
 rgw_keystone_accepted_roles = member, Member, admin
 rgw_keystone_accepted_admin_roles = ResellerAdmin, swiftoperator
 rgw_keystone_admin_domain = default
 rgw_keystone_admin_project = service
 rgw_keystone_admin_user = swift
 rgw_keystone_admin_password =
<password_as_defined_in_the_environment_parameters>
 rgw_keystone_implicit_tenants = true
 rgw_keystone_revocation_interval = 0
 rgw_s3_auth_use_keystone = true
 rgw_swift_versioning_enabled = true
 rgw_swift_account_in_url = true

NOTE

Director creates the following roles and users in the Identity service by default:

rgw_keystone_accepted_admin_roles: ResellerAdmin, swiftoperator

rgw_keystone_admin_domain: default

rgw_keystone_admin_project: service

rgw_keystone_admin_user: swift

3. Deploy the overcloud with the additional environment files with any other environment files that
are relevant to your deployment:

openstack overcloud deploy --templates \
-e <your_environment_files>
-e /usr/share/openstack-tripleo-heat-templates/environments/swift-external.yaml
-e swift-external-params.yaml

Verification

1. Log in to the undercloud as the stack user.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

152

2. Source the overcloudrc file:

$ source ~/stackrc

3. Verify that the endpoints exist in the Identity service (keystone):

$ openstack endpoint list --service object-store

+---------+-----------+-------+-------+---------+-----------+---------------+
| ID | Region | Service Name | Service Type | Enabled | Interface | URL |
+---------+-----------+-------+-------+---------+-----------+---------------+
| 233b7ea32aaf40c1ad782c696128aa0e | regionOne | swift | object-store | True | admin |
http://192.168.24.3:8080/v1/AUTH_%(project_id)s |
| 4ccde35ac76444d7bb82c5816a97abd8 | regionOne | swift | object-store | True | public |
https://192.168.24.2:13808/v1/AUTH_%(project_id)s |
| b4ff283f445348639864f560aa2b2b41 | regionOne | swift | object-store | True | internal |
http://192.168.24.3:8080/v1/AUTH_%(project_id)s |
+---------+-----------+-------+-------+---------+-----------+---------------+

4. Create a test container:

$ openstack container create <testcontainer>
+----------------+---------------+------------------------------------+
| account | container | x-trans-id |
+----------------+---------------+------------------------------------+
| AUTH_2852da3cf2fc490081114c434d1fc157 | testcontainer | tx6f5253e710a2449b8ef7e-
005f2d29e8 |
+----------------+---------------+------------------------------------+

5. Create a configuration file to confirm that you can upload data to the container:

$ openstack object create testcontainer undercloud.conf
+-----------------+---------------+----------------------------------+
| object | container | etag |
+-----------------+---------------+----------------------------------+
| undercloud.conf | testcontainer | 09fcffe126cac1dbac7b89b8fd7a3e4b |
+-----------------+---------------+----------------------------------+

6. Delete the test container:

$ openstack container delete -r <testcontainer>

17.5. CONFIGURING CINDER BACK END FOR THE IMAGE SERVICE

Use the GlanceBackend parameter to set the back end that the Image service uses to store images.

IMPORTANT

The default maximum number of volumes you can create for a project is 10.

Procedure

1. To configure cinder as the Image service back end, add the following line to an environment

CHAPTER 17. STORAGE CONFIGURATION

153

1. To configure cinder as the Image service back end, add the following line to an environment
file:

parameter_defaults:
 GlanceBackend: cinder

2. If the cinder back end is enabled, the following parameters and values are set by default:

cinder_store_auth_address = http://172.17.1.19:5000/v3
cinder_store_project_name = service
cinder_store_user_name = glance
cinder_store_password = ****secret****

3. To use a custom user name, or any custom value for the cinder_store_ parameters, add the
ExtraConfig parameter to parameter_defaults and include your custom values:

ExtraConfig:
 glance::config::api_config:
 glance_store/cinder_store_auth_address:
 value: "%{hiera('glance::api::authtoken::auth_url')}/v3"
 glance_store/cinder_store_user_name:
 value: <user-name>
 glance_store/cinder_store_password:
 value: "%{hiera('glance::api::authtoken::password')}"
 glance_store/cinder_store_project_name:
 value: "%{hiera('glance::api::authtoken::project_name')}"

17.6. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES
TO ATTACH TO ONE INSTANCE

By default, you can attach an unlimited number of storage devices to a single instance. To limit the
maximum number of devices, add the max_disk_devices_to_attach parameter to your Compute
environment file. Use the following example to change the value of max_disk_devices_to_attach to
"30":

parameter_defaults:
 ComputeExtraConfig:
 nova::config::nova_config:
 compute/max_disk_devices_to_attach:
 value: '30'

Guidelines and considerations

The number of storage disks supported by an instance depends on the bus that the disk uses.
For example, the IDE disk bus is limited to 4 attached devices.

Changing the max_disk_devices_to_attach on a Compute node with active instances can
cause rebuilds to fail if the maximum number is lower than the number of devices already
attached to instances. For example, if instance A has 26 devices attached and you change
max_disk_devices_to_attach to 20, a request to rebuild instance A will fail.

During cold migration, the configured maximum number of storage devices is enforced only on
the source for the instance that you want to migrate. The destination is not checked before the

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

154

move. This means that if Compute node A has 26 attached disk devices, and Compute node B
has a configured maximum of 20 attached disk devices, a cold migration of an instance with 26
attached devices from Compute node A to Compute node B succeeds. However, a subsequent
request to rebuild the instance in Compute node B fails because 26 devices are already
attached which exceeds the configured maximum of 20.

The configured maximum is not enforced on shelved offloaded instances, as they have no
Compute node.

Attaching a large number of disk devices to instances can degrade performance on the
instance. Tune the maximum number based on the boundaries of what your environment can
support.

Instances with machine type Q35 can attach a maximum of 500 disk devices.

17.7. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING

Use the glance-api caching mechanism to store copies of images on Image service (glance) API servers
and retrieve them automatically to improve scalability. With Image service caching, glance-api can run
on multiple hosts. This means that it does not need to retrieve the same image from back end storage
multiple times. Image service caching does not affect any Image service operations.

Configure Image service caching with the Red Hat OpenStack Platform director (tripleo) heat
templates:

Procedure

1. In an environment file, set the value of the GlanceCacheEnabled parameter to true, which
automatically sets the flavor value to keystone+cachemanagement in the glance-api.conf
heat template:

parameter_defaults:
 GlanceCacheEnabled: true

2. Include the environment file in the openstack overcloud deploy command when you redeploy
the overcloud.

3. Optional: Tune the glance_cache_pruner to an alternative frequency when you redeploy the
overcloud. The following example shows a frequency of 5 minutes:

parameter_defaults:
 ControllerExtraConfig:
 glance::cache::pruner::minute: '*/5'

Adjust the frequency according to your needs to avoid file system full scenarios. Include the
following elements when you choose an alternative frequency:

The size of the files that you want to cache in your environment.

The amount of available file system space.

The frequency at which the environment caches images.

17.8. CONFIGURING THIRD PARTY STORAGE

CHAPTER 17. STORAGE CONFIGURATION

155

The following environment files are present in the core heat template collection /usr/share/openstack-
tripleo-heat-templates.

Dell EMC Storage Center

Deploys a single Dell EMC Storage Center back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellsc-config.yaml.

Dell EMC PS Series

Deploys a single Dell EMC PS Series back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellps-config.yaml.

NetApp Block Storage

Deploys a NetApp storage appliance as a back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/storage/cinder-netapp-config.yaml.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

156

CHAPTER 18. SECURITY ENHANCEMENTS
The following sections provide some suggestions to harden the security of your overcloud.

18.1. USING SECURE ROOT USER ACCESS

The overcloud image automatically contains hardened security for the root user. For example, each
deployed overcloud node automatically disables direct SSH access to the root user. You can still access
the root user on overcloud nodes.

Procedure

1. Log in to the undercloud node as the stack user.

2. Each overcloud node has a heat-admin user account. This user account contains the
undercloud public SSH key, which provides SSH access without a password from the undercloud
to the overcloud node. On the undercloud node, log in to the an overcloud node through SSH as
the heat-admin user.

3. Switch to the root user with sudo -i.

18.2. MANAGING THE OVERCLOUD FIREWALL

Each of the core OpenStack Platform services contains firewall rules in their respective composable
service templates. This automatically creates a default set of firewall rules for each overcloud node.

The overcloud heat templates contain a set of parameters that can help with additional firewall
management:

ManageFirewall

Defines whether to automatically manage the firewall rules. Set this parameter to true to allow
Puppet to automatically configure the firewall on each node. Set to false if you want to manually
manage the firewall. The default is true.

PurgeFirewallRules

Defines whether to purge the default Linux firewall rules before configuring new ones. The default is
false.

If you set the ManageFirewall parameter to true, you can create additional firewall rules on deployment.
Set the tripleo::firewall::firewall_rules hieradata using a configuration hook (see Section 4.5, “Puppet:
Customizing hieradata for roles”) in an environment file for your overcloud. This hieradata is a hash
containing the firewall rule names and their respective parameters as keys, all of which are optional:

port

The port associated to the rule.

dport

The destination port associated to the rule.

sport

The source port associated to the rule.

proto

The protocol associated to the rule. Defaults to tcp.

action

CHAPTER 18. SECURITY ENHANCEMENTS

157

The action policy associated to the rule. Defaults to accept.

jump

The chain to jump to. If present, it overrides action.

state

An Array of states associated to the rule. Defaults to ['NEW'].

source

The source IP address associated to the rule.

iniface

The network interface associated to the rule.

chain

The chain associated to the rule. Defaults to INPUT.

destination

The destination CIDR associated to the rule.

The following example demonstrates the syntax of the firewall rule format:

ExtraConfig:
 tripleo::firewall::firewall_rules:
 '300 allow custom application 1':
 port: 999
 proto: udp
 action: accept
 '301 allow custom application 2':
 port: 8081
 proto: tcp
 action: accept

This applies two additional firewall rules to all nodes through ExtraConfig.

NOTE

Each rule name becomes the comment for the respective iptables rule. Each rule name
starts with a three-digit prefix to help Puppet order all defined rules in the final iptables
file. The default Red Hat OpenStack Platform rules use prefixes in the 000 to 200 range.

18.3. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL
(SNMP) STRINGS

Director provides a default read-only SNMP configuration for your overcloud. It is advisable to change
the SNMP strings to mitigate the risk of unauthorized users learning about your network devices.

NOTE

When you configure the ExtraConfig interface with a string parameter, you must use the
following syntax to ensure that heat and Hiera do not interpret the string as a Boolean
value: '"<VALUE>"'.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

158

SNMP traditional access control settings

snmp::ro_community

IPv4 read-only SNMP community string. The default value is public.

snmp::ro_community6

IPv6 read-only SNMP community string. The default value is public.

snmp::ro_network

Network that is allowed to RO query the daemon. This value can be a string or an array. Default value
is 127.0.0.1.

snmp::ro_network6

Network that is allowed to RO query the daemon with IPv6. This value can be a string or an array.
The default value is ::1/128.

tripleo::profile::base::snmp::snmpd_config

Array of lines to add to the snmpd.conf file as a safety valve. The default value is []. See the SNMP
Configuration File web page for all available options.

For example:

parameter_defaults:
 ExtraConfig:
 snmp::ro_community: mysecurestring
 snmp::ro_community6: myv6securestring

This changes the read-only SNMP community string on all nodes.

SNMP view-based access control settings (VACM)

snmp::com2sec

An array of VACM com2sec mappings. Must provide SECNAME, SOURCE and COMMUNITY.

snmp::com2sec6

An array of VACM com2sec6 mappings. Must provide SECNAME, SOURCE and COMMUNITY.

For example:

parameter_defaults:
 ExtraConfig:
 snmp::com2sec: ["notConfigUser default mysecurestring"]
 snmp::com2sec6: ["notConfigUser default myv6securestring"]

This changes the read-only SNMP community string on all nodes.

For more information, see the snmpd.conf man page.

18.4. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the overcloud, consider hardening the SSL/TLS ciphers and rules that are
used with the HAProxy configuration. By hardening the SSL/TLS ciphers, you help avoid SSL/TLS
vulnerabilities, such as the POODLE vulnerability.

1. Create a heat template environment file called tls-ciphers.yaml:

CHAPTER 18. SECURITY ENHANCEMENTS

159

http://www.net-snmp.org/docs/man/snmpd.conf.html
https://access.redhat.com/solutions/1291123

touch ~/templates/tls-ciphers.yaml

2. Use the ExtraConfig hook in the environment file to apply values to the
tripleo::haproxy::ssl_cipher_suite and tripleo::haproxy::ssl_options hieradata:

parameter_defaults:
 ExtraConfig:
 tripleo::haproxy::ssl_cipher_suite: 'DHE-RSA-AES128-CCM:DHE-RSA-AES256-
CCM:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
AES128-CCM:ECDHE-ECDSA-AES256-CCM:ECDHE-ECDSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-
POLY1305:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-CHACHA20-POLY1305'

 tripleo::haproxy::ssl_options: 'no-sslv3 no-tls-tickets'

NOTE

The cipher collection is one continuous line.

3. Include the tls-ciphers.yaml environment file with the overcloud deploy command when
deploying the overcloud:

openstack overcloud deploy --templates \
...
-e /home/stack/templates/tls-ciphers.yaml
...

18.5. USING THE OPEN VSWITCH FIREWALL

You can configure security groups to use the Open vSwitch (OVS) firewall driver in Red Hat OpenStack
Platform director. Use the NeutronOVSFirewallDriver parameter to specify firewall driver that you
want to use:

iptables_hybrid - Configures the Networking service (neutron) to use the iptables/hybrid
based implementation.

openvswitch - Configures the Networking service to use the OVS firewall flow-based driver.

The openvswitch firewall driver includes higher performance and reduces the number of interfaces and
bridges used to connect guests to the project network.

IMPORTANT

Multicast traffic is handled differently by the Open vSwitch (OVS) firewall driver than by
the iptables firewall driver. With iptables, by default, VRRP traffic is denied, and you must
enable VRRP in the security group rules for any VRRP traffic to reach an endpoint. With
OVS, all ports share the same OpenFlow context, and multicast traffic cannot be
processed individually per port. Because security groups do not apply to all ports (for
example, the ports on a router), OVS uses the NORMAL action and forwards multicast
traffic to all ports as specified by RFC 4541.

NOTE

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

160

NOTE

The iptables_hybrid option is not compatible with OVS-DPDK. The openvswitch option
is not compatible with OVS Hardware Offload.

Configure the NeutronOVSFirewallDriver parameter in the network-environment.yaml file:

NeutronOVSFirewallDriver : Configures the name of the firewall driver that you want to use
when you implement security groups. Possible values depend on your system configuration.
Some examples are noop, openvswitch, and iptables_hybrid. The default value of an empty
string results in a supported configuration.

NeutronOVSFirewallDriver: openvswitch

CHAPTER 18. SECURITY ENHANCEMENTS

161

CHAPTER 19. CONFIGURING NETWORK PLUGINS
Director includes environment files that you can use when you configure third-party network plugins:

19.1. FUJITSU CONVERGED FABRIC (C-FABRIC)

You can enable the Fujitsu Converged Fabric (C-Fabric) plugin by using the environment file located at
/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-cfab.yaml.

Procedure

1. Copy the environment file to your templates subdirectory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-cfab.yaml
/home/stack/templates/

2. Edit the resource_registry to use an absolute path:

resource_registry:
 OS::TripleO::Services::NeutronML2FujitsuCfab: /usr/share/openstack-tripleo-heat-
templates/puppet/services/neutron-plugin-ml2-fujitsu-cfab.yaml

3. Review the parameter_defaults in /home/stack/templates/neutron-ml2-fujitsu-cfab.yaml:

NeutronFujitsuCfabAddress - The telnet IP address of the C-Fabric. (string)

NeutronFujitsuCfabUserName - The C-Fabric username to use. (string)

NeutronFujitsuCfabPassword - The password of the C-Fabric user account. (string)

NeutronFujitsuCfabPhysicalNetworks - List of <physical_network>:<vfab_id> tuples
that specify physical_network names and their corresponding vfab IDs.
(comma_delimited_list)

NeutronFujitsuCfabSharePprofile - Determines whether to share a C-Fabric pprofile
among neutron ports that use the same VLAN ID. (boolean)

NeutronFujitsuCfabPprofilePrefix - The prefix string for pprofile name. (string)

NeutronFujitsuCfabSaveConfig - Determines whether to save the configuration.
(boolean)

4. To apply the template to your deployment, include the environment file in the openstack
overcloud deploy command:

$ openstack overcloud deploy --templates -e /home/stack/templates/neutron-ml2-fujitsu-
cfab.yaml [OTHER OPTIONS] ...

19.2. FUJITSU FOS SWITCH

You can enable the Fujitsu FOS Switch plugin by using the environment file located at
/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-fossw.yaml.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

162

Procedure

1. Copy the environment file to your templates subdirectory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-
fossw.yaml /home/stack/templates/

2. Edit the resource_registry to use an absolute path:

resource_registry:
 OS::TripleO::Services::NeutronML2FujitsuFossw: /usr/share/openstack-tripleo-heat-
templates/puppet/services/neutron-plugin-ml2-fujitsu-fossw.yaml

3. Review the parameter_defaults in /home/stack/templates/neutron-ml2-fujitsu-fossw.yaml:

NeutronFujitsuFosswIps - The IP addresses of all FOS switches. (comma_delimited_list)

NeutronFujitsuFosswUserName - The FOS username to use. (string)

NeutronFujitsuFosswPassword - The password of the FOS user account. (string)

NeutronFujitsuFosswPort - The port number to use for the SSH connection. (number)

NeutronFujitsuFosswTimeout - The timeout period of the SSH connection. (number)

NeutronFujitsuFosswUdpDestPort - The port number of the VXLAN UDP destination on
the FOS switches. (number)

NeutronFujitsuFosswOvsdbVlanidRangeMin - The minimum VLAN ID in the range that is
used for binding VNI and physical port. (number)

NeutronFujitsuFosswOvsdbPort - The port number for the OVSDB server on the FOS
switches. (number)

4. To apply the template to your deployment, include the environment file in the openstack
overcloud deploy command:

$ openstack overcloud deploy --templates -e /home/stack/templates/neutron-ml2-fujitsu-
fossw.yaml [OTHER OPTIONS] ...

CHAPTER 19. CONFIGURING NETWORK PLUGINS

163

CHAPTER 20. CONFIGURING IDENTITY
Director includes parameters to help configure Identity Service (keystone) settings:

20.1. REGION NAME

By default, your overcloud region is named regionOne. You can change this by adding a
KeystoneRegion entry your environment file. You cannot modify this value after you deploy the
overcloud.

parameter_defaults:
 KeystoneRegion: 'SampleRegion'

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

164

CHAPTER 21. MISCELLANEOUS OVERCLOUD
CONFIGURATION

Use the following configurations to configure miscellaneous features in the overcloud.

21.1. DEBUG MODES

You can enable and disable the DEBUG level logging mode for certain services in the overcloud.

To configure debug mode for a service, set the respective debug parameter. For example, OpenStack
Identity (keystone) uses the KeystoneDebug parameter.

Procedure

Set the parameter in the parameter_defaults section of an environment file:

parameter_defaults:
 KeystoneDebug: True

After you have set the KeystoneDebug parameter to True, the
/var/log/containers/keystone/keystone.log standard keystone log file is updated with DEBUG level
logs.

For a full list of debug parameters, see "Debug Parameters" in the Overcloud Parameters guide.

21.2. CONFIGURING THE KERNEL ON OVERCLOUD NODES

Red Hat OpenStack Platform director includes parameters that configure the kernel on overcloud
nodes.

ExtraKernelModules

Kernel modules to load. The modules names are listed as a hash key with an empty value:

 ExtraKernelModules:
 <MODULE_NAME>: {}

ExtraKernelPackages

Kernel-related packages to install prior to loading the kernel modules from ExtraKernelModules.
The package names are listed as a hash key with an empty value.

 ExtraKernelPackages:
 <PACKAGE_NAME>: {}

ExtraSysctlSettings

Hash of sysctl settings to apply. Set the value of each parameter using the value key.

 ExtraSysctlSettings:
 <KERNEL_PARAMETER>:
 value: <VALUE>

CHAPTER 21. MISCELLANEOUS OVERCLOUD CONFIGURATION

165

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/overcloud_parameters/debug-parameters

This example shows the syntax of these parameters in an environment file:

parameter_defaults:
 ExtraKernelModules:
 iscsi_target_mod: {}
 ExtraKernelPackages:
 iscsi-initiator-utils: {}
 ExtraSysctlSettings:
 dev.scsi.logging_level:
 value: 1

21.3. CONFIGURING THE SERVER CONSOLE

Console output from overcloud nodes is not always sent to the server console. If you want to view this
output in the server console, you must configure the overcloud to use the correct console for your
hardware. Use one of the following methods to perform this configuration:

Modify the KernelArgs heat parameter for each overcloud role.

Customize the overcloud-full.qcow2 image that director uses to provision the overcloud
nodes.

Prerequisites

A successful undercloud installation. For more information, see the Director Installation and
Usage guide.

Overcloud nodes ready for deployment.

Modifying KernelArgs with heat during deployment

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source stackrc

3. Create an environment file overcloud-console.yaml with the following content:

parameter_defaults:
 <role>Parameters:
 KernelArgs: "console=<console-name>"

Replace <role> with the name of the overcloud role that you want to configure, and replace
<console-name> with the ID of the console that you want to use. For example, use the
following snippet to configure all overcloud nodes in the default roles to use tty0:

parameter_defaults:
 ControllerParameters:
 KernelArgs: "console=tty0"
 ComputeParameters:
 KernelArgs: "console=tty0"
 BlockStorageParameters:
 KernelArgs: "console=tty0"

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

166

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index

 ObjectStorageParameters:
 KernelArgs: "console=tty0"
 CephStorageParameters:
 KernelArgs: "console=tty0"

4. Include the overcloud-console-tty0.yaml file in your deployment command with the -e option.

Modifying the overcloud-full.qcow2 image

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source stackrc

3. Modify the kernel arguments in the overcloud-full.qcow2 image to set the correct console for
your hardware. For example, set the console to tty0:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --run-command 'grubby --update-
kernel=ALL --args="console=tty0"'

4. Import the image into director:

$ openstack overcloud image upload --image-path /home/stack/images/overcloud-full.qcow2

5. Deploy the overcloud.

Verification

1. Log in to an overcloud node from the undercloud:

$ ssh heat-admin@<IP-address>

Replace <IP-address> with the IP address of an overcloud node.

2. Inspect the contents of the /proc/cmdline file and ensure that console= parameter is set to
the value of the console that you want to use:

[heat-admin@controller-0 ~]$ cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos2)/boot/vmlinuz-4.18.0-193.29.1.el8_2.x86_64
root=UUID=0ec3dea5-f293-4729-b676-5d38a611ce81 ro console=tty0
console=ttyS0,115200n81 no_timer_check crashkernel=auto rhgb quiet

21.4. CONFIGURING EXTERNAL LOAD BALANCING

An overcloud uses multiple Controllers together as a high availability cluster, which ensures maximum
operational performance for your OpenStack services. In addition, the cluster provides load balancing
for access to the OpenStack services, which evenly distributes traffic to the Controller nodes and
reduces server overload for each node. You can also use an external load balancer to perform this
distribution. For example, you can use your own hardware-based load balancer to handle traffic
distribution to the Controller nodes.

For more information about configuring external load balancing, see the dedicated External Load

CHAPTER 21. MISCELLANEOUS OVERCLOUD CONFIGURATION

167

For more information about configuring external load balancing, see the dedicated External Load
Balancing for the Overcloud guide.

21.5. CONFIGURING IPV6 NETWORKING

This section examines the network configuration for the overcloud. This includes isolating the
OpenStack services to use specific network traffic and configuring the overcloud with IPv6 options.

Red Hat OpenStack Platform 16.2 Advanced Overcloud Customization

168

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html/external_load_balancing_for_the_overcloud

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO OVERCLOUD CONFIGURATION
	CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
	2.1. HEAT TEMPLATES
	2.2. ENVIRONMENT FILES
	2.3. CORE OVERCLOUD HEAT TEMPLATES
	2.4. PLAN ENVIRONMENT METADATA
	2.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	2.6. USING CUSTOMIZED CORE HEAT TEMPLATES
	2.7. JINJA2 RENDERING

	CHAPTER 3. HEAT PARAMETERS
	3.1. EXAMPLE 1: CONFIGURING THE TIME ZONE
	3.2. EXAMPLE 2: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
	3.3. EXAMPLE 3: ENABLING AND DISABLING PARAMETERS
	3.4. EXAMPLE 4: ROLE-BASED PARAMETERS
	3.5. IDENTIFYING PARAMETERS THAT YOU WANT TO MODIFY

	CHAPTER 4. CONFIGURATION HOOKS
	4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
	4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
	4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
	4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
	4.7. PUPPET: APPLYING CUSTOM MANIFESTS

	CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION
	5.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE
	5.2. RHSMVARS SUB-PARAMETERS
	5.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
	5.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES
	5.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER
	5.6. SWITCHING TO THE RHSM COMPOSABLE SERVICE
	5.7. RHEL-REGISTRATION TO RHSM MAPPINGS
	5.8. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
	5.9. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

	CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
	6.1. SUPPORTED ROLE ARCHITECTURE
	6.2. EXAMINING THE ROLES_DATA FILE
	6.3. CREATING A ROLES_DATA FILE
	6.4. SUPPORTED CUSTOM ROLES
	6.5. EXAMINING ROLE PARAMETERS
	6.6. CREATING A NEW ROLE
	6.7. GUIDELINES AND LIMITATIONS
	6.8. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
	6.9. ADDING AND REMOVING SERVICES FROM ROLES
	6.10. ENABLING DISABLED SERVICES
	6.11. CREATING A GENERIC NODE WITH NO SERVICES

	CHAPTER 7. CONTAINERIZED SERVICES
	7.1. CONTAINERIZED SERVICE ARCHITECTURE
	7.2. CONTAINERIZED SERVICE PARAMETERS
	7.3. PREPARING CONTAINER IMAGES
	7.4. CONTAINER IMAGE PREPARATION PARAMETERS
	7.5. GUIDELINES FOR CONTAINER IMAGE TAGGING
	7.6. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
	7.7. LAYERING IMAGE PREPARATION ENTRIES
	7.8. MODIFYING IMAGES DURING PREPARATION
	7.9. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	7.10. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	7.11. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
	7.12. DEPLOYING A VENDOR PLUGIN

	CHAPTER 8. BASIC NETWORK ISOLATION
	8.1. NETWORK ISOLATION
	8.2. MODIFYING ISOLATED NETWORK CONFIGURATION
	8.3. NETWORK INTERFACE TEMPLATES
	8.4. DEFAULT NETWORK INTERFACE TEMPLATES
	8.5. ENABLING BASIC NETWORK ISOLATION

	CHAPTER 9. CUSTOM COMPOSABLE NETWORKS
	9.1. COMPOSABLE NETWORKS
	9.2. ADDING A COMPOSABLE NETWORK
	9.3. INCLUDING A COMPOSABLE NETWORK IN A ROLE
	9.4. ASSIGNING OPENSTACK SERVICES TO COMPOSABLE NETWORKS
	9.5. ENABLING CUSTOM COMPOSABLE NETWORKS
	9.6. RENAMING THE DEFAULT NETWORKS

	CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES
	10.1. CUSTOM NETWORK ARCHITECTURE
	10.2. RENDERING DEFAULT NETWORK INTERFACE TEMPLATES FOR CUSTOMIZATION
	10.3. NETWORK INTERFACE ARCHITECTURE
	10.4. NETWORK INTERFACE REFERENCE
	10.5. EXAMPLE NETWORK INTERFACE LAYOUT
	10.6. NETWORK INTERFACE TEMPLATE CONSIDERATIONS FOR CUSTOM NETWORKS
	10.7. CUSTOM NETWORK ENVIRONMENT FILE
	10.8. NETWORK ENVIRONMENT PARAMETERS
	10.9. EXAMPLE CUSTOM NETWORK ENVIRONMENT FILE
	10.10. ENABLING NETWORK ISOLATION WITH CUSTOM NICS

	CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION
	11.1. CONFIGURING CUSTOM INTERFACES
	11.2. CONFIGURING ROUTES AND DEFAULT ROUTES
	11.3. CONFIGURING POLICY-BASED ROUTING
	11.4. CONFIGURING JUMBO FRAMES
	11.5. CONFIGURING ML2/OVN NORTHBOUND PATH MTU DISCOVERY FOR JUMBO FRAME FRAGMENTATION
	11.6. CONFIGURING THE NATIVE VLAN ON A TRUNKED INTERFACE
	11.7. INCREASING THE MAXIMUM NUMBER OF CONNECTIONS THAT NETFILTER TRACKS

	CHAPTER 12. NETWORK INTERFACE BONDING
	12.1. NETWORK INTERFACE BONDING FOR OVERCLOUD NODES
	12.2. CREATING OPEN VSWITCH (OVS) BONDS
	12.3. OPEN VSWITCH (OVS) BONDING OPTIONS
	12.4. USING LINK AGGREGATION CONTROL PROTOCOL (LACP) WITH OPEN VSWITCH (OVS) BONDING MODES
	12.5. CREATING LINUX BONDS

	CHAPTER 13. CONTROLLING NODE PLACEMENT
	13.1. ASSIGNING SPECIFIC NODE IDS
	13.2. ASSIGNING CUSTOM HOST NAMES
	13.3. ASSIGNING PREDICTABLE IPS
	13.4. ASSIGNING PREDICTABLE VIRTUAL IPS

	CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS
	14.1. INITIALIZING THE SIGNING HOST
	14.2. CREATING A CERTIFICATE AUTHORITY
	14.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	14.4. CREATING AN SSL/TLS KEY
	14.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	14.6. CREATING THE SSL/TLS CERTIFICATE
	14.7. ENABLING SSL/TLS
	14.8. INJECTING A ROOT CERTIFICATE
	14.9. CONFIGURING DNS ENDPOINTS
	14.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
	14.11. MANUALLY UPDATING SSL/TLS CERTIFICATES

	CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT
	15.1. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS FOR OPENSTACK
	15.2. IMPLEMENTING TLS-E WITH ANSIBLE
	15.3. ENROLLING NODES IN RED HAT IDENTITY MANAGER (IDM) WITH NOVAJOIN
	15.4. ADDING THE UNDERCLOUD NODE TO THE CERTIFICATE AUTHORITY
	15.5. ADDING THE UNDERCLOUD NODE TO RED HAT IDENTITY MANAGER (IDM)
	15.6. SETTING RED HAT IDENTITY MANAGER (IDM) AS THE DNS SERVER FOR THE OVERCLOUD
	15.7. PREPARING ENVIRONMENT FILES AND DEPLOYING THE OVERCLOUD WITH NOVAJOIN ENROLLMENT

	CHAPTER 16. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED STAGING AREA
	16.1. CREATING AND DEPLOYING THE GLANCE-SETTINGS.YAML FILE
	16.2. CONTROLLING IMAGE WEB-IMPORT SOURCES
	16.3. IMAGE IMPORT EXAMPLE
	16.4. DEFAULT IMAGE IMPORT BLOCKLIST AND ALLOWLIST SETTINGS
	16.5. INJECTING METADATA ON IMAGE IMPORT TO CONTROL WHERE VMS LAUNCH

	CHAPTER 17. STORAGE CONFIGURATION
	17.1. CONFIGURING NFS STORAGE
	17.1.1. Supported configurations and limitations
	17.1.2. Configuring NFS storage
	17.1.3. Configuring an external NFS share for conversion

	17.2. CONFIGURING CEPH STORAGE
	17.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER
	17.4. CONFIGURING CEPH OBJECT STORE TO USE EXTERNAL CEPH OBJECT GATEWAY
	17.5. CONFIGURING CINDER BACK END FOR THE IMAGE SERVICE
	17.6. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES TO ATTACH TO ONE INSTANCE
	17.7. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING
	17.8. CONFIGURING THIRD PARTY STORAGE

	CHAPTER 18. SECURITY ENHANCEMENTS
	18.1. USING SECURE ROOT USER ACCESS
	18.2. MANAGING THE OVERCLOUD FIREWALL
	18.3. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
	18.4. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
	18.5. USING THE OPEN VSWITCH FIREWALL

	CHAPTER 19. CONFIGURING NETWORK PLUGINS
	19.1. FUJITSU CONVERGED FABRIC (C-FABRIC)
	19.2. FUJITSU FOS SWITCH

	CHAPTER 20. CONFIGURING IDENTITY
	20.1. REGION NAME

	CHAPTER 21. MISCELLANEOUS OVERCLOUD CONFIGURATION
	21.1. DEBUG MODES
	21.2. CONFIGURING THE KERNEL ON OVERCLOUD NODES
	21.3. CONFIGURING THE SERVER CONSOLE
	21.4. CONFIGURING EXTERNAL LOAD BALANCING
	21.5. CONFIGURING IPV6 NETWORKING

