
Red Hat OpenShift Container Storage
4.8

Deploying and managing OpenShift Container
Storage using Google Cloud

How to install and manage

Last Updated: 2022-05-13

Red Hat OpenShift Container Storage 4.8 Deploying and managing
OpenShift Container Storage using Google Cloud

How to install and manage

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions on installing and managing Red Hat OpenShift Container
Storage on Google Cloud. Deploying and managing OpenShift Container Storage on Google Cloud
is a Technology Preview feature. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PREFACE

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT CONTAINER STORAGE
1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

CHAPTER 2. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD
2.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE OPERATOR
2.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE

CHAPTER 3. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT
3.1. VERIFYING THE STATE OF THE PODS
3.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY
3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY
3.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE
4.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE IN INTERNAL MODE
4.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER STORAGE
4.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE

4.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS
5.1. CREATING STORAGE CLASSES AND POOLS
5.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME ENCRYPTION

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES
6.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER STORAGE
6.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER STORAGE
6.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE

6.3.1. Configuring persistent storage
6.3.2. Configuring cluster logging to use OpenShift Container Storage

CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER
STORAGE

CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT CONTAINER STORAGE

8.1. ANATOMY OF AN INFRASTRUCTURE NODE
8.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES
8.3. MANUAL CREATION OF INFRASTRUCTURE NODES

CHAPTER 9. SCALING STORAGE NODES
9.1. REQUIREMENTS FOR SCALING STORAGE NODES
9.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT CONTAINER STORAGE NODES
ON GOOGLE CLOUD INFRASTRUCTURE
9.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

9.3.1. Adding a node on Google Cloud installer-provisioned infrastructure
9.3.2. Verifying the addition of a new node
9.3.3. Scaling up storage capacity

5

6

7

8
8

10
10
11

15
15
16
17
17

18
18

24

27
28

30
30
31

34
34
36
38
39
40

43

45
45
45
46

48
48

48
50
50
51
51

Table of Contents

1

. .

. .

CHAPTER 10. MULTICLOUD OBJECT GATEWAY
10.1. ABOUT THE MULTICLOUD OBJECT GATEWAY
10.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS

10.2.1. Accessing the Multicloud Object Gateway from the terminal
10.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

10.3. ALLOWING USER ACCESS TO THE MULTICLOUD OBJECT GATEWAY CONSOLE
10.4. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD

10.4.1. Creating a new backing store
10.4.2. Adding storage resources for hybrid or Multicloud using the MCG command line interface

10.4.2.1. Creating an AWS-backed backingstore
10.4.2.2. Creating an IBM COS-backed backingstore
10.4.2.3. Creating an Azure-backed backingstore
10.4.2.4. Creating a GCP-backed backingstore
10.4.2.5. Creating a local Persistent Volume-backed backingstore

10.4.3. Creating an s3 compatible Multicloud Object Gateway backingstore
10.4.4. Adding storage resources for hybrid and Multicloud using the user interface
10.4.5. Creating a new bucket class
10.4.6. Editing a bucket class
10.4.7. Editing backing stores for bucket class

10.5. MANAGING NAMESPACE BUCKETS
10.5.1. Adding provider connections to the Multicloud Object Gateway
10.5.2. Adding namespace resources using the Multicloud Object Gateway
10.5.3. Adding resources to namespace buckets using the Multicloud Object Gateway
10.5.4. Amazon S3 API endpoints for objects in namespace buckets
10.5.5. Adding a namespace bucket using the Multicloud Object Gateway CLI and YAML

10.5.5.1. Adding an AWS S3 namespace bucket using YAML
10.5.5.2. Adding an IBM COS namespace bucket using YAML
10.5.5.3. Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI
10.5.5.4. Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

10.6. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS
10.6.1. Creating bucket classes to mirror data using the MCG command-line-interface
10.6.2. Creating bucket classes to mirror data using a YAML
10.6.3. Configuring buckets to mirror data using the user interface

10.7. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY
10.7.1. About bucket policies
10.7.2. Using bucket policies
10.7.3. Creating an AWS S3 user in the Multicloud Object Gateway

10.8. OBJECT BUCKET CLAIM
10.8.1. Dynamic Object Bucket Claim
10.8.2. Creating an Object Bucket Claim using the command line interface
10.8.3. Creating an Object Bucket Claim using the OpenShift Web Console
10.8.4. Attaching an Object Bucket Claim to a deployment
10.8.5. Viewing object buckets using the OpenShift Web Console
10.8.6. Deleting Object Bucket Claims

10.9. CACHING POLICY FOR OBJECT BUCKETS
10.9.1. Creating an AWS cache bucket
10.9.2. Creating an IBM COS cache bucket

10.10. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
10.10.1. S3 endpoints in the Multicloud Object Gateway
10.10.2. Scaling with storage nodes

10.11. AUTOMATIC SCALING OF MULTICLOUD OBJECT GATEWAY ENDPOINTS

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

52
52
52
53
55
58
59
59
61
61

63
65
66
68
70
71
73
74
75
76
76
77
78
78
79
79
82
84
86
88
89
89
89
90
91
91

92
95
95
97

100
103
104
105
106
106
108

111
111
111

114

115

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

2

. .

. .

. .

. .

. .

11.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE
11.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS
11.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS
11.4. DYNAMIC PROVISIONING

11.4.1. About dynamic provisioning
11.4.2. Dynamic provisioning in OpenShift Container Storage
11.4.3. Available dynamic provisioning plug-ins

CHAPTER 12. VOLUME SNAPSHOTS
12.1. CREATING VOLUME SNAPSHOTS
12.2. RESTORING VOLUME SNAPSHOTS
12.3. DELETING VOLUME SNAPSHOTS

CHAPTER 13. VOLUME CLONING
13.1. CREATING A CLONE

CHAPTER 14. REPLACING STORAGE NODES
14.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED
INFRASTRUCTURE
14.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

CHAPTER 15. REPLACING STORAGE DEVICES
15.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON GOOGLE CLOUD INSTALLER-
PROVISIONED INFRASTRUCTURE

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE
16.1. OVERVIEW OF THE OPENSHIFT CONTAINER STORAGE UPDATE PROCESS
16.2. PREPARING TO UPDATE IN A DISCONNECTED ENVIRONMENT

16.2.1. Adding mirror registry authentication details
16.2.2. Building and mirroring the Red Hat operator catalog
16.2.3. Creating Operator imageContentSourcePolicy
16.2.4. Updating redhat-operator CatalogSource
16.2.5. Continue to update

16.3. UPDATING OPENSHIFT CONTAINER STORAGE IN INTERNAL MODE
16.3.1. Enabling automatic updates for OpenShift Container Storage operator in internal mode
16.3.2. Manually updating OpenShift Container Storage operator in internal mode

115
116
117
117
117
118
118

120
120
121
123

125
125

126

126
127

130

130

131
131
131
132
133
134
134
135
136
136
138

Table of Contents

3

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Do let us know how we can make it better. To give
feedback:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. In the Component section, choose documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

6

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat OpenShift Container Storage

PREFACE
Red Hat OpenShift Container Storage 4.8 supports deployment on existing Red Hat OpenShift
Container Platform (RHOCP) Google Cloud clusters.

NOTE

Only internal Openshift Container Storage clusters are supported on Google Cloud. See
Planning your deployment for more information about deployment requirements.

To deploy OpenShift Container Storage in internal mode, start with the requirements in Preparing to
deploy OpenShift Container Storage chapter and then follow the deployment process Deploying
OpenShift Container Storage on Google Cloud.

PREFACE

7

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#preparing_to_deploy_openshift_container_storage

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT
CONTAINER STORAGE

Deploying OpenShift Container Storage on OpenShift Container Platform using dynamic storage
devices provides you with the option to create internal cluster resources. This will result in the internal
provisioning of the base services, which helps to make additional storage classes available to
applications.

Before you begin the deployment of Red Hat OpenShift Container Storage, follow these steps:

1. Optional: If you want to enable cluster-wide encryption using an external Key Management
System (KMS):

Ensure that a policy with a token exists and the key value backend path in Vault is enabled.
See Enabling the key value backend path and policy in Vault .

Ensure that you are using signed certificates on your Vault servers.

2. Minimum starting node requirements [Technology Preview]
An OpenShift Container Storage cluster will be deployed with minimum configuration when the
standard deployment resource requirement is not met. See Resource requirements section in
Planning guide.

1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

Prerequisites

Administrator access to Vault.

Choose a unique path name as the backend path that follows the naming convention since it
cannot be changed later.

Procedure

1. Enable the Key/Value (KV) backend path in Vault.
For Vault KV secret engine API, version 1:

$ vault secrets enable -path=ocs kv

For Vault KV secret engine API, version 2:

$ vault secrets enable -path=ocs kv-v2

2. Create a policy to restrict users to perform a write or delete operation on the secret using the
following commands:

echo '
path "ocs/*" {
 capabilities = ["create", "read", "update", "delete", "list"]
}
path "sys/mounts" {
capabilities = ["read"]
}'| vault policy write ocs -

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

8

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#enabling-key-value-backend-path-and-policy-in-vault_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/planning_your_deployment/index#resource-requirements_rhocs

3. Create a token matching the above policy:

$ vault token create -policy=ocs -format json

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT CONTAINER STORAGE

9

CHAPTER 2. DEPLOYING OPENSHIFT CONTAINER STORAGE
ON GOOGLE CLOUD

Deploying OpenShift Container Storage on OpenShift Container Platform using dynamic storage
devices provided by Google Cloud installer-provisioned infrastructure (IPI) enables you to create
internal cluster resources. This results in internal provisioning of the base services, which helps to make
additional storage classes available to applications.

NOTE

Only internal Openshift Container Storage clusters are supported on Google Cloud. See
Planning your deployment for more information about deployment requirements.

Ensure that you have addressed the requirements in Preparing to deploy OpenShift Container Storage
chapter before proceeding with the below steps for deploying using dynamic storage devices:

1. Install the Red Hat OpenShift Container Storage Operator .

2. Create the OpenShift Container Storage Cluster Service

2.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE
OPERATOR

You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container
Platform Operator Hub.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin and
operator installation permissions.

You have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.

You have satisfied any additional requirements required. For more information, see Planning
your deployment.

NOTE

When you need to override the cluster-wide default node selector for OpenShift
Container Storage, you can use the following command to specify a blank node
selector for the openshift-storage namespace (create openshift-storage
namespace in this case):

$ oc annotate namespace openshift-storage openshift.io/node-selector=

Taint a node as infra to ensure only Red Hat OpenShift Container Storage
resources are scheduled on that node. This helps you save on subscription costs.
For more information, see How to use dedicated worker nodes for Red Hat
OpenShift Container Storage chapter in Managing and Allocating Storage
Resources guide.

Procedure

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

10

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#preparing_to_deploy_openshift_container_storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/#installing-openshift-container-storage-operator-using-the-operator-hub_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#creating-an-openshift-container-storage-service_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_and_allocating_storage_resources/index#how-to-use-dedicated-worker-nodes-for-openshift-container-storage_rhocs

1. Log in to OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Search for OpenShift Container Storage from the list of operators and click on it.

4. Click Install.

5. Set the following options on the Install Operator page:

a. Channel as stable-4.8.

b. Installation Mode as A specific namespace on the cluster.

c. Installed Namespace as Operator recommended namespace openshift-storage. If
Namespace openshift-storage does not exist, it will be created during the operator
installation.

d. Approval Strategy as Automatic or Manual.

e. Click Install.
If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically
upgrades the running instance of your operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to have the operator
updated to the new version.

Verification step

Verify that the OpenShift Container Storage Operator shows a green tick indicating successful
installation.

2.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER
SERVICE IN INTERNAL MODE

Use this procedure to create an OpenShift Container Storage Cluster Service after you install the
OpenShift Container Storage operator.

Prerequisites

The OpenShift Container Storage operator must be installed from the Operator Hub. For more
information, see Installing OpenShift Container Storage Operator using the Operator Hub .

Be aware that the default storage class of Google Cloud uses hard disk drive (HDD). To use
solid state drive (SSD) based disks for better performance, you need to create a storage class,
using pd-ssd as shown in the following ssd-storeageclass.yaml example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: faster
provisioner: kubernetes.io/gce-pd
parameters:

CHAPTER 2. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

11

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/#installing-openshift-container-storage-operator-using-the-operator-hub_gcp

 type: pd-ssd
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete

Procedure

1. Log into the OpenShift Web Console.

2. Click Operators → Installed Operators to view all the installed operators.
Ensure that the Project selected is openshift-storage.

3. Click OpenShift Container Storage > Create Instance link of Storage Cluster.

4. Select Mode is set to Internal by default.

5. Select Capacity and nodes

a. Select Storage Class. By default, it is set to standard. However, if you created a storage
class to use SSD based disks for better performance, you need to select that storage class.

b. Select Requested Capacity from the drop down list. It is set to 2 TiB by default. You can
use the drop down to modify the capacity value.

NOTE

Once you select the initial storage capacity, cluster expansion is performed
only using the selected usable capacity (3 times of raw storage).

c. In the Select Nodes section, select at least three available nodes.
For cloud platforms with multiple availability zones, ensure that the Nodes are spread
across different Locations/availability zones.

If the nodes selected do not match the OpenShift Container Storage cluster requirement of
an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster will be deployed. For
minimum starting node requirements, see Resource requirements section in Planning guide.

d. Click Next.

6. (Optional) Set Security and network configuration

a. Select the Enable encryption checkbox to encrypt block and file storage.

b. Choose any one or both Encryption level:

Cluster-wide encryption to encrypt the entire cluster (block and file).

Storage class encryption to create encrypted persistent volume (block only) using
encryption enabled storage class.

c. Select the Connect to an external key management service checkbox. This is optional for
cluster-wide encryption.

i. Key Management Service Provider is set to Vault by default.

ii. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'),
Port number and Token.

iii. Expand Advanced Settings to enter additional settings and certificate details based on

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

12

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/planning_your_deployment/index#resource-requirements_rhocs

iii. Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration:

A. Enter the Key Value secret path in Backend Path that is dedicated and unique to
OpenShift Container Storage.

B. (Optional) Enter TLS Server Name and Vault Enterprise Namespace.

C. Provide CA Certificate, Client Certificate and Client Private Key by uploading
the respective PEM encoded certificate file.

D. Click Save.

7. Select Default (SDN) if you are using a single network or Custom (Multus) Network if you plan
on using multiple network interfaces.

a. Select a Public Network Interface from drop down.

b. Select a Cluster Network Interface from drop down.

NOTE

If only using one additional network interface select the single
NetworkAttachementDefinition (i.e. ocs-public-cluster) for the Public
Network Interface and leave the Cluster Network Interface blank.

8. Click Next.

9. Review the configuration details. To modify any configuration settings, click Back to go back to
the previous configuration page.

10. Click Create.

11. Edit the configmap if Vault Key/Value (KV) secret engine API, version 2 is used for cluster-wide
encryption with Key Management System (KMS).

a. On the OpenShift Web Console, navigate to Workloads → ConfigMaps.

b. To view the KMS connection details, click ocs-kms-connection-details.

c. Edit the configmap.

i. Click Action menu (⋮) → Edit ConfigMap.

ii. Set the VAULT_BACKEND parameter to v2.

kind: ConfigMap
apiVersion: v1
metadata:
 name: ocs-kms-connection-details
[...]
data:
 KMS_PROVIDER: vault
 KMS_SERVICE_NAME: vault
[...]
 VAULT_BACKEND: v2
[...]

CHAPTER 2. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

13

iii. Click Save.

Verification steps

1. On the storage cluster details page, the storage cluster name displays a green tick next to it to
indicate that the cluster was created successfully.

2. Verify that the final Status of the installed storage cluster shows as Phase: Ready with a green
tick mark.

Click Operators → Installed Operators → Storage Cluster link to view the storage cluster
installation status.

Alternatively, when you are on the Operator Details tab, you can click on the Storage
Cluster tab to view the status.

3. To verify that all components for OpenShift Container Storage are successfully installed, see
Verifying your OpenShift Container Storage installation .

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

14

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#verifying-openshift-container-storage-deployment_gcp

CHAPTER 3. VERIFYING OPENSHIFT CONTAINER STORAGE
DEPLOYMENT

Use this section to verify that OpenShift Container Storage is deployed correctly.

3.1. VERIFYING THE STATE OF THE PODS

To verify that the pods of OpenShift Containers Storage are in running state, follow the below
procedure:

Procedure

1. Log in to OpenShift Web Console.

2. Click Workloads → Pods from the left pane of the OpenShift Web Console.

3. Select openshift-storage from the Project drop down list.
For more information on the expected number of pods for each component and how it varies
depending on the number of nodes, see Table 3.1, “Pods corresponding to OpenShift Container
storage cluster”.

4. Click on the Running and Completed tabs to verify that the pods are running and in a
completed state:

Table 3.1. Pods corresponding to OpenShift Container storage cluster

Component Corresponding pods

OpenShift Container Storage Operator
ocs-operator-* (1 pod on any worker
node)

ocs-metrics-exporter-*

Rook-ceph Operator rook-ceph-operator-*

(1 pod on any worker node)

Multicloud Object Gateway
noobaa-operator-* (1 pod on any worker
node)

noobaa-core-* (1 pod on any storage
node)

noobaa-db-pg-* (1 pod on any storage
node)

noobaa-endpoint-* (1 pod on any storage
node)

MON rook-ceph-mon-*

(3 pods distributed across storage nodes)

CHAPTER 3. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT

15

MGR rook-ceph-mgr-*

(1 pod on any storage node)

MDS rook-ceph-mds-ocs-storagecluster-
cephfilesystem-*

(2 pods distributed across storage nodes)

CSI
cephfs

csi-cephfsplugin-* (1 pod on each
worker node)

csi-cephfsplugin-provisioner-* (2
pods distributed across worker nodes)

rbd

csi-rbdplugin-* (1 pod on each worker
node)

csi-rbdplugin-provisioner-* (2 pods
distributed across worker nodes)

rook-ceph-crashcollector rook-ceph-crashcollector-*

(1 pod on each storage node)

OSD
rook-ceph-osd-* (1 pod for each device)

rook-ceph-osd-prepare-ocs-
deviceset-* (1 pod for each device)

Component Corresponding pods

3.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS
HEALTHY

To verify that the cluster of OpenShift Container Storage is healthy, follow the steps in the procedure.

Procedure

1. Click Storage → Overview and click the Block and File tab.

2. In the Status card, verify that Storage Cluster and Data Resiliency has a green tick mark.

3. In the Details card, verify that the cluster information is displayed.

For more information on the health of the OpenShift Container Storage clusters using the Block and File
dashboard, see Monitoring OpenShift Container Storage .

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/monitoring_openshift_container_storage/index

3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

To verify that the OpenShift Container Storage Multicloud Object Gateway is healthy, follow the steps
in the procedure.

Procedure

1. Click Storage → Overview from the OpenShift Web Console and click the Object tab.

2. In the Status card, verify that both Object Service and Data Resiliency are in Ready state
(green tick).

3. In the Details card, verify that the Multicloud Object Gateway information is displayed.

For more information on the health of the OpenShift Container Storage cluster using the object service
dashboard, see Monitoring OpenShift Container Storage .

3.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE
SPECIFIC STORAGE CLASSES EXIST

To verify the storage classes exists in the cluster, follow the steps in the procedure.

Procedure

1. Click Storage → Storage Classes from the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Container Storage
cluster creation:

ocs-storagecluster-ceph-rbd

ocs-storagecluster-cephfs

openshift-storage.noobaa.io

CHAPTER 3. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/monitoring_openshift_container_storage/index

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER
STORAGE

4.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE IN INTERNAL
MODE

Use the steps in this section to uninstall OpenShift Container Storage.

Uninstall Annotations

Annotations on the Storage Cluster are used to change the behavior of the uninstall process. To define
the uninstall behavior, the following two annotations have been introduced in the storage cluster:

uninstall.ocs.openshift.io/cleanup-policy: delete

uninstall.ocs.openshift.io/mode: graceful

The below table provides information on the different values that can used with these annotations:

Table 4.1. uninstall.ocs.openshift.io uninstall annotations descriptions

Annotation Value Default Behavior

cleanup-policy delete Yes Rook cleans up the
physical drives and the
DataDirHostPath

cleanup-policy retain No Rook does not clean up
the physical drives and
the DataDirHostPath

mode graceful Yes Rook and NooBaa
pauses the uninstall
process until the PVCs
and the OBCs are
removed by the
administrator/user

mode forced No Rook and NooBaa
proceeds with uninstall
even if PVCs/OBCs
provisioned using Rook
and NooBaa exist
respectively.

You can change the cleanup policy or the uninstall mode by editing the value of the annotation by using
the following commands:

$ oc annotate storagecluster -n openshift-storage ocs-storagecluster
uninstall.ocs.openshift.io/cleanup-policy="retain" --overwrite
storagecluster.ocs.openshift.io/ocs-storagecluster annotated

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

18

$ oc annotate storagecluster -n openshift-storage ocs-storagecluster
uninstall.ocs.openshift.io/mode="forced" --overwrite
storagecluster.ocs.openshift.io/ocs-storagecluster annotated

Prerequisites

Ensure that the OpenShift Container Storage cluster is in a healthy state. The uninstall process
can fail when some of the pods are not terminated successfully due to insufficient resources or
nodes. In case the cluster is in an unhealthy state, contact Red Hat Customer Support before
uninstalling OpenShift Container Storage.

Ensure that applications are not consuming persistent volume claims (PVCs) or object bucket
claims (OBCs) using the storage classes provided by OpenShift Container Storage.

If any custom resources (such as custom storage classes, cephblockpools) were created by the
admin, they must be deleted by the admin after removing the resources which consumed them.

Procedure

1. Delete the volume snapshots that are using OpenShift Container Storage.

a. List the volume snapshots from all the namespaces.

$ oc get volumesnapshot --all-namespaces

b. From the output of the previous command, identify and delete the volume snapshots that
are using OpenShift Container Storage.

$ oc delete volumesnapshot <VOLUME-SNAPSHOT-NAME> -n <NAMESPACE>

2. Delete PVCs and OBCs that are using OpenShift Container Storage.
In the default uninstall mode (graceful), the uninstaller waits till all the PVCs and OBCs that use
OpenShift Container Storage are deleted.

If you wish to delete the Storage Cluster without deleting the PVCs beforehand, you may set
the uninstall mode annotation to forced and skip this step. Doing this results in orphan PVCs
and OBCs in the system.

a. Delete OpenShift Container Platform monitoring stack PVCs using OpenShift Container
Storage.
For more information, see Section 4.2, “Removing monitoring stack from OpenShift
Container Storage”.

b. Delete OpenShift Container Platform Registry PVCs using OpenShift Container Storage.
For more information, see Section 4.3, “Removing OpenShift Container Platform registry
from OpenShift Container Storage”.

c. Delete OpenShift Container Platform logging PVCs using OpenShift Container Storage.
For more information, see Section 4.4, “Removing the cluster logging operator from
OpenShift Container Storage”.

d. Delete other PVCs and OBCs provisioned using OpenShift Container Storage.

Following script is sample script to identify the PVCs and OBCs provisioned using
OpenShift Container Storage. The script ignores the PVCs that are used internally by
Openshift Container Storage.

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE

19

Openshift Container Storage.

#!/bin/bash

RBD_PROVISIONER="openshift-storage.rbd.csi.ceph.com"
CEPHFS_PROVISIONER="openshift-storage.cephfs.csi.ceph.com"
NOOBAA_PROVISIONER="openshift-storage.noobaa.io/obc"
RGW_PROVISIONER="openshift-storage.ceph.rook.io/bucket"

NOOBAA_DB_PVC="noobaa-db"
NOOBAA_BACKINGSTORE_PVC="noobaa-default-backing-store-noobaa-pvc"

Find all the OCS StorageClasses
OCS_STORAGECLASSES=$(oc get storageclasses | grep -e
"$RBD_PROVISIONER" -e "$CEPHFS_PROVISIONER" -e
"$NOOBAA_PROVISIONER" -e "$RGW_PROVISIONER" | awk '{print $1}')

List PVCs in each of the StorageClasses
for SC in $OCS_STORAGECLASSES
do
 echo
"==
=="
 echo "$SC StorageClass PVCs and OBCs"
 echo
"==
=="
 oc get pvc --all-namespaces --no-headers 2>/dev/null | grep $SC | grep -v -e
"$NOOBAA_DB_PVC" -e "$NOOBAA_BACKINGSTORE_PVC"
 oc get obc --all-namespaces --no-headers 2>/dev/null | grep $SC
 echo
done

NOTE

Omit RGW_PROVISIONER for cloud platforms.

Delete the OBCs.

$ oc delete obc <obc name> -n <project name>

Delete the PVCs.

$ oc delete pvc <pvc name> -n <project-name>

NOTE

Ensure that you have removed any custom backing stores, bucket
classes, etc., created in the cluster.

3. Delete the Storage Cluster object and wait for the removal of the associated resources.

$ oc delete -n openshift-storage storagecluster --all --wait=true

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

20

4. Check for cleanup pods if the uninstall.ocs.openshift.io/cleanup-policy was set to
delete(default) and ensure that their status is Completed.

$ oc get pods -n openshift-storage | grep -i cleanup
NAME READY STATUS RESTARTS AGE
cluster-cleanup-job-<xx> 0/1 Completed 0 8m35s
cluster-cleanup-job-<yy> 0/1 Completed 0 8m35s
cluster-cleanup-job-<zz> 0/1 Completed 0 8m35s

5. Confirm that the directory /var/lib/rook is now empty. This directory will be empty only if the
uninstall.ocs.openshift.io/cleanup-policy annotation was set to delete(default).

$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{
.items[*].metadata.name }'); do oc debug node/${i} -- chroot /host ls -l /var/lib/rook; done

6. If encryption was enabled at the time of install, remove dm-crypt managed device-mapper
mapping from OSD devices on all the OpenShift Container Storage nodes.

a. Create a debug pod and chroot to the host on the storage node.

$ oc debug node/<node name>
$ chroot /host

b. Get Device names and make note of the OpenShift Container Storage devices.

$ dmsetup ls
ocs-deviceset-0-data-0-57snx-block-dmcrypt (253:1)

c. Remove the mapped device.

$ cryptsetup luksClose --debug --verbose ocs-deviceset-0-data-0-57snx-block-dmcrypt

NOTE

If the above command gets stuck due to insufficient privileges, run the
following commands:

Press CTRL+Z to exit the above command.

Find PID of the process which was stuck.

$ ps -ef | grep crypt

Terminate the process using kill command.

$ kill -9 <PID>

Verify that the device name is removed.

$ dmsetup ls

7. Delete the namespace and wait till the deletion is complete. You need to switch to another

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE

21

7. Delete the namespace and wait till the deletion is complete. You need to switch to another
project if openshift-storage is the active project.
For example:

$ oc project default
$ oc delete project openshift-storage --wait=true --timeout=5m

The project is deleted if the following command returns a NotFound error.

$ oc get project openshift-storage

NOTE

While uninstalling OpenShift Container Storage, if namespace is not deleted
completely and remains in Terminating state, perform the steps in
Troubleshooting and deleting remaining resources during Uninstall to identify
objects that are blocking the namespace from being terminated.

8. Unlabel the storage nodes.

$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage-
$ oc label nodes --all topology.rook.io/rack-

9. Remove the OpenShift Container Storage taint if the nodes were tainted.

$ oc adm taint nodes --all node.ocs.openshift.io/storage-

10. Confirm all PVs provisioned using OpenShift Container Storage are deleted. If there is any PV
left in the Released state, delete it.

$ oc get pv
$ oc delete pv <pv name>

11. Delete the Multicloud Object Gateway storageclass.

$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m

12. Remove CustomResourceDefinitions.

$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io
cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io
cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io
noobaas.noobaa.io ocsinitializations.ocs.openshift.io storageclusters.ocs.openshift.io
cephclients.ceph.rook.io cephobjectrealms.ceph.rook.io cephobjectzonegroups.ceph.rook.io
cephobjectzones.ceph.rook.io cephrbdmirrors.ceph.rook.io --wait=true --timeout=5m

13. Optional: To ensure that the vault keys are deleted permanently you need to manually delete
the metadata associated with the vault key.

NOTE

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

22

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/troubleshooting_openshift_container_storage/index#troubleshooting-and-deleting-remaining-resources-during-uninstall_rhocs

NOTE

Execute this step only if Vault Key/Value (KV) secret engine API, version 2 is used
for cluster-wide encryption with Key Management System (KMS) since the vault
keys are marked as deleted and not permanently deleted during the uninstallation
of OpenShift Container Storage. You can always restore it later if required.

a. List the keys in the vault.

$ vault kv list <backend_path>

<backend_path>

Is the path in the vault where the encryption keys are stored.
For example:

$ vault kv list kv-v2

Example output:

Keys

NOOBAA_ROOT_SECRET_PATH/
rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-data-0m27q8
rook-ceph-osd-encryption-key-ocs-deviceset-thin-1-data-0sq227
rook-ceph-osd-encryption-key-ocs-deviceset-thin-2-data-0xzszb

b. List the metadata associated with the vault key.

$ vault kv get kv-v2/<key>

For the Multicloud Object Gateway (MCG) key:

$ vault kv get kv-v2/NOOBAA_ROOT_SECRET_PATH/<key>

<key>

Is the encryption key.
For Example:

$ vault kv get kv-v2/rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-data-0m27q8

Example output:

====== Metadata ======
Key Value
--- -----
created_time 2021-06-23T10:06:30.650103555Z
deletion_time 2021-06-23T11:46:35.045328495Z
destroyed false
version 1

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE

23

c. Delete the metadata.

$ vault kv metadata delete kv-v2/<key>

For the MCG key:

$ vault kv metadata delete kv-v2/NOOBAA_ROOT_SECRET_PATH/<key>

<key>

Is the encryption key.
For Example:

$ vault kv metadata delete kv-v2/rook-ceph-osd-encryption-key-ocs-deviceset-thin-0-
data-0m27q8

Example output:

Success! Data deleted (if it existed) at: kv-v2/metadata/rook-ceph-osd-encryption-key-
ocs-deviceset-thin-0-data-0m27q8

d. Repeat these steps to delete the metadata associated with all the vault keys.

14. To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift
Container Platform Web Console,

a. Click Storage.

b. Verify that Overview no longer appears under Storage.

4.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER
STORAGE

Use this section to clean up the monitoring stack from OpenShift Container Storage.

The PVCs that are created as a part of configuring the monitoring stack are in the openshift-
monitoring namespace.

Prerequisites

PVCs are configured to use OpenShift Container Platform monitoring stack.
For information, see configuring monitoring stack.

Procedure

1. List the pods and PVCs that are currently running in the openshift-monitoring namespace.

$ oc get pod,pvc -n openshift-monitoring
NAME READY STATUS RESTARTS AGE
pod/alertmanager-main-0 3/3 Running 0 8d
pod/alertmanager-main-1 3/3 Running 0 8d
pod/alertmanager-main-2 3/3 Running 0 8d
pod/cluster-monitoring-

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/monitoring/configuring-the-monitoring-stack

operator-84457656d-pkrxm 1/1 Running 0 8d
pod/grafana-79ccf6689f-2ll28 2/2 Running 0 8d
pod/kube-state-metrics-
7d86fb966-rvd9w 3/3 Running 0 8d
pod/node-exporter-25894 2/2 Running 0 8d
pod/node-exporter-4dsd7 2/2 Running 0 8d
pod/node-exporter-6p4zc 2/2 Running 0 8d
pod/node-exporter-jbjvg 2/2 Running 0 8d
pod/node-exporter-jj4t5 2/2 Running 0 6d18h
pod/node-exporter-k856s 2/2 Running 0 6d18h
pod/node-exporter-rf8gn 2/2 Running 0 8d
pod/node-exporter-rmb5m 2/2 Running 0 6d18h
pod/node-exporter-zj7kx 2/2 Running 0 8d
pod/openshift-state-metrics-
59dbd4f654-4clng 3/3 Running 0 8d
pod/prometheus-adapter-
5df5865596-k8dzn 1/1 Running 0 7d23h
pod/prometheus-adapter-
5df5865596-n2gj9 1/1 Running 0 7d23h
pod/prometheus-k8s-0 6/6 Running 1 8d
pod/prometheus-k8s-1 6/6 Running 1 8d
pod/prometheus-operator-
55cfb858c9-c4zd9 1/1 Running 0 6d21h
pod/telemeter-client-
78fc8fc97d-2rgfp 3/3 Running 0 8d

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0 Bound pvc-0d519c4f-
15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1 Bound pvc-
0d5a9825-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-
rbd 8d
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2 Bound pvc-
0d6413dc-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-
rbd 8d
persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0 Bound pvc-0b7c19b0-
15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1 Bound pvc-0b8aed3f-
15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d

2. Edit the monitoring configmap.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Remove any config sections that reference the OpenShift Container Storage storage classes
as shown in the following example and save it.
Before editing

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE

25

.

.

.
apiVersion: v1
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: my-alertmanager-claim
 spec:
 resources:
 requests:
 storage: 40Gi
 storageClassName: ocs-storagecluster-ceph-rbd
 prometheusK8s:
 volumeClaimTemplate:
 metadata:
 name: my-prometheus-claim
 spec:
 resources:
 requests:
 storage: 40Gi
 storageClassName: ocs-storagecluster-ceph-rbd
kind: ConfigMap
metadata:
 creationTimestamp: "2019-12-02T07:47:29Z"
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 resourceVersion: "22110"
 selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
 uid: fd6d988b-14d7-11ea-84ff-066035b9efa8
.
.
.

After editing

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

26

.

.

.
apiVersion: v1
data:
 config.yaml: |
kind: ConfigMap
metadata:
 creationTimestamp: "2019-11-21T13:07:05Z"
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 resourceVersion: "404352"
 selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
 uid: d12c796a-0c5f-11ea-9832-063cd735b81c
.
.
.

In this example, alertmanagerMain and prometheusK8s monitoring components are using the
OpenShift Container Storage PVCs.

4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage
classes.

$ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m

4.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY
FROM OPENSHIFT CONTAINER STORAGE

To clean the OpenShift Container Platform registry from OpenShift Container Storage, follow the steps
in the procedure.

If you want to configure an alternative storage, see image registry

The PVCs created as a part of configuring OpenShift Container Platform registry are in the openshift-
image-registry namespace.

Prerequisites

The image registry must be configured to use an OpenShift Container Storage PVC.

Procedure

1. Edit the configs.imageregistry.operator.openshift.io object and remove the content in the
storage section.

$ oc edit configs.imageregistry.operator.openshift.io

Before editing

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/registry/architecture-component-imageregistry

.

.

.
storage:
 pvc:
 claim: registry-cephfs-rwx-pvc
.
.
.

After editing

.

.

.
storage:
.
.
.

In this example, the PVC is called registry-cephfs-rwx-pvc, which is now safe to delete.

2. Delete the PVC.

$ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m

4.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM
OPENSHIFT CONTAINER STORAGE

To clean the cluster logging operator from the OpenShift Container Storage, follow the steps in the
procedure.

The PVCs created as a part of configuring cluster logging operator are in the openshift-logging
namespace.

Prerequisites

The cluster logging instance must be configured to use OpenShift Container Storage PVCs.

Procedure

1. Remove the ClusterLogging instance in the namespace.

$ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m

The PVCs in the openshift-logging namespace are now safe to delete.

2. Delete PVCs.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

28

$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m

CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE

29

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS
The OpenShift Container Storage operator installs a default storage class depending on the platform in
use. This default storage class is owned and controlled by the operator and it cannot be deleted or
modified. However, you can create a custom storage class if you want the storage class to have a
different behavior.

You can create multiple storage pools which map to storage classes that provide the following features:

Enable applications with their own high availability to use persistent volumes with two replicas,
potentially improving application performance.

Save space for persistent volume claims using storage classes with compression enabled.

NOTE

Multiple storage classes and multiple pools are not supported for external mode
OpenShift Container Storage clusters.

NOTE

With a minimal cluster of a single device set, only two new storage classes can be created.
Every storage cluster expansion allows two new additional storage classes.

5.1. CREATING STORAGE CLASSES AND POOLS

You can create a storage class using an existing pool or you can create a new pool for the storage class
while creating it.

Prerequisites

Ensure that you are logged into the OpenShift Container Platform web console and OpenShift
Container Storage cluster is in Ready state.

Procedure

1. Click Storage → Storage Classes.

2. Click Create Storage Class.

3. Enter the storage class Name and Description.

4. Select either Delete or Retain for the Reclaim Policy. By default, Delete is selected.

5. Select RBD Provisioner which is the plugin used for provisioning the persistent volumes.

6. Select an existing Storage Pool from the list or create a new pool.

Create new pool

a. Click Create New Pool.

b. Enter Pool name.

c. Choose 2-way-Replication or 3-way-Replication as the Data Protection Policy.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

30

d. Select Enable compression if you need to compress the data.
Enabling compression can impact application performance and might prove ineffective
when data to be written is already compressed or encrypted. Data written before
enabling compression will not be compressed.

e. Click Create to create the new storage pool.

f. Click Finish after the pool is created.

7. (Optional) Select Enable Encryption checkbox.

8. Click Create to create the storage class.

5.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME
ENCRYPTION

Use the following procedure to create an encryption enabled storage class using an external key
management system (KMS) for persistent volume encryption. Persistent volume encryption is only
available for RBD PVs.

Prerequisites

The OpenShift Container Storage cluster is in Ready state.

On the external key management system (KMS),

Ensure that a policy with a token exists and the key value backend path in Vault is enabled.
See Enabling key value and policy in Vault .

Ensure that you are using signed certificates on your Vault servers.

Create a secret in the tenant’s namespace as follows:

On the OpenShift Container Platform web console, navigate to Workloads → Secrets.

Click Create → Key/value secret.

Enter Secret Name as ceph-csi-kms-token.

Enter Key as token.

Enter Value. It is the token from Vault. You can either click Browse to select and upload the
file containing the token or enter the token directly in the text box.

Click Create.

NOTE

The token can be deleted only after all the encrypted PVCs using the ceph-csi-kms-
token have been deleted.

Procedure

1. Navigate to Storage → Storage Classes.

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS

31

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_openshift_container_storage_using_bare_metal_infrastructure/index#enabling-key-value-backend-path-and-policy-in-vault_rhocs

2. Click Create Storage Class.

3. Enter the storage class Name and Description.

4. Select either Delete or Retain for the Reclaim Policy. By default, Delete is selected.

5. Select RBD Provisioner openshift-storage.rbd.csi.ceph.com which is the plugin used for
provisioning the persistent volumes.

6. Select Storage Pool where the volume data will be stored from the list or create a new pool.

7. Select Enable Encryption checkbox.

a. Key Management Service Provider is set to Vault by default.

b. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'), and
Port number.

c. Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration.

i. Enter the key value secret path in Backend Path that is dedicated and unique to
OpenShift Container Storage.

ii. (Optional) Enter TLS Server Name and Vault Enterprise Namespace.

iii. Provide CA Certificate, Client Certificate and Client Private Key by uploading the
respective PEM encoded certificate file.

iv. Click Save.

d. Click Connect.

8. Review external key management service Connection details. To modify the information, click
Change connection details and edit the fields.

9. Click Create.

10. Edit the configmap to add the VAULT_BACKEND parameter if the Hashicorp Vault setup does
not allow automatic detection of the Key/Value (KV) secret engine API version used by the
backend path.

NOTE

VAULT_BACKEND is an optional parameter that is added to the configmap to
specify the version of the KV secret engine API associated with the backend
path. Ensure that the value matches the KV secret engine API version that is set
for the backend path, otherwise it might result in a failure during persistent
volume claim (PVC) creation.

a. Identify the encryptionKMSID being used by the newly created storage class.

i. On the OpenShift Web Console, navigate to Storage → Storage Classes.

ii. Click the Storage class name → YAML tab.

iii. Capture the encryptionKMSID being used by the storage class.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

32

Example:

encryptionKMSID: 1-vault

b. On the OpenShift Web Console, navigate to Workloads → ConfigMaps.

c. To view the KMS connection details, click csi-kms-connection-details.

d. Edit the configmap.

i. Click Action menu (⋮) → Edit ConfigMap.

ii. Add the VAULT_BACKEND parameter depending on the backend that is configured
for the previously identified encryptionKMSID.
You can assign kv for KV secret engine API, version 1 and kv-v2 for KV secret engine
API, version 2 as the VAULT_BACKEND parameter.

Example:

kind: ConfigMap
apiVersion: v1
metadata:
 name: csi-kms-connection-details
[...]
data:
 1-vault: >-

 {
 "KMS_PROVIDER": "vaulttokens",
 "KMS_SERVICE_NAME": "vault",
 [...]
 "VAULT_BACKEND": "kv-v2"
 }

iii. Click Save.

IMPORTANT

Red Hat works with the technology partners to provide this documentation as a service to
the customers. However, Red Hat does not provide support for the Hashicorp product.
For technical assistance with this product, contact Hashicorp.

Next steps

The storage class can be used to create encrypted persistent volumes. For more information,
see managing persistent volume claims .

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS

33

https://www.hashicorp.com/technical-support-services-and-policies
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_and_allocating_storage_resources/index#managing-persistent-volume-claims_rhocs

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT
CONTAINER PLATFORM SERVICES

You can use OpenShift Container Storage to provide storage for OpenShift Container Platform
services such as image registry, monitoring, and logging.

The process for configuring storage for these services depends on the infrastructure used in your
OpenShift Container Storage deployment.

WARNING

Always ensure that you have plenty of storage capacity for these services. If the
storage for these critical services runs out of space, the cluster becomes inoperable
and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these
services. See Configuring the Curator schedule and the Modifying retention time for
Prometheus metrics data sub section of Configuring persistent storage in the
OpenShift Container Platform documentation for details.

If you do run out of storage space for these services, contact Red Hat Customer
Support.

6.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER
STORAGE

OpenShift Container Platform provides a built in Container Image Registry which runs as a standard
workload on the cluster. A registry is typically used as a publication target for images built on the cluster
as well as a source of images for workloads running on the cluster.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the
Container Image Registry. On Google Cloud, it is not required to change the storage for the registry.

WARNING

This process does not migrate data from an existing image registry to the new
image registry. If you already have container images in your existing registry, back up
your registry before you complete this process, and re-register your images when
this process is complete.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage





Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/logging/index#cluster-logging-curator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/monitoring/cluster-monitoring#configuring-persistent-storage

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

Image Registry Operator is installed and running in the openshift-image-registry namespace. In
OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view
cluster operators.

A storage class with provisioner openshift-storage.cephfs.csi.ceph.com is available. In
OpenShift Web Console, click Storage → Storage Classes to view available storage classes.

Procedure

1. Create a Persistent Volume Claim for the Image Registry to use.

a. In the OpenShift Web Console, click Storage → Persistent Volume Claims.

b. Set the Project to openshift-image-registry.

c. Click Create Persistent Volume Claim.

i. From the list of available storage classes retrieved above, specify the Storage Class
with the provisioner openshift-storage.cephfs.csi.ceph.com.

ii. Specify the Persistent Volume Claim Name, for example, ocs4registry.

iii. Specify an Access Mode of Shared Access (RWX).

iv. Specify a Size of at least 100 GB.

v. Click Create.
Wait until the status of the new Persistent Volume Claim is listed as Bound.

2. Configure the cluster’s Image Registry to use the new Persistent Volume Claim.

a. Click Administration → Custom Resource Definitions.

b. Click the Config custom resource definition associated with the
imageregistry.operator.openshift.io group.

c. Click the Instances tab.

d. Beside the cluster instance, click the Action Menu (⋮) → Edit Config.

e. Add the new Persistent Volume Claim as persistent storage for the Image Registry.

i. Add the following under spec:, replacing the existing storage: section if necessary.

 storage:
 pvc:
 claim: <new-pvc-name>

For example:

 storage:
 pvc:
 claim: ocs4registry

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

35

ii. Click Save.

3. Verify that the new configuration is being used.

a. Click Workloads → Pods.

b. Set the Project to openshift-image-registry.

c. Verify that the new image-registry-* pod appears with a status of Running, and that the
previous image-registry-* pod terminates.

d. Click the new image-registry-* pod to view pod details.

e. Scroll down to Volumes and verify that the registry-storage volume has a Type that
matches your new Persistent Volume Claim, for example, ocs4registry.

6.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER
STORAGE

OpenShift Container Storage provides a monitoring stack that comprises of Prometheus and Alert
Manager.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the
monitoring stack.

IMPORTANT

Monitoring will not function if it runs out of storage space. Always ensure that you have
plenty of storage capacity for monitoring.

Red Hat recommends configuring a short retention interval for this service. See the
Modifying retention time for Prometheus metrics data of Monitoring guide in the
OpenShift Container Platform documentation for details.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace. In the OpenShift Web Console, click Operators → Installed Operators to view
installed operators.

Monitoring Operator is installed and running in the openshift-monitoring namespace. In the
OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view
cluster operators.

A storage class with provisioner openshift-storage.rbd.csi.ceph.com is available. In the
OpenShift Web Console, click Storage → Storage Classes to view available storage classes.

Procedure

1. In the OpenShift Web Console, go to Workloads → Config Maps.

2. Set the Project dropdown to openshift-monitoring.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/monitoring/index#modifying-retention-time-for-prometheus-metrics-data_configuring-the-monitoring-stack

3. Click Create Config Map.

4. Define a new cluster-monitoring-config Config Map using the following example.
Replace the content in angle brackets (<, >) with your own values, for example, retention: 24h
or storage: 40Gi.

Replace the storageClassName with the storageclass that uses the provisioner openshift-
storage.rbd.csi.ceph.com. In the example given below the name of the storageclass is ocs-
storagecluster-ceph-rbd.

Example cluster-monitoring-config Config Map

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: <time to retain monitoring files, e.g. 24h>
 volumeClaimTemplate:
 metadata:
 name: ocs-prometheus-claim
 spec:
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: <size of claim, e.g. 40Gi>
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: ocs-alertmanager-claim
 spec:
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: <size of claim, e.g. 40Gi>

5. Click Create to save and create the Config Map.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the pods.

a. Go to Storage → Persistent Volume Claims.

b. Set the Project dropdown to openshift-monitoring.

c. Verify that 5 Persistent Volume Claims are visible with a state of Bound, attached to three
alertmanager-main-* pods, and two prometheus-k8s-* pods.

Monitoring storage created and bound

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

37

2. Verify that the new alertmanager-main-* pods appear with a state of Running.

a. Go to Workloads → Pods.

b. Click the new alertmanager-main-* pods to view the pod details.

c. Scroll down to Volumes and verify that the volume has a Type, ocs-alertmanager-claim
that matches one of your new Persistent Volume Claims, for example, ocs-alertmanager-
claim-alertmanager-main-0.

Persistent Volume Claims attached to alertmanager-main-* pod

3. Verify that the new prometheus-k8s-* pods appear with a state of Running.

a. Click the new prometheus-k8s-* pods to view the pod details.

b. Scroll down to Volumes and verify that the volume has a Type, ocs-prometheus-claim
that matches one of your new Persistent Volume Claims, for example, ocs-prometheus-
claim-prometheus-k8s-0.

Persistent Volume Claims attached to prometheus-k8s-* pod

6.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE

You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

38

You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services.
For information about how to deploy cluster logging, see Deploying cluster logging .

Upon initial OpenShift Container Platform deployment, OpenShift Container Storage is not configured
by default and the OpenShift Container Platform cluster will solely rely on default storage available from
the nodes. You can edit the default configuration of OpenShift logging (ElasticSearch) to be backed by
OpenShift Container Storage to have OpenShift Container Storage backed logging (Elasticsearch).

IMPORTANT

Always ensure that you have plenty of storage capacity for these services. If you run out
of storage space for these critical services, the logging application becomes inoperable
and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these
services. See Cluster logging curator in the OpenShift Container Platform
documentation for details.

If you run out of storage space for these services, contact Red Hat Customer Support.

6.3.1. Configuring persistent storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the storage
class name and size parameters. The Cluster Logging Operator creates a Persistent Volume Claim for
each data node in the Elasticsearch cluster based on these parameters. For example:

spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "ocs-storagecluster-ceph-rbd”
 size: "200G"

This example specifies that each data node in the cluster will be bound to a Persistent Volume Claim
that requests 200GiB of ocs-storagecluster-ceph-rbd storage. Each primary shard will be backed by a
single replica. A copy of the shard is replicated across all the nodes and are always available and the
copy can be recovered if at least two nodes exist due to the single redundancy policy. For information
about Elasticsearch replication policies, see Elasticsearch replication policy in About deploying and
configuring cluster logging.

NOTE

Omission of the storage block will result in a deployment backed by default storage. For
example:

spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/logging/index#cluster-logging-deploying
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/logging/index#cluster-logging-curator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/logging/index#cluster-logging-about_cluster-logging

For more information, see Configuring cluster logging.

6.3.2. Configuring cluster logging to use OpenShift Container Storage

Follow the instructions in this section to configure OpenShift Container Storage as storage for the
OpenShift cluster logging.

NOTE

You can obtain all the logs when you configure logging for the first time in OpenShift
Container Storage. However, after you uninstall and reinstall logging, the old logs are
removed and only the new logs are processed.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace.

Cluster logging Operator is installed and running in the openshift-logging namespace.

Procedure

1. Click Administration → Custom Resource Definitions from the left pane of the OpenShift
Web Console.

2. On the Custom Resource Definitions page, click ClusterLogging.

3. On the Custom Resource Definition Overview page, select View Instances from the Actions
menu or click the Instances Tab.

4. On the Cluster Logging page, click Create Cluster Logging.
You might have to refresh the page to load the data.

5. In the YAML, replace the storageClassName with the storageclass that uses the provisioner
openshift-storage.rbd.csi.ceph.com. In the example given below the name of the
storageclass is ocs-storagecluster-ceph-rbd:

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: ocs-storagecluster-ceph-rbd
 size: 200G # Change as per your requirement
 redundancyPolicy: "SingleRedundancy"
 visualization:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/logging/index#cluster-logging-configuring

 type: "kibana"
 kibana:
 replicas: 1
 curation:
 type: "curator"
 curator:
 schedule: "30 3 * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd: {}

If you have tainted the OpenShift Container Storage nodes, you must add toleration to enable
scheduling of the daemonset pods for logging.

spec:
[...]
 collection:
 logs:
 fluentd:
 tolerations:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: 'true'
 type: fluentd

6. Click Save.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the elasticsearch pods.

a. Go to Storage → Persistent Volume Claims.

b. Set the Project dropdown to openshift-logging.

c. Verify that Persistent Volume Claims are visible with a state of Bound, attached to
elasticsearch-* pods.

Figure 6.1. Cluster logging created and bound

2. Verify that the new cluster logging is being used.

a. Click Workload → Pods.

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

41

b. Set the Project to openshift-logging.

c. Verify that the new elasticsearch-* pods appear with a state of Running.

d. Click the new elasticsearch-* pod to view pod details.

e. Scroll down to Volumes and verify that the elasticsearch volume has a Type that matches
your new Persistent Volume Claim, for example, elasticsearch-elasticsearch-cdm-
9r624biv-3.

f. Click the Persistent Volume Claim name and verify the storage class name in the
PersistentVolumeClaim Overview page.

NOTE

Make sure to use a shorter curator time to avoid PV full scenario on PVs attached to
Elasticsearch pods.

You can configure Curator to delete Elasticsearch data based on retention settings. It is
recommended that you set the following default index data retention of 5 days as a
default.

config.yaml: |
 openshift-storage:
 delete:
 days: 5

For more details, see Curation of Elasticsearch Data .

NOTE

To uninstall the cluster logging backed by Persistent Volume Claim, use the procedure
removing the cluster logging operator from OpenShift Container Storage in the uninstall
chapter of the respective deployment guide.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/logging/index#cluster-logging-curator

CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM
APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE

You cannot directly install OpenShift Container Storage during the OpenShift Container Platform
installation. However, you can install OpenShift Container Storage on an existing OpenShift Container
Platform by using the Operator Hub and then configure the OpenShift Container Platform applications
to be backed by OpenShift Container Storage.

Prerequisites

OpenShift Container Platform is installed and you have administrative access to OpenShift Web
Console.

OpenShift Container Storage is installed and running in the openshift-storage namespace.

Procedure

1. In the OpenShift Web Console, perform one of the following:

Click Workloads → Deployments.
In the Deployments page, you can do one of the following:

Select any existing deployment and click Add Storage option from the Action menu
(⋮).

Create a new deployment and then add storage.

i. Click Create Deployment to create a new deployment.

ii. Edit the YAML based on your requirement to create a deployment.

iii. Click Create.

iv. Select Add Storage from the Actions drop down menu on the top right of the
page.

Click Workloads → Deployment Configs.
In the Deployment Configs page, you can do one of the following:

Select any existing deployment and click Add Storage option from the Action menu
(⋮).

Create a new deployment and then add storage.

i. Click Create Deployment Config to create a new deployment.

ii. Edit the YAML based on your requirement to create a deployment.

iii. Click Create.

iv. Select Add Storage from the Actions drop down menu on the top right of the
page.

2. In the Add Storage page, you can choose one of the following options:

Click the Use existing claim option and select a suitable PVC from the drop down list.

CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE

43

Click the Create new claim option.

a. Select the appropriate CephFS or RBD storage class from the Storage Class drop
down list.

b. Provide a name for the Persistent Volume Claim.

c. Select ReadWriteOnce (RWO) or ReadWriteMany (RWX) access mode.

NOTE

ReadOnlyMany (ROX) is deactivated as it is not supported.

d. Select the size of the desired storage capacity.

NOTE

You can expand the block PVs but cannot reduce the storage capacity
after the creation of Persistent Volume Claim.

3. Specify the mount path and subpath (if required) for the mount path volume inside the
container.

4. Click Save.

Verification steps

1. Depending on your configuration, perform one of the following:

Click Workloads → Deployments.

Click Workloads → Deployment Configs.

2. Set the Project as required.

3. Click the deployment for which you added storage to display the deployment details.

4. Scroll down to Volumes and verify that your deployment has a Type that matches the
Persistent Volume Claim that you assigned.

5. Click the Persistent Volume Claim name and verify the storage class name in the Persistent
Volume Claim Overview page.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

44

CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR
RED HAT OPENSHIFT CONTAINER STORAGE

Using infrastructure nodes to schedule Red Hat OpenShift Container Storage resources saves on Red
Hat OpenShift Container Platform subscription costs. Any Red Hat OpenShift Container Platform
(RHOCP) node that has an infra node-role label requires an OpenShift Container Storage subscription,
but not an RHOCP subscription.

It is important to maintain consistency across environments with or without Machine API support.
Because of this, it is highly recommended in all cases to have a special category of nodes labeled as
either worker or infra or have both roles. See the Section 8.3, “Manual creation of infrastructure nodes”
section for more information.

8.1. ANATOMY OF AN INFRASTRUCTURE NODE

Infrastructure nodes for use with OpenShift Container Storage have a few attributes. The infra node-
role label is required to ensure the node does not consume RHOCP entitlements. The infra node-role
label is responsible for ensuring only OpenShift Container Storage entitlements are necessary for the
nodes running OpenShift Container Storage.

Labeled with node-role.kubernetes.io/infra

Adding an OpenShift Container Storage taint with a NoSchedule effect is also required so that the
infra node will only schedule OpenShift Container Storage resources.

Tainted with node.ocs.openshift.io/storage="true"

The label identifies the RHOCP node as an infra node so that RHOCP subscription cost is not applied.
The taint prevents non OpenShift Container Storage resources to be scheduled on the tainted nodes.

Example of the taint and labels required on infrastructure node that will be used to run OpenShift
Container Storage services:

 spec:
 taints:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: "true"
 metadata:
 creationTimestamp: null
 labels:
 node-role.kubernetes.io/worker: ""
 node-role.kubernetes.io/infra: ""
 cluster.ocs.openshift.io/openshift-storage: ""

8.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES

If the Machine API is supported in the environment, then labels should be added to the templates for
the Machine Sets that will be provisioning the infrastructure nodes. Avoid the anti-pattern of adding
labels manually to nodes created by the machine API. Doing so is analogous to adding labels to pods
created by a deployment. In both cases, when the pod/node fails, the replacement pod/node will not
have the appropriate labels.

NOTE

CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT CONTAINER STORAGE

45

NOTE

In EC2 environments, you will need three machine sets, each configured to provision
infrastructure nodes in a distinct availability zone (such as us-east-2a, us-east-2b, us-
east-2c). Currently, OpenShift Container Storage does not support deploying in more
than three availability zones.

The following Machine Set template example creates nodes with the appropriate taint and labels
required for infrastructure nodes. This will be used to run OpenShift Container Storage services.

 template:
 metadata:
 creationTimestamp: null
 labels:
 machine.openshift.io/cluster-api-cluster: kb-s25vf
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: kb-s25vf-infra-us-west-2a
 spec:
 taints:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: "true"
 metadata:
 creationTimestamp: null
 labels:
 node-role.kubernetes.io/infra: ""
 cluster.ocs.openshift.io/openshift-storage: ""

8.3. MANUAL CREATION OF INFRASTRUCTURE NODES

Only when the Machine API is not supported in the environment should labels be directly applied to
nodes. Manual creation requires that at least 3 RHOCP worker nodes are available to schedule
OpenShift Container Storage services, and that these nodes have sufficient CPU and memory
resources. To avoid the RHOCP subscription cost, the following is required:

oc label node <node> node-role.kubernetes.io/infra=""
oc label node <node> cluster.ocs.openshift.io/openshift-storage=""

Adding a NoSchedule OpenShift Container Storage taint is also required so that the infra node will
only schedule OpenShift Container Storage resources and repel any other non-OpenShift Container
Storage workloads.

oc adm taint node <node> node.ocs.openshift.io/storage="true":NoSchedule

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

46

WARNING

Do not remove the node-role node-role.kubernetes.io/worker=""

The removal of the node-role.kubernetes.io/worker="" can cause issues unless
changes are made both to the OpenShift scheduler and to MachineConfig
resources.

If already removed, it should be added again to each infra node. Adding node-role
node-role.kubernetes.io/infra="" and OpenShift Container Storage taint is
sufficient to conform to entitlement exemption requirements.



CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT CONTAINER STORAGE

47

CHAPTER 9. SCALING STORAGE NODES
To scale the storage capacity of OpenShift Container Storage, you can do either of the following:

Scale up storage nodes - Add storage capacity to the existing OpenShift Container Storage
worker nodes

Scale out storage nodes - Add new worker nodes containing storage capacity

9.1. REQUIREMENTS FOR SCALING STORAGE NODES

Before you proceed to scale the storage nodes, refer to the following sections to understand the node
requirements for your specific Red Hat OpenShift Container Storage instance:

Platform requirements

Storage device requirements

Dynamic storage devices

Capacity planning

WARNING

Always ensure that you have plenty of storage capacity.

If storage ever fills completely, it is not possible to add capacity or delete or migrate
content away from the storage to free up space. Completely full storage is very
difficult to recover.

Capacity alerts are issued when cluster storage capacity reaches 75% (near-full)
and 85% (full) of total capacity. Always address capacity warnings promptly, and
review your storage regularly to ensure that you do not run out of storage space.

If you do run out of storage space completely, contact Red Hat Customer Support.

9.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR
OPENSHIFT CONTAINER STORAGE NODES ON GOOGLE CLOUD
INFRASTRUCTURE

Use this procedure to add storage capacity and performance to your configured Red Hat OpenShift
Container Storage worker nodes.

Prerequisites

A running OpenShift Container Storage Platform.

Administrative privileges on the OpenShift Web Console.

To scale using a storage class other than the one provisioned during deployment, first define an



Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

48

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/planning_your_deployment/index#platform-requirements_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/planning_your_deployment/index#dynamic_storage_devices
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/planning_your_deployment/index#capacity_planning

To scale using a storage class other than the one provisioned during deployment, first define an
additional storage class. See Creating a storage class for details.

Procedure

1. Log in to the OpenShift Web Console.

2. Click on Operators → Installed Operators.

3. Click OpenShift Container Storage Operator.

4. Click Storage Cluster tab.

5. The visible list should have only one item. Click (⋮) on the far right to extend the options menu.

6. Select Add Capacity from the options menu.

7. Select the Storage Class.
Set the storage class to standard if you are using the default storage class that uses HDD.
However, if you created a storage class to use SSD based disks for better performance, you
need to select that storage class.

The Raw Capacity field shows the size set during storage class creation. The total amount of
storage consumed is three times this amount, because OpenShift Container Storage uses a
replica count of 3.

8. Click Add and wait for the cluster state to change to Ready.

Verification steps

Navigate to Overview → Block and File tab, then check the Raw Capacity breakdown card.
Note that the capacity increases based on your selections.

NOTE

The raw capacity does not take replication into account and shows the full
capacity.

Verify that the new OSDs and their corresponding new PVCs are created.

To view the state of the newly created OSDs:

a. Click Workloads → Pods from the OpenShift Web Console.

b. Select openshift-storage from the Project drop-down list.

To view the state of the PVCs:

a. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

b. Select openshift-storage from the Project drop-down list.

(Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices
are encrypted.

a. Identify the node(s) where the new OSD pod(s) are running.

CHAPTER 9. SCALING STORAGE NODES

49

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/scaling_storage/index#creating-a-storage-class_rhocs

$ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD pod name>

For example:

oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-544db49d7f-
qrgqm

b. For each of the nodes identified in previous step, do the following:

i. Create a debug pod and open a chroot environment for the selected host(s).

$ oc debug node/<node name>
$ chroot /host

ii. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

$ lsblk

IMPORTANT

Cluster reduction is not currently supported, regardless of whether reduction would be
done by removing nodes or OSDs.

9.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

To scale out storage capacity, you need to perform the following:

Add a new node to increase the storage capacity when existing worker nodes are already
running at their maximum supported OSDs, which is the increment of 3 OSDs of the capacity
selected during initial configuration.

Verify that the new node is added successfully

Scale up the storage capacity after the node is added

9.3.1. Adding a node on Google Cloud installer-provisioned infrastructure

Prerequisites

You must be logged into OpenShift Container Platform (RHOCP) cluster.

Procedure

1. Navigate to Compute → Machine Sets.

2. On the machine set where you want to add nodes, select Edit Machine Count.

3. Add the amount of nodes, and click Save.

4. Click Compute → Nodes and confirm if the new node is in Ready state.

5. Apply the OpenShift Container Storage label to the new node.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

50

a. For the new node, Action menu (⋮) → Edit Labels.

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

NOTE

It is recommended to add 3 nodes, one each in different zones. You must add 3 nodes
and perform this procedure for all of them.

Verification steps

To verify that the new node is added, see Verifying the addition of a new node .

9.3.2. Verifying the addition of a new node

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

9.3.3. Scaling up storage capacity

After you add a new node to OpenShift Container Storage, you must scale up the storage capacity as
described in Scaling up storage by adding capacity .

CHAPTER 9. SCALING STORAGE NODES

51

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/scaling_storage/index#verifying-the-addition-of-a-new-node_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#proc_scaling-up-storage-by-adding-capacity-to-your-openshift-container-storage-nodes-on-aws-vmware-infrastructure_gcp

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

10.1. ABOUT THE MULTICLOUD OBJECT GATEWAY

The Multicloud Object Gateway (MCG) is a lightweight object storage service for OpenShift, allowing
users to start small and then scale as needed on-premise, in multiple clusters, and with cloud-native
storage.

10.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR
APPLICATIONS

You can access the object service with any application targeting AWS S3 or code that uses AWS S3
Software Development Kit (SDK). Applications need to specify the MCG endpoint, an access key, and a
secret access key. You can use your terminal or the MCG CLI to retrieve this information.

Prerequisites

A running OpenShift Container Storage Platform

Download the MCG command-line interface for easier management:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance,

For IBM Power Systems, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found at Download RedHat OpenShift Container Storage page .

NOTE

Choose the correct Product Variant according to your architecture.

You can access the relevant endpoint, access key, and secret access key two ways:

Section 10.2.1, “Accessing the Multicloud Object Gateway from the terminal”

Section 10.2.2, “Accessing the Multicloud Object Gateway from the MCG command-line
interface”

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

52

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

Accessing the MCG bucket(s) using the virtual-hosted style

Example 10.1. Example

If the client application tries to access https://<bucket-name>.s3-openshift-
storage.apps.mycluster-cluster.qe.rh-ocs.com

where <bucket-name> is the name of the MCG bucket

For example, https://mcg-test-bucket.s3-openshift-storage.apps.mycluster-
cluster.qe.rh-ocs.com

A DNS entry is needed for mcg-test-bucket.s3-openshift-storage.apps.mycluster-
cluster.qe.rh-ocs.com to point to the S3 Service.

IMPORTANT

Ensure that you have a DNS entry in order to point the client application to the MCG
bucket(s) using the virtual-hosted style.

10.2.1. Accessing the Multicloud Object Gateway from the terminal

Procedure

Run the describe command to view information about the MCG endpoint, including its access key
(AWS_ACCESS_KEY_ID value) and secret access key (AWS_SECRET_ACCESS_KEY value):

oc describe noobaa -n openshift-storage

The output will look similar to the following:

Name: noobaa
Namespace: openshift-storage
Labels: <none>
Annotations: <none>
API Version: noobaa.io/v1alpha1
Kind: NooBaa
Metadata:
 Creation Timestamp: 2019-07-29T16:22:06Z
 Generation: 1
 Resource Version: 6718822
 Self Link: /apis/noobaa.io/v1alpha1/namespaces/openshift-storage/noobaas/noobaa
 UID: 019cfb4a-b21d-11e9-9a02-06c8de012f9e
Spec:
Status:
 Accounts:
 Admin:
 Secret Ref:
 Name: noobaa-admin
 Namespace: openshift-storage
 Actual Image: noobaa/noobaa-core:4.0
 Observed Generation: 1
 Phase: Ready

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

53

https:
https://mcg-test-bucket.s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com

 Readme:

 Welcome to NooBaa!

 Welcome to NooBaa!

 NooBaa Core Version:
 NooBaa Operator Version:

 Lets get started:

 1. Connect to Management console:

 Read your mgmt console login information (email & password) from secret: "noobaa-admin".

 kubectl get secret noobaa-admin -n openshift-storage -o json | jq '.data|map_values(@base64d)'

 Open the management console service - take External IP/DNS or Node Port or use port
forwarding:

 kubectl port-forward -n openshift-storage service/noobaa-mgmt 11443:443 &
 open https://localhost:11443

 2. Test S3 client:

 kubectl port-forward -n openshift-storage service/s3 10443:443 &
1

 NOOBAA_ACCESS_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_ACCESS_KEY_ID|@base64d')
2

 NOOBAA_SECRET_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_SECRET_ACCESS_KEY|@base64d')
 alias s3='AWS_ACCESS_KEY_ID=$NOOBAA_ACCESS_KEY
AWS_SECRET_ACCESS_KEY=$NOOBAA_SECRET_KEY aws --endpoint https://localhost:10443 --
no-verify-ssl s3'
 s3 ls

 Services:
 Service Mgmt:
 External DNS:
 https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
 https://a3406079515be11eaa3b70683061451e-1194613580.us-east-
2.elb.amazonaws.com:443
 Internal DNS:
 https://noobaa-mgmt.openshift-storage.svc:443
 Internal IP:
 https://172.30.235.12:443
 Node Ports:
 https://10.0.142.103:31385
 Pod Ports:
 https://10.131.0.19:8443
 serviceS3:
 External DNS: 3
 https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

54

1

2

3

 https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443
 Internal DNS:
 https://s3.openshift-storage.svc:443
 Internal IP:
 https://172.30.86.41:443
 Node Ports:
 https://10.0.142.103:31011
 Pod Ports:
 https://10.131.0.19:6443

access key (AWS_ACCESS_KEY_ID value)

secret access key (AWS_SECRET_ACCESS_KEY value)

MCG endpoint

NOTE

The output from the oc describe noobaa command lists the internal and external DNS
names that are available. When using the internal DNS, the traffic is free. The external
DNS uses Load Balancing to process the traffic, and therefore has a cost per hour.

10.2.2. Accessing the Multicloud Object Gateway from the MCG command-line
interface

Prerequisites

Download the MCG command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance,

For IBM Power Systems, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Procedure

Run the status command to access the endpoint, access key, and secret access key:

noobaa status -n openshift-storage

The output will look similar to the following:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

55

INFO[0000] Namespace: openshift-storage
INFO[0000]
INFO[0000] CRD Status:
INFO[0003] � Exists: CustomResourceDefinition "noobaas.noobaa.io"
INFO[0003] � Exists: CustomResourceDefinition "backingstores.noobaa.io"
INFO[0003] � Exists: CustomResourceDefinition "bucketclasses.noobaa.io"
INFO[0004] � Exists: CustomResourceDefinition "objectbucketclaims.objectbucket.io"
INFO[0004] � Exists: CustomResourceDefinition "objectbuckets.objectbucket.io"
INFO[0004]
INFO[0004] Operator Status:
INFO[0004] � Exists: Namespace "openshift-storage"
INFO[0004] � Exists: ServiceAccount "noobaa"
INFO[0005] � Exists: Role "ocs-operator.v0.0.271-6g45f"
INFO[0005] � Exists: RoleBinding "ocs-operator.v0.0.271-6g45f-noobaa-f9vpj"
INFO[0006] � Exists: ClusterRole "ocs-operator.v0.0.271-fjhgh"
INFO[0006] � Exists: ClusterRoleBinding "ocs-operator.v0.0.271-fjhgh-noobaa-pdxn5"
INFO[0006] � Exists: Deployment "noobaa-operator"
INFO[0006]
INFO[0006] System Status:
INFO[0007] � Exists: NooBaa "noobaa"
INFO[0007] � Exists: StatefulSet "noobaa-core"
INFO[0007] � Exists: Service "noobaa-mgmt"
INFO[0008] � Exists: Service "s3"
INFO[0008] � Exists: Secret "noobaa-server"
INFO[0008] � Exists: Secret "noobaa-operator"
INFO[0008] � Exists: Secret "noobaa-admin"
INFO[0009] � Exists: StorageClass "openshift-storage.noobaa.io"
INFO[0009] � Exists: BucketClass "noobaa-default-bucket-class"
INFO[0009] � (Optional) Exists: BackingStore "noobaa-default-backing-store"
INFO[0010] � (Optional) Exists: CredentialsRequest "noobaa-cloud-creds"
INFO[0010] � (Optional) Exists: PrometheusRule "noobaa-prometheus-rules"
INFO[0010] � (Optional) Exists: ServiceMonitor "noobaa-service-monitor"
INFO[0011] � (Optional) Exists: Route "noobaa-mgmt"
INFO[0011] � (Optional) Exists: Route "s3"
INFO[0011] � Exists: PersistentVolumeClaim "db-noobaa-core-0"
INFO[0011] � System Phase is "Ready"
INFO[0011] � Exists: "noobaa-admin"

#------------------#
#- Mgmt Addresses -#
#------------------#

ExternalDNS : [https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a3406079515be11eaa3b70683061451e-1194613580.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31385]
InternalDNS : [https://noobaa-mgmt.openshift-storage.svc:443]
InternalIP : [https://172.30.235.12:443]
PodPorts : [https://10.131.0.19:8443]

#--------------------#
#- Mgmt Credentials -#
#--------------------#

email : admin@noobaa.io
password : HKLbH1rSuVU0I/souIkSiA==

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

56

1

2

3

#----------------#
#- S3 Addresses -#
#----------------#

1
ExternalDNS : [https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31011]
InternalDNS : [https://s3.openshift-storage.svc:443]
InternalIP : [https://172.30.86.41:443]
PodPorts : [https://10.131.0.19:6443]

#------------------#
#- S3 Credentials -#
#------------------#

2
AWS_ACCESS_KEY_ID : jVmAsu9FsvRHYmfjTiHV
3

AWS_SECRET_ACCESS_KEY : E//420VNedJfATvVSmDz6FMtsSAzuBv6z180PT5c

#------------------#
#- Backing Stores -#
#------------------#

NAME TYPE TARGET-BUCKET PHASE AGE
noobaa-default-backing-store aws-s3 noobaa-backing-store-15dc896d-7fe0-4bed-9349-
5942211b93c9 Ready 141h35m32s

#------------------#
#- Bucket Classes -#
#------------------#

NAME PLACEMENT PHASE AGE
noobaa-default-bucket-class {Tiers:[{Placement: BackingStores:[noobaa-default-backing-store]}]}
Ready 141h35m33s

#-----------------#
#- Bucket Claims -#
#-----------------#

No OBC's found.

endpoint

access key

secret access key

You now have the relevant endpoint, access key, and secret access key in order to connect to your
applications.

Example 10.2. Example

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

57

If AWS S3 CLI is the application, the following command will list buckets in OpenShift Container
Storage:

AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
aws --endpoint <ENDPOINT> --no-verify-ssl s3 ls

10.3. ALLOWING USER ACCESS TO THE MULTICLOUD OBJECT
GATEWAY CONSOLE

To allow access to the Multicloud Object Gateway Console to a user, ensure that the user meets the
following conditions:

User is in cluster-admins group.

User is in system:cluster-admins virtual group.

Prerequisites

A running OpenShift Container Storage Platform.

Procedure

1. Enable access to the Multicloud Object Gateway console.
Perform the following steps once on the cluster :

a. Create a cluster-admins group.

oc adm groups new cluster-admins

b. Bind the group to the cluster-admin role.

oc adm policy add-cluster-role-to-group cluster-admin cluster-admins

2. Add or remove users from the cluster-admins group to control access to the Multicloud Object
Gateway console.

To add a set of users to the cluster-admins group :

oc adm groups add-users cluster-admins <user-name> <user-name> <user-name>...

where <user-name> is the name of the user to be added.

NOTE

If you are adding a set of users to the cluster-admins group, you do not need
to bind the newly added users to the cluster-admin role to allow access to
the OpenShift Container Storage dashboard.

To remove a set of users from the cluster-admins group :

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

58

oc adm groups remove-users cluster-admins <user-name> <user-name> <user-
name>...

where <user-name> is the name of the user to be removed.

Verification steps

1. On the OpenShift Web Console, login as a user with access permission to Multicloud Object
Gateway Console.

2. Navigate to Storage → Overview → Object tab → select the Multicloud Object Gateway link .

3. On the Multicloud Object Gateway Console, login as the same user with access permission.

4. Click Allow selected permissions.

10.4. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD

10.4.1. Creating a new backing store

Use this procedure to create a new backing store in OpenShift Container Storage.

Prerequisites

Administrator access to OpenShift.

Procedure

1. Click Operators → Installed Operators from the left pane of the OpenShift Web Console to
view the installed operators.

2. Click OpenShift Container Storage Operator.

3. On the OpenShift Container Storage Operator page, scroll right and click the Backing Store
tab.

4. Click Create Backing Store.

Figure 10.1. Create Backing Store page

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

59

Figure 10.1. Create Backing Store page

5. On the Create New Backing Store page, perform the following:

a. Enter a Backing Store Name.

b. Select a Provider.

c. Select a Region.

d. Enter an Endpoint. This is optional.

e. Select a Secret from drop down list, or create your own secret. Optionally, you can Switch
to Credentials view which lets you fill in the required secrets.
For more information on creating an OCP secret, see the section Creating the secret in the
Openshift Container Platform documentation.

Each backingstore requires a different secret. For more information on creating the secret
for a particular backingstore, see the Section 10.4.2, “Adding storage resources for hybrid or
Multicloud using the MCG command line interface” and follow the procedure for the
addition of storage resources using a YAML.

NOTE

This menu is relevant for all providers except Google Cloud and local PVC.

f. Enter Target bucket. The target bucket is a container storage that is hosted on the remote
cloud service. It allows you to create a connection that tells MCG that it can use this bucket
for the system.

6. Click Create Backing Store.

Verification steps

1. Click Operators → Installed Operators.

2. Click OpenShift Container Storage Operator.

3. Search for the new backing store or click Backing Store tab to view all the backing stores.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/authentication_and_authorization/index#identity-provider-creating-secret_configuring-basic-authentication-identity-provider

10.4.2. Adding storage resources for hybrid or Multicloud using the MCG command
line interface

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider
and clusters.

You must add a backing storage that can be used by the MCG.

Depending on the type of your deployment, you can choose one of the following procedures to create a
backing storage:

For creating an AWS-backed backingstore, see Section 10.4.2.1, “Creating an AWS-backed
backingstore”

For creating an IBM COS-backed backingstore, see Section 10.4.2.2, “Creating an IBM COS-
backed backingstore”

For creating an Azure-backed backingstore, see Section 10.4.2.3, “Creating an Azure-backed
backingstore”

For creating a GCP-backed backingstore, see Section 10.4.2.4, “Creating a GCP-backed
backingstore”

For creating a local Persistent Volume-backed backingstore, see Section 10.4.2.5, “Creating a
local Persistent Volume-backed backingstore”

For VMware deployments, skip to Section 10.4.3, “Creating an s3 compatible Multicloud Object
Gateway backingstore” for further instructions.

10.4.2.1. Creating an AWS-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

61

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create aws-s3 <backingstore_name> --access-key=<AWS ACCESS
KEY> --secret-key=<AWS SECRET ACCESS KEY> --target-bucket <bucket-name> -n
openshift-storage

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access key
ID and secret access key you created for this purpose.

c. Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and subsequently,
data storage and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "aws-resource"
INFO[0002] � Created: Secret "backing-store-secret-aws-resource"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
 namespace: openshift-storage
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>

a. You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 awsS3:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

62

 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <bucket-name>
 type: aws-s3

a. Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.2. Creating an IBM COS-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance,

For IBM Power Systems, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create ibm-cos <backingstore_name> --access-key=<IBM ACCESS
KEY> --secret-key=<IBM SECRET ACCESS KEY> --endpoint=<IBM COS ENDPOINT> --
target-bucket <bucket-name> -n openshift-storage

a. Replace <backingstore_name> with the name of the backingstore.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

63

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

b. Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT>
with an IBM access key ID, secret access key and the appropriate regional endpoint that
corresponds to the location of the existing IBM bucket.
To generate the above keys on IBM cloud, you must include HMAC credentials while
creating the service credentials for your target bucket.

c. Replace <bucket-name> with an existing IBM bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "ibm-resource"
INFO[0002] � Created: Secret "backing-store-secret-ibm-resource"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN
BASE64>

a. You must supply and encode your own IBM COS access key ID and secret access key using
Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN
BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 ibmCos:
 endpoint: <endpoint>
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <bucket-name>
 type: ibm-cos

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

64

a. Replace <bucket-name> with an existing IBM COS bucket name. This argument tells
Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

b. Replace <endpoint> with a regional endpoint that corresponds to the location of the
existing IBM bucket name. This argument tells Multicloud Object Gateway which endpoint
to use for its backing store, and subsequently, data storage and administration.

c. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.3. Creating an Azure-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create azure-blob <backingstore_name> --account-key=<AZURE
ACCOUNT KEY> --account-name=<AZURE ACCOUNT NAME> --target-blob-container
<blob container name>

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <AZURE ACCOUNT KEY> and <AZURE ACCOUNT NAME> with an AZURE
account key and account name you created for this purpose.

c. Replace <blob container name> with an existing Azure blob container name. This
argument tells Multicloud Object Gateway which bucket to use as a target bucket for its
backing store, and subsequently, data storage and administration.
The output will be similar to the following:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

65

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "azure-resource"
INFO[0002] � Created: Secret "backing-store-secret-azure-resource"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 AccountName: <AZURE ACCOUNT NAME ENCODED IN BASE64>
 AccountKey: <AZURE ACCOUNT KEY ENCODED IN BASE64>

a. You must supply and encode your own Azure Account Name and Account Key using
Base64, and use the results in place of <AZURE ACCOUNT NAME ENCODED IN
BASE64> and <AZURE ACCOUNT KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 azureBlob:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBlobContainer: <blob-container-name>
 type: azure-blob

a. Replace <blob-container-name> with an existing Azure blob container name. This
argument tells Multicloud Object Gateway which bucket to use as a target bucket for its
backing store, and subsequently, data storage and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.4. Creating a GCP-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

66

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create google-cloud-storage <backingstore_name> --private-key-json-
file=<PATH TO GCP PRIVATE KEY JSON FILE> --target-bucket <GCP bucket name>

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <PATH TO GCP PRIVATE KEY JSON FILE> with a path to your GCP private key
created for this purpose.

c. Replace <GCP bucket name> with an existing GCP object storage bucket name. This
argument tells Multicloud Object Gateway which bucket to use as a target bucket for its
backing store, and subsequently, data storage and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "google-gcp"
INFO[0002] � Created: Secret "backing-store-google-cloud-storage-gcp"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 GoogleServiceAccountPrivateKeyJson: <GCP PRIVATE KEY ENCODED IN BASE64>

a. You must supply and encode your own GCP service account private key using Base64, and

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

67

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

a. You must supply and encode your own GCP service account private key using Base64, and
use the results in place of <GCP PRIVATE KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 googleCloudStorage:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <target bucket>
 type: google-cloud-storage

a. Replace <target bucket> with an existing Google storage bucket. This argument tells
Multicloud Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.5. Creating a local Persistent Volume-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

68

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create pv-pool <backingstore_name> --num-volumes=<NUMBER OF
VOLUMES> --pv-size-gb=<VOLUME SIZE> --storage-class=<LOCAL STORAGE CLASS>

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <NUMBER OF VOLUMES> with the number of volumes you would like to create.
Note that increasing the number of volumes scales up the storage.

c. Replace <VOLUME SIZE> with the required size, in GB, of each volume

d. Replace <LOCAL STORAGE CLASS> with the local storage class, recommended to use
ocs-storagecluster-ceph-rbd
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Exists: BackingStore "local-mcg-storage"

You can also add storage resources using a YAML:

1. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore_name>
 namespace: openshift-storage
spec:
 pvPool:
 numVolumes: <NUMBER OF VOLUMES>
 resources:
 requests:
 storage: <VOLUME SIZE>
 storageClass: <LOCAL STORAGE CLASS>
 type: pv-pool

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <NUMBER OF VOLUMES> with the number of volumes you would like to create.
Note that increasing the number of volumes scales up the storage.

c. Replace <VOLUME SIZE> with the required size, in GB, of each volume. Note that the
letter G should remain

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

69

d. Replace <LOCAL STORAGE CLASS> with the local storage class, recommended to use
ocs-storagecluster-ceph-rbd

10.4.3. Creating an s3 compatible Multicloud Object Gateway backingstore

The Multicloud Object Gateway can use any S3 compatible object storage as a backing store, for
example, Red Hat Ceph Storage’s RADOS Gateway (RGW). The following procedure shows how to
create an S3 compatible Multicloud Object Gateway backing store for Red Hat Ceph Storage’s RADOS
Gateway. Note that when RGW is deployed, Openshift Container Storage operator creates an S3
compatible backingstore for Multicloud Object Gateway automatically.

Procedure

1. From the Multicloud Object Gateway (MCG) command-line interface, run the following NooBaa
command:

noobaa backingstore create s3-compatible rgw-resource --access-key=<RGW ACCESS
KEY> --secret-key=<RGW SECRET KEY> --target-bucket=<bucket-name> --endpoint=
<RGW endpoint>

a. To get the <RGW ACCESS KEY> and <RGW SECRET KEY>, run the following command
using your RGW user secret name:

oc get secret <RGW USER SECRET NAME> -o yaml -n openshift-storage

b. Decode the access key ID and the access key from Base64 and keep them.

c. Replace <RGW USER ACCESS KEY> and <RGW USER SECRET ACCESS KEY> with
the appropriate, decoded data from the previous step.

d. Replace <bucket-name> with an existing RGW bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

e. To get the <RGW endpoint>, see Accessing the RADOS Object Gateway S3 endpoint .
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "rgw-resource"
INFO[0002] � Created: Secret "backing-store-secret-rgw-resource"

You can also create the backingstore using a YAML:

1. Create a CephObjectStore user. This also creates a secret containing the RGW credentials:

apiVersion: ceph.rook.io/v1
kind: CephObjectStoreUser
metadata:
 name: <RGW-Username>
 namespace: openshift-storage
spec:
 store: ocs-storagecluster-cephobjectstore
 displayName: "<Display-name>"

a. Replace <RGW-Username> and <Display-name> with a unique username and display

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

70

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#Accessing-the-RADOS-Object-Gateway-S3-endpoint_rhocs

a. Replace <RGW-Username> and <Display-name> with a unique username and display
name.

2. Apply the following YAML for an S3-Compatible backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore-name>
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <RGW endpoint>
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 signatureVersion: v4
 targetBucket: <RGW-bucket-name>
 type: s3-compatible

a. Replace <backingstore-secret-name> with the name of the secret that was created with
CephObjectStore in the previous step.

b. Replace <bucket-name> with an existing RGW bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

c. To get the <RGW endpoint>, see Accessing the RADOS Object Gateway S3 endpoint .

10.4.4. Adding storage resources for hybrid and Multicloud using the user interface

Procedure

1. In your OpenShift Storage console, click Storage → Overview → Object tab → Multicloud
Object Gateway link.

2. Select the Resources tab in the left, highlighted below. From the list that populates, select Add
Cloud Resource.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

71

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#Accessing-the-RADOS-Object-Gateway-S3-endpoint_rhocs

3. Select Add new connection.

4. Select the relevant native cloud provider or S3 compatible option and fill in the details.

5. Select the newly created connection and map it to the existing bucket.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

72

6. Repeat these steps to create as many backing stores as needed.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

10.4.5. Creating a new bucket class

Bucket class is a CRD representing a class of buckets that defines tiering policies and data placements
for an Object Bucket Class (OBC).

Use this procedure to create a bucket class in OpenShift Container Storage.

Procedure

1. Click Operators → Installed Operators from the left pane of the OpenShift Web Console to
view the installed operators.

2. Click OpenShift Container Storage Operator.

3. On the OpenShift Container Storage Operator page, scroll right and click the Bucket Class tab.

4. Click Create Bucket Class.

5. On the Create new Bucket Class page, perform the following:

a. Select the bucket class type and enter a bucket class name.

i. Select the BucketClass type. Choose one of the following options:

Namespace
Data is stored on the NamespaceStores without performing de-duplication,
compression or encryption.

Standard
Data will be consumed by a Multicloud Object Gateway (MCG), deduped,
compressed and encrypted.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

73

By default, Standard is selected.

ii. Enter a Bucket Class Name.

iii. Click Next.

b. In Placement Policy, select Tier 1 - Policy Type and click Next. You can choose either one of
the options as per your requirements.

Spread allows spreading of the data across the chosen resources.

Mirror allows full duplication of the data across the chosen resources.

Click Add Tier to add another policy tier.

c. Select atleast one Backing Store resource from the available list if you have selected Tier 1
- Policy Type as Spread and click Next. Alternatively, you can also create a new backing
store.

NOTE

You need to select atleast 2 backing stores when you select Policy Type as
Mirror in previous step.

d. Review and confirm Bucket Class settings.

e. Click Create Bucket Class.

Verification steps

1. Click Operators → Installed Operators.

2. Click OpenShift Container Storage Operator.

3. Search for the new Bucket Class or click Bucket Class tab to view all the Bucket Classes.

10.4.6. Editing a bucket class

Use the following procedure to edit the bucket class components through the YAML file by clicking the
edit button on the Openshift web console.

Prerequisites

Administrator access to OpenShift.

Procedure

1. Log into the OpenShift Web Console.

2. Click Operators → Installed Operators.

3. Click OpenShift Container Storage Operator.

4. On the OpenShift Container Storage Operator page, scroll right and click the Bucket Class tab.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

74

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#creating-a-new-backing-store_rhocs

5. Click on the action menu (⋮) next to the Bucket class you want to edit.

6. Click Edit Bucket Class.

7. You are redirected to the YAML file, make the required changes in this file and click Save.

10.4.7. Editing backing stores for bucket class

Use the following procedure to edit an existing Multicloud Object Gateway bucket class to change the
underlying backing stores used in a bucket class.

Prerequisites

Administrator access to OpenShift Web Console.

A bucket class.

Backing stores.

Procedure

1. Click Operators → Installed Operators to view the installed operators.

2. Click OpenShift Container Storage Operator.

3. Click the Bucket Class tab.

4. Click on the action menu (⋮) next to the Bucket class you want to edit.

5. Click Edit Bucket Class Resources.

6. On the Edit Bucket Class Resources page, edit the bucket class resources either by adding a
backing store to the bucket class or by removing a backing store from the bucket class. You can
also edit bucket class resources created with one or two tiers and different placement policies.

To add a backing store to the bucket class, select the name of the backing store.

To remove a backing store from the bucket class, clear the name of the backing store.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

75

7. Click Save.

10.5. MANAGING NAMESPACE BUCKETS

Namespace buckets let you connect data repositories on different providers together, so you can
interact with all of your data through a single unified view. Add the object bucket associated with each
provider to the namespace bucket, and access your data through the namespace bucket to see all of
your object buckets at once. This lets you write to your preferred storage provider while reading from
multiple other storage providers, greatly reducing the cost of migrating to a new storage provider.

1. Connect your providers to the Multicloud Object Gateway .

2. Create a namespace resource for each of your providers so they can be added to a namespace
bucket.

3. Add your namespace resources to a namespace bucket and configure the bucket to read from
and write to the appropriate namespace resources.

You can interact with objects in a namespace bucket using the S3 API. See S3 API endpoints for objects
in namespace buckets for more information.

NOTE

A namespace bucket can only be used if its write target is available and functional.

10.5.1. Adding provider connections to the Multicloud Object Gateway

You need to add connections for each of your providers so that the Multicloud Object Gateway has
access to the provider.

Prerequisites

Administrative access to the OpenShift Console.

Procedure

1. In the OpenShift Console, click Storage → Overview and click the Object tab.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

76

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-provider-connections-to-the-multicloud-object-gateway_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-namespace-resources-using-the-multicloud-object-gateway_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-namespace-resources-to-namespace-buckets-using-the-multicloud-object-gateway_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#amazon-s3-api-endpoints-for-objects-in-namespace-buckets_gcp

2. Click Multicloud Object Gateway and log in if prompted.

3. Click Accounts and select an account to add the connection to.

4. Click My Connections.

5. Click Add Connection.

a. Enter a Connection Name.

b. Your cloud provider is shown in the Service dropdown by default. Change the selection to
use a different provider.

c. Your cloud provider’s default endpoint is shown in the Endpoint field by default. Enter an
alternative endpoint if required.

d. Enter your Access Key for this cloud provider.

e. Enter your Secret Key for this cloud provider.

f. Click Save.

10.5.2. Adding namespace resources using the Multicloud Object Gateway

Add existing storage to Multicloud Storage Gateway as namespace resources so that they can be
included in namespace buckets for a unified view of existing storage targets, such as Amazon Web
Services S3 buckets, Microsoft Azure blobs, and IBM Cloud Object Storage buckets.

Prerequisites

Administrative access to the OpenShift Console.

Target connections (providers) are already added to the Multicloud Object Gateway. See
Section 10.5.1, “Adding provider connections to the Multicloud Object Gateway” for details.

Procedure

1. In the OpenShift Console, click Storage → Overview and click on the Object tab.

2. Click Multicloud Storage Gateway and log in if prompted.

3. Click Resources, and click the Namespace Resources tab.

4. Click Create Namespace Resource.

a. In Target Connection, select the connection to be used for this namespace’s storage
provider.
If you need to add a new connection, click Add New Connection and enter your provider
details; see Section 10.5.1, “Adding provider connections to the Multicloud Object Gateway”
for more information.

b. In Target Bucket, select the name of the bucket to use as a target.

c. Enter a Resource Name for your namespace resource.

d. Click Create.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

77

Verification

Verify that the new resource is listed with a green check mark in the State column, and 0
buckets in the Connected Namespace Buckets column.

10.5.3. Adding resources to namespace buckets using the Multicloud Object
Gateway

Add namespace resources to namespace buckets for a unified view of your storage across various
providers. You can also configure read and write behaviour so that only one provider accepts new data,
while all providers allow existing data to be read.

Prerequisites

Ensure that all namespace resources you want to handle in a bucket have been added to the
Multicloud Object Gateway: Adding namespace resources using the Multicloud Object Gateway .

Procedure

1. In the OpenShift Console, click Storage → Overview and click the Object tab.

2. Click Multicloud Object Gateway and log in if prompted.

3. Click Buckets, and click on the Namespace Buckets tab.

4. Click Create Namespace Bucket.

a. On the Choose Name tab, specify a Name for the namespace bucket and click Next.

b. On the Set Placement tab:

i. Under Read Policy, select the checkbox for each namespace resource that the
namespace bucket should read data from.

ii. Under Write Policy, specify which namespace resource the namespace bucket should
write data to.

iii. Click Next.

c. Do not make changes on the Set Caching Policy tab in a production environment. This tab
is provided as a Development Preview and is subject to support limitations.

d. Click Create.

Verification

Verify that the namespace bucket is listed with a green check mark in the State column, the
expected number of read resources, and the expected write resource name.

10.5.4. Amazon S3 API endpoints for objects in namespace buckets

You can interact with objects in namespace buckets using the Amazon Simple Storage Service (S3) API.

Red Hat OpenShift Container Storage 4.6 onwards supports the following namespace bucket
operations:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

78

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#adding-namespace-resources-using-the-multicloud-object-gateway_rhocs

ListObjectVersions

ListObjects

PutObject

CopyObject

ListParts

CreateMultipartUpload

CompleteMultipartUpload

UploadPart

UploadPartCopy

AbortMultipartUpload

GetObjectAcl

GetObject

HeadObject

DeleteObject

DeleteObjects

See the Amazon S3 API reference documentation for the most up-to-date information about these
operations and how to use them.

Additional resources

Amazon S3 REST API Reference

Amazon S3 CLI Reference

10.5.5. Adding a namespace bucket using the Multicloud Object Gateway CLI and
YAML

For more information about namespace buckets, see Managing namespace buckets.

Depending on the type of your deployment and whether you want to use YAML or the Multicloud Object
Gateway CLI, choose one of the following procedures to add a namespace bucket:

Adding an AWS S3 namespace bucket using YAML

Adding an IBM COS namespace bucket using YAML

Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI

Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

10.5.5.1. Adding an AWS S3 namespace bucket using YAML

Prerequisites

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

79

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectVersions.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CopyObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CompleteMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_UploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_UploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_AbortMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectAcl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#managing-namespace-buckets_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-an-aws-s3-namespace-bucket-using-yaml_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-an-ibm-cos-namespace-bucket-using-yaml_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-an-aws-s3-namespace-bucket-using-the-multicloud-object-gateway-cli_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#adding-an-ibm-cos-namespace-bucket-using-the-multicloud-object-gateway-cli_gcp

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object
Gateway with your applications

Procedure

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
name: <namespacestore-secret-name>
type: Opaque
data:
AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>

a. You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>. ii. Replace
<namespacestore-secret-name> with a unique name.

2. Create a NamespaceStore resource using OpenShift Custom Resource Definitions (CRDs). A
NamespaceStore represents underlying storage to be used as a read or write target for the data
in the Multicloud Object Gateway namespace buckets. To create a NamespaceStore resource,
apply the following YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <resource-name>
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 targetBucket: <target-bucket>
 type: aws-s3

a. Replace <resource-name> with the name you want to give to the resource.

b. Replace <namespacestore-secret-name> with the secret created in step 1.

c. Replace <namespace-secret> with the namespace where the secret can be found.

d. Replace <target-bucket> with the target bucket you created for the NamespaceStore.

3. Create a namespace bucket class that defines a namespace policy for the namespace buckets.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

80

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-Multicloud-object-gateway-with-your-applications_rhocs

3. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

A namespace policy of type single requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type:
 single:
 resource: <resource>

Replace <my-bucket-class> with a unique namespace bucket class name.

Replace <resource> with the name of a single namespace-store that will define the read
and write target of the namespace bucket.

A namespace policy of type multi requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type: Multi
 multi:
 writeResource: <write-resource>
 readResources:
 - <read-resources>
 - <read-resources>

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with the name of a single namespace-store that will define the
write target of the namespace bucket.

Replace <read-resources> with a list of the names of the namespace-stores that will
define the read targets of the namespace bucket.

4. Apply the following YAML to create a bucket using an Object Bucket Class (OBC) resource that
uses the bucket class defined in step 2.

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <resource-name>

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

81

 namespace: openshift-storage
spec:
 generateBucketName: <my-bucket>
 storageClassName: noobaa.noobaa.io
 additionalConfig:
 bucketclass: <my-bucket-class>

NOTE

For IBM Power Systems and IBM Z infrastructure use storageClassName as
openshift-storage.noobaa.io

a. Replace <my-bucket-class> with the bucket class created in the previous step.

Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and
the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace
of the OBC.

10.5.5.2. Adding an IBM COS namespace bucket using YAML

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object
Gateway with your applications

Procedure

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
name: <namespacestore-secret-name>
type: Opaque
data:
IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN
BASE64>

a. You must supply and encode your own IBM COS access key ID and secret access key using
Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN
BASE64> and `<IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <namespacestore-secret-name> with a unique name.

2. Create a NamespaceStore resource using OpenShift Custom Resource Definitions (CRDs). A
NamespaceStore represents underlying storage to be used as a read or write target for the data
in the Multicloud Object Gateway namespace buckets. To create a NamespaceStore resource,
apply the following YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

82

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-Multicloud-object-gateway-with-your-applications_rhocs

metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <IBM COS ENDPOINT>
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 signatureVersion: v2
 targetBucket: <target-bucket>
 type: ibm-cos

a. Replace <IBM COS ENDPOINT> with the appropriate IBM COS endpoint.

b. Replace <namespacestore-secret-name> with the secret created in step 1.

c. Replace <namespace-secret> with the namespace where the secret can be found.

d. Replace <target-bucket> with the target bucket you created for the NamespaceStore.

3. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

A namespace policy of type single requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type:
 single:
 resource: <resource>

Replace <my-bucket-class> with a unique namespace bucket class name.

Replace <resource> with a the name of a single namespace-store that will define the read
and write target of the namespace bucket.

A namespace policy of type multi requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

83

 namespace: openshift-storage
spec:
 namespacePolicy:
 type: Multi
 multi:
 writeResource: <write-resource>
 readResources:
 - <read-resources>
 - <read-resources>

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with the name of a single namespace-store that will define the
write target of the namespace bucket.

Replace <read-resources> with a list of the names of namespace-stores that will define
the read targets of the namespace bucket.

4. Apply the following YAML to create a bucket using an Object Bucket Class (OBC) resource that
uses the bucket class defined in step 2.

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <resource-name>
 namespace: openshift-storage
spec:
 generateBucketName: <my-bucket>
 storageClassName: noobaa.noobaa.io
 additionalConfig:
 bucketclass: <my-bucket-class>

NOTE

For IBM Power Systems and IBM Z infrastructure use storageClassName as
openshift-storage.noobaa.io

a. Replace <my-bucket-class> with the bucket class created in the previous step.

Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and
the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace
of the OBC.

10.5.5.3. Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object
Gateway with your applications

Download the Multicloud Object Gateway command-line interface:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

84

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-Multicloud-object-gateway-with-your-applications_rhocs

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in Multicloud Object Gateway namespace buckets.
From the MCG command-line interface, run the following command:

noobaa namespacestore create aws-s3 <namespacestore > --access-key <AWS ACCESS
KEY> --secret-key <AWS SECRET ACCESS KEY> --target-bucket <bucket-name> -n
openshift-storage

a. Replace <namespacestore> with the name of the NamespaceStore.

b. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access
key ID and secret access key you created for this purpose.

c. Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

2. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

Run the following command to create a namespace bucket class with a namespace policy of
type single:

noobaa bucketclass create namespace-bucketclass single <my-bucket-class> --resource
<resource> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <resource> with a single namespace-store that will define the read and write
target of the namespace bucket.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

85

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

Run the following command to create a namespace bucket class with a namespace policy of
type multi:

noobaa bucketclass create namespace-bucketclass multi <my-bucket-class> --write-
resource <write-resource> --read-resources <read-resources> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with a single namespace-store that will define the write target
of the namespace bucket.

Replace <read-resources> with a list of namespace-stores separated by commas that will
define the read targets of the namespace bucket.

3. Run the following command to create a bucket using an Object Bucket Class (OBC) resource
that uses the bucket class defined in step 2.

noobaa obc create my-bucket-claim -n openshift-storage --app-namespace my-app --
bucketclass <custom-bucket-class>

a. Replace <bucket-name> with a bucket name of your choice.

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and
the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace
of the OBC.

10.5.5.4. Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Chapter 2, Accessing the Multicloud Object
Gateway with your applications

Download the Multicloud Object Gateway command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

86

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-Multicloud-object-gateway-with-your-applications_rhocs

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance,

For IBM Power Systems, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in Multicloud Object Gateway namespace buckets.
From the MCG command-line interface, run the following command:

noobaa namespacestore create ibm-cos <namespacestore> --endpoint <IBM COS
ENDPOINT> --access-key <IBM ACCESS KEY> --secret-key <IBM SECRET ACCESS
KEY> --target-bucket <bucket-name> -n openshift-storage

a. Replace <namespacestore> with the name of the NamespaceStore.

b. Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT>
with an IBM access key ID, secret access key and the appropriate regional endpoint that
corresponds to the location of the existing IBM bucket.

c. Replace <bucket-name> with an existing IBM bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

2. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

Run the following command to create a namespace bucket class with a namespace policy of
type single:

noobaa bucketclass create namespace-bucketclass single <my-bucket-class> --resource
<resource> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <resource> with a single namespace-store that will define the read and write

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

87

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

Replace <resource> with a single namespace-store that will define the read and write
target of the namespace bucket.

Run the following command to create a namespace bucket class with a namespace policy of
type multi:

noobaa bucketclass create namespace-bucketclass multi <my-bucket-class> --write-
resource <write-resource> --read-resources <read-resources> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with a single namespace-store that will define the write target
of the namespace bucket.

Replace <read-resources> with a list of namespace-stores separated by commas that will
define the read targets of the namespace bucket.

3. Run the following command to create a bucket using an Object Bucket Class (OBC) resource
that uses the bucket class defined in step 2.

noobaa obc create my-bucket-claim -n openshift-storage --app-namespace my-app --
bucketclass <custom-bucket-class>

a. Replace <bucket-name> with a bucket name of your choice.

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

Once the OBC is provisioned by the operator, a bucket is created in the Multicloud Object Gateway, and
the operator creates a Secret and ConfigMap with the same name of the OBC on the same namespace
of the OBC.

10.6. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider
and clusters.

Prerequisites

You must first add a backing storage that can be used by the MCG, see Section 10.4, “Adding
storage resources for hybrid or Multicloud”.

Then you create a bucket class that reflects the data management policy, mirroring.

Procedure

You can set up mirroring data three ways:

Section 10.6.1, “Creating bucket classes to mirror data using the MCG command-line-interface”

Section 10.6.2, “Creating bucket classes to mirror data using a YAML”

Section 10.6.3, “Configuring buckets to mirror data using the user interface”

10.6.1. Creating bucket classes to mirror data using the MCG command-line-

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

88

10.6.1. Creating bucket classes to mirror data using the MCG command-line-
interface

1. From the MCG command-line interface, run the following command to create a bucket class
with a mirroring policy:

$ noobaa bucketclass create placement-bucketclass mirror-to-aws --backingstores=azure-
resource,aws-resource --placement Mirror

2. Set the newly created bucket class to a new bucket claim, generating a new bucket that will be
mirrored between two locations:

$ noobaa obc create mirrored-bucket --bucketclass=mirror-to-aws

10.6.2. Creating bucket classes to mirror data using a YAML

1. Apply the following YAML.

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <bucket-class-name>
 namespace: openshift-storage
spec:
 placementPolicy:
 tiers:
 - backingStores:
 - <backing-store-1>
 - <backing-store-2>
 placement: Mirror

2. Add the following lines to your standard Object Bucket Claim (OBC):

additionalConfig:
 bucketclass: mirror-to-aws

For more information about OBCs, see Section 10.8, “Object Bucket Claim” .

10.6.3. Configuring buckets to mirror data using the user interface

1. In your OpenShift Storage console, Click Storage → Overview → Object tab → Multicloud
Object Gateway link.

2. On the NooBaa page, click the buckets icon on the left side. You will see a list of your buckets:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

89

3. Click the bucket you want to update.

4. Click Edit Tier 1 Resources:

5. Select Mirror and check the relevant resources you want to use for this bucket. In the following
example, the data between noobaa-default-backing-store which is on RGW and AWS-
backingstore which is on AWS is mirrored:

6. Click Save.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

10.7. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY

OpenShift Container Storage supports AWS S3 bucket policies. Bucket policies allow you to grant users

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

90

OpenShift Container Storage supports AWS S3 bucket policies. Bucket policies allow you to grant users
access permissions for buckets and the objects in them.

10.7.1. About bucket policies

Bucket policies are an access policy option available for you to grant permission to your AWS S3 buckets
and objects. Bucket policies use JSON-based access policy language. For more information about
access policy language, see AWS Access Policy Language Overview .

10.7.2. Using bucket policies

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Section 10.2, “Accessing the Multicloud Object
Gateway with your applications”

Procedure

To use bucket policies in the Multicloud Object Gateway:

1. Create the bucket policy in JSON format. See the following example:

{
 "Version": "NewVersion",
 "Statement": [
 {
 "Sid": "Example",
 "Effect": "Allow",
 "Principal": [
 "john.doe@example.com"
],
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::john_bucket"
]
 }
]
}

There are many available elements for bucket policies with regard to access permissions.

For details on these elements and examples of how they can be used to control the access
permissions, see AWS Access Policy Language Overview .

For more examples of bucket policies, see AWS Bucket Policy Examples .

Instructions for creating S3 users can be found in Section 10.7.3, “Creating an AWS S3 user in
the Multicloud Object Gateway”.

2. Using AWS S3 client, use the put-bucket-policy command to apply the bucket policy to your S3
bucket:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

91

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

aws --endpoint ENDPOINT --no-verify-ssl s3api put-bucket-policy --bucket MyBucket --
policy BucketPolicy

Replace ENDPOINT with the S3 endpoint

Replace MyBucket with the bucket to set the policy on

Replace BucketPolicy with the bucket policy JSON file

Add --no-verify-ssl if you are using the default self signed certificates

For example:

aws --endpoint https://s3-openshift-storage.apps.gogo44.noobaa.org --no-verify-ssl s3api
put-bucket-policy -bucket MyBucket --policy file://BucketPolicy

For more information on the put-bucket-policy command, see the AWS CLI Command
Reference for put-bucket-policy.

NOTE

The principal element specifies the user that is allowed or denied access to a resource,
such as a bucket. Currently, Only NooBaa accounts can be used as principals. In the case
of object bucket claims, NooBaa automatically create an account obc-account.
<generated bucket name>@noobaa.io.

NOTE

Bucket policy conditions are not supported.

10.7.3. Creating an AWS S3 user in the Multicloud Object Gateway

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Section 10.2, “Accessing the Multicloud Object
Gateway with your applications”

Procedure

1. In your OpenShift Storage console, navigate to Storage → Overview → Object tab → select
the Multicloud Object Gateway link:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

92

https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html

2. Under the Accounts tab, click Create Account:

3. Select S3 Access Only, provide the Account Name, for example, john.doe@example.com. Click
Next:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

93

mailto:john.doe@example.com

4. Select S3 default placement, for example, noobaa-default-backing-store. Select Buckets
Permissions. A specific bucket or all buckets can be selected. Click Create:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

94

10.8. OBJECT BUCKET CLAIM

An Object Bucket Claim can be used to request an S3 compatible bucket backend for your workloads.

You can create an Object Bucket Claim three ways:

Section 10.8.1, “Dynamic Object Bucket Claim”

Section 10.8.2, “Creating an Object Bucket Claim using the command line interface”

Section 10.8.3, “Creating an Object Bucket Claim using the OpenShift Web Console”

An object bucket claim creates a new bucket and an application account in NooBaa with permissions to
the bucket, including a new access key and secret access key. The application account is allowed to
access only a single bucket and can’t create new buckets by default.

10.8.1. Dynamic Object Bucket Claim

Similar to Persistent Volumes, you can add the details of the Object Bucket claim to your application’s
YAML, and get the object service endpoint, access key, and secret access key available in a
configuration map and secret. It is easy to read this information dynamically into environment variables
of your application.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

95

Procedure

1. Add the following lines to your application YAML:

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <obc-name>
spec:
 generateBucketName: <obc-bucket-name>
 storageClassName: openshift-storage.noobaa.io

These lines are the Object Bucket Claim itself.

a. Replace <obc-name> with the a unique Object Bucket Claim name.

b. Replace <obc-bucket-name> with a unique bucket name for your Object Bucket Claim.

2. You can add more lines to the YAML file to automate the use of the Object Bucket Claim. The
example below is the mapping between the bucket claim result, which is a configuration map
with data and a secret with the credentials. This specific job will claim the Object Bucket from
NooBaa, which will create a bucket and an account.

apiVersion: batch/v1
kind: Job
metadata:
 name: testjob
spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - image: <your application image>
 name: test
 env:
 - name: BUCKET_NAME
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_NAME
 - name: BUCKET_HOST
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_HOST
 - name: BUCKET_PORT
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_PORT
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_ACCESS_KEY_ID
 - name: AWS_SECRET_ACCESS_KEY

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

96

 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_SECRET_ACCESS_KEY

a. Replace all instances of <obc-name> with your Object Bucket Claim name.

b. Replace <your application image> with your application image.

3. Apply the updated YAML file:

oc apply -f <yaml.file>

a. Replace <yaml.file> with the name of your YAML file.

4. To view the new configuration map, run the following:

oc get cm <obc-name>

a. Replace obc-name with the name of your Object Bucket Claim.
You can expect the following environment variables in the output:

BUCKET_HOST - Endpoint to use in the application

BUCKET_PORT - The port available for the application

The port is related to the BUCKET_HOST. For example, if the BUCKET_HOST is
https://my.example.com, and the BUCKET_PORT is 443, the endpoint for the
object service would be https://my.example.com:443.

BUCKET_NAME - Requested or generated bucket name

AWS_ACCESS_KEY_ID - Access key that is part of the credentials

AWS_SECRET_ACCESS_KEY - Secret access key that is part of the credentials

IMPORTANT

Retrieve the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. The names
are used so that it is compatible with the AWS S3 API. You need to specify the keys while
performing S3 operations, especially when you read, write or list from the Multicloud
Object Gateway (MCG) bucket. The keys are encoded in Base64. Decode the keys
before using them.

oc get secret <obc_name> -o yaml

<obc_name>

Specify the name of the object bucket claim.

10.8.2. Creating an Object Bucket Claim using the command line interface

When creating an Object Bucket Claim using the command-line interface, you get a configuration map
and a Secret that together contain all the information your application needs to use the object storage
service.

Prerequisites

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

97

https://my.example.com
https://my.example.com:443

Prerequisites

Download the MCG command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance,

For IBM Power Systems, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Procedure

1. Use the command-line interface to generate the details of a new bucket and credentials. Run
the following command:

noobaa obc create <obc-name> -n openshift-storage

Replace <obc-name> with a unique Object Bucket Claim name, for example, myappobc.

Additionally, you can use the --app-namespace option to specify the namespace where the
Object Bucket Claim configuration map and secret will be created, for example, myapp-
namespace.

Example output:

INFO[0001] � Created: ObjectBucketClaim "test21obc"

The MCG command-line-interface has created the necessary configuration and has informed
OpenShift about the new OBC.

2. Run the following command to view the Object Bucket Claim:

oc get obc -n openshift-storage

Example output:

NAME STORAGE-CLASS PHASE AGE
test21obc openshift-storage.noobaa.io Bound 38s

3. Run the following command to view the YAML file for the new Object Bucket Claim:

oc get obc test21obc -o yaml -n openshift-storage

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

98

Example output:

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 generation: 2
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 resourceVersion: "40756"
 selfLink: /apis/objectbucket.io/v1alpha1/namespaces/openshift-
storage/objectbucketclaims/test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
spec:
 ObjectBucketName: obc-openshift-storage-test21obc
 bucketName: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 generateBucketName: test21obc
 storageClassName: openshift-storage.noobaa.io
status:
 phase: Bound

4. Inside of your openshift-storage namespace, you can find the configuration map and the secret
to use this Object Bucket Claim. The CM and the secret have the same name as the Object
Bucket Claim. To view the secret:

oc get -n openshift-storage secret test21obc -o yaml

Example output:

Example output:
apiVersion: v1
data:
 AWS_ACCESS_KEY_ID: c0M0R2xVanF3ODR3bHBkVW94cmY=
 AWS_SECRET_ACCESS_KEY:
Wi9kcFluSWxHRzlWaFlzNk1hc0xma2JXcjM1MVhqa051SlBleXpmOQ==
kind: Secret
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

99

 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40751"
 selfLink: /api/v1/namespaces/openshift-storage/secrets/test21obc
 uid: 65117c1c-f662-11e9-9094-0a5305de57bb
type: Opaque

The secret gives you the S3 access credentials.

5. To view the configuration map:

oc get -n openshift-storage cm test21obc -o yaml

Example output:

apiVersion: v1
data:
 BUCKET_HOST: 10.0.171.35
 BUCKET_NAME: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 BUCKET_PORT: "31242"
 BUCKET_REGION: ""
 BUCKET_SUBREGION: ""
kind: ConfigMap
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40752"
 selfLink: /api/v1/namespaces/openshift-storage/configmaps/test21obc
 uid: 651c6501-f662-11e9-9094-0a5305de57bb

The configuration map contains the S3 endpoint information for your application.

10.8.3. Creating an Object Bucket Claim using the OpenShift Web Console

You can create an Object Bucket Claim (OBC) using the OpenShift Web Console.

Prerequisites

Administrative access to the OpenShift Web Console.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

100

In order for your applications to communicate with the OBC, you need to use the configmap and
secret. For more information about this, see Section 10.8.1, “Dynamic Object Bucket Claim” .

Procedure

1. Log into the OpenShift Web Console.

2. On the left navigation bar, click Storage → Object Bucket Claims.

3. Click Create Object Bucket Claim:

4. Enter a name for your object bucket claim and select the appropriate storage class based on
your deployment, internal or external, from the dropdown menu:
Internal mode

The following storage classes, which were created after deployment, are available for use:

ocs-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)

openshift-storage.noobaa.io uses the Multicloud Object Gateway

External mode

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

101

The following storage classes, which were created after deployment, are available for use:

ocs-external-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)

openshift-storage.noobaa.io uses the Multicloud Object Gateway

NOTE

The RGW OBC storage class is only available with fresh installations of
OpenShift Container Storage version 4.5. It does not apply to clusters
upgraded from previous OpenShift Container Storage releases.

5. Click Create.
Once you create the OBC, you are redirected to its detail page:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

102

Additional Resources

Section 10.8, “Object Bucket Claim”

10.8.4. Attaching an Object Bucket Claim to a deployment

Once created, Object Bucket Claims (OBCs) can be attached to specific deployments.

Prerequisites

Administrative access to the OpenShift Web Console.

Procedure

1. On the left navigation bar, click Storage → Object Bucket Claims.

2. Click the action menu (⋮) next to the OBC you created.

3. From the drop down menu, select Attach to Deployment.

4. Select the desired deployment from the Deployment Name list, then click Attach:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

103

Additional Resources

Section 10.8, “Object Bucket Claim”

10.8.5. Viewing object buckets using the OpenShift Web Console

You can view the details of object buckets created for Object Bucket Claims (OBCs) using the
OpenShift Web Console.

Prerequisites

Administrative access to the OpenShift Web Console.

Procedure

To view the object bucket details:

1. Log into the OpenShift Web Console.

2. On the left navigation bar, click Storage → Object Buckets:

You can also navigate to the details page of a specific OBC and click the Resource link to view
the object buckets for that OBC.

3. Select the object bucket you want to see details for. You are navigated to the object bucket’s
details page:

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

104

Additional Resources

Section 10.8, “Object Bucket Claim”

10.8.6. Deleting Object Bucket Claims

Prerequisites

Administrative access to the OpenShift Web Console.

Procedure

1. On the left navigation bar, click Storage → Object Bucket Claims.

2. click on the action menu (⋮) next to the Object Bucket Claim you want to delete.

3. Select Delete Object Bucket Claim from menu.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

105

4. Click Delete.

Additional Resources

Section 10.8, “Object Bucket Claim”

10.9. CACHING POLICY FOR OBJECT BUCKETS

A cache bucket is a namespace bucket with a hub target and a cache target. The hub target is an S3
compatible large object storage bucket. The cache bucket is the local Multicloud Object Gateway
bucket. You can create a cache bucket that caches an AWS bucket or an IBM COS bucket.

IMPORTANT

Cache buckets are a Technology Preview feature. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information, see Technology Preview Features Support Scope .

AWS S3

IBM COS

10.9.1. Creating an AWS cache bucket

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

106

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#creating-an-aws-cache-bucket_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_hybrid_and_multicloud_resources/index#creating-an-ibm-cos-cache-bucket_rhocs

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in Multicloud Object Gateway namespace buckets.
From the MCG command-line interface, run the following command:

noobaa namespacestore create aws-s3 <namespacestore> --access-key <AWS ACCESS
KEY> --secret-key <AWS SECRET ACCESS KEY> --target-bucket <bucket-name>

a. Replace <namespacestore> with the name of the namespacestore.

b. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access
key ID and secret access key you created for this purpose.

c. Replace <bucket-name> with an existing AWS bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.
You can also add storage resources by applying a YAML. First create a secret with
credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN
BASE64>

You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.

Replace <namespacestore-secret-name> with a unique name.

Then apply the following YAML:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

107

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <namespacestore>
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 targetBucket: <target-bucket>
 type: aws-s3

d. Replace <namespacestore> with a unique name.

e. Replace <namespacestore-secret-name> with the secret created in the previous step.

f. Replace <namespace-secret> with the namespace used to create the secret in the
previous step.

g. Replace <target-bucket> with the AWS S3 bucket you created for the namespacestore.

2. Run the following command to create a bucket class:

noobaa bucketclass create namespace-bucketclass cache <my-cache-bucket-class> --
backingstores <backing-store> --hub-resource <namespacestore>

a. Replace <my-cache-bucket-class> with a unique bucket class name.

b. Replace <backing-store> with the relevant backing store. You can list one or more
backingstores separated by commas in this field.

c. Replace <namespacestore> with the namespacestore created in the previous step.

3. Run the following command to create a bucket using an Object Bucket Claim resource that uses
the bucket class defined in step 2.

noobaa obc create <my-bucket-claim> my-app --bucketclass <custom-bucket-class>

a. Replace <my-bucket-claim> with a unique name.

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

10.9.2. Creating an IBM COS cache bucket

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

108

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager. For instance,

For IBM Power Systems, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-s390x-rpms

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in Multicloud Object Gateway namespace buckets.
From the MCG command-line interface, run the following command:

noobaa namespacestore create ibm-cos <namespacestore> --endpoint <IBM COS
ENDPOINT> --access-key <IBM ACCESS KEY> --secret-key <IBM SECRET ACCESS
KEY> --target-bucket <bucket-name>

a. Replace <namespacestore> with the name of the NamespaceStore.

b. Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT>
with an IBM access key ID, secret access key and the appropriate regional endpoint that
corresponds to the location of the existing IBM bucket.

c. Replace <bucket-name> with an existing IBM bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.
You can also add storage resources by applying a YAML. First, Create a secret with the
credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED
IN BASE64>

You must supply and encode your own IBM COS access key ID and secret access key using

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

109

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

You must supply and encode your own IBM COS access key ID and secret access key using
Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN
BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>`.

Replace <namespacestore-secret-name> with a unique name.

Then apply the following YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <namespacestore>
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <IBM COS ENDPOINT>
 secret:
 name: <backingstore-secret-name>
 namespace: <namespace-secret>
 signatureVersion: v2
 targetBucket: <target-bucket>
 type: ibm-cos

d. Replace <namespacestore> with a unique name.

e. Replace <IBM COS ENDPOINT> with the appropriate IBM COS endpoint.

f. Replace <backingstore-secret-name> with the secret created in the previous step.

g. Replace <namespace-secret> with the namespace used to create the secret in the
previous step.

h. Replace <target-bucket> with the AWS S3 bucket you created for the namespacestore.

2. Run the following command to create a bucket class:

noobaa bucketclass create namespace-bucketclass cache <my-bucket-class> --
backingstores <backing-store> --hubResource <namespacestore>

a. Replace <my-bucket-class> with a unique bucket class name.

b. Replace <backing-store> with the relevant backing store. You can list one or more
backingstores separated by commas in this field.

c. Replace <namespacestore> with the namespacestore created in the previous step.

3. Run the following command to create a bucket using an Object Bucket Claim resource that uses
the bucket class defined in step 2.

noobaa obc create <my-bucket-claim> my-app --bucketclass <custom-bucket-class>

a. Replace <my-bucket-claim> with a unique name.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

110

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

10.10. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY
ADDING ENDPOINTS

The Multicloud Object Gateway performance may vary from one environment to another. In some cases,
specific applications require faster performance which can be easily addressed by scaling S3 endpoints.

The Multicloud Object Gateway resource pool is a group of NooBaa daemon containers that provide
two types of services enabled by default:

Storage service

S3 endpoint service

10.10.1. S3 endpoints in the Multicloud Object Gateway

The S3 endpoint is a service that every Multicloud Object Gateway provides by default that handles the
heavy lifting data digestion in the Multicloud Object Gateway. The endpoint service handles the inline
data chunking, deduplication, compression, and encryption, and it accepts data placement instructions
from the Multicloud Object Gateway.

10.10.2. Scaling with storage nodes

Prerequisites

A running OpenShift Container Storage cluster on OpenShift Container Platform with access to
the Multicloud Object Gateway.

A storage node in the Multicloud Object Gateway is a NooBaa daemon container attached to one or
more Persistent Volumes and used for local object service data storage. NooBaa daemons can be
deployed on Kubernetes nodes. This can be done by creating a Kubernetes pool consisting of
StatefulSet pods.

Procedure

1. In the Multicloud Object Gateway user interface, from the Overview page, click Add Storage
Resources:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

111

2. In the window, click Deploy Kubernetes Pool:

3. In the Create Pool step create the target pool for the future installed nodes.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

112

4. In the Configure step, configure the number of requested pods and the size of each PV. For
each new pod, one PV is be created.

5. In the Review step, you can find the details of the new pool and select the deployment method
you wish to use: local or external deployment. If local deployment is selected, the Kubernetes
nodes will deploy within the cluster. If external deployment is selected, you will be provided with
a YAML file to run externally.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

113

6. All nodes will be assigned to the pool you chose in the first step, and can be found under
Resources → Storage resources → Resource name:

10.11. AUTOMATIC SCALING OF MULTICLOUD OBJECT GATEWAY
ENDPOINTS

The number of MultiCloud Object Gateway (MCG) endpoints scale automatically when the load on the
MCG S3 service increases or decreases. {product-name-short} clusters are deployed with one active
MCG endpoint. Each MCG endpoint pod is configured by default with 1 CPU and 2Gi memory request,
with limits matching the request. When the CPU load on the endpoint crosses over an 80% usage
threshold for a consistent period of time, a second endpoint is deployed lowering the load on the first
endpoint. When the average CPU load on both endpoints falls below the 80% threshold for a consistent
period of time, one of the endpoints is deleted. This feature improves performance and serviceability of
the MCG.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

114

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

IMPORTANT

Expanding PVCs is not supported for PVCs backed by OpenShift Container Storage.

11.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT
CONTAINER STORAGE

Follow the instructions in this section to configure OpenShift Container Storage as storage for an
application pod.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

The default storage classes provided by OpenShift Container Storage are available. In
OpenShift Web Console, click Storage → Storage Classes to view default storage classes.

Procedure

1. Create a Persistent Volume Claim (PVC) for the application to use.

a. In OpenShift Web Console, click Storage → Persistent Volume Claims.

b. Set the Project for the application pod.

c. Click Create Persistent Volume Claim.

i. Specify a Storage Class provided by OpenShift Container Storage.

ii. Specify the PVC Name, for example, myclaim.

iii. Select the required Access Mode.

iv. For Rados Block Device (RBD), if the Access mode is ReadWriteOnce (RWO), select
the required Volume mode. The default volume mode is Filesystem.

v. Specify a Size as per application requirement.

vi. Click Create and wait until the PVC is in Bound status.

2. Configure a new or existing application pod to use the new PVC.

For a new application pod, perform the following steps:

i. Click Workloads →Pods.

ii. Create a new application pod.

iii. Under the spec: section, add volume: section to add the new PVC as a volume for the
application pod.

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

115

volumes:
 - name: <volume_name>
 persistentVolumeClaim:
 claimName: <pvc_name>

For example:

volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

For an existing application pod, perform the following steps:

i. Click Workloads →Deployment Configs.

ii. Search for the required deployment config associated with the application pod.

iii. Click on its Action menu (⋮) → Edit Deployment Config.

iv. Under the spec: section, add volume: section to add the new PVC as a volume for the
application pod and click Save.

volumes:
 - name: <volume_name>
 persistentVolumeClaim:
 claimName: <pvc_name>

For example:

volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

3. Verify that the new configuration is being used.

a. Click Workloads → Pods.

b. Set the Project for the application pod.

c. Verify that the application pod appears with a status of Running.

d. Click the application pod name to view pod details.

e. Scroll down to Volumes section and verify that the volume has a Type that matches your
new Persistent Volume Claim, for example, myclaim.

11.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS

Use this procedure to view the status of a PVC request.

Prerequisites

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

116

Administrator access to OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console.

2. Click Storage → Persistent Volume Claims

3. Search for the required PVC name by using the Filter textbox. You can also filter the list of
PVCs by Name or Label to narrow down the list

4. Check the Status column corresponding to the required PVC.

5. Click the required Name to view the PVC details.

11.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS

Use this procedure to review and address Persistent Volume Claim (PVC) request events.

Prerequisites

Administrator access to OpenShift Web Console.

Procedure

1. Log in to OpenShift Web Console.

2. Click Storage → Overview → Block and File

3. Locate the Inventory card to see the number of PVCs with errors.

4. Click Storage → Persistent Volume Claims

5. Search for the required PVC using the Filter textbox.

6. Click on the PVC name and navigate to Events

7. Address the events as required or as directed.

11.4. DYNAMIC PROVISIONING

11.4.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass
objects can also serve as a management mechanism for controlling different levels of storage and
access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-
admin) define and create the StorageClass objects that users can request without needing any intimate
knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

117

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APIs.

11.4.2. Dynamic provisioning in OpenShift Container Storage

Red Hat OpenShift Container Storage is software-defined storage that is optimised for container
environments. It runs as an operator on OpenShift Container Platform to provide highly integrated and
simplified persistent storage management for containers.

OpenShift Container Storage supports a variety of storage types, including:

Block storage for databases

Shared file storage for continuous integration, messaging, and data aggregation

Object storage for archival, backup, and media storage

Version 4 uses Red Hat Ceph Storage to provide the file, block, and object storage that backs persistent
volumes, and Rook.io to manage and orchestrate provisioning of persistent volumes and claims. NooBaa
provides object storage, and its Multicloud Gateway allows object federation across multiple cloud
environments (available as a Technology Preview).

In OpenShift Container Storage 4, the Red Hat Ceph Storage Container Storage Interface (CSI) driver
for RADOS Block Device (RBD) and Ceph File System (CephFS) handles the dynamic provisioning
requests. When a PVC request comes in dynamically, the CSI driver has the following options:

Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on
Ceph RBDs with volume mode Block

Create a PVC with ReadWriteOnce (RWO) access that is based on Ceph RBDs with volume
mode Filesystem

Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on
CephFS for volume mode Filesystem

The judgment of which driver (RBD or CephFS) to use is based on the entry in the storageclass.yaml
file.

11.4.3. Available dynamic provisioning plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage type Provisioner plug-in name Notes

OpenStack Cinder kubernetes.io/cinder

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

118

AWS Elastic Block Store (EBS) kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

AWS Elastic File System (EFS) Dynamic provisioning is
accomplished through the EFS
provisioner pod and not through a
provisioner plug-in.

Azure Disk kubernetes.io/azure-disk

Azure File kubernetes.io/azure-file The persistent-volume-binder
ServiceAccount requires
permissions to create and get
Secrets to store the Azure
storage account and keys.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

VMware vSphere kubernetes.io/vsphere-
volume

Red Hat Virtualization csi.ovirt.org

Storage type Provisioner plug-in name Notes

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

119

https://www.vmware.com/support/vsphere.html

CHAPTER 12. VOLUME SNAPSHOTS
A volume snapshot is the state of the storage volume in a cluster at a particular point in time. These
snapshots help to use storage more efficiently by not having to make a full copy each time and can be
used as building blocks for developing an application.

You can create multiple snapshots of the same persistent volume claim (PVC). For CephFS, you can
create up to 100 snapshots per PVC. For RADOS Block Device (RBD), you can create up to 512
snapshots per PVC.

NOTE

You cannot schedule periodic creation of snapshots.

12.1. CREATING VOLUME SNAPSHOTS

You can create a volume snapshot either from the Persistent Volume Claim (PVC) page or the Volume
Snapshots page.

Prerequisites

For a consistent snapshot, the PVC should be in Bound state and not be in use. Ensure to stop
all IO before taking the snapshot.

NOTE

OpenShift Container Storage only provides crash consistency for a volume snapshot of a
PVC if a pod is using it. For application consistency, be sure to first tear down a running
pod to ensure consistent snapshots or use any quiesce mechanism provided by the
application to ensure it.

Procedure

From the Persistent Volume Claims page

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. To create a volume snapshot, do one of the following:

Beside the desired PVC, click Action menu (⋮) → Create Snapshot.

Click on the PVC for which you want to create the snapshot and click Actions → Create
Snapshot.

3. Enter a Name for the volume snapshot.

4. Choose the Snapshot Class from the drop-down list.

5. Click Create. You will be redirected to the Details page of the volume snapshot that is
created.

From the Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

120

2. In the Volume Snapshots page, click Create Volume Snapshot.

3. Choose the required Project from the drop-down list.

4. Choose the Persistent Volume Claim from the drop-down list.

5. Enter a Name for the snapshot.

6. Choose the Snapshot Class from the drop-down list.

7. Click Create. You will be redirected to the Details page of the volume snapshot that is
created.

Verification steps

Go to the Details page of the PVC and click the Volume Snapshots tab to see the list of
volume snapshots. Verify that the new volume snapshot is listed.

Click Storage → Volume Snapshots from the OpenShift Web Console. Verify that the new
volume snapshot is listed.

Wait for the volume snapshot to be in Ready state.

12.2. RESTORING VOLUME SNAPSHOTS

When you restore a volume snapshot, a new Persistent Volume Claim (PVC) gets created. The restored
PVC is independent of the volume snapshot and the parent PVC.

You can restore a volume snapshot from either the Persistent Volume Claim page or the Volume
Snapshots page.

Procedure

From the Persistent Volume Claims page

You can restore volume snapshot from the Persistent Volume Claims page only if the parent PVC is
present.

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. Click on the PVC name with the volume snapshot to restore a volume snapshot as a new
PVC.

3. In the Volume Snapshots tab, click the Action menu (⋮) next to the volume snapshot you
want to restore.

4. Click Restore as new PVC.

5. Enter a name for the new PVC.

6. Select the Storage Class name.

NOTE

CHAPTER 12. VOLUME SNAPSHOTS

121

NOTE

For Rados Block Device (RBD), you must select a storage class with the same
pool as that of the parent PVC. Restoring the snapshot of an encrypted PVC
using a storage class where encryption is not enabled and vice versa is not
supported.

7. Select the Access Mode of your choice.

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and
is subject to Developer Preview support limitations. Developer Preview
releases are not intended to be run in production environments and are not
supported through the Red Hat Customer Portal case management system. If
you need assistance with ReadOnlyMany feature, reach out to the ocs-
devpreview@redhat.com mailing list and a member of the Red Hat
Development Team will assist you as quickly as possible based on availability
and work schedules. See Creating a clone or restoring a snapshot with the
new readonly access mode to use the ROX access mode.

8. (Optional) For RBD, select Volume mode.

9. Click Restore. You are redirected to the new PVC details page.

From the Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.

2. In the Volume Snapshots tab, click the Action menu (⋮) next to the volume snapshot you
want to restore.

3. Click Restore as new PVC.

4. Enter a name for the new PVC.

5. Select the Storage Class name.

NOTE

For Rados Block Device (RBD), you must select a storage class with the same
pool as that of the parent PVC. Restoring the snapshot of an encrypted PVC
using a storage class where encryption is not enabled and vice versa is not
supported.

6. Select the Access Mode of your choice.

IMPORTANT

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

122

mailto:ocs-devpreview@redhat.com
https://access.redhat.com/articles/5890531

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and
is subject to Developer Preview support limitations. Developer Preview
releases are not intended to be run in production environments and are not
supported through the Red Hat Customer Portal case management system. If
you need assistance with ReadOnlyMany feature, reach out to the ocs-
devpreview@redhat.com mailing list and a member of the Red Hat
Development Team will assist you as quickly as possible based on availability
and work schedules. See Creating a clone or restoring a snapshot with the
new readonly access mode to use the ROX access mode.

7. (Optional) For RBD, select Volume mode.

8. Click Restore. You are redirected to the new PVC details page.

Verification steps

Click Storage → Persistent Volume Claims from the OpenShift Web Console and confirm that
the new PVC is listed in the Persistent Volume Claims page.

Wait for the new PVC to reach Bound state.

12.3. DELETING VOLUME SNAPSHOTS

Prerequisites

For deleting a volume snapshot, the volume snapshot class which is used in that particular
volume snapshot should be present.

Procedure

From Persistent Volume Claims page

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. Click on the PVC name which has the volume snapshot that needs to be deleted.

3. In the Volume Snapshots tab, beside the desired volume snapshot, click Action menu (⋮) →
Delete Volume Snapshot.

From Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.

2. In the Volume Snapshots page, beside the desired volume snapshot click Action menu (⋮)
→ Delete Volume Snapshot.

Verfication steps

Ensure that the deleted volume snapshot is not present in the Volume Snapshots tab of the
PVC details page.

CHAPTER 12. VOLUME SNAPSHOTS

123

mailto:ocs-devpreview@redhat.com
https://access.redhat.com/articles/5890531

Click Storage → Volume Snapshots and ensure that the deleted volume snapshot is not listed.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

124

CHAPTER 13. VOLUME CLONING
A clone is a duplicate of an existing storage volume that is used as any standard volume. You create a
clone of a volume to make a point in time copy of the data. A persistent volume claim (PVC) cannot be
cloned with a different size. You can create up to 512 clones per PVC for both CephFS and RADOS
Block Device (RBD).

13.1. CREATING A CLONE

Prerequisites

Source PVC must be in Bound state and must not be in use.

NOTE

Do not create a clone of a PVC if a Pod is using it. Doing so might cause data corruption
because the PVC is not quiesced (paused).

Procedure

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. To create a clone, do one of the following:

Beside the desired PVC, click Action menu (⋮) → Clone PVC.

Click on the PVC that you want to clone and click Actions → Clone PVC.

3. Enter a Name for the clone.

4. Select the access mode of your choice.

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and is
subject to Developer Preview support limitations. Developer Preview releases are
not intended to be run in production environments and are not supported
through the Red Hat Customer Portal case management system. If you need
assistance with ReadOnlyMany feature, reach out to the ocs-
devpreview@redhat.com mailing list and a member of the Red Hat Development
Team will assist you as quickly as possible based on availability and work
schedules. See Creating a clone or restoring a snapshot with the new readonly
access mode to use the ROX access mode.

5. Click Clone. You are redirected to the new PVC details page.

6. Wait for the cloned PVC status to become Bound.
The cloned PVC is now available to be consumed by the pods. This cloned PVC is independent
of its dataSource PVC.

CHAPTER 13. VOLUME CLONING

125

mailto:ocs-devpreview@redhat.com
https://access.redhat.com/articles/5890531

CHAPTER 14. REPLACING STORAGE NODES
You can choose one of the following procedures to replace storage nodes:

Section 14.1, “Replacing operational nodes on Google Cloud installer-provisioned infrastructure”

Section 14.2, “Replacing failed nodes on Google Cloud installer-provisioned infrastructure”

14.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD
INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on Google Cloud installer-provisioned infrastructure
(IPI).

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the node that needs to be replaced. Take a note of its Machine Name.

3. Mark the node as unschedulable using the following command:

$ oc adm cordon <node_name>

4. Drain the node using the following command:

$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated
during this period are temporary and are automatically resolved when the new
node is labeled and functional.

5. Click Compute → Machines. Search for the required machine.

6. Besides the required machine, click the Action menu (⋮) → Delete Machine.

7. Click Delete to confirm the machine deletion. A new machine is automatically created.

8. Wait for new machine to start and transition into Running state.

IMPORTANT

This activity may take at least 5-10 minutes or more.

9. Click Compute → Nodes, confirm if the new node is in Ready state.

10. Apply the OpenShift Container Storage label to the new node using any one of the following:

From User interface

a. For the new node, click Action Menu (⋮) → Edit Labels

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

126

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From Command line interface

Execute the following command to apply the OpenShift Container Storage label to the
new node:

$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices
are encrypted.
For each of the new nodes identified in previous step, do the following:

a. Create a debug pod and open a chroot environment for the selected host(s).

$ oc debug node/<node name>
$ chroot /host

b. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

$ lsblk

6. If verification steps fail, contact Red Hat Support .

14.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-
PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on Google Cloud installer-
provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

CHAPTER 14. REPLACING STORAGE NODES

127

https://access.redhat.com/support

2. Identify the faulty node and click on its Machine Name.

3. Click Actions → Edit Annotations, and click Add More.

4. Add machine.openshift.io/exclude-node-draining and click Save.

5. Click Actions → Delete Machine, and click Delete.

6. A new machine is automatically created, wait for new machine to start.

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated
during this period are temporary and are automatically resolved when the new
node is labeled and functional.

7. Click Compute → Nodes, confirm if the new node is in Ready state.

8. Apply the OpenShift Container Storage label to the new node using any one of the following:

From the web user interface

a. For the new node, click Action Menu (⋮) → Edit Labels

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From the command line interface

Execute the following command to apply the OpenShift Container Storage label to the
new node:

$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

9. [Optional]: If the failed Google Cloud instance is not removed automatically, terminate the
instance from Google Cloud console.

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

128

5. (Optional) If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices
are encrypted.
For each of the new nodes identified in previous step, do the following:

a. Create a debug pod and open a chroot environment for the selected host(s).

$ oc debug node/<node name>
$ chroot /host

b. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

$ lsblk

6. If verification steps fail, contact Red Hat Support .

CHAPTER 14. REPLACING STORAGE NODES

129

https://access.redhat.com/support

CHAPTER 15. REPLACING STORAGE DEVICES

15.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON
GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an Google Cloud
installer-provisioned infrastructure, you must replace the storage node. For information about how to
replace nodes, see:

Replacing operational nodes on Google Cloud installer-provisioned infrastructure

Replacing failed nodes on Google Cloud installer-provisioned infrastructures .

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

130

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#replacing-operational-nodes-on-google-cloud-installer-provisioned-infrastructure_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#replacing-failed-nodes-on-google-cloud-installer-provisioned-infrastructures_gcp

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE

16.1. OVERVIEW OF THE OPENSHIFT CONTAINER STORAGE UPDATE
PROCESS

You can upgrade Red Hat OpenShift Container Storage and its components, either between minor
releases like 4.7 and 4.8, or between batch updates like 4.8.0 and 4.8.1.

You need to upgrade the different parts of OpenShift Container Storage in a specific order.

1. Update OpenShift Container Platform according to the Updating clusters documentation for
OpenShift Container Platform.

2. Update OpenShift Container Storage.

a. To prepare a disconnected environment for updates, see Operators guide to using
Operator Lifecycle Manager on restricted networks to be able to update Openshift
Container Storage as well as Local Storage Operator when in use.

b. Update the OpenShift Container Storage operator, using the appropriate process for
your setup:

Update OpenShift Container Storage in internal mode

Update considerations

Review the following important considerations before you begin.

Red Hat recommends using the same version of Red Hat OpenShift Container Platform with
Red Hat OpenShift Container Storage.
See the Interoperability Matrix for more information about supported combinations of
OpenShift Container Platform and OpenShift Container Storage.

The Local Storage Operator is fully supported only when the Local Storage Operator version
matches the Red Hat OpenShift Container Platform version.

16.2. PREPARING TO UPDATE IN A DISCONNECTED ENVIRONMENT

When your Red Hat OpenShift Container Storage environment is not directly connected to the internet,
some additional configuration is required to provide the Operator Lifecycle Manager (OLM) with
alternatives to the default Operator Hub and image registries.

See the OpenShift Container Platform documentation for more general information: Updating an
Operator catalog image.

To configure your cluster for disconnected update:

1. Configure authentication for an alternative registry.

2. Build and mirror the Red Hat operator catalog .

3. Creating Operator imageContentSourcePolicy

4. Updating redhat-operator catalogsource

When these steps are complete, Continue with update as usual.

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE

131

https://docs.openshift.com/container-platform/4.8/updating/updating-cluster.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/operators/administrator-tasks#olm-restricted-networks
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/updating_openshift_container_storage/index#updating-openshift-container-storage-in-internal-mode_rhocs
https://access.redhat.com/articles/4731161
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/operators/olm-restricted-networks#olm-updating-operator-catalog-image_olm-restricted-networks

16.2.1. Adding mirror registry authentication details

Prerequisites

Verify that your existing disconnected cluster uses OpenShift Container Platform 4.3 or higher.

Verify that you have an oc client version of 4.4 or higher.

Prepare a mirror host with a mirror registry. See Preparing your mirror host for details.

Procedure

1. Log in to the OpenShift Container Platform cluster using the cluster-admin role.

2. Locate your auth.json file.
This file is generated when you use podman or docker to log in to a registry. It is located in one
of the following locations:

~/.docker/auth.json

/run/user/<UID>/containers/auth.json

/var/run/containers/<UID>/auth.json

3. Obtain your unique Red Hat registry pull secret and paste it into your auth.json file. It will look
something like this.

{
 "auths": {
 "cloud.openshift.com": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "quay.io": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "registry.redhat.io": {
 "auth": "*****************",
 "email": "user@example.com"
 }
 }
 }

4. Export environment variables with the appropriate details for your setup.

$ export AUTH_FILE="<location_of_auth.json>"
$ export MIRROR_REGISTRY_DNS="<your_registry_url>:<port>"

5. Use podman to log in to the mirror registry and store the credentials in the ${AUTH_FILE}.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/installing/installation-configuration#installation-mirror-repository_installing-restricted-networks-preparations
https://cloud.redhat.com/openshift/install/pull-secret

$ podman login ${MIRROR_REGISTRY_DNS} --tls-verify=false --authfile ${AUTH_FILE}

This adds the mirror registry to the auth.json file.

{
 "auths": {
 "cloud.openshift.com": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "quay.io": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "registry.redhat.io": {
 "auth": "*****************",
 "email": "user@example.com"
 },
 "<mirror_registry>": {
 "auth": "*****************",
 }
 }
 }

16.2.2. Building and mirroring the Red Hat operator catalog

Follow this process on a host that has access to Red Hat registries to create a mirror of those registries.

Prerequisites

Run these commands as a cluster administrator.

Be aware that mirroring the redhat-operator catalog can take hours to complete, and requires
substantial available disk space on the mirror host.

Procedure

1. Build the catalog for redhat-operators.
Set --from to the ose-operator-registry base image using the tag that matches the target
OpenShift Container Platform cluster major and minor version.

$ oc adm catalog build --appregistry-org redhat-operators \
 --from=registry.redhat.io/openshift4/ose-operator-registry:v4.7 \
 --to=${MIRROR_REGISTRY_DNS}/olm/redhat-operators:v2 \
 --registry-config=${AUTH_FILE} \
 --filter-by-os="linux/amd64" --insecure

NOTE

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE

133

NOTE

For IBM Power Systems and IBM Z infrastructure specify value of filter-by-os as
linux/ppc64le, and linux/s390x respectively.

2. Mirror the catalog for redhat-operators.
This is a long operation and can take 1-5 hours. Make sure there is 100 GB available disk space
on the mirror host.

$ oc adm catalog mirror ${MIRROR_REGISTRY_DNS}/olm/redhat-operators:v2 \
${MIRROR_REGISTRY_DNS} --registry-config=${AUTH_FILE} --insecure

16.2.3. Creating Operator imageContentSourcePolicy

After the oc adm catalog mirror command is completed, the imageContentSourcePolicy.yaml file
gets created. The output directory for this file is usually, ./[catalog image name]-manifests). Use this
procedure to add any missing entries to the .yaml file and apply them to cluster.

Procedure

1. Check the content of this file for the mirrors mapping shown as follows:

spec:
 repositoryDigestMirrors:
 - mirrors:
 - <your_registry>/ocs4
 source: registry.redhat.io/ocs4
 - mirrors:
 - <your_registry>/rhceph
 source: registry.redhat.io/rhceph
 - mirrors:
 - <your_registry>/openshift4
 source: registry.redhat.io/openshift4
 - mirrors:
 - <your_registry>/rhscl
 source: registry.redhat.io/rhscl

2. Add any missing entries to the end of the imageContentSourcePolicy.yaml file.

3. Apply the imageContentSourcePolicy.yaml file to the cluster.

$ oc apply -f ./[output dir]/imageContentSourcePolicy.yaml

Once the Image Content Source Policy is updated, all the nodes (master, infra, and workers) in
the cluster need to be updated and rebooted. This process is automatically handled through the
Machine Config Pool operator and take up to 30 minutes although the exact elapsed time
might vary based on the number of nodes in your OpenShift cluster. You can monitor the update
process by using the oc get mcp command or the oc get node command.

16.2.4. Updating redhat-operator CatalogSource

Procedure

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

134

1. Recreate a CatalogSource object that references the catalog image for Red Hat operators.

NOTE

Make sure you have mirrored the correct catalog source with the correct version
(that is, v2).

Save the following in a redhat-operator-catalogsource.yaml file, remembering to replace
<your_registry> with your mirror registry URL:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: redhat-operators
 namespace: openshift-marketplace
spec:
 sourceType: grpc
 icon:
 base64data:
PHN2ZyBpZD0iTGF5ZXJfMSIgZGF0YS1uYW1lPSJMYXllciAxIiB4bWxucz0iaHR0cDovL3d3dy
53My5vcmcvMjAwMC9zdmciIHZpZXdCb3g9IjAgMCAxOTIgMTQ1Ij48ZGVmcz48c3R5bGU+L
mNscy0xe2ZpbGw6I2UwMDt9PC9zdHlsZT48L2RlZnM+PHRpdGxlPlJlZEhhdC1Mb2dvLUhhd
C1Db2xvcjwvdGl0bGU+PHBhdGggZD0iTTE1Ny43Nyw2Mi42MWExNCwxNCwwLDAsMSwuM
zEsMy40MmMwLDE0Ljg4LTE4LjEsMTcuNDYtMzAuNjEsMTcuNDZDNzguODMsODMuNDksN
DIuNTMsNTMuMjYsNDIuNTMsNDRhNi40Myw2LjQzLDAsMCwxLC4yMi0xLjk0bC0zLjY2LDku
MDZhMTguNDUsMTguNDUsMCwwLDAtMS41MSw3LjMzYzAsMTguMTEsNDEsNDUuNDgs
ODcuNzQsNDUuNDgsMjAuNjksMCwzNi40My03Ljc2LDM2LjQzLTIxLjc3LDAtMS4wOCwwLTE
uOTQtMS43My0xMC4xM1oiLz48cGF0aCBjbGFzcz0iY2xzLTEiIGQ9Ik0xMjcuNDcsODMuNDlj
MTIuNTEsMCwzMC42MS0yLjU4LDMwLjYxLTE3LjQ2YTE0LDE0LDAsMCwwLS4zMS0zLjQyb
C03LjQ1LTMyLjM2Yy0xLjcyLTcuMTItMy4yMy0xMC4zNS0xNS43My0xNi42QzEyNC44OSw4Lj
Y5LDEwMy43Ni41LDk3LjUxLjUsOTEuNjkuNSw5MCw4LDgzLjA2LDhjLTYuNjgsMC0xMS42N
C01LjYtMTcuODktNS42LTYsMC05LjkxLDQuMDktMTIuOTMsMTIuNSwwLDAtOC40MSwyMy
43Mi05LjQ5LDI3LjE2QTYuNDMsNi40MywwLDAsMCw0Mi41Myw0NGMwLDkuMjIsMzYuMywz
OS40NSw4NC45NCwzOS40NU0xNjAsNzIuMDdjMS43Myw4LjE5LDEuNzMsOS4wNSwxLjczL
DEwLjEzLDAsMTQtMTUuNzQsMjEuNzctMzYuNDMsMjEuNzdDNzguNTQsMTA0LDM3LjU4L
Dc2LjYsMzcuNTgsNTguNDlhMTguNDUsMTguNDUsMCwwLDEsMS41MS03LjMzQzIyLjI3LDU
yLC41LDU1LC41LDc0LjIyYzAsMzEuNDgsNzQuNTksNzAuMjgsMTMzLjY1LDcwLjI4LDQ1LjI4L
DAsNTYuNy0yMC40OCw1Ni43LTM2LjY1LDAtMTIuNzItMTEtMjcuMTYtMzAuODMtMzUuNzgi
Lz48L3N2Zz4=
 mediatype: image/svg+xml
 image: <your_registry>/olm/redhat-operators:v2
 displayName: Redhat Operators Catalog
 publisher: Red Hat

2. Create a catalogsource using the redhat-operator-catalogsource.yaml file:

$ oc apply -f redhat-operator-catalogsource.yaml

3. Verify that the new redhat-operator pod is running.

$ oc get pod -n openshift-marketplace | grep redhat-operators

16.2.5. Continue to update

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE

135

After your alternative catalog source is configured, you can continue to the appropriate update process:

Updating OpenShift Container Storage in internal mode

16.3. UPDATING OPENSHIFT CONTAINER STORAGE IN INTERNAL
MODE

Use the following procedures to update your OpenShift Container Storage cluster deployed in internal
mode.

16.3.1. Enabling automatic updates for OpenShift Container Storage operator in
internal mode

Use this procedure to enable automatic update approval for updating OpenShift Container Storage
operator in OpenShift Container Platform.

Prerequisites

Under Block and File in the Status card, confirm that the Storage Cluster and Data Resiliency
has a green tick mark.

Under Object in the Status card, confirm that both Object Service and Data Resiliency are in
Ready state (green tick).

Update the OpenShift Container Platform cluster to the latest stable release of version 4.8.X,
see Updating Clusters.

Switch the Red Hat OpenShift Container Storage channel from stable-4.7 to stable-4.8. For
details about channels, see OpenShift Container Storage upgrade channels and releases .

NOTE

You are required to switch channels only when you are updating minor versions
(for example, updating from 4.7 to 4.8) and not when updating between batch
updates of 4.8 (for example, updating from 4.8.0 to 4.8.1).

Ensure that all OpenShift Container Storage Pods, including the operator pods, are in Running
state in the openshift-storage namespace.
To view the state of the pods, click Workloads → Pods from the left pane of the OpenShift Web
Console. Select openshift-storage from the Project drop down list.

Ensure that you have sufficient time to complete the Openshift Container Storage update
process, as the update time varies depending on the number of OSDs that run in the cluster.

Procedure

1. Log in to OpenShift Web Console.

2. Click Operators → Installed Operators

3. Select the openshift-storage project.

4. Click the OpenShift Container Storage operator name.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

136

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/managing_openshift_container_storage/index#updating-openshift-container-storage-in-internal-mode_gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/updating_clusters/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/updating_openshift_container_storage/index#openshift-container-storage-upgrade-channels-and-releases_rhocs

5. Click the Subscription tab and click the link under Approval.

6. Select Automatic (default) and click Save.

7. Perform one of the following depending on the Upgrade Status:

Upgrade Status shows requires approval.

NOTE

Upgrade status shows requires approval if the new OpenShift Container
Storage version is already detected in the channel, and approval strategy was
changed from Manual to Automatic at the time of update.

a. Click on the Install Plan link.

b. On the InstallPlan Details page, click Preview Install Plan.

c. Review the install plan and click Approve.

d. Wait for the Status to change from Unknown to Created.

e. Click Operators → Installed Operators

f. Select the openshift-storage project.

g. Wait for the Status to change to Up to date

Upgrade Status does not show requires approval:

a. Wait for the update to initiate. This may take up to 20 minutes.

b. Click Operators → Installed Operators

c. Select the openshift-storage project.

d. Wait for the Status to change to Up to date

Verification steps

1. On the OpenShift Web Console, navigate to Storage → Overview → Object tab.

In the Status card, verify that both Object Service and Data Resiliency are in Ready state
(green tick).

2. On the OpenShift Web Console, navigate to Storage → Overview → Block and File tab.

In the Status card, verify that the Storage Cluster and Data Resiliency has a green tick mark.

3. Click Operators → Installed Operators → OpenShift Container Storage Operator. Under
Storage Cluster, verify that the cluster service status is Ready.

NOTE

Once updated from OpenShift Container Storage version 4.7 to 4.8, the Version
field here will still display 4.7. This is because the ocs-operator does not update
the string represented in this field.

4. Ensure that all OpenShift Container Storage Pods, including the operator pods, are in Running

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE

137

4. Ensure that all OpenShift Container Storage Pods, including the operator pods, are in Running
state in the openshift-storage namespace.
To view the state of the pods, click Workloads → Pods. Select openshift-storage from the
Project drop down list.

5. If verification steps fail, contact Red Hat Support .

NOTE

The flexible scaling feature is available only in the new deployments of Red Hat
OpenShift Container Storage 4.7. Storage clusters upgraded to the 4.7 version do not
support flexible scaling.

Additional Resources

If you face any issues while updating OpenShift Container Storage, see the Commonly required logs for
troubleshooting section in the Troubleshooting guide.

16.3.2. Manually updating OpenShift Container Storage operator in internal mode

Use this procedure to update OpenShift Container Storage operator by providing manual approval to
the install plan.

Prerequisites

Under Block and File in the Status card, confirm that the Storage Cluster and Data Resiliency
has a green tick mark.

Under Object in the Status card, confirm that both Object Service and Data Resiliency are in
Ready state (green tick).

Update the OpenShift Container Platform cluster to the latest stable release of version 4.8.X,
see Updating Clusters.

Switch the Red Hat OpenShift Container Storage channel from stable-4.7 to stable-4.8. For
details about channels, see OpenShift Container Storage upgrade channels and releases .

NOTE

You are required to switch channels only when you are updating minor versions
(for example, updating from 4.7 to 4.8) and not when updating between batch
updates of 4.8 (for example, updating from 4.8.0 to 4.8.1).

Ensure that all OpenShift Container Storage Pods, including the operator pods, are in Running
state in the openshift-storage namespace.
To view the state of the pods, click Workloads → Pods from the left pane of the OpenShift Web
Console. Select openshift-storage from the Project drop down list.

Ensure that you have sufficient time to complete the Openshift Container Storage update
process, as the update time varies depending on the number of OSDs that run in the cluster.

Procedure

1. Log in to OpenShift Web Console.

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

138

https://access.redhat.com/support
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/troubleshooting_openshift_container_storage/commonly-required-logs_rhocs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/updating_clusters/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/updating_openshift_container_storage/index#openshift-container-storage-upgrade-channels-and-releases_rhocs

2. Click Operators → Installed Operators

3. Select the openshift-storage project.

4. Click the OpenShift Container Storage operator name.

5. Click the Subscription tab and click the link under Approval.

6. Select Manual and click Save.

7. Wait for the Upgrade Status to change to Upgrading.

8. If the Upgrade Status shows requires approval, click on requires approval.

9. On the InstallPlan Details page, click Preview Install Plan.

10. Review the install plan and click Approve.

11. Wait for the Status to change from Unknown to Created.

12. Click Operators → Installed Operators

13. Select the openshift-storage project.

14. Wait for the Status to change to Up to date

Verification steps

1. On the OpenShift Web Console, navigate to Storage → Overview → Object tab.

In the Status card, verify that both Object Service and Data Resiliency are in Ready state
(green tick).

2. On the OpenShift Web Console, navigate to Storage → Overview → Block and File tab.

In the Status card, verify that the Storage Cluster and Data Resiliency has a green tick mark.

3. Click Operators → Installed Operators → OpenShift Container Storage Operator. Under
Storage Cluster, verify that the cluster service status is Ready.

NOTE

Once updated from OpenShift Container Storage version 4.7 to 4.8, the Version
field here will still display 4.7. This is because the ocs-operator does not update
the string represented in this field.

4. Ensure that all OpenShift Container Storage Pods, including the operator pods, are in Running
state in the openshift-storage namespace.
To view the state of the pods, click Workloads → Pods from the left pane of the OpenShift Web
Console. Select openshift-storage from the Project drop down list.

5. If verification steps fail, contact Red Hat Support .

Additional Resources

If you face any issues while updating OpenShift Container Storage, see the Commonly required logs for
troubleshooting section in the Troubleshooting guide.

CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE

139

https://access.redhat.com/support
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/troubleshooting_openshift_container_storage/commonly-required-logs_rhocs

Red Hat OpenShift Container Storage 4.8 Deploying and managing OpenShift Container Storage using Google Cloud

140

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	PREFACE
	CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT CONTAINER STORAGE
	1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

	CHAPTER 2. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD
	2.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE OPERATOR
	2.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE

	CHAPTER 3. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT
	3.1. VERIFYING THE STATE OF THE PODS
	3.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY
	3.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY
	3.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

	CHAPTER 4. UNINSTALLING OPENSHIFT CONTAINER STORAGE
	4.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE IN INTERNAL MODE
	4.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER STORAGE
	4.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE
	4.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

	CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS
	5.1. CREATING STORAGE CLASSES AND POOLS
	5.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME ENCRYPTION

	CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES
	6.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER STORAGE
	6.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER STORAGE
	6.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE
	6.3.1. Configuring persistent storage
	6.3.2. Configuring cluster logging to use OpenShift Container Storage

	CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE
	CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT CONTAINER STORAGE
	8.1. ANATOMY OF AN INFRASTRUCTURE NODE
	8.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES
	8.3. MANUAL CREATION OF INFRASTRUCTURE NODES

	CHAPTER 9. SCALING STORAGE NODES
	9.1. REQUIREMENTS FOR SCALING STORAGE NODES
	9.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT CONTAINER STORAGE NODES ON GOOGLE CLOUD INFRASTRUCTURE
	9.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES
	9.3.1. Adding a node on Google Cloud installer-provisioned infrastructure
	9.3.2. Verifying the addition of a new node
	9.3.3. Scaling up storage capacity

	CHAPTER 10. MULTICLOUD OBJECT GATEWAY
	10.1. ABOUT THE MULTICLOUD OBJECT GATEWAY
	10.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS
	10.2.1. Accessing the Multicloud Object Gateway from the terminal
	10.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

	10.3. ALLOWING USER ACCESS TO THE MULTICLOUD OBJECT GATEWAY CONSOLE
	10.4. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD
	10.4.1. Creating a new backing store
	10.4.2. Adding storage resources for hybrid or Multicloud using the MCG command line interface
	10.4.2.1. Creating an AWS-backed backingstore
	10.4.2.2. Creating an IBM COS-backed backingstore
	10.4.2.3. Creating an Azure-backed backingstore
	10.4.2.4. Creating a GCP-backed backingstore
	10.4.2.5. Creating a local Persistent Volume-backed backingstore

	10.4.3. Creating an s3 compatible Multicloud Object Gateway backingstore
	10.4.4. Adding storage resources for hybrid and Multicloud using the user interface
	10.4.5. Creating a new bucket class
	10.4.6. Editing a bucket class
	10.4.7. Editing backing stores for bucket class

	10.5. MANAGING NAMESPACE BUCKETS
	10.5.1. Adding provider connections to the Multicloud Object Gateway
	10.5.2. Adding namespace resources using the Multicloud Object Gateway
	10.5.3. Adding resources to namespace buckets using the Multicloud Object Gateway
	10.5.4. Amazon S3 API endpoints for objects in namespace buckets
	10.5.5. Adding a namespace bucket using the Multicloud Object Gateway CLI and YAML
	10.5.5.1. Adding an AWS S3 namespace bucket using YAML
	10.5.5.2. Adding an IBM COS namespace bucket using YAML
	10.5.5.3. Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI
	10.5.5.4. Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

	10.6. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS
	10.6.1. Creating bucket classes to mirror data using the MCG command-line-interface
	10.6.2. Creating bucket classes to mirror data using a YAML
	10.6.3. Configuring buckets to mirror data using the user interface

	10.7. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY
	10.7.1. About bucket policies
	10.7.2. Using bucket policies
	10.7.3. Creating an AWS S3 user in the Multicloud Object Gateway

	10.8. OBJECT BUCKET CLAIM
	10.8.1. Dynamic Object Bucket Claim
	10.8.2. Creating an Object Bucket Claim using the command line interface
	10.8.3. Creating an Object Bucket Claim using the OpenShift Web Console
	10.8.4. Attaching an Object Bucket Claim to a deployment
	10.8.5. Viewing object buckets using the OpenShift Web Console
	10.8.6. Deleting Object Bucket Claims

	10.9. CACHING POLICY FOR OBJECT BUCKETS
	10.9.1. Creating an AWS cache bucket
	10.9.2. Creating an IBM COS cache bucket

	10.10. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
	10.10.1. S3 endpoints in the Multicloud Object Gateway
	10.10.2. Scaling with storage nodes

	10.11. AUTOMATIC SCALING OF MULTICLOUD OBJECT GATEWAY ENDPOINTS

	CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS
	11.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE
	11.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS
	11.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS
	11.4. DYNAMIC PROVISIONING
	11.4.1. About dynamic provisioning
	11.4.2. Dynamic provisioning in OpenShift Container Storage
	11.4.3. Available dynamic provisioning plug-ins

	CHAPTER 12. VOLUME SNAPSHOTS
	12.1. CREATING VOLUME SNAPSHOTS
	12.2. RESTORING VOLUME SNAPSHOTS
	12.3. DELETING VOLUME SNAPSHOTS

	CHAPTER 13. VOLUME CLONING
	13.1. CREATING A CLONE

	CHAPTER 14. REPLACING STORAGE NODES
	14.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE
	14.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

	CHAPTER 15. REPLACING STORAGE DEVICES
	15.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

	CHAPTER 16. UPDATING OPENSHIFT CONTAINER STORAGE
	16.1. OVERVIEW OF THE OPENSHIFT CONTAINER STORAGE UPDATE PROCESS
	16.2. PREPARING TO UPDATE IN A DISCONNECTED ENVIRONMENT
	16.2.1. Adding mirror registry authentication details
	16.2.2. Building and mirroring the Red Hat operator catalog
	16.2.3. Creating Operator imageContentSourcePolicy
	16.2.4. Updating redhat-operator CatalogSource
	16.2.5. Continue to update

	16.3. UPDATING OPENSHIFT CONTAINER STORAGE IN INTERNAL MODE
	16.3.1. Enabling automatic updates for OpenShift Container Storage operator in internal mode
	16.3.2. Manually updating OpenShift Container Storage operator in internal mode

