
Red Hat JBoss Fuse 6.2

Transaction Guide

Using transactions to make your routes roll back ready

Last Updated: 2017-09-27

Red Hat JBoss Fuse 6.2 Transaction Guide

Using transactions to make your routes roll back ready

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the basic concepts of transactions, how to select and implement a transaction
manager, how to access data using Spring, the various ways to demarcate transactions, and JMS
transaction semantics.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO TRANSACTIONS
1.1. BASIC TRANSACTION CONCEPTS
1.2. TRANSACTION QUALITIES OF SERVICE
1.3. GETTING STARTED WITH TRANSACTIONS

CHAPTER 2. SELECTING A TRANSACTION MANAGER
2.1. WHAT IS A TRANSACTION MANAGER?
2.2. SPRING TRANSACTION ARCHITECTURE
2.3. OSGI TRANSACTION ARCHITECTURE
2.4. PLATFORMTRANSACTIONMANAGER INTERFACE
2.5. TRANSACTION MANAGER IMPLEMENTATIONS
2.6. SAMPLE CONFIGURATIONS

CHAPTER 3. JMS TRANSACTIONS
3.1. CONFIGURING THE JMS COMPONENT
3.2. INONLY MESSAGE EXCHANGE PATTERN
3.3. INOUT MESSAGE EXCHANGE PATTERN

CHAPTER 4. DATA ACCESS WITH SPRING
4.1. PROGRAMMING DATA ACCESS WITH SPRING TEMPLATES
4.2. SPRING JDBC TEMPLATE

CHAPTER 5. TRANSACTION DEMARCATION
5.1. DEMARCATION BY MARKING THE ROUTE
5.2. DEMARCATION BY TRANSACTIONAL ENDPOINTS
5.3. PROPAGATION POLICIES
5.4. ERROR HANDLING AND ROLLBACKS

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE
6.1. TRANSACTION ARCHITECTURE
6.2. CONFIGURING THE TRANSACTION MANAGER
6.3. ACCESSING THE TRANSACTION MANAGER
6.4. JAVA TRANSACTION API
6.5. THE XA ENLISTMENT PROBLEM
6.6. GENERIC XA-AWARE CONNECTION POOL LIBRARY

CHAPTER 7. JMS XA TRANSACTION INTEGRATION
7.1. ENABLING XA ON THE CAMEL JMS COMPONENT
7.2. JMS XA RESOURCE
7.3. SAMPLE JMS XA CONFIGURATION
7.4. XA CLIENT WITH TWO CONNECTIONS TO A BROKER

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION
8.1. CONFIGURING AN XA DATA SOURCE
8.2. APACHE ARIES AUTO-ENLISTING XA WRAPPER

CHAPTER 9. XA TRANSACTION DEMARCATION
9.1. DEMARCATION BY TRANSACTIONAL ENDPOINTS
9.2. DEMARCATION BY MARKING THE ROUTE
9.3. DEMARCATION BY USERTRANSACTION
9.4. DEMARCATION BY DECLARATIVE TRANSACTIONS

CHAPTER 10. XA TUTORIAL
10.1. INSTALL APACHE DERBY

4
4
6
8

15
15
16
18
19
20
22

37
37
40
41

44
44
46

53
53
57
60
64

69
69
71
73
73
77
79

88
88
90
93
95

98
98

102

108
108
109
111
112

115
115

Table of Contents

1

. .

. .

. .

10.2. INTEGRATE DERBY WITH JBOSS FUSE
10.3. DEFINE A DERBY DATASOURCE
10.4. DEFINE A TRANSACTIONAL ROUTE
10.5. DEPLOY AND RUN THE TRANSACTIONAL ROUTE

APPENDIX A. OPTIMIZING PERFORMANCE OF JMS SINGLE- AND MULTIPLE-RESOURCE TRANSACTIONS

OPTIMIZATION TIPS FOR ALL JMS TRANSACTIONS
OPTIMIZATION TIPS FOR JMS XA TRANSACTIONS

APPENDIX B. ACCOUNTSERVICE EXAMPLE
B.1. ACCOUNTSERVICE EXAMPLE CODE

INDEX

116
116
120
128

133
133
133

135
135

137

Red Hat JBoss Fuse 6.2 Transaction Guide

2

Table of Contents

3

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

Abstract

This chapter defines some basic transaction concepts and explains how to generate and build a simple
transactional JMS example in Apache Camel.

1.1. BASIC TRANSACTION CONCEPTS

What is a transaction?

The prototype of a transaction is an operation that conceptually consists of a single step (for example,
transfer money from account A to account B), but must be implemented as a series of steps. Clearly,
such operations are acutely vulnerable to system failures, because a crash is likely to leave some of the
steps unfinished, leaving the system in an inconsistent state. For example, if you consider the operation
of transferring money from account A to account B: if the system crashes after debiting account A, but
before crediting account B, the net result is that some money disappears into thin air.

In order to make such an operation reliable, it must be implemented as a transaction. On close
examination, it turns out that there are four key properties a transaction must have in order to guarantee
reliable execution: these are the so-called ACID properties of a transaction.

ACID properties of a transaction

The ACID properties of a transaction are defined as follows:

Atomic—a transaction is an all or nothing procedure; individual updates are assembled and
either committed or aborted (rolled back) simultaneously when the transaction completes.

Consistent—a transaction is a unit of work that takes a system from one consistent state to
another.

Isolated—while a transaction is executing, its partial results are hidden from other entities
accessing the transaction.

Durable—the results of a transaction are persistent.

Transaction clients

A transaction client is an API or object that enables you to initiate and end transactions. Typically, a
transaction client exposes operations that enable you to begin, commit, or roll back a transaction. In the
context of the Spring framework, the PlatformTransactionManager exposes a transaction client API.

Transaction demarcation

Transaction demarcation refers to the initiating and ending of transactions (where transactions can be
ended either by being committed or rolled back). Demarcation can be effected either explicitly (for
example, by calling a transaction client API) or implicitly (for example, whenever a message is polled
from a transactional endpoint).

Resources

Red Hat JBoss Fuse 6.2 Transaction Guide

4

A resource is any component of a computer system that can undergo a persistent or permanent change.
In practice, a resource is almost always a database or a service layered over a database (for example, a
message service with persistence). Other kinds of resource are conceivable, however. For example, an
Automated Teller Machine (ATM) is a kind of resource: once a customer has physically accepted cash
from the machine, the transaction cannot be reversed.

Transaction manager

A transaction manager is responsible for coordinating transactions across one or more resources. In
many cases, a transaction manager is built into a resource. For example, enterprise-level databases
generally include a transaction manager that is capable of managing transactions involving that
database. But for transactions involving more than one resource, it is normally necessary to employ an
external transaction manager implementation.

Managing single or multiple resources

For transactions involving a single resource, the transaction manager built into the resource can
generally be used. For transactions involving multiple resources, however, it is necessary to use an
external transaction manager or a transaction processing (TP) monitor. In this case, the resources must
be integrated with the transaction manager by registering their XA switches. There is also an important
difference between the types of algorithm that are used for committing single-resource systems and
multiple-resource systems, as follows:

1-phase commit—suitable for single-resource systems, this protocol commits a transaction in a
single step.

2-phase commit—suitable for multiple-resource systems, this protocol commits a transaction in
two steps. Including multiple resources in a transaction introduces an extra element of risk: there
is the danger that a system failure might occur after some, but not all, of the resources have
been committed. This would leave the system in an inconsistent state. The 2-phase commit
protocol is designed to eliminate this risk, ensuring that the system can always be restored to a
consistent state after it is restarted.

Transactions and threading

To understand transaction processing, it is crucial to appreciate the basic relationship between
transactions and threads: transactions are thread-specific. That is, when a transaction is started, it is
attached to a specific thread (technically, a transaction context object is created and associated with the
current thread). From this point on (until the transaction ends), all of the activity in the thread occurs
within this transaction scope. Conversely, activity in any other thread does not fall within this
transaction's scope (although it might fall within the scope of some other transaction).

From this, we can draw a few simple conclusions:

An application can process multiple transactions simultaneously—as long as each of the
transactions are created in separate threads.

Beware of creating subthreads within a transaction—if you are in the middle of a transaction and
you create a new pool of threads (for example, by calling the threads() DSL command), the new
threads are not in the scope of the original transaction.

Beware of processing steps that implicitly create new threads—for the same reason given in the
preceding point.

Transaction scopes do not usually extend across route segments—that is, if one route segment
ends with to(JoinEndpoint) and another route segment starts with from(JoinEndpoint), these

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

5

route segments typically do not belong to the same transaction. There are exceptions, however
(see the section called “Breaking a route into fragments”).

NOTE

Some advanced transaction manager implementations give you the freedom to detach
and attach transaction contexts to and from threads at will. For example, this makes it
possible to move a transaction context from one thread to another thread. In some cases
it is also possible to attach a single transaction context to multiple threads.

Transaction context

A transaction context is an object that encapsulates the information needed to keep track of a
transaction. The format of a transaction context depends entirely on the relevant transaction manager
implementation. At a minimum, the transaction context contains a unique transaction identifier.

Distributed transactions

A distributed transaction refers to a transaction in a distributed system, where the transaction scope
spans multiple network nodes. A basic prerequisite for supporting distributed transactions is a network
protocol that supports transmission of transaction contexts in a canonical format (see also, the section
called “Distributed transaction managers”). Distributed transaction lie outside the scope of Apache Camel
transactions.

X/Open XA standard

The X/Open XA standard describes a standardized interface for integrating resources with a transaction
manager. If you want to manage a transaction that includes more than one resource, it is essential that
the participating resources support the XA standard. Resources that support the XA standard expose a
special object, the XA switch, which enables transaction managers (or TP monitors) to take control of
their transactions. The XA standard supports both the 1-phase commit protocol and the 2-phase commit
protocol.

1.2. TRANSACTION QUALITIES OF SERVICE

Overview

When it comes to choosing the products that implement your transaction system, there is a great variety
of database products and transaction managers available, some free of charge and some commercial.
All of them have nominal support for transaction processing, but there are considerable variations in the
qualities of service supported by these products. This section provides a brief guide to the kind of
features that you need to consider when comparing the reliability and sophistication of different
transaction products.

Qualities of service provided by resources

The following features determine the quality of service of a resource:

Transaction isolation levels.

Support for the XA standard.

Transaction isolation levels

Red Hat JBoss Fuse 6.2 Transaction Guide

6

ANSI SQL defines four transaction isolation levels, as follows:

SERIALIZABLE

Transactions are perfectly isolated from each other. That is, nothing that one transaction does can
affect any other transaction until the transaction is committed. This isolation level is described as
serializable, because the effect is as if all transactions were executed one after the other (although in
practice, the resource can often optimize the algorithm, so that some transactions are allowed to
proceed simultaneously).

REPEATABLE_READ

Every time a transaction reads or updates the database, a read or write lock is obtained and held until
the end of the transaction. This provides almost perfect isolation. But there is one case where
isolation is not perfect. Consider a SQL SELECT statement that reads a range of rows using a
WHERE clause. If another transaction adds a row to this range while the first transaction is running,
the first transaction can see this new row, if it repeats the SELECT call (a phantom read).

READ_COMMITTED

Read locks are not held until the end of a transaction. So, repeated reads can give different answers
(updates committed by other transactions are visible to an ongoing transaction).

READ_UNCOMMITTED

Neither read locks nor write locks are held until the end of a transaction. Hence, dirty reads are
possible (that is, a transaction can see uncommitted updates made by other transactions).

Databases generally do not support all of the different transaction isolation levels. For example, some
free databases support only READ_UNCOMMITTED. Also, some databases implement transaction
isolation levels in ways that are subtly different from the ANSI standard. Isolation is a complicated issue,
which involves trade offs with database performance (for example, see Isolation in Wikipedia).

Support for the XA standard

In order for a resource to participate in a transaction involving multiple resources, it needs to support the
X/Open XA standard. You also need to check whether the resource's implementation of the XA standard
is subject to any special restrictions. For example, some implementations of the XA standard are
restricted to a single database connection (which implies that only one thread at a time can process a
transaction involving that resource).

Qualities of service provided by transaction managers

The following features determine the quality of service of a transaction manager:

Support for suspend/resume and attach/detach.

Support for multiple resources.

Distributed transactions.

Transaction monitoring.

Recovery from failure.

Support for multiple resources

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

7

https://en.wikipedia.org/wiki/Isolation_(database_systems)

A key differentiator for transaction managers is the ability to support multiple resources. This normally
entails support for the XA standard, where the transaction manager provides a way for resources to
register their XA switches.

NOTE

Strictly speaking, the XA standard is not the only approach you can use to support
multiple resources, but it is the most practical one. The alternative typically involves
writing tedious (and critical) custom code to implement the algorithms normally provided
by an XA switch.

Support for suspend/resume and attach/detach

Some transaction managers support advanced capabilities for manipulating the associations between a
transaction context and application threads, as follows:

Suspend/resume current transaction—enables you to suspend temporarily the current
transaction context, while the application does some non-transactional work in the current
thread.

Attach/detach transaction context—enables you to move a transaction context from one thread
to another or to extend a transaction scope to include multiple threads.

Distributed transactions

Some transaction managers have the capability to manage transactions whose scope includes multiple
nodes in a distributed system (where the transaction context is propagated from node to node using
special protocols such as WS-AtomicTransactions or CORBA OTS).

Transaction monitoring

Advanced transaction managers typically provide visual tools to monitor the status of pending
transactions. This kind of tool is particularly useful after a system failure, where it can help to identify and
resolve transactions that were left in an uncertain state (heuristic exceptions).

Recovery from failure

There are significant variations amongst transaction managers with respect to their robustness in the
event of a system failure (crash). The key strategy that transaction managers use is to write data to a
persistent log before performing each step of a transaction. In the event of a failure, the data in the log
can be used to recover the transaction. Some transaction managers implement this strategy more
carefully than others. For example, a high-end transaction manager would typically duplicate the
persistent transaction log and allow each of the logs to be stored on separate host machines.

1.3. GETTING STARTED WITH TRANSACTIONS

1.3.1. Prerequisites

Overview

The following are required to complete this example:

Internet connection (required by Maven)

Red Hat JBoss Fuse 6.2 Transaction Guide

8

Java Runtime

Apache Maven 3

Java Runtime

Apache Camel requires a Java 7 development kit (JDK 1.7.0). After installing the JDK, set your
JAVA_HOME environment variable to point to the root directory of your JDK, and set your PATH
environment variable to include the Java bin directory.

Apache Maven 3

The Apache Camel Maven tooling requires Apache Maven version 3. To download Apache Maven, go to
http://maven.apache.org/download.cgi.

After installing Apache Maven do the following:

1. Set your M2_HOME environment variable to point to the Maven root directory.

2. Set your MAVEN_OPTS environment variable to -Xmx512M to increase the memory available
for Maven builds.

3. Set your PATH environment variable to include the Maven bin directory:

Platform Path

Windows %M2_HOME%\bin

UNIX $M2_HOME/bin

1.3.2. Generate a New Project

Overview

Use the Maven archetype, karaf-camel-cbr-archetype, to generate a sample Java application which
you can then use as a starting point for your application.

Steps

To generate the new project, perform the following steps:

1. Open a new command window and change to the directory where you want to store the new
Maven project.

2. Enter the following command to generate the new Maven project:

mvn archetype:generate
 -DarchetypeGroupId=io.fabric8.archetypes
 -DarchetypeArtifactId=karaf-camel-cbr-archetype
 -DarchetypeVersion=1.2.0.redhat-133
 -DgroupId=tutorial

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

9

http://maven.apache.org/download.cgi

Each time you are prompted for input, press Enter to accept the default.

This command generates a basic router application under the tx-jms-router directory. You will
customize this basic application to demonstrate transactions in Apache Camel.

NOTE

Maven accesses the Internet to download JARs and stores them in its local
repository.

3. Add dependencies on the artifacts that implement Spring transactions. Look for the
dependencies element in the POM file and add the following dependency elements:

NOTE

It is not necessary to specify the versions of these artifacts, because this POM is
configured to use the Fabric8 BOM, which configures default artifact versions
through Maven's dependency management mechanism.

4. Add the JMS and ActiveMQ dependencies. Look for the dependencies element in the POM file
and add the following dependency elements:

 -DartifactId=tx-jms-router
 -Dversion=1.0-SNAPSHOT
 -Dfabric8-profile=tx-jms-router-profile

<project ...>
 ...
 <dependencies>
 ...
 <!-- Spring transaction dependencies -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 </dependency>

 </dependencies>
 ...
</project>

<project ...>
 ...

Red Hat JBoss Fuse 6.2 Transaction Guide

10

1.3.3. Configure a Transaction Manager and a Camel Route

Overview

The basic requirements for writing a transactional application in Spring are a transaction manager bean
and a resource bean (or, in some cases, multiple resource beans). You can then use the transaction
manager bean either to create a transactional Apache Camel component (see Section 5.2, “Demarcation
by Transactional Endpoints”) or to mark a route as transactional, using the transacted() Java DSL
command (see Section 5.1, “Demarcation by Marking the Route”).

Steps

To configure a JMS transaction manager and a Camel route in Blueprint XML, perform the following
steps:

1. Customize the Blueprint XML configuration. Using your favourite text editor, open the tx-jms-
router/src/main/resources/OSGI-INF/blueprint/cbr.xml file and replace the contents of the file
with the following XML code:

 <dependencies>
 ...
 <!-- Persistence artifacts -->
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jms</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-client</artifactId>
 </dependency>

 </dependencies>
 ...
</project>

<?xml version="1.0"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/blueprint"
xmlns:order="http://fabric8.com/examples/order/v7"
 id="tx-jms-router-context">
 <route>
 <from uri="file:work/data?noop=true"/>
 <convertBodyTo type="java.lang.String"/>
 <to uri="jmstx:queue:giro"/>
 </route>
 <route>
 <from uri="jmstx:queue:giro"/>

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

11

2. In the jmsConnectionFactory bean from the preceding Spring XML code, customize the values
of the userName and password property settings with one of the user credentials from the
JBoss Fuse container. By default, the container's user credentials are normally defined in the
etc/users.properties file.

1.3.4. Create the MyTransform Bean

Overview

The purpose of the MyTransform bean class is to force a rollback of the current transaction, by throwing
an exception. The bean gets called at the end of the second transactional route. This enables you to
verify the behaviour of a rolled back transaction.

Steps

Create the MyTransform bean class. Using your favourite text editor, create the tx-jms-
router/src/main/java/tutorial/MyTransform.java file and add the following Java code to the file:

 <to uri="jmstx:queue:credits"/>
 <to uri="jmstx:queue:debits"/>
 <bean ref="myTransform" method="transform"/>
 </route>
 </camelContext>

 <bean id="myTransform" class="tutorial.MyTransform"/>

 <bean id="jmstx" class="org.apache.camel.component.jms.JmsComponent">
 <property name="configuration" ref="jmsConfig" />
 </bean>

 <bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsConnectionFactory"/>
 <property name="transactionManager" ref="jmsTransactionManager"/>
 <property name="transacted" value="true"/>
 </bean>

 <bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 </bean>

 <bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
 <property name="userName" value="Username"/>
 <property name="password" value="Password"/>
 </bean>

</blueprint>

package tutorial;

import java.util.Date;
import java.util.logging.Logger;

Red Hat JBoss Fuse 6.2 Transaction Guide

12

1.3.5. Build and Run the Example

Overview

After building and running the example using Maven, you can use the Fuse Management Console to
examine what has happened to the JMS queues involved in the application.

Steps

To build and run the transactional JMS example, perform the following steps:

1. To build the example, open a command prompt, change directory to tx-jms-router, and enter the
following Maven command:

If the build is successful, you should see the file, tx-jms-router.jar, appear under the tx-jms-
router/target directory.

2. Create a sample message for the routes to consume when they are running in the container.
Create the following directory path in the container's installation directory (where you installed
JBoss Fuse):

In the data directory create the file, message.txt, with the following contents:

3. Start up the JBoss Fuse container. Open a new command prompt and enter the following
commands:

4. To install and start the example in the container, enter the following console command:

public class MyTransform {
 private static final transient Logger LOGGER = Logger.getLogger(MyTransform.class.getName());

 public String transform(String body)
 throws java.lang.Exception
 {
 // should be printed n times due to redeliveries
 LOGGER.info("message body = " + body);
 // force rollback
 throw new java.lang.Exception("test");
 }

}

mvn install

InstallDir/work/data

Test message.

cd InstallDir/bin
./fuse

JBossFuse:karaf@root> install -s mvn:tutorial/tx-jms-router/1.0-SNAPSHOT

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

13

5. To see the result of running the routes, open the container log using the log:display command,
as follows:

If all goes well, you should see about a dozen occurrences of java.lang.Exception: test in the
log. This is the expected behaviour.

6. What happened? The series of runtime exceptions thrown by the application is exactly what we
expect to happen, because the route is programmed to throw an exception every time an
exchange is processed by the route. The purpose of throwing the exception is to trigger a
transaction rollback, causing the current exchange to be un-enqueued from the queue:credit
and queue:debit queues.

7. To gain a better insight into what occurred, user your browser to connect to the Fuse
Management Console. Navigate to the following URL in your browser:

You will be prompted to log in. Use one of the credentials configured for your container (usually
defined in the InstallDir/etc/users.properties file).

8. Click on the ActiveMQ tab to explore the JMS queues that are accessed by the example routes.

9. Drill down to the giro queue. Notice that the EnqueueCount and DequeueCount for giro are all
equal to 1, which indicates that one message entered the queue and one message was pulled
off the queue.

10. Click on the debits queue. Notice that the EnqueueCount, DispatchCount, and
DequeueCount for debits are all equal to 0. This is because the test exception caused the
enqueued message to be rolled back each time an exchange passed through the route. The
same thing happened to the credits queue.

11. Click on the ActiveMQ.DLQ queue. The DLQ part of this name stands for Dead Letter Queue
and it is an integral part of the way ActiveMQ deals with failed message dispatches. In summary,
the default behavior of ActiveMQ when it fails to dispatch a message (that is, when an exception
reaches the JMS consumer endpoint, jmstx:queue:giro), is as follows:

a. The consumer endpoint attempts to redeliver the message. Redelivery attempts can be
repeated up to a configurable maximum number of times.

b. If the redeliveries limit is exceeded, the consumer endpoint gives up trying to deliver the
message and enqueues it on the dead letter queue instead (by default, ActiveMQ.DLQ).

You can see from the status of the ActiveMQ.DLQ queue that the number of enqueued
messages, EnqueueCount, is equal to 1. This is where the failed message has ended up.

JBossFuse:karaf@root> log:display

http://localhost:8181/hawtio

Red Hat JBoss Fuse 6.2 Transaction Guide

14

CHAPTER 2. SELECTING A TRANSACTION MANAGER

Abstract

This chapter describes how to select and configure a transaction manager instance in Spring. Most of
the difficult work of configuring transactions consists of setting up the transaction manager correctly.
Once you have completed this step, it is relatively easy to use transactions in your Apache Camel
routes.

2.1. WHAT IS A TRANSACTION MANAGER?

Transaction managers in Spring

A transaction manager is the part of an application that is responsible for coordinating transactions
across one or more resources. In the Spring framework, the transaction manager is effectively the root of
the transaction system. Hence, if you want to enable transactions on a component in Spring, you
typically create a transaction manager bean and pass it to the component.

The responsibilities of the transaction manager are as follows:

Demarcation—starting and ending transactions using begin, commit, and rollback methods.

Managing the transaction context—a transaction context contains the information that a
transaction manager needs to keep track of a transaction. The transaction manager is
responsible for creating transaction contexts and attaching them to the current thread.

Coordinating the transaction across multiple resources—enterprise-level transaction managers
typically have the capability to coordinate a transaction across multiple resources. This feature
requires the 2-phase commit protocol and resources must be registered and managed using the
XA protocol (see the section called “X/Open XA standard”).

This is an advanced feature, not supported by all transaction managers.

Recovery from failure—transaction managers are responsible for ensuring that resources are not
left in an inconsistent state, if there is a system failure and the application crashes. In some
cases, manual intervention might be required to restore the system to a consistent state.

Local transaction managers

A local transaction manager is a transaction manager that can coordinate transactions over a single
resource only. In this case, the implementation of the transaction manager is typically embedded in the
resource itself and the Spring transaction manager is just a thin wrapper around this built-in transaction
manager.

For example, the Oracle database has a built-in transaction manager that supports demarcation
operations (using SQL operations, BEGIN, COMMIT, ROLLBACK, or using a native Oracle API) and
various levels of transaction isolation. Control over the Oracle transaction manager can be exported
through JDBC, which is how Spring is able to wrap this transaction manager.

It is important to understand what constitutes a resource, in this context. For example, if you are using a
JMS product, the JMS resource is the single running instance of the JMS product, not the individual
queues and topics. Moreover, sometimes, what appears to be multiple resources might actually be a
single resource, if the same underlying resource is accessed in different ways. For example, your

CHAPTER 2. SELECTING A TRANSACTION MANAGER

15

application might access a relational database both directly (through JDBC) and indirectly (through an
object-relational mapping tool like Hibernate). In this case, the same underlying transaction manager is
involved, so it should be possible to enrol both of these code fragments in the same transaction.

NOTE

It cannot be guaranteed that this will work in every case. Although it is possible in
principle, some detail in design of the Spring framework or other wrapper layers might
prevent it from working in practice.

Of course, it is possible for an application to have many different local transaction managers working
independently of each other. For example, you could have one route that manipulates JMS queues and
topics, where the JMS endpoints reference a JMS transaction manager. Another route could access a
relational database through JDBC. But you could not combine JDBC and JMS access in the same route
and have them both participate in the same transaction.

Global transaction managers

A global transaction manager is a transaction manager that can coordinate transactions over multiple
resources. In this case, you cannot rely on the transaction manager built into the resource itself. Instead,
you require an external system, sometimes called a transaction processing monitor (TP monitor), that is
capable of coordinating transactions across different resources.

The following are the prerequisites for global transactions:

Global transaction manager or TP monitor—an external transaction system that implements the
2-phase commit protocol for coordinating multiple XA resources.

Resources that support the XA standard—in order to participate in a 2-phase commit, resources
must support the X/Open XA standard. In practice, this means that the resource is capable of
exporting an XA switch object, which gives complete control of transactions to the external TP
monitor.

TIP

The Spring framework does not by itself provide a TP monitor to manage global transactions. It does,
however, provide support for integrating with an OSGi-provided TP monitor or with a J2EE-provided TP
monitor (where the integration is implemented by the JtaTransactionManager class). Hence, if you
deploy your application into an OSGi container with full transaction support, you can use multiple
transactional resources in Spring.

Distributed transaction managers

Usually, a server connects directly to the resources involved in a transaction. In a distributed system,
however, it is occasionally necessary to connect to resources that are exposed only indirectly, through a
Web service. In this case, you require a TP monitor that is capable of supporting distributed transactions.
Several standards are available that describe how to support transactions for various distributed
protocols—for example, the WS-AtomicTransactions specification for Web services.

2.2. SPRING TRANSACTION ARCHITECTURE

Overview

Red Hat JBoss Fuse 6.2 Transaction Guide

16

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html
http://docs.oasis-open.org/ws-tx/wsat/2006/06

Figure 2.1, “Spring Transaction Architecture” shows an overview of the Spring transaction architecture.

Figure 2.1. Spring Transaction Architecture

Standalone Spring container

In the standalone deployment model, the Spring container provides access to persistent data sources
and is responsible for managing the transactions associated with those data sources. A notable limitation
of the standalone model is that the Spring container can support only local transaction managers, which
means that only one data source (resource) at a time can participate in a transaction.

Data source

Spring supports a variety of different wrapper APIs for accessing persistent storage. For example, to
access a database through JDBC, Spring provides the SimpleDriverDataSource class to represent the
database instance and the JdbcTemplate class to provide access to the database using SQL. Wrappers
are also provided for other kinds of persistent resource, such as JMS, Hibernate, and so on. The Spring
data sources are designed to be compatible with the local transaction manager classes.

Local transaction manager

In Spring, a local transaction manager is a wrapper class that is responsible for managing the
transactions of a single resource. The local transaction manager is responsible for starting, committing,
and rolling back transactions. Typically, the way that you use a transaction manager in Apache Camel is
that you pass the transaction manager reference to a transactional Apache Camel component bean.

Spring provides different types of local transaction manager for different types of data source. For
example, Spring provides a DataSourceTransactionManager for JDBC, a JmsTransactionManager
for JMS, a HibernateTransactionManager for Hibernate, and so on.

CHAPTER 2. SELECTING A TRANSACTION MANAGER

17

2.3. OSGI TRANSACTION ARCHITECTURE

Overview

Figure 2.2, “OSGi Transaction Architecture” shows an overview of the OSGi transaction architecture in
Red Hat JBoss Fuse. The core of the architecture is a JTA transaction manager based on Apache
Geronimo, which exposes various transaction interfaces as OSGi services.

Figure 2.2. OSGi Transaction Architecture

OSGi mandated transaction architecture

The JTA Transaction Services Specification section of the OSGi Service Platform Enterprise
Specification describes the kind of transaction support that can (optionally) be provided by an OSGi
container. Essentially, OSGi mandates that the transaction service is accessed through the Java
Transaction API (JTA).

The transaction service exports the following JTA interfaces as OSGi services (the JTA services):

javax.transaction.UserTransaction

javax.transaction.TransactionManager

javax.transaction.TransactionSynchronizationRegistry

Only one JTA provider should be made available in an OSGi container. In other words, the JTA services
are registered only once and the objects obtained by importing references to the JTA services must be
unique.

Spring transaction integration

The Red Hat JBoss Fuse transaction service exports the following additional interfaces as OSGi
services:

org.springframework.transaction.PlatformTransactionManager

Red Hat JBoss Fuse 6.2 Transaction Guide

18

org.apache.geronimo.transaction.manager.RecoverableTransactionManager

By obtaining a reference to the PlatformTransactionManager OSGi service, it is possible to integrate
application bundles written using the Spring transaction API into the Red Hat JBoss Fuse transaction
architecture.

Reference

For more details about the OSGi transaction architecture, see the introductory chapter from Deploying
into the OSGi Container.

2.4. PLATFORMTRANSACTIONMANAGER INTERFACE

Overview

The PlatformTransactionManager interface is the key abstraction in the Spring transaction API,
providing the classic transaction client operations: begin, commit and rollback. This interface thus
provides the essential methods for controlling transactions at run time.

NOTE

The other key aspect of any transaction system is the API for implementing transactional
resources. But transactional resources are generally implemented by the underlying
database, so this aspect of transactional programming is rarely a concern for the
application programmer.

PlatformTransactionManager interface

Example 2.1, “The PlatformTransactionManager Interface” shows the definition of the
org.springframework.transaction.PlatformTransactionManager interface.

Example 2.1. The PlatformTransactionManager Interface

TransactionDefinition interface

The TransactionDefinition interface is used to specify the characteristics of a newly created
transaction. It is used to specify the isolation level and the propagation policy of the new transaction. For
more details, see Section 5.3, “Propagation Policies”.

TransactionStatus interface

package org.springframework.transaction;

public interface PlatformTransactionManager {
 TransactionStatus getTransaction(TransactionDefinition definition)
 throws TransactionException;

 void commit(TransactionStatus status) throws TransactionException;

 void rollback(TransactionStatus status) throws TransactionException;
}

CHAPTER 2. SELECTING A TRANSACTION MANAGER

19

The TransactionStatus interface can be used to check the status of the current transaction (that is, the
transaction associated with the current thread) and to mark the current transaction for rollback. It is
defined as follows:

Using the PlatformTransactionManager interface

The PlatformTransactionManager interface defines the following methods:

getTransaction()

Create a new transaction and associate it with the current thread, passing in a
TransactionDefinition object to define the characteristics of the new transaction. This is analogous
to the begin() method of many other transaction client APIs.

commit()

Commit the current transaction, making permanent all of the pending changes to the registered
resources.

rollback()

Roll back the current transaction, undoing all of the pending changes to the registered resources.

Generally, you do not use the PlatformTransactionManager interface directly. In Apache Camel, you
typically use a transaction manager as follows:

1. Create an instance of a transaction manager (there are several different implementations
available in Spring—see Section 2.5, “Transaction Manager Implementations”).

2. Pass the transaction manager instance either to a Apache Camel component or to the
transacted() DSL command in a route. The transactional component or the transacted()
command is then responsible for demarcating transactions (see Chapter 5, Transaction
Demarcation).

2.5. TRANSACTION MANAGER IMPLEMENTATIONS

Overview

This section provides a brief overview of all the transaction manager implementations provided by the
Spring framework. In general, the implementations fall into two different categories: local transaction
managers and global transaction managers.

public interface TransactionStatus extends SavepointManager {
 boolean isNewTransaction();

 boolean hasSavepoint();

 void setRollbackOnly();

 boolean isRollbackOnly();

 void flush();

 boolean isCompleted();
}

Red Hat JBoss Fuse 6.2 Transaction Guide

20

Local transaction managers

Table 2.1, “Local Transaction Managers” summarizes the local transaction manager implementations
provided by the Spring framework. These transaction managers are distinguished by the fact that they
support a single resource only.

Table 2.1. Local Transaction Managers

Transaction Manager Description

JmsTransactionManager A transaction manager implementation that is
capable of managing a single JMS resource. That is,
you can connect to any number of queues or topics,
but only if they belong to the same underlying JMS
messaging product instance. Moreover, you cannot
enlist any other types of resource in a transaction.

For example, using this transaction manager, it would
not be possible to enlist both a SonicMQ resource
and an Apache ActiveMQ resource in the same
transaction. But see Table 2.2, “Global Transaction
Managers”.

DataSourceTransactionManager A transaction manager implementation that is
capable of managing a single JDBC database
resource. That is, you can update any number of
different database tables, but only if they belong to
the same underlying database instance.

HibernateTransactionManager A transaction manager implementation that is
capable of managing a Hibernate resource. It is not
possible, however, to simultaneously enlist any other
kind of resource in a transaction.

JdoTransactionManager A transaction manager implementation that is
capable of managing a Java Data Objects (JDO)
resource. It is not possible, however, to
simultaneously enlist any other kind of resource in a
transaction.

JpaTransactionManager A transaction manager implementation that is
capable of managing a Java Persistence API (JPA)
resource. It is not possible, however, to
simultaneously enlist any other kind of resource in a
transaction.

CciLocalTransactionManager A transaction manager implementation that is
capable of managing a Java Connection Architecture
(JCA) resource. It is not possible, however, to
simultaneously enlist any other kind of resource in a
transaction.

Global transaction managers

CHAPTER 2. SELECTING A TRANSACTION MANAGER

21

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jms/connection/JmsTransactionManager.html
 http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/ibatis/SqlMapClientTemplate.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/hibernate3/HibernateTransactionManager.html
http://www.hibernate.org
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jdo/JdoTransactionManager.html
http://db.apache.org/jdo/
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/JpaTransactionManager.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jca/cci/connection/CciLocalTransactionManager.html
 http://www.oracle.com/technetwork/java/index.html

Table 2.2, “Global Transaction Managers” summarizes the global transaction manager implementations
provided by the Spring framework. These transaction managers are distinguished by the fact that they
can support multiple resources.

Table 2.2. Global Transaction Managers

Transaction Manager Description

JtaTransactionManager If you require a transaction manager that is capable
of enlisting more than one resource in a transaction,
use the JTA transaction manager, which is capable
of supporting the XA transaction API. You must
deploy your application inside either an OSGi
container or a J2EE server to use this transaction
manager.

OC4JJtaTransactionManagner A specialization of the JtaTransactionManager to
work with Oracle's OC4J. The advantage of this
implementation is that it makes Spring-driven
transactions visible in OC4J's transaction monitor

WebLogicJtaTransactionManager A specialization of the JtaTransactionManager to
work with the BEA WebLogic container. Makes
certain advanced transaction features available:
transaction names, per-transaction isolation levels,
and proper suspension/resumption of transactions.

WebSphereUowTransactionManager A specialization of the JtaTransactionManager to
work with the IBM WebSphere container. Enables
proper suspension/resumption of transactions.

2.6. SAMPLE CONFIGURATIONS

2.6.1. JDBC Data Source

Overview

If you need to access a database, the JDBC data source provides a convenient, general-purpose
mechanism for connecting to a database and making SQL based queries and updates. To group multiple
updates into a single transaction, you can instantiate a Spring DataSourceTransactionManager and
create a transaction scope using the transacted() DSL command.

Sample JDBC configuration

Example 2.2, “Data Source Transaction Manager Configuration” shows how to instantiate a JDBC
transaction manager, of DataSourceTransactionManager type, which is required if you want to
integrate a JDBC connection with Spring transactions. The JDBC transaction manager requires a
reference to data source bean (created here with the ID, dataSource).

Example 2.2. Data Source Transaction Manager Configuration

Red Hat JBoss Fuse 6.2 Transaction Guide

22

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/jta/OC4JJtaTransactionManager.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/jta/WebLogicJtaTransactionManager.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/jta/WebSphereUowTransactionManager.html

JDBC data source transaction manager bean

In Example 2.2, “Data Source Transaction Manager Configuration”, the txManager bean is a local JDBC
transaction manager instance, of DataSourceTransactionManager type. There is just one property you
need to provide to the JDBC transaction manager: a reference to a JDBC data source.

JDBC data source bean

In Example 2.2, “Data Source Transaction Manager Configuration”, the dataSource bean is an instance
of a JDBC data source, of javax.sql.DataSource type. The JDBC data source is a standard feature of
the Java DataBase Connectivity (JDBC) specification and it represents a single JDBC connection, which
encapsulating the information required to connect to a specific database.

In Spring, the recommended way to create a data source is to instantiate a SimpleDriverDataSource
bean (which implements the javax.sql.DataSource interface). The simple driver data source bean
creates a new data source using a JDBC driver class (which is effectively a data source factory). The
properties that you supply to the driver manager data source bean are specific to the database you want
to connect to. In general, you need to supply the following properties:

driverClass

An instance of java.sql.Driver, which is the JDBC driver implemented by the database you want to
connect to. Consult the third-party database documentation for the name of this driver class (some
examples are given in Table 2.6, “Connection Details for Various Databases”).

url

The JDBC URL that is used to open a connection to the database. Consult the third-party database
documentation for details of the URL format (some examples are given in Table 2.6, “Connection
Details for Various Databases”).

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">
 ...
 <!-- spring transaction manager -->
 <bean id="txManager"
class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
 </bean>

 <!-- datasource to the database -->
 <bean id="dataSource"
class="org.springframework.jdbc.datasource.SimpleDriverDataSource">
 <property name="driverClass" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:mem:camel"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </bean>

</beans>

CHAPTER 2. SELECTING A TRANSACTION MANAGER

23

http://docs.oracle.com/javase/6/docs/api/java/sql/Driver.html

For example, the URL provided to the dataSource bean in Example 2.2, “Data Source Transaction
Manager Configuration” is in a format prescribed by the HSQLDB database. The URL,
jdbc:hsqldb:mem:camel, can be parsed as follows:

The prefix, jdbc:hsqldb:, is common to all HSQLDB JDBC connection URLs;

The prefix, mem:, signifies an in-memory (non-persistent) database;

The final identifier, camel, is an arbitrary name that identifies the in-memory database
instance.

username

The username that is used to log on to the database.

For example, when a new HSQLDB database instance is created, the sa user is created by default
(with administrator privileges).

password

The password that matches the specified username.

Standalone data sources

Spring provides a variety of data source implementations, which are suitable for standalone mode (that
is, the application is not deployed inside an OSGi container). These data sources are described in
Table 2.3, “Standalone Data Source Classes”.

Table 2.3. Standalone Data Source Classes

Data Source Class Description

SimpleDriverDataSource This data source should always be used in
standalone mode. You configure this data source by
providing it with details of a third-party JDBC driver
class. This implementation has the following
features:

Caches credentials for opening connections.

Supports multi-threading.

Compatible with the Spring transaction API.

Compatible with OSGi.

DriverManagerDataSource (Deprecated) Incompatible with OSGi containers.
This class is superseded by the
SimpleDriverDataSource.

Red Hat JBoss Fuse 6.2 Transaction Guide

24

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/SimpleDriverDataSource.html
 http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/IsolationLevelDataSourceAdapter.html

SingleConnectionDataSource A data source that opens only one database
connection (that is, every call to getConnection()
returns a reference to the same connection instance).
It follows that this data source is incompatible with
multi-threading and is therefore not recommended for
general use.

Data Source Class Description

J2EE data source adapters

If your application is deployed into a J2EE container, it does not make sense to create a data source
directly. Instead, you should let the J2EE container take care of creating data sources and you can then
access those data sources by doing a JNDI lookup. For example, the following code fragment shows
how you can obtain a data source from the JNDI reference, java:comp/env/jdbc/myds, and then wrap
the data source with a UserCredentialsDataSourceAdapter.

The JndiObjectFactoryBean exploits the Spring bean factory pattern to look up an object in JNDI.
When this bean's ID, myTargetDataSource, is referenced elsewhere in Spring using the ref attribute,
instead of getting a reference to the JndiObjectFactoryBean bean, you actually get a reference to the
bean that was looked up in JNDI (a javax.sql.DataSource instance).

The standard javax.sql.DataSource interface exposes two methods for creating connections:
getConnection() and getConnection(String username, String password). If (as is normally the case)
the referenced database requires credentials in order to open a connection, the
UserCredentialsDataSourceAdapter class provides a convenient way of ensuring that these user
credentials are available. You can use this adapter class for wrapping JNDI-provided data sources that
do not have their own credentials cache.

In addition to UserCredentialsDataSourceAdapter, there are a number of other adapter classes that
you can use to wrap data sources obtained from JNDI lookups. These J2EE data source adapters are
summarized in Table 2.4, “J2EE Data Source Adapters”.

Table 2.4. J2EE Data Source Adapters

Data Source Adapter Description

 <bean id="myTargetDataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="java:comp/env/jdbc/myds"/>
 </bean>

 <bean id="myDataSource"
class="org.springframework.jdbc.datasource.UserCredentialsDataSourceAdapter">
 <property name="targetDataSource" ref="myTargetDataSource"/>
 <property name="username" value="myusername"/>
 <property name="password" value="mypassword"/>
 </bean>

CHAPTER 2. SELECTING A TRANSACTION MANAGER

25

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/SingleConnectionDataSource.html

UserCredentialsDataSourceAdapter Data source wrapper class that caches
username/password credentials, for cases where the
wrapped data source does not have its own
credentials cache. This class can be used to wrap a
data source obtained by JNDI lookup (typically, in a
J2EE container).

The username/password credentials are bound to a
specific thread. Hence, you can store different
connection credentials for different threads.

IsolationLevelDataSourceAdapter Subclass of
UserCredentialsDataSourceAdapter which, in
addition to caching user credentials, also applies the
current Spring transaction's level of isolation to all of
the connections it creates.

WebSphereDataSourceAdapter Same functionality as
IsolationLevelDataSourceAdapter, except that
the implementation is customized to work with IBM-
specific APIs.

Data Source Adapter Description

Data source proxies for special features

You can wrap a data source with a data source proxy in order to add special functionality to a data
source. The data source proxies can be applied either to a standalone data source or a data source
provided by the container. They are summarized in Table 2.5, “Data Source Proxies”.

Table 2.5. Data Source Proxies

Data Source Proxy Description

LazyConnectionDataSourceProxy This proxy uses lazy semantics to avoid unnecessary
database operations. That is, a connection will not
actually be opened until the application code attempts
to write (or read) to the database.

For example, if some application code opens a
connection, begins a transaction, and then commits a
transaction, but never actually accesses the
database, the lazy connection proxy would optimize
these database operations away.

TransactionAwareDataSourceProxy Provides support for legacy database code that is not
implemented using the Spring persistence API.

Do not use this proxy for normal transaction support.
The other Spring data sources are already
compatible with the Spring persistence and
transaction APIs. For example, if your application
code uses Spring's JdbcTemplate class to access
JDBC resources, do not use this proxy class.

Red Hat JBoss Fuse 6.2 Transaction Guide

26

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/UserCredentialsDataSourceAdapter.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/IsolationLevelDataSourceAdapter.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/WebSphereDataSourceAdapter.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/LazyConnectionDataSourceProxy.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/datasource/TransactionAwareDataSourceProxy.html

Third-party JDBC driver managers

Table 2.6, “Connection Details for Various Databases” shows the JDBC connection details for a variety
of different database products.

Table 2.6. Connection Details for Various Databases

Database JDBC Driver Manager Properties

HSQLDB The JDBC driver class for HSQLDB is as follows:

To connect to a HSQLDB database, you can use one
of the following JDBC URL formats:

Where the hsqls and https protocols use TLS
security and the mem protocol references an in-
process, transient database instance (useful for
testing). For more details, see
http://www.hsqldb.org/doc/src/.

MySQL The JDBC driver class for MySQL is as follows:

To connect to a MySQL database, use the following
JDBC URL format:

Where the Options coincidentally have the same
format as Camel component options—for example,
?Option1=Value1&Option2=Value2. For more
details, see http://dev.mysql.com/doc/connector-
j/en/connector-j-reference-configuration-
properties.html.

org.hsqldb.jdbcDriver

jdbc:hsqldb:hsql[s]://host[:port][/DBName]
[KeyValuePairs]
jdbc:hsqldb:http[s]://host[:port][/DBName]
[KeyValuePairs]
jdbc:hsqldb:mem:DBName[KeyValuePairs]

com.mysql.jdbc.Driver

jdbc:mysql://[host][,failoverhost...]
[:port]/[DBName][Options]

CHAPTER 2. SELECTING A TRANSACTION MANAGER

27

http://www.hsqldb.org/doc/src/
http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html

Oracle Depending on which version of Oracle you are using
choose one of the following JDBC driver classes:

To connect to an Oracle database, use the following
JDBC URL format:

Where the Oracle System ID (SID) identifies an
Oracle database instance. For more details, see
http://download.oracle.com/docs/cd/B10501_01/java.
920/a96654/basic.htm.

DB2 The JDBC driver class for DB2 is as follows:

To connect to a DB2 database, use the following
JDBC URL format:

SQL Server The JDBC driver class for SQL Server is as follows:

To connect to a SQL Server database, use the
following JDBC URL format:

Sybase The JDBC driver class for Sybase is as follows:

To connect to a Sybase database, use the following
JDBC URL format:

Database JDBC Driver Manager Properties

oracle.jdbc.OracleDriver (Oracle 9i, 10)
oracle.jdbc.driver.OracleDriver (Oracle 8i)

jdbc:oracle:thin:[user/password]@[host]
[:port]:SID

com.ibm.db2.jcc.DB2Driver

jdbc:db2://host[:port]/DBName

com.microsoft.jdbc.sqlserver.SQLServerDriver

jdbc:microsoft:sqlserver://host[:port];Database
Name=DBName

com.sybase.jdbc3.jdbc.SybDriver

jdbc:sybase:Tds:host:port/DBName

Red Hat JBoss Fuse 6.2 Transaction Guide

28

http://download.oracle.com/docs/cd/B10501_01/java.920/a96654/basic.htm

Informix The JDBC driver class for Informix is as follows:

To connect to an Informix database, use the
following JDBC URL format:

PostgreSQL The JDBC driver class for PostgreSQL is as follows:

To connect to a PostgreSQL database, use the
following JDBC URL format:

MaxDB The JDBC driver class for the SAP database is as
follows:

To connect to a MaxDB database, use the following
JDBC URL format:

FrontBase The JDBC driver class for FrontBase is as follows:

To connect to a FrontBase database, use the
following JDBC URL format:

Database JDBC Driver Manager Properties

2.6.2. Hibernate

Overview

To enable transactions while accessing Hibernate objects, you need to provide an instance of the
Hibernate transaction manager, of HibernateTransactionManager type, as described here. You can
then use the transacted() DSL command to create a transaction scope in a route.

com.informix.jdbc.IfxDriver

jdbc:informix-
sqli://host:port/DBName:informixserver=DBS
erverName

org.postgresql.Driver

jdbc:postgresql://host[:port]/DBName

com.sap.dbtech.jdbc.DriverSapDB

jdbc:sapdb://host[:port]/DBName

com.frontbase.jdbc.FBJDriver

jdbc:FrontBase://host[:port]/DBName

CHAPTER 2. SELECTING A TRANSACTION MANAGER

29

Sample Hibernate configuration

Example 2.3, “Hibernate Transaction Manager Configuration” shows how to instantiate a Hibernate
transaction manager, of HibernateTransactionManager type, which is required if you want to integrate
Hibernate object-oriented persistence with Spring transactions. The Hibernate transaction manager
requires a reference to a Hibernate session factory, and the Hibernate session factory takes a reference
to a JDBC data source.

Example 2.3. Hibernate Transaction Manager Configuration

Hibernate transaction manager bean

In Example 2.3, “Hibernate Transaction Manager Configuration”, the hibernateTxManager bean is a
local Hibernate transaction manager instance, of HibernateTransactionManager type. There is just one
property you need to provide to the Hibernate transaction manager: a reference to a Hibernate session
factory.

Hibernate session factory bean

In Example 2.3, “Hibernate Transaction Manager Configuration”, the mySessionFactory bean is a
Hibernate session factory of org.springframework.orm.hibernate3.LocalSessionFactory type. This
session factory bean is needed by the Hibernate transaction manager.

<beans ... >
 ...
 <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </bean>

 <bean id="mySessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource" ref="myDataSource"/>
 <property name="mappingResources">
 <list>
 <value>product.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <value>
 hibernate.dialect=org.hibernate.dialect.HSQLDialect
 </value>
 </property>
 </bean>

 <bean id="hibernateTxManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">
 <property name="sessionFactory" ref="mySessionFactory"/>
 </bean>
</beans>

Red Hat JBoss Fuse 6.2 Transaction Guide

30

In general, you need to supply the following properties to a Hibernate LocalSessionFactory bean
instance:

dataSource

An instance of javax.sql.DataSource, which is the JDBC data source of the database that Hibernate
is layered over. For details of how to configure a JDBC data source, see Section 2.6.1, “JDBC Data
Source”.

mappingResources

Specifies a list of one or more mapping association files on the class path. A Hibernate mapping
association defines how Java objects map to database tables.

hibernateProperties

Allows you to set any Hibernate property, by supplying a list of property settings. The most commonly
needed property is hibernate.dialect, which indicates to Hibernate what sort of database it is layered
over, enabling Hibernate to optimize its interaction with the underlying database. The dialect is
specified as a class name, which can have one of the following values:

2.6.3. JPA

org.hibernate.dialect.Cache71Dialect
org.hibernate.dialect.DataDirectOracle9Dialect
org.hibernate.dialect.DB2390Dialect
org.hibernate.dialect.DB2400Dialect
org.hibernate.dialect.DB2Dialect
org.hibernate.dialect.DerbyDialect
org.hibernate.dialect.FirebirdDialect
org.hibernate.dialect.FrontBaseDialect
org.hibernate.dialect.H2Dialect
org.hibernate.dialect.HSQLDialect
org.hibernate.dialect.IngresDialect
org.hibernate.dialect.InterbaseDialect
org.hibernate.dialect.JDataStoreDialect
org.hibernate.dialect.MckoiDialect
org.hibernate.dialect.MimerSQLDialect
org.hibernate.dialect.MySQL5Dialect
org.hibernate.dialect.MySQL5InnoDBDialect
org.hibernate.dialect.MySQLDialect
org.hibernate.dialect.MySQLInnoDBDialect
org.hibernate.dialect.MySQLMyISAMDialect
org.hibernate.dialect.Oracle9Dialect
org.hibernate.dialect.OracleDialect
org.hibernate.dialect.PointbaseDialect
org.hibernate.dialect.PostgreSQLDialect
org.hibernate.dialect.ProgressDialect
org.hibernate.dialect.RDMSOS2200Dialect
org.hibernate.dialect.SAPDBDialect
org.hibernate.dialect.SQLServerDialect
org.hibernate.dialect.Sybase11Dialect
org.hibernate.dialect.SybaseAnywhereDialect
org.hibernate.dialect.SybaseDialect
org.hibernate.dialect.TimesTenDialect

CHAPTER 2. SELECTING A TRANSACTION MANAGER

31

https://docs.jboss.org/hibernate/stable/core/manual/en-US/html/tutorial.html

Overview

To enable transactions in a JPA component, you need to provide the JPA component with a reference to
a transaction manager, of JpaTransactionManager type. The Java Persistence API is a generic
wrapper API for object-relational persistence and it can be layered over a variety of different object-
relational mapping technologies.

Sample JPA configuration

Example 2.4, “JPA Transaction Manager Configuration” shows how to customize the configuration of a
JPA component (creating a component with the bean ID, jpa), so that the JPA component supports
Spring transactions. When used with transactions, the JPA component requires a reference to an entity
manager factory and a reference to a transaction manager.

Example 2.4. JPA Transaction Manager Configuration

JPA transaction manager bean

In Example 2.4, “JPA Transaction Manager Configuration”, the jpaTxManager bean is a local JPA
transaction manager instance, of JpaTransactionManager type. The JPA transaction manager requires
a reference to an entity manager factory bean (in this example, the entityManagerFactory bean).

If you deploy your application into an OSGi container, however, you might want to consider using a
JtaTransactionManager instead. See Table 2.2, “Global Transaction Managers”.

Entity manager factory bean

The entity manager factory bean encapsulates the JPA runtime functionality. For example, the Spring
LocalEntityManagerFactoryBean class is just a wrapper around the standard
javax.persistence.EntityManagerFactory class. The entity manager factory is used to create a

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">

 <bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
 <property name="entityManagerFactory" ref="entityManagerFactory"/>
 <property name="transactionManager" ref="jpaTxManager"/>
 </bean>

 <bean id="jpaTxManager" class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="entityManagerFactory"/>
 </bean>

 <bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="camel"/>
 </bean>

</beans>

Red Hat JBoss Fuse 6.2 Transaction Guide

32

javax.persistence.EntityManager instance, where the entity manager is associated with a unique
persistence context. A persistence context represents a consistent set of entity objects that are
instantiated from the underlying database (analogous to a Hibernate session).

The LocalEntityManagerFactoryBean class is a relatively simple JPA wrapper class that is suitable for
simple demonstrations and testing purposes. This class reads its required configuration information from
the persistence.xml file, which is found at the standard location, META-INF/persistence.xml, on the
class path (see the section called “Sample persistence.xml file”). The persistenceUnitName property
references a section of the persistence.xml file.

JPA entity manager factories

As well as instantiating a LocalEntityManagerFactoryBean bean, there are other ways of obtaining a
JPA entity manager factory, as summarized in Table 2.7, “Obtaining JPA Entity Manager Factory”.

Table 2.7. Obtaining JPA Entity Manager Factory

Entity Manager Factory Description

Obtain from JNDI If your application is deployed in a J2EE container,
the recommended approach is to let the container
take care of instantiating the entity manager factory.
You can then obtain a reference to the entity
manager factory using JNDI. See Obtaining an
EntityManagerFactory from JNDI in the Spring
documentation.

LocalEntityManagerFactoryBean For simple standalone applications and for testing,
the simplest option is to create a bean of this type.
The JPA runtime is configured using the standard
META-INF/persistence.xml file.

LocalContainerEntityManagerFactoryBean Use this class, if you need to configure special
bootstrap options for the JPA runtime. In spite of the
name, this class is not restricted to containers; you
can also use it in standalone mode. See
LocalContainerEntityManagerFactoryBean in the
Spring documentation.

JPA bootstrap contract

The JPA is a thin abstraction layer that allows you to write code that is independent of a particular object-
relational mapping product—for example, it enables you to layer your application over products such as
OpenJPA, Hibernate, or TopLink. To match the application code to a specific JPA implementation, JPA
defines a bootstrap contract, which is a procedure to locate and configure JPA implementations, as
follows:

To make a JPA implementation available to your application, put the JAR file containing the
relevant JPA provider class (of javax.persistence.spi.PersistenceProvider type) on your class
path. In fact, it is possible to add multiple JPA providers to your class path: you can optionally
specify which JPA provider to use in the persistence.xml file.

The JPA persistence layer is configured by the standard persistence.xml file, which is normally
located in META-INF/persistence.xml on the class path.

CHAPTER 2. SELECTING A TRANSACTION MANAGER

33

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-jpa-setup-jndi
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/LocalEntityManagerFactoryBean.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-jpa-setup-lcemfb
http://docs.oracle.com/javaee/5/api/javax/persistence/spi/PersistenceProvider.html

1

2

3

Sample persistence.xml file

Example 2.5, “Sample persistence.xml File” shows a sample persistence.xml file for configuring an
OpenJPA JPA provider layered over a Derby database.

Example 2.5. Sample persistence.xml File

The provider element can be used to specify the OpenJPA provider implementation class. If the
provider element is omitted, the JPA layer simply uses the first JPA provider it can find. Hence, it is
recommended to specify the provider element, if there are multiple JPA providers on your class
path.

To make a JPA provider available to an application, simply add the provider's JAR file to the class
path and the JPA layer will auto-detect the JPA provider.

Use the class elements to list all of the Java types that you want to persist using the JPA
framework.

Use the properties element to configure the underlying JPA provider. In particular, you should at
least provide enough information here to configure the connection to the underlying database.

1

2

3

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="1.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="camel" transaction-type="RESOURCE_LOCAL">
 <!--
 The default provider can be OpenJPA, or some other product.
 This element is optional if OpenJPA is the only JPA provider
 in the current classloading environment, but can be specified
 in cases where there are multiple JPA implementations available.
 -->

 <provider>
 org.apache.openjpa.persistence.PersistenceProviderImpl

 </provider>

 <class>org.apache.camel.examples.MultiSteps</class>
 <class>org.apache.camel.examples.SendEmail</class>

 <properties>
 <property name="openjpa.ConnectionURL" value="jdbc:derby:target/derby;create=true"/>

 <property name="openjpa.ConnectionDriverName"
value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>
 <property name="openjpa.Log" value="DefaultLevel=WARN, Tool=INFO, SQL=TRACE"/>
 </properties>
 </persistence-unit>

</persistence>

Red Hat JBoss Fuse 6.2 Transaction Guide

34

Sample annotated class

The following code example shows how the org.apache.camel.examples.SendEmail class referenced
in Example 2.5, “Sample persistence.xml File” should be annotated to turn it into a persistent entity bean
(so that it is persistible by JPA):

The preceding class has the following JPA annotations:

// Java
package org.apache.camel.examples;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

/**
 * Represents a task which is added to the database, then removed from the database when it is
consumed
 *
 * @version $Revision$
 */
@Entity
public class SendEmail {
 private Long id;
 private String address;

 public SendEmail() {
 }

 public SendEmail(String address) {
 setAddress(address);
 }

 @Override
 public String toString() {
 return "SendEmail[id: " + getId() + " address: " + getAddress() + "]";
 }

 @Id
 @GeneratedValue
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }
}

CHAPTER 2. SELECTING A TRANSACTION MANAGER

35

@javax.persistence.Entity

Specifies that the following class is persistible by the JPA.

@javax.persistence.Id

The following bean property must be used as the primary key (for locating objects of this type in the
database).

@javax.persistence.GeneratedValue

Specifies that the primary key values should be automatically generated by the JPA runtime (you can
optionally set attributes on this annotation to configure the ID generation algorithm as well).

For the complete list of JPA annotations, see the API for the javax.persistence package.

Red Hat JBoss Fuse 6.2 Transaction Guide

36

http://docs.oracle.com/javaee/5/api/javax/persistence/package-summary.html

CHAPTER 3. JMS TRANSACTIONS

Abstract

JMS endpoints create special problems when transactions are enabled. Their behavior is effected by the
type of transaction manager in use, the caching level in use, and the message exchange pattern in use.

NOTE

For tips on optimizing transaction performance, see Appendix A, Optimizing Performance
of JMS Single- and Multiple-Resource Transactions.

3.1. CONFIGURING THE JMS COMPONENT

Overview

To enable transactions in a JMS component (thus enabling JMS endpoints to play the role either of a
transactional resource or a transactional client), you need to:

set the transacted property

provide the JMS component with a reference to a suitable transaction manager

In addition, you may want to adjust the JMS component's cache level setting. External transaction
managers can impact caching performance.

Camel JMS component configuration

The easiest way to configure a JMS endpoint to participate in transactions is to create a new an instance
of a Camel JMS component that has the proper settings. To do so:

1. Create a bean element that has its class attribute set to
org.apache.camel.component.jms.JmsComponent.

This bean creates an instance of the JMS component.

2. Set the bean's id attribute to a unique, short, string.

The id will be used to create route endpoint's that use this JMS component.

3. Add an empty property child to the bean.

4. Add a name attribute with the value of configuration to the property element.

5. Add a ref attribute whose value is the id of a JmsConfiguration bean to the property element.

The JmsConfiguration bean is used to configure the JMS component.

6. Create a bean element that has its class attribute set to
org.apache.camel.component.jms.JmsConfiguration.

This bean creates an instance of the JMS component configuration.

7. Set the bean's id attribute to the value supplied for the ref attribute in Step 5.

CHAPTER 3. JMS TRANSACTIONS

37

8. Add a property child to the bean to configure the JMS connection factory.

a. Set the name attribute to connectionFactory.

b. Set the ref attribute to the id of a bean that configures a JMS connection factory.

9. Add an empty property child to the bean that specifies the transaction manager the component
will use.

a. Set the name attribute to transactionManager.

b. Set the ref attribute to the id of a bean that configures transaction manager the endpoint will
use.

See Chapter 2, Selecting a Transaction Manager.

10. Add an empty property child to the bean that configures the component to participate in
transactions.

a. Set the name attribute to transacted.

b. Set the value attribute to true.

The transacted property determines if the endpoint can participate in transactions.

11. Optionally add an empty property child to the bean to change the default cache level.

a. Set the name attribute to cacheLevelName.

b. Set the value attribute to to a valid cache level. For example, the recommended cache level
for an ActiveMQ messaging resource is CACHE_CONSUMER, which gives optimum
performance. For more details, see the section called “Cache levels and performance”.

The JmsComponent bean's id specifies the URI prefix used by JMS endpoints that will use the
transactional JMS component. For example, in Example 3.1, “JMS Transaction Manager Configuration”
the JmsComponent bean's id equals jmstx, so endpoint that use the configured JMS component use
the jmstx: prefix.

The JmsConfiguration class supports a large number of other properties, which are essentially identical
to the JMS URI options described in chapter "JMS" in "Apache Camel Component Reference" .

Cache levels and performance

The settings for JMS cache level can impact performance when you are using transactions. The default
cache level is CACHE_AUTO. This default auto detects if an external transaction manager is in use and
sets the cache level as follows:

CACHE_CONSUMER if only local JMS resources are in use

CACHE_NONE if an external transaction manager is in use

This behavior guarantees that there will not be any conflicts between caching and the transaction
manager because some XA transaction managers require that caching is disabled. However, this
behavior may not produce optimal performance.

If your transaction manager does not require that caching be disabled, you can raise the cache level to
improve performance. Consult your transaction manager's documentation to determine what caching

Red Hat JBoss Fuse 6.2 Transaction Guide

38

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JMS.html

level it can support. Then override the default cache level by setting the JMS component's
cacheLevelName property to the new cache level.

NOTE

When the transactional resource is ActiveMQ, it is generally safe to set the cache level to
CACHE_CONSUMER and this setting is recommended, because it improves
performance significantly.

See chapter "JMS" in "Apache Camel Component Reference" for information on setting the cache level
of the JMS component.

Example

Example 3.1, “JMS Transaction Manager Configuration” shows the configuration of a JMS component,
jmstx that supports Spring transactions. The JMS component is layered over an embedded instance of
Apache ActiveMQ and the transaction manager is an instance of JmsTransactionManager.

Example 3.1. JMS Transaction Manager Configuration

To use this JMS component in a route you would use the URI prefix jmstx: as shown in Example 3.2,
“URI for Using Transacted JMS Endpoint”.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">
 ...
 <bean id="jmstx" class="org.apache.camel.component.jms.JmsComponent">
 <property name="configuration" ref="jmsConfig" />
 </bean>

 <bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsConnectionFactory"/>
 <property name="transactionManager" ref="jmsTransactionManager"/>
 <property name="transacted" value="true"/>
 <property name="cacheLevelName" value="CACHE_CONNECTION"/>
 </bean>

 <bean id="jmsTransactionManager"
class="org.springframework.jms.connection.JmsTransactionManager">
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 </bean>

 <bean id="jmsConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://broker1?brokerConfig=xbean:tutorial/activemq.xml"/>
 </bean>

</beans>

CHAPTER 3. JMS TRANSACTIONS

39

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JMS.html

Example 3.2. URI for Using Transacted JMS Endpoint

3.2. INONLY MESSAGE EXCHANGE PATTERN

Overview

The type of exchange created by a JMS consumer endpoint depends on the value of the JMSReplyTo
header in the incoming message. If the JMSReplyTo header is absent from the incoming message, the
consumer endpoint produces exchanges with the InOnly message exchange pattern (MEP). For
example, consider the following route that receives a stream of stock quotes from the queue,
queue:rawStockQuotes, reformats the incoming messages, and then forwards them to another queue,
queue:formattedStockQuotes.

Routes that process InOnly exchanges can easily be combined with transactions. In the preceding
example, the JMS queues are accessed through the transactional JMS instance, jmstx (see Section 3.1,
“Configuring the JMS Component”). The transaction initiated by the consumer endpoint,
jmstx:queue:rawStockQuotes, ensures that each incoming message is reliably transmitted to the
producer endpoint, jmstx:queue:formattedStockQuotes.

Enforcing the InOnly message exchange pattern

Typically, a route designed to work for InOnly exchanges does not work properly for InOut exchanges.
Unfortunately, this leaves the route at the mercy of the external JMS client: if the client should
accidentally set a JMSReplyTo header, the JMS consumer endpoint will create an InOut exchange,
which could lead to errors in a route that is designed for InOnly exchanges.

To avoid the risk of creating InOut exchanges when they are not wanted, you can use the
disableReplyTo option in the JMS consumer to enforce the InOnly MEP. For example, the following
route is guaranteed to process all incoming messages as InOnly exchanges:

InOnly scenario

Figure 3.1, “Transactional JMS Route that Processes InOnly Exchanges” shows an overview of a
scenario consisting of JMS consumer endpoint feeding into a route that ends with a JMS producer
endpoint. This route is designed to process exclusively InOnly exchanges.

from("jmstx:queue:rawStockQuotes")
 .process(myFormatter)
 .to("jmstx:queue:formattedStockQuotes");

from("jmstx:queue:rawStockQuotes")
 .process(myFormatter)
 .to("jmstx:queue:formattedStockQuotes");

from("jmstx:queue:rawStockQuotes?disableReplyTo=true")
 .process(myFormatter)
 .to("jmstx:queue:formattedStockQuotes");

Red Hat JBoss Fuse 6.2 Transaction Guide

40

Figure 3.1. Transactional JMS Route that Processes InOnly Exchanges

Description of InOnly scenario

Messages coming into the route shown in Figure 3.1, “Transactional JMS Route that Processes InOnly
Exchanges” are processed as follows:

1. When a oneway message (JMSReplyTo header is absent) is polled by the JMS consumer
endpoint, the endpoint starts a transaction, provisionally takes the message off the incoming
queue, and creates an InOnly exchange object to hold the message.

2. After propagating through the route, the InOnly exchange arrives at the JMS producer endpoint,
which provisionally writes the exchange to the outgoing queue.

3. At this point, we have arrived at the end of the transaction scope. If there were no errors (and the
transaction is not marked for rollback), the transaction is automatically committed. Upon
committing, both of the JMS endpoints send acknowledgement messages to the queues, turning
the provisional read and the provisional write into a committed read and a committed write.

3.3. INOUT MESSAGE EXCHANGE PATTERN

Overview

Combining InOut mode with transactional JMS endpoints is problematic. In most cases, this mode of
operation is fundamentally inconsistent and it is recommended that you refactor your routes to avoid this
combination.

Enabling InOut mode in JMS

In a JMS consumer endpoint, InOut mode is automatically triggered by the presence of a JMSReplyTo
header in an incoming JMS message. In this case, the endpoint creates an InOut exchange to hold the
incoming message and it will use the JMSReplyTo queue to send the reply message.

Problems combining InOut mode with transactions

The InOut MEP is fundamentally incompatible with a route containing transactional JMS endpoints. In
almost all cases, the route will hang and no reply will ever be sent. To understand why, consider the
following route for processing payment requests:

from("jmstx:queue:rawPayments")
 .process(inputReformatter)
 .to("jmstx:queue:formattedPayments")

CHAPTER 3. JMS TRANSACTIONS

41

The JMS consumer endpoint, jmstx:queue:rawPayments, polls for messages, which are expected to
have a JMSReplyTo header (for InOut mode). For each incoming message, a new transaction is started
and an InOut exchange is created. After reformatting by the inputReformatter processor, the InOut
exchange proceeds to the JMS producer endpoint, jmstx:queue:formattedPayments, which sends the
message and expects to receive a reply on a temporary queue. This scenario is illustrated by Figure 3.2,
“Transactional JMS Route that Processes InOut Exchanges”

Figure 3.2. Transactional JMS Route that Processes InOut Exchanges

The scope of the transaction includes the entire route, the request leg as well as the reply leg. The
processing of the route proceeds as expected until the exchange arrives at the JMS producer endpoint,
at which point the producer endpoint makes a provisional write to the outgoing request queue. At this
point the route hangs: the JMS producer endpoint is waiting to receive a message from the reply queue,
but the reply can never be received because the outgoing request message was only provisionally
written to the request queue (and is thus invisible to the service at the other end of the queue).

It turns out that this problem is not trivial to solve. When you consider all of the ways that this scenario
could fail and how to guarantee transactional integrity in all cases, it would require some substantial
changes to the way that Apache Camel works. Fortunately, there is a simpler way of dealing with
request/reply semantics that is already supported by Apache Camel.

Refactoring routes to avoid InOut mode

If you want to implement a transactional JMS route that has request/reply semantics, the easiest solution
is to refactor your route to avoid using InOut exchanges. The basic idea is that instead of defining a
single route that combines a request leg and a reply leg, you should refactor it into two routes: one for
the (outbound) request leg and another for the (inbound) reply leg. For example, the payments example
could be refactored into two separate routes as follows:

Instead of a single incoming queue, queue:rawPayments, which uses the queue from JMSReplyTo for
replies, we now have a pair of queues: queue:rawPaymentsIn, for receiving incoming requests, and

 .process(outputReformatter);

from("jmstx:queue:rawPaymentsIn")
 .process(inputReformatter)
 .to("jmstx:queue:formattedPaymentsIn");

from("jmstx:queue:formattedPaymentsOut")
 .process(outputReformatter)
 .to("jmstx:queue:rawPaymentsOut");

Red Hat JBoss Fuse 6.2 Transaction Guide

42

queue:formattedPaymentsOut, for sending outgoing replies. Instead of a single outgoing queue,
queue:formattedPayments, which implicitly uses a temporary queue for replies, we now have a pair of
queues: queue:formattedPaymentsOut, for forwarding outgoing requests, and
queue:formattedPaymentsIn, for receiving incoming replies. This scenario is illustrated by Figure 3.3,
“Pair of Transactional JMS Routes that Support Request/Reply Semantics”.

Figure 3.3. Pair of Transactional JMS Routes that Support Request/Reply Semantics

A special case

There is a special case of a transactional JMS route where you can process InOut exchanges. If you look
at the preceding examples, it is clear that the essential cause of deadlock in the route is the presence of
JMS producer endpoints that obey request/reply semantics. In contrast to this, if you define a route
where the JMS producer endpoints obey oneway semantics (fire-and-forget), deadlock does not occur.

For example, if you want to have a route that records all of the processed exchanges in a log queue,
queue:log, you could define a route like the following:

The exchanges coming into this route are of InOut type and both the consumer endpoint,
jmstx:queue:inOutSource, and the producer endpoint, jmstx:queue:log, are transactional. The key to
avoiding deadlock in this case is to force the producer endpoint to operate in oneway mode, by passing
the ExchangePattern.InOnly parameter to the to() command,

from("jmstx:queue:inOutSource")
 .to(ExchangePattern.InOnly, "jmstx:queue:log")
 .process(myProcessor);

CHAPTER 3. JMS TRANSACTIONS

43

CHAPTER 4. DATA ACCESS WITH SPRING

Abstract

If you are using transactions in your application, you will inevitably also be accessing some persistent
resources. Spring provides a variety of APIs to support programmatic access to persistent resources and
you might find it helpful to familiarize yourself with these data access APIs. In particular, this chapter
describes Spring's JDBC API in some detail.

4.1. PROGRAMMING DATA ACCESS WITH SPRING TEMPLATES

Overview

To provide access to various kinds of persistent storage, Spring encapsulates the relevant API in a
template class. The purpose of the template class is to provide a simplifying wrapper layer around each
type of storage and to ensure that any required Spring features are integrated cleanly with the
persistence layer.

Spring provides the following template classes for data access:

JmsTemplate class.

JdbcTemplate class.

SimpleJdbcTemplate class.

NamedParameterJdbcTemplate class.

SqlMapClientTemplate class.

HibernateTemplate class.

JdoTemplate class.

JpaTemplate class.

JmsTemplate class

The org.springframework.jms.core.JmsTemplate class is a general-purpose class for managing Java
Messaging Service (JMS) connections. One of the main advantages of this class is that it simplifies the
JMS synchronous access codes.

To create an instance of a JmsTemplate, you need to supply a reference to a
javax.jms.ConnectionFactory object.

JdbcTemplate class

The org.springframework.jdbc.core.JdbcTemplate class is a wrapper around a JDBC data source,
enabling you to access a JDBC database using SQL operations.

To create an instance of a JdbcTemplate, you need to supply a reference to a javax.sql.DataSource
object (for example, see Section 2.6.1, “JDBC Data Source”).

Red Hat JBoss Fuse 6.2 Transaction Guide

44

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jms/core/JmsTemplate.html
http://docs.oracle.com/javaee/1.4/api/javax/jms/ConnectionFactory.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/index.html?org/springframework/jdbc/core/JdbcTemplate.html
http://java.sun.com/javase/6/docs/api/javax/sql/DataSource.html

NOTE

For a detailed discussion of the JdbcTemplate class, see Section 4.2, “Spring JDBC
Template”.

SimpleJdbcTemplate class

The org.springframework.jdbc.core.simple.SimpleJdbcTemplate class is a convenience wrapper around
the JdbcTemplate class. This class has been pared down so that it includes only the most commonly
used template methods and it has been optimized to exploit Java 5 features.

NamedParameterJdbcTemplate class

The org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate class is a convenience
wrapper around the JdbcTemplate class, which enables you to use named parameters instead of the
usual ? placeholders embedded in a SQL statement.

SqlMapClientTemplate class

The org.springframework.orm.ibatis.SqlMapClientTemplate class is a simplifying wrapper around the
iBATIS SqlMapClient class. iBATIS is an Object Relational Mapper (ORM) that is capable of
automatically instantiating Java objects based on a given SQL database schema.

HibernateTemplate class

The org.springframework.orm.hibernate3.HibernateTemplate class provides an alternative to working
with the raw Hibernate 3 session API (based on sessions returned from
SessionFactory.getCurrentSession()).

NOTE

For Hibernate versions 3.0.1 or later, the Spring documentation recommends that you use
the native Hibernate 3 API instead of the HibernateTemplate class, because
transactional Hibernate access code can now be coded using the native Hibernate API.

JdoTemplate class

The org.springframework.orm.jdo.JdoTemplate class provides an alternative to working with the raw
JDO PersistenceManager API. The main difference between the APIs relates to their exception handling.
See the Spring JavaDoc for details.

JpaTemplate class

The org.springframework.orm.jpa.JpaTemplate class provides an alternative to working with the raw JPA
EntityManager API..

NOTE

The Spring documentation now recommends that you use the native JPA programming
interface instead of the JpaTemplate class. Considering that the JPA programming
interface is itself a thin wrapper layer, there is little advantage to be had by adding another
wrapper layer on top of it.

CHAPTER 4. DATA ACCESS WITH SPRING

45

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/index.html?org/springframework/jdbc/core/simple/SimpleJdbcTemplate.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/core/namedparam/NamedParameterJdbcTemplate.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/ibatis/SqlMapClientTemplate.html
http://ibatis.apache.org/
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/hibernate3/HibernateTemplate.html
https://hibernate.org/
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jdo/JdoTemplate.html
http://www.oracle.com/technetwork/java/index.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/orm/jpa/JpaTemplate.html
http://java.sun.com/javaee/technologies/persistence.jsp

4.2. SPRING JDBC TEMPLATE

Overview

This section describes how to access a database through the Spring JdbcTemplate class and provides
a code example that shows how to use the JdbcTemplate class in practice.

JdbcTemplate class

The org.springframework.jdbc.core.JdbcTemplate class is the key class for accessing databases through
JDBC in Spring. It provides a complete API for executing SQL statements on the database at run time.
The following kinds of SQL operations are supported by JdbcTemplate:

Querying (SELECT operations).

Updating (INSERT, UPDATE, and DELETE operations).

Other SQL operations (all other SQL operations).

Querying

The JdbcTemplate query methods are used to send SELECT queries to the database. A variety of
different query methods are supported, depending on how complicated the return values are.

The simplest case is where you expect the query to return a single value from a single row. In this case,
you can use a type-specific query method to retrieve the single value. For example, if you want to
retrieve the balance of a particular customer's account from the accounts table, you could use the
following code:

The arguments to the SQL query are provided as a static array of objects, Object[]{name}. In this
example, the name string is bound to the question mark, ?, in the SQL query string. If there are multiple
arguments to the query string (where each argument in the SQL string is represented by a question
mark, ?), you would provide an object array with multiple arguments—for example, Object[]
{arg1,arg2,arg3,...}.

The next most complicated case is where you expect the query to return multiple values from a single
row. In this case, you can use one of the queryForMap() methods to retrieve the contents of a single
row. For example, to retrieve the complete account details from a single customer:

Where the returned map object, rowMap, contains one entry for each column, using the column name as
the key.

// Java
int origAmount = jdbc.queryForInt(
 "select amount from accounts where name = ?",
 new Object[]{name}
);

// Java
Map<String,Object> rowMap = jdbc.queryForMap(
 "select * from accounts where name = ?",
 new Object[]{name}
);

Red Hat JBoss Fuse 6.2 Transaction Guide

46

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html
http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html

The most general case is where you expect the query to return multiple values from multiple rows. In this
case, you can use one of the queryForList() methods to return the contents of multiple rows. For
example, to return all of the rows from the accounts table:

In some cases, a more convenient way of returning the table rows is to provide a RowMapper, which
automatically converts each row to a Java object. The return value of a query call would then be a list of
Java objects. For example, the contents of the accounts table could be returned as follows:

Where each Account object in the returned list encapsulates the contents of a single row.

Updating

The JdbcTemplate update methods are used to perform INSERT, UPDATE, or DELETE operations on
the database. The update methods modify the database contents, but do not return any data from the
database (apart from an integer return value, which counts the number of rows affected by the
operation).

For example, the following update operation shows how to set the amount field in a customer's account:

Other SQL operations

For all other SQL operations, there is a general purpose execute() method. For example, you would use
this method to execute a create table statement, as follows:

Example application

// Java
List<Map<String,Object> > rows = jdbc.queryForList(
 "select * from accounts"
);

// Java
List<Account> accountList = jdbc.query(
 "select * from accounts",
 new Object[]{},
 new RowMapper() {
 public Object mapRow(ResultSet rs, int rowNum) throws SQLException {
 Account acc = new Account();
 acc.setName(rs.getString("name"));
 acc.setAmount(rs.getLong("amount"));
 return acc;
 }
 }
);

// Java
jdbc.update(
 "update accounts set amount = ? where name = ?",
 new Object[] {newAmount, name}
);

// Java
jdbc.execute("create table accounts (name varchar(50), amount int)");

CHAPTER 4. DATA ACCESS WITH SPRING

47

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html

To illustrate the database operations you can perform through the JdbcTemplate class, consider the
account service, which provides access to bank account data stored in a database. It is assumed that
the database is accessible through a JDBC data source and the account service is implemented by an
AccountService class that exposes the following methods:

credit()—add a specific amount of money to a named account.

debit()—subtract a specific amount of money from a named account.

By combining credit and debit operations, it is possible to model money transfers, which can also be
used to demonstrate key properties of transaction processing.

Format of money transfer orders

For the account service example, the money transfer orders have a simple XML format, as follows:

When this money transfer order is executed, the amount of money specified in the amount element is
debited from the sender account and credited to the receiver account.

CreateTable class

Before we can start performing any queries on the database, the first thing we need to do is to create an
accounts table and populate it with some initial values. Example 4.1, “The CreateTable Class” shows
the definition of the CreateTable class, which is responsible for intializing the accounts table.

Example 4.1. The CreateTable Class

<transaction>
 <transfer>
 <sender>Major Clanger</sender>
 <receiver>Tiny Clanger</receiver>
 <amount>90</amount>
 </transfer>
</transaction>

// Java
package com.fusesource.demo.tx.jdbc.java;

import javax.sql.DataSource;

import org.apache.log4j.Logger;
import org.springframework.jdbc.core.JdbcTemplate;

public class CreateTable {
 private static Logger log = Logger.getLogger(CreateTable.class);

 protected DataSource dataSource;
 protected JdbcTemplate jdbc;

 public DataSource getDataSource() {
 return dataSource;
 }

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;

Red Hat JBoss Fuse 6.2 Transaction Guide

48

Where the accounts table consists of two columns: name, a string value that records the account
holder's name, and amount, a long integer that records the amount of money in the account. Because
this example uses an ephemeral database, which exists only temporarily in memory, it is necessary to
re-initialize the database every time the example runs. A convenient way to initialize the table is by
instantiating a CreateTable bean in the Spring XML configuration, as follows:

As soon as the createTable bean is instantiated, the accounts table is ready for use. Note that a
reference to the JDBC data source, dataSource, is passed to the CreateTable() constructor, because
the data source is needed to create a JdbcTemplate instance.

AccountService class

Example 4.2, “The AccountService class” shows an outline of the AccountService class, not including
the service methods that access the database. The class expects to receive a data source reference
through dependency injection, which it then uses to create a JdbcTemplate instance.

 }

 public CreateTable(DataSource ds) {
 log.info("CreateTable constructor called");
 setDataSource(ds);
 setUpTable();
 }

 public void setUpTable() {
 log.info("About to set up table...");
 jdbc = new JdbcTemplate(dataSource);
 jdbc.execute("create table accounts (name varchar(50), amount int)");
 jdbc.update("insert into accounts (name,amount) values (?,?)",
 new Object[] {"Major Clanger", 2000}
);
 jdbc.update("insert into accounts (name,amount) values (?,?)",
 new Object[] {"Tiny Clanger", 100}
);
 log.info("Table created");
 }
}

<beans ...>
 <!-- datasource to the database -->
 <bean id="dataSource" class="org.springframework.jdbc.datasource.SimpleDriverDataSource">
 <property name="driverClass" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:mem:camel"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </bean>

 <!-- Bean to initialize table in the DB -->
 <bean id="createTable" class="com.fusesource.demo.tx.jdbc.java.CreateTable">
 <constructor-arg ref="dataSource" />
 </bean>
 ...
</beans>

CHAPTER 4. DATA ACCESS WITH SPRING

49

Example 4.2. The AccountService class

You can conveniently instantiate an AccountService bean in Spring XML, using dependency injection to
pass the data source reference, as follows:

AccountService.credit() method

The credit() method adds the specified amount of money, amount, to the specified account, name in
the accounts database table, as follows:

package com.fusesource.demo.tx.jdbc.java;

import java.util.List;

import javax.sql.DataSource;

import org.apache.camel.Exchange;
import org.apache.camel.language.XPath;
import org.apache.log4j.Logger;
import org.springframework.jdbc.core.JdbcTemplate;

public class AccountService {
 private static Logger log = Logger.getLogger(AccountService.class);
 private JdbcTemplate jdbc;

 public AccountService() {
 }

 public void setDataSource(DataSource ds) {
 jdbc = new JdbcTemplate(ds);
 }
 ...
 // Service methods (see below)
 ...
}

<beans ...>
 <!-- Bean for account service -->
 <bean id="accountService" class="com.fusesource.demo.tx.jdbc.java.AccountService">
 <property name="dataSource" ref="dataSource"/>
 </bean>
 ...
</beans>

1

2

 public void credit(
 @XPath("/transaction/transfer/receiver/text()") String name,
 @XPath("/transaction/transfer/amount/text()") String amount

)
 {
 log.info("credit() called with args name = " + name + " and amount = " + amount);

 int origAmount = jdbc.queryForInt(

Red Hat JBoss Fuse 6.2 Transaction Guide

50

1

2

3

For methods invoked using the beanRef() (or bean()) DSL command, Apache Camel provides a
powerful set of annotations for binding the exchange to the method parameters. In this example,
the parameters are annotated using the @XPath annotation, so that the result of the XPath
expression is injected into the corresponding parameter.

For example, the first XPath expression, /transaction/transfer/receiver/text(), selects the contents
of the receiver XML element from the body of the exchange's In message and injects them into the
name parameter. Likewise, the contents of the amount element are injected into the amount
parameter.

The JdbcTemplate.queryForInt() method returns the current balance of the name account. For
details about using JdbcTemplate to make database queries, see the section called “Querying”.

The JdbcTemplate.update() method updates the balance of the name account, adding the
specified amount of money. For details about using JdbcTemplate to make database updates, see
the section called “Updating”.

AccountService.debit() method

The debit() method subtracts the specified amount of money, amount, from the specified account,
name in the accounts database table, as follows:

3

 "select amount from accounts where name = ?",
 new Object[]{name}
);
 int newAmount = origAmount + Integer.parseInt(amount);

 jdbc.update(
 "update accounts set amount = ? where name = ?",

 new Object[] {newAmount, name}
);
 }

1

2

3

 public void debit(
 @XPath("/transaction/transfer/sender/text()") String name,
 @XPath("/transaction/transfer/amount/text()") String amount

)
 {
 log.info("debit() called with args name = " + name + " and amount = " + amount);
 int iamount = Integer.parseInt(amount);

 if (iamount > 100) {
 throw new IllegalArgumentException("Debit limit is 100");

 }
 int origAmount = jdbc.queryForInt(
 "select amount from accounts where name = ?",
 new Object[]{name}
);
 int newAmount = origAmount - Integer.parseInt(amount);

 if (newAmount < 0) {
 throw new IllegalArgumentException("Not enough in account");

 }

 jdbc.update(
 "update accounts set amount = ? where name = ?",

CHAPTER 4. DATA ACCESS WITH SPRING

51

1

2

3

The parameters of the debit() method are also bound to the exchange using annotations. In this
case, however, the name of the account is bound to the sender XML element in the In message.

There is a fixed debit limit of 100. Amounts greater than this will trigger an IllegalArgument
exception. This feature is useful, if you want to trigger a rollback to test a transaction example.

If the balance of the account would go below zero after debiting, abort the transaction by calling the
IllegalArgumentException exception.

AccountService.dumpTable() method

The dumpTable() method is convenient for testing. It simply returns the entire contents of the accounts
table as a string. It is implemented as follows:

 new Object[] {newAmount, name}
);
 }

 public void dumpTable(Exchange ex) {
 log.info("dump() called");
 List<?> dump = jdbc.queryForList("select * from accounts");
 ex.getIn().setBody(dump.toString());
 }

Red Hat JBoss Fuse 6.2 Transaction Guide

52

CHAPTER 5. TRANSACTION DEMARCATION

Abstract

Transaction demarcation refers to the procedures for starting, committing, and rolling back transactions.
This chapter describes the mechanisms that are available for controlling transaction demarcation, both
by programming and by configuration.

5.1. DEMARCATION BY MARKING THE ROUTE

Overview

Apache Camel provides a simple mechanism for initiating a transaction in a route, by inserting the
transacted() command in the Java DSL or by inserting the <transacted/> tag in the XML DSL.

Sample route with JDBC resource

Figure 5.1, “Demarcation by Marking the Route” shows an example of a route that is made transactional
by adding the transacted() DSL command to the route. All of the route nodes following the transacted()
node are included in the transaction scope. In this example, the two following nodes access a JDBC
resource.

Figure 5.1. Demarcation by Marking the Route

The transacted processor demarcates transactions as follows: when an exchange enters the
transacted processor, the transacted processor invokes the default transaction manager to begin a
transaction (attaching it to the current thread); when the exchange reaches the end of the remaining
route, the transacted processor invokes the transaction manager to commit the current transaction.

Route definition in Java DSL

The following Java DSL example shows how to define a transactional route by marking the route with the
transacted() DSL command:

// Java
import org.apache.camel.spring.SpringRouteBuilder;

public class MyRouteBuilder extends SpringRouteBuilder {
 ...

CHAPTER 5. TRANSACTION DEMARCATION

53

In this example, the file endpoint reads some files in XML format that describe a transfer of funds from
one account to another. The first beanRef() invocation credits the specified sum of money to the
beneficiary's account and then the second beanRef() invocation subtracts the specified sum of money
from the sender's account. Both of the beanRef() invocations cause updates to be made to a database
resource, which we are assuming is bound to the transaction through the transaction manager (for
example, see Section 2.6.1, “JDBC Data Source”). For a sample implementation of the accountService
bean, see Section 4.2, “Spring JDBC Template”.

Using SpringRouteBuilder

The beanRef() Java DSL command is available only in the SpringRouteBuilder class. It enables you to
reference a bean by specifying the bean's Spring registry ID (for example, accountService). If you do
not use the beanRef() command, you could inherit from the org.apache.camel.builder.RouteBuilder
class instead.

Route definition in Spring XML

The preceding route can equivalently be expressed in Spring XML, where the <transacted/> tag is used
to mark the route as transactional, as follows:

Default transaction manager and transacted policy

To demarcate transactions, the transacted processor must be associated with a particular transaction
manager instance. To save you having to specify the transaction manager every time you invoke
transacted(), the transacted processor automatically picks a sensible default. For example, if there is
only one instance of a transaction manager in your Spring configuration, the transacted processor
implicitly picks this transaction manager and uses it to demarcate transactions.

A transacted processor can also be configured with a transacted policy, of TransactedPolicy type,
which encapsulates a propagation policy and a transaction manager (see Section 5.3, “Propagation
Policies” for details). The following rules are used to pick the default transaction manager or transaction
policy:

 public void configure() {
 from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .beanRef("accountService","debit");
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file:src/data?noop=true"/>
 <transacted/>
 <bean ref="accountService" method="credit"/>
 <bean ref="accountService" method="debit"/>
 </route>
 </camelContext>

</beans>

Red Hat JBoss Fuse 6.2 Transaction Guide

54

1. If there is only one bean of org.apache.camel.spi.TransactedPolicy type, use this bean.

NOTE

The TransactedPolicy type is a base type of the SpringTransactionPolicy type
that is described in Section 5.3, “Propagation Policies”. Hence, the bean referred
to here could be a SpringTransactionPolicy bean.

2. If there is a bean of type, org.apache.camel.spi.TransactedPolicy, which has the ID,
PROPAGATION_REQUIRED, use this bean.

3. If there is only one bean of org.springframework.transaction.PlatformTransactionManager
type, use this bean.

You also have the option of specifying a bean explicitly by providing the bean ID as an argument to
transacted()—see the section called “Sample route with PROPAGATION_NEVER policy in Java DSL”.

Transaction scope

If you insert a transacted processor into a route, a new transaction is created each time an exchange
passes through this node and the transaction's scope is defined as follows:

1. The transaction is associated with the current thread only.

2. The transaction scope encompasses all of the route nodes following the transacted processor.

In particular, all of the route nodes preceding the transacted processor are not included in the
transaction (but the situation is different, if the route begins with a transactional endpoint—see
Section 5.2, “Demarcation by Transactional Endpoints”). For example, the following route is incorrect,
because the transacted() DSL command mistakenly appears after the first beanRef() call (which
accesses the database resource):

No thread pools in a transactional route

It is crucial to understand that a given transaction is associated with the current thread only. It follows
that you must not create a thread pool in the middle of a transactional route, because the processing in
the new threads will not participate in the current transaction. For example, the following route is bound
to cause problems:

// Java
import org.apache.camel.spring.SpringRouteBuilder;

public class MyRouteBuilder extends SpringRouteBuilder {
 ...
 public void configure() {
 from("file:src/data?noop=true")
 .beanRef("accountService","credit")
 .transacted() // <-- WARNING: Transaction started in the wrong place!
 .beanRef("accountService","debit");
 }
}

// Java
import org.apache.camel.spring.SpringRouteBuilder;

CHAPTER 5. TRANSACTION DEMARCATION

55

A route like the preceding one is certain to corrupt your database, because the threads() DSL command
is incompatible with transacted routes. Even if the threads() call precedes the transacted() call, the
route will not behave as expected.

Breaking a route into fragments

If you want to break a route into fragments and have each route fragment participate in the current
transaction, you can use direct: endpoints. For example, to send exchanges to separate route
fragments, depending on whether the transfer amount is big (greater than 100) or small (less than or
equal to 100), you can use the choice() DSL command and direct endpoints, as follows:

Both the fragment beginning with direct:txbig and the fragment beginning with direct:txsmall
participate in the current transaction, because the direct endpoints are synchronous. This means that
the fragments execute in the same thread as the first route fragment and, therefore, they are included in
the same transaction scope.

public class MyRouteBuilder extends SpringRouteBuilder {
 ...
 public void configure() {
 from("file:src/data?noop=true")
 .transacted()
 .threads(3) // WARNING: Subthreads are not in transaction scope!
 .beanRef("accountService","credit")
 .beanRef("accountService","debit");
 }
}

// Java
import org.apache.camel.spring.SpringRouteBuilder;

public class MyRouteBuilder extends SpringRouteBuilder {
 ...
 public void configure() {
 from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .choice().when(xpath("/transaction/transfer[amount > 100]"))
 .to("direct:txbig")
 .otherwise()
 .to("direct:txsmall");

 from("direct:txbig")
 .beanRef("accountService","debit")
 .beanRef("accountService","dumpTable")
 .to("file:target/messages/big");

 from("direct:txsmall")
 .beanRef("accountService","debit")
 .beanRef("accountService","dumpTable")
 .to("file:target/messages/small");
 }
}

Red Hat JBoss Fuse 6.2 Transaction Guide

56

NOTE

You must not use seda endpoints to join the route fragments, because seda consumer
endpoints create a new thread (or threads) to execute the route fragment (asynchronous
processing). Hence, the fragments would not participate in the original transaction.

Resource endpoints

The following Apache Camel components act as resource endpoints when they appear as the
destination of a route (for example, if they appear in the to() DSL command). That is, these endpoints
can access a transactional resource, such as a database or a persistent queue. The resource endpoints
can participate in the current transaction, as long as they are associated with the same transaction
manager as the transacted processor that initiated the current transaction. If you need to access
multiple resources, you must deploy your application in a J2EE container, which gives you access to a
global transaction manager.

JMS

ActiveMQ

AMQP

JavaSpace

JPA

Hibernate

iBatis

JBI

JCR

JDBC

LDAP

Sample route with resource endpoints

For example, the following route sends the order for a money transfer to two different JMS queues: the
credits queue processes the order to credit the receiver's account; and the debits queue processes the
order to debit the sender's account. Since there must only be a credit, if there is a corresponding debit, it
makes sense to enclose the enqueueing operations in a single transaction. If the transaction succeeds,
both the credit order and the debit order will be enqueued, but if an error occurs, neither order will be
enqueued.

5.2. DEMARCATION BY TRANSACTIONAL ENDPOINTS

from("file:src/data?noop=true")
 .transacted()
 .to("jmstx:queue:credits")
 .to("jmstx:queue:debits");

CHAPTER 5. TRANSACTION DEMARCATION

57

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JMS.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-ActiveMQ.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-AMQP.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JPA.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-iBATIS.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JCR.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JDBC.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-LDAP.html

Overview

If a consumer endpoint at the start of a route accesses a resource, the transacted() command is of no
use, because it initiates the transaction after an exchange is polled. In other words, the transaction starts
too late to include the consumer endpoint within the transaction scope. The correct approach in this case
is to make the endpoint itself responsible for initiating the transaction. An endpoint that is capable of
managing transactions is known as a transactional endpoint.

Sample route with JMS endpoint

Figure 5.2, “Demarcation by Transactional Endpoints” shows an example of a route that is made
transactional by the presence of a transactional endpoint at the start of the route (in the from()
command). All of the route nodes are included in the transaction scope. In this example, all of the
endpoints in the route access a JMS resource.

Figure 5.2. Demarcation by Transactional Endpoints

There are two different models of demarcation by transactional endpoint, as follows:

General case—normally, a transactional endpoint demarcates transactions as follows: when an
exchange arrives at the endpoint (or when the endpoint successfully polls for an exchange), the
endpoint invokes its associated transaction manager to begin a transaction (attaching it to the
current thread); and when the exchange reaches the end of the route, the transactional endpoint
invokes the transaction manager to commit the current transaction.

JMS endpoint with InOut exchange—when a JMS consumer endpoint receives an InOut
exchange and this exchange is routed to another JMS endpoint, this must be treated as a
special case. The problem is that the route can deadlock, if you try to enclose the entire
request/reply exchange in a single transaction. For details of how to resolve this problem, see
Section 3.3, “InOut Message Exchange Pattern”.

Route definition in Java DSL

The following Java DSL example shows how to define a transactional route by starting the route with a
transactional endpoint:

from("jmstx:queue:giro")
 .to("jmstx:queue:credits")
 .to("jmstx:queue:debits");

Red Hat JBoss Fuse 6.2 Transaction Guide

58

Where the transaction scope encompasses the endpoints, jmstx:queue:giro, jmstx:queue:credits, and
jmstx:queue:debits. If the transaction succeeds, the exchange is permanently removed from the giro
queue and pushed on to the credits queue and the debits queue; if the transaction fails, the exchange
does not get put on to the credits and debits queues and the exchange is pushed back on to the giro
queue (by default, JMS will automatically attempt to redeliver the message).

The JMS component bean, jmstx, must be explicitly configured to use transactions, as follows:

Where the transaction manager instance, jmsTransactionManager, is associated with the JMS
component and the transacted property is set to true to enable transaction demarcation for InOnly
exchanges. For the complete Spring XML configuration of this component, see Example 3.1, “JMS
Transaction Manager Configuration”.

Route definition in Spring XML

The preceding route can equivalently be expressed in Spring XML, as follows:

transacted() not required

The transacted() DSL command is not required in a route that starts with a transactional endpoint.
Nevertheless, assuming that the default transaction policy is PROPAGATION_REQUIRED (see
Section 5.3, “Propagation Policies”), it is usually harmless to include the transacted() command, as in
this example:

<beans ...>
 <bean id="jmstx" class="org.apache.camel.component.jms.JmsComponent">
 <property name="configuration" ref="jmsConfig" />
 </bean>

 <bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsConnectionFactory"/>
 <property name="transactionManager" ref="jmsTransactionManager"/>
 <property name="transacted" value="true"/>
 </bean>
 ...
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="jmstx:queue:giro"/>
 <to uri="jmstx:queue:credits"/>
 <to uri="jmstx:queue:debits"/>
 </route>
 </camelContext>

</beans>

from("jmstx:queue:giro")
 .transacted()
 .to("jmstx:queue:credits")
 .to("jmstx:queue:debits");

CHAPTER 5. TRANSACTION DEMARCATION

59

However, it is possible for this route to behave in unexpected ways—for example, if a single
TransactedPolicy bean having a non-default propagation policy is created in Spring XML (see the
section called “Default transaction manager and transacted policy”)—so it is generally better not to
include the transacted() DSL command in routes that start with a transactional endpoint.

Transactional endpoints

The following Apache Camel components act as transactional endpoints when they appear at the start of
a route (for example, if they appear in the from() DSL command). That is, these endpoints can be
configured to behave as a transactional client and they can also access a transactional resource.

JMS

ActiveMQ

AMQP

JavaSpace

JPA

5.3. PROPAGATION POLICIES

Overview

If you want to influence the way a transactional client creates new transactions, you can do so by
specifying a transaction policy for it. In particular, Spring transaction policies enable you to specify a
propagation behavior for your transaction. For example, if a transactional client is about to create a new
transaction and it detects that a transaction is already associated with the current thread, should it go
ahead and create a new transaction, suspending the old one? Or should it simply let the existing
transaction take over? These kinds of behavior are regulated by specifying the propagation behavior on
a transaction policy.

Transaction policies are instantiated as beans in Spring XML. You can then reference a transaction
policy by providing its bean ID as an argument to the transacted() DSL command. For example, if you
want to initiate transactions subject to the behavior, PROPAGATION_REQUIRES_NEW, you could use
the following route:

Where the PROPAGATION_REQUIRES_NEW argument specifies the bean ID of a transaction policy
bean that is configured with the PROPAGATION_REQUIRES_NEW behavior (see Example 5.1,
“Transaction Policy Beans”).

Spring transaction policies

Apache Camel lets you define Spring transaction policies using the
org.apache.camel.spring.spi.SpringTransactionPolicy class (which is essentially a wrapper around a
native Spring class). The SpringTransactionPolicy class encapsulates two pieces of data:

from("file:src/data?noop=true")
 .transacted("PROPAGATION_REQUIRES_NEW")
 .beanRef("accountService","credit")
 .beanRef("accountService","debit")
 .to("file:target/messages");

Red Hat JBoss Fuse 6.2 Transaction Guide

60

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JMS.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-ActiveMQ.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-AMQP.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-JPA.html

A reference to a transaction manager (of PlatformTransactionManager type).

A propagation behavior.

For example, you could instantiate a Spring transaction policy bean with
PROPAGATION_MANDATORY behavior, as follows:

Propagation behaviors

The following propagation behaviors are supported by Spring (where these values were originally
modelled on the propagation behaviors supported by J2EE):

PROPAGATION_MANDATORY

Support a current transaction; throw an exception if no current transaction exists.

PROPAGATION_NESTED

Execute within a nested transaction if a current transaction exists, else behave like
PROPAGATION_REQUIRED.

NOTE

Nested transactions are not supported by all transaction managers.

PROPAGATION_NEVER

Do not support a current transaction; throw an exception if a current transaction exists.

PROPAGATION_NOT_SUPPORTED

Do not support a current transaction; rather always execute non-transactionally.

NOTE

This policy requires the current transaction to be suspended, a feature which is not
supported by all transaction managers.

PROPAGATION_REQUIRED

(Default) Support a current transaction; create a new one if none exists.

PROPAGATION_REQUIRES_NEW

Create a new transaction, suspending the current transaction if one exists.

<beans ...>
 <bean id="PROPAGATION_MANDATORY
"class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_MANDATORY"/>
 </bean>
 ...
</beans>

CHAPTER 5. TRANSACTION DEMARCATION

61

NOTE

Suspending transactions is not supported by all transaction managers.

PROPAGATION_SUPPORTS

Support a current transaction; execute non-transactionally if none exists.

Defining policy beans in Spring XML

Example 5.1, “Transaction Policy Beans” shows how to define transaction policy beans for all of the
supported propagation behaviors. For convenience, each of the bean IDs matches the specified value of
the propagation behavior value, but in practice you can use whatever value you like for the bean IDs.

Example 5.1. Transaction Policy Beans

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">
 ...
 <bean id="PROPAGATION_MANDATORY
"class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_MANDATORY"/>
 </bean>

 <bean id="PROPAGATION_NESTED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_NESTED"/>
 </bean>

 <bean id="PROPAGATION_NEVER"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_NEVER"/>
 </bean>

 <bean id="PROPAGATION_NOT_SUPPORTED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_NOT_SUPPORTED"/>
 </bean>

 <!-- This is the default behavior. -->
 <bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 </bean>

Red Hat JBoss Fuse 6.2 Transaction Guide

62

NOTE

If you want to paste any of these bean definitions into your own Spring XML configuration,
remember to customize the references to the transaction manager. That is, replace
references to txManager with the actual ID of your transaction manager bean.

Sample route with PROPAGATION_NEVER policy in Java DSL

A simple way of demonstrating that transaction policies have some effect on a transaction is to insert a
PROPAGATION_NEVER policy into the middle of an existing transaction, as shown in the following
route:

Used in this way, the PROPAGATION_NEVER policy inevitably aborts every transaction, leading to a
transaction rollback. You should easily be able to see the effect of this on your application.

NOTE

Remember that the string value passed to transacted() is a bean ID, not a propagation
behavior name. In this example, the bean ID is chosen to be the same as a propagation
behavior name, but this need not always be the case. For example, if your application
uses more than one transaction manager, you might end up with more than one policy
bean having a particular propagation behavior. In this case, you could not simply name the
beans after the propagation behavior.

Sample route with PROPAGATION_NEVER policy in Spring XML

The preceding route can be also be defined in Spring XML, as follows:

 <bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW"/>
 </bean>

 <bean id="PROPAGATION_SUPPORTS"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="txManager"/>
 <property name="propagationBehaviorName" value="PROPAGATION_SUPPORTS"/>
 </bean>

</beans>

from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .transacted("PROPAGATION_NEVER")
 .beanRef("accountService","debit");

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >

 <camelContext xmlns="http://camel.apache.org/schema/spring">

CHAPTER 5. TRANSACTION DEMARCATION

63

5.4. ERROR HANDLING AND ROLLBACKS

Overview

While you can use standard Apache Camel error handling techniques in a transactional route, it is
important to understand the interaction between exceptions and transaction demarcation. In particular,
you need to bear in mind that thrown exceptions usually cause transaction rollback.

How to roll back a transaction

You can use one of the following approaches to roll back a transaction:

the section called “Runtime exceptions as rollbacks”.

the section called “The rollback() DSL command”.

the section called “The markRollbackOnly() DSL command”.

Runtime exceptions as rollbacks

The most common way to roll back a Spring transaction is to throw a runtime (unchecked) exception—
that is, where the exception is an instance or subclass of java.lang.RuntimeException. Java errors, of
java.lang.Error type, also trigger transaction rollback. Checked exceptions, on the other hand, do not
trigger rollback. Figure 5.3, “Errors and Exceptions that Trigger Rollback” summarises how Java errors
and exceptions affect transactions, where the classes that trigger rollback are shaded gray.

Figure 5.3. Errors and Exceptions that Trigger Rollback

 <route>
 <from uri="file:src/data?noop=true"/>
 <transacted/>
 <bean ref="accountService" method="credit"/>
 <transacted ref="PROPAGATION_NEVER"/>
 <bean ref="accountService" method="debit"/>
 </route>
 </camelContext>

</beans>

Red Hat JBoss Fuse 6.2 Transaction Guide

64

NOTE

The Spring framework also provides a system of XML annotations that enable you to
specify which exceptions should or should not trigger rollbacks. For details, see Rolling
back in the Spring Reference Guide.

WARNING

If a runtime exception is handled within the transaction (that is, before the exception
has the chance to percolate up to the code that does the transaction demarcation),
the transaction will not be rolled back. See the section called “How to define a dead
letter queue” for details.

The rollback() DSL command

If you want to trigger a rollback in the middle of a transacted route, you can do this by calling the
rollback() DSL command, which throws an org.apache.camel.RollbackExchangeException
exception. In other words, the rollback() command uses the standard approach of throwing a runtime
exception to trigger the rollback.

For example, if you decide that there should be an absolute limit on the size of money transfers in the
account services application, you could trigger a rollback when the amount exceeds 100, using the
following code:

Example 5.2. Rolling Back an Exception with rollback()

NOTE

If you trigger a rollback in the preceding route, it will get trapped in an infinite loop. The
reason for this is that the RollbackExchangeException exception thrown by rollback()
propagates back to the file endpoint at the start of the route. The File component has a
built-in reliability feature that causes it to resend any exchange for which an exception
has been thrown. Upon resending, of course, the exchange just triggers another rollback,
leading to an infinite loop.

from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .choice().when(xpath("/transaction/transfer[amount > 100]"))
 .rollback()
 .otherwise()
 .to("direct:txsmall");

from("direct:txsmall")
 .beanRef("accountService","debit")
 .beanRef("accountService","dumpTable")
 .to("file:target/messages/small");

CHAPTER 5. TRANSACTION DEMARCATION

65

http://static.springsource.org/spring/docs/2.5.x/reference/transaction.html#transaction-declarative-rolling-back

The markRollbackOnly() DSL command

The markRollbackOnly() DSL command enables you to force the current transaction to roll back,
without throwing an exception. This can be useful in cases where (as in Example 5.2, “Rolling Back an
Exception with rollback()”) throwing an exception has unwanted side effects.

For example, Example 5.3, “Rolling Back an Exception with markRollbackOnly()” shows how to modify
Example 5.2, “Rolling Back an Exception with rollback()” by replacing rollback() with
markRollbackOnly(). This version of the route solves the problem of the infinite loop. In this case, when
the amount of the money transfer exceeds 100, the current transaction is rolled back, but no exception is
thrown. Because the file endpoint does not receive an exception, it does not retry the exchange, and the
failed transactions is quietly discarded.

Example 5.3. Rolling Back an Exception with markRollbackOnly()

The preceding route implementation is not ideal, however. Although the route cleanly rolls back the
transaction (leaving the database in a consistent state) and avoids the pitfall of infinite looping, it does
not keep any record of the failed transaction. In a real-world application, you would typically want to keep
track of any failed transaction. For example, you might want to write a letter to the relevant customer in
order to explain why the transaction did not succeed. A convenient way of tracking failed transactions is
to add a dead-letter queue to the route.

How to define a dead letter queue

In order to keep track of failed transactions, you can define an onException() clause, which enables you
to divert the relevant exchange object to a dead-letter queue. When used in the context of transactions,
however, you need to be careful about how you define the onException() clause, because of potential
interactions between exception handling and transaction handling. Example 5.4, “How to Define a Dead
Letter Queue” shows the correct way to define an onException() clause, assuming that you need to
suppress the rethrown exception.

Example 5.4. How to Define a Dead Letter Queue

from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .choice().when(xpath("/transaction/transfer[amount > 100]"))
 .markRollbackOnly()
 .otherwise()
 .to("direct:txsmall");
...

// Java
import org.apache.camel.spring.SpringRouteBuilder;

public class MyRouteBuilder extends SpringRouteBuilder {
 ...
 public void configure() {
 onException(IllegalArgumentException.class)
 .maximumRedeliveries(1)
 .handled(true)
 .to("file:target/messages?fileName=deadLetters.xml&fileExist=Append")
 .markRollbackOnly(); // NB: Must come *after* the dead letter endpoint.

Red Hat JBoss Fuse 6.2 Transaction Guide

66

In the preceding example, onException() is configured to catch the IllegalArgumentException
exception and send the offending exchange to a dead letter file, deadLetters.xml (of course, you can
change this definition to catch whatever kind of exception arises in your application). The exception
rethrow behavior and the transaction rollback behavior are controlled by the following special settings in
the onException() clause:

handled(true)—suppress the rethrown exception. In this particular example, the rethrown
exception is undesirable because it triggers an infinite loop when it propagates back to the file
endpoint (see the section called “The markRollbackOnly() DSL command”). In some cases,
however, it might be acceptable to rethrow the exception (for example, if the endpoint at the start
of the route does not implement a retry feature).

markRollbackOnly()—marks the current transaction for rollback without throwing an exception.
Note that it is essential to insert this DSL command after the to() command that routes the
exchange to the dead letter queue. Otherwise, the exchange would never reach the dead letter
queue, because markRollbackOnly() interrupts the chain of processing.

Catching exceptions around a transaction

Instead of using onException(), a simple approach to handling exceptions in a transactional route is to
use the doTry() and doCatch() clauses around the route. For example, Example 5.5, “Catching
Exceptions with doTry() and doCatch()” shows how you can catch and handle the
IllegalArgumentException in a transactional route, without the risk of getting trapped in an infinite loop.

Example 5.5. Catching Exceptions with doTry() and doCatch()

 from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .beanRef("accountService","debit")
 .beanRef("accountService","dumpTable")
 .to("file:target/messages");
 }
}

// Java
import org.apache.camel.spring.SpringRouteBuilder;

public class MyRouteBuilder extends SpringRouteBuilder {
 ...
 public void configure() {
 from("file:src/data?noop=true")
 .doTry()
 .to("direct:split")
 .doCatch(IllegalArgumentException.class)
 .to("file:target/messages?fileName=deadLetters.xml&fileExist=Append")
 .end();

 from("direct:split")
 .transacted()
 .beanRef("accountService","credit")
 .beanRef("accountService","debit")
 .beanRef("accountService","dumpTable")

CHAPTER 5. TRANSACTION DEMARCATION

67

In this example, the route is split into two segments. The first segment (from the file:src/data endpoint)
receives the incoming exchanges and performs the exception handling using doTry() and doCatch().
The second segment (from the direct:split endpoint) does all of the transactional work. If an exception
occurs within this transactional segment, it propagates first of all to the transacted() command, causing
the current transaction to be rolled back, and it is then caught by the doCatch() clause in the first route
segment. The doCatch() clause does not rethrow the exception, so the file endpoint does not do any
retries and infinite looping is avoided.

 .to("file:target/messages");
 }
}

Red Hat JBoss Fuse 6.2 Transaction Guide

68

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

Abstract

Red Hat JBoss Fuse provides a built-in global XA transaction manager, which applications can access if
they need to coordinate transactions across multiple resources.

6.1. TRANSACTION ARCHITECTURE

Overview

Figure 6.1, “OSGi Transaction Architecture” shows an overview of the OSGi transaction architecture in
Red Hat JBoss Fuse. The core of the architecture is a JTA transaction manager based on Apache
Geronimo, which exposes various transaction interfaces as OSGi services.

Figure 6.1. OSGi Transaction Architecture

OSGi mandated transaction architecture

The JTA Transaction Services Specification section of the OSGi Service Platform Enterprise
Specification describes the kind of transaction support that can (optionally) be provided by an OSGi
container. Essentially, OSGi mandates that the transaction service is accessed through the Java
Transaction API (JTA).

The transaction service exports the following JTA interfaces as OSGi services (the JTA services):

javax.transaction.UserTransaction

javax.transaction.TransactionManager

javax.transaction.TransactionSynchronizationRegistry

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

69

Only one JTA provider should be made available in an OSGi container. In other words, the JTA services
are registered only once and the objects obtained by importing references to the JTA services must be
unique.

Spring transaction integration

The JBoss Fuse transaction service exports the following Spring interface as an OSGi service:

org.springframework.transaction.PlatformTransactionManager

By obtaining a reference to the PlatformTransactionManager OSGi service, it is possible to integrate
application bundles written using the Spring transaction API into the JBoss Fuse transaction architecture.

Red Hat JBoss Fuse transaction implementation

JBoss Fuse provides an OSGi-compliant implementation of the transaction service through the Apache
Aries transaction feature, which consists mainly of the following bundles:

The Aries transaction feature exports a variety of transaction interfaces as OSGi services (making them
available to other bundles in the container), as follows:

JTA interfaces—the JTA UserTransaction, TransactionManager, and
TransactionSynchronizationRegistry interfaces are exported, as required by the OSGi
transaction specification.

Spring transaction interface—the Spring PlatformTransactionManager interface is exported, in
order to facilitate bundles that are written using the Spring transaction APIs.

The PlatformTransactionManager OSGi service and the JTA services access the same underlying
transaction manager.

Installing the transaction feature

To access the JBoss Fuse transaction implementation, you must install the transaction feature. In a
standalone container, enter the following console command:

If you are deploying into a fabric, add the transaction feature to your application's profile.

Geronimo transaction manager

The underlying implementation of the JBoss Fuse transaction service is provided by the Apache
Geronimo transaction manager. Apache Geronimo is a full implementation of a J2EE server and, as part
of the J2EE implementation, Geronimo has developed a sophisticated transaction manager with the
following features:

Support for enlisting multiple XA resources.

Support for 1-phase and 2-phase commit protocols.

org.apache.aries.transaction.manager
org.apache.aries.transaction.wrappers
org.apache.aries.transaction.blueprint

JBossFuse:karaf@root> features:install transaction

Red Hat JBoss Fuse 6.2 Transaction Guide

70

http://geronimo.apache.org/

Support for suspending and resuming transactions.

Support for automatic transaction recovery upon startup.

The transaction recovery feature depends on a transaction log, which records the status of all pending
transactions in persistent storage.

Accessing Geronimo directly

Normally, the Geronimo transaction manager is accessed indirectly—for example, through the JTA
wrapper layer or through the Spring wrapper layer. But if you need to access Geronimo directly, the
following interface is also exposed as an OSGi service:

org.apache.geronimo.transaction.manager.RecoverableTransactionManager

HOWL transaction log

The implementation of the transaction log is provided by HOWL, which is a high speed persistent logger
that is optimized for XA transaction logs.

JTA-based application bundles

Normally, it is recommended that application bundles access the transaction service through the JTA
interface. To use the transaction service in a JTA-based application bundle, import the relevant JTA
service as an OSGi service and use the JTA service to begin, commit, or rollback transactions.

Spring-based application bundles

If you have already implemented an application bundle using the Spring transaction API, you might find
it more convenient to access the transaction service through the Spring API (represented by the
PlatformTransactionManager Java interface). This means that you are able to deploy the same source
code either in a pure Spring container or in an OSGi container, by changing only the configuration
snippet that obtains a reference to the transaction service.

References

The following specifications are relevant to the transaction architecture in JBoss Fuse:

OSGi transaction specification—in section 123 JTA Transaction Services Specification v1.0 from
the OSGi Service Platform Enterprise Specification v4.2

Java Transaction API specification.

Spring transactions API—see the Transaction Management chapter from the current Spring
Reference Manual.

6.2. CONFIGURING THE TRANSACTION MANAGER

Overview

You can configure some basic parameters of the Aries transaction manager by editing the properties in
the Aries transaction manager configuration file. In particular you must always specify the location of the
HOWL log file directory and it is necessary to set the aries.transaction.recoverable property explicitly
to true, if you want to enable the transaction recovery mechanism.

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

71

http://howl.ow2.org/
http://www.osgi.org/Download/File?url=/download/r4v42/r4.enterprise.pdf
 http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://docs.spring.io/spring/docs/2.5.x/reference/transaction.html
http://spring.io/docs

Configuration file

To configure the Aries transaction manager, you can edit the properties in the following configuration file:

Transaction manager properties

The properties that you can set in the org.apache.aries.transaction.cfg file include the following:

aries.transaction.recoverable

A boolean variable that specifies whether or not the transaction manager is recoverable. If not set, it
defaults to false.

aries.transaction.timeout

Specifies the transaction timeout in seconds. Default is 600 (that is, 10 minutes).

aries.transaction.tmid

Specifies the transaction manager identification string that gets appended to all transaction XIDs.
This identification string allows transactions from different transaction managers to be disambiguated
during transaction recovery, and should be different for each JBoss Fuse container that performs
global transactions on a particular set of transactional resources. The string can be up to 64
characters in length. If not specified, a default identification string would be used, but this default
value is the same for all JBoss Fuse containers.

aries.transaction.howl.bufferSize

Specifies the HOWL log buffer size in units of KB, where the value must be an integer in the range
[1,32]. Default is 4.

NOTE

Larger buffers may provide improved performance for applications with transaction
rates that exceed 5K transactions per second and a large number of threads.

aries.transaction.howl.logFileDir

(Required) Specifies the log directory location, which must be an absolute path. No default value.

aries.transaction.howl.logFileName

Specifies the name of the HOWL log file. Default is transaction.

aries.transaction.howl.logFileExt

Specifies the file extention for the HOWL log file. Default is log.

aries.transaction.howl.maxLogFiles

Specifies the maximum number of log files. Default is 2.

aries.transaction.howl.maxBlocksPerFile

EsbInstallDir/etc/org.apache.aries.transaction.cfg

Red Hat JBoss Fuse 6.2 Transaction Guide

72

Specifies the maximum size of a transaction log file in blocks (the block size can vary, but in Linux
systems a typical block size is 4kB). After the maximum size is reached, the log rolls over to a new
log file.

Sample settings

The following example shows the default settings from the org.apache.aries.transaction.cfg
configuration file:

6.3. ACCESSING THE TRANSACTION MANAGER

Overview

The easiest way for an application to access the Aries transaction manager inside the OSGi container is
to create a bean reference to the OSGi service using Blueprint XML. In fact, you typically need to
reference two OSGi services: the JTA transaction manager and the Spring
PlatformTransactionManager. These two services access the same underlying transaction manager,
but use alternative wrapper layers (see Figure 6.1, “OSGi Transaction Architecture”).

Blueprint XML

In blueprint XML, you can get bean references to the JTA transaction manager instance and to the
Spring PlatformTransactionManager instance using the following sample code:

6.4. JAVA TRANSACTION API

Overview

The Red Hat JBoss Fuse transaction implementation can be accessed through the standard JTA
interfaces (for example, javax.transaction.UserTransaction and

aries.transaction.timeout=600
aries.transaction.howl.logFileDir=${karaf.data}/txlog/

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 default-activation="lazy">

 <!--
 OSGi TM Service
 -->
 <!-- access through Spring's PlatformTransactionManager -->
 <reference id="osgiPlatformTransactionManager"
 interface="org.springframework.transaction.PlatformTransactionManager"/>
 <!-- access through PlatformTransactionManager -->
 <reference id="osgiJtaTransactionManager"
 interface="javax.transaction.TransactionManager"/>

</blueprint>

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

73

javax.transaction.TransactionManager). In practice, it is rarely necessary to access the these JTA
interfaces directly, because Red Hat JBoss Fuse provides alternative ways of accessing and managing
transactions.

UserTransaction interface

The JTA UserTransaction interface has the following definition:

UserTransaction methods

The UserTransaction interface defines the following methods:

begin()

Start a new transaction, associating it with the current thread. If any XA resources get associated with
this transaction, it implicitly becomes an XA transaction.

commit()

Complete the current transaction normally, so that all pending changes become permanent. After the
commit, there is no longer a transaction associated with the current thread.

NOTE

If the current transaction is marked as rollback only, however, the transaction would
actually be rolled back when commit() is called.

rollback()

Abort the transaction immediately, so that all pending changes are discarded. After the rollback, there
is no longer a transaction associated with the current thread.

setRollbackOnly()

Modify the state of the current transaction, so that a rollback is the only possible outcome, but do not
perform the rollback yet.

getStatus()

Returns the status of the current transaction, which can be one of the following integer values defined
in the javax.transaction.Status interface:

public interface javax.transaction.UserTransaction {
 public void begin();

public void commit();
 public void rollback();

 public void setRollbackOnly();

public int getStatus();

 public void setTransactionTimeout(int seconds);
}

Red Hat JBoss Fuse 6.2 Transaction Guide

74

STATUS_ACTIVE

STATUS_COMMITTED

STATUS_COMMITTING

STATUS_MARKED_ROLLBACK

STATUS_NO_TRANSACTION

STATUS_PREPARED

STATUS_PREPARING

STATUS_ROLLEDBACK

STATUS_ROLLING_BACK

STATUS_UNKNOWN

setTransactionTimeout()

Customize the timeout of the current transaction, specified in units of seconds. If the transaction does
not get resolved within the specified timeout, the transaction manager will automatically roll it back.

When to use UserTransaction?

The UserTransaction interface is used for transaction demarcation: that is, for beginning, committing, or
rolling back transactions. This is the JTA interface that you are most likely to use directly in your
application code. But the UserTransaction interface is just one of the ways to demarcate transactions.
For a complete discussion of the different ways to demarcate transactions, see XA Transaction
Demarcation.

TransactionManager interface

The JTA TransactionManager interface has the following definition:

interface javax.transaction.TransactionManager {
 // Same as UserTransaction methods
 public void begin();

 public void commit();

 public void rollback();
 public void setRollbackOnly();

 public int getStatus();

 public void setTransactionTimeout(int seconds);

 // Extra TransactionManager methods
 public Transaction getTransaction();
 public Transaction suspend() ;
 public void resume(Transaction tobj);
}

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

75

TransactionManager methods

The TransactionManager interface supports all of the methods found in the UserTransaction interface
(so you can also use it for transaction demarcation) and, in addition, supports the following methods:

getTransaction()

Get a reference to the current transaction (that is, the transaction associated with the current thread),
if any. If there is no current transaction, this method returns null.

suspend()

Detach the current transaction from the current thread, returning a reference to the transaction. After
calling this method, the current thread no longer has a transaction context, so that any work that you
do after this point is no longer done in the context of a transaction.

NOTE

Not all transaction managers support suspending transactions. This feature is
supported by Apache Geronimo, however.

resume()

Re-attach a suspended transaction to the current thread context. After calling this method, the
transaction context is restored and any work that you do after this point is done in the context of a
transaction.

When to use TransactionManager?

The most common way to use a TransactionManager object is simply to pass it to a framework API (for
example, to the Camel JMS component), enabling the framework to look after transaction demarcation
for you. Occasionally, you might want to use the TransactionManager object directly, if you need to
access advanced transaction APIs (such as suspend() and resume()).

Transaction interface

The JTA Transaction interface has the following definition:

Transaction methods

interface javax.transaction.Transaction {
 public void commit();

 public void rollback();

 public void setRollbackOnly();
 public int getStatus();

 public boolean enlistResource(XAResource xaRes);

 public boolean delistResource(XAResource xaRes, int flag);
 public void registerSynchronization(Synchronization sync);
}

Red Hat JBoss Fuse 6.2 Transaction Guide

76

The commit(), rollback(), setRollbackOnly(), and getStatus() methods have just the same effect as the
corresponding methods from the UserTransaction interface (in fact, the UserTransaction object is
really just a convenient wrapper that retrieves the current transaction and then invokes the corresponding
methods on the Transaction object).

Additionally, the Transaction interface defines the following methods that have no counterpart in the
UserTransaction interface:

enlistResource()

Associate an XA resource with the current transaction.

NOTE

This method is of key importance in the context of XA transactions. It is precisely the
capability to enlist multiple XA resources with the current transaction that characterizes
XA transactions. On the other hand, enlisting resources explicitly is a nuisance and
you would normally expect your framework or container to do this for you. For
example, see Section 6.5, “The XA Enlistment Problem”.

delistResource()

Disassociates the specified resource from the transaction. The flag argument can take one of the
following integer values defined in the javax.transaction.Transaction interface:

TMSUCCESS

TMFAIL

TMSUSPEND

registerSynchronization()

Register a javax.transaction.Synchronization object with the current transaction. The
Synchronization object is an object that receives a callback just before the prepare phase of a
commit and a callback just after the transaction completes.

When to use Transaction?

You would only need to access a Transaction object directly, if you are suspending/resuming
transactions or if you need to enlist a resource explicitly. As discussed in Section 6.5, “The XA
Enlistment Problem”, a framework or container would usually take care of enlisting resources
automatically for you.

Reference

For fulls details of the Java transaction API, see the Java Transaction API (JTA) 1.1 specification.

6.5. THE XA ENLISTMENT PROBLEM

The problem of XA enlistment

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

77

http://www.oracle.com/technetwork/java/javaee/jta/index.html

The standard JTA approach to enlisting XA resources is to add the XA resource explicitly to the current
javax.transaction.Transaction object (representing the current transaction). In other words, you must
explicitly enlist an XA resource every time a new transaction starts.

How to enlist an XA resource

Enlisting an XA resource with a transaction simply involves invoking the enlistResource() method on
the Transaction interface. For example, given a TransactionManager object and an XAResource
object, you could enlist the XAResource object as follows:

Auto-enlistment

The tricky aspect of enlisting resources is that the resource must be enlisted on every new transaction
and the resource must be enlisted before you start to use the resource. If you enlist resources explicitly,
you could end up with error-prone code that is littered with enlistResource() calls. Moreover, sometimes
it can be difficult to call enlistResource() in the right place (for example, if you are using a framework
that hides some of the transaction details).

For these reasons, it is much easier (and safer) in practice to use features that support auto-enlistment
of XA resources. For example, in the context of using JMS and JDBC resources, the standard technique
is to use wrapper classes that support auto-enlistment.

JMS XA wrapper

The way to perform auto-enlisting of a JMS XA resource is to implement a wrapper class of type,
javax.jms.ConnectionFactory. You can then implement this class, so that every time a new connection
is created, the JMS XA resource is enlisted with the current transaction.

Apache ActiveMQ provides the following auto-enlisting wrapper classes:

XaPooledConnectionFactory

A generic XA pooled connection factory that automatically enlists the XA resource for each
transaction and pools JMS connections, sessions and message producers.

// Java
import javax.transaction.Transaction;
import javax.transaction.TransactionManager;
import javax.transaction.xa.XAResource;
...
// Given:
// 'tm' of type TransactionManager
// 'xaResource' of type XAResource

// Start the transaction
tm.begin();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);

// Do some work...
...

// End the transaction
tm.commit();

Red Hat JBoss Fuse 6.2 Transaction Guide

78

JcaPooledConnectionFactory

An XA pooled connection factory that works with the Geronimo transaction manager (Aries) and
provides for proper recovery after a system or application failure.

To use the JcaPooledConnectionFactory wrapper class, create an instance that takes a reference to
an XA connection factory instance (for example, ActiveMQXAConnectionFactory), provide a reference
to the transaction manager (which is used to enlist the resource), and specify a unique name for this XA
resource (needed to support XA recovery).

For example, the following example shows how you can use Blueprint XML to define an auto-enlisting
JMS connection factory (with the bean ID, jmsXaPoolConnectionFactory):

6.6. GENERIC XA-AWARE CONNECTION POOL LIBRARY

Overview

The generic XA-aware connection pool library is provided via the org.apache.activemq.jms.pool
component. The library enables third-party JMS providers to participate in XA transactions managed by
any JTA transaction manager—Apache Geronimo in particular—and to recover properly from system
and application failures.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 ...
 <!-- access through JTA TransactionManager -->
 <reference id="osgiJtaTransactionManager"
 interface="javax.transaction.TransactionManager"/>
 ...
 <!-- connection factory wrapper to support auto-enlisting of XA resource -->
 <bean id="jmsXaPoolConnectionFactory"
 class="org.apache.activemq.pool.JcaPooledConnectionFactory">
 <property name="name" value="MyXaResourceName" />
 <property name="maxConnections" value="1" />
 <property name="connectionFactory" ref="jmsXaConnectionFactory" />
 <property name="transactionManager" ref="osgiJtaTransactionManager" />
 </bean>

 <bean id="jmsXaConnectionFactory"
 class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <property name="brokerURL" value="vm:local"/>
 <property name="userName" value="UserName"/>
 <property name="password" value="Password"/>
 <property name="redeliveryPolicy">
 <bean class="org.apache.activemq.RedeliveryPolicy">
 <property name="maximumRedeliveries" value="0"/>
 </bean>
 </property>
 </bean>
 ...
</blueprint>

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

79

When an application uses the JMS bridge or the camel JMS component with a third-party JMS provider,
this library enables it to leverage the shared pooled implementation at both ends of the bridge or the
camel route.

NOTE

org.apache.activemq.pool extends org.apache.activemq.jms.pool.

The library contains three different pooled connection factories:

PooledConnectionFactory

PooledConnectionFactory is a simple generic connection factory that pools connection,
session, and message producer instances, so they can be used with tools, such as Apache
Camel and Spring's JMSTemplate and MessageListenerContainer. Connections, sessions, and
producers are returned to the pool for later reuse by the application.

XaPooledConnectionFactory

XaPooledConnectionFactory is a generic XA pooled connection factory that automatically
enlists the XA resource for each transaction and pools JMS connections, sessions and message
producers.

JcaPooledConnectionFactory

JcaPooledConnectionFactory is a generic XA pooled connection factory that works with the
Geronimo transaction manager (Aries) and provides for proper recovery after a system or
application failure using the GenericResourceManager. It also automatically enlists the XA
resource for each transaction and pools JMS connections, sessions and message producers.

Dependencies

Maven users need to add a dependency on activemq-jms-pool to their pom.xml file as shown here:

PooledConnectionFactory

The PooledConnectionFactory has one required and nine optional parameters:

Table 6.1. PooledConnectionFactory parameters

Parameter Required Description

connectionFactory Yes Specifies the underlying JMS
connectionFactory.

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-jms-pool</artifactId>
 <version>x.x.x</version> <!-- Use same version as your activemq core -->
<dependency>

Red Hat JBoss Fuse 6.2 Transaction Guide

80

blockIfSessionPoolIsFull No Controls the behavior of the
internal session pool when it is
full.

true—(default) Blocks
until a session object
becomes available

false—Throws an
exception

Note:
maximumActiveSessionPerC
onnection controls the size of
the session pool.

createConnectionOnStartup Specifies whether a connection
will be created immediately on a
call to start(). This is useful for
warming up the pool on startup.

Note: Any exception that occurs
during startup is logged at WARN
level and ignored.

Defaults to true.

expiryTimeout No Specifies the time, in
milliseconds, at which connections
are allowed to expire, regardless
of load or idleTimeout.

Provides a simple way to achieve
load balancing when used with
the failover protocol (see Failover
in the Transport Reference).
Since failover works only when a
connection is initially made, a
pooled connection doesn't get
another chance to load balance,
unless expiry is forced on the
pool.

If your application has no need to
load balance frequently—for
example, when a destination's
producers and consumers are
colocated on the same broker—
set this parameter to a large
number.

Defaults to 0 (disabled).

Parameter Required Description

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

81

idleTimeout No Specifies the time, in
milliseconds, newly created
connections can remain idle
before they are allowed to expire.
On expiring, a connection is
closed and removed from the
pool.

Note: Connections are normally
tested on each attempt to borrow
one from the pool. So if
connections are infrequently
requested, a connection instance
could remain in the pool much
longer than its configured setting.

Defaults to 30*1000 .

maxConnections No Specifies the maximum number of
connections to use. Each call to
createConnection creates a
new connection, up to
maxConnections.

Defaults to 1.

maximumActiveSessionPerC
onnection

No Specifies the maximum number of
active sessions allowed per
connection. Once this maximum
has been reached and a new
session is requested, the
connection either throws an
exception or blocks until a session
becomes available, according to
blockIfSessionPoolIsFull.

Defaults to 500.

numConnections No Specifies the number of
connections currently in the pool.

Parameter Required Description

Red Hat JBoss Fuse 6.2 Transaction Guide

82

timeBetweenExpirationChec
kMillis

No Specifies the number of
milliseconds to sleep between
each run of the idle connection
eviction thread.

non positive value—
no eviction thread is run.
Pooled connections are
checked for excessive
idle time or other failures
only when one is
borrowed from the pool.

positive value—
Specifies the number of
milliseconds to wait
between each run of the
idle connection eviction
thread.

Defaults to -1, so no eviction
thread will ever run.

useAnonymousProducers No Specifies whether sessions will
use one anonymous
MessageProducer for all producer
requests or create a new
MessageProducer for each
producer request.

true—(default) Only one
anonymous
MessageProducer is
allocated for all requests

You can use the
MessageProducer#se
nd(destination,
message) method with
anonymous message
producers.

Note: Using this
approach prevents the
broker from showing
producers per
destination.

false—A new
MessageProducer is
allocated per request

Parameter Required Description

XaPooledConnectionFactory

The XaPooledConnectionFactory extends the PooledConnectionFactory, implementing three
additional optional parameters:

Table 6.2. XaPooledConnectionFactory parameters

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

83

Parameter Required Description

transactionManager No Specifies the JTA transaction
manager to use.

tmFromJndi No Resolves a transaction manager
from JNDI using the specified
tmJndiName.

tmJndiName No Specifies the name of the
transaction manager to use when
resolving one from JNDI.

Defaults to
java:/TransactionManager.

NOTE

When no transaction manager is specified, the XaConnecionPool class reverts to
behaving as a non XA-based connection.

JcaPooledConnectionFactory

The JcaPooledConnectionFactory pool extends theXaPooledConnectionFactory, implementing one
additional required parameter:

Table 6.3. JcaPooledConnectionFactory parameters

Parameter Required Description

name Yes Specifies the name of the
resource manager that the JTA
transaction manager will use to
detect whether two-phase
commits must be employed.

The resource manager name
must uniquely identify the broker.

Note: To start the recovery
process, the
GenericResourceManager
must also be configured.

Examples

PooledConnectionFactory

This example (Example 6.1) shows a simple pool that configures some connection parameters
for a standalone ActiveMQ broker. In this scenario, you can use either the activemq-specific
pool org.apache.activemq.pool or the generic pool org.apache.activemq.jms.pool.

Example 6.1. Simple pooled connection factory configured using Blueprint

Red Hat JBoss Fuse 6.2 Transaction Guide

84

XaPooledConnectionFactory

This example (Example 6.2) uses two data sources, one standalone ActiveMQ broker and one
standalone HornetMQ broker, to perform XA transactions, in which data is consumed from the
HornetMQ broker and produced to the ActiveMQ broker. The HornetMQ broker is configured to
use the generic pool org.apache.activemq.jms.pool, while the ActiveMQ broker is configured
to use the activemq-specific pool org.apache.activemq.pool. This example uses the default
settings for the optional parameters.

Example 6.2. XA pooled connection factory configured programmatically

<bean id="internalConnectionFactory"
 class="org.apache.activemq.ConnectionFactory">
 <argument value="tcp://localhost:61616" />
</bean>

<bean id="connectionFactory"
 class="org.apache.activemq.jms.pool.PooledConnectionFactory"
 init-method="start" destroy-method="stop">
 <property name="connectionFactory" ref="internalConnectionFactory"/>
 <property name="name" value="activemq" />
 <property name="maxConnections" value="2" />
 <property name="blockIfSessionPoolIsFull" value="true" />
</bean>

//Transaction manager
 javax.transaction.TransactionManager transactionManager;

//generic pool used for hornetq
 org.apache.activemq.jms.pool.XaPooledConnectionFactory
 hqPooledConnectionFactory=new
org.apache.activemq.jms.pool.XaPooledConnectionFactory();

//pooledConnectionFactory for activemQ
 XaPooledConnectionFactory amqPooledConnectionFactory=new
XaPooledConnectionFactory();

//set transaction manager
 hqPooledConnectionFactory.setTransactionManager(transactionManager);
 amqPooledConnectionFactory.setTransactionManager(transactionManager);

//set connection factory
 amqPooledConnectionFactory.setConnectionFactory(new
ActiveMQXAConnectionFactory
 ("admin","admin", "tcp://localhost:61616"));
 hqPooledConnectionFactory.setConnectionFactory(getHornetQConnectionFactory());

//create Connections
 XAConnection hornetQXaConnection=(XAConnection)
 ((org.apache.activemq.jms.pool.PooledConnection)
 hqPooledConnectionFactory.createConnection()).getConnection();
 XAConnection amqXAConnection=(XAConnection)
 ((org.apache.activemq.jms.pool.PooledConnection)
 amqPooledConnectionFactory.createConnection()).getConnection();

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

85

JcaPooledConnectionFactory

This example (Example 6.3) shows the configuration of an XA application that uses the
JcaPooledConnectionFactory, allowing a remote third-party JMS broker to participate in XA
transactions with an ActiveMQ broker deployed in JBoss Fuse.

A class specific to the Apache Geronimo transaction manager is used to register the pool with
the transaction as required to enable recovery via the GenericResourceManager. Both the
transactionManager and XAConnectionFactory (ActiveMQXAConnectionFactory) are
defined and passed as properties to JcaPooledConnectionFactory, and the
GenericResourceManager is configured to recover transactions upon a system or application
failure.

Example 6.3. JCA pooled connection factory configured using Blueprint

 hornetPooledConn=hqPooledConnectionFactory.createConnection();
 amqPooledConnection=amqPooledConnectionFactory.createConnection();

 hornetQXaConnection.start();
 amqXAConnection.start();

 transactionManager.begin();
 Transaction trans=transactionManager.getTransaction();

//XA resources are automatically enlisted by creating session
 hornetQXasession=(XASession) hornetPooledConn.createSession
 (false, Session.AUTO_ACKNOWLEDGE);
 amqXASession=(XASession) amqPooledConnection.createSession
 (false,Session.AUTO_ACKNOWLEDGE);

//some transaction
 trans.rollback();

//enlist again ..
 hornetQXasession=(XASession)
hornetPooledConn.createSession(false,Session.AUTO_ACKNOWLEDGE);
 amqXASession=(XASession)
amqPooledConnection.createSession(false,Session.AUTO_ACKNOWLEDGE);

//other transaction
 trans.commit();

<reference id="transactionManager"interface="org.apache.geronimo.
 transaction.manager.RecoverableTransactionManager" availability="mandatory">

<bean id="platformTransactionManager"
 class="org.springframework.transaction.jta.JtaTransactionManager"
 init-method="afterPropertiesSet">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="autodetectUserTransaction" value="false"/>
</bean>

<bean id="internalConnectionFactory"

Red Hat JBoss Fuse 6.2 Transaction Guide

86

 class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <argument value="tcp://localhost:61616" />
 <property name="userName" value="admin" />
 <property name="password" value="admin" />
</bean>

<bean id="connectionFactory"
 class="org.apache.activemq.jms.pool.JcaPooledConnectionFactory"
 init-method="start" destroy-method="stop">
 <property name="connectionFactory" ref="internalConnectionFactory"/>
 <property name="transactionManager" ref="transactionManager"/>
 <property name="name" value="activemq" />
</bean>

<bean id="resourceManager"
class="org.apache.activemq.jms.pool.GenericResourceManager"
 init-method="recoverResource">
 <property name="connectionFactory" ref="internalConnectionFactory"/>
 <property name="transactionManager" ref="transactionManager"/>
 <property name="resourceName" value="activemq" />
 <property name="userName" value="admin" />
 <property name="password" value="admin" />
</bean>

CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE

87

CHAPTER 7. JMS XA TRANSACTION INTEGRATION

Abstract

Apache ActiveMQ provides full support for XA transactions, where the broker can either be embedded in
the application or deployed remotely. XA connections can be obtained through the standard
javax.jms.XAConnectionFactory interface and Apache ActiveMQ also provides a wrapper class, which
supports auto-enlistment of the JMS XA resource and connection pooling. In particular, this chapter
describes in detail how to configure a Camel JMS component to use XA transactions in the context of an
OSGi container.

7.1. ENABLING XA ON THE CAMEL JMS COMPONENT

Overview

Figure 7.1, “Camel JMS Component Integrated with XA Transactions” shows an overview of how to
configure the Camel JMS component to use XA transactions in the Red Hat JBoss Fuse OSGi container.
In this scenario, the Camel JMS component is integrated with the built-in Aries transaction manager and
a connection factory wrapper is included, to support auto-enlisting of XA resources.

Figure 7.1. Camel JMS Component Integrated with XA Transactions

Accessing the XA transaction manager

The XA transaction manager, which is embedded in the OSGi container, must be accessed through two
different interfaces:

Red Hat JBoss Fuse 6.2 Transaction Guide

88

org.springframework.transaction.PlatformTransactionManager

The PlatformTransactionManager interface is needed by the Camel JMS component (which is
layered over the Spring transaction API). For more details, see PlatformTransactionManager
Interface.

javax.transaction.TransactionManager

The TransactionManager interface is needed by the XA pooled connection factory, which uses it to
enlist the ActiveMQ XA resource.

The transaction manager interfaces are accessed as OSGi services. For example, to access the
interfaces through Blueprint XML, you can use the following code:

For more details, see Accessing the Transaction Manager.

XA connection factory bean

The basic connection factory bean for Apache ActiveMQ is an instance of the class,
ActiveMQXAConnectionFactory, which exposes the javax.jms.XAConnectionFactory interface.
Through the JTA XAConnectionFactory interface, it is possible to obtain a reference to an XAResource
object, but the basic connection factory bean does not have the capability to auto-enlist the XA resource.

XA pooled connection factory bean

The XA pooled connection factory bean, which can be an instance of JcaPooledConnectionFactory
type or XaPooledConnectionFactory type, is a connection factory wrapper class that adds the following
capabilities to the basic connection factory:

JMS connection pooling—enables the re-use of JMS connection instances. When a transaction
is completed, the corresponding JMS connection can be returned to a pool and then re-used by
another transaction.

Auto-enlistment of XA resources—the pooled connection factory bean also has the ability to
enlist an XA resource automatically, each time a transaction is started.

The JcaPooledConnectionFactory bean exposes the standard javax.jms.ConnectionFactory
interface (but not the XAConnectionFactory interface).

Camel JMS component and JMS configuration bean

<beans ...>

 <!--
 OSGi TM Service
 -->
 <!-- access through Spring's PlatformTransactionManager -->
 <reference id="osgiPlatformTransactionManager"
 interface="org.springframework.transaction.PlatformTransactionManager"/>
 <!-- access through JTA TransactionManager -->
 <reference id="osgiJtaTransactionManager"
 interface="javax.transaction.TransactionManager"/>

</beans>

CHAPTER 7. JMS XA TRANSACTION INTEGRATION

89

The JMS configuration bean encapsulates all of the required settings for the Camel JMS component. In
particular, the JMS configuration bean includes a reference to the transaction manager (of
PlatformTransactionManager type) and a reference to the XA pooled connection factory (of
JcaPooledConnectionFactory type).

The org.apache.camel.component.jms.JmsConfiguration class supports the following bean
properties, which are particularly relevant to transactions:

transacted

Must be set to false for XA transactions. The name of this property is misleading. What it really
indicates is whether or not the Camel JMS component supports local transactions. For XA
transactions, on the other hand, you must set this property to false and initialize the
transactionManager property with a reference to an XA transaction manager.

This property gets its name from the sessionTransacted property in the underlying Spring
transaction layer. The transacted property ultimately gets injected into the sessionTransacted
property in the Spring transaction layer, so it is the Spring transaction layer that determines the
semantics. For more details, see the Javadoc for Spring's AbstractMessageListenerContainer.

transactionManager

Must be initialized with a reference to the PlatformTransactionManager interface of the built-in
OSGi transaction manager.

transactionName

Sets the transaction name. Default is JmsConsumer[destinationName].

cacheLevelName

Try setting this initially to CACHE_CONNECTION, because this will give you the best performance. If
this setting turns out to be incompatible with your transaction system, you can revert to
CACHE_NONE, whcih switches off all caching in the Spring transaction layer. For more details, see
the Spring documentation.

transactionTimeout

Do not set this property in the context of XA transactions. To customize the transaction timeout in the
context of XA transactions, you need to configure the timeout directly in the OSGi transaction
manager instead (see Configuring the Transaction Manager for details).

lazyCreateTransactionManager

Do not set this boolean property in the context of XA transactions. (In the context of a local
transaction, setting this property to true would direct the Spring transaction layer to create its own
local transaction manager instance, whenever it is needed.)

7.2. JMS XA RESOURCE

Overview

The Apache ActiveMQ implementation of the JMS XA resource supports the two-phase commit protocol
and also implicitly supports distributed transactions. To understand how this works, we take a closer look
at the interaction between a JMS XA resource and the broker to which it is connected.

Figure 7.2, “JMS XA Resource Connected to Remote Broker” illustrates what happens when a JMS XA

Red Hat JBoss Fuse 6.2 Transaction Guide

90

http://docs.spring.io/spring/docs/2.5.x/api/org/springframework/jms/listener/AbstractMessageListenerContainer.html
http://docs.spring.io/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html

resource participates in a transaction that is committed using the two-phase commit protocol. The JMS
XA resource is deployed in an application that runs in the Client host and the corresponding Apache
ActiveMQ broker is deployed on the Remote host, so that this transaction branch is effectively a
distributed transaction.

Figure 7.2. JMS XA Resource Connected to Remote Broker

XA two-phase commit process

The two-phase commit shown in Figure 7.2, “JMS XA Resource Connected to Remote Broker” consists
of the following steps:

1. Immediately after the transaction begins, the transaction manager invokes start() on the JMS XA
resource, which indicates that the resource should initialize a new transaction. The JMS XA
resource now generates a new transaction ID and sends it over the network to the remote
broker.

2. The JMS XA resource now forwards all of the operations that arise during a JMS session (for
example, messages, acknowledgments, and so on) to the remote broker.

On the broker side, the received operations are not performed immediately. Because the
operations are happening in a transaction context and the transaction is not yet committed, the
broker buffers all of the operations in a transaction store (held in memory, initially). Messages
held in the transaction store are not forwarded to JMS consumers.

3. In a two-phase commit process, the first phase of completing the transaction is where the
transaction manager invokes prepare() on all of the participating XA resources. At this stage, the
JMS XA resource sends the prepare() operation to the remote broker.

On the broker side, when the transaction store receives the prepare() operation, it writes all of
the buffered operations to disk. Hence, after the prepare phase, there is no longer any risk of
losing data associated with this transaction branch.

CHAPTER 7. JMS XA TRANSACTION INTEGRATION

91

4. The second phase of completing the transaction is where the transaction manager invokes
commit() on all of the participating XA resources. The JMS XA resource sends the commit()
operation to the remote broker.

On the broker side, the transaction store marks this transaction as complete. The pending
operations are now executed and any pending messages can now be forwarded to JMS
consumers.

Embedded MQ broker

Although Apache ActiveMQ supports a remote connection between the JMS XA resource and the broker,
this is not the most efficient or reliable way to set up a transactional application. A network connection
usually introduces significant latency and any communication delays between the JMS XA resource and
the broker would affect all of the other participants in the transaction.

A more efficient approach would be to embed a broker in the same JVM as the JMS XA resource on the
Client host, as shown in Figure 7.3, “JMS XA Resource Connected to Embedded Broker”. In this
scenario, an additional broker is deployed on the Client host, preferably running in the same JVM as the
JMS XA resource (that is, in embedded mode). Now all of the resource-to-broker communication is
localized and runs much faster. It still might be necessary to forward messages to a remote broker, but
this communication has no effect on the XA transactions.

Figure 7.3. JMS XA Resource Connected to Embedded Broker

Default MQ broker

By default, a standalone JBoss Fuse container already has an MQ broker deployed in it. If you deploy a
JMS XA resource into this container, you can communicate efficiently with the default broker through the
JVM, by connecting through the broker URL, vm:amq.

Red Hat JBoss Fuse 6.2 Transaction Guide

92

7.3. SAMPLE JMS XA CONFIGURATION

Spring XML configuration

Example 7.1, “Camel JMS Component with XA Enabled” shows the complete Blueprint XML
configuration required to initialize the jmstx Camel JMS component with XA transactions. After setting up
the Camel JMS component with this code, you can create a transactional JMS endpoint in a route using
a URL like jmstx:queue:QueueName.

Example 7.1. Camel JMS Component with XA Enabled

1

2

3

4

5

6

7
8

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!--
 OSGi TM Service
 -->
 <!-- access through Spring's PlatformTransactionManager -->
 <reference id="osgiPlatformTransactionManager"

 interface="org.springframework.transaction.PlatformTransactionManager"/>
 <!-- access through PlatformTransactionManager -->

 <reference id="osgiJtaTransactionManager"
 interface="javax.transaction.TransactionManager"/>
 ...

 <!--
 JMS TX endpoint configuration
 -->
 <bean id="jmstx"

 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="configuration" ref="jmsTxConfig" />

 </bean>

 <bean id="jmsTxConfig"

 class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsXaPoolConnectionFactory"/>

 <property name="transactionManager" ref="osgiPlatformTransactionManager"/>
 <property name="transacted" value="false"/>
 <property name="cacheLevelName" value="CACHE_CONNECTION"/>
 </bean>

 <!-- connection factory wrapper to support auto-enlisting of XA resource -->
 <bean id="jmsXaPoolConnectionFactory"

 class="org.apache.activemq.pool.JcaPooledConnectionFactory">
 <property name="name" value="MyXaResourceName" />
 <property name="maxConnections" value="1" />
 <property name="connectionFactory" ref="jmsXaConnectionFactory" />

 <property name="transactionManager" ref="osgiJtaTransactionManager" />
 </bean>

 <bean id="jmsXaConnectionFactory"

 class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <property name="brokerURL" value="vm:local"/>
 <property name="userName" value="UserName"/>

 <property name="password" value="Password"/>

CHAPTER 7. JMS XA TRANSACTION INTEGRATION

93

1

2

3

4

5

6

7

8

Listing notes

The preceding Spring XML configuration can be explained as follows:

Define a reference to the OSGi service that exposes the PlatformTransactionManager interface of
the OSGi container's built-in XA transaction manager. This service can then be accessed through
the bean ID, osgiPlatformTransactionManager.

Define a reference to the OSGi service that exposes the JTA TransactionManager interface of the
OSGi container's built-in XA transaction manager. This service can then be accessed through the
bean ID, osgiJtaTransactionManager.

The bean identified by the ID, jmstx, is the ActiveMQ implementation of the Camel JMS
component. You can use this component to define transactional JMS endpoints in your routes. The
only property that you need to set on this bean is a reference to the JmsConfiguration bean with
the ID, jmsTxConfig.

The JmsConfiguration bean with the ID, jmsTxConfig, is configured as described in Section 7.1,
“Enabling XA on the Camel JMS Component”. In particular, the configuration bean gets a reference
to the XA pooled connection factory and a reference to the osgiPlatformTransactionManager
bean. The transacted property must be set to false.

The JcaPooledConnectionFactory is a wrapper class that adds extra capabilities to the basic
connection factory bean (that is, it adds the capabilities to auto-enlist XA resources and to pool JMS
connections).

The maxConnections property should be set to 1.

The bean with the ID, jmsXaConnectionFactory, is the basic connection factory, which
encapsulates the code for connecting to the JMS broker. In this case, the bean is an instance of
ActiveMQXAConnectionFactory type, which is a special connection factory class that you must
use when you want to connect to the ActiveMQ broker with support for XA transactions.

9

10

 <property name="redeliveryPolicy">
 <bean class="org.apache.activemq.RedeliveryPolicy">

 <property name="maximumRedeliveries" value="0"/>
 </bean>
 </property>
 </bean>

 <!--
 ActiveMQ XA Resource Manager
 -->
 <bean id="resourceManager"
 class="org.apache.activemq.pool.ActiveMQResourceManager"
 init-method="recoverResource">
 <property name="transactionManager" ref="osgiJtaTransactionManager" />
 <property name="connectionFactory" ref="jmsXaPoolConnectionFactory" />

 <property name="resourceName" value="activemq.default" />
 </bean>

 ...
</blueprint>

Red Hat JBoss Fuse 6.2 Transaction Guide

94

9

10

The brokerURL property defines the protocol for connecting to the broker. In this case, the
vm:local URL connects to the broker that is embedded in the current JVM and is identified by the

There are many different protocols supported by Apache ActiveMQ that you could use here. For
example, to connect to a remote broker through the OpenWire TCP protocol listening on IP port
61616 on host MyHost, you would use the broker URL, tcp://MyHost:61616.

In this example, the redelivery policy is disabled by setting maximumRedeliveries to 0. Typically,
you would not use a redelivery policy together with transactions. An alternative approach would be
to define an exception handler that routes failed exchanges to a dead letter queue.

The resourceName property is the key entry that maps from the transaction manager log to a real-
world XAResource object. It must be unique for each XAResource object.

7.4. XA CLIENT WITH TWO CONNECTIONS TO A BROKER

Overview

A special case arises where an XA client opens two separate connections to the same remote broker
instance. You might want to open two connections, for example, in order to send messages to the broker
with different properties and qualities of service.

Each XA connection is implicitly associated with its own dedicated XA resource object. When two XA
resource objects are equivalent (as determined by calling XAResource.isSameRM), however, many
Transaction Managers treat these XA resource objects in a special way: when the current transaction
finishes (committed or rolled back), the Transaction Manager calls XAResource.end only on the first
enlisted XAResource instance. This creates a problem for Apache ActiveMQ, which expects
XAResource.end to be called on every enlisted XAResource instance. To avoid this problem, Apache
ActiveMQ provides an option which forces the Transaction Manager to call XAResource.end on every
XA resource instance.

jms.rmIdFromConnectionId option

To cope with the scenario where an XA client opens two connections to the same remote broker, it is
normally necessary to set the jms.rmIdFromConnectionId option to true. The effect of setting this
option to true is that XA resource names are then based on the connection ID, instead of being based on
the broker ID. This ensures that all connections have distinct XA resource names, even if they are
connected to the same broker instance (note that every connection is associated with its own XA
resource object). A side effect of setting this option is that the Transaction Manager is guaranteed to call
XAResource.end on each of the XA resource objects.

NOTE

When you set the jms.rmIdFromConnectionId option to true, the transaction manager
adopts the 2-phase commit protocol (2-PC). Hence, there is a significant overhead
associated with sending messages on one connection and receiving messages on
another, when transactions are enabled.

Setting rmIdFromConnectionId option on an endpoint URI

You can enable the rmIdFromConnectionId option by setting jms.rmIdFromConnectionId to true on
an Apache ActiveMQ endpoint URI. For example, to enable this option on an OpenWire URI:

CHAPTER 7. JMS XA TRANSACTION INTEGRATION

95

Setting rmIdFromConnectionId option directly on ActiveMQXAConnectionFactory

You can enable the rmIdFromConnectionId option directly on the ActiveMQXAConnectionFactory
class, by invoking the setRmIdFromConnectionId method. For example, you can set the
rmIdFromConnectionId option in Java, as follows:

And you can set the rmIdFromConnectionId option in XML, as follows:

Example using rmIdFromConnectionId

The following example shows you how to use the rmIdFromConnectionId option in the context of an XA
aware JMS client written in Java:

tcp://brokerhost:61616?jms.rmIdFromConnectionId=true

// Java
ActiveMQXAConnectionFactory cf = new ActiveMQXAConnectionFactory(...);
cf.setRmIdFromConnectionId(true);

<!--
 ActiveMQ XA Resource Manager
-->
<bean id="resourceManager"
 class="org.apache.activemq.pool.ActiveMQResourceManager"
 init-method="recoverResource">
 <property name="transactionManager" ref="osgiJtaTransactionManager" />
 <property name="connectionFactory" ref="jmsXaPoolConnectionFactory" />
 <property name="resourceName" value="activemq.default" />
 <property name="rmIdFromConnectionId" value="true" />
</bean>

// Java
import org.apache.activemq.ActiveMQXAConnectionFactory

import javax.jms.XAConnection;
import javax.jms.XASession;
import javax.jms.XATopicConnection;
import javax.transaction.xa.XAException;
import javax.transaction.xa.XAResource;
import javax.transaction.xa.Xid;
...
ActiveMQXAConnectionFactory cf = new
ActiveMQXAConnectionFactory("tcp://brokerhost:61616?jms.rmIdFromConnectionId=true");
... // Configure other connection factory options (not shown)

XAConnection connection1 = (XAConnection)cf.createConnection();
XASession session1 = connection1.createXASession();
XAResource resource1 = session1.getXAResource();

XAConnection connection2 = (XAConnection)cf.createConnection();
XASession session2 = connection2.createXASession();
XAResource resource2 = session2.getXAResource();
...

Red Hat JBoss Fuse 6.2 Transaction Guide

96

In this case, the XA transaction proceeds as follows:

1. Because this is an XA example, it does not show any explicit transaction demarcation (for
example, begin or commit invocations). In this case, the XA Transaction Manager (TM) is
responsible for transaction demarcation. For example, if you were deploying this code into a
container that supports transactions, the container would normally be responsible for transaction
demarcation.

2. When you create the first XAConnection object, connection1, it automatically creates the
associated XAResource object for this connection, resource1. The TM automatically enlists
resource1 into the current transaction by calling XAResource.start().

3. When you create the second XAConnection object, connection2, it automatically creates the
associated XAResource object for this connection, resource2. The TM automatically joins
resource2 to the current transaction: the TM does this by calling XAResource.start() with the
TMJOIN flag.

4. Because you have set rmIdFromConnectionId to true in this example, resource1 and
resource2 have different XA resource names, which means that the TM treats them as two
different resources.

5. You can now do some work in the current transaction by sending messages on connection1
and on connection2. All of these message sends belong to the current transaction.

6. When the current transaction is finished (committed or rolled back), the TM will call
XAResource.end() on both resource1 and resource2. This behaviour is guaranteed, because
the TM perceives resource1 and resource2 to be different resources (due to different XA
resource names).

NOTE

If you have not set the rmIdFromConnectionId option, the typical behaviour of
the TM at this point would be to call XAResource.end only on the first resource,
resource1. This creates problems in the context of Apache ActiveMQ, because
the second connection, connection2, can send messages asynchronously and
these asynchronous messages will not be synchronized with the transaction
unless the TM calls XAResource.end on resource2 as well.

// Send messages using 'connection1' AND connection2' in this thread
...
// Commit transaction => transaction manager sends xa.end() to BOTH XAResource objects

CHAPTER 7. JMS XA TRANSACTION INTEGRATION

97

http://docs.oracle.com/javaee/5/api/javax/transaction/xa/XAResource.html#start%28javax.transaction.xa.Xid, int%29
http://docs.oracle.com/javaee/5/api/javax/transaction/xa/XAResource.html#start%28javax.transaction.xa.Xid, int%29
http://docs.oracle.com/javaee/5/api/javax/transaction/xa/XAResource.html#TMJOIN
http://docs.oracle.com/javaee/5/api/javax/transaction/xa/XAResource.html#end%28javax.transaction.xa.Xid, int%29

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION

Abstract

In order to integrate a database with the XA transaction manager, you need two things: an XA data
source (provided by the database implementation); and a proxy data source that wraps the original XA
data source and supports auto-enlistment of the XA resource (provided either by the database
implementation or by a third-party library). In this chapter, the JDBC integration steps are illustrated using
the Apache Derby database.

8.1. CONFIGURING AN XA DATA SOURCE

Overview

A JDBC client can access an XA data source either directly, through the javax.sql.XADataSource
interface, or indirectly, through a proxy object that implements the javax.sql.DataSource interface. In the
context of OSGi, the usual way to integrate an XA data source is to instantiate the data source
implementation provided by the underlying database and then to export that data source as an OSGi
service.

javax.sql.DataSource interface

The javax.sql.DataSource interface is the preferred way to expose a JDBC interface. It is a highly
abstracted interface, exposing only two methods, getConnection and setConnection, to the JDBC
client.

According to the JDBC specification, the usual way to make a DataSource object available to a JDBC
client is through the JNDI registry.

javax.sql.XADataSource interface

In the context of XA transactions, a JDBC data source can be exposed as a javax.sql.XADataSource
object. The main difference between an XADataSource object and a plain DataSource object is that the
XADataSource object returns a javax.sql.XAConnection object, which you can use to access and
enlist an XAResource object.

By default, enlisting an XAResource object is a manual procedure. That is, when using an
XADataSource directly, a JDBC client must explicitly write the code to obtain the XAResource and
enlist it with the current transaction. An alternative approach is to wrap the XA data source in a proxy
data source that performs enlistment automatically (for example, see Section 8.2, “Apache Aries Auto-
Enlisting XA Wrapper”).

Standard JDBC data source properties

The JDBC specification mandates that a data source implementation class implements the bean
properties shown in Table 8.1, “Standard DataSource Properties”. These properties are not defined on
the javax.sql.DataSource interface and need not all be implemented. The only required property is
description.

Table 8.1. Standard DataSource Properties

Red Hat JBoss Fuse 6.2 Transaction Guide

98

Property Type Description

databaseName String (Optional) Name of the database
instance.

dataSourceName String (Optional) For an XA data source
or a pooled data source, names
the underlying data source object.

description String (Required) Description of the data
source.

networkProtocol String (Optional) Network protocol used
to communicate with the database
server.

password String (Optional) If required, the user
and password properties can be
provided to open a secure
connection to the database
server.

portNumber int (Optional) IP port number where
the database server is listening.

roleName String (Optional) The initial SQL role
name.

serverName String (Optional) The database server
name.

user String (Optional) If required, the user
and password properties can be
provided to open a secure
connection to the database
server.

NOTE

Although the properties shown in this table are standardized, they are not compulsory. A
given data source implementation might define some or all of the standard properties, and
is also free to define additional properties not mentioned in the specification.

Apache Derby

Apache Derby is an open source database implementation, which provides a full implementation of XA
transactions. In the current document, we use it as the basis for some of our examples and tutorials.

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION

99

http://db.apache.org/derby/

IMPORTANT

Apache Derby is neither maintained nor supported by Red Hat. No guarantees are given
with respect to the robustness or correctness of its XA implementation. It is used here
solely for the purposes of illustration.

Derby data sources

Apache Derby provides the following alternative data source implementations (from the
org.apache.derby.jdbc package):

EmbeddedDataSource

A non-XA data source, which connects to the embedded Derby database instance identified by the
databaseName property. If the embedded database instance is not yet running, it is automatically
started in the current JVM.

EmbeddedXADataSource

An XA data source, which connects to the embedded Derby database instance identified by the
databaseName property. If the embedded database instance is not yet running, it is automatically
started in the current JVM.

EmbeddedConnectionPoolDataSource

A non-XA data source with connection pooling logic, which connects to the embedded Derby
database instance identified by the databaseName property. If the embedded database instance is
not yet running, it is automatically started in the current JVM.

ClientDataSource

A non-XA data source, which connects to the remote Derby database instance identified by the
databaseName property.

ClientXADataSource

An XA data source, which connects to the remote Derby database instance identified by the
databaseName property.

ClientConnectionPoolDataSource

A non-XA data source with connection pooling logic, which connects to the remote Derby database
instance identified by the databaseName property.

NOTE

If you need to access to the additional API methods defined in the JDBC 4.0 specification
(such as isWrapperFor), use the variants of these data source classes with 40
appended. For example, EmbeddedDataSource40, EmbeddedXADataSource40, and
so on.

Derby data source properties

Table 8.2, “Derby DataSource Properties” shows the properties supported by the Derby data sources.
For basic applications, the databaseName property (which specifies the database instance name) is the
most important one.

Red Hat JBoss Fuse 6.2 Transaction Guide

100

Table 8.2. Derby DataSource Properties

Property Type Description

connectionAttributes String (Optional) Used to specify Derby-
specific connection attributes.

createDatabase String (Optional) When specified with
the value, create, the database
instance specified by
databaseName is automatically
created (if it does not already
exist) the next time the
getConnection method of the
data source is called

databaseName String (Optional) Name of the Derby
database instance.

dataSourceName String (Optional) For an XA data source
or a pooled data source, names
the underlying data source object.
Not used by the Derby data
source implementation.

description String (Required) Description of the data
source.

shutdownDatabase String (Optional) When specified with
the value, shutdown, shuts
down the database instance the
next time the getConnection
method of the data source is
called.

Data sources as OSGi services

The JDBC specification recommends that data source objects are provided through the JNDI registry. In
the context of the OSGi container, however, the natural mechanism for enabling loose coupling of
services is the OSGi service registry. For this reason, the examples here show you how to create an XA
data source and expose it as an OSGi service.

NOTE

Additionally, exposing a data source as an OSGi service has the advantage that it
integrates automatically with the Aries XA data source wrapper layer. See Section 8.2,
“Apache Aries Auto-Enlisting XA Wrapper”.

Blueprint

In blueprint XML, you can expose a Derby XA data source as an OSGi service using the code shown in
Example 8.1, “Exposing XA DataSource as an OSGi Service in Blueprint XML”.

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION

101

Example 8.1. Exposing XA DataSource as an OSGi Service in Blueprint XML

References

For more information about defining Derby data sources, see the Apache Derby manuals.

8.2. APACHE ARIES AUTO-ENLISTING XA WRAPPER

Overview

One of the features of the Apache Aries transaction module is that it provides support for auto-enlistment
of XA transactions in the context of JDBC data sources. As already noted, auto-enlisting is the most
practical way of integrating an XA data source with a transaction manager. The basic idea is to wrap the
original data source with a data source proxy object that encapsulates the logic to perform auto-enlisting.

An unusual aspect of the Apache Aries' auto-enlisting feature is that the data source proxy is
automatically created for you. In order to trigger auto-creation of the data source proxy, it is necessary to
export your data source as an OSGi service. The mechanism is illustrated in Figure 8.1, “Creating the
Auto-Enlisting XA Wrapper”.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 default-activation="lazy">

 <bean id="derbyXADataSource" class="org.apache.derby.jdbc.EmbeddedXADataSource">
 <property name="databaseName" value="txXaTutorial"/>
 </bean>

 <service ref="derbyXADataSource" interface="javax.sql.XADataSource">
 <service-properties>
 <!-- A unique ID for this XA resource. Required to enable XA recovery. -->
 <entry key="aries.xa.name" value="derbyDS"/>
 <entry key="osgi.jndi.service.name" value="jdbc/derbyXADB"/>
 <entry key="datasource.name" value="derbyXADB"/>
 </service-properties>
 </service>

</blueprint>

Red Hat JBoss Fuse 6.2 Transaction Guide

102

http://db.apache.org/derby/manuals/index.html

Figure 8.1. Creating the Auto-Enlisting XA Wrapper

derby-ds bundle

The derby-ds bundle shown in Figure 8.1, “Creating the Auto-Enlisting XA Wrapper” encapsulates the
code from Example 8.1, “Exposing XA DataSource as an OSGi Service in Blueprint XML”, which defines
a Derby XA data source and exports it as an OSGi service.

Also shown wthin the scope of the derby-ds bundle is the auto-enlisting data source proxy. But this data
source proxy is not created by the code in the derby-ds bundle and is initially not part of the bundle.

Automatic wrapper instantiation

Instantiation of the data source proxy depends on the Aries transaction wrapper bundle
(org.apache.aries.transaction.wrappers bundle). The Aries transaction wrapper bundle defines an
activator, which installs hooks into the OSGi runtime, so that it gets notified whenever an OSGi bundle
exports a service supporting the javax.sql.XADataSource interface.

XADataSourceEnlistingWrapper

Upon detecting a new OSGi service supporting the javax.sql.XADataSource interface, the activator
automatically creates a new XADataSourceEnlistingWrapper object, which wraps the original XA data
source, effectively acting as a data source proxy. The XADataSourceEnlistingWrapper object also
obtains a reference to the JTA transaction manager service (from the
org.apache.aries.transaction.manager bundle). Finally, the activator exports the
XADataSourceEnlistingWrapper object with the javax.sql.DataSource interface.

JDBC clients now have the option of accessing the XA data source through this newly created data
source proxy. Whenever a new database connection is requested from the data source proxy (by calling
the getConnection method), the proxy automatically gets a reference to the underlying XA resource and
enlists the XA resource with the JTA transaction manager. This means that the required XA coding steps
are automatically performed and the JDBC client does not need to be XA transaction aware.

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION

103

NOTE

The XADataSourceEnlistingWrapper class is not exported from the Aries transaction
wrapper bundle, so it is not possible to create the data source proxy explicitly. Instances
of this class can only be created automatically by the activator in the transaction wrapper
bundle.

Installing the Aries transaction wrapper bundle

The Aries transaction wrapper bundle is not installed by default. To take advantage of the datasource
wrapping functionality, you must explicitly install the connector feature, as follows:

Accessing the enlisting wrapper

If you deploy the derby-ds bundle, you can see how the wrapper proxy is automatically created. For
example, after following the instructions in Section 10.3, “Define a Derby Datasource” and Section 10.5,
“Deploy and Run the Transactional Route” to build and deploy the derby-ds bundle, you can list the
OSGi services exported by the derby-ds bundle using the osgi:ls console command. Assuming that
derby-ds has the bundle ID, 229, you would then enter:

The console produces output similar to the following:

The following OSGi services are exposed:

An OSGi service with interface javax.sql.XADataSource and datasource.name equal to
derbyXADB—this is the XA data source explicitly exported as an OSGi service in Example 8.1,
“Exposing XA DataSource as an OSGi Service in Blueprint XML”.

An OSGi service with interface javax.sql.DataSource and datasource.name equal to
derbyXADB—this is the auto-enlisting data source proxy implicitly created by the Aries wrapper
service. The data source proxy copies the user-defined service properties from the original OSGi

JBossFuse:karaf@root> features:install connector

JBossFuse:karaf@root> osgi:ls 229

Derby XA data source (229) provides:

datasource.name = derbyXADB
objectClass = javax.sql.XADataSource
osgi.jndi.service.name = jdbc/derbyXADB
osgi.service.blueprint.compname = derbyXADataSource
service.id = 423

aries.xa.aware = true
aries.xa.name = derbyDS
datasource.name = derbyXADB
objectClass = javax.sql.DataSource
osgi.jndi.service.name = jdbc/derbyXADB
osgi.service.blueprint.compname = derbyXADataSource
service.id = 424

...

Red Hat JBoss Fuse 6.2 Transaction Guide

104

service and adds the setting aries.xa.aware = true. The aries.xa.aware property enables you to
distinguish between the generated proxy and the original data source.

Blueprint

In blueprint XML, you can access the auto-enlisting data source proxy by defining an reference element
as shown in Example 8.2, “Importing XA DataSource as an OSGi Service Reference in Blueprint XML”.

Example 8.2. Importing XA DataSource as an OSGi Service Reference in Blueprint XML

JDBC connection pool options

Additional configuration options (Table 8.3) for controlling the pooling of JDBC connections are available
for a JDBC driver that is auto-enlisted in the Aries transaction manager. In the Blueprint
datasource.xml, these options are specified as key/value pairs under the service definition's service-
properties element.

For example, in the following Blueprint datasource.xml example, several of the connection pool
configuration options are specified:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 default-activation="lazy">

 <!--
 Import Derby XA data source as an OSGi service
 -->
 <reference id="derbyXADataSource"
 interface="javax.sql.DataSource"
 filter="(datasource.name=derbyXADB)"/>
</blueprint>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 default-activation="lazy">

 <bean id="derbyXADataSource" class="org.apache.derby.jdbc.EmbeddedXADataSource">
 <property name="databaseName" value="txXaTutorial"/>
 </bean>

 <service ref="derbyXADataSource" interface="javax.sql.XADataSource">
 <service-properties>
 <entry key="datasource.name" value="derbyXADB"/>
 <!-- A unique ID for this XA resource. Required to enable XA recovery. -->
 <entry key="aries.xa.name" value="derbyDS"/>
 <!-- Additional supported pool connection properties -->
 <entry key="aries.xa.pooling" value="true"/>
 <entry key="aries.xa.poolMinSize" value="1"/>
 <entry key="aries.xa.poolMaxSize" value="3"/>

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION

105

Table 8.3. JDBC connection pool configuration options

Property Description

aries.xa.name Specifies the name of the managed resource that the
transaction manager uses to uniquely identify and
recover the resource.

aries.xa.exceptionSorter (Optional) Determines whether an exception will
cause the connection to be discarded and rollback of
the transaction eventually attempted. Valid values
are:

all—[Default] All exceptions considered
fatal; discard the connection and attempt
rollback.

none—No exception considered fatal;
retain connection, no rollback

known—Only known SQL states not
considered fatal; for those, retain
connection/no rollback. For a list of known
states, see
KnownSQLStateExceptionSorter.

custom—Only the specified comma-
separated list of SQL states not considered
fatal; for those, retain connection/no
rollback. For example,

<entry
key="aries.xa.exceptionSorter"
value="custom(06S04,09S05)" />

aries.xa.username (Optional) Specifies the name of the user to use. This
property is usually set on the inner
ConnectionFactory. However, setting it in the service
definition overrides the value set in the inner
ConnectionFactory.

aries.xa.password (Optional) Specifies the password to use. This
property is usually set on the inner
ConnectionFactory. However, setting it also in the
service definition overrides the value set in the inner
ConnectionFactory.

 <entry key="aries.xa.partitionStrategy" value="none"/>
 <entry key="aries.xa.allConnectionsEquals" value="false"/>
 </service-properties>
 </service>

 ...

</blueprint>

Red Hat JBoss Fuse 6.2 Transaction Guide

106

http://grepcode.com/file/repo1.maven.org/maven2/org.tranql/tranql-connector/1.8/org/tranql/connector/jdbc/KnownSQLStateExceptionSorter.java

aries.xa.pooling (Optional) Enables/disables support for pooling.
Default is true (enabled).

aries.xa.poolMaxSize (Optional) Specifies the maximum pool size in
number of connections. Default is 10.

aries.xa.poolMinSize (Optional) Specifies the minimum pool size in
number of connections. Default is 0.

aries.xa.transaction (Optional) Specifies the type of transactions to use.
Valid values are:

none—No transactions used

xa—[Default] XA transactions used

local—Non XA transactions used

aries.xa.partitionStrategy (Optional) Specifies the pool partitioning strategy to
use. Valid values are:

none—[Default] No partitioning

by-subject—Partition by authenticated
users

by-connector-properties—Partition by
connection properties

aries.xa.connectionMadIdleMinutes[a] (Optional) Specifies the maximum time, in minutes,
that a connection can remain idling before it’s
released from the pool. Default is 15.

aries.xa.connectionMaxWaitMilliseconds (Optional) Specifies the maximum time, in
milliseconds, to wait to retrieve a connection from the
pool. Default is 5000.

aries.xa.allConnectionsEquals (Optional) Specifies to assume that all connections
are equal— use the same user credentials—when
retrieving one from the pool. Default is true.

Note: If you're using different kinds of connections to
accommodate different users, do not enable this
option unless you use a partition strategy that pools
matching connections. Otherwise, attempts to
retrieve connections from the pool will fail.

[a] Though the spelling of this property appears incorrect, it is not. Do not replace the d in connectionMadMinutes with an x.

Property Description

CHAPTER 8. JDBC XA TRANSACTION INTEGRATION

107

CHAPTER 9. XA TRANSACTION DEMARCATION

Abstract

Red Hat JBoss Fuse supports a variety of different ways to demarcate XA transactions (that is,
beginning, committing or rolling back transactions). You can choose the most convenient way to
demarcate transactions, depending on the context.

9.1. DEMARCATION BY TRANSACTIONAL ENDPOINTS

Overview

In the context of a Apache Camel route, you have the option of enabling transaction demarcation in the
consumer endpoint, which appears at the start of a route (that is, the endpoint appearing in from(...)).
This has the advantage that the transaction scope spans the whole route, including the endpoint that
starts the route. Not all endpoint types are transactional, however.

Auto-demarcation by JMS consumer endpoints

A Camel JMS consumer endpoint with XA transactions enabled will automatically demarcate a
transaction as follows:

1. The endpoint automatically starts a transaction (by invoking begin() on the XA transaction
manager), before pulling a message off the specified JMS queue.

2. The endpoint automatically commits the transaction (by invoking commit() on the XA transaction
manager), after the exchange has reached the end of the route.

For example, given the XA-enabled component, jmstx (see Sample JMX XA Configuration), you can
define a transactional route as follows:

JMS producer endpoints

In contrast to consumer endpoints, JMS producer endpoints do not demarcate transactions (since
producer endpoints typically appear at the end of a route, it would be too late to initiate a transaction
anyway). Nonetheless, an XA-enabled producer endpoint is capable of participating in a transaction, if a
transaction context is already present. In fact, it is essential to enable XA on a JMS producer endpoint, if
you want it to participate in a transaction.

Transactional and non-transactional JMS endpoints

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {
 ...
 public void configure() {
 from("jmstx:queue:giro")
 .beanRef("accountService","credit")
 .beanRef("accountService","debit");
 }
}

Red Hat JBoss Fuse 6.2 Transaction Guide

108

Because of the way that Apache ActiveMQ implements transactions, a transactional JMS endpoint must
always be used in a transaction context and a non-transactional JMS endpoint must always be used
outside of a transaction context. You cannot mix and match (for example, accessing a transactional JMS
endpoint without any transaction context).

As a consequence of this restriction, it is typically convenient to define two different Camel JMS
components, as follows:

A transactional Camel JMS component—to access JMS destinations transactionally.

A non-transactional Camel JMS component—to access JMS destinations without a transaction
context.

9.2. DEMARCATION BY MARKING THE ROUTE

Overview

If the consumer endpoint at the start of a route does not support transactions, you can nevertheless
initiate a transaction immediately after receiving an incoming message by inserting the transacted()
command into your route.

Demarcation using transacted()

By default, the transacted() command uses the first transaction manager of type
PlatformTransactionManager that it finds in the bean registry (which could either be an OSGi service, a
bean defined in Spring XML, or a bean defined in blueprint). Because the
PlatformTransactionManager interface is, by default, exported as an OSGi service, the transacted()
command will automatically find the XA transaction manager.

When you use the transacted() command to mark a route as transacted, all of the processors following
transacted() participate in the transaction; all of the processors preceding transacted() do not
participate in the transaction. For example, you could use transacted() to make a route transactional, as
follows:

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {
 ...
 public void configure() {
 from("file:src/data?noop=true")
 .transacted()
 .beanRef("accountService","credit")
 .beanRef("accountService","debit")
 .to("jmstx:queue:processed");
 }
}

CHAPTER 9. XA TRANSACTION DEMARCATION

109

IMPORTANT

If your container exports multiple OSGi services of PlatformTransactionManager type or
if you register multiple TransactedPolicy objects in the bean registry (for example, by
defining beans in Spring XML), you cannot be certain which transaction manager would
be picked up by the transacted() command (see Default transaction manager and
transacted policy). In such cases, it is recommended that you specify the transaction
policy explicitly.

Specifying the transaction policy explicitly

To eliminate any ambiguity about which transaction manager is used, you can specify the transaction
policy explicitly by passing the transaction policy's bean ID as an argument to the transacted()
command. First of all, you need to define the transaction policy (of type,
org.apache.camel.spring.spi.SpringTransactionPolicy), which encapsulates a reference to the
transaction manager you want to use—for example:

After the transaction policy bean is defined, you can use it by passing its bean ID, XA_TX_REQUIRED,
as a string argument to the transacted() command—for example:

For more details about transaction policies, see Propagation Policies.

XML syntax

You can also use the transacted command in Spring XML or blueprint files. For example, to demarcate
an XA transaction in Spring XML:

<beans ...>
 ...
 <!-- access through Spring's PlatformTransactionManager -->
 <osgi:reference id="osgiPlatformTransactionManager"
 interface="org.springframework.transaction.PlatformTransactionManager"/>
 ...
 <bean id="XA_TX_REQUIRED" class="org.apache.camel.spring.spi.SpringTransactionPolicy">
 <property name="transactionManager" ref="osgiPlatformTransactionManager"/>
 </bean>
 ...
</beans>

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {
 ...
 public void configure() {
 from("file:src/data?noop=true")
 .transacted("XA_TX_REQUIRED")
 .beanRef("accountService","credit")
 .beanRef("accountService","debit")
 .to("jmstx:queue:processed");
 }
}

<beans xmlns="http://www.springframework.org/schema/beans"

Red Hat JBoss Fuse 6.2 Transaction Guide

110

9.3. DEMARCATION BY USERTRANSACTION

Overview

It is possible to demarcate a transaction by accessing the UserTransaction service directly and calling
its begin(), commit() and rollback() methods. But you should be careful to call these methods only
when it is really necessary. Usually, in a Apache Camel application, a transaction would be started either
by a transactional endpoint or by the transacted() marker in a route, so that explicit invocations of
UserTransaction methods are not required.

Accessing UserTransaction from Apache Camel

In the case of Apache Camel applications deployed in an OSGi container, you can easily obtain a
reference to the UserTransaction OSGi service by looking it up in the CamelContext registry. For
example, given the CamelContext instance, camelContext, you could obtain a UserTransaction
reference as follows:

For more details of how the registry is integrated with OSGi, see Integration with Apache Camel.

Example with UserTransaction

The following example shows how to access a UserTransaction object and use it to demarcate a
transaction, where it is assumed that this code is part of a Apache Camel application deployed inside an
OSGi container.

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ... >

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="file:src/data?noop=true"/>
 <transacted ref="XA_TX_REQUIRED"/>
 <bean ref="accountService" method="credit"/>
 <bean ref="accountService" method="debit"/>
 <to uri="jmstx:queue:processed"/>
 </route>
 </camelContext>

</beans>

// Java
import javax.transaction.UserTransaction;
...
UserTransaction ut =
 (UserTransaction) camelContext.getRegistry().lookup(UserTransaction.class.getName());

// Java
import javax.transaction.UserTransaction;
...
UserTransaction ut =
 (UserTransaction) camelContext.getRegistry().lookup(UserTransaction.class.getName());

try {
 ut.begin();

CHAPTER 9. XA TRANSACTION DEMARCATION

111

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Deploying_into_the_Container/DeploySimple-CamelRegistry.html

9.4. DEMARCATION BY DECLARATIVE TRANSACTIONS

Overview

You can also demarcate transactions by declaring transaction policies in your blueprint XML file. By
applying the appropriate transaction policy to a bean or bean method (for example, the Required policy),
you can ensure that a transaction is started whenever that particular bean or bean method is invoked. At
the end of the bean method, the transaction will be committed. (This approach is analogous to the way
that transactions are dealt with in Enterprise Java Beans).

OSGi declarative transactions enable you to define transaction policies at the following scopes in your
blueprint file:

the section called “Bean-level declaration”.

the section called “Top-level declaration”.

Bean-level declaration

To declare transaction policies at the bean level, insert a tx:transaction element as a child of the bean
element, as follows:

In the preceding example, the Required transaction policy is applied to all methods of the accountFoo
bean and the accountBar bean (where the method attribute specifies the wildcard, *, to match all bean
methods).

Top-level declaration

To declare transaction policies at the top level, insert a tx:transaction element as a child of the
blueprint element, as follows:

 ...
 // invoke transactional methods or endpoints
 ...
 ut.commit();
}
catch (Exception e) {
 ut.rollback();
}

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:tx="http://aries.apache.org/xmlns/transactions/v1.1.0">

 <bean id="accountFoo" class="org.fusesource.example.Account">
 <tx:transaction method="*" value="Required"/>
 <property name="accountName" value="Foo"/>
 </bean>

 <bean id="accountBar" class="org.fusesource.example.Account">
 <tx:transaction method="*" value="Required"/>
 <property name="accountName" value="Bar"/>
 </bean>

</blueprint>

Red Hat JBoss Fuse 6.2 Transaction Guide

112

In the preceding example, the Required transaction policy is applied to all methods of every bean whose
ID matches the pattern, account*.

tx:transaction attributes

The tx:transaction element supports the following attributes:

bean

(Top-level only) Specifies a list of bean IDs (comma or space separated) to which the transaction
policy applies. For example:

You can also use the wildcard character, *, which may appear at most once in each list entry. For
example:

If the bean attribute is omitted, it defaults to * (matching all non-synthetic beans in the blueprint file).

method

(Top-level and bean-level) Specifies a list of method names (comma or space separated) to which the
transaction policy applies. For example:

You can also use the wildcard character, *, which may appear at most once in each list entry.

If the method attribute is omitted, it defaults to * (matching all methods in the applicable beans).

value

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:tx="http://aries.apache.org/xmlns/transactions/v1.1.0">

 <tx:transaction bean="account*" value="Required"/>

 <bean id="accountFoo" class="org.fusesource.example.Account">
 <property name="accountName" value="Foo"/>
 </bean>

 <bean id="accountBar" class="org.fusesource.example.Account">
 <property name="accountName" value="Bar"/>
 </bean>

</blueprint>

<blueprint ...>
 <tx:transaction bean="accountFoo,accountBar" value="..."/>
</blueprint>

<blueprint ...>
 <tx:transaction bean="account*,jms*" value="..."/>
</blueprint>

<bean id="accountFoo" class="org.fusesource.example.Account">
 <tx:transaction method="debit,credit,transfer" value="Required"/>
 <property name="accountName" value="Foo"/>
</bean>

CHAPTER 9. XA TRANSACTION DEMARCATION

113

(Top-level and bean-level) Specifies the transaction policy. The policy values have the same
semantics as the policies defined in the EJB 3.0 specification, as follows:

Required—support a current transaction; create a new one if none exists.

Mandatory—support a current transaction; throw an exception if no current transaction
exists.

RequiresNew—create a new transaction, suspending the current transaction if one exists.

Supports—support a current transaction; execute non-transactionally if none exists.

NotSupported—do not support a current transaction; rather always execute non-
transactionally.

Never—do not support a current transaction; throw an exception if a current transaction
exists.

Red Hat JBoss Fuse 6.2 Transaction Guide

114

CHAPTER 10. XA TUTORIAL

Abstract

This tutorial describes how to define and build a transactional route involving two XA resources (a JMS
resource and a JDBC resource), based on the Apache Aries transaction manager in the OSGi container.
For the purposes of illustration, the tutorial uses the Apache Derby database, which provides the JDBC
XA resource.

10.1. INSTALL APACHE DERBY

Overview

For this tutorial, you need an installation of the Apache Derby database, which is an open source
database that supports XA transactions. In particular, you will need to use the ij command-line utility later
in the tutorial to create a database schema.

Downloading

Download the latest binary distribution of Apache Derby, db-derby-Version-bin.zip, from the Apache
Derby download page:

NOTE

The same binary distribution is used both for Windows and *NIX operating systems.

Installing

To install Apache Derby, use an archive utility to extract the binary distribution into a convenient directory
(for example, C:\Program Files on Windows, or /usr/local on *NIX).

Environment variables

To gain access to the Derby command-line utilities, add the Derby bin directory to your PATH variable.

On Windows, you could use a batch script like the following:

On *NIX, you could use a bash script like the following:

http://db.apache.org/derby/derby_downloads.html

REM Set Apache Derby environment on Windows
SET DERBY_HOME=DerbyInstallDir

SET PATH=%DERBY_HOME%\bin;%PATH%

Set Apache Derby environment on *NIX
DERBY_HOME=DerbyInstallDir

export PATH=$DERBY_HOME/bin:$PATH

CHAPTER 10. XA TUTORIAL

115

http://db.apache.org/derby/derby_downloads.html

10.2. INTEGRATE DERBY WITH JBOSS FUSE

Overview

Integrating Derby with Red Hat JBoss Fuse is a relatively simple procedure. All you need to do is to set a
single Java system property, which specifies the location of the Derby system.

Derby system

A Derby system is essentially the directory where all of Derby's data is stored. A Derby system can
contain multiple database instances, where each database instance holds its data in a sub-directory of
the Derby system directory.

derby.system.home Java system property

You are required to set one Java system property to configure the Derby system: the
derby.system.home Java system property, which specifies the location of the Derby system directory.

Setting derby.system.home in the OSGi container

In order to integrate Derby with JBoss Fuse, you must set the derby.system.home property in the OSGi
container. Under the JBoss Fuse install directory, open the etc/system.properties file using a text editor
and add the following line:

Where DerbySystemDirectory is any convenient location for storing your Derby data files. After setting
the derby.system.home property, any Derby database instances created in the OSGi container will
share the same Derby system (that is, the database instances will store their data under the specified
Derby system directory).

10.3. DEFINE A DERBY DATASOURCE

Overview

This section explains how to define a Derby datasource (and database instance), package the
datasource as an OSGi bundle, and export the datasource as an OSGi service.

Derby data source implementations

Derby provides a variety of different data source implementations, as described in Derby data sources.
For XA transactions, there are two alternatives: EmbeddedXADataSource (where the database
instance runs in the same JVM) and ClientXADataSource (where the application connects to a remote
database instance). The current example uses EmbeddedXADataSource.

Auto-enlisting an XA data source

In practice, you need to wrap the basic Derby data source with an object that performs auto-enlisting of
the XA data source. Apache Aries provides such a wrapper layer. In order to trigger the wrapper
mechanism, however, you must export the Derby data source as an OSGi service as described in
Apache Aries Auto-Enlisting XA Wrapper (and as is done in the current example).

derby.system.home=DerbySystemDirectory

Red Hat JBoss Fuse 6.2 Transaction Guide

116

Prerequisites

Before using Derby in the OSGi container, you must integrate Derby with the container, as described in
Section 10.2, “Integrate Derby with JBoss Fuse”.

Steps to define a Derby datasource

Perform the following steps to define a Derby datasource packaged in an OSGi bundle:

1. Use the quickstart archetype to create a basic Maven project. Maven provides archetypes,
which serve as templates for creating new projects. The Maven quickstart archetype is a basic
archetype, providing the bare outline of a new Maven project.

To create a new project for the Derby datasource bundle, invoke the Maven archetype plug-in as
follows. Open a new command prompt, change directory to a convenient location (that is, to the
directory where you will store your Maven projects), and enter the following command:

NOTE

The preceding command parameters are shown on separate lines for ease of
reading. You must enter the entire command on a single line, however.

After downloading the requisite dependencies to run the quickstart archetype, the command
creates a new Maven project for the org.fusesource.example/derby-ds artifact under the
derby-ds directory.

2. Change the project packaging type to bundle. Under the derby-ds directory, open the pom.xml
file with a text editor and change the contents of the packaging element from jar to bundle, as
shown in the following highlighted line:

3. Add the bundle configuration to the POM. In the pom.xml file, add the following build element
as a child of the project element:

mvn archetype:generate
 -DarchetypeArtifactId=maven-archetype-quickstart
 -DgroupId=org.fusesource.example
 -DartifactId=derby-ds

<project ...>
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>derby-ds</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>bundle</packaging>
 ...
</project>

<project ...>
 ...
 <build>
 <defaultGoal>install</defaultGoal>

 <plugins>

CHAPTER 10. XA TUTORIAL

117

4. Customize the Maven compiler plug-in to enforce JDK 1.7 coding syntax. In the pom.xml
file, add the following plugin element as a child of the plugins element, to configure the
Maven compiler plug-in:

5. Add the Derby dependency to the POM and add the derby-version property to specify the
version of Derby you are using. In the pom.xml file, add the derby-version element and
the dependency element as shown:

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 </instructions>
 </configuration>
 </plugin>

 </plugins>
 </build>

</project>

<project ...>
 ...
 <build>
 <defaultGoal>install</defaultGoal>

 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>

</project>

<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <derby-version>10.10.1.1</derby-version>
 </properties>

 <dependencies>
 <!-- Database dependencies -->
 <dependency>

Red Hat JBoss Fuse 6.2 Transaction Guide

118

IMPORTANT

Remember to customize the derby-version property to the version of Derby
you are using.

6. Instantiate the Derby database instance and export the datasource as an OSGi service. In
fact, this example exports two datasources: an XA datasource and a non-transactional
datasource. The Derby datasources are exported using a blueprint XML file, which must
be stored in the standard location, OSGI-INF/blueprint/. Under the derby-ds project
directory, create the dataSource.xml blueprint file in the following location:

Using your favorite text editor, add the following contents to the dataSource.xml file:

 <groupId>org.apache.derby</groupId>
 <artifactId>derby</artifactId>
 <version>${derby-version}</version>
 </dependency>

 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 ...
</project>

src/main/resources/OSGI-INF/blueprint/dataSource.xml

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 default-activation="lazy">

 <bean id="derbyXADataSource"
class="org.apache.derby.jdbc.EmbeddedXADataSource">
 <property name="databaseName" value="txXaTutorial"/>
 </bean>

 <service ref="derbyXADataSource" interface="javax.sql.XADataSource">
 <service-properties>
 <entry key="datasource.name" value="derbyXADB"/>
 <!-- A unique ID for this XA resource. Required to enable XA recovery. -->
 <entry key="aries.xa.name" value="derbyDS"/>
 </service-properties>
 </service>

 <bean id="derbyDataSource" class="org.apache.derby.jdbc.EmbeddedDataSource">
 <property name="databaseName" value="txXaTutorial"/>
 </bean>

 <service ref="derbyDataSource" interface="javax.sql.DataSource">

CHAPTER 10. XA TUTORIAL

119

In the definition of the derbyXADataSource bean, the databaseName property identifies
the database instance that is created (in this case, txXaTutorial).

The first service element exports the XA datasource as an OSGi service with the
interface, javax.sql.XADataSource. The following service properties are defined:

datasource.name

Identifies this datasource unambiguously when it is referenced from other OSGi
bundles.

aries.xa.name

Defines a unique XA resource name, which is used by the Aries transaction manager
to identify this JDBC resource. This property must be defined in order to support XA
recovery.

The second service element defines a non-transactional datasource as an OSGi service
with the interface javax.sql.DataSource.

7. To build the derby-ds bundle and install it in the local Maven repository, enter the
following Maven command from the derby-ds directory:

10.4. DEFINE A TRANSACTIONAL ROUTE

Overview

This section describes how to create a transactional route and package it as an OSGi bundle.
The route described here is based on the AccountService class (see Appendix A), implementing
a transfer of funds from one account to another, where the account data is stored in an Apache
Derby database instance.

Database schema

The database schema for the accounts consists of just two columns: the name column
(identifying the account holder) and the amount column (specifying the amount of money left in
the account). Formally, the schema is defined by the following SQL command:

Sample incoming message

The following XML snippet demonstrates the format of a typical message that is processed by
the route:

 <service-properties>
 <entry key="datasource.name" value="derbyDB"/>
 </service-properties>
 </service>
</blueprint>

mvn install

CREATE TABLE accounts (name VARCHAR(50), amount INT);

Red Hat JBoss Fuse 6.2 Transaction Guide

120

The message requests a transfer of money from one account to another. It specifies that 90 units
should be subtracted from the Major Clanger account and 90 units should be added to the Tiny
Clanger account.

The transactional route

The incoming messages are processed by the following transactional route:

Money is transferred by calling the AccountService.credit and AccountService.debit bean
methods (which access the Derby database). The AccountService.dumpTable method then
dumps the complete contents of the database table into the current exchange and the route
sends this to the statusLog queue.

Provoking a transaction rollback

The AccountService.debit method imposes a limit of 100 on the amount that can be withdrawn
from any account and throws an exception if this limit is exceeded. This provides a simple
means of provoking a transaction rollback, by sending a message containing a transfer request
that exceeds 100.

Steps to define a transactional route

Perform the following steps to define a route that uses XA to coordinate global transactions
across a JMS XA resource and an Apache Derby XA resource:

1. Use the quickstart archetype to create a basic Maven project for the route bundle. Open a
new command prompt, change directory to a convenient location, and enter the following
command:

The preceding command creates a new Maven project for the org.fusesource.example/tx-
xa artifact under the tx-xa directory.

<transaction>
 <transfer>
 <sender>Major Clanger</sender>
 <receiver>Tiny Clanger</receiver>
 <amount>90</amount>
 </transfer>
</transaction>

<route>
 <from uri="jmstx:queue:giro"/>
 <bean ref="accountService" method="credit"/>
 <bean ref="accountService" method="debit"/>
 <bean ref="accountService" method="dumpTable"/>
 <to uri="jmstx:queue:statusLog"/>
</route>

mvn archetype:generate
 -DarchetypeArtifactId=maven-archetype-quickstart
 -DgroupId=org.fusesource.example
 -DartifactId=tx-xa

CHAPTER 10. XA TUTORIAL

121

2. Change the project packaging type to bundle. Under the tx-xa directory, open the
pom.xml file with a text editor and change the contents of the packaging element from jar
to bundle, as shown in the following highlighted line:

3. Add the bundle configuration to the POM. In the pom.xml file, add the following build
element as a child of the project element:

<project ...>
 ...
 <groupId>org.fusesource.example</groupId>
 <artifactId>tx-xa</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>bundle</packaging>
 ...
</project>

<project ...>
 ...
 <build>
 <defaultGoal>install</defaultGoal>

 <plugins>

 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>
 org.springframework.core,
 org.apache.camel,
 org.apache.camel.component.jms,
 org.apache.activemq,
 org.apache.activemq.xbean,
 org.apache.activemq.pool,
 org.apache.xbean.spring,
 org.apache.commons.pool,
 *
 </Import-Package>
 <Private-Package>
 org.fusesource.example.*
 </Private-Package>
 <DynamicImport-Package>
 org.apache.activemq.*
 </DynamicImport-Package>
 </instructions>
 </configuration>
 </plugin>

 </plugins>

Red Hat JBoss Fuse 6.2 Transaction Guide

122

4. Customize the Maven compiler plug-in to enforce JDK 1.7 coding syntax. In the pom.xml
file, add the following plugin element as a child of the plugins element, to configure the
Maven compiler plug-in:

5. Add the JBoss Fuse Bill of Materials (BOM) as the parent POM. The JBoss Fuse BOM
defines version properties (for example, camel-version, spring-version, and so on) for all
of the JBoss Fuse components, which makes it easy to specify the correct versions for
the Maven dependencies. Add the following parent element near the top of your POM and
(if necessary) customize the version of the BOM:

6. Add the required Maven dependencies to the POM and specify the derby-version
property. In the pom.xml file, add the following elements as children of the project
element:

 </build>

</project>

<project ...>
 ...
 <build>
 <defaultGoal>install</defaultGoal>

 <plugins>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>

</project>

<project ...>
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>org.jboss.fuse.bom</groupId>
 <artifactId>jboss-fuse-parent</artifactId>
 <version>6.2.0.redhat-133</version> </parent>
 ...
</project>

<project ...>
 ...
 <name>Global transactions demo</name>
 <url>redhat.com</url>

CHAPTER 10. XA TUTORIAL

123

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <derby-version>10.10.1.1</derby-version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>${camel-version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>${camel-version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>${slf4j-version}</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>${log4j-version}</version>
 </dependency>

 <!-- Spring transaction dependencies -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>${spring-version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <version>${spring-version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-tx</artifactId>
 <version>${spring-version}</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 <version>${spring-version}</version>
 </dependency>

Red Hat JBoss Fuse 6.2 Transaction Guide

124

IMPORTANT

Remember to customize the derby-version property to the version of Derby
you are using.

7. Define the AccountService class. Under the tx-xa project directory, create the following
directory:

Create the file, AccountService.java, in this directory and add the contents of the listing
from Example B.1, “The AccountService Class” to this file.

8. Define the beans and resources needed by the route in a Blueprint XML file. Under the tx-
xa project directory, create the following directory:

 <!-- Spring JDBC adapter -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-jdbc</artifactId>
 <version>${spring-version}</version>
 </dependency>

 <!-- Database dependencies -->
 <dependency>
 <groupId>org.apache.derby</groupId>
 <artifactId>derby</artifactId>
 <version>${derby-version}</version>
 </dependency>

 <!-- JMS/ActiveMQ artifacts -->
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jms</artifactId>
 <version>${camel-version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-camel</artifactId>
 <version>${activemq-version}</version>
 </dependency>
 <!-- This is needed by the camel-jms component -->
 <dependency>
 <groupId>org.apache.xbean</groupId>
 <artifactId>xbean-spring</artifactId>
 <version>${xbean-version}</version>
 </dependency>
 </dependencies>
 ...
</project>

src/main/java/org/fusesource/example/tx/xa

src/main/resources/OSGI-INF/blueprint

CHAPTER 10. XA TUTORIAL

125

Using a text editor, create the file, beans.xml, in this directory and add the following
contents to the file:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <!--
 JMS non-TX endpoint configuration
 -->
 <bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="configuration" ref="jmsConfig" />
 </bean>

 <bean id="jmsConfig"
class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsPoolConnectionFactory"/>
 </bean>

 <!-- connection factory wrapper to support pooling -->
 <bean id="jmsPoolConnectionFactory"
class="org.apache.activemq.pool.PooledConnectionFactory">
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 </bean>

 <bean id="jmsConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm:amq"/>
 <property name="userName" value="UserName"/>
 <property name="password" value="Password"/>
 </bean>

 <!--
 OSGi TM Service
 -->
 <!-- access through Spring's PlatformTransactionManager -->
 <reference id="osgiPlatformTransactionManager"
 interface="org.springframework.transaction.PlatformTransactionManager"/>
 <!-- access through javax TransactionManager -->
 <reference id="osgiJtaTransactionManager"
 interface="javax.transaction.TransactionManager"/>

 <!--
 JMS TX endpoint configuration
 -->
 <bean id="jmstx"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="configuration" ref="jmsTxConfig" />
 </bean>

 <bean id="jmsTxConfig"
class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsXaPoolConnectionFactory"/>
 <property name="transactionManager" ref="osgiPlatformTransactionManager"/>
 <property name="transacted" value="false"/>

Red Hat JBoss Fuse 6.2 Transaction Guide

126

 <property name="cacheLevelName" value="CACHE_CONNECTION"/>
 </bean>

 <!-- connection factory wrapper to support auto-enlisting of XA resource -->
 <bean id="jmsXaPoolConnectionFactory"
class="org.apache.activemq.pool.JcaPooledConnectionFactory">
 <!-- Defines the name of the broker XA resource for the Aries txn manager -->
 <property name="name" value="amq-broker" />
 <property name="maxConnections" value="1" />
 <property name="connectionFactory" ref="jmsXaConnectionFactory" />
 <property name="transactionManager" ref="osgiJtaTransactionManager" />
 </bean>

 <bean id="jmsXaConnectionFactory"
class="org.apache.activemq.ActiveMQXAConnectionFactory">
 <property name="brokerURL" value="vm:amq"/>
 <property name="userName" value="UserName"/>
 <property name="password" value="Password"/>
 <property name="redeliveryPolicy">
 <bean class="org.apache.activemq.RedeliveryPolicy">
 <property name="maximumRedeliveries" value="0"/>
 </bean>
 </property>
 </bean>

 <!--
 ActiveMQ XA Resource Manager
 -->
 <bean id="resourceManager"
class="org.apache.activemq.pool.ActiveMQResourceManager" init-
method="recoverResource">
 <property name="transactionManager" ref="osgiJtaTransactionManager" />
 <property name="connectionFactory" ref="jmsXaPoolConnectionFactory" />
 <property name="resourceName" value="activemq.default" />
 </bean>

 <!--
 Import Derby data sources as OSGi services
 -->
 <reference id="derbyXADataSource"
 interface="javax.sql.DataSource"
 filter="(datasource.name=derbyXADB)"/>
 <reference id="derbyDataSource"
 interface="javax.sql.DataSource"
 filter="(datasource.name=derbyDB)"/>

 <!-- bean for account business logic -->
 <bean id="accountService" class="org.fusesource.example.tx.xa.AccountService">
 <property name="dataSource" ref="derbyXADataSource"/>
 </bean>

</blueprint>

CHAPTER 10. XA TUTORIAL

127

IMPORTANT

In the jmsConnectionFactory bean and in the jmsXaConnectionFactory
bean, you must customize the JAAS user credentials, UserName and
Password, that are used to log into the broker. You can use any JAAS user
with the admin role (usually defined in the etc/users.properties file of your
JBoss Fuse installation).

9. Define the transactional route. In the src/main/resources/OSGI-INF/blueprint directory,
create the new file, camelContext.xml, and add the following contents:

IMPORTANT

Replace PathNameToMsgDir with the absolute path name of a temporary
directory. When the application is running, you will use this directory as a
convenient way of feeding XML messages into the route.

10. To build the tx-xa bundle and install it in the local Maven repository, enter the following
Maven command from the tx-xa directory:

10.5. DEPLOY AND RUN THE TRANSACTIONAL ROUTE

Overview

After creating the Derby database instance, you are ready to deploy the OSGi bundles into the
container and test the route, as described here.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/blueprint">

 <camelContext xmlns="http://camel.apache.org/schema/blueprint" trace="false">
 <!-- Transactional route -->
 <route>
 <from uri="jmstx:queue:giro"/>
 <bean ref="accountService" method="credit"/>
 <bean ref="accountService" method="debit"/>
 <bean ref="accountService" method="dumpTable"/>
 <to uri="jmstx:queue:statusLog"/>
 </route>

 <!-- Feeder route -->
 <route>
 <from uri="file:PathNameToMsgDir"/>
 <to uri="jms:queue:giro"/>
 </route>
 </camelContext>

</blueprint>

mvn install

Red Hat JBoss Fuse 6.2 Transaction Guide

128

Steps to deploy and run the transactional route

Perform the following steps to deploy and run the transactional route in the Red Hat JBoss Fuse
OSGi container:

1. Create the Derby database instance for the tutorial and create the accounts table, as
follows:

1. Open a command prompt and change directory to the Derby system directory that
you specified earlier (that is, the value of the derby.system.home system property).

2. Start the Derby database client utility, ij, by entering the following command:

NOTE

By default, ij takes the current working directory to be the Derby system
directory.

3. Create the txXaTutorial database instance, by entering the following ij command:

4. Create the accounts table and create two sample row entries, by entering the
following sequence of ij commands:

5. Exit ij, by entering the following command (don't forget the semicolon):

2. Open a new command prompt and start the JBoss Fuse OSGi container by entering the
following command:

3. Install the transaction feature into the OSGi container. Enter the following console
command:

4. Install the connector feature, which provides automatic XA datasource enlisting (Aries
datasource wrapper). Enter the following console command:

ij

ij> CONNECT 'jdbc:derby:txXaTutorial;create=true';

ij> CREATE TABLE accounts (name VARCHAR(50), amount INT);

ij> INSERT INTO accounts (name,amount) VALUES ('Major Clanger',2000);

ij> INSERT INTO accounts (name,amount) VALUES ('Tiny Clanger',100);

ij> EXIT;

./fuse

JBossFuse:karaf@root> features:install transaction

JBossFuse:karaf@root> features:install connector

CHAPTER 10. XA TUTORIAL

129

5. Install the spring-jdbc feature into the OSGi container. Enter the following console
command:

6. Install the derby bundle into the OSGi container. Enter the following console command,
replacing the bundle version with whatever version of Derby you are using:

7. Install and start the derby-ds bundle (assuming that you have already built the bundle, as
described in Section 10.3, “Define a Derby Datasource”) by entering the following
console command:

8. To check that the datasources have been successfully exported from the derby-ds
bundle, list the derby-ds services using the osgi:ls command. For example, given that
BundleID is the bundle ID for the derby-ds bundle, you would enter the following console
command:

Amongst the exported services, you should see an entry like the following:

This is the wrapped XA datasource (recognizable from the aries.xa.aware = true setting),
which is automatically created by the Aries wrapper feature (see Apache Aries Auto-
Enlisting XA Wrapper).

9. Install and start the tx-xa bundle, by entering the following console command:

10. Create a file called giro1.xml in any convenient directory and use a text editor to add the
following message contents to it:

JBossFuse:karaf@root> features:install spring-jdbc

JBossFuse:karaf@root> install mvn:org.apache.derby/derby/10.10.1.1

JBossFuse:karaf@root> install -s mvn:org.fusesource.example/derby-ds/1.0-
SNAPSHOT

JBossFuse:karaf@root> osgi:ls BundleID

aries.managed = true
aries.xa.aware = true
aries.xa.name = derbyDS
datasource.name = derbyXADB
objectClass = [javax.sql.DataSource]
osgi.service.blueprint.compname = derbyXADataSource
service.id = 609
service.ranking = 1000

JBossFuse:karaf@root> install -s mvn:org.fusesource.example/tx-xa

<transaction>
 <transfer>
 <sender>Major Clanger</sender>
 <receiver>Tiny Clanger</receiver>

Red Hat JBoss Fuse 6.2 Transaction Guide

130

Now copy giro1.xml into the PathNameToMsgDir directory you created earlier (see
Section 10.4, “Define a Transactional Route”). The giro1.xml file should disappear
immediately after it is copied, because the PathNameToMsgDir is being monitored by the
feeder route.

11. Use the Fuse Management Console to see what has happened to the message from
giro1.xml. User your browser to navigate to the following URL:
http://localhost:8181/hawtio. Login to the console using any valid JAAS
username/password credentials (which are normally defined in the etc/users.properties
file).

12. On the main menu bar, click on the ActiveMQ tab. In the left-hand pane of this view, drill
down to the statusLog queue, as shown.

Figure 10.1. View of the statusLog Queue in Hawtio

13. On the menu bar above the right-hand pane, click Browse to browse the messages in the
statusLog queue and click on the first message to view its contents. The body contains
the most recent result of calling the AccountService.dumpTable() method (which is called
in the last step of the transactional route).

Figure 10.2. Browsing Message Contents in the statusLog Queue

14. You can also force a transaction rollback by sending a message that exceeds the
AccountService.debit() limit (withdrawal limit) of 100. For example, create the file
giro2.xml and add the following message contents to it:

 <amount>90</amount>
 </transfer>
</transaction>

CHAPTER 10. XA TUTORIAL

131

http://localhost:8181/hawtio

When you copy this file into the PathNameToMsgDir directory, the message never
propagates through to the statusLog queue, because the transaction gets rolled back.

<transaction>
 <transfer>
 <sender>Major Clanger</sender>
 <receiver>Tiny Clanger</receiver>
 <amount>150</amount>
 </transfer>
</transaction>

Red Hat JBoss Fuse 6.2 Transaction Guide

132

APPENDIX A. OPTIMIZING PERFORMANCE OF JMS SINGLE-
AND MULTIPLE-RESOURCE TRANSACTIONS

Abstract

There are many ways you can optimize the performance of JMS transactions—both single-
source transactions that use the resource's internal transaction manager and multiple-resource
transactions that use an external XA transaction manager.

OPTIMIZATION TIPS FOR ALL JMS TRANSACTIONS

These tips apply to both single- and multiple-resource transactions:

When working with Spring JMS/camel-jms, use a pooling-enabled Connection Factory,
such as ActiveMQ’s PooledConnectionFactory, to prevent clients from reopening JMS
connections to the broker for each message consumed.

When using camel-jms to do local transactions through an external transaction manager,
configure the transaction manager to use a pooling-enabled Connection Factory.

ActiveMQ’s PooledConnectionFactory eagerly fills the internal connection pool, the size
of which is bound by the maxConnections property setting.

Each call to PooledConnectionFactory.createConnection() creates and adds a new
connection to the pool until maxConnections is reached, regardless of the number of
connections in use. Once maxConnections is reached, the pool hands out only
connections it recycles. So different JMS sessions (in different threads) can potentially
share the same JMS connection, which the JMS specification specifically allows.

NOTE

The PooledConnectionFactory also pools JMS sessions, but the session
pool behaves differently than the connection pool. The session pool
creates new sessions only when there are no free sessions in it.

A camel-jms consumer configuration needs only one JMS connection from the
connection pool, regardless of the setting of the concurrentConsumers property. As
multiple camel routes can share the same PooledConnectionFactory, you can configure
the pool’s maxConnections property equal to the number of Camel routes sharing it.

OPTIMIZATION TIPS FOR JMS XA TRANSACTIONS

These tips apply to multiple-resource transactions only:

With XA transactions, you must use CACHE_NONE or CACHE_CONNECTION in camel-
jms or plain Spring JMS configurations. As CACHE_CONSUMER is not supported in
these configurations, you need to use a pooling-enabled JMS Connection Factory to
avoid opening a new connection for every message consumed.

Configure a prefetch of 1 on the ActiveMQ ConnectionFactory when not caching JMS
consumers to eliminate any overhead generated by eager dispatch of messages to
consumers. For example,

APPENDIX A. OPTIMIZING PERFORMANCE OF JMS SINGLE- AND MULTIPLE-RESOURCE TRANSACTIONS

133

When working with JMS providers other than ActiveMQ, wrap the 3rd-party JMS drivers
in the generic XA-aware JcaPooledConnectionFactory (for details, see Section 6.6,
“Generic XA-Aware Connection Pool Library”). For example, to wrap a WebSphereMQ
endpoint:

The wrapper provides the means for the Aries/Geronimo transaction manager to access
and write the name of the participating WebSphereMQ resource to its HOWL recovery log
file. This and other information stored in its recovery log file enables Aries to recover any
pending transactions after a crash occurs.

Always declare a resource manager for each resource involved in an XA transaction.
Without a resource manager, pending XA transactions cannot be recovered after a JBoss
Fuse crash, resulting in lost messages.

failover:(tcp://localhost:61616)?jms.prefetchPolicy.all=1

<bean id="FuseWmqXaConnectionFactory"
class="org.apache.activemq.jms.pool.JcaPooledConnectionFactory">
 <property name="connectionFactory" ref="WMQConnectionFactory"/>
 <property name="transactionManager" ref="transactionManager"/>
 <property name="maxConnections" value="5"/>
 <!-- note we set a unique name for the XA resource" -->
 <property name="name" value="ibm-wmq" />
</bean>
<bean id="WMQConnectionFactory" class="com.ibm.mq.jms.MQXAConnectionFactory">
 <property name="hostName" value="localhost" />
 <property name="port" value="1414" />
 <property name="queueManager" value="QM_VM" />
 <property name="channel" value="TEST" />
 <property name="transportType" value="1" />
</bean>

Red Hat JBoss Fuse 6.2 Transaction Guide

134

APPENDIX B. ACCOUNTSERVICE EXAMPLE

Abstract

The AccountService example class illustrates how you can use Spring JdbcTemplate class to
access a JDBC data source.

B.1. ACCOUNTSERVICE EXAMPLE CODE

Overview

The AccountService class provides a simple example of accessing a data source through JDBC.
The methods in this class can be used inside a local transaction or inside a global (XA)
transaction.

Database schema

The AccountService example requires a single database table, accounts, which has two
columns: a name column (containing the account name), and an amount column (containing the
dollar balance of the account). The required database schema can be created by the following
SQL statement:

AccountService class

Example B.1, “The AccountService Class” shows the complete listing of the AccountService
class, which uses the Spring JdbcTemplate class to access a JDBC data source.

Example B.1. The AccountService Class

CREATE TABLE accounts (name VARCHAR(50), amount INT);

// Java
package org.fusesource.example.tx.xa;

import java.util.List;

import javax.sql.DataSource;

import org.apache.camel.Exchange;
import org.apache.camel.language.XPath;
import org.apache.log4j.Logger;
import org.springframework.jdbc.core.JdbcTemplate;

public class AccountService {
 private static Logger log = Logger.getLogger(AccountService.class);
 private JdbcTemplate jdbc;

 public AccountService() {
 }

APPENDIX B. ACCOUNTSERVICE EXAMPLE

135

 public void setDataSource(DataSource ds) {
 jdbc = new JdbcTemplate(ds);
 }

 public void credit(
 @XPath("/transaction/transfer/receiver/text()") String name,
 @XPath("/transaction/transfer/amount/text()") String amount
)
 {
 log.info("credit() called with args name = " + name + " and amount = " + amount);
 int origAmount = jdbc.queryForInt(
 "select amount from accounts where name = ?",
 new Object[]{name}
);
 int newAmount = origAmount + Integer.parseInt(amount);

 jdbc.update(
 "update accounts set amount = ? where name = ?",
 new Object[] {newAmount, name}
);
 }

 public void debit(
 @XPath("/transaction/transfer/sender/text()") String name,
 @XPath("/transaction/transfer/amount/text()") String amount
)
 {
 log.info("debit() called with args name = " + name + " and amount = " + amount);
 int iamount = Integer.parseInt(amount);
 if (iamount > 100) {
 throw new IllegalArgumentException("Debit limit is 100");
 }
 int origAmount = jdbc.queryForInt(
 "select amount from accounts where name = ?",
 new Object[]{name}
);
 int newAmount = origAmount - Integer.parseInt(amount);
 if (newAmount < 0) {
 throw new IllegalArgumentException("Not enough in account");
 }

 jdbc.update(
 "update accounts set amount = ? where name = ?",
 new Object[] {newAmount, name}
);
 }

 public void dumpTable(Exchange ex) {
 log.info("dump() called");
 List<?> dump = jdbc.queryForList("select * from accounts");
 ex.getIn().setBody(dump.toString());
 }
}

Red Hat JBoss Fuse 6.2 Transaction Guide

136

INDEX
C

caching

JMS, Cache levels and performance

J

JMS

cacheLevelName, Cache levels and performance

transacted, Camel JMS component configuration

transaction manager, Camel JMS component configuration

transactionManager, Camel JMS component configuration

JmsComponent, Camel JMS component configuration

JmsConfiguration, Camel JMS component configuration

INDEX

137

	Table of Contents
	CHAPTER 1. INTRODUCTION TO TRANSACTIONS
	1.1. BASIC TRANSACTION CONCEPTS
	What is a transaction?
	ACID properties of a transaction
	Transaction clients
	Transaction demarcation
	Resources
	Transaction manager
	Managing single or multiple resources
	Transactions and threading
	Transaction context
	Distributed transactions
	X/Open XA standard

	1.2. TRANSACTION QUALITIES OF SERVICE
	Overview
	Qualities of service provided by resources
	Transaction isolation levels
	Support for the XA standard
	Qualities of service provided by transaction managers
	Support for multiple resources
	Support for suspend/resume and attach/detach
	Distributed transactions
	Transaction monitoring
	Recovery from failure

	1.3. GETTING STARTED WITH TRANSACTIONS
	1.3.1. Prerequisites
	Overview
	Java Runtime
	Apache Maven 3

	1.3.2. Generate a New Project
	Overview
	Steps

	1.3.3. Configure a Transaction Manager and a Camel Route
	Overview
	Steps

	1.3.4. Create the MyTransform Bean
	Overview
	Steps

	1.3.5. Build and Run the Example
	Overview
	Steps

	CHAPTER 2. SELECTING A TRANSACTION MANAGER
	2.1. WHAT IS A TRANSACTION MANAGER?
	Transaction managers in Spring
	Local transaction managers
	Global transaction managers
	Distributed transaction managers

	2.2. SPRING TRANSACTION ARCHITECTURE
	Overview
	Standalone Spring container
	Data source
	Local transaction manager

	2.3. OSGI TRANSACTION ARCHITECTURE
	Overview
	OSGi mandated transaction architecture
	Spring transaction integration
	Reference

	2.4. PLATFORMTRANSACTIONMANAGER INTERFACE
	Overview
	PlatformTransactionManager interface
	TransactionDefinition interface
	TransactionStatus interface
	Using the PlatformTransactionManager interface

	2.5. TRANSACTION MANAGER IMPLEMENTATIONS
	Overview
	Local transaction managers
	Global transaction managers

	2.6. SAMPLE CONFIGURATIONS
	2.6.1. JDBC Data Source
	Overview
	Sample JDBC configuration
	JDBC data source transaction manager bean
	JDBC data source bean
	Standalone data sources
	J2EE data source adapters
	Data source proxies for special features
	Third-party JDBC driver managers

	2.6.2. Hibernate
	Overview
	Sample Hibernate configuration
	Hibernate transaction manager bean
	Hibernate session factory bean

	2.6.3. JPA
	Overview
	Sample JPA configuration
	JPA transaction manager bean
	Entity manager factory bean
	JPA entity manager factories
	JPA bootstrap contract
	Sample persistence.xml file
	Sample annotated class

	CHAPTER 3. JMS TRANSACTIONS
	3.1. CONFIGURING THE JMS COMPONENT
	Overview
	Camel JMS component configuration
	Cache levels and performance
	Example

	3.2. INONLY MESSAGE EXCHANGE PATTERN
	Overview
	Enforcing the InOnly message exchange pattern
	InOnly scenario
	Description of InOnly scenario

	3.3. INOUT MESSAGE EXCHANGE PATTERN
	Overview
	Enabling InOut mode in JMS
	Problems combining InOut mode with transactions
	Refactoring routes to avoid InOut mode
	A special case

	CHAPTER 4. DATA ACCESS WITH SPRING
	4.1. PROGRAMMING DATA ACCESS WITH SPRING TEMPLATES
	Overview
	JmsTemplate class
	JdbcTemplate class
	SimpleJdbcTemplate class
	NamedParameterJdbcTemplate class
	SqlMapClientTemplate class
	HibernateTemplate class
	JdoTemplate class
	JpaTemplate class

	4.2. SPRING JDBC TEMPLATE
	Overview
	JdbcTemplate class
	Querying
	Updating
	Other SQL operations
	Example application
	Format of money transfer orders
	CreateTable class
	AccountService class
	AccountService.credit() method
	AccountService.debit() method
	AccountService.dumpTable() method

	CHAPTER 5. TRANSACTION DEMARCATION
	5.1. DEMARCATION BY MARKING THE ROUTE
	Overview
	Sample route with JDBC resource
	Route definition in Java DSL
	Using SpringRouteBuilder
	Route definition in Spring XML
	Default transaction manager and transacted policy
	Transaction scope
	No thread pools in a transactional route
	Breaking a route into fragments
	Resource endpoints
	Sample route with resource endpoints

	5.2. DEMARCATION BY TRANSACTIONAL ENDPOINTS
	Overview
	Sample route with JMS endpoint
	Route definition in Java DSL
	Route definition in Spring XML
	transacted() not required
	Transactional endpoints

	5.3. PROPAGATION POLICIES
	Overview
	Spring transaction policies
	Propagation behaviors
	Defining policy beans in Spring XML
	Sample route with PROPAGATION_NEVER policy in Java DSL
	Sample route with PROPAGATION_NEVER policy in Spring XML

	5.4. ERROR HANDLING AND ROLLBACKS
	Overview
	How to roll back a transaction
	Runtime exceptions as rollbacks
	The rollback() DSL command
	The markRollbackOnly() DSL command
	How to define a dead letter queue
	Catching exceptions around a transaction

	CHAPTER 6. XA TRANSACTIONS IN RED HAT JBOSS FUSE
	6.1. TRANSACTION ARCHITECTURE
	Overview
	OSGi mandated transaction architecture
	Spring transaction integration
	Red Hat JBoss Fuse transaction implementation
	Installing the transaction feature
	Geronimo transaction manager
	Accessing Geronimo directly
	HOWL transaction log
	JTA-based application bundles
	Spring-based application bundles
	References

	6.2. CONFIGURING THE TRANSACTION MANAGER
	Overview
	Configuration file
	Transaction manager properties
	Sample settings

	6.3. ACCESSING THE TRANSACTION MANAGER
	Overview
	Blueprint XML

	6.4. JAVA TRANSACTION API
	Overview
	UserTransaction interface
	UserTransaction methods
	When to use UserTransaction?
	TransactionManager interface
	TransactionManager methods
	When to use TransactionManager?
	Transaction interface
	Transaction methods
	When to use Transaction?
	Reference

	6.5. THE XA ENLISTMENT PROBLEM
	The problem of XA enlistment
	How to enlist an XA resource
	Auto-enlistment
	JMS XA wrapper

	6.6. GENERIC XA-AWARE CONNECTION POOL LIBRARY
	Overview
	Dependencies
	PooledConnectionFactory
	XaPooledConnectionFactory
	JcaPooledConnectionFactory
	Examples

	CHAPTER 7. JMS XA TRANSACTION INTEGRATION
	7.1. ENABLING XA ON THE CAMEL JMS COMPONENT
	Overview
	Accessing the XA transaction manager
	XA connection factory bean
	XA pooled connection factory bean
	Camel JMS component and JMS configuration bean

	7.2. JMS XA RESOURCE
	Overview
	XA two-phase commit process
	Embedded MQ broker
	Default MQ broker

	7.3. SAMPLE JMS XA CONFIGURATION
	Spring XML configuration
	Listing notes

	7.4. XA CLIENT WITH TWO CONNECTIONS TO A BROKER
	Overview
	jms.rmIdFromConnectionId option
	Setting rmIdFromConnectionId option on an endpoint URI
	Setting rmIdFromConnectionId option directly on ActiveMQXAConnectionFactory
	Example using rmIdFromConnectionId

	CHAPTER 8. JDBC XA TRANSACTION INTEGRATION
	8.1. CONFIGURING AN XA DATA SOURCE
	Overview
	javax.sql.DataSource interface
	javax.sql.XADataSource interface
	Standard JDBC data source properties
	Apache Derby
	Derby data sources
	Derby data source properties
	Data sources as OSGi services
	Blueprint
	References

	8.2. APACHE ARIES AUTO-ENLISTING XA WRAPPER
	Overview
	derby-ds bundle
	Automatic wrapper instantiation
	XADataSourceEnlistingWrapper
	Installing the Aries transaction wrapper bundle
	Accessing the enlisting wrapper
	Blueprint
	JDBC connection pool options

	CHAPTER 9. XA TRANSACTION DEMARCATION
	9.1. DEMARCATION BY TRANSACTIONAL ENDPOINTS
	Overview
	Auto-demarcation by JMS consumer endpoints
	JMS producer endpoints
	Transactional and non-transactional JMS endpoints

	9.2. DEMARCATION BY MARKING THE ROUTE
	Overview
	Demarcation using transacted()
	Specifying the transaction policy explicitly
	XML syntax

	9.3. DEMARCATION BY USERTRANSACTION
	Overview
	Accessing UserTransaction from Apache Camel
	Example with UserTransaction

	9.4. DEMARCATION BY DECLARATIVE TRANSACTIONS
	Overview
	Bean-level declaration
	Top-level declaration
	tx:transaction attributes

	CHAPTER 10. XA TUTORIAL
	10.1. INSTALL APACHE DERBY
	Overview
	Downloading
	Installing
	Environment variables

	10.2. INTEGRATE DERBY WITH JBOSS FUSE
	Overview
	Derby system
	derby.system.home Java system property
	Setting derby.system.home in the OSGi container

	10.3. DEFINE A DERBY DATASOURCE
	Overview
	Derby data source implementations
	Auto-enlisting an XA data source
	Prerequisites
	Steps to define a Derby datasource

	10.4. DEFINE A TRANSACTIONAL ROUTE
	Overview
	Database schema
	Sample incoming message
	The transactional route
	Provoking a transaction rollback
	Steps to define a transactional route

	10.5. DEPLOY AND RUN THE TRANSACTIONAL ROUTE
	Overview
	Steps to deploy and run the transactional route

	APPENDIX A. OPTIMIZING PERFORMANCE OF JMS SINGLE- AND MULTIPLE-RESOURCE TRANSACTIONS
	OPTIMIZATION TIPS FOR ALL JMS TRANSACTIONS
	OPTIMIZATION TIPS FOR JMS XA TRANSACTIONS

	APPENDIX B. ACCOUNTSERVICE EXAMPLE
	B.1. ACCOUNTSERVICE EXAMPLE CODE
	Overview
	Database schema
	AccountService class

	INDEX

