
Red Hat JBoss Fuse 6.0

Programming EIP Components

Using the Apache Camel API to create better routes

Last Updated: 2017-10-13

Red Hat JBoss Fuse 6.0 Programming EIP Components

Using the Apache Camel API to create better routes

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the Apache Camel API.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS
1.1. EXCHANGES
1.2. MESSAGES
1.3. BUILT-IN TYPE CONVERTERS
1.4. BUILT-IN UUID GENERATORS

CHAPTER 2. IMPLEMENTING A PROCESSOR
2.1. PROCESSING MODEL
2.2. IMPLEMENTING A SIMPLE PROCESSOR
2.3. ACCESSING MESSAGE CONTENT
2.4. THE EXCHANGEHELPER CLASS

CHAPTER 3. TYPE CONVERTERS
3.1. TYPE CONVERTER ARCHITECTURE
3.2. IMPLEMENTING TYPE CONVERTER USING ANNOTATIONS
3.3. IMPLEMENTING A TYPE CONVERTER DIRECTLY

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES
4.1. USING THE PRODUCER TEMPLATE
4.2. USING THE CONSUMER TEMPLATE

CHAPTER 5. IMPLEMENTING A COMPONENT
5.1. COMPONENT ARCHITECTURE
5.2. HOW TO IMPLEMENT A COMPONENT
5.3. AUTO-DISCOVERY AND CONFIGURATION

CHAPTER 6. COMPONENT INTERFACE
6.1. THE COMPONENT INTERFACE
6.2. IMPLEMENTING THE COMPONENT INTERFACE

CHAPTER 7. ENDPOINT INTERFACE
7.1. THE ENDPOINT INTERFACE
7.2. IMPLEMENTING THE ENDPOINT INTERFACE

CHAPTER 8. CONSUMER INTERFACE
8.1. THE CONSUMER INTERFACE
8.2. IMPLEMENTING THE CONSUMER INTERFACE

CHAPTER 9. PRODUCER INTERFACE
9.1. THE PRODUCER INTERFACE
9.2. IMPLEMENTING THE PRODUCER INTERFACE

CHAPTER 10. EXCHANGE INTERFACE
10.1. THE EXCHANGE INTERFACE

CHAPTER 11. MESSAGE INTERFACE
11.1. THE MESSAGE INTERFACE
11.2. IMPLEMENTING THE MESSAGE INTERFACE

INDEX

3
3
4
8

10

13
13
13
14
16

18
18
20
23

25
25
39

42
42
49
51

55
55
56

61
61
64

71
71
75

83
83
85

88
88

92
92
94

95

Table of Contents

1

Red Hat JBoss Fuse 6.0 Programming EIP Components

2

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS

Abstract

Before you can begin programming with Apache Camel, you should have a clear understanding of how
messages and message exchanges are modelled. Because Apache Camel can process many message
formats, the basic message type is designed to have an abstract format. Apache Camel provides the
APIs needed to access and transform the data formats that underly message bodies and message
headers.

1.1. EXCHANGES

Overview

An exchange object is a wrapper that encapsulates a received message and stores its associated
metadata (including the exchange properties). In addition, if the current message is dispatched to a
producer endpoint, the exchange provides a temporary slot to hold the reply (the Out message).

An important feature of exchanges in Apache Camel is that they support lazy creation of messages. This
can provide a significant optimization in the case of routes that do not require explicit access to
messages.

Figure 1.1. Exchange Object Passing through a Route

Figure 1.1, “Exchange Object Passing through a Route” shows an exchange object passing through a
route. In the context of a route, an exchange object gets passed as the argument of the
Processor.process() method. This means that the exchange object is directly accessible to the
source endpoint, the target endpoint, and all of the processors in between.

The Exchange interface

The org.apache.camel.Exchange interface defines methods to access In and Out messages, as
shown in Example 1.1, “Exchange Methods”.

Example 1.1. Exchange Methods

// Access the In message
Message getIn();
void setIn(Message in);

// Access the Out message (if any)
Message getOut();

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS

3

For a complete description of the methods in the Exchange interface, see Section 10.1, “The Exchange
Interface”.

Lazy creation of messages

Apache Camel supports lazy creation of In, Out, and Fault messages. This means that message
instances are not created until you try to access them (for example, by calling getIn() or getOut()).
The lazy message creation semantics are implemented by the
org.apache.camel.impl.DefaultExchange class.

If you call one of the no-argument accessors (getIn() or getOut()), or if you call an accessor with
the boolean argument equal to true (that is, getIn(true) or getOut(true)), the default method
implementation creates a new message instance, if one does not already exist.

If you call an accessor with the boolean argument equal to false (that is, getIn(false) or

getOut(false)), the default method implementation returns the current message value.[1]

Lazy creation of exchange IDs

Apache Camel supports lazy creation of exchange IDs. You can call getExchangeId() on any
exchange to obtain a unique ID for that exchange instance, but the ID is generated only when you
actually call the method. The DefaultExchange.getExchangeId() implementation of this method
delegates ID generation to the UUID generator that is registered with the CamelContext.

For details of how to register UUID generators with the CamelContext, see Section 1.4, “Built-In UUID
Generators”.

1.2. MESSAGES

Overview

Message objects represent messages using the following abstract model:

Message body

Message headers

Message attachments

The message body and the message headers can be of arbitrary type (they are declared as type
Object) and the message attachments are declared to be of type javax.activation.DataHandler
, which can contain arbitrary MIME types. If you need to obtain a concrete representation of the message
contents, you can convert the body and headers to another type using the type converter mechanism
and, possibly, using the marshalling and unmarshalling mechanism.

void setOut(Message out);
boolean hasOut();

// Access the exchange ID
String getExchangeId();
void setExchangeId(String id);

Red Hat JBoss Fuse 6.0 Programming EIP Components

4

http://java.sun.com/javaee/5/docs/api/javax/activation/DataHandler.html

One important feature of Apache Camel messages is that they support lazy creation of message bodies
and headers. In some cases, this means that a message can pass through a route without needing to be
parsed at all.

The Message interface

The org.apache.camel.Message interface defines methods to access the message body, message
headers and message attachments, as shown in Example 1.2, “Message Interface”.

Example 1.2. Message Interface

For a complete description of the methods in the Message interface, see Section 11.1, “The Message
Interface”.

Lazy creation of bodies, headers, and attachments

Apache Camel supports lazy creation of bodies, headers, and attachments. This means that the objects
that represent a message body, a message header, or a message attachment are not created until they
are needed.

For example, consider the following route that accesses the foo message header from the In message:

In this route, if we assume that the component referenced by SourceURL supports lazy creation, the In
message headers are not actually parsed until the header("foo") call is executed. At that point, the

// Access the message body
Object getBody();
<T> T getBody(Class<T> type);
void setBody(Object body);
<T> void setBody(Object body, Class<T> type);

// Access message headers
Object getHeader(String name);
<T> T getHeader(String name, Class<T> type);
void setHeader(String name, Object value);
Object removeHeader(String name);
Map<String, Object> getHeaders();
void setHeaders(Map<String, Object> headers);

// Access message attachments
javax.activation.DataHandler getAttachment(String id);
java.util.Map<String, javax.activation.DataHandler> getAttachments();
java.util.Set<String> getAttachmentNames();
void addAttachment(String id, javax.activation.DataHandler content)

// Access the message ID
String getMessageId();
void setMessageId(String messageId);

from("SourceURL")
 .filter(header("foo")
 .isEqualTo("bar"))
 .to("TargetURL");

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS

5

underlying message implementation parses the headers and populates the header map. The message
body is not parsed until you reach the end of the route, at the to("TargetURL") call. At that point, the
body is converted into the format required for writing it to the target endpoint, TargetURL.

By waiting until the last possible moment before populating the bodies, headers, and attachments, you
can ensure that unnecessary type conversions are avoided. In some cases, you can completely avoid
parsing. For example, if a route contains no explicit references to message headers, a message could
traverse the route without ever parsing the headers.

Whether or not lazy creation is implemented in practice depends on the underlying component
implementation. In general, lazy creation is valuable for those cases where creating a message body, a
message header, or a message attachment is expensive. For details about implementing a message
type that supports lazy creation, see Section 11.2, “Implementing the Message Interface”.

Lazy creation of message IDs

Apache Camel supports lazy creation of message IDs. That is, a message ID is generated only when
you actually call the getMessageId() method. The DefaultExchange.getExchangeId()
implementation of this method delegates ID generation to the UUID generator that is registered with the
CamelContext.

Some endpoint implementations would call the getMessageId() method implicitly, if the endpoint
implements a protocol that requires a unique message ID. In particular, JMS messages normally include
a header containing unique message ID, so the JMS component automatically calls getMessageId()
to obtain the message ID (this is controlled by the messageIdEnabled option on the JMS endpoint).

For details of how to register UUID generators with the CamelContext, see Section 1.4, “Built-In UUID
Generators”.

Initial message format

The initial format of an In message is determined by the source endpoint, and the initial format of an Out
message is determined by the target endpoint. If lazy creation is supported by the underlying
component, the message remains unparsed until it is accessed explicitly by the application. Most
Apache Camel components create the message body in a relatively raw form—for example,
representing it using types such as byte[], ByteBuffer, InputStream, or OutputStream. This
ensures that the overhead required for creating the initial message is minimal. Where more elaborate
message formats are required components usually rely on type converters or marshalling processors.

Type converters

It does not matter what the initial format of the message is, because you can easily convert a message
from one format to another using the built-in type converters (see Section 1.3, “Built-In Type
Converters”). There are various methods in the Apache Camel API that expose type conversion
functionality. For example, the convertBodyTo(Class type) method can be inserted into a route to
convert the body of an In message, as follows:

Where the body of the In message is converted to a java.lang.String. The following example shows
how to append a string to the end of the In message body:

from("SourceURL").convertBodyTo(String.class).to("TargetURL");

from("SourceURL").setBody(bodyAs(String.class).append("My Special
Signature")).to("TargetURL");

Red Hat JBoss Fuse 6.0 Programming EIP Components

6

Where the message body is converted to a string format before appending a string to the end. It is not
necessary to convert the message body explicitly in this example. You can also use:

Where the append() method automatically converts the message body to a string before appending its
argument.

Type conversion methods in Message

The org.apache.camel.Message interface exposes some methods that perform type conversion
explicitly:

getBody(Class<T> type)—Returns the message body as type, T.

getHeader(String name, Class<T> type)—Returns the named header value as type,
T.

For the complete list of supported conversion types, see Section 1.3, “Built-In Type Converters”.

Converting to XML

In addition to supporting conversion between simple types (such as byte[], ByteBuffer, String,
and so on), the built-in type converter also supports conversion to XML formats. For example, you can
convert a message body to the org.w3c.dom.Document type. This conversion is more expensive than
the simple conversions, because it involves parsing the entire message and then creating a tree of
nodes to represent the XML document structure. You can convert to the following XML document types:

org.w3c.dom.Document

javax.xml.transform.sax.SAXSource

XML type conversions have narrower applicability than the simpler conversions. Because not every
message body conforms to an XML structure, you have to remember that this type conversion might fail.
On the other hand, there are many scenarios where a router deals exclusively with XML message types.

Marshalling and unmarshalling

Marshalling involves converting a high-level format to a low-level format, and unmarshalling involves
converting a low-level format to a high-level format. The following two processors are used to perform
marshalling or unmarshalling in a route:

marshal()

unmarshal()

For example, to read a serialized Java object from a file and unmarshal it into a Java object, you could
use the route definition shown in Example 1.3, “Unmarshalling a Java Object”.

Example 1.3. Unmarshalling a Java Object

from("SourceURL").setBody(body().append("My Special
Signature")).to("TargetURL");

from("file://tmp/appfiles/serialized")
 .unmarshal()

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS

7

For details of how to marshal and unmarshal various data formats, see section "Marshalling and
unmarshalling" in "Implementing Enterprise Integration Patterns".

Final message format

When an In message reaches the end of a route, the target endpoint must be able to convert the
message body into a format that can be written to the physical endpoint. The same rule applies to Out
messages that arrive back at the source endpoint. This conversion is usually performed implicitly, using
the Apache Camel type converter. Typically, this involves converting from a low-level format to another
low-level format, such as converting from a byte[] array to an InputStream type.

1.3. BUILT-IN TYPE CONVERTERS

Overview

This section describes the conversions supported by the master type converter. These conversions are
built into the Apache Camel core.

Usually, the type converter is called through convenience functions, such as
Message.getBody(Class<T> type) or Message.getHeader(String name, Class<T>
type). It is also possible to invoke the master type converter directly. For example, if you have an
exchange object, exchange, you could convert a given value to a String as shown in Example 1.4,
“Converting a Value to a String”.

Example 1.4. Converting a Value to a String

Basic type converters

Apache Camel provides built-in type converters that perform conversions to and from the following basic
types:

java.io.File

String

byte[] and java.nio.ByteBuffer

java.io.InputStream and java.io.OutputStream

java.io.Reader and java.io.Writer

java.io.BufferedReader and java.io.BufferedWriter

 .serialization()
 .<FurtherProcessing>
 .to("TargetURL");

org.apache.camel.TypeConverter tc =
exchange.getContext().getTypeConverter();
String str_value = tc.convertTo(String.class, value);

Red Hat JBoss Fuse 6.0 Programming EIP Components

8

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Implementing_Enterprise_Integration_Patterns/FMRS.TMC.html#FMRS.MU

java.io.StringReader

However, not all of these types are inter-convertible. The built-in converter is mainly focused on
providing conversions from the File and String types. The File type can be converted to any of the
preceding types, except Reader, Writer, and StringReader. The String type can be converted to
File, byte[], ByteBuffer, InputStream, or StringReader. The conversion from String to
File works by interpreting the string as a file name. The trio of String, byte[], and ByteBuffer are
completely inter-convertible.

NOTE

You can explicitly specify which character encoding to use for conversion from byte[] to
String and from String to byte[] by setting the Exchange.CHARSET_NAME
exchange property in the current exchange. For example, to perform conversions using
the UTF-8 character encoding, call
exchange.setProperty("Exchange.CHARSET_NAME", "UTF-8"). The supported
character sets are described in the java.nio.charset.Charset class.

Collection type converters

Apache Camel provides built-in type converters that perform conversions to and from the following
collection types:

Object[]

java.util.Set

java.util.List

All permutations of conversions between the preceding collection types are supported.

Map type converters

Apache Camel provides built-in type converters that perform conversions to and from the following map
types:

java.util.Map

java.util.HashMap

java.util.Hashtable

java.util.Properties

The preceding map types can also be converted into a set, of java.util.Set type, where the set
elements are of the MapEntry<K,V> type.

DOM type converters

You can perform type conversions to the following Document Object Model (DOM) types:

org.w3c.dom.Document—convertible from byte[], String, java.io.File, and
java.io.InputStream.

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS

9

http://java.sun.com/j2se/1.5.0/docs/api/java/nio/charset/Charset.html

org.w3c.dom.Node

javax.xml.transform.dom.DOMSource—convertible from String.

javax.xml.transform.Source—convertible from byte[] and String.

All permutations of conversions between the preceding DOM types are supported.

SAX type converters

You can also perform conversions to the javax.xml.transform.sax.SAXSource type, which
supports the SAX event-driven XML parser (see the SAX Web site for details). You can convert to
SAXSource from the following types:

String

InputStream

Source

StreamSource

DOMSource

Custom type converters

Apache Camel also enables you to implement your own custom type converters. For details on how to
implement a custom type converter, see Chapter 3, Type Converters.

1.4. BUILT-IN UUID GENERATORS

Overview

Apache Camel enables you to register a UUID generator in the CamelContext. This UUID generator is
then used whenever Apache Camel needs to generate a unique ID—in particular, the registered UUID
generator is called to generate the IDs returned by the Exchange.getExchangeId() and the
Message.getMessageId() methods.

For example, you might prefer to replace the default UUID generator, if part of your application does not
support IDs with a length of 36 characters (like Websphere MQ). Also, it can be convenient to generate
IDs using a simple counter (see the SimpleUuidGenerator) for testing purposes.

Provided UUID generators

You can configure Apache Camel to use one of the following UUID generators, which are provided in the
core:

org.apache.camel.impl.ActiveMQUuidGenerator—(Default) generates the same style
of ID as is used by Apache ActiveMQ. This implementation might not be suitable for all
applications, because it uses some JDK APIs that are forbidden in the context of cloud
computing (such as the Google App Engine).

Red Hat JBoss Fuse 6.0 Programming EIP Components

10

http://www.saxproject.org/

org.apache.camel.impl.SimpleUuidGenerator—implements a simple counter ID,
starting at 1. The underlying implementation uses the
java.util.concurrent.atomic.AtomicLong type, so that it is thread-safe.

org.apache.camel.impl.JavaUuidGenerator—implements an ID based on the
java.util.UUID type. Because java.util.UUID is synchronized, this might affect
performance on some highly concurrent systems.

Custom UUID generator

To implement a custom UUID generator, implement the org.apache.camel.spi.UuidGenerator
interface, which is shown in Example 1.5, “UuidGenerator Interface”. The generateUuid() must be
implemented to return a unique ID string.

Example 1.5. UuidGenerator Interface

Specifying the UUID generator using Java

To replace the default UUID generator using Java, call the setUuidGenerator() method on the
current CamelContext object. For example, you can register a SimpleUuidGenerator instance with
the current CamelContext, as follows:

NOTE

The setUuidGenerator() method should be called during startup, before any routes
are activated.

Specifying the UUID generator using Spring

To replace the default UUID generator using Spring, all you need to do is to create an instance of a UUID
generator using the Spring bean element. When a camelContext instance is created, it automatically
looks up the Spring registry, searching for a bean that implements
org.apache.camel.spi.UuidGenerator. For example, you can register a
SimpleUuidGenerator instance with the CamelContext as follows:

// Java
package org.apache.camel.spi;

/**
 * Generator to generate UUID strings.
 */
public interface UuidGenerator {
 String generateUuid();
}

// Java
getContext().setUuidGenerator(new
org.apache.camel.impl.SimpleUuidGenerator());

<beans ...>
 <bean id="simpleUuidGenerator"

CHAPTER 1. UNDERSTANDING MESSAGE FORMATS

11

[1] If there is no active method the returned value will be null.

 class="org.apache.camel.impl.SimpleUuidGenerator" />

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 ...
 </camelContext>
 ...
</beans>

Red Hat JBoss Fuse 6.0 Programming EIP Components

12

CHAPTER 2. IMPLEMENTING A PROCESSOR

Abstract

Apache Camel allows you to implement a custom processor. You can then insert the custom processor
into a route to perform operations on exchange objects as they pass through the route.

2.1. PROCESSING MODEL

Pipelining model

The pipelining model describes the way in which processors are arranged in section "Pipes and Filters"
in "Implementing Enterprise Integration Patterns". Pipelining is the most common way to process a
sequence of endpoints (a producer endpoint is just a special type of processor). When the processors
are arranged in this way, the exchange's In and Out messages are processed as shown in Figure 2.1,
“Pipelining Model”.

Figure 2.1. Pipelining Model

The processors in the pipeline look like services, where the In message is analogous to a request, and
the Out message is analogous to a reply. In fact, in a realistic pipeline, the nodes in the pipeline are often
implemented by Web service endpoints, such as the CXF component.

For example, Example 2.1, “Java DSL Pipeline” shows a Java DSL pipeline constructed from a
sequence of two processors, ProcessorA, ProcessorB, and a producer endpoint, TargetURI.

Example 2.1. Java DSL Pipeline

2.2. IMPLEMENTING A SIMPLE PROCESSOR

Overview

This section describes how to implement a simple processor that executes message processing logic
before delegating the exchange to the next processor in the route.

Processor interface

Simple processors are created by implementing the org.apache.camel.Processor interface. As
shown in Example 2.2, “Processor Interface”, the interface defines a single method, process(), which
processes an exchange object.

from(SourceURI).pipeline(ProcessorA, ProcessorB, TargetURI);

CHAPTER 2. IMPLEMENTING A PROCESSOR

13

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Implementing_Enterprise_Integration_Patterns/MsgSys-Pipes.html

Example 2.2. Processor Interface

Implementing the Processor interface

To create a simple processor you must implement the Processor interface and provide the logic for the
process() method. Example 2.3, “Simple Processor Implementation” shows the outline of a simple
processor implementation.

Example 2.3. Simple Processor Implementation

All of the code in the process() method gets executed before the exchange object is delegated to the
next processor in the chain.

For examples of how to access the message body and header values inside a simple processor, see
Section 2.3, “Accessing Message Content”.

Inserting the simple processor into a route

Use the process() DSL command to insert a simple processor into a route. Create an instance of your
custom processor and then pass this instance as an argument to the process() method, as follows:

2.3. ACCESSING MESSAGE CONTENT

Accessing message headers

Message headers typically contain the most useful message content from the perspective of a router,

package org.apache.camel;

public interface Processor {
 void process(Exchange exchange) throws Exception;
}

import org.apache.camel.Processor;

public class MyProcessor implements Processor {
 public MyProcessor() { }

 public void process(Exchange exchange) throws Exception
 {
 // Insert code that gets executed *before* delegating
 // to the next processor in the chain.
 ...
 }
}

org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL").process(myProc).to("TargetURL");

Red Hat JBoss Fuse 6.0 Programming EIP Components

14

because headers are often intended to be processed in a router service. To access header data, you
must first get the message from the exchange object (for example, using Exchange.getIn()), and
then use the Message interface to retrieve the individual headers (for example, using
Message.getHeader()).

Example 2.4, “Accessing an Authorization Header” shows an example of a custom processor that
accesses the value of a header named Authorization. This example uses the
ExchangeHelper.getMandatoryHeader() method, which eliminates the need to test for a null
header value.

Example 2.4. Accessing an Authorization Header

For full details of the Message interface, see Section 1.2, “Messages”.

Accessing the message body

You can also access the message body. For example, to append a string to the end of the In message,
you can use the processor shown in Example 2.5, “Accessing the Message Body”.

Example 2.5. Accessing the Message Body

Accessing message attachments

You can access a message's attachments using either the Message.getAttachment() method or the
Message.getAttachments() method. See Example 1.2, “Message Interface” for more details.

import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {
 public void process(Exchange exchange) {
 String auth = ExchangeHelper.getMandatoryHeader(
 exchange,
 "Authorization",
 String.class
);
 // process the authorization string...
 // ...
 }
}

import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {
 public void process(Exchange exchange) {
 Message in = exchange.getIn();
 in.setBody(in.getBody(String.class) + " World!");
 }
}

CHAPTER 2. IMPLEMENTING A PROCESSOR

15

2.4. THE EXCHANGEHELPER CLASS

Overview

The org.apache.camel.util.ExchangeHelper class is a Apache Camel utility class that provides
methods that are useful when implementing a processor.

Resolve an endpoint

The static resolveEndpoint() method is one of the most useful methods in the ExchangeHelper
class. You use it inside a processor to create new Endpoint instances on the fly.

Example 2.6. The resolveEndpoint() Method

The first argument to resolveEndpoint() is an exchange instance, and the second argument is
usually an endpoint URI string. Example 2.7, “Creating a File Endpoint” shows how to create a new file
endpoint from an exchange instance exchange

Example 2.7. Creating a File Endpoint

Wrapping the exchange accessors

The ExchangeHelper class provides several static methods of the form
getMandatoryBeanProperty(), which wrap the corresponding getBeanProperty() methods on
the Exchange class. The difference between them is that the original getBeanProperty() accessors
return null, if the corresponding property is unavailable, and the getMandatoryBeanProperty()
wrapper methods throw a Java exception. The following wrapper methods are implemented in the
ExchangeHelper class:

public final class ExchangeHelper {
 ...
 @SuppressWarnings({"unchecked" })
 public static Endpoint
 resolveEndpoint(Exchange exchange, Object value)
 throws NoSuchEndpointException { ... }
 ...
}

Endpoint file_endp = ExchangeHelper.resolveEndpoint(exchange,
"file://tmp/messages/in.xml");

public final class ExchangeHelper {
 ...
 public static <T> T getMandatoryProperty(Exchange exchange, String
propertyName, Class<T> type)
 throws NoSuchPropertyException { ... }

 public static <T> T getMandatoryHeader(Exchange exchange, String
propertyName, Class<T> type)
 throws NoSuchHeaderException { ... }

Red Hat JBoss Fuse 6.0 Programming EIP Components

16

http://activemq.apache.org/camel/maven/camel-core/apidocs/org/apache/camel/util/ExchangeHelper.html

Testing the exchange pattern

Several different exchange patterns are compatible with holding an In message. Several different
exchange patterns are also compatible with holding an Out message. To provide a quick way of
checking whether or not an exchange object is capable of holding an In message or an Out message,
the ExchangeHelper class provides the following methods:

Get the In message's MIME content type

If you want to find out the MIME content type of the exchange's In message, you can access it by calling
the ExchangeHelper.getContentType(exchange) method. To implement this, the
ExchangeHelper object looks up the value of the In message's Content-Type header—this method
relies on the underlying component to populate the header value).

 public static Object getMandatoryInBody(Exchange exchange)
 throws InvalidPayloadException { ... }

 public static <T> T getMandatoryInBody(Exchange exchange, Class<T>
type)
 throws InvalidPayloadException { ... }

 public static Object getMandatoryOutBody(Exchange exchange)
 throws InvalidPayloadException { ... }

 public static <T> T getMandatoryOutBody(Exchange exchange, Class<T>
type)
 throws InvalidPayloadException { ... }
 ...
}

public final class ExchangeHelper {
 ...
 public static boolean isInCapable(Exchange exchange) { ... }

 public static boolean isOutCapable(Exchange exchange) { ... }
 ...
}

CHAPTER 2. IMPLEMENTING A PROCESSOR

17

CHAPTER 3. TYPE CONVERTERS

Abstract

Apache Camel has a built-in type conversion mechanism, which is used to convert message bodies and
message headers to different types. This chapter explains how to extend the type conversion
mechanism by adding your own custom converter methods.

3.1. TYPE CONVERTER ARCHITECTURE

Overview

This section describes the overall architecture of the type converter mechanism, which you must
understand, if you want to write custom type converters. If you only need to use the built-in type
converters, see Chapter 1, Understanding Message Formats.

Type converter interface

Example 3.1, “TypeConverter Interface” shows the definition of the
org.apache.camel.TypeConverter interface, which all type converters must implement.

Example 3.1. TypeConverter Interface

Master type converter

The Apache Camel type converter mechanism follows a master/slave pattern. There are many slave
type converters, which are each capable of performing a limited number of type conversions, and a
single master type converter, which aggregates the type conversions performed by the slaves. The
master type converter acts as a front-end for the slave type converters. When you request the master to
perform a type conversion, it selects the appropriate slave and delegates the conversion task to that
slave.

For users of the type conversion mechanism, the master type converter is the most important because it
provides the entry point for accessing the conversion mechanism. During start up, Apache Camel
automatically associates a master type converter instance with the CamelContext object. To obtain a
reference to the master type converter, you call the CamelContext.getTypeConverter() method.
For example, if you have an exchange object, exchange, you can obtain a reference to the master type
converter as shown in Example 3.2, “Getting a Master Type Converter”.

Example 3.2. Getting a Master Type Converter

package org.apache.camel;

public interface TypeConverter {
 <T> T convertTo(Class<T> type, Object value);
}

org.apache.camel.TypeConverter tc =
exchange.getContext().getTypeConverter();

Red Hat JBoss Fuse 6.0 Programming EIP Components

18

Type converter loader

The master type converter uses a type converter loader to populate the registry of slave type converters.
A type converter loader is any class that implements the TypeConverterLoader interface. Apache
Camel currently uses only one kind of type converter loader—the annotation type converter loader (of
AnnotationTypeConverterLoader type).

Type conversion process

Figure 3.1, “Type Conversion Process” gives an overview of the type conversion process, showing the
steps involved in converting a given data value, value, to a specified type, toType.

Figure 3.1. Type Conversion Process

The type conversion mechanism proceeds as follows:

1. The CamelContext object holds a reference to the master TypeConverter instance. The first
step in the conversion process is to retrieve the master type converter by calling
CamelContext.getTypeConverter().

2. Type conversion is initiated by calling the convertTo() method on the master type converter.
This method instructs the type converter to convert the data object, value, from its original type
to the type specified by the toType argument.

CHAPTER 3. TYPE CONVERTERS

19

3. Because the master type converter is a front end for many different slave type converters, it
looks up the appropriate slave type converter by checking a registry of type mappings The
registry of type converters is keyed by a type mapping pair (toType, fromType). If a suitable
type converter is found in the registry, the master type converter calls the slave's convertTo()
method and returns the result.

4. If a suitable type converter cannot be found in the registry, the master type converter loads a
new type converter, using the type converter loader.

5. The type converter loader searches the available JAR libraries on the classpath to find a suitable
type converter. Currently, the loader strategy that is used is implemented by the annotation type
converter loader, which attempts to load a class annotated by the
org.apache.camel.Converter annotation. See the section called “Create a TypeConverter
file”.

6. If the type converter loader is successful, a new slave type converter is loaded and entered into
the type converter registry. This type converter is then used to convert the value argument to
the toType type.

7. If the data is successfully converted, the converted data value is returned. If the conversion does
not succeed, null is returned.

3.2. IMPLEMENTING TYPE CONVERTER USING ANNOTATIONS

Overview

The type conversion mechanism can easily be customized by adding a new slave type converter. This
section describes how to implement a slave type converter and how to integrate it with Apache Camel,
so that it is automatically loaded by the annotation type converter loader.

How to implement a type converter

To implement a custom type converter, perform the following steps:

1. Implement an annotated converter class.

2. Create a TypeConverter file.

3. Package the type converter.

Implement an annotated converter class

You can implement a custom type converter class using the @Converter annotation. You must
annotate the class itself and each of the static methods intended to perform type conversion. Each
converter method takes an argument that defines the from type, optionally takes a second Exchange
argument, and has a non-void return value that defines the to type. The type converter loader uses Java
reflection to find the annotated methods and integrate them into the type converter mechanism.
Example 3.3, “Example of an Annotated Converter Class” shows an example of an annotated converter
class that defines a converter method for converting from java.io.File to java.io.InputStream
and another converter method (with an Exchange argument) for converting from byte[] to String.

Example 3.3. Example of an Annotated Converter Class

package com.YourDomain.YourPackageName;

Red Hat JBoss Fuse 6.0 Programming EIP Components

20

The toInputStream() method is responsible for performing the conversion from the File type to the
InputStream type and the toString() method is responsible for performing the conversion from the
byte[] type to the String type.

NOTE

The method name is unimportant, and can be anything you choose. What is important
are the argument type, the return type, and the presence of the @Converter annotation.

Create a TypeConverter file

To enable the discovery mechanism (which is implemented by the annotation type converter loader) for
your custom converter, create a TypeConverter file at the following location:

The TypeConverter file must contain a comma-separated list of package names identifying the
packages that contain type converter classes. For example, if you want the type converter loader to
search the com.YourDomain.YourPackageName package for annotated converter classes, the

import org.apache.camel.Converter;

import java.io.*;

@Converter
public class IOConverter {
 private IOConverter() {
 }

 @Converter
 public static InputStream toInputStream(File file) throws
FileNotFoundException {
 return new BufferedInputStream(new FileInputStream(file));
 }

 @Converter
 public static String toString(byte[] data, Exchange exchange) {
 if (exchange != null) {
 String charsetName =
exchange.getProperty(Exchange.CHARSET_NAME, String.class);
 if (charsetName != null) {
 try {
 return new String(data, charsetName);
 } catch (UnsupportedEncodingException e) {
 LOG.warn("Can't convert the byte to String with the
charset " + charsetName, e);
 }
 }
 }
 return new String(data);
 }
}

META-INF/services/org/apache/camel/TypeConverter

CHAPTER 3. TYPE CONVERTERS

21

TypeConverter file would have the following contents:

Package the type converter

The type converter is packaged as a JAR file containing the compiled classes of your custom type
converters and the META-INF directory. Put this JAR file on your classpath to make it available to your
Apache Camel application.

Fallback converter method

In addition to defining regular converter methods using the @Converter annotation, you can optionally
define a fallback converter method using the @FallbackConverter annotation. The fallback converter
method will only be tried, if the master type converter fails to find a regular converter method in the type
registry.

The essential difference between a regular converter method and a fallback converter method is that
whereas a regular converter is defined to perform conversion between a specific pair of types (for
example, from byte[] to String), a fallback converter can potentially perform conversion between any
pair of types. It is up to the code in the body of the fallback converter method to figure out which
conversions it is able to perform. At run time, if a conversion cannot be performed by a regular converter,
the master type converter iterates through every available fallback converter until it finds one that can
perform the conversion.

The method signature of a fallback converter can have either of the following forms:

Where MethodName is an arbitrary method name for the fallback converter.

For example, the following code extract (taken from the implementation of the File component) shows a
fallback converter that can convert the body of a GenericFile object, exploiting the type converters
already available in the type converter registry:

com.YourDomain.YourPackageName

// 1. Non-generic form of signature
@FallbackConverter
public static Object MethodName(
 Class type,
 Exchange exchange,
 Object value,
 TypeConverterRegistry registry
)

// 2. Templating form of signature
@FallbackConverter
public static <T> T MethodName(
 Class<T> type,
 Exchange exchange,
 Object value,
 TypeConverterRegistry registry
)

package org.apache.camel.component.file;

import org.apache.camel.Converter;

Red Hat JBoss Fuse 6.0 Programming EIP Components

22

3.3. IMPLEMENTING A TYPE CONVERTER DIRECTLY

Overview

Generally, the recommended way to implement a type converter is to use an annotated class, as
described in the previous section, Section 3.2, “Implementing Type Converter Using Annotations”. But if
you want to have complete control over the registration of your type converter, you can implement a
custom slave type converter and add it directly to the type converter registry, as described here.

Implement the TypeConverter interface

To implement your own type converter class, define a class that implements the TypeConverter
interface. For example, the following MyOrderTypeConverter class converts an integer value to a
MyOrder object, where the integer value is used to initialize the order ID in the MyOrder object.

import org.apache.camel.FallbackConverter;
import org.apache.camel.Exchange;
import org.apache.camel.TypeConverter;
import org.apache.camel.spi.TypeConverterRegistry;

@Converter
public final class GenericFileConverter {

 private GenericFileConverter() {
 // Helper Class
 }

 @FallbackConverter
 public static <T> T convertTo(Class<T> type, Exchange exchange, Object
value, TypeConverterRegistry registry) {
 // use a fallback type converter so we can convert the embedded
body if the value is GenericFile
 if (GenericFile.class.isAssignableFrom(value.getClass())) {
 GenericFile file = (GenericFile) value;
 Class from = file.getBody().getClass();
 TypeConverter tc = registry.lookup(type, from);
 if (tc != null) {
 Object body = file.getBody();
 return tc.convertTo(type, exchange, body);
 }
 }

 return null;
 }
 ...
}

import org.apache.camel.TypeConverter

private class MyOrderTypeConverter implements TypeConverter {

 public <T> T convertTo(Class<T> type, Object value) {
 // converter from value to the MyOrder bean
 MyOrder order = new MyOrder();

CHAPTER 3. TYPE CONVERTERS

23

Add the type converter to the registry

You can add the custom type converter directly to the type converter registry using code like the
following:

Where context is the current org.apache.camel.CamelContext instance. The
addTypeConverter() method registers the MyOrderTypeConverter class against the specific type
conversion, from String.class to MyOrder.class.

 order.setId(Integer.parseInt(value.toString()));
 return (T) order;
 }

 public <T> T convertTo(Class<T> type, Exchange exchange, Object value)
{
 // this method with the Exchange parameter will be preferd by
Camel to invoke
 // this allows you to fetch information from the exchange during
convertions
 // such as an encoding parameter or the likes
 return convertTo(type, value);
 }

 public <T> T mandatoryConvertTo(Class<T> type, Object value) {
 return convertTo(type, value);
 }

 public <T> T mandatoryConvertTo(Class<T> type, Exchange exchange,
Object value) {
 return convertTo(type, value);
 }
}

// Add the custom type converter to the type converter registry
context.getTypeConverterRegistry().addTypeConverter(MyOrder.class,
String.class, new MyOrderTypeConverter());

Red Hat JBoss Fuse 6.0 Programming EIP Components

24

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

Abstract

The producer and consumer templates in Apache Camel are modelled after a feature of the Spring
container API, whereby access to a resource is provided through a simplified, easy-to-use API known as
a template. In the case of Apache Camel, the producer template and consumer template provide
simplified interfaces for sending messages to and receiving messages from producer endpoints and
consumer endpoints.

4.1. USING THE PRODUCER TEMPLATE

4.1.1. Introduction to the Producer Template

Overview

The producer template supports a variety of different approaches to invoking producer endpoints. There
are methods that support different formats for the request message (as an Exchange object, as a
message body, as a message body with a single header setting, and so on) and there are methods to
support both the synchronous and the asynchronous style of invocation. Overall, producer template
methods can be grouped into the following categories:

the section called “Synchronous invocation”.

the section called “Synchronous invocation with a processor”.

the section called “Asynchronous invocation”.

the section called “Asynchronous invocation with a callback”.

Synchronous invocation

The methods for invoking endpoints synchronously have names of the form sendSuffix() and
requestSuffix(). For example, the methods for invoking an endpoint using either the default
message exchange pattern (MEP) or an explicitly specified MEP are named send(), sendBody(), and
sendBodyAndHeader() (where these methods respectively send an Exchange object, a message
body, or a message body and header value). If you want to force the MEP to be InOut (request/reply
semantics), you can call the request(), requestBody(), and requestBodyAndHeader() methods
instead.

The following example shows how to create a ProducerTemplate instance and use it to send a
message body to the activemq:MyQueue endpoint. The example also shows how to send a message
body and header value using sendBodyAndHeader().

import org.apache.camel.ProducerTemplate
import org.apache.camel.impl.DefaultProducerTemplate
...
ProducerTemplate template = context.createProducerTemplate();

// Send to a specific queue
template.sendBody("activemq:MyQueue", "<hello>world!</hello>");

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

25

Synchronous invocation with a processor

A special case of synchronous invocation is where you provide the send() method with a Processor
argument instead of an Exchange argument. In this case, the producer template implicitly asks the
specified endpoint to create an Exchange instance (typically, but not always having the InOnly MEP by
default). This default exchange is then passed to the processor, which initializes the contents of the
exchange object.

The following example shows how to send an exchange initialized by the MyProcessor processor to
the activemq:MyQueue endpoint.

The MyProcessor class is implemented as shown in the following example. In addition to setting the In
message body (as shown here), you could also initialize message heades and exchange properties.

Asynchronous invocation

The methods for invoking endpoints asynchronously have names of the form asyncSendSuffix() and
asyncRequestSuffix(). For example, the methods for invoking an endpoint using either the default
message exchange pattern (MEP) or an explicitly specified MEP are named asyncSend() and
asyncSendBody() (where these methods respectively send an Exchange object or a message body).
If you want to force the MEP to be InOut (request/reply semantics), you can call the
asyncRequestBody(), asyncRequestBodyAndHeader(), and
asyncRequestBodyAndHeaders() methods instead.

The following example shows how to send an exchange asynchronously to the direct:start
endpoint. The asyncSend() method returns a java.util.concurrent.Future object, which is
used to retrieve the invocation result at a later time.

// Send with a body and header
template.sendBodyAndHeader(
 "activemq:MyQueue",
 "<hello>world!</hello>",
 "CustomerRating", "Gold");

import org.apache.camel.ProducerTemplate
import org.apache.camel.impl.DefaultProducerTemplate
...
ProducerTemplate template = context.createProducerTemplate();

// Send to a specific queue, using a processor to initialize
template.send("activemq:MyQueue", new MyProcessor());

import org.apache.camel.Processor;
import org.apache.camel.Exchange;
...
public class MyProcessor implements Processor {
 public MyProcessor() { }

 public void process(Exchange ex) {
 ex.getIn().setBody("<hello>world!</hello>");
 }
}

Red Hat JBoss Fuse 6.0 Programming EIP Components

26

The producer template also provides methods to send a message body asynchronously (for example,
using asyncSendBody() or asyncRequestBody()). In this case, you can use one of the following
helper methods to extract the returned message body from the Future object:

The first version of the extractFutureBody() method blocks until the invocation completes and the
reply message is available. The second version of the extractFutureBody() method allows you to
specify a timeout. Both methods have a type argument, type, which casts the returned message body
to the specified type using a built-in type converter.

The following example shows how to use the asyncRequestBody() method to send a message body
to the direct:start endpoint. The blocking extractFutureBody() method is then used to retrieve
the reply message body from the Future object.

Asynchronous invocation with a callback

In the preceding asynchronous examples, the request message is dispatched in a sub-thread, while the
reply is retrieved and processed by the main thread. The producer template also gives you the option,
however, of processing replies in the sub-thread, using one of the asyncCallback(),
asyncCallbackSendBody(), or asyncCallbackRequestBody() methods. In this case, you supply
a callback object (of org.apache.camel.impl.SynchronizationAdapter type), which
automatically gets invoked in the sub-thread as soon as a reply message arrives.

The Synchronization callback interface is defined as follows:

import java.util.concurrent.Future;

import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultExchange;
...
Exchange exchange = new DefaultExchange(context);
exchange.getIn().setBody("Hello");

Future<Exchange> future = template.asyncSend("direct:start", exchange);

// You can do other things, whilst waiting for the invocation to complete
...
// Now, retrieve the resulting exchange from the Future
Exchange result = future.get();

<T> T extractFutureBody(Future future, Class<T> type);
<T> T extractFutureBody(Future future, long timeout, TimeUnit unit,
Class<T> type) throws TimeoutException;

Future<Object> future = template.asyncRequestBody("direct:start",
"Hello");

// You can do other things, whilst waiting for the invocation to complete
...
// Now, retrieve the reply message body as a String type
String result = template.extractFutureBody(future, String.class);

package org.apache.camel.spi;

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

27

Where the onComplete() method is called on receipt of a normal reply and the onFailure() method
is called on receipt of a fault message reply. Only one of these methods gets called back, so you must
override both of them to ensure that all types of reply are processed.

The following example shows how to send an exchange to the direct:start endpoint, where the
reply message is processed in the sub-thread by the SynchronizationAdapter callback object.

Where the SynchronizationAdapter class is a default implementation of the Synchronization
interface, which you can override to provide your own definitions of the onComplete() and
onFailure() callback methods.

You still have the option of accessing the reply from the main thread, because the asyncCallback()
method also returns a Future object—for example:

4.1.2. Synchronous Send

Overview

The synchronous send methods are a collection of methods that you can use to invoke a producer
endpoint, where the current thread blocks until the method invocation is complete and the reply (if any)
has been received. These methods are compatible with any kind of message exchange protocol.

Send an exchange

The basic send() method is a general-purpose method that sends the contents of an Exchange object

import org.apache.camel.Exchange;

public interface Synchronization {
 void onComplete(Exchange exchange);
 void onFailure(Exchange exchange);
}

import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;

import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultExchange;
import org.apache.camel.impl.SynchronizationAdapter;
...
Exchange exchange = context.getEndpoint("direct:start").createExchange();
exchange.getIn().setBody("Hello");

Future<Exchange> future = template.asyncCallback("direct:start", exchange,
new SynchronizationAdapter() {
 @Override
 public void onComplete(Exchange exchange) {
 assertEquals("Hello World", exchange.getIn().getBody());
 }
});

// Retrieve the reply from the main thread, specifying a timeout
Exchange reply = future.get(10, TimeUnit.SECONDS);

Red Hat JBoss Fuse 6.0 Programming EIP Components

28

to an endpoint, using the message exchange pattern (MEP) of the exchange. The return value is the
exchange that you get after it has been processed by the producer endpoint (possibly containing an Out
message, depending on the MEP).

There are three varieties of send() method for sending an exchange that let you specify the target
endpoint in one of the following ways: as the default endpoint, as an endpoint URI, or as an Endpoint
object.

Send an exchange populated by a processor

A simple variation of the general send() method is to use a processor to populate a default exchange,
instead of supplying the exchange object explicitly (see the section called “Synchronous invocation with a
processor” for details).

The send() methods for sending an exchange populated by a processor let you specify the target
endpoint in one of the following ways: as the default endpoint, as an endpoint URI, or as an Endpoint
object. In addition, you can optionally specify the exchange's MEP by supplying the pattern argument,
instead of accepting the default.

Send a message body

If you are only concerned with the contents of the message body that you want to send, you can use the
sendBody() methods to provide the message body as an argument and let the producer template take
care of inserting the body into a default exchange object.

The sendBody() methods let you specify the target endpoint in one of the following ways: as the default
endpoint, as an endpoint URI, or as an Endpoint object. In addition, you can optionally specify the
exchange's MEP by supplying the pattern argument, instead of accepting the default. The methods
without a pattern argument return void (even though the invocation might give rise to a reply in some
cases); and the methods with a pattern argument return either the body of the Out message (if there is
one) or the body of the In message (otherwise).

Exchange send(Exchange exchange);
Exchange send(String endpointUri, Exchange exchange);
Exchange send(Endpoint endpoint, Exchange exchange);

Exchange send(Processor processor);
Exchange send(String endpointUri, Processor processor);
Exchange send(Endpoint endpoint, Processor processor);
Exchange send(
 String endpointUri,
 ExchangePattern pattern,
 Processor processor
);
Exchange send(
 Endpoint endpoint,
 ExchangePattern pattern,
 Processor processor
);

void sendBody(Object body);
void sendBody(String endpointUri, Object body);
void sendBody(Endpoint endpoint, Object body);
Object sendBody(

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

29

Send a message body and header(s)

For testing purposes, it is often interesting to try out the effect of a single header setting and the
sendBodyAndHeader() methods are useful for this kind of header testing. You supply the message
body and header setting as arguments to sendBodyAndHeader() and let the producer template take
care of inserting the body and header setting into a default exchange object.

The sendBodyAndHeader() methods let you specify the target endpoint in one of the following ways:
as the default endpoint, as an endpoint URI, or as an Endpoint object. In addition, you can optionally
specify the exchange's MEP by supplying the pattern argument, instead of accepting the default. The
methods without a pattern argument return void (even though the invocation might give rise to a reply
in some cases); and the methods with a pattern argument return either the body of the Out message
(if there is one) or the body of the In message (otherwise).

 String endpointUri,
 ExchangePattern pattern,
 Object body
);
Object sendBody(
 Endpoint endpoint,
 ExchangePattern pattern,
 Object body
);

void sendBodyAndHeader(
 Object body,
 String header,
 Object headerValue
);
void sendBodyAndHeader(
 String endpointUri,
 Object body,
 String header,
 Object headerValue
);
void sendBodyAndHeader(
 Endpoint endpoint,
 Object body,
 String header,
 Object headerValue
);
Object sendBodyAndHeader(
 String endpointUri,
 ExchangePattern pattern,
 Object body,
 String header,
 Object headerValue
);
Object sendBodyAndHeader(
 Endpoint endpoint,
 ExchangePattern pattern,
 Object body,
 String header,
 Object headerValue
);

Red Hat JBoss Fuse 6.0 Programming EIP Components

30

The sendBodyAndHeaders() methods are similar to the sendBodyAndHeader() methods, except
that instead of supplying just a single header setting, these methods allow you to specify a complete
hash map of header settings.

Send a message body and exchange property

You can try out the effect of setting a single exchange property using the sendBodyAndProperty()
methods. You supply the message body and property setting as arguments to
sendBodyAndProperty() and let the producer template take care of inserting the body and exchange
property into a default exchange object.

The sendBodyAndProperty() methods let you specify the target endpoint in one of the following
ways: as the default endpoint, as an endpoint URI, or as an Endpoint object. In addition, you can
optionally specify the exchange's MEP by supplying the pattern argument, instead of accepting the
default. The methods without a pattern argument return void (even though the invocation might give
rise to a reply in some cases); and the methods with a pattern argument return either the body of the
Out message (if there is one) or the body of the In message (otherwise).

void sendBodyAndHeaders(
 Object body,
 Map<String, Object> headers
);
void sendBodyAndHeaders(
 String endpointUri,
 Object body,
 Map<String, Object> headers
);
void sendBodyAndHeaders(
 Endpoint endpoint,
 Object body,
 Map<String, Object> headers
);
Object sendBodyAndHeaders(
 String endpointUri,
 ExchangePattern pattern,
 Object body,
 Map<String, Object> headers
);
Object sendBodyAndHeaders(
 Endpoint endpoint,
 ExchangePattern pattern,
 Object body,
 Map<String, Object> headers
);

void sendBodyAndProperty(
 Object body,
 String property,
 Object propertyValue
);
void sendBodyAndProperty(
 String endpointUri,
 Object body,
 String property,

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

31

4.1.3. Synchronous Request with InOut Pattern

Overview

The synchronous request methods are similar to the synchronous send methods, except that the request
methods force the message exchange pattern to be InOut (conforming to request/reply semantics).
Hence, it is generally convenient to use a synchronous request method, if you expect to receive a reply
from the producer endpoint.

Request an exchange populated by a processor

The basic request() method is a general-purpose method that uses a processor to populate a default
exchange and forces the message exchange pattern to be InOut (so that the invocation obeys
request/reply semantics). The return value is the exchange that you get after it has been processed by
the producer endpoint, where the Out message contains the reply message.

The request() methods for sending an exchange populated by a processor let you specify the target
endpoint in one of the following ways: as an endpoint URI, or as an Endpoint object.

Request a message body

If you are only concerned with the contents of the message body in the request and in the reply, you can
use the requestBody() methods to provide the request message body as an argument and let the
producer template take care of inserting the body into a default exchange object.

The requestBody() methods let you specify the target endpoint in one of the following ways: as the
default endpoint, as an endpoint URI, or as an Endpoint object. The return value is the body of the
reply message (Out message body), which can either be returned as plain Object or converted to a

 Object propertyValue
);
void sendBodyAndProperty(
 Endpoint endpoint,
 Object body,
 String property,
 Object propertyValue
);
Object sendBodyAndProperty(
 String endpoint,
 ExchangePattern pattern,
 Object body,
 String property,
 Object propertyValue
);
Object sendBodyAndProperty(
 Endpoint endpoint,
 ExchangePattern pattern,
 Object body,
 String property,
 Object propertyValue
);

Exchange request(String endpointUri, Processor processor);
Exchange request(Endpoint endpoint, Processor processor);

Red Hat JBoss Fuse 6.0 Programming EIP Components

32

specific type, T, using the built-in type converters (see Section 1.3, “Built-In Type Converters”).

Request a message body and header(s)

You can try out the effect of setting a single header value using the requestBodyAndHeader()
methods. You supply the message body and header setting as arguments to
requestBodyAndHeader() and let the producer template take care of inserting the body and
exchange property into a default exchange object.

The requestBodyAndHeader() methods let you specify the target endpoint in one of the following
ways: as an endpoint URI, or as an Endpoint object. The return value is the body of the reply message
(Out message body), which can either be returned as plain Object or converted to a specific type, T,
using the built-in type converters (see Section 1.3, “Built-In Type Converters”).

Object requestBody(Object body);
<T> T requestBody(Object body, Class<T> type);
Object requestBody(
 String endpointUri,
 Object body
);
<T> T requestBody(
 String endpointUri,
 Object body,
 Class<T> type
);
Object requestBody(
 Endpoint endpoint,
 Object body
);
<T> T requestBody(
 Endpoint endpoint,
 Object body,
 Class<T> type
);

Object requestBodyAndHeader(
 String endpointUri,
 Object body,
 String header,
 Object headerValue
);
<T> T requestBodyAndHeader(
 String endpointUri,
 Object body,
 String header,
 Object headerValue,
 Class<T> type
);
Object requestBodyAndHeader(
 Endpoint endpoint,
 Object body,
 String header,
 Object headerValue
);
<T> T requestBodyAndHeader(

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

33

The requestBodyAndHeaders() methods are similar to the requestBodyAndHeader() methods,
except that instead of supplying just a single header setting, these methods allow you to specify a
complete hash map of header settings.

4.1.4. Asynchronous Send

Overview

The producer template provides a variety of methods for invoking a producer endpoint asynchronously,
so that the main thread does not block while waiting for the invocation to complete and the reply
message can be retrieved at a later time. The asynchronous send methods described in this section are
compatible with any kind of message exchange protocol.

Send an exchange

The basic asyncSend() method takes an Exchange argument and invokes an endpoint
asynchronously, using the message exchange pattern (MEP) of the specified exchange. The return value
is a java.util.concurrent.Future object, which is a ticket you can use to collect the reply
message at a later time—for details of how to obtain the return value from the Future object, see the
section called “Asynchronous invocation”.

The following asyncSend() methods let you specify the target endpoint in one of the following ways: as
an endpoint URI, or as an Endpoint object.

 Endpoint endpoint,
 Object body,
 String header,
 Object headerValue,
 Class<T> type
);

Object requestBodyAndHeaders(
 String endpointUri,
 Object body,
 Map<String, Object> headers
);
<T> T requestBodyAndHeaders(
 String endpointUri,
 Object body,
 Map<String, Object> headers,
 Class<T> type
);
Object requestBodyAndHeaders(
 Endpoint endpoint,
 Object body,
 Map<String, Object> headers
);
<T> T requestBodyAndHeaders(
 Endpoint endpoint,
 Object body,
 Map<String, Object> headers,
 Class<T> type
);

Red Hat JBoss Fuse 6.0 Programming EIP Components

34

Send an exchange populated by a processor

A simple variation of the general asyncSend() method is to use a processor to populate a default
exchange, instead of supplying the exchange object explicitly.

The following asyncSend() methods let you specify the target endpoint in one of the following ways: as
an endpoint URI, or as an Endpoint object.

Send a message body

If you are only concerned with the contents of the message body that you want to send, you can use the
asyncSendBody() methods to send a message body asynchronously and let the producer template
take care of inserting the body into a default exchange object.

The asyncSendBody() methods let you specify the target endpoint in one of the following ways: as an
endpoint URI, or as an Endpoint object.

4.1.5. Asynchronous Request with InOut Pattern

Overview

The asynchronous request methods are similar to the asynchronous send methods, except that the
request methods force the message exchange pattern to be InOut (conforming to request/reply
semantics). Hence, it is generally convenient to use an asynchronous request method, if you expect to
receive a reply from the producer endpoint.

Request a message body

If you are only concerned with the contents of the message body in the request and in the reply, you can
use the requestBody() methods to provide the request message body as an argument and let the
producer template take care of inserting the body into a default exchange object.

The asyncRequestBody() methods let you specify the target endpoint in one of the following ways: as
an endpoint URI, or as an Endpoint object. The return value that is retrievable from the Future object
is the body of the reply message (Out message body), which can be returned either as a plain Object
or converted to a specific type, T, using a built-in type converter (see the section called “Asynchronous
invocation”).

Future<Exchange> asyncSend(String endpointUri, Exchange exchange);
Future<Exchange> asyncSend(Endpoint endpoint, Exchange exchange);

Future<Exchange> asyncSend(String endpointUri, Processor processor);
Future<Exchange> asyncSend(Endpoint endpoint, Processor processor);

Future<Object> asyncSendBody(String endpointUri, Object body);
Future<Object> asyncSendBody(Endpoint endpoint, Object body);

Future<Object> asyncRequestBody(
 String endpointUri,
 Object body
);
<T> Future<T> asyncRequestBody(

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

35

Request a message body and header(s)

You can try out the effect of setting a single header value using the asyncRequestBodyAndHeader()
methods. You supply the message body and header setting as arguments to
asyncRequestBodyAndHeader() and let the producer template take care of inserting the body and
exchange property into a default exchange object.

The asyncRequestBodyAndHeader() methods let you specify the target endpoint in one of the
following ways: as an endpoint URI, or as an Endpoint object. The return value that is retrievable from
the Future object is the body of the reply message (Out message body), which can be returned either
as a plain Object or converted to a specific type, T, using a built-in type converter (see the section
called “Asynchronous invocation”).

 String endpointUri,
 Object body,
 Class<T> type
);
Future<Object> asyncRequestBody(
 Endpoint endpoint,
 Object body
);
<T> Future<T> asyncRequestBody(
 Endpoint endpoint,
 Object body,
 Class<T> type
);

Future<Object> asyncRequestBodyAndHeader(
 String endpointUri,
 Object body,
 String header,
 Object headerValue
);
<T> Future<T> asyncRequestBodyAndHeader(
 String endpointUri,
 Object body,
 String header,
 Object headerValue,
 Class<T> type
);
Future<Object> asyncRequestBodyAndHeader(
 Endpoint endpoint,
 Object body,
 String header,
 Object headerValue
);
<T> Future<T> asyncRequestBodyAndHeader(
 Endpoint endpoint,
 Object body,
 String header,
 Object headerValue,
 Class<T> type
);

Red Hat JBoss Fuse 6.0 Programming EIP Components

36

The asyncRequestBodyAndHeaders() methods are similar to the
asyncRequestBodyAndHeader() methods, except that instead of supplying just a single header
setting, these methods allow you to specify a complete hash map of header settings.

4.1.6. Asynchronous Send with Callback

Overview

The producer template also provides the option of processing the reply message in the same sub-thread
that is used to invoke the producer endpoint. In this case, you provide a callback object, which
automatically gets invoked in the sub-thread as soon as the reply message is received. In other words,
the asynchronous send with callback methods enable you to initiate an invocation in your main thread
and then have all of the associated processing—invocation of the producer endpoint, waiting for a reply
and processing the reply—occur asynchronously in a sub-thread.

Send an exchange

The basic asyncCallback() method takes an Exchange argument and invokes an endpoint
asynchronously, using the message exchange pattern (MEP) of the specified exchange. This method is
similar to the asyncSend() method for exchanges, except that it takes an additional
org.apache.camel.spi.Synchronization argument, which is a callback interface with two
methods: onComplete() and onFailure(). For details of how to use the Synchronization
callback, see the section called “Asynchronous invocation with a callback”.

The following asyncCallback() methods let you specify the target endpoint in one of the following
ways: as an endpoint URI, or as an Endpoint object.

Future<Object> asyncRequestBodyAndHeaders(
 String endpointUri,
 Object body,
 Map<String, Object> headers
);
<T> Future<T> asyncRequestBodyAndHeaders(
 String endpointUri,
 Object body,
 Map<String, Object> headers,
 Class<T> type
);
Future<Object> asyncRequestBodyAndHeaders(
 Endpoint endpoint,
 Object body,
 Map<String, Object> headers
);
<T> Future<T> asyncRequestBodyAndHeaders(
 Endpoint endpoint,
 Object body,
 Map<String, Object> headers,
 Class<T> type
);

Future<Exchange> asyncCallback(
 String endpointUri,
 Exchange exchange,
 Synchronization onCompletion

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

37

Send an exchange populated by a processor

The asyncCallback() method for processors calls a processor to populate a default exchange and
forces the message exchange pattern to be InOut (so that the invocation obeys request/reply semantics).

The following asyncCallback() methods let you specify the target endpoint in one of the following
ways: as an endpoint URI, or as an Endpoint object.

Send a message body

If you are only concerned with the contents of the message body that you want to send, you can use the
asyncCallbackSendBody() methods to send a message body asynchronously and let the producer
template take care of inserting the body into a default exchange object.

The asyncCallbackSendBody() methods let you specify the target endpoint in one of the following
ways: as an endpoint URI, or as an Endpoint object.

Request a message body

If you are only concerned with the contents of the message body in the request and in the reply, you can
use the asyncCallbackRequestBody() methods to provide the request message body as an
argument and let the producer template take care of inserting the body into a default exchange object.

);
Future<Exchange> asyncCallback(
 Endpoint endpoint,
 Exchange exchange,
 Synchronization onCompletion
);

Future<Exchange> asyncCallback(
 String endpointUri,
 Processor processor,
 Synchronization onCompletion
);
Future<Exchange> asyncCallback(
 Endpoint endpoint,
 Processor processor,
 Synchronization onCompletion
);

Future<Object> asyncCallbackSendBody(
 String endpointUri,
 Object body,
 Synchronization onCompletion
);
Future<Object> asyncCallbackSendBody(
 Endpoint endpoint,
 Object body,
 Synchronization onCompletion
);

Red Hat JBoss Fuse 6.0 Programming EIP Components

38

The asyncCallbackRequestBody() methods let you specify the target endpoint in one of the
following ways: as an endpoint URI, or as an Endpoint object.

4.2. USING THE CONSUMER TEMPLATE

Overview

The consumer template provides methods for polling a consumer endpoint in order to receive incoming
messages. You can choose to receive the incoming message either in the form of an exchange object or
in the form of a message body (where the message body can be cast to a particular type using a built-in
type converter).

Example of polling exchanges

You can use a consumer template to poll a consumer endpoint for exchanges using one of the following
polling methods: blocking receive(); receive() with a timeout; or receiveNoWait(), which
returns immediately. Because a consumer endpoint represents a service, it is also essential to start the
service thread by calling start() before you attempt to poll for exchanges.

The following example shows how to poll an exchange from the seda:foo consumer endpoint using the
blocking receive() method:

Where the consumer template instance, consumer, is instantiated using the
CamelContext.createConsumerTemplate() method and the consumer service thread is started by
calling ConsumerTemplate.start().

Future<Object> asyncCallbackRequestBody(
 String endpointUri,
 Object body,
 Synchronization onCompletion
);
Future<Object> asyncCallbackRequestBody(
 Endpoint endpoint,
 Object body,
 Synchronization onCompletion
);

import org.apache.camel.ProducerTemplate;
import org.apache.camel.ConsumerTemplate;
import org.apache.camel.Exchange;
...
ProducerTemplate template = context.createProducerTemplate();
ConsumerTemplate consumer = context.createConsumerTemplate();

// Start the consumer service
consumer.start();
...
template.sendBody("seda:foo", "Hello");
Exchange out = consumer.receive("seda:foo");
...
// Stop the consumer service
consumer.stop();

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

39

Example of polling message bodies

You can also poll a consumer endpoint for incoming message bodies using one of the following methods:
blocking receiveBody(); receiveBody() with a timeout; or receiveBodyNoWait(), which returns
immediately. As in the previous example, it is also essential to start the service thread by calling
start() before you attempt to poll for exchanges.

The following example shows how to poll an incoming message body from the seda:foo consumer
endpoint using the blocking receiveBody() method:

Methods for polling exchanges

There are three basic methods for polling exchanges from a consumer endpoint: receive() without a
timeout blocks indefinitely; receive() with a timeout blocks for the specified period of milliseconds; and
receiveNoWait() is non-blocking. You can specify the consumer endpoint either as an endpoint URI
or as an Endpoint instance.

Methods for polling message bodies

There are three basic methods for polling message bodies from a consumer endpoint: receiveBody()
without a timeout blocks indefinitely; receiveBody() with a timeout blocks for the specified period of
milliseconds; and receiveBodyNoWait() is non-blocking. You can specify the consumer endpoint
either as an endpoint URI or as an Endpoint instance. Moreover, by calling the templating forms of
these methods, you can convert the returned body to a particular type, T, using a built-in type converter.

import org.apache.camel.ProducerTemplate;
import org.apache.camel.ConsumerTemplate;
...
ProducerTemplate template = context.createProducerTemplate();
ConsumerTemplate consumer = context.createConsumerTemplate();

// Start the consumer service
consumer.start();
...
template.sendBody("seda:foo", "Hello");
Object body = consumer.receiveBody("seda:foo");
...
// Stop the consumer service
consumer.stop();

Exchange receive(String endpointUri);
Exchange receive(String endpointUri, long timeout);
Exchange receiveNoWait(String endpointUri);

Exchange receive(Endpoint endpoint);
Exchange receive(Endpoint endpoint, long timeout);
Exchange receiveNoWait(Endpoint endpoint);

Object receiveBody(String endpointUri);
Object receiveBody(String endpointUri, long timeout);
Object receiveBodyNoWait(String endpointUri);

Object receiveBody(Endpoint endpoint);

Red Hat JBoss Fuse 6.0 Programming EIP Components

40

Object receiveBody(Endpoint endpoint, long timeout);
Object receiveBodyNoWait(Endpoint endpoint);

<T> T receiveBody(String endpointUri, Class<T> type);
<T> T receiveBody(String endpointUri, long timeout, Class<T> type);
<T> T receiveBodyNoWait(String endpointUri, Class<T> type);

<T> T receiveBody(Endpoint endpoint, Class<T> type);
<T> T receiveBody(Endpoint endpoint, long timeout, Class<T> type);
<T> T receiveBodyNoWait(Endpoint endpoint, Class<T> type);

CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES

41

CHAPTER 5. IMPLEMENTING A COMPONENT

Abstract

This chapter provides a general overview of the approaches can be used to implement a Apache Camel
component.

5.1. COMPONENT ARCHITECTURE

5.1.1. Factory Patterns for a Component

Overview

A Apache Camel component consists of a set of classes that are related to each other through a factory
pattern. The primary entry point to a component is the Component object itself (an instance of
org.apache.camel.Component type). You can use the Component object as a factory to create
Endpoint objects, which in turn act as factories for creating Consumer, Producer, and Exchange
objects. These relationships are summarized in Figure 5.1, “Component Factory Patterns”

Figure 5.1. Component Factory Patterns

Component

A component implementation is an endpoint factory. The main task of a component implementor is to
implement the Component.createEndpoint() method, which is responsible for creating new
endpoints on demand.

Each kind of component must be associated with a component prefix that appears in an endpoint URI.
For example, the file component is usually associated with the file prefix, which can be used in an
endpoint URI like file://tmp/messages/input. When you install a new component in Apache Camel, you
must define the association between a particular component prefix and the name of the class that
implements the component.

Endpoint

Each endpoint instance encapsulates a particular endpoint URI. Every time Apache Camel encounters a
new endpoint URI, it creates a new endpoint instance. An endpoint object is also a factory for creating
consumer endpoints and producer endpoints.

Red Hat JBoss Fuse 6.0 Programming EIP Components

42

Endpoints must implement the org.apache.camel.Endpoint interface. The Endpoint interface
defines the following factory methods:

createConsumer() and createPollingConsumer()—Creates a consumer endpoint,
which represents the source endpoint at the beginning of a route.

createProducer()—Creates a producer endpoint, which represents the target endpoint at the
end of a route.

createExchange()—Creates an exchange object, which encapsulates the messages passed
up and down the route.

Consumer

Consumer endpoints consume requests. They always appear at the start of a route and they encapsulate
the code responsible for receiving incoming requests and dispatching outgoing replies. From a service-
oriented prospective a consumer represents a service.

Consumers must implement the org.apache.camel.Consumer interface. There are a number of
different patterns you can follow when implementing a consumer. These patterns are described in
Section 5.1.3, “Consumer Patterns and Threading”.

Producer

Producer endpoints produce requests. They always appears at the end of a route and they encapsulate
the code responsible for dispatching outgoing requests and receiving incoming replies. From a service-
oriented prospective a producer represents a service consumer.

Producers must implement the org.apache.camel.Producer interface. You can optionally
implement the producer to support an asynchronous style of processing. See Section 5.1.4,
“Asynchronous Processing” for details.

Exchange

Exchange objects encapsulate a related set of messages. For example, one kind of message exchange
is a synchronous invocation, which consists of a request message and its related reply.

Exchanges must implement the org.apache.camel.Exchange interface. The default implementation,
DefaultExchange, is sufficient for many component implementations. However, if you want to
associated extra data with the exchanges or have the exchanges preform additional processing, it can be
useful to customize the exchange implementation.

Message

There are two different message slots in an Exchange object:

In message—holds the current message.

Out message—temporarily holds a reply message.

All of the message types are represented by the same Java object, org.apache.camel.Message. It is
not always necessary to customize the message implementation—the default implementation,
DefaultMessage, is usually adequate.

CHAPTER 5. IMPLEMENTING A COMPONENT

43

5.1.2. Using a Component in a Route

Overview

A Apache Camel route is essentially a pipeline of processors, of org.apache.camel.Processor
type. Messages are encapsulated in an exchange object, E, which gets passed from node to node by
invoking the process() method. The architecture of the processor pipeline is illustrated in Figure 5.2,
“Consumer and Producer Instances in a Route”.

Figure 5.2. Consumer and Producer Instances in a Route

Source endpoint

At the start of the route, you have the source endpoint, which is represented by an
org.apache.camel.Consumer object. The source endpoint is responsible for accepting incoming
request messages and dispatching replies. When constructing the route, Apache Camel creates the
appropriate Consumer type based on the component prefix from the endpoint URI, as described in
Section 5.1.1, “Factory Patterns for a Component”.

Processors

Each intermediate node in the pipeline is represented by a processor object (implementing the
org.apache.camel.Processor interface). You can insert either standard processors (for example,
filter, throttler, or delayer) or insert your own custom processor implementations.

Target endpoint

At the end of the route is the target endpoint, which is represented by an
org.apache.camel.Producer object. Because it comes at the end of a processor pipeline, the
producer is also a processor object (implementing the org.apache.camel.Processor interface). The
target endpoint is responsible for sending outgoing request messages and receiving incoming replies.
When constructing the route, Apache Camel creates the appropriate Producer type based on the
component prefix from the endpoint URI.

5.1.3. Consumer Patterns and Threading

Overview

The pattern used to implement the consumer determines the threading model used in processing the
incoming exchanges. Consumers can be implemented using one of the following patterns:

Event-driven pattern—The consumer is driven by an external thread.

Scheduled poll pattern—The consumer is driven by a dedicated thread pool.

Polling pattern—The threading model is left undefined.

Red Hat JBoss Fuse 6.0 Programming EIP Components

44

Event-driven pattern

In the event-driven pattern, the processing of an incoming request is initiated when another part of the
application (typically a third-party library) calls a method implemented by the consumer. A good example
of an event-driven consumer is the Apache Camel JMX component, where events are initiated by the
JMX library. The JMX library calls the handleNotification() method to initiate request processing
—see Example 8.4, “JMXConsumer Implementation” for details.

Figure 5.3, “Event-Driven Consumer” shows an outline of the event-driven consumer pattern. In this
example, it is assumed that processing is triggered by a call to the notify() method.

Figure 5.3. Event-Driven Consumer

The event-driven consumer processes incoming requests as follows:

1. The consumer must implement a method to receive the incoming event (in Figure 5.3, “Event-
Driven Consumer” this is represented by the notify() method). The thread that calls
notify() is normally a separate part of the application, so the consumer's threading policy is
externally driven.

For example, in the case of the JMX consumer implementation, the consumer implements the
NotificationListener.handleNotification() method to receive notifications from
JMX. The threads that drive the consumer processing are created within the JMX layer.

2. In the body of the notify() method, the consumer first converts the incoming event into an
exchange object, E, and then calls process() on the next processor in the route, passing the
exchange object as its argument.

Scheduled poll pattern

In the scheduled poll pattern, the consumer retrieves incoming requests by checking at regular time
intervals whether or not a request has arrived. Checking for requests is scheduled automatically by a
built-in timer class, the scheduled executor service, which is a standard pattern provided by the
java.util.concurrent library. The scheduled executor service executes a particular task at timed intervals
and it also manages a pool of threads, which are used to run the task instances.

Figure 5.4, “Scheduled Poll Consumer” shows an outline of the scheduled poll consumer pattern.

CHAPTER 5. IMPLEMENTING A COMPONENT

45

Figure 5.4. Scheduled Poll Consumer

The scheduled poll consumer processes incoming requests as follows:

1. The scheduled executor service has a pool of threads at its disposal, that can be used to initiate
consumer processing. After each scheduled time interval has elapsed, the scheduled executor
service attempts to grab a free thread from its pool (there are five threads in the pool by default).
If a free thread is available, it uses that thread to call the poll() method on the consumer.

2. The consumer's poll() method is intended to trigger processing of an incoming request. In the
body of the poll() method, the consumer attempts to retrieve an incoming message. If no
request is available, the poll() method returns immediately.

3. If a request message is available, the consumer inserts it into an exchange object and then calls
process() on the next processor in the route, passing the exchange object as its argument.

Polling pattern

In the polling pattern, processing of an incoming request is initiated when a third-party calls one of the
consumer's polling methods:

receive()

receiveNoWait()

receive(long timeout)

It is up to the component implementation to define the precise mechanism for initiating calls on the polling
methods. This mechanism is not specified by the polling pattern.

Figure 5.5, “Polling Consumer” shows an outline of the polling consumer pattern.

Red Hat JBoss Fuse 6.0 Programming EIP Components

46

Figure 5.5. Polling Consumer

The polling consumer processes incoming requests as follows:

1. Processing of an incoming request is initiated whenever one of the consumer's polling methods
is called. The mechanism for calling these polling methods is implementation defined.

2. In the body of the receive() method, the consumer attempts to retrieve an incoming request
message. If no message is currently available, the behavior depends on which receive method
was called.

receiveNoWait() returns immediately

receive(long timeout) waits for the specified timeout interval[2] before returning

receive() waits until a message is received

3. If a request message is available, the consumer inserts it into an exchange object and then calls
process() on the next processor in the route, passing the exchange object as its argument.

5.1.4. Asynchronous Processing

Overview

Producer endpoints normally follow a synchronous pattern when processing an exchange. When the
preceding processor in a pipeline calls process() on a producer, the process() method blocks until a
reply is received. In this case, the processor's thread remains blocked until the producer has completed
the cycle of sending the request and receiving the reply.

Sometimes, however, you might prefer to decouple the preceding processor from the producer, so that
the processor's thread is released immediately and the process() call does not block. In this case, you
should implement the producer using an asynchronous pattern, which gives the preceding processor the
option of invoking a non-blocking version of the process() method.

To give you an overview of the different implementation options, this section describes both the
synchronous and the asynchronous patterns for implementing a producer endpoint.

Synchronous producer

CHAPTER 5. IMPLEMENTING A COMPONENT

47

Figure 5.6, “Synchronous Producer” shows an outline of a synchronous producer, where the preceding
processor blocks until the producer has finished processing the exchange.

Figure 5.6. Synchronous Producer

The synchronous producer processes an exchange as follows:

1. The preceding processor in the pipeline calls the synchronous process() method on the
producer to initiate synchronous processing. The synchronous process() method takes a
single exchange argument.

2. In the body of the process() method, the producer sends the request (In message) to the
endpoint.

3. If required by the exchange pattern, the producer waits for the reply (Out message) to arrive
from the endpoint. This step can cause the process() method to block indefinitely. However, if
the exchange pattern does not mandate a reply, the process() method can return immediately
after sending the request.

4. When the process() method returns, the exchange object contains the reply from the
synchronous call (an Out message message).

Asynchronous producer

Figure 5.7, “Asynchronous Producer” shows an outline of an asynchronous producer, where the producer
processes the exchange in a sub-thread, and the preceding processor is not blocked for any significant
length of time.

Red Hat JBoss Fuse 6.0 Programming EIP Components

48

Figure 5.7. Asynchronous Producer

The asynchronous producer processes an exchange as follows:

1. Before the processor can call the asynchronous process() method, it must create an
asynchronous callback object, which is responsible for processing the exchange on the return
portion of the route. For the asynchronous callback, the processor must implement a class that
inherits from the AsyncCallback interface.

2. The processor calls the asynchronous process() method on the producer to initiate
asynchronous processing. The asynchronous process() method takes two arguments:

an exchange object

a synchronous callback object

3. In the body of the process() method, the producer creates a Runnable object that
encapsulates the processing code. The producer then delegates the execution of this Runnable
object to a sub-thread.

4. The asynchronous process() method returns, thereby freeing up the processor's thread. The
exchange processing continues in a separate sub-thread.

5. The Runnable object sends the In message to the endpoint.

6. If required by the exchange pattern, the Runnable object waits for the reply (Out or Fault
message) to arrive from the endpoint. The Runnable object remains blocked until the reply is
received.

7. After the reply arrives, the Runnable object inserts the reply (Out message) into the exchange
object and then calls done() on the asynchronous callback object. The asynchronous callback
is then responsible for processing the reply message (executed in the sub-thread).

5.2. HOW TO IMPLEMENT A COMPONENT

CHAPTER 5. IMPLEMENTING A COMPONENT

49

Overview

This section gives a brief overview of the steps required to implement a custom Apache Camel
component.

Which interfaces do you need to implement?

When implementing a component, it is usually necessary to implement the following Java interfaces:

org.apache.camel.Component

org.apache.camel.Endpoint

org.apache.camel.Consumer

org.apache.camel.Producer

In addition, it can also be necessary to implement the following Java interfaces:

org.apache.camel.Exchange

org.apache.camel.Message

Implementation steps

You typically implement a custom component as follows:

1. Implement the Component interface—A component object acts as an endpoint factory. You
extend the DefaultComponent class and implement the createEndpoint() method.

See Chapter 6, Component Interface.

2. Implement the Endpoint interface—An endpoint represents a resource identified by a specific
URI. The approach taken when implementing an endpoint depends on whether the consumers
follow an event-driven pattern, a scheduled poll pattern, or a polling pattern.

For an event-driven pattern, implement the endpoint by extending the DefaultEndpoint class
and implementing the following methods:

createProducer()

createConsumer()

For a scheduled poll pattern, implement the endpoint by extending the
ScheduledPollEndpoint class and implementing the following methods:

createProducer()

createConsumer()

For a polling pattern, implement the endpoint by extending the DefaultPollingEndpoint
class and implementing the following methods:

createProducer()

createPollConsumer()

Red Hat JBoss Fuse 6.0 Programming EIP Components

50

See Chapter 7, Endpoint Interface.

3. Implement the Consumer interface—There are several different approaches you can take to
implementing a consumer, depending on which pattern you need to implement (event-driven,
scheduled poll, or polling). The consumer implementation is also crucially important for
determining the threading model used for processing a message exchange.

See Section 8.2, “Implementing the Consumer Interface”.

4. Implement the Producer interface—To implement a producer, you extend the
DefaultProducer class and implement the process() method.

See Chapter 9, Producer Interface.

5. Optionally implement the Exchange or the Message interface—The default implementations of
Exchange and Message can be used directly, but occasionally, you might find it necessary to
customize these types.

See Chapter 10, Exchange Interface and Chapter 11, Message Interface.

Installing and configuring the component

You can install a custom component in one of the following ways:

Add the component directly to the CamelContext—The CamelContext.addComponent()
method adds a component programatically.

Add the component using Spring configuration—The standard Spring bean element creates a
component instance. The bean's id attribute implicitly defines the component prefix. For details,
see Section 5.3.2, “Configuring a Component”.

Configure Apache Camel to auto-discover the component—Auto-discovery, ensures that Apache
Camel automatically loads the component on demand. For details, see Section 5.3.1, “Setting
Up Auto-Discovery”.

5.3. AUTO-DISCOVERY AND CONFIGURATION

5.3.1. Setting Up Auto-Discovery

Overview

Auto-discovery is a mechanism that enables you to dynamically add components to your Apache Camel
application. The component URI prefix is used as a key to load components on demand. For example, if
Apache Camel encounters the endpoint URI, activemq://MyQName, and the ActiveMQ endpoint is not
yet loaded, Apache Camel searches for the component identified by the activemq prefix and dynamically
loads the component.

Availability of component classes

Before configuring auto-discovery, you must ensure that your custom component classes are accessible
from your current classpath. Typically, you bundle the custom component classes into a JAR file, and
add the JAR file to your classpath.

Configuring auto-discovery

CHAPTER 5. IMPLEMENTING A COMPONENT

51

To enable auto-discovery of your component, create a Java properties file named after the component
prefix, component-prefix, and store that file in the following location:

The component-prefix properties file must contain the following property setting:

Where component-class-name is the fully-qualified name of your custom component class. You can also
define additional system property settings in this file.

Example

For example, you can enable auto-discovery for the Apache Camel FTP component by creating the
following Java properties file:

Which contains the following Java property setting:

NOTE

The Java properties file for the FTP component is already defined in the JAR file, camel-
ftp-Version.jar.

5.3.2. Configuring a Component

Overview

You can add a component by configuring it in the Apache Camel Spring configuration file, META-
INF/spring/camel-context.xml. To find the component, the component's URI prefix is matched
against the ID attribute of a bean element in the Spring configuration. If the component prefix matches a
bean element ID, Apache Camel instantiates the referenced class and injects the properties specified in
the Spring configuration.

NOTE

This mechanism has priority over auto-discovery. If the CamelContext finds a Spring bean
with the requisite ID, it will not attempt to find the component using auto-discovery.

Define bean properties on your component class

If there are any properties that you want to inject into your component class, define them as bean
properties. For example:

/META-INF/services/org/apache/camel/component/component-prefix

class=component-class-name

/META-INF/services/org/apache/camel/component/ftp

class=org.apache.camel.component.file.remote.RemoteFileComponent

public class CustomComponent extends
 DefaultComponent<CustomExchange> {
 ...
 PropType getProperty() { ... }

Red Hat JBoss Fuse 6.0 Programming EIP Components

52

The getProperty() method and the setProperty() method access the value of property.

Configure the component in Spring

To configure a component in Spring, edit the configuration file, META-INF/spring/camel-
context.xml, as shown in Example 5.1, “Configuring a Component in Spring”.

Example 5.1. Configuring a Component in Spring

The bean element with ID component-prefix configures the component-class-name component. You can
inject properties into the component instance using property elements. For example, the property
element in the preceding example would inject the value, propertyValue, into the property property by
calling setProperty() on the component.

Examples

Example 5.2, “JMS Component Spring Configuration” shows an example of how to configure the Apache
Camel's JMS component by defining a bean element with ID equal to jms. These settings are added to
the Spring configuration file, camel-context.xml.

Example 5.2. JMS Component Spring Configuration

 void setProperty(PropType v) { ... }
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">
 <package>RouteBuilderPackage</package>
 </camelContext>

 <bean id="component-prefix" class="component-class-name">
 <property name="property" value="propertyValue"/>
 </bean>
</beans>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

CHAPTER 5. IMPLEMENTING A COMPONENT

53

1

2

3

4

The CamelContext automatically instantiates any RouteBuilder classes that it finds in the
specified Java package, org.apache.camel.example.spring.

The bean element with ID, jms, configures the JMS component. The bean ID corresponds to the
component's URI prefix. For example, if a route specifies an endpoint with the URI,
jms://MyQName, Apache Camel automatically loads the JMS component using the settings from the
jms bean element.

JMS is just a wrapper for a messaging service. You must specify the concrete implementation of
the messaging system by setting the connectionFactory property on the JmsComponent class.

In this example, the concrete implementation of the JMS messaging service is Apache ActiveMQ.
The brokerURL property initializes a connection to an ActiveMQ broker instance, where the
message broker is embedded in the local Java virtual machine (JVM). If a broker is not already
present in the JVM, ActiveMQ will instantiate it with the options broker.persistent=false (the
broker does not persist messages) and broker.useJmx=false (the broker does not open a JMX
port).

[2] The timeout interval is typically specified in milliseconds.

1

2 3

4

 <camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">

 <package>org.apache.camel.example.spring</package>
 </camelContext>

 <bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
 <property name="connectionFactory">
 <bean class="org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL"
 value="vm://localhost?

broker.persistent=false&broker.useJmx=false"/>
 </bean>

 </property>
 </bean>
</beans>

Red Hat JBoss Fuse 6.0 Programming EIP Components

54

CHAPTER 6. COMPONENT INTERFACE

Abstract

This chapter describes how to implement the Component interface.

6.1. THE COMPONENT INTERFACE

Overview

To implement a Apache Camel component, you must implement the org.apache.camel.Component
interface. An instance of Component type provides the entry point into a custom component. That is, all
of the other objects in a component are ultimately accessible through the Component instance.
Figure 6.1, “Component Inheritance Hierarchy” shows the relevant Java interfaces and classes that
make up the Component inheritance hierarchy.

Figure 6.1. Component Inheritance Hierarchy

The Component interface

Example 6.1, “Component Interface” shows the definition of the org.apache.camel.Component
interface.

Example 6.1. Component Interface

Component methods

The Component interface defines the following methods:

package org.apache.camel;

public interface Component {
 CamelContext getCamelContext();
 void setCamelContext(CamelContext context);

 Endpoint createEndpoint(String uri) throws Exception;
}

CHAPTER 6. COMPONENT INTERFACE

55

getCamelContext() and setCamelContext()—References the CamelContext to which
this Component belongs. The setCamelContext() method is automatically called when you
add the component to a CamelContext.

createEndpoint()—The factory method that gets called to create Endpoint instances for
this component. The uri parameter is the endpoint URI, which contains the details required to
create the endpoint.

6.2. IMPLEMENTING THE COMPONENT INTERFACE

The DefaultComponent class

You implement a new component by extending the org.apache.camel.impl.DefaultComponent
class, which provides some standard functionality and default implementations for some of the methods.
In particular, the DefaultComponent class provides support for URI parsing and for creating a
scheduled executor (which is used for the scheduled poll pattern).

URI parsing

The createEndpoint(String uri) method defined in the base Component interface takes a
complete, unparsed endpoint URI as its sole argument. The DefaultComponent class, on the other
hand, defines a three-argument version of the createEndpoint() method with the following signature:

uri is the original, unparsed URI; remaining is the part of the URI that remains after stripping off the
component prefix at the start and cutting off the query options at the end; and parameters contains the
parsed query options. It is this version of the createEndpoint() method that you must override when
inheriting from DefaultComponent. This has the advantage that the endpoint URI is already parsed for
you.

The following sample endpoint URI for the file component shows how URI parsing works in practice:

For this URI, the following arguments are passed to the three-argument version of createEndpoint():

Argument Sample Value

uri file:///tmp/messages/foo?delete=true&moveNamePostfix=.old

remaining /tmp/messages/foo

protected abstract Endpoint createEndpoint(
 String uri,
 String remaining,
 Map parameters
)
throws Exception;

file:///tmp/messages/foo?delete=true&moveNamePostfix=.old

Red Hat JBoss Fuse 6.0 Programming EIP Components

56

parameters Two entries are set in java.util.Map:

parameter delete is boolean true

parameter moveNamePostfix has the string value, .old.

Argument Sample Value

Parameter injection

By default, the parameters extracted from the URI query options are injected on the endpoint's bean
properties. The DefaultComponent class automatically injects the parameters for you.

For example, if you want to define a custom endpoint that supports two URI query options: delete and
moveNamePostfix. All you must do is define the corresponding bean methods (getters and setters) in
the endpoint class:

It is also possible to inject URI query options into consumer parameters. For details, see the section
called “Consumer parameter injection”.

Disabling endpoint parameter injection

If there are no parameters defined on your Endpoint class, you can optimize the process of endpoint
creation by disabling endpoint parameter injection. To disable parameter injection on endpoints, override
the useIntrospectionOnEndpoint() method and implement it to return false, as follows:

public class FileEndpoint extends ScheduledPollEndpoint {
 ...
 public boolean isDelete() {
 return delete;
 }
 public void setDelete(boolean delete) {
 this.delete = delete;
 }
 ...
 public String getMoveNamePostfix() {
 return moveNamePostfix;
 }
 public void setMoveNamePostfix(String moveNamePostfix) {
 this.moveNamePostfix = moveNamePostfix;
 }
}

protected boolean useIntrospectionOnEndpoint() {
 return false;
}

CHAPTER 6. COMPONENT INTERFACE

57

NOTE

The useIntrospectionOnEndpoint() method does not affect the parameter injection
that might be performed on a Consumer class. Parameter injection at that level is
controlled by the Endpoint.configureProperties() method (see Section 7.2,
“Implementing the Endpoint Interface”).

Scheduled executor service

The scheduled executor is used in the scheduled poll pattern, where it is responsible for driving the
periodic polling of a consumer endpoint (a scheduled executor is effectively a thread pool
implementation).

To instantiate a scheduled executor service, use the ExecutorServiceStrategy object that is
returned by the CamelContext.getExecutorServiceStrategy() method. For details of the
Apache Camel threading model, see section "Threading Model" in "Implementing Enterprise Integration
Patterns".

NOTE

Prior to Apache Camel 2.3, the DefaultComponent class provided a
getExecutorService() method for creating thread pool instances. Since 2.3,
however, the creation of thread pools is now managed centrally by the
ExecutorServiceStrategy object.

Validating the URI

If you want to validate the URI before creating an endpoint instance, you can override the
validateURI() method from the DefaultComponent class, which has the following signature:

protected void validateURI(String uri,
 String path,
 Map parameters)
 throws ResolveEndpointFailedException;
If the supplied URI does not have the required format, the implementation of validateURI() should
throw the org.apache.camel.ResolveEndpointFailedException exception.

Creating an endpoint

Example 6.2, “Implementation of createEndpoint()” outlines how to implement the
DefaultComponent.createEndpoint() method, which is responsible for creating endpoint
instances on demand.

Example 6.2. Implementation of createEndpoint()

1

2
3

public class CustomComponent extends DefaultComponent {
 ...

 protected Endpoint createEndpoint(String uri, String remaining, Map
parameters) throws Exception {

 CustomEndpoint result = new CustomEndpoint(uri, this);
 // ...

 return result;
 }

Red Hat JBoss Fuse 6.0 Programming EIP Components

58

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Implementing_Enterprise_Integration_Patterns/BasicPrinciples-Thread.html

1

2

3

1

2

The CustomComponent is the name of your custom component class, which is defined by
extending the DefaultComponent class.

When extending DefaultComponent, you must implement the createEndpoint() method with
three arguments (see the section called “URI parsing”).

Create an instance of your custom endpoint type, CustomEndpoint, by calling its constructor. At a
minimum, this constructor takes a copy of the original URI string, uri, and a reference to this
component instance, this.

Example

Example 6.3, “FileComponent Implementation” shows a sample implementation of a FileComponent
class.

Example 6.3. FileComponent Implementation

Always define a no-argument constructor for the component class in order to facilitate automatic
instantiation of the class.

}

1

2

3

package org.apache.camel.component.file;

import org.apache.camel.CamelContext;
import org.apache.camel.Endpoint;
import org.apache.camel.impl.DefaultComponent;

import java.io.File;
import java.util.Map;

public class FileComponent extends DefaultComponent {
 public static final String HEADER_FILE_NAME =
"org.apache.camel.file.name";

 public FileComponent() {
 }

 public FileComponent(CamelContext context) {
 super(context);

 }

 protected Endpoint createEndpoint(String uri, String remaining, Map
parameters) throws Exception {
 File file = new File(remaining);

 FileEndpoint result = new FileEndpoint(file, uri, this);
 return result;
 }
}

CHAPTER 6. COMPONENT INTERFACE

59

3

A constructor that takes the parent CamelContext instance as an argument is convenient when
creating a component instance by programming.

The implementation of the FileComponent.createEndpoint() method follows the pattern
described in Example 6.2, “Implementation of createEndpoint()”. The implementation creates
a FileEndpoint object.

Red Hat JBoss Fuse 6.0 Programming EIP Components

60

CHAPTER 7. ENDPOINT INTERFACE

Abstract

This chapter describes how to implement the Endpoint interface, which is an essential step in the
implementation of a Apache Camel component.

7.1. THE ENDPOINT INTERFACE

Overview

An instance of org.apache.camel.Endpoint type encapsulates an endpoint URI, and it also serves
as a factory for Consumer, Producer, and Exchange objects. There are three different approaches to
implementing an endpoint:

Event-driven

scheduled poll

polling

These endpoint implementation patterns complement the corresponding patterns for implementing a
consumer—see Section 8.2, “Implementing the Consumer Interface”.

Figure 7.1, “Endpoint Inheritance Hierarchy” shows the relevant Java interfaces and classes that make
up the Endpoint inheritance hierarchy.

CHAPTER 7. ENDPOINT INTERFACE

61

Figure 7.1. Endpoint Inheritance Hierarchy

The Endpoint interface

Example 7.1, “Endpoint Interface” shows the definition of the org.apache.camel.Endpoint interface.

Example 7.1. Endpoint Interface

package org.apache.camel;

public interface Endpoint {
 boolean isSingleton();

 String getEndpointUri();

 String getEndpointKey();

 CamelContext getCamelContext();
 void setCamelContext(CamelContext context);

 void configureProperties(Map options);

 boolean isLenientProperties();

 Exchange createExchange();

Red Hat JBoss Fuse 6.0 Programming EIP Components

62

Endpoint methods

The Endpoint interface defines the following methods:

isSingleton()—Returns true, if you want to ensure that each URI maps to a single
endpoint within a CamelContext. When this property is true, multiple references to the identical
URI within your routes always refer to a single endpoint instance. When this property is false,
on the other hand, multiple references to the same URI within your routes refer to distinct
endpoint instances. Each time you refer to the URI in a route, a new endpoint instance is
created.

getEndpointUri()—Returns the endpoint URI of this endpoint.

getEndpointKey()—Used by org.apache.camel.spi.LifecycleStrategy when
registering the endpoint.

getCamelContext()—return a reference to the CamelContext instance to which this
endpoint belongs.

setCamelContext()—Sets the CamelContext instance to which this endpoint belongs.

configureProperties()—Stores a copy of the parameter map that is used to inject
parameters when creating a new Consumer instance.

isLenientProperties()—Returns true to indicate that the URI is allowed to contain
unknown parameters (that is, parameters that cannot be injected on the Endpoint or the
Consumer class). Normally, this method should be implemented to return false.

createExchange()—An overloaded method with the following variants:

Exchange createExchange()—Creates a new exchange instance with a default
exchange pattern setting.

Exchange createExchange(ExchangePattern pattern)—Creates a new exchange
instance with the specified exchange pattern.

Exchange createExchange(Exchange exchange)—Converts the given exchange
argument to the type of exchange needed for this endpoint. If the given exchange is not
already of the correct type, this method copies it into a new instance of the correct type. A
default implementation of this method is provided in the DefaultEndpoint class.

createProducer()—Factory method used to create new Producer instances.

createConsumer()—Factory method to create new event-driven consumer instances. The
processor argument is a reference to the first processor in the route.

 Exchange createExchange(ExchangePattern pattern);
 Exchange createExchange(Exchange exchange);

 Producer createProducer() throws Exception;

 Consumer createConsumer(Processor processor) throws Exception;
 PollingConsumer createPollingConsumer() throws Exception;
}

CHAPTER 7. ENDPOINT INTERFACE

63

createPollingConsumer()—Factory method to create new polling consumer instances.

Endpoint singletons

In order to avoid unnecessary overhead, it is a good idea to create a single endpoint instance for all
endpoints that have the same URI (within a CamelContext). You can enforce this condition by
implementing isSingleton() to return true.

NOTE

In this context, same URI means that two URIs are the same when compared using string
equality. In principle, it is possible to have two URIs that are equivalent, though
represented by different strings. In that case, the URIs would not be treated as the same.

7.2. IMPLEMENTING THE ENDPOINT INTERFACE

Alternative ways of implementing an endpoint

The following alternative endpoint implementation patterns are supported:

Event-driven endpoint implementation

Scheduled poll endpoint implementation

Polling endpoint implementation

Event-driven endpoint implementation

If your custom endpoint conforms to the event-driven pattern (see Section 5.1.3, “Consumer Patterns and
Threading”), it is implemented by extending the abstract class,
org.apache.camel.impl.DefaultEndpoint, as shown in Example 7.2, “Implementing
DefaultEndpoint”.

Example 7.2. Implementing DefaultEndpoint

1

2

import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;
import org.apache.camel.impl.DefaultExchange;

public class CustomEndpoint extends DefaultEndpoint {

 public CustomEndpoint(String endpointUri, Component component) {
 super(endpointUri, component);

 // Do any other initialization...
 }

 public Producer createProducer() throws Exception {

Red Hat JBoss Fuse 6.0 Programming EIP Components

64

1

2

3

4

5

Implement an event-driven custom endpoint, CustomEndpoint, by extending the
DefaultEndpoint class.

You must have at least one constructor that takes the endpoint URI, endpointUri, and the parent
component reference, component, as arguments.

Implement the createProducer() factory method to create producer endpoints.

Implement the createConsumer() factory method to create event-driven consumer instances.

IMPORTANT

Do not override the createPollingConsumer() method.

In general, it is not necessary to override the createExchange() methods. The implementations
inherited from DefaultEndpoint create a DefaultExchange object by default, which can be
used in any Apache Camel component. If you need to initialize some exchange properties in the
DefaultExchange object, however, it is appropriate to override the createExchange()
methods here in order to add the exchange property settings.

The DefaultEndpoint class provides default implementations of the following methods, which you
might find useful when writing your custom endpoint code:

getEndpointUri()—Returns the endpoint URI.

3

4

5

 return new CustomProducer(this);
 }

 public Consumer createConsumer(Processor processor) throws Exception
{
 return new CustomConsumer(this, processor);

 }

 public boolean isSingleton() {
 return true;
 }

 // Implement the following methods, only if you need to set exchange
properties.
 //

 public Exchange createExchange() {
 return this.createExchange(getExchangePattern());

 }

 public Exchange createExchange(ExchangePattern pattern) {
 Exchange result = new DefaultExchange(getCamelContext(),
pattern);
 // Set exchange properties
 ...
 return result;
 }
}

CHAPTER 7. ENDPOINT INTERFACE

65

getCamelContext()—Returns a reference to the CamelContext.

getComponent()—Returns a reference to the parent component.

createPollingConsumer()—Creates a polling consumer. The created polling consumer's
functionality is based on the event-driven consumer. If you override the event-driven consumer
method, createConsumer(), you get a polling consumer implementation for free.

createExchange(Exchange e)—Converts the given exchange object, e, to the type
required for this endpoint. This method creates a new endpoint using the overridden
createExchange() endpoints. This ensures that the method also works for custom exchange
types.

Scheduled poll endpoint implementation

If your custom endpoint conforms to the scheduled poll pattern (see Section 5.1.3, “Consumer Patterns
and Threading”) it is implemented by inheriting from the abstract class,
org.apache.camel.impl.ScheduledPollEndpoint, as shown in Example 7.3,
“ScheduledPollEndpoint Implementation”.

Example 7.3. ScheduledPollEndpoint Implementation

1

2

3

4

5

import org.apache.camel.Consumer;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.ExchangePattern;
import org.apache.camel.Message;
import org.apache.camel.impl.ScheduledPollEndpoint;

public class CustomEndpoint extends ScheduledPollEndpoint {

 protected CustomEndpoint(String endpointUri, CustomComponent
component) {
 super(endpointUri, component);

 // Do any other initialization...
 }

 public Producer createProducer() throws Exception {
 Producer result = new CustomProducer(this);

 return result;
 }

 public Consumer createConsumer(Processor processor) throws Exception
{
 Consumer result = new CustomConsumer(this, processor);
 configureConsumer(result);
 return result;

 }

 public boolean isSingleton() {
 return true;
 }

 // Implement the following methods, only if you need to set exchange
properties.

Red Hat JBoss Fuse 6.0 Programming EIP Components

66

1

2

3

4

5

6

Implement a scheduled poll custom endpoint, CustomEndpoint, by extending the
ScheduledPollEndpoint class.

You must to have at least one constructor that takes the endpoint URI, endpointUri, and the
parent component reference, component, as arguments.

Implement the createProducer() factory method to create a producer endpoint.

Implement the createConsumer() factory method to create a scheduled poll consumer instance.

IMPORTANT

Do not override the createPollingConsumer() method.

The configureConsumer() method, defined in the ScheduledPollEndpoint base class, is
responsible for injecting consumer query options into the consumer. See the section called
“Consumer parameter injection”.

In general, it is not necessary to override the createExchange() methods. The implementations
inherited from DefaultEndpoint create a DefaultExchange object by default, which can be
used in any Apache Camel component. If you need to initialize some exchange properties in the
DefaultExchange object, however, it is appropriate to override the createExchange()
methods here in order to add the exchange property settings.

Polling endpoint implementation

If your custom endpoint conforms to the polling consumer pattern (see Section 5.1.3, “Consumer Patterns
and Threading”), it is implemented by inheriting from the abstract class,
org.apache.camel.impl.DefaultPollingEndpoint, as shown in Example 7.4,
“DefaultPollingEndpoint Implementation”.

Example 7.4. DefaultPollingEndpoint Implementation

6

 //
 public Exchange createExchange() {
 return this.createExchange(getExchangePattern());

 }

 public Exchange createExchange(ExchangePattern pattern) {
 Exchange result = new DefaultExchange(getCamelContext(),
pattern);
 // Set exchange properties
 ...
 return result;
 }
}

import org.apache.camel.Consumer;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.ExchangePattern;
import org.apache.camel.Message;

CHAPTER 7. ENDPOINT INTERFACE

67

Because this CustomEndpoint class is a polling endpoint, you must implement the
createPollingConsumer() method instead of the createConsumer() method. The consumer
instance returned from createPollingConsumer() must inherit from the PollingConsumer
interface. For details of how to implement a polling consumer, see the section called “Polling consumer
implementation”.

Apart from the implementation of the createPollingConsumer() method, the steps for implementing
a DefaultPollingEndpoint are similar to the steps for implementing a ScheduledPollEndpoint.
See Example 7.3, “ScheduledPollEndpoint Implementation” for details.

Implementing the BrowsableEndpoint interface

If you want to expose the list of exchange instances that are pending in the current endpoint, you can
implement the org.apache.camel.spi.BrowsableEndpoint interface, as shown in Example 7.5,
“BrowsableEndpoint Interface”. It makes sense to implement this interface if the endpoint performs some
sort of buffering of incoming events. For example, the Apache Camel SEDA endpoint implements the
BrowsableEndpoint interface—see Example 7.6, “SedaEndpoint Implementation”.

Example 7.5. BrowsableEndpoint Interface

Example

Example 7.6, “SedaEndpoint Implementation” shows a sample implementation of SedaEndpoint. The
SEDA endpoint is an example of an event-driven endpoint. Incoming events are stored in a FIFO queue
(an instance of java.util.concurrent.BlockingQueue) and a SEDA consumer starts up a thread

import org.apache.camel.impl.DefaultPollingEndpoint;

public class CustomEndpoint extends DefaultPollingEndpoint {
 ...
 public PollingConsumer createPollingConsumer() throws Exception {
 PollingConsumer result = new CustomConsumer(this);
 configureConsumer(result);
 return result;
 }

 // Do NOT implement createConsumer(). It is already implemented in
DefaultPollingEndpoint.
 ...
}

package org.apache.camel.spi;

import java.util.List;

import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;

public interface BrowsableEndpoint extends Endpoint {
 List<Exchange> getExchanges();
}

Red Hat JBoss Fuse 6.0 Programming EIP Components

68

to read and process the events. The events themselves are represented by
org.apache.camel.Exchange objects.

Example 7.6. SedaEndpoint Implementation

1

2

3

4

5

6

7

8

package org.apache.camel.component.seda;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;
import org.apache.camel.spi.BrowsableEndpoint;

public class SedaEndpoint extends DefaultEndpoint implements
BrowsableEndpoint {
 private BlockingQueue<Exchange> queue;

 public SedaEndpoint(String endpointUri, Component component,
BlockingQueue<Exchange> queue) {
 super(endpointUri, component);

 this.queue = queue;
 }

 public SedaEndpoint(String uri, SedaComponent component, Map
parameters) {
 this(uri, component, component.createQueue(uri, parameters));

 }

 public Producer createProducer() throws Exception {
 return new CollectionProducer(this, getQueue());

 }

 public Consumer createConsumer(Processor processor) throws Exception
{
 return new SedaConsumer(this, processor);

 }

 public BlockingQueue<Exchange> getQueue() {
 return queue;

 }

 public boolean isSingleton() {
 return true;

 }

 public List<Exchange> getExchanges() {
 return new ArrayList<Exchange>(getQueue());

 }
}

CHAPTER 7. ENDPOINT INTERFACE

69

1

2

3

4

5

6

7

8

The SedaEndpoint class follows the pattern for implementing an event-driven endpoint by
extending the DefaultEndpoint class. The SedaEndpoint class also implements the
BrowsableEndpoint interface, which provides access to the list of exchange objects in the
queue.

Following the usual pattern for an event-driven consumer, SedaEndpoint defines a constructor
that takes an endpoint argument, endpointUri, and a component reference argument,
component.

Another constructor is provided, which delegates queue creation to the parent component instance.

The createProducer() factory method creates an instance of CollectionProducer, which is
a producer implementation that adds events to the queue.

The createConsumer() factory method creates an instance of SedaConsumer, which is
responsible for pulling events off the queue and processing them.

The getQueue() method returns a reference to the queue.

The isSingleton() method returns true, indicating that a single endpoint instance should be
created for each unique URI string.

The getExchanges() method implements the corresponding abstract method from
BrowsableEndpoint.

Red Hat JBoss Fuse 6.0 Programming EIP Components

70

CHAPTER 8. CONSUMER INTERFACE

Abstract

This chapter describes how to implement the Consumer interface, which is an essential step in the
implementation of a Apache Camel component.

8.1. THE CONSUMER INTERFACE

Overview

An instance of org.apache.camel.Consumer type represents a source endpoint in a route. There are
several different ways of implementing a consumer (see Section 5.1.3, “Consumer Patterns and
Threading”), and this degree of flexibility is reflected in the inheritance hierarchy (see Figure 8.1,
“Consumer Inheritance Hierarchy”), which includes several different base classes for implementing a
consumer.

Figure 8.1. Consumer Inheritance Hierarchy

Consumer parameter injection

For consumers that follow the scheduled poll pattern (see the section called “Scheduled poll pattern”),
Apache Camel provides support for injecting parameters into consumer instances. For example,
consider the following endpoint URI for a component identified by the custom prefix:

custom:destination?consumer.myConsumerParam

CHAPTER 8. CONSUMER INTERFACE

71

Apache Camel provides support for automatically injecting query options of the form consumer.*. For
the consumer.myConsumerParam parameter, you need to define corresponding setter and getter
methods on the Consumer implementation class as follows:

Where the getter and setter methods follow the usual Java bean conventions (including capitalizing the
first letter of the property name).

In addition to defining the bean methods in your Consumer implementation, you must also remember to
call the configureConsumer() method in the implementation of Endpoint.createConsumer().
See the section called “Scheduled poll endpoint implementation”). Example 8.1, “FileEndpoint
createConsumer() Implementation” shows an example of a createConsumer() method
implementation, taken from the FileEndpoint class in the file component:

Example 8.1. FileEndpoint createConsumer() Implementation

At run time, consumer parameter injection works as follows:

1. When the endpoint is created, the default implementation of
DefaultComponent.createEndpoint(String uri) parses the URI to extract the
consumer parameters, and stores them in the endpoint instance by calling
ScheduledPollEndpoint.configureProperties().

2. When createConsumer() is called, the method implementation calls
configureConsumer() to inject the consumer parameters (see Example 8.1, “FileEndpoint
createConsumer() Implementation”).

3. The configureConsumer() method uses Java reflection to call the setter methods whose
names match the relevant options after the consumer. prefix has been stripped off.

Scheduled poll parameters

A consumer that follows the scheduled poll pattern automatically supports the consumer parameters
shown in Table 8.1, “Scheduled Poll Parameters” (which can appear as query options in the endpoint
URI).

public class CustomConsumer extends ScheduledPollConsumer {
 ...
 String getMyConsumerParam() { ... }
 void setMyConsumerParam(String s) { ... }
 ...
}

...
public class FileEndpoint extends ScheduledPollEndpoint {
 ...
 public Consumer createConsumer(Processor processor) throws
Exception {
 Consumer result = new FileConsumer(this, processor);
 configureConsumer(result);
 return result;
 }
 ...
 }

Red Hat JBoss Fuse 6.0 Programming EIP Components

72

Table 8.1. Scheduled Poll Parameters

Name Default Description

initialDelay 1000 Delay, in milliseconds, before the first poll.

delay 500 Depends on the value of the useFixedDelay flag (time unit is
milliseconds).

useFixedDelay false If false, the delay parameter is interpreted as the polling
period. Polls will occur at initialDelay,
initialDelay+delay, initialDelay+2*delay, and so
on.

If true, the delay parameter is interpreted as the time elapsed
between the previous execution and the next execution. Polls will
occur at initialDelay, initialDelay+
[ProcessingTime]+delay, and so on. Where
ProcessingTime is the time taken to process an exchange object in
the current thread.

Converting between event-driven and polling consumers

Apache Camel provides two special consumer implementations which can be used to convert back and
forth between an event-driven consumer and a polling consumer. The following conversion classes are
provided:

org.apache.camel.impl.EventDrivenPollingConsumer—Converts an event-driven
consumer into a polling consumer instance.

org.apache.camel.impl.DefaultScheduledPollConsumer—Converts a polling
consumer into an event-driven consumer instance.

In practice, these classes are used to simplify the task of implementing an Endpoint type. The
Endpoint interface defines the following two methods for creating a consumer instance:

createConsumer() returns an event-driven consumer and createPollingConsumer() returns a
polling consumer. You would only implement one these methods. For example, if you are following the
event-driven pattern for your consumer, you would implement the createConsumer() method provide
a method implementation for createPollingConsumer() that simply raises an exception. With the
help of the conversion classes, however, Apache Camel is able to provide a more useful default
implementation.

For example, if you want to implement your consumer according to the event-driven pattern, you
implement the endpoint by extending DefaultEndpoint and implementing the createConsumer()
method. The implementation of createPollingConsumer() is inherited from DefaultEndpoint,

package org.apache.camel;

public interface Endpoint {
 ...
 Consumer createConsumer(Processor processor) throws Exception;
 PollingConsumer createPollingConsumer() throws Exception;
}

CHAPTER 8. CONSUMER INTERFACE

73

where it is defined as follows:

The EventDrivenPollingConsumer constructor takes a reference to the event-driven consumer,
this, effectively wrapping it and converting it into a polling consumer. To implement the conversion, the
EventDrivenPollingConsumer instance buffers incoming events and makes them available on
demand through the receive(), the receive(long timeout), and the receiveNoWait()
methods.

Analogously, if you are implementing your consumer according to the polling pattern, you implement the
endpoint by extending DefaultPollingEndpoint and implementing the
createPollingConsumer() method. In this case, the implementation of the createConsumer()
method is inherited from DefaultPollingEndpoint, and the default implementation returns a
DefaultScheduledPollConsumer instance (which converts the polling consumer into an event-
driven consumer).

ShutdownPrepared interface

Consumer classes can optionally implement the org.apache.camel.spi.ShutdownPrepared
interface, which enables your custom consumer endpoint to receive shutdown notifications.

Example 8.2, “ShutdownPrepared Interface” shows the definition of the ShutdownPrepared interface.

Example 8.2. ShutdownPrepared Interface

The ShutdownPrepared interface defines the following methods:

prepareShutdown

Receives notifications to shut down the consumer endpoint in one or two phases, as follows:

1. Graceful shutdown—where the forced argument has the value false. Attempt to clean up
resources gracefully. For example, by stopping threads gracefully.

2. Forced shutdown—where the forced argument has the value true. This means that the
shutdown has timed out, so you must clean up resources more aggressively. This is the last
chance to clean up resources before the process exits.

ShutdownAware interface

public PollingConsumer<E> createPollingConsumer() throws Exception {
 return new EventDrivenPollingConsumer<E>(this);
}

package org.apache.camel.spi;

public interface ShutdownPrepared {

 void prepareShutdown(boolean forced);

}

Red Hat JBoss Fuse 6.0 Programming EIP Components

74

Consumer classes can optionally implement the org.apache.camel.spi.ShutdownAware interface,
which interacts with the graceful shutdown mechanism, enabling a consumer to ask for extra time to shut
down. This is typically needed for components such as SEDA, which can have pending exchanges
stored in an internal queue. Normally, you would want to process all of the exchanges in the queue
before shutting down the SEDA consumer.

Example 8.3, “ShutdownAware Interface” shows the definition of the ShutdownAware interface.

Example 8.3. ShutdownAware Interface

The ShutdownAware interface defines the following methods:

deferShutdown

Return true from this method, if you want to delay shutdown of the consumer. The
shutdownRunningTask argument is an enum which can take either of the following values:

ShutdownRunningTask.CompleteCurrentTaskOnly—finish processing the exchanges
that are currently being processed by the consumer's thread pool, but do not attempt to
process any more exchanges than that.

ShutdownRunningTask.CompleteAllTasks—process all of the pending exchanges. For
example, in the case of the SEDA component, the consumer would process all of the
exchanges from its incoming queue.

getPendingExchangesSize

Indicates how many exchanges remain to be processed by the consumer. A zero value indicates that
processing is finished and the consumer can be shut down.

For an example of how to define the ShutdownAware methods, see Example 8.7, “Custom Threading
Implementation”.

8.2. IMPLEMENTING THE CONSUMER INTERFACE

Alternative ways of implementing a consumer

You can implement a consumer in one of the following ways:

Event-driven consumer implementation

// Java
package org.apache.camel.spi;

import org.apache.camel.ShutdownRunningTask;

public interface ShutdownAware extends ShutdownPrepared {

 boolean deferShutdown(ShutdownRunningTask shutdownRunningTask);

 int getPendingExchangesSize();
}

CHAPTER 8. CONSUMER INTERFACE

75

1

Scheduled poll consumer implementation

Polling consumer implementation

Custom threading implementation

Event-driven consumer implementation

In an event-driven consumer, processing is driven explicitly by external events. The events are received
through an event-listener interface, where the listener interface is specific to the particular event source.

Example 8.4, “JMXConsumer Implementation” shows the implementation of the JMXConsumer class,
which is taken from the Apache Camel JMX component implementation. The JMXConsumer class is an
example of an event-driven consumer, which is implemented by inheriting from the
org.apache.camel.impl.DefaultConsumer class. In the case of the JMXConsumer example,
events are represented by calls on the NotificationListener.handleNotification() method,
which is a standard way of receiving JMX events. In order to receive these JMX events, it is necessary to
implement the NotificationListener interface and override the handleNotification() method,
as shown in Example 8.4, “JMXConsumer Implementation”.

Example 8.4. JMXConsumer Implementation

The JMXConsumer pattern follows the usual pattern for event-driven consumers by extending the
DefaultConsumer class. Additionally, because this consumer is designed to receive events from
JMX (which are represented by JMX notifications), it is necessary to implement the
NotificationListener interface.

1

2

3

4

5

package org.apache.camel.component.jmx;

import javax.management.Notification;
import javax.management.NotificationListener;
import org.apache.camel.Processor;
import org.apache.camel.impl.DefaultConsumer;

public class JMXConsumer extends DefaultConsumer implements
NotificationListener {

 JMXEndpoint jmxEndpoint;

 public JMXConsumer(JMXEndpoint endpoint, Processor processor) {
 super(endpoint, processor);

 this.jmxEndpoint = endpoint;
 }

 public void handleNotification(Notification notification, Object
handback) {
 try {

getProcessor().process(jmxEndpoint.createExchange(notification));
 } catch (Throwable e) {
 handleException(e);
 }

 }
}

Red Hat JBoss Fuse 6.0 Programming EIP Components

76

2

3

4

5

You must implement at least one constructor that takes a reference to the parent endpoint,
endpoint, and a reference to the next processor in the chain, processor, as arguments.

The handleNotification() method (which is defined in NotificationListener) is
automatically invoked by JMX whenever a JMX notification arrives. The body of this method should
contain the code that performs the consumer's event processing. Because the
handleNotification() call originates from the JMX layer, the consumer's threading model is
implicitly controlled by the JMX layer, not by the JMXConsumer class.

NOTE

The handleNotification() method is specific to the JMX example. When
implementing your own event-driven consumer, you must identify an analogous
event listener method to implement in your custom consumer.

This line of code combines two steps. First, the JMX notification object is converted into an
exchange object, which is the generic representation of an event in Apache Camel. Then the newly
created exchange object is passed to the next processor in the route (invoked synchronously).

The handleException() method is implemented by the DefaultConsumer base class. By
default, it handles exceptions using the
org.apache.camel.impl.LoggingExceptionHandler class.

Scheduled poll consumer implementation

In a scheduled poll consumer, polling events are automatically generated by a timer class,
java.util.concurrent.ScheduledExecutorService. To receive the generated polling events,
you must implement the ScheduledPollConsumer.poll() method (see Section 5.1.3, “Consumer
Patterns and Threading”).

Example 8.5, “ScheduledPollConsumer Implementation” shows how to implement a consumer that
follows the scheduled poll pattern, which is implemented by extending the ScheduledPollConsumer
class.

Example 8.5. ScheduledPollConsumer Implementation

1

2

import java.util.concurrent.ScheduledExecutorService;

import org.apache.camel.Consumer;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Message;
import org.apache.camel.PollingConsumer;
import org.apache.camel.Processor;

import org.apache.camel.impl.ScheduledPollConsumer;

public class CustomConsumer extends ScheduledPollConsumer {
 private final CustomEndpoint endpoint;

 public CustomConsumer(CustomEndpoint endpoint, Processor processor)
{
 super(endpoint, processor);

CHAPTER 8. CONSUMER INTERFACE

77

1

2

3

4

5

6

Implement a scheduled poll consumer class, CustomConsumer, by extending the
org.apache.camel.impl.ScheduledPollConsumer class.

You must implement at least one constructor that takes a reference to the parent endpoint,
endpoint, and a reference to the next processor in the chain, processor, as arguments.

Override the poll() method to receive the scheduled polling events. This is where you should put
the code that retrieves and processes incoming events (represented by exchange objects).

In this example, the event is processed synchronously. If you want to process events
asynchronously, you should use a reference to an asynchronous processor instead, by calling
getAsyncProcessor(). For details of how to process events asynchronously, see Section 5.1.4,
“Asynchronous Processing”.

(Optional) If you want some lines of code to execute as the consumer is starting up, override the
doStart() method as shown.

(Optional) If you want some lines of code to execute as the consumer is stopping, override the
doStop() method as shown.

Polling consumer implementation

Example 8.6, “PollingConsumerSupport Implementation” outlines how to implement a consumer that
follows the polling pattern, which is implemented by extending the PollingConsumerSupport class.

3

4

5

6

 this.endpoint = endpoint;
 }

 protected void poll() throws Exception {
 Exchange exchange = /* Receive exchange object ... */;

 // Example of a synchronous processor.
 getProcessor().process(exchange);
 }

 @Override
 protected void doStart() throws Exception {
 // Pre-Start:

 // Place code here to execute just before start of processing.
 super.doStart();
 // Post-Start:
 // Place code here to execute just after start of processing.
 }

 @Override
 protected void doStop() throws Exception {
 // Pre-Stop:

 // Place code here to execute just before processing stops.
 super.doStop();
 // Post-Stop:
 // Place code here to execute just after processing stops.
 }
}

Red Hat JBoss Fuse 6.0 Programming EIP Components

78

1

2

3

4

5

6

Example 8.6. PollingConsumerSupport Implementation

Implement your polling consumer class, CustomConsumer, by extending the
org.apache.camel.impl.PollingConsumerSupport class.

You must implement at least one constructor that takes a reference to the parent endpoint,
endpoint, as an argument. A polling consumer does not need a reference to a processor instance.

The receiveNoWait() method should implement a non-blocking algorithm for retrieving an event
(exchange object). If no event is available, it should return null.

The receive() method should implement a blocking algorithm for retrieving an event. This
method can block indefinitely, if events remain unavailable.

The receive(long timeout) method implements an algorithm that can block for as long as the
specified timeout (typically specified in units of milliseconds).

If you want to insert code that executes while a consumer is starting up or shutting down, implement
the doStart() method and the doStop() method, respectively.

1

2

3

4

5

6

import org.apache.camel.Exchange;
import org.apache.camel.RuntimeCamelException;
import org.apache.camel.impl.PollingConsumerSupport;

public class CustomConsumer extends PollingConsumerSupport {
 private final CustomEndpoint endpoint;

 public CustomConsumer(CustomEndpoint endpoint) {
 super(endpoint);

 this.endpoint = endpoint;
 }

 public Exchange receiveNoWait() {
 Exchange exchange = /* Obtain an exchange object. */;

 // Further processing ...
 return exchange;
 }

 public Exchange receive() {
 // Blocking poll ...

 }

 public Exchange receive(long timeout) {
 // Poll with timeout ...

 }

 protected void doStart() throws Exception {
 // Code to execute whilst starting up.

 }

 protected void doStop() throws Exception {
 // Code to execute whilst shutting down.
 }
}

CHAPTER 8. CONSUMER INTERFACE

79

Custom threading implementation

If the standard consumer patterns are not suitable for your consumer implementation, you can
implement the Consumer interface directly and write the threading code yourself. When writing the
threading code, however, it is important that you comply with the standard Apache Camel threading
model, as described in section "Threading Model" in "Implementing Enterprise Integration Patterns".

For example, the SEDA component from camel-core implements its own consumer threading, which is
consistent with the Apache Camel threading model. Example 8.7, “Custom Threading Implementation”
shows an outline of how the SedaConsumer class implements its threading.

Example 8.7. Custom Threading Implementation

1

2

package org.apache.camel.component.seda;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.TimeUnit;

import org.apache.camel.Consumer;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.ShutdownRunningTask;
import org.apache.camel.impl.LoggingExceptionHandler;
import org.apache.camel.impl.ServiceSupport;
import org.apache.camel.util.ServiceHelper;
...
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

/**
 * A Consumer for the SEDA component.
 *
 * @version $Revision: 922485 $
 */
public class SedaConsumer extends ServiceSupport implements Consumer,

Runnable, ShutdownAware {
 private static final transient Log LOG =

LogFactory.getLog(SedaConsumer.class);

 private SedaEndpoint endpoint;
 private Processor processor;
 private ExecutorService executor;
 ...
 public SedaConsumer(SedaEndpoint endpoint, Processor processor) {
 this.endpoint = endpoint;
 this.processor = processor;
 }
 ...

 public void run() {
 BlockingQueue<Exchange> queue = endpoint.getQueue();

 // Poll the queue and process exchanges

Red Hat JBoss Fuse 6.0 Programming EIP Components

80

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Implementing_Enterprise_Integration_Patterns/BasicPrinciples-Thread.html

1

2

The SedaConsumer class is implemented by extending the
org.apache.camel.impl.ServiceSupport class and implementing the Consumer,
Runnable, and ShutdownAware interfaces.

3

4
5

6

7

 ...
 }

 ...
 protected void doStart() throws Exception {
 int poolSize = endpoint.getConcurrentConsumers();

 executor =
endpoint.getCamelContext().getExecutorServiceStrategy()
 .newFixedThreadPool(this, endpoint.getEndpointUri(),

poolSize);
 for (int i = 0; i < poolSize; i++) {
 executor.execute(this);

 }
 endpoint.onStarted(this);
 }

 protected void doStop() throws Exception {
 endpoint.onStopped(this);

 // must shutdown executor on stop to avoid overhead of having
them running

endpoint.getCamelContext().getExecutorServiceStrategy().shutdownNow(exec

utor);
 executor = null;

 if (multicast != null) {
 ServiceHelper.stopServices(multicast);
 }
 }
 ...
 //----------
 // Implementation of ShutdownAware interface

 public boolean deferShutdown(ShutdownRunningTask
shutdownRunningTask) {
 // deny stopping on shutdown as we want seda consumers to run
in case some other queues
 // depend on this consumer to run, so it can complete its
exchanges
 return true;
 }

 public int getPendingExchangesSize() {
 // number of pending messages on the queue
 return endpoint.getQueue().size();
 }

}

CHAPTER 8. CONSUMER INTERFACE

81

3

4

5

6

7

Implement the Runnable.run() method to define what the consumer does while it is running in a
thread. In this case, the consumer runs in a loop, polling the queue for new exchanges and then

The doStart() method is inherited from ServiceSupport. You override this method in order to
define what the consumer does when it starts up.

Instead of creating threads directly, you should create a thread pool using the
ExecutorServiceStrategy object that is registered with the CamelContext. This is important,
because it enables Apache Camel to implement centralized management of threads and support
such features as graceful shutdown.

For details, see section "Threading Model" in "Implementing Enterprise Integration Patterns".

Kick off the threads by calling the ExecutorService.execute() method poolSize times.

The doStop() method is inherited from ServiceSupport. You override this method in order to
define what the consumer does when it shuts down.

Shut down the thread pool, which is represented by the executor instance.

Red Hat JBoss Fuse 6.0 Programming EIP Components

82

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Implementing_Enterprise_Integration_Patterns/BasicPrinciples-Thread.html

CHAPTER 9. PRODUCER INTERFACE

Abstract

This chapter describes how to implement the Producer interface, which is an essential step in the
implementation of a Apache Camel component.

9.1. THE PRODUCER INTERFACE

Overview

An instance of org.apache.camel.Producer type represents a target endpoint in a route. The role of
the producer is to send requests (In messages) to a specific physical endpoint and to receive the
corresponding response (Out or Fault message). A Producer object is essentially a special kind of
Processor that appears at the end of a processor chain (equivalent to a route). Figure 9.1, “Producer
Inheritance Hierarchy” shows the inheritance hierarchy for producers.

Figure 9.1. Producer Inheritance Hierarchy

The Producer interface

Example 9.1, “Producer Interface” shows the definition of the org.apache.camel.Producer interface.

Example 9.1. Producer Interface

package org.apache.camel;

public interface Producer extends Processor, Service, IsSingleton {

 Endpoint<E> getEndpoint();

 Exchange createExchange();

 Exchange createExchange(ExchangePattern pattern);

 Exchange createExchange(E exchange);
}

CHAPTER 9. PRODUCER INTERFACE

83

Producer methods

The Producer interface defines the following methods:

process() (inherited from Processor)—The most important method. A producer is essentially a
special type of processor that sends a request to an endpoint, instead of forwarding the
exchange object to another processor. By overriding the process() method, you define how
the producer sends and receives messages to and from the relevant endpoint.

getEndpoint()—Returns a reference to the parent endpoint instance.

createExchange()—These overloaded methods are analogous to the corresponding
methods defined in the Endpoint interface. Normally, these methods delegate to the
corresponding methods defined on the parent Endpoint instance (this is what the
DefaultEndpoint class does by default). Occasionally, you might need to override these
methods.

Asynchronous processing

Processing an exchange object in a producer—which usually involves sending a message to a remote
destination and waiting for a reply—can potentially block for a significant length of time. If you want to
avoid blocking the current thread, you can opt to implement the producer as an asynchronous processor.
The asynchronous processing pattern decouples the preceding processor from the producer, so that the
process() method returns without delay. See Section 5.1.4, “Asynchronous Processing”.

When implementing a producer, you can support the asynchronous processing model by implementing
the org.apache.camel.AsyncProcessor interface. On its own, this is not enough to ensure that the
asynchronous processing model will be used: it is also necessary for the preceding processor in the
chain to call the asynchronous version of the process() method. The definition of the
AsyncProcessor interface is shown in Example 9.2, “AsyncProcessor Interface”.

Example 9.2. AsyncProcessor Interface

The asynchronous version of the process() method takes an extra argument, callback, of
org.apache.camel.AsyncCallback type. The corresponding AsyncCallback interface is defined
as shown in Example 9.3, “AsyncCallback Interface”.

Example 9.3. AsyncCallback Interface

package org.apache.camel;

public interface AsyncProcessor extends Processor {
 boolean process(Exchange exchange, AsyncCallback callback);
}

package org.apache.camel;

public interface AsyncCallback {
 void done(boolean doneSynchronously);
}

Red Hat JBoss Fuse 6.0 Programming EIP Components

84

1

The caller of AsyncProcessor.process() must provide an implementation of AsyncCallback to
receive the notification that processing has finished. The AsyncCallback.done() method takes a
boolean argument that indicates whether the processing was performed synchronously or not. Normally,
the flag would be false, to indicate asynchronous processing. In some cases, however, it can make
sense for the producer not to process asynchronously (in spite of being asked to do so). For example, if
the producer knows that the processing of the exchange will complete rapidly, it could optimise the
processing by doing it synchronously. In this case, the doneSynchronously flag should be set to
true.

ExchangeHelper class

When implementing a producer, you might find it helpful to call some of the methods in the
org.apache.camel.util.ExchangeHelper utility class. For full details of the ExchangeHelper
class, see Section 2.4, “The ExchangeHelper Class”.

9.2. IMPLEMENTING THE PRODUCER INTERFACE

Alternative ways of implementing a producer

You can implement a producer in one of the following ways:

How to implement a synchronous producer.

How to implement an asynchronous producer.

How to implement a synchronous producer

Example 9.4, “DefaultProducer Implementation” outlines how to implement a synchronous producer. In
this case, call to Producer.process() blocks until a reply is received.

Example 9.4. DefaultProducer Implementation

Implement a custom synchronous producer class, CustomProducer, by extending the
org.apache.camel.impl.DefaultProducer class.

1

2

3

import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultProducer;

public class CustomProducer extends DefaultProducer {

 public CustomProducer(Endpoint endpoint) {
 super(endpoint);

 // Perform other initialization tasks...
 }

 public void process(Exchange exchange) throws Exception {
 // Process exchange synchronously.

 // ...
 }
}

CHAPTER 9. PRODUCER INTERFACE

85

2

3

Implement a constructor that takes a reference to the parent endpoint.

The process() method implementation represents the core of the producer code. The
implementation of the process() method is entirely dependent on the type of component that you
are implementing. In outline, the process() method is normally implemented as follows:

If the exchange contains an In message, and if this is consistent with the specified
exchange pattern, then send the In message to the designated endpoint.

If the exchange pattern anticipates the receipt of an Out message, then wait until the Out
message has been received. This typically causes the process() method to block for a
significant length of time.

When a reply is received, call exchange.setOut() to attach the reply to the exchange
object. If the reply contains a fault message, set the fault flag on the Out message using
Message.setFault(true).

How to implement an asynchronous producer

Example 9.5, “CollectionProducer Implementation” outlines how to implement an asynchronous
producer. In this case, you must implement both a synchronous process() method and an
asynchronous process() method (which takes an additional AsyncCallback argument).

Example 9.5. CollectionProducer Implementation

1

2

3

4

5

import org.apache.camel.AsyncCallback;
import org.apache.camel.AsyncProcessor;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultProducer;

public class CustomProducer extends DefaultProducer implements
AsyncProcessor {

 public CustomProducer(Endpoint endpoint) {
 super(endpoint);

 // ...
 }

 public void process(Exchange exchange) throws Exception {
 // Process exchange synchronously.

 // ...
 }

 public boolean process(Exchange exchange, AsyncCallback callback) {
 // Process exchange asynchronously.
 CustomProducerTask task = new CustomProducerTask(exchange,

callback);
 // Process 'task' in a separate thread...
 // ...

 return false;
 }

}

Red Hat JBoss Fuse 6.0 Programming EIP Components

86

1

2

3

4

5

6

7

Implement a custom asynchronous producer class, CustomProducer, by extending the
org.apache.camel.impl.DefaultProducer class, and implementing the AsyncProcessor
interface.

Implement a constructor that takes a reference to the parent endpoint.

Implement the synchronous process() method.

Implement the asynchronous process() method. You can implement the asynchronous method in
several ways. The approach shown here is to create a java.lang.Runnable instance, task,
that represents the code that runs in a sub-thread. You then use the Java threading API to run the
task in a sub-thread (for example, by creating a new thread or by allocating the task to an existing
thread pool).

Normally, you return false from the asynchronous process() method, to indicate that the
exchange was processed asynchronously.

The CustomProducerTask class encapsulates the processing code that runs in a sub-thread. This
class must store a copy of the Exchange object, exchange, and the AsyncCallback object,
callback, as private member variables.

The run() method contains the code that sends the In message to the producer endpoint and
waits to receive the reply, if any. After receiving the reply (Out message or Fault message) and
inserting it into the exchange object, you must call callback.done() to notify the caller that
processing is complete.

6

7

public class CustomProducerTask implements Runnable {
 private Exchange exchange;

 private AsyncCallback callback;

 public CustomProducerTask(Exchange exchange, AsyncCallback callback)
{
 this.exchange = exchange;
 this.callback = callback;
 }

 public void run() {
 // Process exchange.

 // ...
 callback.done(false);
 }
}

CHAPTER 9. PRODUCER INTERFACE

87

CHAPTER 10. EXCHANGE INTERFACE

Abstract

This chapter describes the Exchange interface. Since the refactoring of the camel-core module
performed in Apache Camel 2.0, there is no longer any necessity to define custom exchange types. The
DefaultExchange implementation can now be used in all cases.

10.1. THE EXCHANGE INTERFACE

Overview

An instance of org.apache.camel.Exchange type encapsulates the current message passing
through a route, with additional metadata encoded as exchange properties.

Figure 10.1, “Exchange Inheritance Hierarchy” shows the inheritance hierarchy for the exchange type.
The default implementation, DefaultExchange, is always used.

Figure 10.1. Exchange Inheritance Hierarchy

The Exchange interface

Example 10.1, “Exchange Interface” shows the definition of the org.apache.camel.Exchange
interface.

Example 10.1. Exchange Interface

package org.apache.camel;

import java.util.Map;

import org.apache.camel.spi.Synchronization;
import org.apache.camel.spi.UnitOfWork;

public interface Exchange {
 // Exchange property names (string constants)
 // (Not shown here)
 ...

 ExchangePattern getPattern();

Red Hat JBoss Fuse 6.0 Programming EIP Components

88

Exchange methods

The Exchange interface defines the following methods:

 void setPattern(ExchangePattern pattern);

 Object getProperty(String name);
 Object getProperty(String name, Object defaultValue);
 <T> T getProperty(String name, Class<T> type);
 <T> T getProperty(String name, Object defaultValue, Class<T>
type);
 void setProperty(String name, Object value);
 Object removeProperty(String name);
 Map<String, Object> getProperties();
 boolean hasProperties();

 Message getIn();
 <T> T getIn(Class<T> type);
 void setIn(Message in);

 Message getOut();
 <T> T getOut(Class<T> type);
 void setOut(Message out);
 boolean hasOut();

 Throwable getException();
 <T> T getException(Class<T> type);
 void setException(Throwable e);

 boolean isFailed();

 boolean isTransacted();

 boolean isRollbackOnly();

 CamelContext getContext();

 Exchange copy();

 Endpoint getFromEndpoint();
 void setFromEndpoint(Endpoint fromEndpoint);

 String getFromRouteId();
 void setFromRouteId(String fromRouteId);

 UnitOfWork getUnitOfWork();
 void setUnitOfWork(UnitOfWork unitOfWork);

 String getExchangeId();
 void setExchangeId(String id);

 void addOnCompletion(Synchronization onCompletion);
 void handoverCompletions(Exchange target);
}

CHAPTER 10. EXCHANGE INTERFACE

89

getPattern(), setPattern()—The exchange pattern can be one of the values enumerated
in org.apache.camel.ExchangePattern. The following exchange pattern values are
supported:

InOnly

RobustInOnly

InOut

InOptionalOut

OutOnly

RobustOutOnly

OutIn

OutOptionalIn

setProperty(), getProperty(), getProperties(), removeProperty(),
hasProperties()—Use the property setter and getter methods to associate named properties
with the exchange instance. The properties consist of miscellaneous metadata that you might
need for your component implementation.

setIn(), getIn()—Setter and getter methods for the In message.

The getIn() implementation provided by the DefaultExchange class implements lazy
creation semantics: if the In message is null when getIn() is called, the DefaultExchange
class creates a default In message.

setOut(), getOut(), hasOut()—Setter and getter methods for the Out message.

The getOut() method implicitly supports lazy creation of an Out message. That is, if the
current Out message is null, a new message instance is automatically created.

setException(), getException()—Getter and setter methods for an exception object (of
Throwable type).

isFailed()—Returns true, if the exchange failed either due to an exception or due to a fault.

isTransacted()—Returns true, if the exchange is transacted.

isRollback()—Returns true, if the exchange is marked for rollback.

getContext()—Returns a reference to the associated CamelContext instance.

copy()—Creates a new, identical (apart from the exchange ID) copy of the current custom
exchange object. The body and headers of the In message, the Out message (if any), and the
Fault message (if any) are also copied by this operation.

setFromEndpoint(), getFromEndpoint()—Getter and setter methods for the consumer
endpoint that orginated this message (which is typically the endpoint appearing in the from()
DSL command at the start of a route).

Red Hat JBoss Fuse 6.0 Programming EIP Components

90

setFromRouteId(), getFromRouteId()—Getters and setters for the route ID that
originated this exchange. The getFromRouteId() method should only be called internally.

setUnitOfWork(), getUnitOfWork()—Getter and setter methods for the
org.apache.camel.spi.UnitOfWork bean property. This property is only required for
exchanges that can participate in a transaction.

setExchangeId(), getExchangeId()—Getter and setter methods for the exchange ID.
Whether or not a custom component uses and exchange ID is an implementation detail.

addOnCompletion()—Adds an org.apache.camel.spi.Synchronization callback
object, which gets called when processing of the exchange has completed.

handoverCompletions()—Hands over all of the OnCompletion callback objects to the
specified exchange object.

CHAPTER 10. EXCHANGE INTERFACE

91

CHAPTER 11. MESSAGE INTERFACE

Abstract

This chapter describes how to implement the Message interface, which is an optional step in the
implementation of a Apache Camel component.

11.1. THE MESSAGE INTERFACE

Overview

An instance of org.apache.camel.Message type can represent any kind of message (In or Out).
Figure 11.1, “Message Inheritance Hierarchy” shows the inheritance hierarchy for the message type.
You do not always need to implement a custom message type for a component. In many cases, the
default implementation, DefaultMessage, is adequate.

Figure 11.1. Message Inheritance Hierarchy

The Message interface

Example 11.1, “Message Interface” shows the definition of the org.apache.camel.Message interface.

Example 11.1. Message Interface

package org.apache.camel;

import java.util.Map;
import java.util.Set;

import javax.activation.DataHandler;

public interface Message {

 String getMessageId();
 void setMessageId(String messageId);

 Exchange getExchange();

 boolean isFault();
 void setFault(boolean fault);

Red Hat JBoss Fuse 6.0 Programming EIP Components

92

Message methods

The Message interface defines the following methods:

setMessageId(), getMessageId()—Getter and setter methods for the message ID.
Whether or not you need to use a message ID in your custom component is an implementation
detail.

getExchange()—Returns a reference to the parent exchange object.

isFault(), setFault()—Getter and setter methods for the fault flag, which indicates
whether or not this message is a fault message.

getHeader(), getHeaders(), setHeader(), setHeaders(), removeHeader(),
hasHeaders()—Getter and setter methods for the message headers. In general, these
message headers can be used either to store actual header data, or to store miscellaneous
metadata.

 Object getHeader(String name);
 Object getHeader(String name, Object defaultValue);
 <T> T getHeader(String name, Class<T> type);
 <T> T getHeader(String name, Object defaultValue, Class<T> type);
 Map<String, Object> getHeaders();
 void setHeader(String name, Object value);
 void setHeaders(Map<String, Object> headers);
 Object removeHeader(String name);
 boolean removeHeaders(String pattern);
 boolean hasHeaders();

 Object getBody();
 Object getMandatoryBody() throws InvalidPayloadException;
 <T> T getBody(Class<T> type);
 <T> T getMandatoryBody(Class<T> type) throws
InvalidPayloadException;
 void setBody(Object body);
 <T> void setBody(Object body, Class<T> type);

 DataHandler getAttachment(String id);
 Map<String, DataHandler> getAttachments();
 Set<String> getAttachmentNames();
 void removeAttachment(String id);
 void addAttachment(String id, DataHandler content);
 void setAttachments(Map<String, DataHandler> attachments);
 boolean hasAttachments();

 Message copy();

 void copyFrom(Message message);

 String createExchangeId();
}

CHAPTER 11. MESSAGE INTERFACE

93

getBody(), getMandatoryBody(), setBody()—Getter and setter methods for the
message body. The getMandatoryBody() accessor guarantees that the returned body is non-
null, otherwise the InvalidPayloadException exception is thrown.

getAttachment(), getAttachments(), getAttachmentNames(),
removeAttachment(), addAttachment(), setAttachments(), hasAttachments()—
Methods to get, set, add, and remove attachments.

copy()—Creates a new, identical (including the message ID) copy of the current custom
message object.

copyFrom()—Copies the complete contents (including the message ID) of the specified
generic message object, message, into the current message instance. Because this method
must be able to copy from any message type, it copies the generic message properties, but not
the custom properties.

createExchangeId()—Returns the unique ID for this exchange, if the message
implementation is capable of providing an ID; otherwise, return null.

11.2. IMPLEMENTING THE MESSAGE INTERFACE

How to implement a custom message

Example 11.2, “Custom Message Implementation” outlines how to implement a message by extending
the DefaultMessage class.

Example 11.2. Custom Message Implementation

1

2

3

4

5

6

import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultMessage;

public class CustomMessage extends DefaultMessage {

 public CustomMessage() {
 // Create message with default properties...

 }

 @Override
 public String toString() {
 // Return a stringified message...

 }

 @Override
 public CustomMessage newInstance() {
 return new CustomMessage(...);

 }

 @Override
 protected Object createBody() {
 // Return message body (lazy creation).

 }

 @Override
 protected void populateInitialHeaders(Map<String, Object> map) {

Red Hat JBoss Fuse 6.0 Programming EIP Components

94

1

2

3

4

5

6

7

Implements a custom message class, CustomMessage, by extending the
org.apache.camel.impl.DefaultMessage class.

Typically, you need a default constructor that creates a message with default properties.

Override the toString() method to customize message stringification.

The newInstance() method is called from inside the MessageSupport.copy() method.
Customization of the newInstance() method should focus on copying all of the custom properties
of the current message instance into the new message instance. The MessageSupport.copy()
method copies the generic message properties by calling copyFrom().

The createBody() method works in conjunction with the MessageSupport.getBody()
method to implement lazy access to the message body. By default, the message body is null. It is
only when the application code tries to access the body (by calling getBody()), that the body
should be created. The MessageSupport.getBody() automatically calls createBody(), when
the message body is accessed for the first time.

The populateInitialHeaders() method works in conjunction with the header getter and setter
methods to implement lazy access to the message headers. This method parses the message to
extract any message headers and inserts them into the hash map, map. The
populateInitialHeaders() method is automatically called when a user attempts to access a
header (or headers) for the first time (by calling getHeader(), getHeaders(), setHeader(), or
setHeaders()).

The populateInitialAttachments() method works in conjunction with the attachment getter
and setter methods to implement lazy access to the attachments. This method extracts the
message attachments and inserts them into the hash map, map. The
populateInitialAttachments() method is automatically called when a user attempts to
access an attachment (or attachments) for the first time by calling getAttachment(),
getAttachments(), getAttachmentNames(), or addAttachment().

INDEX
Symbols

@Converter, Implement an annotated converter class

A

AsyncCallback, Asynchronous processing

7

// Initialize headers from underlying message (lazy creation).
 }

 @Override
 protected void populateInitialAttachments(Map<String, DataHandler>

map) {
 // Initialize attachments from underlying message (lazy

creation).
 }
}

INDEX

95

asynchronous producer

implementing, How to implement an asynchronous producer

AsyncProcessor, Asynchronous processing

auto-discovery

configuration, Configuring auto-discovery

C

Component

createEndpoint(), URI parsing

definition, The Component interface

methods, Component methods

component prefix, Component

components, Component

bean properties, Define bean properties on your component class

configuring, Installing and configuring the component

implementation steps, Implementation steps

installing, Installing and configuring the component

interfaces to implement, Which interfaces do you need to implement?

parameter injection, Parameter injection

Spring configuration, Configure the component in Spring

Consumer, Consumer

consumers, Consumer

event-driven, Event-driven pattern, Implementation steps

polling, Polling pattern, Implementation steps

scheduled, Scheduled poll pattern, Implementation steps

threading, Overview

D

DefaultComponent

createEndpoint(), URI parsing

DefaultEndpoint, Event-driven endpoint implementation

createExchange(), Event-driven endpoint implementation

createPollingConsumer(), Event-driven endpoint implementation

Red Hat JBoss Fuse 6.0 Programming EIP Components

96

getCamelConext(), Event-driven endpoint implementation

getComponent(), Event-driven endpoint implementation

getEndpointUri(), Event-driven endpoint implementation

E

Endpoint, Endpoint

createConsumer(), Endpoint methods

createExchange(), Endpoint methods

createPollingConsumer(), Endpoint methods

createProducer(), Endpoint methods

getCamelContext(), Endpoint methods

getEndpointURI(), Endpoint methods

interface definition, The Endpoint interface

isLenientProperties(), Endpoint methods

isSingleton(), Endpoint methods

setCamelContext(), Endpoint methods

endpoint

event-driven, Event-driven endpoint implementation

scheduled, Scheduled poll endpoint implementation

endpoints, Endpoint

Exchange, Exchange, The Exchange interface

copy(), Exchange methods

getExchangeId(), Exchange methods

getIn(), Accessing message headers, Exchange methods

getOut(), Exchange methods

getPattern(), Exchange methods

getProperties(), Exchange methods

getProperty(), Exchange methods

getUnitOfWork(), Exchange methods

removeProperty(), Exchange methods

setExchangeId(), Exchange methods

setIn(), Exchange methods

setOut(), Exchange methods

INDEX

97

setProperty(), Exchange methods

setUnitOfWork(), Exchange methods

exchange

in capable, Testing the exchange pattern

out capable, Testing the exchange pattern

exchange properties

accessing, Wrapping the exchange accessors

ExchangeHelper, The ExchangeHelper Class

getContentType(), Get the In message's MIME content type

getMandatoryHeader(), Accessing message headers, Wrapping the exchange accessors

getMandatoryInBody(), Wrapping the exchange accessors

getMandatoryOutBody(), Wrapping the exchange accessors

getMandatoryProperty(), Wrapping the exchange accessors

isInCapable(), Testing the exchange pattern

isOutCapable(), Testing the exchange pattern

resolveEndpoint(), Resolve an endpoint

exchanges, Exchange

I

in message

MIME type, Get the In message's MIME content type

M

Message, Message

getHeader(), Accessing message headers

message headers

accessing, Accessing message headers

messages, Message

P

pipeline, Pipelining model

Processor, Processor interface

implementing, Implementing the Processor interface

Red Hat JBoss Fuse 6.0 Programming EIP Components

98

producer, Producer

Producer, Producer

createExchange(), Producer methods

getEndpoint(), Producer methods

process(), Producer methods

producers

asynchronous, Asynchronous producer

synchronous, Synchronous producer

S

ScheduledPollEndpoint, Scheduled poll endpoint implementation

simple processor

implementing, Implementing the Processor interface

synchronous producer

implementing, How to implement a synchronous producer

T

type conversion

runtime process, Type conversion process

type converter

annotating the implementation, Implement an annotated converter class

discovery file, Create a TypeConverter file

implementation steps, How to implement a type converter

mater, Master type converter

packaging, Package the type converter

slave, Master type converter

TypeConverter, Type converter interface

TypeConverterLoader, Type converter loader

U

useIntrospectionOnEndpoint(), Disabling endpoint parameter injection

INDEX

99

Red Hat JBoss Fuse 6.0 Programming EIP Components

100

	Table of Contents
	CHAPTER 1. UNDERSTANDING MESSAGE FORMATS
	1.1. EXCHANGES
	Overview
	The Exchange interface
	Lazy creation of messages
	Lazy creation of exchange IDs

	1.2. MESSAGES
	Overview
	The Message interface
	Lazy creation of bodies, headers, and attachments
	Lazy creation of message IDs
	Initial message format
	Type converters
	Type conversion methods in Message
	Converting to XML
	Marshalling and unmarshalling
	Final message format

	1.3. BUILT-IN TYPE CONVERTERS
	Overview
	Basic type converters
	Collection type converters
	Map type converters
	DOM type converters
	SAX type converters
	Custom type converters

	1.4. BUILT-IN UUID GENERATORS
	Overview
	Provided UUID generators
	Custom UUID generator
	Specifying the UUID generator using Java
	Specifying the UUID generator using Spring

	CHAPTER 2. IMPLEMENTING A PROCESSOR
	2.1. PROCESSING MODEL
	Pipelining model

	2.2. IMPLEMENTING A SIMPLE PROCESSOR
	Overview
	Processor interface
	Implementing the Processor interface
	Inserting the simple processor into a route

	2.3. ACCESSING MESSAGE CONTENT
	Accessing message headers
	Accessing the message body
	Accessing message attachments

	2.4. THE EXCHANGEHELPER CLASS
	Overview
	Resolve an endpoint
	Wrapping the exchange accessors
	Testing the exchange pattern
	Get the In message's MIME content type

	CHAPTER 3. TYPE CONVERTERS
	3.1. TYPE CONVERTER ARCHITECTURE
	Overview
	Type converter interface
	Master type converter
	Type converter loader
	Type conversion process

	3.2. IMPLEMENTING TYPE CONVERTER USING ANNOTATIONS
	Overview
	How to implement a type converter
	Implement an annotated converter class
	Create a TypeConverter file
	Package the type converter
	Fallback converter method

	3.3. IMPLEMENTING A TYPE CONVERTER DIRECTLY
	Overview
	Implement the TypeConverter interface
	Add the type converter to the registry

	CHAPTER 4. PRODUCER AND CONSUMER TEMPLATES
	4.1. USING THE PRODUCER TEMPLATE
	4.1.1. Introduction to the Producer Template
	Overview
	Synchronous invocation
	Synchronous invocation with a processor
	Asynchronous invocation
	Asynchronous invocation with a callback

	4.1.2. Synchronous Send
	Overview
	Send an exchange
	Send an exchange populated by a processor
	Send a message body
	Send a message body and header(s)
	Send a message body and exchange property

	4.1.3. Synchronous Request with InOut Pattern
	Overview
	Request an exchange populated by a processor
	Request a message body
	Request a message body and header(s)

	4.1.4. Asynchronous Send
	Overview
	Send an exchange
	Send an exchange populated by a processor
	Send a message body

	4.1.5. Asynchronous Request with InOut Pattern
	Overview
	Request a message body
	Request a message body and header(s)

	4.1.6. Asynchronous Send with Callback
	Overview
	Send an exchange
	Send an exchange populated by a processor
	Send a message body
	Request a message body

	4.2. USING THE CONSUMER TEMPLATE
	Overview
	Example of polling exchanges
	Example of polling message bodies
	Methods for polling exchanges
	Methods for polling message bodies

	CHAPTER 5. IMPLEMENTING A COMPONENT
	5.1. COMPONENT ARCHITECTURE
	5.1.1. Factory Patterns for a Component
	Overview
	Component
	Endpoint
	Consumer
	Producer
	Exchange
	Message

	5.1.2. Using a Component in a Route
	Overview
	Source endpoint
	Processors
	Target endpoint

	5.1.3. Consumer Patterns and Threading
	Overview
	Event-driven pattern
	Scheduled poll pattern
	Polling pattern

	5.1.4. Asynchronous Processing
	Overview
	Synchronous producer
	Asynchronous producer

	5.2. HOW TO IMPLEMENT A COMPONENT
	Overview
	Which interfaces do you need to implement?
	Implementation steps
	Installing and configuring the component

	5.3. AUTO-DISCOVERY AND CONFIGURATION
	5.3.1. Setting Up Auto-Discovery
	Overview
	Availability of component classes
	Configuring auto-discovery
	Example

	5.3.2. Configuring a Component
	Overview
	Define bean properties on your component class
	Configure the component in Spring
	Examples

	CHAPTER 6. COMPONENT INTERFACE
	6.1. THE COMPONENT INTERFACE
	Overview
	The Component interface
	Component methods

	6.2. IMPLEMENTING THE COMPONENT INTERFACE
	The DefaultComponent class
	URI parsing
	Parameter injection
	Disabling endpoint parameter injection
	Scheduled executor service
	Validating the URI
	Creating an endpoint
	Example

	CHAPTER 7. ENDPOINT INTERFACE
	7.1. THE ENDPOINT INTERFACE
	Overview
	The Endpoint interface
	Endpoint methods
	Endpoint singletons

	7.2. IMPLEMENTING THE ENDPOINT INTERFACE
	Alternative ways of implementing an endpoint
	Event-driven endpoint implementation
	Scheduled poll endpoint implementation
	Polling endpoint implementation
	Implementing the BrowsableEndpoint interface
	Example

	CHAPTER 8. CONSUMER INTERFACE
	8.1. THE CONSUMER INTERFACE
	Overview
	Consumer parameter injection
	Scheduled poll parameters
	Converting between event-driven and polling consumers
	ShutdownPrepared interface
	ShutdownAware interface

	8.2. IMPLEMENTING THE CONSUMER INTERFACE
	Alternative ways of implementing a consumer
	Event-driven consumer implementation
	Scheduled poll consumer implementation
	Polling consumer implementation
	Custom threading implementation

	CHAPTER 9. PRODUCER INTERFACE
	9.1. THE PRODUCER INTERFACE
	Overview
	The Producer interface
	Producer methods
	Asynchronous processing
	ExchangeHelper class

	9.2. IMPLEMENTING THE PRODUCER INTERFACE
	Alternative ways of implementing a producer
	How to implement a synchronous producer
	How to implement an asynchronous producer

	CHAPTER 10. EXCHANGE INTERFACE
	10.1. THE EXCHANGE INTERFACE
	Overview
	The Exchange interface
	Exchange methods

	CHAPTER 11. MESSAGE INTERFACE
	11.1. THE MESSAGE INTERFACE
	Overview
	The Message interface
	Message methods

	11.2. IMPLEMENTING THE MESSAGE INTERFACE
	How to implement a custom message

	INDEX

