
Red Hat JBoss Enterprise Application
Platform 8.0

Using JBoss EAP on OpenShift Container
Platform

Guide to developing with Red Hat JBoss Enterprise Application Platform for
OpenShift

Last Updated: 2024-02-21

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on
OpenShift Container Platform

Guide to developing with Red Hat JBoss Enterprise Application Platform for OpenShift

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss Enterprise Application Platform for OpenShift

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
1.1. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
1.2. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT
1.3. VERSION COMPATIBILITY AND SUPPORT

1.3.1. OpenShift 4.x support
1.3.2. IBM Z Support

1.3.2.1. Upgrades from JBoss EAP 7.4 to JBoss EAP 8.0 on OpenShift
1.3.3. Deployment options

CHAPTER 2. PACKAGE NAMESPACE CHANGE FOR JBOSS EAP 8.0
2.1. JAVAX TO JAKARTA NAMESPACE CHANGE

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER
PLATFORM

3.1. PREREQUISITES
3.2. PREPARING OPENSHIFT TO DEPLOY AN APPLICATION
3.3. BUILDING APPLICATION IMAGES USING SOURCE-TO-IMAGE IN OPENSHIFT
3.4. DEPLOYING A THIRD-PARTY APPLICATION ON OPENSHIFT

3.4.1. Provisioning JBoss EAP servers with the default configuration
3.5. USING OPENID CONNECT TO SECURE JBOSS EAP APPLICATIONS ON OPENSHIFT

3.5.1. OpenID Connect configuration in JBoss EAP
3.5.2. Creating an application secured with OpenID Connect
3.5.3. Deploying the application on OpenShift
3.5.4. Environment variable based configuration

3.6. SECURING APPLICATIONS BY USING SAML
3.6.1. Keycloak SAML adapter feature pack for securing applications by using SAML
3.6.2. Configuring Red Hat build of Keycloak as SAML provider for OpenShift
3.6.3. Creating an application secured with SAML
3.6.4. Building and deploying a SAML-secured application on OpenShift
3.6.5. Creating a SSO realm, users, and roles
3.6.6. Environment variables for configuring the SAML subsystem
3.6.7. Route discovery in JBoss EAP server
3.6.8. Additional resources

3.7. ADDITIONAL RESOURCES

CHAPTER 4. USING HELM CHARTS TO BUILD AND DEPLOY JBOSS EAP APPLICATIONS ON OPENSHIFT

4.1. HELM CHART USE CASE
4.2. HELM CHART CUSTOMIZATION FOR JBOSS EAP ON OPENSHIFT
4.3. PROVISIONING JBOSS EAP WITH S2I
4.4. BUILDING AND DEPLOYING JBOSS EAP APPLICATIONS USING HELM CHARTS
4.5. BUILDING YOUR APPLICATION IMAGE USING THE OPENSHIFT DEVELOPMENT CONSOLE
4.6. DEPLOYING YOUR APPLICATION IMAGE

4.6.1. OpenShift volumes for persistent data storage in Helm chart
4.6.2. Mounting a volume with a Helm chart

CHAPTER 5. ENVIRONMENT VARIABLES AND MODEL EXPRESSION RESOLUTION
5.1. PREREQUISITES
5.2. ENVIRONMENT VARIABLES FOR RESOLVING MANAGEMENT MODEL EXPRESSIONS

6

7

8
8
8
9

10
10
10
10

12
12

13
13
13
14
15
15
17
18
18

24
26
28
28
28
29
35
37
38
39
40
40

41
41
41
41

42
42
43
43
43

45
45
45

Table of Contents

1

. .

. .

. .

. .

System property to environment variable mapping
5.3. CONFIGURING ENVIRONMENT VARIABLES ON THE OPENSHIFT CONTAINER PLATFORM
5.4. OVERRIDING MANAGEMENT ATTRIBUTES WITH ENVIRONMENT VARIABLES

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN
6.1. JBOSS EAP MAVEN PLUG-IN
6.2. CREATING A JAKARTA EE 10 APPLICATION WITH THE MAVEN
6.3. USING THE MAVEN PLUG-IN TO PROVISION A JBOSS EAP SERVER
6.4. THE GALLEON PROVISIONING FILE
6.5. THE MAVEN PLUG-IN CONFIGURATION ATTRIBUTES
6.6. HOW TO ENABLE SUPPORT FOR EAP-DATASOURCES-GALLEON-PACK FOR JBOSS EAP 8.0
6.7. SUPPORTED DRIVERS AND DATA SOURCES
6.8. USING THE JBOSS EAP MAVEN PLUGIN TO PROVISION A SERVER WITH JDBC DRIVERS AND DATA
SOURCES

CHAPTER 7. CONFIGURING YOUR JBOSS EAP SERVER AND APPLICATION
7.1. JVM DEFAULT MEMORY SETTINGS
7.2. JVM GARBAGE COLLECTION SETTINGS
7.3. JVM ENVIRONMENT VARIABLES
7.4. DEFAULT DATASOURCE

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT
8.1. AVAILABLE JBOSS EAP LAYERS

8.1.1. Base layers
datasources-web-server
jaxrs-server
cloud-server
cloud-default-config
ee-core-profile-server

8.1.2. Decorator layers
observability
web-clustering

8.2. PROVISIONING USER-DEVELOPED LAYERS IN JBOSS EAP
8.2.1. Building and using custom Galleon layers for JBoss EAP

8.2.1.1. Preparing the Maven project
8.2.1.2. Adding the feature-pack content
8.2.1.3. Using the custom Galleon feature-pack during S2I build
8.2.1.4. Importing the JBoss EAP 8 image stream

8.2.1.4.1. Creating an S2I build using the JBoss EAP maven plugin
8.2.1.4.2. Creating an S2I build using the legacy S2I provisioning capabilities
8.2.1.4.3. Starting the build
8.2.1.4.4. Creating a new deployment

8.2.2. Configure Galleon by using advanced environment variables
8.2.3. Custom Galleon feature pack environment variables

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

9.1. JBOSS EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIFT
9.1.1. Installing EAP operator using the web console
9.1.2. Installing EAP operator using the CLI
9.1.3. Deploying a Java application on OpenShift using the EAP operator

9.1.3.1. Creating a secret
9.1.3.2. Creating a configMap
9.1.3.3. Creating a configMap from a standalone.xml File

45
46
47

49
49
49
51

53
54
58
59

59

61
61

62
62
65

67
67
67
67
68
69
69
69
69
69
70
70
70
70
72
74
74
75
76
76
77
77
78

80
80
80
82
83
86
86
86

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

2

. .

. .

9.1.3.4. Configuring persistent storage for applications
9.1.4. Viewing metrics of an application using the EAP operator
9.1.5. Uninstalling EAP operator using web console
9.1.6. Uninstalling JBoss EAP operator using the CLI
9.1.7. JBoss EAP operator for safe transaction recovery

9.1.7.1. StatefulSets for stable network host names
9.1.7.2. Monitoring the scaledown process

9.1.7.2.1. Pod status during Scaledown
9.1.7.3. Scaling down during transactions with heuristic outcomes
9.1.7.4. Configuring the transactions subsystem to use the JDBC storage for transaction log

9.1.8. Automatically scaling pods with the horizontal pod autoscaler HPA
9.1.9. Jarkarta enterprise beans remoting on OpenShift

9.1.9.1. Jakarta Enterprise Beans remoting on openShift
9.1.9.1.1. Configuring Jakarta Enterprise Beans on OpenShift

CHAPTER 10. TROUBLESHOOTING
10.1. TROUBLESHOOTING POD RESTARTS
10.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI
10.3. TROUBLESHOOTING ERRORS WHEN UPDATING HELM CHART FROM VERSION 1.0.0 TO 1.1.0 ON
JBOSS EAP 8

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM
11.1. INFORMATION ENVIRONMENT VARIABLES
11.2. CONFIGURATION ENVIRONMENT VARIABLES
11.3. EXPOSED PORTS
11.4. DATASOURCES

11.4.1. JNDI mappings for datasources
11.4.1.1. Datasource Configuration Environment Variables
11.4.1.2. Examples

11.4.1.2.1. Single Mapping
11.4.1.2.2. Multiple Mappings

11.5. CLUSTERING
11.5.1. Configuring a JGroups Discovery Mechanism

11.5.1.1. Configuring KUBE_PING
11.5.1.2. Configuring DNS_PING

11.5.2. Configuring JGroups to Encrypt Cluster Traffic
11.5.2.1. Configuring SYM_ENCRYPT
11.5.2.2. Configuring ASYM_ENCRYPT

11.5.3. Considerations for scaling up pods
11.6. NATIVE HEALTH CHECKS
11.7. MESSAGING

11.7.1. Configuring External Red Hat AMQ Brokers
11.8. SECURITY DOMAINS
11.9. HTTPS ENVIRONMENT VARIABLES
11.10. ADMINISTRATION ENVIRONMENT VARIABLES
11.11. S2I

11.11.1. Custom Configuration
11.11.1.1. Custom Modules

11.11.2. Deployment Artifacts
11.11.3. Artifact repository mirrors

11.11.3.1. Secure artifact repository mirror URLs
11.11.4. Scripts
11.11.5. Custom Scripts

87
87
88
88
89
90
90
91
91

92
93
94
94
95

97
97
97

98

99
99
99

102
102
103
103
105
105
106
106
106
106
107
108
109
109
110
110
111
111
111
111

112
112
112
113
113
113
114
114
114

Table of Contents

3

11.11.5.1. Mounting a configmap to execute custom scripts
11.11.5.2. Using install.sh to execute custom scripts

11.11.6. Environment variables
11.12. UNSUPPORTED TRANSACTION RECOVERY SCENARIOS
11.13. INCLUDED JBOSS MODULES
11.14. EAP OPERATOR: API INFORMATION

11.14.1. WildFlyServer
11.14.2. WildFlyServerList
11.14.3. WildFlyServerSpec
11.14.4. Resources
11.14.5. StorageSpec
11.14.6. StandaloneConfigMapSpec
11.14.7. WildFlyServerStatus
11.14.8. PodStatus

114
115
115
118
118
118
118
119
119
121
121
122
122
123

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

4

Table of Contents

5

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

6

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. WHAT IS RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM

Red Hat JBoss Enterprise Application Platform 8.0 (JBoss EAP) is a middleware platform built on open
standards and compliant with the Jakarta EE 10 specification. It provides preconfigured options for
features such as high-availability clustering, messaging, and distributed caching. It includes a modular
structure that allows you to enable services only when required, which results in improved startup speed.

By using the web-based management console and management command line interface (CLI), you can
script and automate tasks and avoid having to edit XML configuration files. In addition, JBoss EAP
includes APIs and development frameworks that you can use to develop, deploy, and run secure and
scalable Jakarta EE applications. JBoss EAP 8.0 is a Jakarta EE 10 compatible implementation for Web
Profile, Core Profile, and Full Platform specifications.

1.1. HOW DOES JBOSS EAP WORK ON OPENSHIFT?

Red Hat offers container images to build and run application images with JBoss EAP on OpenShift.

NOTE

Red Hat no longer offers images that contain JBoss EAP.

1.2. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT

There are some notable differences when comparing the JBoss EAP product with the JBoss EAP for
OpenShift image. The following table describes these differences and notes which features are included
or supported in the current version of JBoss EAP for OpenShift.

Table 1.1. Differences between JBoss EAP and JBoss EAP for OpenShift

JBoss EAP Feature Status in JBoss EAP for
OpenShift

Description

JBoss EAP
management console

Not included The JBoss EAP management console is not included
in this release of JBoss EAP for OpenShift.

JBoss EAP
management CLI

Not recommended The JBoss EAP management CLI is not
recommended for use with JBoss EAP running in a
containerized environment. Any configuration
changes made using the management CLI in a
running container will be lost when the container
restarts. The management CLI is accessible from
within a pod for troubleshooting purposes.

Managed domain Not supported Although a JBoss EAP managed domain is not
supported, creation and distribution of applications
are managed in the containers on OpenShift.

Default root page Disabled The default root page is disabled, but you can deploy
your own application to the root context as
ROOT.war.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

8

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_troubleshooting-management-cli_assembly_what-is-red-hat-jboss-enterprise-application-platform

Remote messaging Supported Red Hat AMQ for inter-pod and remote messaging is
supported. ActiveMQ Artemis is only supported for
messaging within a single pod with JBoss EAP
instances and is only enabled when Red Hat AMQ is
absent.

Transaction recovery Supported The EAP operator is the only tested and supported
option of transaction recovery in OpenShift 4. For
more information about recovering transactions
using the EAP operator, see EAP Operator for Safe
Transaction Recovery.

JBoss EAP Feature Status in JBoss EAP for
OpenShift

Description

1.3. VERSION COMPATIBILITY AND SUPPORT

JBoss EAP for OpenShift provides images for OpenJDK 17.

Two variant of the image are available: an S2I builder image and a runtime image. The S2I Builder image
contains all the required tools that will enable you provision a complete JBoss EAP Server during S2I
build. The runtime image contains dependencies needed to run JBoss EAP but does not contain a
server. The server is installed in the runtime image during a chained build.

The following modifications were applied to the images in JBoss EAP 8.0 for OpenShift.

S2I builder image does not contain an installed JBoss EAP server and installs the JBoss EAP 8.0
server during S2I build.

Configure the eap-maven-plugin in the application pom file during S2I build.

Use existing JBoss EAP 7.4 application without any changes by setting
GALLEON_PROVISION_FEATURE_PACKS, GALLEON_PROVISION_LAYERS, and
GALLEON_PROVISION_CHANNELS environment variables during S2I build.

The JBoss EAP provisioned server during S2I build contains a standalone.xml server
configuration file customized for OpenShift.

IMPORTANT

The sever contains a standalone.xml configuration file, not the standalone-
openshift.xml configuration file that was used with JBoss EAP 7.4.

Inside the image, JBOSS_HOME value is /opt/server. The value of JBOSS_HOME was /opt/eap
for JBoss EAP 7.4.

Jolokia agent is no longer present in the image.

Prometheus agent is not installed.

Python probes are no more present.

SSO adapters are no longer present in the image.

CHAPTER 1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#eap-operator-for-safe-transaction-recovery_default

activemq.rar is no more present.

NOTE

The following discovery mechanism protocols were deprecated and are replaced by other
protocols:

The openshift.DNS_PING protocol was deprecated and is replaced with the
dns.DNS_PING protocol. If you referenced the openshift.DNS_PING protocol
in a customized standalone.xml file, replace the protocol with the
dns.DNS_PING protocol.

The openshift.KUBE_PING discovery mechanism protocol was deprecated and
is replaced with the kubernetes.KUBE_PING protocol.

1.3.1. OpenShift 4.x support

Changes in OpenShift 4.1 affect access to Jolokia, and the Open Java Console is no longer available in
the OpenShift 4.x web console.

In previous releases of OpenShift, certain kube-apiserver proxied requests were authenticated and
passed through to the cluster. This behavior is now considered insecure, and so, accessing Jolokia in this
manner is no longer supported.

Due to changes in codebase for the OpenShift console, the link to the Open Java Console is no longer
available.

1.3.2. IBM Z Support

The s390x variant of libartemis-native is not included in the image. Thus, any settings related to AIO
will not be taken into account.

journal-type: Setting the journal-type to ASYNCIO has no effect. The value of this attribute
defaults to NIO at runtime.

journal-max-io: This attribute has no effect.

journal-store-enable-async-io: This attribute has no effect.

1.3.2.1. Upgrades from JBoss EAP 7.4 to JBoss EAP 8.0 on OpenShift

The file standalone.xml installed with JBoss EAP 7.4 on OpenShift is not compatible with JBoss EAP
8.0 and later. You must modify and rename the file to standalone.xml before starting a JBoss EAP 8.0
or later container for OpenShift.

Additional resources

Updates to standalone.xml when upgrading JBoss EAP 7.1 to JBoss EAP 8.0 on OpenShift .

1.3.3. Deployment options

You can deploy the JBoss EAP Java applications on OpenShift using the EAP operator, a JBoss EAP-
specific controller that extends the OpenShift API to create, configure, and manage instances of
complex stateful applications on behalf of an OpenShift user.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#updates-standalone-openshift-upgrade-eap-71-to-73_default

Additional resources

For more information about the EAP operator, see EAP Operator for Automating Application
Deployment on OpenShift.

CHAPTER 1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM

11

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#eap-operator-for-automating-application-deployment-on-openshift_default

CHAPTER 2. PACKAGE NAMESPACE CHANGE FOR JBOSS
EAP 8.0

This section provides additional information for the package namespace changes in JBoss EAP 8.0.
JBoss EAP 8.0 provides full support for Jakarta EE 10 and many other implementations of the Jakarta
EE 10 APIs. An important change supported by Jakarta EE 10 for JBoss EAP 8.0 is the package
namespace change.

2.1. JAVAX TO JAKARTA NAMESPACE CHANGE

A key difference between Jakarta EE 8 and EE 10 is the renaming of the EE API Java packages from
javax.* to jakarta.*. This follows the move of Java EE to the Eclipse Foundation and the establishment
of Jakarta EE.

Adapting to this namespace change is the biggest task of migrating an application from JBoss EAP 7 to
JBoss EAP 8. To migrate applications to Jakarta EE 10, you must complete the following steps:

Update any import statements or other source code uses of EE API classes from the javax
package to the jakarta package.

Update the names of any EE-specified system properties or other configuration properties that
begin with javax to begin with jakarta.

For any application-provided implementations of EE interfaces or abstract classes that are
bootstrapped using the java.util.ServiceLoader mechanism, change the name of the resource
that identifies the implementation class from META-INF/services/javax.[rest_of_name] to
META-INF/services/jakarta.[rest_of_name].

NOTE

The Red Hat Migration Toolkit can assist in updating the namespaces in the application
source code. For more information, see How to use Red Hat Migration Toolkit for Auto-
Migration of an Application to the Jakarta EE 10 Namespace. In cases where source code
migration is not an option, the Open Source Eclipse Transformer project provides
bytecode transformation tooling to transform existing Java archives from the javax
namespace to the jakarta namespace.

NOTE

This change does not affect javax packages that are part of Java SE.

Additional resources

For more information, see The javax to jakarta Package Namespace Change .

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

12

https://access.redhat.com/articles/6987195
https://github.com/eclipse/transformer
https://access.redhat.com/articles/6980265#javax_jakarta

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP
APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

You can follow the source-to-image (S2I) process to build and run a Java application on the JBoss EAP
for OpenShift image.

3.1. PREREQUISITES

You have an OpenShift instance installed and operational.

3.2. PREPARING OPENSHIFT TO DEPLOY AN APPLICATION

As a JBoss EAP application developer, you can deploy your applications on OpenShift. In the following
example, note that the kitchensink quickstart demonstrates a Jakarta EE web-enabled database
application using Jakarta Server Faces, Jakarta Contexts and Dependency Injection, Jakarta Enterprise
Beans, Jakarta Persistence, and Jakarta Bean Validation. See the JBoss EAP 8.0 kitchensink
quickstart for more information. Deploy your application by following the procedures below.

Procedure

1. Log in to your OpenShift instance using the oc login command.

2. Create a project in OpenShift.
Create a project using the following command. With a project, you can organize and manage
content separately from other groups.

$ oc new-project <project_name>

For example, for the kitchensink quickstart, create a project named eap-demo using the
following command:

$ oc new-project eap-demo

3. Optional: Create a keystore and a secret.

NOTE

You must create a keystore and a secret if you use any HTTPS-enabled features
in your OpenShift project.

a. Use the Java keytool command to generate a keystore:

WARNING

The following commands generate a self-signed certificate, but for
production environments, use your own SSL certificate from a verified
certificate authority (CA) for SSL-encrypted connections (HTTPS).



CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

13

$ keytool -genkey -keyalg RSA -alias <alias_name> -keystore <keystore_filename.jks> -
validity 360 -keysize 2048

For example, for the kitchensink quickstart, use the following command to generate a
keystore:

$ keytool -genkey -keyalg RSA -alias eapdemo-selfsigned -keystore keystore.jks -validity
360 -keysize 2048

b. Use the following command to create a secret from your new keystore:

$ oc create secret generic <secret_name> --from-file=<keystore_filename.jks>

For example, for the kitchensink quickstart, use the following command to create a secret:

$ oc create secret generic eap-app-secret --from-file=keystore.jks

Additional resources

ImageStreams and Pods fail to pull images when Dev Portal generated secret is added in the
namespace

3.3. BUILDING APPLICATION IMAGES USING SOURCE-TO-IMAGE IN
OPENSHIFT

Follow the source-to-image (S2I) workflow to build reproducible container images for a JBoss EAP
application. These generated container images include the application deployment and ready-to-run
JBoss EAP servers.

The S2I workflow takes source code from a Git repository and injects it into a container that’s based on
the language and framework you want to use. After the S2I workflow is completed, the src code is
compiled, the application is packaged and is deployed to the JBoss EAP server.

For more information, see Legacy server provisioning for JBoss EAP S2I .

NOTE

In JBoss EAP, you can use S2I images only if you develop your application using Jakarta
EE 10.

Prerequisites

You have an active Red Hat customer account.

You have a Registry Service Account. Follow the instructions on the Red Hat Customer Portal to
create an authentication token using a registry service account .

You have downloaded the OpenShift secret YAML file, which you can use to pull images from
Red Hat Ecosystem Catalog. For more information, see OpenShift Secret.

You used the oc login command to log in to OpenShift.

You have installed Helm. For more information, see Installing Helm.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

14

https://access.redhat.com/solutions/7046845
https://access.redhat.com/solutions/6983237
https://access.redhat.com/RegistryAuthentication#registry-service-accounts-for-shared-environments-4
https://access.redhat.com/terms-based-registry/#/token//openshift-secret
https://helm.sh/docs/intro/install/

You have installed the repository for the JBoss EAP Helm charts by entering this command in
the management CLI:

$ helm repo add jboss-eap https://jbossas.github.io/eap-charts/

Procedure

1. Create a file named helm.yaml using the following YAML content:

build:
 uri: https://github.com/jboss-developer/jboss-eap-quickstarts.git
 ref: EAP_8.0.0.GA
 contextDir: helloworld
deploy:
 replicas: 1

2. Use the following command to deploy your JBoss EAP application on OpenShift.

$ helm install helloworld -f helm.yaml jboss-eap/eap8

Verification

Access the application using curl.

$ curl https://$(oc get route helloworld --template='{{ .spec.host }}')/HelloWorld

You get the output Hello World! confirming that the application is deployed.

3.4. DEPLOYING A THIRD-PARTY APPLICATION ON OPENSHIFT

You can create application images for OpenShift deployments by using compiled WAR files or EAR
archives. Use a Dockerfile to deploy these archives onto JBoss EAP server, along with an updated and
comprehensive runtime stack that includes the operating system, Java, and JBoss EAP components.

NOTE

Red Hat do not provide pre-built JBoss EAP server images.

3.4.1. Provisioning JBoss EAP servers with the default configuration

You can install and configure a JBoss EAP server with its default configuration on OpenShift by using
the builder image. For seamless deployment, follow the procedure to provision the server, transfer the
application files, and make any necessary customization.

Prerequisites

You have access to the supported Red Hat JBoss Enterprise Application Platform container
images. For example:

registry.redhat.io/jboss-eap-8/eap8-openjdk17-builder-openshift-rhel8

registry.redhat.io/jboss-eap-8/eap8-openjdk17-runtime-openshift-rhel8

You have podman installed on your system. Use the latest podman version available on

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

15

You have podman installed on your system. Use the latest podman version available on
supported RHEL. For more information, see Red Hat JBoss Enterprise Application Platform 8.0
Supported Configurations.

Procedure

1. Copy the following Dockerfile contents as provided:

Use EAP 8 Builder image to create a JBoss EAP 8 server
with its default configuration

FROM registry.redhat.io/jboss-eap-8/eap8-openjdk17-builder-openshift-rhel8:latest AS
builder

Set up environment variables for provisioning. 1
ENV GALLEON_PROVISION_FEATURE_PACKS org.jboss.eap:wildfly-ee-galleon-
pack,org.jboss.eap.cloud:eap-cloud-galleon-pack
ENV GALLEON_PROVISION_LAYERS cloud-default-config
Specify the JBoss EAP version 2
ENV GALLEON_PROVISION_CHANNELS org.jboss.eap.channels:eap-8.0

Run the assemble script to provision the server.
RUN /usr/local/s2i/assemble

Copy the JBoss EAP 8 server from the builder image to the runtime image.
FROM registry.redhat.io/jboss-eap-8/eap8-openjdk17-runtime-openshift-rhel8:latest AS
runtime

Set appropriate ownership and permissions.
COPY --from=builder --chown=jboss:root $JBOSS_HOME $JBOSS_HOME

Steps to add:
(1) COPY the WAR/EAR to $JBOSS_HOME/standalone/deployments
with the jboss:root user. For example:
COPY --chown=jboss:root my-app.war $JBOSS_HOME/standalone/deployments 3
(2) (optional) server modification. You can modify EAP server configuration:
#
* invoke management operations. For example
#
RUN $JBOSS_HOME/bin/jboss-cli.sh --commands="embed-server,/system-
property=Foo:add(value=Bar)"
#
First operation must always be embed-server.
#
* copy a modified standalone.xml in $JBOSS_HOME/standalone/configuration/
for example
#
COPY --chown=jboss:root standalone.xml $JBOSS_HOME/standalone/configuration

Ensure appropriate permissions for the copied files.
RUN chmod -R ug+rwX $JBOSS_HOME

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

16

https://access.redhat.com/articles/6961381

1

2

3

You can specify the MAVEN_MIRROR_URL environment variable, which is used by the
JBoss EAP Maven plugin internally within the image. For more information, see Artifact

You do not need to update this Dockerfile for any of the minor releases. Specify the JBoss
EAP version in the GALLEON_PROVISION_CHANNELS environment variable if you want
to use a specific version. For more information, see Environment variables.

Modify the copied Dockerfile to include your WAR file in the container. For example:

Replace <myapp.war> with the path to the Web archive you want to add to the image.

2. Build the application image using podman:

After the command is executed, the my-app container image is ready to be deployed on
OpenShift.

3. Upload your container image to one of the following options:

Your internal registry that is accessible from OpenShift.

The OpenShift registry by pushing the image directly from the machine where it was built.
For more information, see How to push a container image into the image registry in RHOCP
4.

4. When deploying your image from the registry, use deployment strategies such as Helm charts,
Operator, or Deployment. Select your preferred method and use either the full image URL or
ImageStreams based on your requirements. For more information, see Using Helm charts to
build and deploy JBoss EAP applications on OpenShift.

3.5. USING OPENID CONNECT TO SECURE JBOSS EAP
APPLICATIONS ON OPENSHIFT

Use the JBoss EAP native OpenID Connect (OIDC) client to delegate authentication using an external
OpenID provider. OIDC is an identity layer that enables clients, such as JBoss EAP, to verify a user’s
identity based on the authentication performed by an OpenID provider.

The elytron-oidc-client subsystem and elytron-oidc-client Galleon layer provides a native OIDC client
in JBoss EAP to connect with OpenID providers. JBoss EAP automatically creates a virtual security
domain for your application, based on your OpenID provider configurations.

You can configure the elytron-oidc-client subsystem in three different ways:

Adding an oidc.json into your deployment.

Running a CLI script to configure the elytron-oidc-client subsystem.

Defining environment variables to configure an elytron-oidc-client subsystem on start of JBoss
EAP server on OpenShift.

NOTE

COPY --chown=jboss:root <my-app.war> $JBOSS_HOME/standalone/deployments

$ podman build -t my-app .

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

17

https://access.redhat.com/solutions/6959306

NOTE

This procedure explains how you can configure an elytron-oidc-client subsystem using
the environment variables to secure application with OIDC.

3.5.1. OpenID Connect configuration in JBoss EAP

When you secure your applications using an OpenID provider, you do not need to configure any security
domain resources locally. The elytron-oidc-client subsystem provides a native OpenID Connect (OIDC)
client in JBoss EAP to connect with OpenID providers. JBoss EAP automatically creates a virtual
security domain for your application, based on your OpenID provider configurations.

IMPORTANT

Use the OIDC client with Red Hat build of Keycloak. You can use other OpenID providers
if they can be configured to use access tokens that are JSON Web Tokens (JWTs) and
can be configured to use the RS256, RS384, RS512, ES256, ES384, or ES512 signature
algorithm.

To enable the use of OIDC, you can configure either the elytron-oidc-client subsystem or an
application itself. JBoss EAP activates the OIDC authentication as follows:

When you deploy an application to JBoss EAP, the elytron-oidc-client subsystem scans the
deployment to detect if the OIDC authentication mechanism is required.

If the subsystem detects OIDC configuration for the deployment in either the elytron-oidc-
client subsystem or the application deployment descriptor, JBoss EAP enables the OIDC
authentication mechanism for the application.

If the subsystem detects OIDC configuration in both places, the configuration in the elytron-
oidc-client subsystem secure-deployment attribute takes precedence over the configuration
in the application deployment descriptor.

Additional resources

OpenID Connect specification

OpenID Connect Libraries

Securing applications using OpenID Connect with Red Hat build of Keycloak

3.5.2. Creating an application secured with OpenID Connect

For creating a web-application, create a Maven project with the required dependencies and the
directory structure. Create a web application containing a servlet that returns the user name obtained
from the logged-in user’s principal and attributes. If there is no logged-in user, the servlet returns the
text "NO AUTHENTICATED USER".

Prerequisites

You have installed Maven. For more information, see Downloading Apache Maven.

Procedure

1. Set up a Maven project using the mvn command. The command creates the directory structure

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

18

https://openid.net/connect/
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/securing_applications_and_services_guide/#other_openid_connect_libraries
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/using_jboss_eap_xp_4.0.0/index#assembly-securing-applications-using-openid-connect-with-red-hat-single-sign-on_openid-connect-in-jboss-eap
https://maven.apache.org/download.cgi

1. Set up a Maven project using the mvn command. The command creates the directory structure
for the project and the pom.xml configuration file.

Syntax

$ mvn archetype:generate \
-DgroupId=${group-to-which-your-application-belongs} \
-DartifactId=${name-of-your-application} \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

Example

$ mvn archetype:generate \
-DgroupId=com.example.app \
-DartifactId=simple-webapp-example \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

2. Navigate to the application root directory:

Syntax

$ cd <name-of-your-application>

Example

$ cd simple-webapp-example

3. Replace the content of the generated pom.xml file with the following text:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.app</groupId>
 <artifactId>simple-webapp-example</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>

 <name>simple-webapp-example Maven Webapp</name>
 <!-- FIXME change it to the project's website -->
 <url>http://www.example.com</url>

 <properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

19

 <version.maven.war.plugin>3.3.2</version.maven.war.plugin>
 <version.eap.plugin>1.0.0.Final-redhat-00014</version.eap.plugin>
 <version.server>8.0.0.GA-redhat-00009</version.server>
 <version.bom.ee>${version.server}</version.bom.ee>
 </properties>

 <repositories>
 <repository>
 <id>jboss</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>jboss</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee-with-tools</artifactId>
 <version>${version.bom.ee}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>jakarta.servlet</groupId>
 <artifactId>jakarta.servlet-api</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.wildfly.security</groupId>
 <artifactId>wildfly-elytron-auth-server</artifactId>
 </dependency>
 </dependencies>

<build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

20

NOTE

<version.eap.plugin>1.0.0.Final-redhat-00014</version.eap.plugin> is an
example version of JBoss EAP Maven plugin. See the Red Hat Maven
repository for more information on JBoss EAP Maven plugin releases:
https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/plugins/eap-
maven-plugin/.

4. Create a directory to store the Java files.

Syntax

 <artifactId>maven-war-plugin</artifactId>
 <version>${version.maven.war.plugin}</version>
 </plugin>
 <plugin>
 <groupId>org.jboss.eap.plugins</groupId>
 <artifactId>eap-maven-plugin</artifactId>
 <version>${version.eap.plugin}</version>
 <configuration>
 <channels>
 <channel>
 <manifest>
 <groupId>org.jboss.eap.channels</groupId>
 <artifactId>eap-8.0</artifactId>
 </manifest>
 </channel>
 </channels>
 <feature-packs>
 <feature-pack>
 <location>org.jboss.eap:wildfly-ee-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap.cloud:eap-cloud-galleon-pack</location>
 </feature-pack>
 </feature-packs>
 <layers>
 <layer>cloud-server</layer>
 <layer>elytron-oidc-client</layer>
 </layers>
 <galleon-options>
 <jboss-fork-embedded>true</jboss-fork-embedded>
 </galleon-options>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>
</project>

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

21

https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/plugins/eap-maven-plugin/

$ mkdir -p src/main/java/<path_based_on_artifactID>

Example

$ mkdir -p src/main/java/com/example/app

5. Navigate to the new directory.

Syntax

$ cd src/main/java/<path_based_on_artifactID>

Example

$ cd src/main/java/com/example/app

6. Create a file SecuredServlet.java with the following content:

package com.example.app;

import java.io.IOException;
import java.io.PrintWriter;
import java.security.Principal;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Set;

import jakarta.servlet.ServletException;
import jakarta.servlet.annotation.WebServlet;
import jakarta.servlet.http.HttpServlet;
import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;
import org.wildfly.security.auth.server.SecurityDomain;
import org.wildfly.security.auth.server.SecurityIdentity;
import org.wildfly.security.authz.Attributes;
import org.wildfly.security.authz.Attributes.Entry;
/**
 * A simple secured HTTP servlet. It returns the user name and
 * attributes obtained from the logged-in user's Principal. If
 * there is no logged-in user, it returns the text
 * "NO AUTHENTICATED USER".
 */

@WebServlet("/secured")
public class SecuredServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
 try (PrintWriter writer = resp.getWriter()) {

 Principal user = req.getUserPrincipal();

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

22

7. Configure the application’s web.xml to protect the application resources.

Example

 SecurityIdentity identity = SecurityDomain.getCurrent().getCurrentSecurityIdentity();
 Attributes identityAttributes = identity.getAttributes();
 Set <String> keys = identityAttributes.keySet();
 String attributes = "";

 for (String attr : keys) {
 attributes += " " + attr + " : " + identityAttributes.get(attr).toString() + "";
 }

 attributes+="";
 writer.println("<html>");
 writer.println(" <head><title>Secured Servlet</title></head>");
 writer.println(" <body>");
 writer.println(" <h1>Secured Servlet</h1>");
 writer.println(" <p>");
 writer.print(" Current Principal '");
 writer.print(user != null ? user.getName() : "NO AUTHENTICATED USER");
 writer.print("'");
 writer.print(user != null ? "\n" + attributes : "");
 writer.println(" </p>");
 writer.println(" </body>");
 writer.println("</html>");
 }
 }

}

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 metadata-complete="false">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secured</web-resource-name>
 <url-pattern>/secured</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>Users</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>OIDC</auth-method>
 </login-config>

 <security-role>

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

23

In this example, only the users with the role Users can access the application.

3.5.3. Deploying the application on OpenShift

As a JBoss EAP application developer, you can deploy your applications on OpenShift that uses the
OpenID Connect subsystem and integrate it with a Red Hat build of Keycloak server. Deploy your
application by following the procedures below.

Prerequisites

You have configured the Red Hat build of Keycloak server in your OpenShift with the following
configuration. For more information, see Red Hat build of Keycloak Operator .

Create a realm called JBossEAP.

Create a user called demo.

Set a password for the user called demo. Toggle Temporary to OFF and click Set Password. In
the confirmation prompt, click Set password.

Create a role called Users.

Assign the role Users to the user demo.

In the Client Roles field, select the realm-management you configured for JBoss EAP.

Assign the role create-client to the client realm-management.

Procedure

1. Deploy your application code to Git Repository.

2. Create a secret containing the OIDC configuration.

a. Create a file named oidc-secret.yaml using the following content:

apiVersion: v1
kind: Secret
metadata:
 name: oidc-secret
type: Opaque
stringData:
 OIDC_PROVIDER_NAME: rh-sso
 OIDC_USER_NAME: demo
 OIDC_USER_PASSWORD: demo
 OIDC_SECURE_DEPLOYMENT_SECRET: mysecret

b. Use the following command to create a secret:

$ oc apply -f oidc-secret.yaml

3. Create a file named helm.yaml using the following content:

 <role-name>*</role-name>
 </security-role>
</web-app>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

24

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html/server_installation_and_configuration_guide/operator#doc-wrapper

build:
 uri: [URL TO YOUR GIT REPOSITORY]
deploy:
 envFrom:
 - secretRef:
 name: oidc-secret

4. Deploy the example application using JBoss EAP Helm charts:

$ helm install eap-oidc-test-app -f helm.yaml jboss-eap/eap8

5. Add the environment variables to the oidc-secret.yaml file to configure the OIDC provider URL
and application hostname.

yaml
stringData:
 ...
 OIDC_HOSTNAME_HTTPS: <host of the application>
 OIDC_PROVIDER_URL: https://<host of the SSO provider>/realms/JBossEAP

The value for OIDC_HOSTNAME_HTTPS corresponds to the following output:

echo $(oc get route eap-oidc-test-app --template='{{ .spec.host }}')

The value for OIDC_PROVIDER_URL corresponds to the following output:

echo https://$(oc get route sso --template='{{ .spec.host }}')/realms/JBossEAP

A route discovery attempt is made if OIDC_HOSTNAME_HTTP(S) is not set. To enable route
discovery, the OpenShift user must be able to list the route resources. For example, to create
and associate the routeview role with the view user, use the following oc command:

$ oc create role <role-name> --verb=list --resource=route

$ oc adm policy add-role-to-user <role-name> <user-name> --role-namespace=<your
namespace>

6. Update the secret with oc apply -f oidc-secret.yaml.

7. Deploy the application again to ensure OpenShift uses the new environment variables:

$ oc rollout restart deploy eap-oidc-test-app

Verification

1. In your browser, navigate to https://<eap-oidc-test-app route>/.
You will be redirected to Red Hat build of Keycloak login page.

2. Access the secured servlet.

3. Log in with the following credentials:

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

25

username: demo
password: demo

A page appears that contains the Principal ID.

3.5.4. Environment variable based configuration

Use these environment variables to configure JBoss EAP OIDC support on OpenShift image.

Table 3.1. Environment Variables

Environment
variable

Legacy SSO
environment
variable

Description Required Default Value

OIDC_PROVI
DER_NAME

NONE. When
SSO_*
environment
variable are used,
“rh-sso” name is
internally set.

You must set to rh-sso when
using
OIDC_PROVIDER_NAME
variable.

Yes

OIDC_PROVI
DER_URL

$SSO_URL/real
ms/$SSO_REAL
M

The URL of the provider. Yes

OIDC_USER_
NAME

SSO_USERNAME Dynamic client registration
requires the username to
receive a token.

Yes

OIDC_USER_
PASSWORD

SSO_PASSWORD Dynamic client registration
requires the user password to
receive a token.

Yes

OIDC_SECU
RE_DEPLOY
MENT_SECR
ET

SSO_SECRET It is known to both the secure-
deployment subsystem and
the authentication server
client.

No

OIDC_SECU
RE_DEPLOY
MENT_PRIN
CIPAL_ATTR
IBUTE

SSO_PRINCIPAL_
ATTRIBUTE

Configure the value of the
principal name.

No Defaults to sub
(ID token) for rh-
sso.

Typical value:
preferred_userna
me.

OIDC_SECU
RE_DEPLOY
MENT_ENAB
LE_CORS

SSO_ENABLE_CO
RS

Enable CORS for Single Sign-
On applications.

No Defaults to False.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

26

OIDC_SECU
RE_DEPLOY
MENT_BEAR
ER_ONLY

SSO_BEARER_ON
LY

Deployment that accepts only
bearer token and does not
support logging.

No Defaults to False.

OIDC_PROVI
DER_SSL_RE
QUIRED

NONE Defaults to external, such as
private and local address, but
does not support https.

No External

OIDC_PROVI
DER_TRUST
STORE

SSO_TRUSTSTOR
E

Specify the realm trustore
file. If it is not set, the adapter
cannot use a trust manager
when processing HTTPS
requests.

No

OIDC_PROVI
DER_TRUST
STORE_DIR

SSO_TRUSTSTOR
E_DIR

Directory to find the realm
truststore. If it is not set, the
adapter cannot use a trust
manager when processing
HTTPS requests.

No

OIDC_PROVI
DER_TRUST
STORE_PAS
SWORD

SSO_TRUSTSTOR
E_PASSWORD

Specify the realm truststore
password. If it is not set, the
adapter cannot use a trust
manager when processing
HTTPS requests.

No

OIDC_PROVI
DER_TRUST
STORE_CER
TIFICATE_A
LIAS

SSO_TRUSTSTOR
E_CERTIFICATE_A
LIAS

Specify the realm trustore
alias. It is required to interact
with the authentication server
to register a client.

No

OIDC_DISAB
LE_SSL_CER
TIFICATE_V
ALIDATION

SSO_DISABLE_SS
L_CERTIFICATE_V
ALIDATION

Disable certificate validation
when interacting with the
authentication server to
register a client.

No

OIDC_HOST
NAME_HTTP

HOSTNAME_HTT
P

Hostname used for unsecure
routes.

No Routes are
discovered.

OIDC_HOST
NAME_HTTP
S

HOSTNAME_HTT
PS

Hostname used for secured
routes.

No Secured routes
are discovered.

Environment
variable

Legacy SSO
environment
variable

Description Required Default Value

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

27

NONE SSO_PUBLIC_KEY Public key of the Single Sign-
On realm. This option is not
used, public key is
automatically retrieved by the
OIDC subsystem.

No If set, a warning is
displayed that this
option is being
ignored.

Environment
variable

Legacy SSO
environment
variable

Description Required Default Value

3.6. SECURING APPLICATIONS BY USING SAML

The Security Assertion Markup Language (SAML) serves as a data format and protocol that enables the
exchange of authentication and authorization information between two parties. These two parties
typically include an identity provider and a service provider. This information takes the form of SAML
tokens containing assertions. Identity providers issue these SAML tokens to subjects to enable these
subjects to authenticate with service providers. Subjects can reuse SAML tokens with multiple service
providers, which enables browser-based Single Sign-On in SAML v2.

You can secure web applications by using the Galleon layers that the Keycloak SAML adapter feature
pack provides.

For information about the Keycloak SAML adapter feature pack, see Keycloak SAML adapter feature
pack for securing applications by using SAML.

3.6.1. Keycloak SAML adapter feature pack for securing applications by using SAML

Keycloak SAML adapter Galleon pack is a Galleon feature pack that includes the keycloak-saml layer.
Use the keycloak-saml layer in the feature pack to install the necessary modules and configurations in
JBoss EAP. These modules and configurations are required if you want to use Red Hat build of Keycloak
as an identity provider for Single Sign-On (SSO) when using SAML. When using the keycloak-saml
SAML adapter Galleon layer for source-to-image (S2I), you can optionally use the SAML client feature
that enables automatic registration with an Identity Service Provider (IDP), such as Red Hat build of
Keycloak.

3.6.2. Configuring Red Hat build of Keycloak as SAML provider for OpenShift

Red Hat build of Keycloak is an identity and access management provider for securing web applications
with Single Sign-On (SSO). It supports OpenID Connect, which is an extension to OAuth 2.0, and SAML.

The following procedure outlines the essential steps needed to secure applications with SAML. For more
information, see Red Hat build of Keycloak documentation .

Prerequisites

You have administrator access to Red Hat build of Keycloak.

Red Hat build of Keycloak is running. For more information, see Red Hat build of Keycloak
Operator.

You used the oc login command to log in to OpenShift.

Procedure

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

28

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#keycloak-saml-adapter-feature-pack-for-securing-applications-using-saml_securing-applications-with-saml
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html/server_installation_and_configuration_guide/operator

1. Create a Single Sign-On realm, users, and roles .

2. Generate the key and certificate by using the Java keytool command:

3. Import the keystore into a Java KeyStore (JKS) format:

4. Create a secret in OpenShift for the keystore:

NOTE

These steps are only necessary when using the automatic SAML client registration
feature. When JBoss EAP registers a new SAML client into Red Hat build of Keycloak as
the client-admin user, JBoss EAP must store the certificate of the new SAML client in
the Red Hat build of Keycloak client configuration. This allows JBoss EAP to retain the
private key while only storing the public certificate in Red Hat build of Keycloak, which
establishes an authenticated client for communication with Red Hat build of Keycloak.

3.6.3. Creating an application secured with SAML

You can enhance web application security by using the Security Assertion Markup Language (SAML).
SAML provides effective user authentication and authorization, along with Single Sign-On (SSO)
capabilities, making it a dependable choice for strengthening web applications.

Prerequisites

You have installed Maven. For more information, see Downloading Apache Maven.

Procedure

1. Set up a Maven project by using the mvn command. This command creates both the directory
structure for the project and the pom.xml configuration file.

Syntax

$ mvn archetype:generate \
-DgroupId=${group-to-which-your-application-belongs} \
-DartifactId=${name-of-your-application} \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

Example

keytool -genkeypair -alias saml-app -storetype PKCS12 -keyalg RSA -keysize 2048 -
keystore keystore.p12 -storepass password -dname "CN=saml-basic-auth,OU=EAP SAML
Client,O=Red Hat EAP QE,L=MB,S=Milan,C=IT" -ext ku:c=dig,keyEncipherment -validity 365

keytool -importkeystore -deststorepass password -destkeystore keystore.jks -srckeystore
keystore.p12 -srcstoretype PKCS12 -srcstorepass password

$ oc create secret generic saml-app-secret --from-file=keystore.jks=./keystore.jks --
type=opaque

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#creating-sso-realm-users-and-roles_securing-applications-with-saml
https://maven.apache.org/download.cgi

$ mvn archetype:generate \
-DgroupId=com.example.app \
-DartifactId=simple-webapp-example \
-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

2. Navigate to the application root directory:

Syntax

$ cd <name-of-your-application>

Example

$ cd simple-webapp-example

3. Replace the content of the generated pom.xml file with the following text:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.app</groupId>
 <artifactId>simple-webapp-example</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>

 <name>simple-webapp-example Maven Webapp</name>
 <!-- FIXME change it to the project's website -->
 <url>http://www.example.com</url>

 <properties>
 <maven.compiler.source>11</maven.compiler.source>
 <maven.compiler.target>11</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <version.maven.war.plugin>3.3.2</version.maven.war.plugin>
 <version.eap.plugin>1.0.0.Final-redhat-00014</version.eap.plugin>
 <version.server>8.0.0.GA-redhat-00009</version.server>
 <version.bom.ee>${version.server}</version.bom.ee>
 </properties>

 <repositories>
 <repository>
 <id>jboss</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

30

 <pluginRepositories>
 <pluginRepository>
 <id>jboss</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee-with-tools</artifactId>
 <version>${version.bom.ee}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>jakarta.servlet</groupId>
 <artifactId>jakarta.servlet-api</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.wildfly.security</groupId>
 <artifactId>wildfly-elytron-auth-server</artifactId>
 </dependency>
 </dependencies>

 <build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>${version.maven.war.plugin}</version>
 </plugin>
 <plugin>
 <groupId>org.jboss.eap.plugins</groupId>
 <artifactId>eap-maven-plugin</artifactId>
 <version>${version.eap.plugin}</version>
 <configuration>
 <channels>
 <channel>
 <manifest>
 <groupId>org.jboss.eap.channels</groupId>
 <artifactId>eap-8.0</artifactId>
 </manifest>
 </channel>
 </channels>

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

31

NOTE

<version.eap.plugin>1.0.0.Final-redhat-00014</version.eap.plugin> is an
example version of JBoss EAP Maven plugin. See the Red Hat Maven
repository for more information on JBoss EAP Maven plugin releases:
https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/plugins/eap-
maven-plugin/.

4. Create a directory to store the Java files.

Syntax

$ mkdir -p src/main/java/<path_based_on_artifactID>

Example

$ mkdir -p src/main/java/com/example/app

5. Navigate to the new directory.

Syntax

$ cd src/main/java/<path_based_on_artifactID>

 <feature-packs>
 <feature-pack>
 <location>org.jboss.eap:wildfly-ee-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap.cloud:eap-cloud-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.keycloak:keycloak-saml-adapter-galleon-pack</location>
 </feature-pack>
 </feature-packs>
 <layers>
 <layer>cloud-server</layer>
 <layer>keycloak-saml</layer>
 </layers>
 <galleon-options>
 <jboss-fork-embedded>true</jboss-fork-embedded>
 </galleon-options>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

32

https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/plugins/eap-maven-plugin/

Example

$ cd src/main/java/com/example/app

6. Create a file named SecuredServlet.java that contains the following settings:

package com.example.app;

import java.io.IOException;
import java.io.PrintWriter;
import java.security.Principal;
import java.util.Set;

import jakarta.servlet.ServletException;
import jakarta.servlet.annotation.WebServlet;
import jakarta.servlet.http.HttpServlet;
import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;
import org.wildfly.security.auth.server.SecurityDomain;
import org.wildfly.security.auth.server.SecurityIdentity;
import org.wildfly.security.authz.Attributes;
/**
 * A simple secured HTTP servlet. It returns the user name and
 * attributes obtained from the logged-in user's Principal. If
 * there is no logged-in user, it returns the text
 * "NO AUTHENTICATED USER".
 */

@WebServlet("/secured")
public class SecuredServlet extends HttpServlet {

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws
ServletException, IOException {
 try (PrintWriter writer = resp.getWriter()) {

 Principal user = req.getUserPrincipal();
 SecurityIdentity identity = SecurityDomain.getCurrent().getCurrentSecurityIdentity();
 Attributes identityAttributes = identity.getAttributes();
 Set <String> keys = identityAttributes.keySet();
 String attributes = "";

 for (String attr : keys) {
 attributes += " " + attr + " : " + identityAttributes.get(attr).toString() + "";
 }

 attributes+="";
 writer.println("<html>");
 writer.println(" <head><title>Secured Servlet</title></head>");
 writer.println(" <body>");
 writer.println(" <h1>Secured Servlet</h1>");
 writer.println(" <p>");
 writer.print(" Current Principal '");
 writer.print(user != null ? user.getName() : "NO AUTHENTICATED USER");

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

33

7. Create the directory structure for the web.xml file:

mkdir -p src/main/webapp/WEB-INF
cd src/main/webapp/WEB-INF

8. Configure the application’s web.xml file to protect the application resources.

Example

In this example, only users with the user role can access the application.

Verification

After creating the application, commit it to a remote Git repository.

1. Create a Git repository such as https://github.com/your-username/simple-webapp-example.
For more information about remote repositories and Git, see Getting started with Git - About
remote repositories.

 writer.print("'");
 writer.print(user != null ? "\n" + attributes : "");
 writer.println(" </p>");
 writer.println(" </body>");
 writer.println("</html>");
 }
 }

}

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 metadata-complete="false">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>secured</web-resource-name>
 <url-pattern>/secured</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>KEYCLOAK-SAML</auth-method>
 </login-config>

 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

34

https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories

2. From the root folder of the application, run the following Git commands:

These steps commit your application to the remote repository, making it accessible online.

3.6.4. Building and deploying a SAML-secured application on OpenShift

You can build and deploy your application secured with SAML on OpenShift by using the JBoss EAP and
Single Sign-On (SSO) Galleon layers.

Prerequisites

You have installed Helm. For more information, see Installing Helm.

You have created the SAML application project and made it accessible in a Git repository.

You have installed the repository for the JBoss EAP Helm charts by entering this command in
the management CLI:

Procedure

1. Deploy your application code to the Git Repository.

2. Create an OpenShift secret containing the required environment variables:

3. Save the provided YAML content to a file, such as saml-secret.yaml.

4. Apply the saved YAML file by using the following command:

git init -b main
git add pom.xml src
git commit -m "First commit"
git remote add origin git@github.com:your-username/simple-webapp-example.git
git remote -v
git push -u origin main

$ helm repo add jboss-eap https://jbossas.github.io/eap-charts/

apiVersion: v1
kind: Secret
metadata:
 name: saml-secret
type: Opaque
stringData:
 SSO_REALM: "saml-basic-auth"
 SSO_USERNAME: "client-admin"
 SSO_PASSWORD: "client-admin"
 SSO_SAML_CERTIFICATE_NAME: "saml-app"
 SSO_SAML_KEYSTORE: "keystore.jks"
 SSO_SAML_KEYSTORE_PASSWORD: "password"
 SSO_SAML_KEYSTORE_DIR: "/etc/sso-saml-secret-volume"
 SSO_SAML_LOGOUT_PAGE: "/simple-webapp-example"
 SSO_DISABLE_SSL_CERTIFICATE_VALIDATION: "true"

oc apply -f saml-secret.yaml

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

35

https://helm.sh/docs/intro/install/

5. Create a file named helm.yaml that contains the following settings:

NOTE

Specify the web address in the HTTP format, such as http://www.redhat.com. If
you are using a maven mirror, specify the web address as follows:

6. Deploy the example application by using JBoss EAP Helm charts:

7. Add the environment variables to the saml-secret.yaml file to configure the Keycloak server
URL and application route:

Replace <saml-app application route> and <host of the Keycloak server> with the
appropriate values.

The value for HOSTNAME_HTTPS corresponds to the following output:

The value for SSO_URL corresponds to the following output:

NOTE

build:
 uri: [WEB ADDRESS TO YOUR GIT REPOSITORY]
deploy:
 volumes:
 - name: saml-keystore-volume
 secret:
 secretName: saml-app-secret
 volumeMounts:
 - name: saml-keystore-volume
 mountPath: /etc/sso-saml-secret-volume
 readOnly: true
 envFrom:
 - secretRef:
 name: saml-secret

build:
 uri: [WEB ADDRESS TO YOUR GIT REPOSITORY]
 env:
 - name: "MAVEN_MIRROR_URL"
 value: "http://..."

$ helm install saml-app -f helm.yaml jboss-eap/eap8

stringData:
 ...
 HOSTNAME_HTTPS: <saml-app application route>
 SSO_URL: https://<host of the Keycloak server>

echo $(oc get route saml-app --template='{{ .spec.host }}')

echo https://$(oc get route sso --template='{{ .spec.host }}')

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

36

NOTE

If you cannot use this command, use oc get routes to list the available routes
and select the route to your Red Hat build of Keycloak instance.

8. Update the secret with oc apply -f saml-secret.yaml.

Verification

1. Deploy the application again to ensure that OpenShift uses the new environment variables:

2. In a browser, navigate to the application URL. For example, https://<saml-app route>/simple-
webapp-example.
You are redirected to the Red Hat build of Keycloak login page.

3. To get the web address, use the following command to access the secured servlet:

4. Log in with the following credentials:

A page is displayed that contains the Principal ID.

Your application is now secured using SAML.

3.6.5. Creating a SSO realm, users, and roles

You can configure a Single Sign-On (SSO) realm, define user roles, and manage access control in your
Red Hat build of Keycloak environment. These actions enable you to enhance security and simplify user
access management, ensuring a streamlined authentication experience. This is essential for optimizing
your SSO setup and improving user authentication processes.

Prerequisites

You have administrator access to Red Hat build of Keycloak.

Red Hat build of Keycloak is running.

Procedure

1. Log in to the Red Hat build of Keycloak admin console using the URL: https://<SSO route>/.

2. Create a realm in Red Hat build of Keycloak; for example, saml-basic-auth. You can
subsequently use this realm to create the required users, roles, and a client.
For more information, see Creating a realm.

3. Create a role within the saml-basic-auth realm. For example, user.
For more information, see Creating a realm role .

$ oc rollout restart deploy saml-app

echo https://$(oc get route saml-app --template='{{ .spec.host }}')/simple-webapp-
example/secured

username: demo
password: demo

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

37

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-a-realm_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-realm-roles_server_administration_guide

4. Create a user. For example, demo.
For more information, see Creating users.

5. Create a password for the user. For example, demo.
Ensure that the password is not temporary. For more information, see Setting a password for a
user.

6. Assign the user role to the demo user for login access.
For more information, see Assigning role mappings .

7. Create a user. For example, client-admin.
To create the SAML client in the Keycloak server when the JBoss EAP server starts, you can use
the client-admin user, which requires additional privileges. For more information, see Creating
users.

8. Create a password for the user. For example, client-admin.
Ensure that the password is not temporary. For more information, see Setting a password for a
user.

9. Select realm-management from the Client Roles drop down list.

10. Assign the roles create-client, manage-clients, and manage-realm to the client-admin user.
For more information, see Assigning role mappings .

3.6.6. Environment variables for configuring the SAML subsystem

You can optimize the integration of the Keycloak server within your environment by understanding and
using the following variables. This ensures a seamless and secure Keycloak setup for your application.

Table 3.2. Environment variables

Environment variable Description Required

APPLICATION_NAME Used as a prefix for the client name, derived from the
deployment name.

Optional

HOSTNAME_HTTP Custom hostname for the HTTP OpenShift route. If
not set, route discovery is performed.

Optional

HOSTNAME_HTTPS Custom hostname for the HTTPS OpenShift route.
If not set, route discovery is performed.

Optional

SSO_DISABLE_SSL_CER
TIFICATE_VALIDATION

Choose between true or false to enable or disable
validation of the Keycloak server certificate. Consider
setting this to true when the SSO server generates a
self-signed certificate.

Optional

SSO_PASSWORD The password for a user with privileges to interact
with the Keycloak realm and to create and register
clients. For example, client-admin.

True

SSO_REALM The SSO realm for associating application clients. For
example, saml-basic-auth.

Optional

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

38

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-setting-password-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-assigning-role-mappings_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-creating-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-setting-password-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/#proc-assigning-role-mappings_server_administration_guide

SSO_SAML_CERTIFICAT
E_NAME

Alias of private key and certificate in the SAML client
keystore. For example, saml-app.

True

SSO_SAML_KEYSTORE Name of the keystore file. For example,
keystore.jks.

True

SSO_SAML_KEYSTORE_
DIR

Directory that contains the client keystore. For
example, /etc/sso-saml-secret-volume.

True

SSO_SAML_KEYSTORE_
PASSWORD

Keystore password. For example, password. True

SSO_SAML_LOGOUT_PA
GE

Logout page. For example, simple-webapp-
example.

True

SSO_SAML_VALIDATE_S
IGNATURE

Specify true to validate the signature or false to not
validate it. True by default.

Optional

SSO_SECURITY_DOMAIN The name of the security domain used to secure
undertow and ejb subsystems. The default is
keycloak.

Optional

SSO_TRUSTSTORE The truststore file name containing the server
certificate.

Optional

SSO_TRUSTSTORE_CER
TIFICATE_ALIAS

Certificate alias within the truststore. Optional

SSO_TRUSTSTORE_DIR Directory that contains the truststore. Optional

SSO_TRUSTSTORE_PAS
SWORD

The password for the truststore and certificate . For
example, mykeystorepass.

Optional

SSO_URL The URL for the SSO server. For example, <SSO
server accessible route>.

True

SSO_USERNAME The username of a user with privileges to interact
with the Keycloak realm and to create and register
clients. For example, client-admin.

True

Environment variable Description Required

3.6.7. Route discovery in JBoss EAP server

You can optimize your server’s performance and simplify route configurations in your specified
namespace by using the route discovery feature in the JBoss EAP server. This feature is essential for
improving server efficiency to provide a smoother operational experience, particularly when the
HOSTNAME_HTTPS variable is unspecified.

If the HOSTNAME_HTTPS variable is not set, the JBoss EAP server automatically attempts route

CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM

39

If the HOSTNAME_HTTPS variable is not set, the JBoss EAP server automatically attempts route
discovery. To enable route discovery, you must create the required permissions:

3.6.8. Additional resources

Red Hat build of Keycloak Server Administration Guide

3.7. ADDITIONAL RESOURCES

OpenShift Container Platform Getting Started

oc create role routeview --verb=list --resource=route -n YOUR_NAME_SPACE
oc policy add-role-to-user routeview system:serviceaccount:YOUR_NAME_SPACE:default --role-
namespace=YOUR_NAME_SPACE -n YOUR_NAME_SPACE

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

40

https://access.redhat.com/documentation/en-us/red_hat_build_of_keycloak/22.0/html-single/server_administration_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/getting_started/index

CHAPTER 4. USING HELM CHARTS TO BUILD AND DEPLOY
JBOSS EAP APPLICATIONS ON OPENSHIFT

Helm is an open-source package manager that enables you to build, deploy, and maintain your JBoss
EAP applications on OpenShift. In JBoss EAP 8.0, Helm charts replace the OpenShift templates.

4.1. HELM CHART USE CASE

You can use Helm charts with JBoss EAP 8.0 to:

Build your application from a Maven project hosted on a Git repository using OpenShift Source-
to-Image (S2I).

Deploy an application image on OpenShift with deep integration with the OpenShift cluster
(TLS configuration, public route to expose the application, and so on).

Build your application image with Helm chart and use the JBoss EAP operator to deploy the
image.

Build an application image for JBoss EAP using other methods and use the Helm chart to
deploy the application image.

4.2. HELM CHART CUSTOMIZATION FOR JBOSS EAP ON OPENSHIFT

You can customize Helm chart for your JBoss EAP application by modifying the YAML file that contains
specific settings for your application.

In the YAML file, there are two main sections:

The build configuration.

The deploy configuration.

By selecting configure via YAML view, You can edit the Values files file directly on your OpenShift
Development Console to upgrade your Helm release with an updated configuration.

Additional resources

Helm chart on JBoss EAP 8

Value file examples

4.3. PROVISIONING JBOSS EAP WITH S2I

Use the eap-maven-plugin from the application pom.xml to provision your JBoss EAP server.

NOTE

The build.s2i.featurePacks, build.s2i.galleonLayers and build.s2i.channels fields
have been deprecated.

4.4. BUILDING AND DEPLOYING JBOSS EAP APPLICATIONS USING

CHAPTER 4. USING HELM CHARTS TO BUILD AND DEPLOY JBOSS EAP APPLICATIONS ON OPENSHIFT

41

https://github.com/jbossas/eap-charts/tree/eap8/charts/eap8
https://helm.sh/docs/chart_template_guide/values_files/

4.4. BUILDING AND DEPLOYING JBOSS EAP APPLICATIONS USING
HELM CHARTS

You can build your JBoss EAP application using Helms chart by configuring the build and deploy values.
You must provide a URL to the Git repository that hosts your application code in your build
configuration, the output is an ImageStreamTag resource that contains the built application image.

To deploy your application, you must provide an ImageStreamTag resource that contains your built
application image. The output is your deployed application and other related resources you can use to
access your application from inside and outside OpenShift.

Prerequisites

You have logged into the OpenShift Development Console.

You have JBoss EAP application hosted in a Git repository.

Your application is a Maven project

You have configured your application to use the org.jboss.eap.plugins:eap-maven-plugin to
provision your JBoss EAP 8.0 server.

Procedure

1. Build your application image from the source repository:

build:
 uri: <git repository URL of your application>

2. Optional: Enter the secret in the build section:

build:
 sourceSecret: <name of secret login to your Git repository>

Verification

If your application has been successfully deployed, you should see a deployed badge next to the
Helm release on OpenShift Development Console.

Additional resources

Provisioning a JBoss EAP server using the Maven plug-in

4.5. BUILDING YOUR APPLICATION IMAGE USING THE OPENSHIFT
DEVELOPMENT CONSOLE

You can build your JBoss EAP application image using Helm chart by configuring the build section on
the OpenShift Development Console.

NOTE

If the application image has been built by another mechanism, you can skip the building
part of the Helm chart by setting the build.enabled field to false.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

42

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#con_jboss-eap-maven-plug-in_assembly_environment-variables-and-model-expression-resolution

IMPORTANT

You must specify the build.url field with the Git URL that references your Git repository.

Additional resources

Helm chart for JBoss EAP 8.0.

Building the application image .

4.6. DEPLOYING YOUR APPLICATION IMAGE

You can deploy your JBoss EAP application using Helm chart by configuring the deploy setting on the
OpenShift Development Console.

NOTE

If you built your application image using another mechanism, you can skip the deployment
configuration of the Helm chart by setting the build.deploy field to false.

Additional resources

OpenShift Development Console Quickstarts .

Deploying the application image .

4.6.1. OpenShift volumes for persistent data storage in Helm chart

OpenShift volumes enable containers to store and share data from various sources, including cloud
storage, network file systems (NFS), or host machines. You can use Helm chart, an OpenShift package
manager, to deploy applications in a consistent and reproducible manner. By adding a volume mount to a
Helm chart, you can enable your application to persist data across deployments.

4.6.2. Mounting a volume with a Helm chart

This procedure explains how to mount a secret as a volume using a Helm chart on JBoss EAP 8.0.
Additionally, you can also use it to mount a ConfigMap. This action enables the application to securely
access and use the data, protecting it from unauthorized access or tampering.

For example, by mounting a secret as a volume, the sensitive data that you store in the secret appear as
a file in the POD running the deployment where the secret has been mounted.

Prerequisites

You have created a secret. For example, you have created a secret named eap-app-secret that
refers to a file like keystore.jks.

You have identified a location where to mount the secret in the container’s file system. For
example, the directory /etc/jgroups-encrypt-secre-secret-volume is where the secret file, such
as keystore.jks is mounted.

Procedure

1. Specify a volume in the deploy.volumes field and configure the secret to be used. You must

CHAPTER 4. USING HELM CHARTS TO BUILD AND DEPLOY JBOSS EAP APPLICATIONS ON OPENSHIFT

43

https://github.com/jbossas/eap-charts/blob/eap8/charts/eap8/README.md
https://github.com/jbossas/eap-charts/blob/eap8/charts/eap8/README.md#building-the-application-image
https://github.com/jbossas/eap-charts/blob/eap8/charts/eap8/README.md
https://github.com/jbossas/eap-charts/blob/eap8/charts/eap8/README.md#deploying-the-application-image

1. Specify a volume in the deploy.volumes field and configure the secret to be used. You must
provide the name of the volume and the secretName of the secret:

2. Mount the volume on the file system using the deploy.volumeMounts in the deployment
configuration:

When the pod starts, the container mounts the keystore.jks file at /etc/jgroups-encrypt-secret-
volume/keystore.jks location.

Additional resources

Volumes (Kubernetes documentation)

volumes:
 - name: eap-jgroups-keystore-volume
 secret:
 secretName: eap-app-secret

volumeMounts:
 - name: eap-jgroups-keystore-volume
 mountPath: /etc/jgroups-encrypt-secret-volume
 readOnly: true

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

44

https://kubernetes.io/docs/concepts/storage/volumes/

CHAPTER 5. ENVIRONMENT VARIABLES AND MODEL
EXPRESSION RESOLUTION

5.1. PREREQUISITES

You have some basic knowledge of how to configure environment variables on an operating
system.

For configuring environment variables on the OpenShift Container Platform, you must meet the
following prerequisites:

You have already installed OpenShift and set up the OpenShift CLI ("oc"). For more
information about the oc, see Getting Started with the OpenShift CLI.

You have deployed your application to OpenShift using a Helm chart. For more information
about Helm charts, see Helm Charts for JBoss EAP .

5.2. ENVIRONMENT VARIABLES FOR RESOLVING MANAGEMENT
MODEL EXPRESSIONS

To resolve management model expressions and to start your JBoss EAP 8.0 server on the OpenShift
Container Platform, you can either add environment variables or set Java system properties in the
management command-line interface (CLI). If you use both, JBoss EAP observes and uses the Java
system property rather than the environment variable to resolve the management model expression.

System property to environment variable mapping
Imagine that you have this management expression: ${my.example-expr}. When your JBoss EAP server
tries to resolve it, it checks for a system property named my.example-expr.

If your server finds this property, it uses its value to resolve the expression.

If it doesn’t find this property, your server continues searching.

Next, assuming that your server does not find system property my.example-expr, it automatically
changes my.example-expr to all uppercase letters and replaces all characters that aren’t alphanumeric
with underscores (_): MY_EXAMPLE_EXPR. JBoss EAP then checks for an environment variable with
that name.

If your server finds this variable, it uses its value to resolve the expression.

If it doesn’t find this variable, your server continues searching.

TIP

If your original expression starts with the prefix env., JBoss EAP resolves the environment variable by
removing the prefix, then looking for only the environment variable name. For example, for the
expression env.example, JBoss EAP looks for an example environment variable.

If none of these checks finds a property or variable to resolve your original expression, JBoss EAP looks
for whether the expression has a default value. If it does, that default value resolves the expression. If
not, then JBoss EAP can’t resolve the expression.

Example with two servers

CHAPTER 5. ENVIRONMENT VARIABLES AND MODEL EXPRESSION RESOLUTION

45

https://docs.openshift.com/container-platform/4.7/cli_reference/openshift_cli/getting-started-cli.html
https://jbossas.github.io/eap-charts/

Suppose that, on one server, JBoss EAP defines this management resource: <socket-binding-group
name="standard-sockets" default-interface="public" port-offset="${jboss.socket.binding.port-
offset:0}">. To run a second server with a different port offset, instead of editing the configuration file,
do one of the following:

Set the jboss.socket.binding.port-offset Java system property to resolve the value on the
second server: ./standalone.sh -Djboss.socket.binding.port-offset=100.

Set the JBOSS_SOCKET_BINDING_PORT_OFFSET environment variable to resolve the
value on the second server: JBOSS_SOCKET_BINDING_PORT_OFFSET=100
./standalone.sh.

5.3. CONFIGURING ENVIRONMENT VARIABLES ON THE OPENSHIFT
CONTAINER PLATFORM

With JBoss EAP 8.0, you can configure environment variables to resolve management model
expressions. You can also use environment variables to adapt the configuration of the JBoss EAP server
you’re running on OpenShift.

Set environment variables and options on a resource that uses a pod template:

$ oc set env <object-selection> KEY_1=VAL_1 ... KEY_N=VAL_N [<set-env-options>] [<common-
options>]

Option Description

-e, --env=<KEY>=<VAL> Set given key-value pairs of environment variables.

--overwrite Confirm update of existing environment variables.

NOTE

Kubernetes workload resources that use pod templates include the following:

Deployment

ReplicaSet

StatefulSet

DaemonSet

Job

CronJob

After you configure your environment variables, the JBoss EAP management console should display
them in the details for their related pods.

Additional resources

About the OpenShift CLI

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/cli_tools/openshift-cli-oc

Red Hat JBoss Enterprise Application Platform Configuration Guide

5.4. OVERRIDING MANAGEMENT ATTRIBUTES WITH ENVIRONMENT
VARIABLES

You know that you can use a Java system property or an environment variable to resolve a management
attribute that’s defined with an expression, but you can also modify other attributes, even if they don’t
use expressions.

To more easily adapt your JBoss EAP server configuration to your server environment, you can use an
environment variable to override the value of any management attribute, without ever having to edit
your configuration file. This feature, which is available starting with the JBoss EAP version 8.0, is useful
for the following reasons:

JBoss EAP provides expressions for only its most common management attributes. Now, you
can change the value of an attribute that has no defined expression.

Some management attributes connect your JBoss EAP server with other services, such as a
database, whose values you can’t know in advance, or whose values you can’t store in a
configuration; for example, in database credentials. By using environment variables, you can
defer the configuration of such attributes while your JBoss EAP server is running.

IMPORTANT

This feature is enabled by default, starting with JBoss EAP version 8.0 OpenShift runtime
image. To enable it on other platforms, you must set the
WILDFLY_OVERRIDING_ENV_VARS environment variable to any value; for example,
export WILDFLY_OVERRIDING_ENV_VARS=1.

NOTE

You can’t override management attributes whose type is LIST, OBJECT, or PROPERTY.

Prerequisites

You must have defined a management attribute that you now want to override.

Procedure

To override a management attribute with an environment variable, complete the following steps:

1. Identify the path of the resource and attribute you want to change. For example, set the value
of the proxy-address-forwarding attribute to true for the resource
/subsystem=undertow/server=default-server/http-listener=default.

2. Create the name of the environment variable to override this attribute by mapping the resource
address and the management attribute, as follows:

a. Remove the first slash (/) from the resource address:
/subsystem=undertow/server=default-server/http-listener=default becomes
subsystem=undertow/server=default-server/http-listener=default.

b. Append two underscores (__) and the name of the attribute; for example:
subsystem=undertow/server=default-server/http-listener=default__proxy-address-
forwarding.

c. Replace all non-alphanumeric characters with an underscore (_), and put the entire line of

CHAPTER 5. ENVIRONMENT VARIABLES AND MODEL EXPRESSION RESOLUTION

47

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html/configuration_guide/index

c. Replace all non-alphanumeric characters with an underscore (_), and put the entire line of
code in all capital letters:
SUBSYSTEM_UNDERTOW_SERVER_DEFAULT_SERVER_HTTP_LISTENER_DEFAULT
__PROXY_ADDRESS_FORWARDING.

3. Set the environment value:
SUBSYSTEM_UNDERTOW_SERVER_DEFAULT_SERVER_HTTP_LISTENER_DEFAULT__P
ROXY_ADDRESS_FORWARDING=true.

NOTE

These values are examples that you must replace with your actual configuration values.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

48

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING
THE MAVEN PLUG-IN

Using JBoss EAP Maven plug-in, you can configure a server according to your requirements by including
only those Galleon layers that provide the capabilities that you need, in your server.

6.1. JBOSS EAP MAVEN PLUG-IN

The JBoss EAP Maven plug-in uses Galleon trimming capability to reduce the size and memory
footprint of the server. The JBoss EAP Maven plug-in supports the execution of JBoss EAP CLI script
files to customize your server configuration. A CLI script includes a list of CLI commands for configuring
the server.

You can retrieve the latest Maven plug-in version from the Maven repository, which is available at Index
of /ga/org/jboss/eap/plugins/eap-maven-plugin. In a Maven project, the pom.xml file contains the
configuration of the JBoss EAP Maven plug-in.

The JBoss EAP Maven plug-in provisions the server and deploys the packaged application, such as
WAR, to the provisioned server during the Maven execution. The provisioned server on which your
application is deployed is located in target/server directory. The JBoss EAP Maven plug-in also
provides the following functionality:

NOTE

The server in target/server is not supported and is available only for debugging or
development purposes.

Uses the org.jboss.eap:wildfly-ee-galleon-pack and org.jboss.eap.cloud:eap-cloud-
galleon-pack Galleon feature-pack and some of its layers for customizing the server
configuration file.

Applies CLI script commands to the server.

Supports the addition of extra files into the server installation, such as a keystore file.

6.2. CREATING A JAKARTA EE 10 APPLICATION WITH THE MAVEN

Create an application that prints “Hello World!” when you access it.

Prerequisites

You have installed JDK 17.

You have installed the Maven 3.6 or later version. For more information, see Downloading
Apache Maven.

Procedure

1. Set up the Maven project.

$ mvn archetype:generate \
-DgroupId=GROUP_ID \
-DartifactId=ARTIFACT_ID \

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN

49

https://maven.repository.redhat.com/ga/org/jboss/eap/plugins/eap-maven-plugin/
https://maven.apache.org/download.cgi

Where GROUP_ID is the groupId of your project and ARTIFACT_ID is the artifactId of your
project.

2. To configure the Maven to automatically manage versions for the Jakarta EE artifacts in the
jboss-eap-ee BOM, add the BOM to the <dependencyManagement> section of the project
pom.xml file. For example:

NOTE

<version>A.B.C-redhat-XXXXX</version> Where A.B.C is the release
number and XXXXX is build number of your JBoss EAP instance. See the
Red Hat Maven repository for version details about JBoss EAP releases. The
release and build numbers are available for all JBoss EAP releases.
https://maven.repository.redhat.com/earlyaccess/all/org/jboss/bom/jboss-
eap-ee/.

3. Add the servlet API artifact, which is managed by the BOM, to the <dependencies> section of
the project pom.xml file, as shown in the following example:

4. Create a Java file TestServlet.java with the following content and save the file in the
APPLICATION_ROOT/src/main/java/com/example/simple/ directory.

-DarchetypeGroupId=org.apache.maven.archetypes \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-eap-ee</artifactId>
 <version>8.0.0.GA-redhat-00009</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependency>
 <groupId>jakarta.servlet</groupId>
 <artifactId>jakarta.servlet-api</artifactId>
</dependency>

package com.example.simple;
import jakarta.servlet.annotation.WebServlet;
import jakarta.servlet.http.HttpServlet;
import jakarta.servlet.http.HttpServletRequest;
import jakarta.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
@WebServlet(urlPatterns = "/hello")
public class TestServlet extends HttpServlet {
 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

50

https://maven.repository.redhat.com/earlyaccess/all/org/jboss/bom/jboss-eap-ee/

You can now deploy this application on JBoss EAP or update this application to package it with and
deploy it on a custom provisioned JBoss EAP server using the Maven plug-in.

6.3. USING THE MAVEN PLUG-IN TO PROVISION A JBOSS EAP
SERVER

Update the pom.xml of an application to package it with and deploy on a custom provisioned JBoss
EAP server using the Maven plug-in. You can then deploy the application running on the custom-
provisioned JBoss EAP server on OpenShift.

Prerequisites

Ensure that the JBoss EAP Maven plug-in and the JBoss EAP Maven artifact are accessible
from either your local or remote Maven repositories.

You have installed JDK 17.

You have installed Maven. For more information, see Downloading Apache Maven.

NOTE

If you are using JDK 17 and Maven 3.8.5 or previous Maven version, use the latest
Maven WAR plugin.

You have created a Maven project for Jakarta EE 10 application. For more information, see
Creating a Jakarta EE 10 application with the Maven .

Procedure

1. Configure Maven to retrieve the JBoss EAP BOM and JBoss EAP Maven plug-in from a remote
repository by adding the following content to the pom.xml file:

IOException {
 PrintWriter writer = resp.getWriter();
 writer.println("Hello World!");
 writer.close();
 }
}

<repositories>
 <repository>
 <id>jboss</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>jboss</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN

51

https://maven.apache.org/download.cgi
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_creating-a-maven-project_assembly_environment-variables-and-model-expression-resolution

1

2

3

2. Add the following content to the <build> element of the pom.xml file. You must specify the
latest version of the JBoss EAP Maven plug-in. For example:

<version>1.0.0.Final-redhat-00014</version> is an example version of JBoss EAP Maven
plugin. See the Red Hat Maven repository for more information on JBoss EAP Maven
plugin releases:
https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/plugins/eap-maven-
plugin/.

This specifies the JBoss EAP 8.0 channel in which the JBoss EAP server artifacts are
defined.

You can retrieve the version of this feature pack from the JBoss EAP channel. The Galleon
feature-pack includes Galleon layers such as cloud-server for provisioning trimmed JBoss
EAP servers.

 </snapshots>
 </pluginRepository>
</pluginRepositories>

<plugins>
 <plugin>
 <groupId>org.jboss.eap.plugins</groupId>
 <artifactId>eap-maven-plugin</artifactId>
 <version>1.0.0.Final-redhat-00014</version> 1
 <configuration>
 <channels>
 <channel>
 <manifest>
 <groupId>org.jboss.eap.channels</groupId> 2
 <artifactId>eap-8.0</artifactId>
 </manifest>
 </channel>
 </channels>
 <feature-packs>
 <feature-pack>
 <location>org.jboss.eap:wildfly-ee-galleon-pack</location> 3
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap.cloud:eap-cloud-galleon-pack</location> 4
 </feature-pack>
 </feature-packs>
 <layers>
 <layer>cloud-server</layer> 5
 </layers>
 <runtime-name>ROOT.war</runtime-name> 6
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>package</goal> 7
 </goals>
 </execution>
 </executions>
 </plugin>
</plugins>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

52

https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/plugins/eap-maven-plugin/

4

5

6

7

EAP servers.

This feature pack adjusts the server Galleon layers for the cloud. It is necessary to use this
feature pack to build applications for OpenShift.

This Galleon layer provisions a server with features that are necessary when running JBoss
EAP applications in the cloud.

With this configuration option, you can register your deployment in the HTTP root context.

With this plug-in goal, you can provision the server, deploy your application, apply custom
configured CLI scripts, and copy custom content into the server installation.

3. Package the application.

$ mvn package

The directory target/server contains a server and application that are ready for use for
debugging or development purposes. In the JBoss EAP S2I build context, the server
provisioned by the JBoss EAP maven-plugin is installed in the JBoss EAP image at the
/opt/server location. For more information see Building Applications Images using Source-to-
Image (S2I) in OpenShift.

NOTE

If you use the mvn package command with debugging enabled (-X option), include the
property -Dorg.slf4j.simpleLogger.log.com.networknt.schema=off to prevent
excessive debug logging during schema validation.

Verification

You can check the generated server configuration file
target/server/standalone/configuration/standalone.xml that contains the provisioned
subsystems and application deployment.

The JBoss EAP server that contains your deployment has been provisioned.

Additional resources

Available JBoss EAP layers.

Use the Maven Repository.

Introduction to the Standard Directory Layout in the Apache Maven documentation .

6.4. THE GALLEON PROVISIONING FILE

Provisioning files are XML files with the name provisioning.xml that you can store in the galleon
subdirectory. Using them is an alternative to configuring feature packs and layers in the JBoss EAP
Maven plug-in. You can configure provisioning.xml file to fine-tune the provisioning process.

The following code demonstrates a provisioning file content that you can use to provision JBoss EAP
server based on the cloud-server layer.

NOTE

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN

53

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_building-applications-images-using-source-to-image-s2i-on-openshift_assembly_building-and-running-jboss-eap-applicationson-openshift-container-platform
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#available-jboss-eap-layers_assembly_capability-trimming-in-jboss-eap-for-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/index#use_the_maven_repository
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

1

2

3

4

5

6

NOTE

The JBoss EAP feature packs don’t have versions, versions are retrieved from the
configured channel in the Maven plug-in.

This element instructs the provisioning process to provision the JBoss EAP feature pack retrieved
from the JBoss EAP channel.

This element instructs the provisioning process to exclude default configurations. You can retrieve
default configurations in JBoss EAP server installation, such as standalone.xml and standalone-
ha.xml. When you are provisioning JBoss EAP server from the JBoss EAP Maven plugin, generate
a single server configuration based on the configured Galleon users. Setting the option to false
prevents the generation of any additional server configurations. Setting inherit=true is not
supported for both default-configs and packages.

This element instructs the provisioning process to exclude default packages.

This element instructs the provisioning process to provision the JBoss EAP cloud feature pack. The
child elements instruct the process to exclude default configurations and default packages.

This element instructs the provisioning process to create a custom standalone configuration. The
configuration includes the cloud-server base layer defined in the JBoss EAP feature pack and
tuned for OpenShift by the JBoss EAP cloud feature pack.

This element instructs the provisioning process to optimize provisioning of JBoss EAP modules.

6.5. THE MAVEN PLUG-IN CONFIGURATION ATTRIBUTES

You can configure the eap-maven-plugin Maven plug-in by setting the following list of configuration
parameters.

Table 6.1. The Maven plug-in configuration attributes

<?xml version="1.0" ?>
<installation xmlns="urn:jboss:galleon:provisioning:3.0">
 <feature-pack location="org.jboss.eap:wildfly-ee-galleon-pack:"> 1
 <default-configs inherit="false"/> 2
 <packages inherit="false"/> 3
 </feature-pack>
 <feature-pack location="org.jboss.eap.cloud:eap-cloud-galleon-pack:
"> 4
 <default-configs inherit="false"/>
 <packages inherit="false"/>
 </feature-pack>
 <config model="standalone" name="standalone.xml"> 5
 <layers>
 <include name="cloud-server"/>
 </layers>
 </config>
 <options> 6
 <option name="optional-packages" value="passive+"/>
 </options>
</installation>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

54

Name Type Description

channels List A list of channel YAML file references. A channel file
contains the versions of the JBoss EAP server
artifacts. There are two ways to identify a channel
YAML file.

If you deploy the channel YAML file artifact
in a Maven repository with the channels
classifier, then you can identify it using it’s
Maven coordinates: groupId, artifactId
and optional version. If version is not set, it
uses the latest channel version. For
example:

<channels>
 <channel>
 <manifest>

<groupId>org.jboss.eap.channels</groupId>
 <artifactId>eap-8.0</artifactId>
 </manifest>
 </channel>
</channels>

You can retrieve the channel YAML file by
using the URL. For example:

<channels>
 <channel>
 <manifest>
 <url>file:///foo/my-manifest.yaml</url>
 </manifest>
 </channel>
</channels>

excluded-layers List A list of Galleon layers to exclude. You can use it
when feature-pack-location or feature packs are
set. Use the system property
wildfly.provisioning.layers.excluded to provide
a comma-separated list of layers to exclude.

extra-server-content-
dirs

List A list of directories from which content is copied to
the provisioned server. You can use either the
absolute path to the directory or the relative path.
The relative path must be relative to the project base
directory.

feature-packs List A list of feature pack configurations to install, which
you can combine with layers. Use the system
property wildfly.provisioning.feature-packs to
provide a comma-separated list of feature packs.

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN

55

filename String The file name of the application to deploy. The
default value is
${project.build.finalName}.${project.packagin
g}. In an exception case, ejb packaging results in .jar
extension. For example, the value of
$[project.packaging] during war packaging is war
and the value of $[project.packaging] during ejb
packaging is ejb, which is not a valid jar extension.
These cases require the .jar extension.

galleon-options Map When provisioning the server, you can set specific
Galleon options. If you are building a large number of
servers in the same Maven session, you must set
jboss-fork-embedded option to true to fork
Galleon provisioning and CLI scripts execution. For
example:

layers List A list of Galleon layers to provision. You can use it
when feature-pack-location or feature packs are
set. Use the system property
wildfly.provisioning.layers to provide a comma-
separated list of layers.

layers-configuration-
file-name

String A name of the configuration file generated from
layers. The default value is standalone.xml. You
cannot set this parameter if layers are not configured.

log-provisioning-
time

boolean Specifies whether to log the provisioning time at the
end of the provisioning. The default value is false.

name String A name used for the deployment.

offline-provisioning boolean Specifies whether to use offline mode when the
plug-in resolves an artifact. In offline mode, the plug-
in uses the local Maven repository for artifact
resolution. The default value is false.

overwrite-
provisioned-server

boolean If you want to delete the existing server referenced
from the provisioningDir and provision a new one,
set it to true. If not, set it to false. The default value
is false.

Name Type Description

<galleon-options>
 <jboss-fork-embedded>true</jboss-fork-
embedded>
</galleon-options>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

56

packaging-scripts List A list of CLI scripts and commands to execute. If a
script file is not absolute, it must be relative to the
project base directory. Configure the CLI executions
in the following way:

provisioning-dir String Path to the directory in which to provision the server.
It can be an absolute path or a path relative to the
buildDir. By default, the server is provisioned into
the target/server directory. The default value is
server.

provisioning-file File The path to the provisioning.xml file to use. You
cannot use it when feature packs configuration item
and layers configuration item are set. If the
provisioning file path is not absolute, it must be
relative to the project base directory. The default
value is
${project.basedir}/galleon/provisioning.xml.

record-provisioning-
state

boolean Specifies whether to record the provisioning state in
.galleon directory. The default value is false.

runtime-name String The runtime-name of the deployment. The default
value is the deployment file name, such as
myapp.war. You can set this argument to
ROOT.war to get the deployment registered in the
HTTP root context.

Name Type Description

<packaging-scripts>
 <packaging-script>
 <scripts>
 <script>../scripts/script1.cli</script>
 </scripts>
 <commands>
 <command>/system-
property=foo:add(value=bar)</command>
 </commands>
 <properties-files>
 <property-file>my-
properties.properties</property-file>
 </properties-files>
 <java-opts>
 <java-opt>-Xmx256m</java-opt>
 </java-opts>
 <!-- Expressions resolved during server
execution -->
 <resolve-expressions>false</resolve-
expressions>
 </packaging-script>
</packaging-scripts>

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN

57

server-config String The name of the server configuration to use during
deployment. The deployment is deployed inside the
configuration referenced from layers-
configuration-file-name if layers-
configuration-file-name is set. The default value
is standalone.xml.

skip boolean If you want the goal to be skipped, set it to true. If
not, set it to false. The default value is false.

stdout String Indicates how stdout and stderr are handled for the
created CLI processes. stderr is redirected to
stdout if the value is defined unless the value is
none. By default the stdout and stderr streams are
inherited from the current process. You can change
the setting to one from the following options:

None indicates that stderr and stdout
should not be used.

System.out or System.err to redirect to
the current processes.

Any other value is assumed to be the path
to a file and the stdout and stderr will be
written to it.

Name Type Description

6.6. HOW TO ENABLE SUPPORT FOR EAP-DATASOURCES-GALLEON-PACK FOR
JBOSS EAP 8.0

The eap-data-sources-galleon-pack Galleon feature pack allows you to provision a JBoss EAP 8.0
server that can connect to your databases.

NOTE

Not all databases are supported.

In addition, this feature pack provides JDBC drivers and data sources for various databases that can be
provisioned along with the JBoss EAP 8.0 Galleon feature packs. Galleon layers defined in this feature
pack are decorator layers. This means that they need to be provisioned in addition to a JBoss EAP base
layer.

IMPORTANT

The datasources-web-server base layer, is the minimal base layer to use when
provisioning Galleon layers that are feature pack defined.

Additional resources

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

58

JBoss EAP 8.0 defined layer documentation

6.7. SUPPORTED DRIVERS AND DATA SOURCES

For each database the Galleon feature pack supports, it provides Galleon layers that build upon each
other, these are:

postgresql-driver

postgresql-datasource

mssqlserver-datasource

mssqlserver-driver

oracle-datasource

oracle-driver

Table 6.2. Supported drivers and data sources

Layers Description

postgresql-driver This installs a JBoss EAP module for the driver and
adds a driver resource to the data sources subsystem
in the server configuration.

postgresql-datasource This is built upon the postgresql-driver Galleon
layer to add a data source.

NOTE

No specific driver version is included in the feature pack. Before you provision
your server, you have to specify the driver version.

Example

POSTGRESQL_DRIVER_VERSION="42.2.19"

The driver-specific environment variables are defined within their specific driver
documentation.

Additional resources

Environment variables to configure Microsoft SQL Server driver and data source

Environment variables to configure Oracle driver and data source

Environment variables to configure PostgreSQL driver and data source

6.8. USING THE JBOSS EAP MAVEN PLUGIN TO PROVISION A
SERVER WITH JDBC DRIVERS AND DATA SOURCES

You can use the Galleon feature pack to provision your JBoss EAP server on OpenShift.

CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN

59

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#available-jboss-eap-layers_assembly_capability-trimming-in-jboss-eap-for-openshift
https://github.com/jbossas/eap-datasources-galleon-pack/blob/main/doc/mssqlserver/README.md
https://github.com/jbossas/eap-datasources-galleon-pack/blob/main/doc/oracle/README.md
https://github.com/jbossas/eap-datasources-galleon-pack/blob/main/doc/postgresql/README.md

NOTE

This procedure only demonstrates how to provision your JBoss EAP server on OpenShift
for JBoss EAP 8.0.

Prerequisites

You have already installed OpenShift and set up the OpenShift CLI ("oc"). For more
information, see Getting Started with the OpenShift CLI.

You have basic knowledge of how to use the JBoss EAP maven plugin. For more information,
see JBoss EAP Maven plug-in .

Procedure

Add the Maven coordinates (GroupId and artifactId) of the data sources feature pack to the
JBoss EAP maven plugin configuration.

Additional resources

JBoss EAP 8 Beta Maven Plugin configuration for the todo-backend quickstart

<channels>
 <channel>
 <groupId>org.jboss.eap.channels</groupId>
 <artifactId>eap-8.0</artifactId>
 </channel>
</channels>
<feature-packs>
 <feature-pack>
 <location>org.jboss.eap:wildfly-ee-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap.cloud:eap-cloud-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap:eap-datasources-galleon-pack</location>
 </feature-pack>
</feature-packs>
<layers>
 <!-- Base layer -->
 <layer>jaxrs-server</layer>
 <!-- The postgresql datasource layer -->
 <layer>postgresql-datasource</layer>
</layers>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

60

https://docs.openshift.com/container-platform/4.7/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#con_jboss-eap-maven-plug-in_assembly_environment-variables-and-model-expression-resolution
https://github.com/jboss-developer/jboss-eap-quickstarts/tree/8.0.x/todo-backend

CHAPTER 7. CONFIGURING YOUR JBOSS EAP SERVER AND
APPLICATION

The JBoss EAP for OpenShift image is preconfigured for basic use with your Java applications.
However, you can configure the JBoss EAP instance inside the image. The recommended method is to
use the OpenShift S2I process and set environment variables in Helm charts to tune the JVM.

IMPORTANT

Any configuration changes made on a running container will be lost when the container is
restarted or terminated.

This includes any configuration changes made using scripts that are included with a
traditional JBoss EAP installation, for example add-user.sh or the management CLI.

It is strongly recommended that you use the OpenShift S2I process, together with
environment variables, to make any configuration changes to the JBoss EAP instance
inside the JBoss EAP for OpenShift image.

7.1. JVM DEFAULT MEMORY SETTINGS

You can use the following environment variables to modify the JVM settings calculated automatically.
Note that these variables are only used when default memory size is calculated automatically when a
valid container memory limit is defined.

Environment
variables

Description

JAVA_INITIAL_
MEM_RATIO

This environment variable is now deprecated. Corresponds to the JVM argument -
XX:InitialRAMPercentage. This is not specified by default and will be removed in a
future release. You need to specify --XX:InitialRAMPercentage directly in
JAVA_OPTS instead.

NOTE

You no longer need to set JAVA_INITIAL_MEM_RATIO=0 to
disable automatic computation. Because no default value is provided
for this environment variable.

JAVA_MAX_ME
M_RATIO

Environment variable to configure the -XX:MaxRAMPercentage JVM option. Set
the maximum heap size as a percentage of the total memory available for the Java VM.
The default value is 80%. Setting JAVA_MAX_MEM_RATIO=0 disables this default
value.

CHAPTER 7. CONFIGURING YOUR JBOSS EAP SERVER AND APPLICATION

61

JAVA_OPTS Environment variable to provide additional options to the JVM, for example,
JAVA_OPTS=-Xms512m -Xmx1024m

NOTE

If you set a value for -Xms, the -XX:InitialRAMPercentage option is
ignored. If you set a value for -Xmx, the -XX:MaxRAMPercentage
option is ignored.

JAVA_MAX_INI
TIAL_MEM

This environment variable is now deprecated. Use JAVA_OPTS to provide the`-Xms`
option, for example, JAVA_OPTS=-Xms256m

Environment
variables

Description

7.2. JVM GARBAGE COLLECTION SETTINGS

The EAP image for OpenShift includes settings for both garbage collection and garbage collection
logging

Garbage Collection Settings

-XX:+UseParallelGC -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 -XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeight=90 -XX:+ExitOnOutOfMemoryError

Garbage Collection Logging Settings

-Xlog:gc*:file=/opt/server/standalone/log/gc.log:time,uptimemillis:filecount=5,filesize=3M

7.3. JVM ENVIRONMENT VARIABLES

Use these environment variables to configure the JVM in the EAP for OpenShift image.

Table 7.1. JVM Environment Variables

Variable
Name

Example Default
Value

JVM Settings Description

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

62

JAVA_OPTS -
verbose:
class

No
default

Multiple JVM options to pass to the java command.

Use JAVA_OPTS_APPEND to configure
additional JVM settings. If you use
JAVA_OPTS, some unconfigurable
defaults are not added to the server JVM
settings. You must explicitly add these
settings.

Using JAVA_OPTS disables certain
settings added by default by the container
scripts. Disabled settings include:

-XX:MetaspaceSize=96M

-Djava.net.preferIPv4Stack=true

-
Djboss.modules.system.pkgs=jdk.n
ashorn.api,com.sun.crypto.provide
r

-Djava.awt.headless=true

Add these defaults if you use
JAVA_OPTS to configure additional
settings.

JAVA_OPTS_
APPEND

-
Dsome.
property
=value

No
default

Multiple User-specified Java options to append to
generated options in JAVA_OPTS.

JAVA_MAX_
MEM_RATIO

50 80 -Xmx Use this variable when the -Xmx option is
not specified in JAVA_OPTS. The value
of this variable is used to calculate the
default maximum heap memory size based
on the restrictions of the container. If this
variable is used in a container without a
memory constraint, the variable has no
effect. If this variable is used in a container
that does have a memory constraint, the
value of -Xmx is set to the specified ratio
of the container’s available memory. The
default value, 50 means that 50% of the
available memory is used as an upper
boundary. To skip calculation of maximum
memory, set the value of this variable to 0.
No -Xmx option will be added to
JAVA_OPTS.

Variable
Name

Example Default
Value

JVM Settings Description

CHAPTER 7. CONFIGURING YOUR JBOSS EAP SERVER AND APPLICATION

63

JAVA_INITIAL
_MEM_RATIO

25 -Xms -Xms Use this variable when the -Xms option is
not specified in JAVA_OPTS. The value
of this variable is used to calculate the
default initial heap memory size based on
the maximum heap memory. If this variable
is used in a container without a memory
constraint, the variable has no effect. If this
variable is used in a container that does
have a memory constraint, the value of -
Xms is set to the specified ratio of the -
Xmx memory. The default value, 25 means
that 25% of the maximum memory is used
as the initial heap size. To skip calculation of
initial memory, set the value of this variable
to 0. No -Xms option will be added to
JAVA_OPTS.

JAVA_MAX_I
NITIAL_MEM

4096 4096 -Xms JAVA_MAX_INITIAL_MEM
environment variable is now deprecated,
use JAVA_OPTS to provide -Xms option.
For example, JAVA_OPTS=-Xms256m

JAVA_DIAGN
OSTICS

true false
(disable
d)

-Xlog:gc:utctime
-
XX:NativeMemor
yTracking=sum
mary

Set the value of this variable to true to
include diagnostic information in standard
output when events occur. If this variable is
defined as true in an environment where
JAVA_DIAGNOSTICS has already been
defined as true, diagnostics are still
included.

DEBUG true false -
agentlib:jdwp=trans
port=dt_socket,add
ress=$DEBUG_PO
RT,server=y,suspen
d=n

Enables remote debugging.

DEBUG_POR
T

8787 8787 -
agentlib:jdwp=trans
port=dt_socket,add
ress=$DEBUG_PO
RT,server=y,suspen
d=n

Specifies the port used for debugging.

GC_MIN_HEA
P_FREE_RATI
O

20 10 -
XX:MinHeapFreeRa
tio

Minimum percentage of heap free after
garbage collection to avoid expansion.

Variable
Name

Example Default
Value

JVM Settings Description

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

64

GC_MAX_HE
AP_FREE_RA
TIO

40 20 -
XX:MaxHeapFreeR
atio

Maximum percentage of heap free after
garbage collection to avoid shrinking.

GC_TIME_RA
TIO

4 4 -XX:GCTimeRatio Specifies the ratio of the time spent
outside of garbage collection (for example,
time spent in application execution) to the
time spent in garbage collection.

GC_ADAPTIV
E_SIZE_POLI
CY_WEIGHT

90 90 -
XX:AdaptiveSizePol
icyWeight

The weighting given to the current garbage
collection time versus the previous garbage
collection times.

GC_METASP
ACE_SIZE

20 96 -XX:MetaspaceSize The initial metaspace size.

GC_MAX_ME
TASPACE_SI
ZE

100 No
default

-
XX:MaxMetaspace
Size

The maximum metaspace size.

GC_CONTAI
NER_OPTION
S

-
XX:+Use
rG1GC

-XX:-
UsePara
llelGC

-XX:-
UseParallelGC

Specifies the Java garbage collection to
use. The value of the variable is specified
by using the Java Runtime Environment
(JRE) command-line options. The
specified JRE command overrides the
default.

Variable
Name

Example Default
Value

JVM Settings Description

The following environment variables are deprecated:

JAVA_OPTIONS: Use JAVA_OPTS.

INITIAL_HEAP_PERCENT: Use JAVA_INITIAL_MEM_RATIO.

CONTAINER_HEAP_PERCENT: Use JAVA_MAX_MEM_RATIO.

7.4. DEFAULT DATASOURCE

The datasource ExampleDS is not available in JBoss EAP 8.0.

Some quickstarts require this datasource:

cmt

thread-racing

Applications developed by customers might also require the ExampleDS datasource.

If you need the default datasource, use the ENABLE_GENERATE_DEFAULT_DATASOURCE
environment variable to include it when provisioning a JBoss EAP server.

CHAPTER 7. CONFIGURING YOUR JBOSS EAP SERVER AND APPLICATION

65

ENABLE_GENERATE_DEFAULT_DATASOURCE=true

NOTE

This environment variable works only when cloud-default-config galleon layer is used.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

66

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR
OPENSHIFT

Trimming the server can reduce the security exposure of the provisioned server, or reduce the memory
footprint so it is more appropriate for a microservice container.

When building an image that includes JBoss EAP, you can control the JBoss EAP features and
subsystems to be included in the image. You can do this by using the JBoss EAP Maven plug-in when
you create a new application during the Source-to-Image (S2I) build process. For more information, see
Provisioning a JBoss EAP server using the Maven plug-in .

NOTE

During the S2I build process, you can use the following environment variables instead of
the JBoss EAP Maven plug-in:

GALLEON_PROVISION_FEATURE_PACKS

GALLEON_PROVISION_LAYERS

GALLEON_PROVISION_CHANNELS

8.1. AVAILABLE JBOSS EAP LAYERS

Red Hat provides base and decorator layers that allow you to customize provisioning your JBoss EAP
server in OpenShift. The base layers provide core functionality, and the decorator layers enhance the
base layers.

The following Jakarta EE specifications are not supported in any provisioning layer:

Jakarta Server Faces 2.3

Jakarta Enterprise Beans 3.2

Jakarta XML Web Services 2.3

8.1.1. Base layers

Each base layer includes core functionality for a typical server user case.

datasources-web-server
This layer includes a servlet container and the ability to configure a datasource.

The following are the JBoss EAP subsystems included by default in the datasources-web-server:

core-management

datasources

deployment-scanner

ee

elytron

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

67

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#assembly_provisioning-a-jboss-eap-server-using-the-maven-plugin_assembly_environment-variables-and-model-expression-resolution

io

jca

jmx

logging

naming

request-controller

security-manager

transactions

undertow

The following Jakarta EE specifications are supported in this layer:

Jakarta JSON Processing 1.1

Jakarta JSON Binding 1.0

Jakarta Servlet 4.0

Jakarta Expression Language 3.0

Jakarta Server Pages 2.3

Jakarta Standard Tag Library 1.2

Jakarta Concurrency 1.1

Jakarta Annotations 1.3

Jakarta XML Binding 2.3

Jakarta Debugging Support for Other Languages 1.0

Jakarta Transactions 1.3

Jakarta Connectors 1.7

jaxrs-server
This layer enhances the datasources-web-server layer with the following JBoss EAP subsystems:

jaxrs

weld

jpa

This layer also adds an Infinispan-based second-level entity with local caching to the container.

The following Jakarta EE specifications are supported in this layer in addition to those supported in the
datasources-web-server layer:

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

68

Jakarta Contexts and Dependency Injection 2.0

Jakarta Bean Validation 2.0

Jakarta Interceptors 1.2

Jakarta RESTful Web Services 2.1

Jakarta Persistence 2.2

cloud-server
This layer enhances the jaxrs-server layer with the following JBoss EAP subsystems:

resource-adapters

messaging-activemq (remote broker messaging, not embedded messaging)

This layer also adds the following observability features to the jaxrs-server layer:

Native Health

Native Metrics

The following Jakarta EE specification is supported in this layer in addition to those supported in the
jaxrs-server layer:

Jakarta Security 1.0

cloud-default-config
This layer provisions a server with server configuration based on standalone-ha.xml and includes the
subsystem configuration messaging-activemq. On the contrary, the modcluster and core-
management subsystems configuration are not included. This is configured to be used in the cloud.
Additionally, all JBoss EAP server JBoss modules will be installed.

ee-core-profile-server
The ee-core-profile-server layer provisions a server with the Jakarta EE 10 Core Profile. The Core
Profile provides a small, lightweight profile for users that provides both core JBoss EAP server
functionality and Jakarta EE APIs. The ee-core-profile-server layer is best suited for smaller runtimes
such as cloud-native applications and microservices.

8.1.2. Decorator layers

Decorator layers are not used alone. You can configure one or more decorator layers with a base layer to
deliver additional functionality.

observability
This decorator layer adds the following observability features to the provisioned server:

Native Health

Native Metrics

NOTE

This layer is built into the cloud-server layer. You do not need to add this layer to the
cloud-server layer.

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

69

web-clustering
This layer adds embedded Infinispan-based web session clustering to the provisioned server.

8.2. PROVISIONING USER-DEVELOPED LAYERS IN JBOSS EAP

In addition to provisioning layers available from Red Hat, you can provision custom layers you develop.

Procedure

1. Build a custom layer using the Galleon Maven plugin.
For more information, see Preparing the Maven project.

2. Deploy the custom layer to an accessible Maven repository.

3. You can use custom Galleon feature-pack environment variables to customize Galleon feature-
packs and layers during the S2I image build process.
For more information about customizing Galleon feature-packs and layers, see Using the
custom Galleon feature-pack during S2I build.

4. Optional: Create a custom provisioning file to reference the user-defined layer and supported
JBoss EAP layers and store it in your application directory.
For more information about creating a custom provisioning file, see The Galleon provisioning
file.

5. Run the S2I process to provision a JBoss EAP server in OpenShift.
For more information, see Using the custom Galleon feature-pack during S2I build .

8.2.1. Building and using custom Galleon layers for JBoss EAP

Custom Galleon layers are packaged inside a Galleon feature-pack that is designed to run with JBoss
EAP 8.0.

In Openshift, you can build and use a Galleon feature-pack that contains layers to provision, for example,
a MariaDB driver and data source for the JBoss EAP 8.0 server. A layer contains the content that is
installed in the server. A layer can update the server XML configuration file and add content to the
server installation.

This section documents how to build and use a Galleon feature-pack containing layers to provision a
MariaDB driver and data source for the JBoss EAP 8.0 server in OpenShift.

8.2.1.1. Preparing the Maven project

Galleon feature-packs are created using Maven. This procedure includes the steps to create a new
Maven project.

Procedure

1. Create a new Maven project by runing the following command:

mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=pom-root -DgroupId=org.jboss.eap.demo -DartifactId=mariadb-galleon-
pack -DinteractiveMode=false

2. Navigate to mariadb-galleon-pack directory and update the pom.xml file to include the Red

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

70

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_preparing-the-maven-project_assembly_capability-trimming-in-jboss-eap-for-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_using-the-custom-galleon-feature-pack-during-s2i-build_assembly_capability-trimming-in-jboss-eap-for-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#con_uses-of-galleon-provisioning-file_assembly_environment-variables-and-model-expression-resolution
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_using-the-custom-galleon-feature-pack-during-s2i-build_assembly_capability-trimming-in-jboss-eap-for-openshift

2. Navigate to mariadb-galleon-pack directory and update the pom.xml file to include the Red
Hat Maven repository:

<repositories>
 <repository>
 <id>redhat-ga</id>
 <name>Redhat GA</name>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>

3. Update the pom.xml file to add dependencies on the JBoss EAP Galleon feature-pack and the
MariaDB driver:

NOTE

<version>A.B.C-redhat-XXXXX</version> Where A.B.C is the release
number and XXXXX is build number of your JBoss EAP instance. See the
Red Hat Maven repository for version details about JBoss EAP releases. The
release and build numbers are available for all JBoss EAP releases.
https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/wildfly-
ee-galleon-pack/.

4. Update the pom.xml file to include the Maven plugin that is used to build the Galleon feature-
pack:

<build>
 <plugins>
 <plugin>
 <groupId>org.wildfly.galleon-plugins</groupId>
 <artifactId>wildfly-galleon-maven-plugin</artifactId>
 <version>6.4.8.Final-redhat-00001</version>
 <executions>
 <execution>
 <id>mariadb-galleon-pack-build</id>
 <goals>
 <goal>build-user-feature-pack</goal>
 </goals>
 <phase>compile</phase>
 </execution>

<dependencies>
 <dependency>
 <groupId>org.jboss.eap</groupId>
 <artifactId>wildfly-ee-galleon-pack</artifactId>
 <version>8.0.0.GA-redhat-00010</version>
 <type>zip</type>
 </dependency>
 <dependency>
 <groupId>org.mariadb.jdbc</groupId>
 <artifactId>mariadb-java-client</artifactId>
 <version>2.7.2</version>
 </dependency>
</dependencies>

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

71

https://maven.repository.redhat.com/earlyaccess/all/org/jboss/eap/wildfly-ee-galleon-pack/

1

2

 </executions>
 </plugin>
 </plugins>
</build>

8.2.1.2. Adding the feature-pack content

This procedure helps you add layers to a custom Galleon feature-pack, for example, the feature-pack
including the MariaDB driver and datasource layers.

Prerequisites

You have created a Maven project. For more details, see Preparing the Maven project.

Procedure

1. Create the directory, src/main/resources, within a custom feature-pack Maven project, for
example, see Preparing the Maven project. This directory is the root directory containing the
feature-pack content.

2. Create the directory src/main/resources/modules/org/mariadb/jdbc/main.

3. In the main directory, create a file named module.xml with the following content:

The MariaDB driver groupId and artifactId. At provisioning time, the actual driver JAR file
gets installed. The version of the driver is referenced from the pom.xml file.

The JBoss Modules modules dependencies for the MariaDB driver.

4. Create the directory src/main/resources/layers/standalone/. This is the root directory of all
the layers that the Galleon feature-pack is defining.

5. Create the directory src/main/resources/layers/standalone/mariadb-driver.

6. In the mariadb-driver directory, create the layer-spec.xml file with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<module name="org.mariadb.jdbc" xmlns="urn:jboss:module:1.8">
 <resources>
 <artifact name="${org.mariadb.jdbc:mariadb-java-client}"/> 1
 </resources>
 <dependencies> 2
 <module name="java.se"/>
 <module name="jakarta.transaction.api"/>
 <module name="jdk.net"/>
 </dependencies>
</module>

<?xml version="1.0" ?>
<layer-spec xmlns="urn:jboss:galleon:layer-spec:1.0" name="mariadb-driver">
 <feature spec="subsystem.datasources"> 1
 <feature spec="subsystem.datasources.jdbc-driver">
 <param name="driver-name" value="mariadb"/>
 <param name="jdbc-driver" value="mariadb"/>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

72

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_preparing-the-maven-project_assembly_capability-trimming-in-jboss-eap-for-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_preparing-the-maven-project_assembly_capability-trimming-in-jboss-eap-for-openshift

1

2

1

2

3

4

Update the datasources subsystem configuration with a JDBC driver named MariaDB,
implemented by the module org.mariadb.jdbc.

The JBoss Modules module containing the driver classes that are installed when the layer
is provisioned.

The mariadb-driver layer updates the datasources subsystem with the configuration of a
JDBC driver, implemented by the JBoss Modules module.

7. Create the directory src/main/resources/layers/standalone/mariadb-datasource.

8. In the mariadb-datasource directory, create the layer-spec.xml file with the following content:

This dependency enforces the provisioning of the MariaDB driver when the data source is
provisioned. All the layers a layer depends on are automatically provisioned when that layer
is provisioned.

Update the datasources subsystem configuration with a data source named MariaDBDS.

Datasource’s name, host, port, and database values are resolved from the environment
variables MARIADB_DATASOURCE, MARIADB_HOST, MARIADB_PORT, and
MARIADB_DATABASE, which are set when the server is started.

User name and password values are resolved from the environment variables
MARIADB_USER and MARIADB_PASSWORD.

 <param name="driver-xa-datasource-class-name"
value="org.mariadb.jdbc.MariaDbDataSource"/>
 <param name="driver-module-name" value="org.mariadb.jdbc"/>
 </feature>
 </feature>
 <packages> 2
 <package name="org.mariadb.jdbc"/>
 </packages>
</layer-spec>

<?xml version="1.0" ?>
<layer-spec xmlns="urn:jboss:galleon:layer-spec:1.0" name="mariadb-datasource">
 <dependencies>
 <layer name="mariadb-driver"/> 1
 </dependencies>
 <feature spec="subsystem.datasources.data-source"> 2
 <param name="data-source" value="MariaDBDS"/>
 <param name="jndi-name"
value="java:jboss/datasources/${env.MARIADB_DATASOURCE:MariaDBDS}"/>
 <param name="connection-url"
value="jdbc:mariadb://${env.MARIADB_HOST:localhost}:${env.MARIADB_PORT:3306}/${env.
MARIADB_DATABASE}"/> 3
 <param name="driver-name" value="mariadb"/>
 <param name="user-name" value="${env.MARIADB_USER}"/> 4
 <param name="password" value="${env.MARIADB_PASSWORD}"/>
 </feature>
</layer-spec>

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

73

9. Build the Galleon feature-pack by running the following command:

mvn clean install

The file target/mariadb-galleon-pack-1.0-SNAPSHOT.zip is created.

8.2.1.3. Using the custom Galleon feature-pack during S2I build

A custom feature-pack must be made available to the Maven build that occurs during OpenShift S2I
build. This is usually achieved by deploying the custom feature-pack as an artifact, for example,
org.jboss.eap.demo:mariadb-galleon-pack:1.0-SNAPSHOT to an accessible Maven repository.

NOTE

For more information about configuring the JBoss EAP S2I image for custom Galleon
feature-pack usage, see Configure Galleon by using advanced environment variables .

Prerequisites

You have oc command-line installed

You are logged in to an OpenShift cluster

You have configured access to the Red Hat Container registry. For detailed information, see
Red Hat Container Registry .

You have created a custom Galleon feature-pack. For detailed information, see Preparing the
Maven project.

Procedure

1. Start the MariaDB database by running the following command. This example uses the
MariaDB image mariadb-105-rhel7. You must use the latest supported version of MariaDB
image. See Red Hat Ecosystem Catalog to get more information about MariaDB images.

oc new-app -e MYSQL_USER=admin -e MYSQL_PASSWORD=admin -e
MYSQL_DATABASE=mariadb registry.redhat.io/rhscl/mariadb-105-rhel7

The OpenShift service mariadb-101-rhel7 is created and started.

2. Create a secret from the feature-pack archive, generated by the custom feature-pack Maven
build, by running the following command within the Maven project directory mariadb-galleon-
pack:

oc create secret generic mariadb-galleon-pack --from-file=target/mariadb-galleon-pack-1.0-
SNAPSHOT.zip

The secret mariadb-galleon-pack is created. When initiating the S2I build, this secret is used to
mount the feature-pack .zip file in the pod, making the file available during the server
provisioning phase.

8.2.1.4. Importing the JBoss EAP 8 image stream

You can import the JBoss EAP 8.0 image stream by following the procedure below.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

74

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#con_configure-galleon-advanced-environment-variables_assembly_capability-trimming-in-jboss-eap-for-openshift
https://catalog.redhat.com/software/containers/search?p=1
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_preparing-the-maven-project_assembly_capability-trimming-in-jboss-eap-for-openshift
https://catalog.redhat.com/software/containers/explore

1

2

1

Procedure

1. Import the JBoss EAP 8.0 image stream:

oc import-image jboss-eap-8/eap8-openjdk17-builder-openshift-rhel8:latest --
from=registry.redhat.io/jboss-eap-8/eap8-openjdk17-builder-openshift-rhel8:latest
--confirm

8.2.1.4.1. Creating an S2I build using the JBoss EAP maven plugin

The eap-maven-plugin has been configured with both a reference to the JBoss EAP galleon feature-
pack, JBoss EAP cloud galleon feature-pack and the mariadb galleon feature-pack. See an extract
of the pom.xml:

The mariadb feature-pack version is required. It is not resolved in the JBoss EAP 8 configured
channel.

The mariadb-datasource layer.

Procedure

1. Create the S2I build by running the following command:

oc new-build eap8-openjdk17-builder-openshift-rhel8:latest~https://github.com/jboss-
container-images/jboss-eap-8-openshift-image#EAP_8.0.0 \
--context-dir=examples/eap/custom-layers/application \
--build-secret=mariadb-galleon-pack:/tmp/demo-maven-
repository/org/jboss/eap/demo/mariadb-galleon-pack/1.0-SNAPSHOT \ 1
--name=mariadb-app-build

The mariadb-galleon-pack secret is mounted in the /tmp/demo-maven-
repository/org/jboss/eap/demo/mariadb-galleon-pack/1.0-SNAPSHOT directory.

Additional resources

For more information see the JBoss EAP 8.0 demo example .

<feature-packs>
 <feature-pack>
 <location>org.jboss.eap:wildfly-ee-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap.cloud:eap-cloud-galleon-pack</location>
 </feature-pack>
 <feature-pack>
 <location>org.jboss.eap.demo:mariadb-galleon-pack:1.0-SNAPSHOT</location> 1
 </feature-pack>
</feature-packs>
<layers>
 <layer>jaxrs-server</layer>
 <layer>mariadb-datasource</layer> 2
</layers>

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

75

https://github.com/jboss-container-images/jboss-eap-8-openshift-image/tree/EAP_8.0.0.Beta/examples/eap/custom-layers/application

1

2

3

4

5

6

8.2.1.4.2. Creating an S2I build using the legacy S2I provisioning capabilities

You can use the openshift-legacy profile to configure your S2I build so that you can provision your
server.

Procedure

1. Create a new OpenShift build by running the following command:

oc new-build eap8-openjdk17-builder-openshift-rhel8:latest~https://github.com/jboss-
container-images/jboss-eap-8-openshift-image#EAP_8.0.0 \
--context-dir=examples/eap/custom-layers/application \
--env=GALLEON_PROVISION_CHANNELS="org.jboss.eap.channels:eap-8.0" \ 1
--env=GALLEON_PROVISION_FEATURE_PACKS="org.jboss.eap:wildfly-ee-galleon-
pack,org.jboss.eap.cloud:eap-cloud-galleon-pack,org.jboss.eap.demo:mariadb-galleon-
pack:1.0-SNAPSHOT" \ 2
--env=GALLEON_PROVISION_LAYERS="jaxrs-server,mariadb-datasource" \ 3
--env=GALLEON_CUSTOM_FEATURE_PACKS_MAVEN_REPO="/tmp/demo-maven-
repository" \ 4
--env=MAVEN_ARGS="-Popenshift-legacy" \ 5
--build-secret=mariadb-galleon-pack:/tmp/demo-maven-
repository/org/jboss/eap/demo/mariadb-galleon-pack/1.0-SNAPSHOT \ 6
--name=mariadb-app-build

This environment variable uses the JBoss EAP 8.0 channel during provisioning.

This environment variable references the JBoss EAP 8.0 feature-pack, cloud feature-
pack and the mariadb feature-pack.

This environment variable references the set of Galleon layers you want to use to provision
the server. jaxrs-server is a base server layer, mariadb-datasource is our custom layer
that brings the mariadb driver and a new data source to the server installation.

This points to the location of your local maven repository where the mariadb feature-pack
is contained.

This environment variable redefines the MAVEN_ARGS to enable the openshift-legacy
profile.

The mariadb-galleon-pack secret is mounted in the /tmp/demo-maven-
repository/org/jboss/eap/demo/mariadb-galleon-pack/1.0-SNAPSHOT directory.

NOTE

This directory path complies with Maven repository artifact coordinates to path mapping.

8.2.1.4.3. Starting the build

You can create the mariadb-app-build image by creating a new build.

Procedure

1. Start a new build from the same OpenShift build that you created earlier and run the following
command:

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

76

1

oc start-build mariadb-app-build

After successful command execution, the image mariadb-app-build is created.

8.2.1.4.4. Creating a new deployment

You can create a new deployment by providing the environment variables that are required to bind the
data source to the running MariaDB database

Procedure

1. Create a new deployment by running the following command:

oc new-app --name=mariadb-app mariadb-app-build \
--env=MARIADB_PORT=3306 \
--env=MARIADB_USER=admin \
--env=MARIADB_PASSWORD=admin \
--env=MARIADB_HOST=mariadb-105-rhel7 \
--env=MARIADB_DATABASE=mariadb \
--env=MARIADB_DATASOURCE=Demo 1

The demo expects the data source to be named Demo

NOTE

For more details about the custom Galleon feature-pack environment variables,
see Custom Galleon feature pack environment variables .

2. Expose the mariadb-app application, run the following command:

oc expose svc/mariadb-app

3. To create a new task, run the following command:

curl -X POST http://$(oc get route mariadb-app --template='{{ .spec.host }}')/tasks/title/foo

4. To access the list of tasks, run the following command:

curl http://$(oc get route mariadb-app --template='{{ .spec.host }}')

The added task is displayed in a browser.

8.2.2. Configure Galleon by using advanced environment variables

You can use advanced custom Galleon feature pack environment variables to customize the location
where you store your custom Galleon feature packs and layers during the S2I image build process.
These advanced custom Galleon feature pack environment variables are as follows:

GALLEON_DIR=<path>, which overrides the default <project_root_dir>/galleon directory
path to <project_root_dir>/<GALLEON_DIR>.

GALLEON_CUSTOM_FEATURE_PACKS_MAVEN_REPO=<path>, which overrides the

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

77

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_custom-galleon-feature-pack-envionment-variables_assembly_capability-trimming-in-jboss-eap-for-openshift

GALLEON_CUSTOM_FEATURE_PACKS_MAVEN_REPO=<path>, which overrides the
<project root dir>/galleon/repository directory path with an absolute path to a Maven local
repository cache directory. This repository contains custom Galleon feature packs.

You must locate the Galleon feature pack archive files inside a sub-directory that is compliant with the
Maven local-cache file system configuration. For example, locate the org.examples:my-feature-
pack:1.0.0.Final feature pack inside the path-to-repository/org/examples/my-feature-
pack/1.0.0.Final/my-feature-pack-1.0.0.Final.zip path.

You can configure your Maven project settings by creating a settings.xml file in the
<project_root>/<GALLEON_DIR> directory. The default value for GALLEON_DIR is
<project_root_dir>/galleon. Maven uses the file to provision your custom Galleon feature packs for
your application. If you do not create a settings.xml file, Maven uses a default settings.xml file that was
created by the S2I image.

IMPORTANT

Do not specify a local Maven repository location in a settings.xml file, because the S2I
builder image specifies a location to your local Maven repository. The S2I builder image
uses this location during the S2I build process.

Additional resources

Custom Galleon feature pack environment variables .

8.2.3. Custom Galleon feature pack environment variables

You can use any of the following custom Galleon feature pack environment variables to customize how
you use your JBoss EAP S2I image.

Table 8.1. Descriptions of custom Galleon feature pack environment variables

Environment variable Description

GALLEON_DIR=<path> Where <path> is a directory relative to the root
directory of your application project. Your <path>
directory contains your optional Galleon custom
content, such as the settings.xml file and local
Maven repository cache. This cache contains the
custom Galleon feature packs.

Directory defaults to galleon.

GALLEON_CUSTOM_FEATURE_PACKS_MAVEN_R
EPO=<path>

<path> is the absolute path to a Maven local
repository directory that contains custom feature
packs. Directory defaults to galleon/repository.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

78

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_custom-galleon-feature-pack-envionment-variables_assembly_capability-trimming-in-jboss-eap-for-openshift

GALLEON_PROVISION_FEATURE_PACKS=
<list_of_galleon_feature_packs>

Where <list_of_galleon_feature_packs> is a comma-
separated list of your custom Galleon feature packs
identified by Maven coordinates. The listed feature
packs must be compatible with the version of the
JBoss EAP 8.0 server present in the builder image.

You can use the
GALLEON_PROVISION_LAYERS environment
variable to set the Galleon layers, which were defined
by your custom feature packs, for your server.

Environment variable Description

CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT

79

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION
ON THE OPENSHIFT CONTAINER PLATFORM

9.1. JBOSS EAP OPERATOR FOR AUTOMATING APPLICATION
DEPLOYMENT ON OPENSHIFT

EAP operator is a JBoss EAP-specific controller that extends the OpenShift API. You can use the EAP
operator to create, configure, manage, and seamlessly upgrade instances of complex stateful
applications.

The EAP operator manages multiple JBoss EAP Java application instances across the cluster. It also
ensures safe transaction recovery in your application cluster by verifying all transactions are completed
before scaling down the replicas and marking a pod as clean for termination. The EAP operator uses
StatefulSet for the appropriate handling of Jakarta Enterprise Beans remoting and transaction recovery
processing. The StatefulSet ensures persistent storage and network hostname stability even after pods
are restarted.

You must install the EAP operator using OperatorHub, which can be used by OpenShift cluster
administrators to discover, install, and upgrade operators.

In OpenShift Container Platform 4, you can use the Operator Lifecycle Manager (OLM) to install,
update, and manage the lifecycle of all operators and their associated services running across multiple
clusters.

The OLM runs by default in OpenShift Container Platform 4. It aids cluster administrators in installing,
upgrading, and granting access to operators running on their cluster. The OpenShift Container Platform
web console provides management screens for cluster administrators to install operators, as well as
grant specific projects access to use the catalog of operators available on the cluster.

For more information about operators and the OLM, see the OpenShift documentation.

9.1.1. Installing EAP operator using the web console

As a JBoss EAP cluster administrator, you can install an EAP operator from Red Hat OperatorHub using
the OpenShift Container Platform web console. You can then subscribe the EAP operator to one or
more namespaces to make it available for developers on your cluster.

Here are a few points you must be aware of before installing the EAP operator using the web console:

Installation Mode: Choose All namespaces on the cluster (default) to have the operator
installed on all namespaces or choose individual namespaces, if available, to install the operator
only on selected namespaces.

Update Channel: If the EAP operator is available through multiple channels, you can choose
which channel you want to subscribe to. For example, to deploy from the stable channel, if
available, select it from the list.

Approval Strategy: You can choose automatic or manual updates. If you choose automatic
updates for the EAP operator, when a new version of the operator is available, the Operator
Lifecycle Manager (OLM) automatically upgrades the running instance of EAP operator. If you
choose manual updates, when a newer version of the operator is available, the OLM creates an
update request. You must then manually approve the update request to have the operator
updated to the new version.

NOTE

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/operators/index

NOTE

The following procedure might change in accordance with the modifications in the
OpenShift Container Platform web console. For the latest and most accurate procedure,
see the Installing from the OperatorHub using the web console section in the latest
version of the Working with Operators in OpenShift Container Platform guide.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators→ OperatorHub.

2. Scroll down or type EAP into the Filter by keyword box to find the EAP operator.

3. Select JBoss EAP operator and click Install.

4. On the Create Operator Subscription page:

a. Select one of the following:

All namespaces on the cluster (default) installs the operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

A specific namespace on the cluster installs the operator in a specific, single
namespace that you choose. The operator is made available for use only in this single
namespace.

b. Select an Update Channel.

c. Select Automatic or Manual approval strategy, as described earlier.

5. Click Subscribe to make the EAP operator available to the selected namespaces on this
OpenShift Container Platform cluster.

a. If you selected a manual approval strategy, the subscription’s upgrade status remains
Upgrading until you review and approve its install plan. After you approve the install plan on
the Install Plan page, the subscription upgrade status moves to Up to date.

b. If you selected an automatic approval strategy, the upgrade status moves to Up to date
without intervention.

6. After the subscription’s upgrade status is Up to date, select Operators → Installed Operators
to verify that the EAP ClusterServiceVersion (CSV) shows up and its Status changes to
InstallSucceeded in the relevant namespace.

NOTE

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

81

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/operators/olm-adding-operators-to-a-cluster#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

1

2

NOTE

For the All namespaces…​ installation mode, the status displayed is
InstallSucceeded in the openshift-operators namespace. In other namespaces
the status displayed is Copied. . If the Status field does not change to
InstallSucceeded, check the logs in any pod in the openshift-operators project
(or other relevant namespace if A specific namespace…​ installation mode was
selected) on the Workloads → Pods page that are reporting issues to
troubleshoot further.

9.1.2. Installing EAP operator using the CLI

As a JBoss EAP cluster administrator, you can install an EAP operator from Red Hat OperatorHub using
the OpenShift Container Platform CLI. You can then subscribe the EAP operator to one or more
namespaces to make it available for developers on your cluster.

When installing the EAP operator from the OperatorHub using the CLI, use the oc command to create a
Subscription object.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have installed the oc tool in your local system.

Procedure

1. View the list of operators available to the cluster from the OperatorHub:

$ oc get packagemanifests -n openshift-marketplace | grep eap
NAME CATALOG AGE
...
eap Red Hat Operators 43d
...

2. Create a Subscription object YAML file (for example, eap-operator-sub.yaml) to subscribe a
namespace to your EAP operator. The following is an example Subscription object YAML file:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: eap
 namespace: openshift-operators
spec:
 channel: stable
 installPlanApproval: Automatic
 name: eap 1
 source: redhat-operators 2
 sourceNamespace: openshift-marketplace

Name of the operator to subscribe to.

The EAP operator is provided by the redhat-operators CatalogSource.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

82

For information about channels and approval strategy, see the web console version of this
procedure.

3. Create the Subscription object from the YAML file:

$ oc apply -f eap-operator-sub.yaml
$ oc get csv -n openshift-operators
NAME DISPLAY VERSION REPLACES PHASE
eap-operator.v1.0.0 JBoss EAP 1.0.0 Succeeded

The EAP operator is successfully installed. At this point, the OLM is aware of the EAP operator.
A ClusterServiceVersion (CSV) for the operator appears in the target namespace, and APIs
provided by the EAP operator is available for creation.

9.1.3. Deploying a Java application on OpenShift using the EAP operator

The EAP operator helps automate Java application deployment on OpenShift. For information about
the EAP operator APIs, see EAP Operator: API Information.

Prerequisites

You have installed EAP operator. For more information about installing the EAP operator, see
Installing EAP operator using the web console and Installing EAP operator using the CLI .

You have built a Docker image of the user application using JBoss EAP for OpenShift Source-
to-Image (S2I) build image.

You have created a Secret object, if your application’s CustomResourceDefinition (CRD) file
references one. For more information about creating a new Secret object, see Creating a
Secret.

You have created a ConfigMap, if your application’s CRD file references one. For information
about creating a ConfigMap, see Creating a ConfigMap .

You have created a ConfigMap from the standalone.xml file, if you choose to do so. For
information about creating a ConfigMap from the standalone.xml file, see Creating a
ConfigMap from a standalone.xml File.

NOTE

Providing a standalone.xml file from the ConfigMap is not supported in JBoss EAP 8.0.

Procedure

1. Open your web browser and log on to OperatorHub.

2. Select the Project or namespace you want to use for your Java application.

3. Navigate to Installed Operator and select JBoss EAP operator.

4. On the Overview tab, click the Create Instance link.

5. Specify the application image details.
The application image specifies the Docker image that contains the Java application. The
image must be built using the JBoss EAP for OpenShift Source-to-Image (S2I) build image. If

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

83

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_installing-eap-operator-using-webconsole_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#eap-operator-api-information_assembly_reference-information-for-openshift-container-platform
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_installing-eap-operator-using-webconsole_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_installing-eap-operator-using-the-cli_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#creating-a-secret_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#creating-a-configmap_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#creating-a-configmap-from-standalone-xml-file_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift

the applicationImage field corresponds to an imagestreamtag, any change to the image
triggers an automatic upgrade of the application.

You can provide any of the following references of the JBoss EAP for OpenShift application
image:

The name of the image: mycomp/myapp

A tag: mycomp/myapp:1.0

A digest:
mycomp/myapp:@sha256:0af38bc38be93116b6a1d86a9c78bd14cd527121970899d719baf78e5dc7bfd2

An imagestreamtag: my-app:latest

6. Specify the size of the application. For example:

spec:
 replicas:2

7. Configure the application environment using the env spec. The Environment variables can
come directly from values, such as POSTGRESQL_SERVICE_HOST or from Secret objects,
such as POSTGRESQL_USER. For example:

spec:
 env:
 - name: POSTGRESQL_SERVICE_HOST
 value: postgresql
 - name: POSTGRESQL_SERVICE_PORT
 value: '5432'
 - name: POSTGRESQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: postgresql
 - name: POSTGRESQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: postgresql
 - name: POSTGRESQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: postgresql

8. Complete the following optional configurations that are relevant to your application
deployment:

Specify the storage requirements for the server data directory. For more information, see
Configuring Persistent Storage for Applications .

Specify the name of the Secret you created in WildFlyServerSpec to mount it as a volume
in the pods running the application. For example:

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

84

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_enviroment-variables_assembly_reference-information-for-openshift-container-platform
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#configuring-persistent-storage-for-applications_assembly_jboss-eap-operator-for-automating-application-deployment-on-openshift

spec:
 secrets:
 - my-secret

The Secret is mounted at /etc/secrets/<secret name> and each key/value is stored as a
file. The name of the file is the key and the content is the value. The Secret is mounted as a
volume inside the pod. The following example demonstrates commands that you can use to
find key values:

$ ls /etc/secrets/my-secret/
my-key my-password
$ cat /etc/secrets/my-secret/my-key
devuser
$ cat /etc/secrets/my-secret/my-password
my-very-secure-pasword

NOTE

Modifying a Secret object might lead to project inconsistencies. Instead of
modifying an existing Secret object, Red Hat recommends creating a new
object with the same content as that of the old one. You can then update the
content as required and change the reference in operator custom resource
(CR) from old to new. This is considered a new CR update and the pods are
reloaded.

Specify the name of the ConfigMap you created in WildFlyServerSpec to mount it as a
volume in the pods running the application. For example:

spec:
 configMaps:
 - my-config

The ConfigMap is mounted at /etc/configmaps/<configmap name> and each key/value is
stored as a file. The name of the file is the key and the content is the value. The ConfigMap
is mounted as a volume inside the pod. To find the key values:

$ ls /etc/configmaps/my-config/
key1 key2
$ cat /etc/configmaps/my-config/key1
value1
$ cat /etc/configmaps/my-config/key2
value2

NOTE

Modifying a ConfigMap might lead to project inconsistencies. Instead of
modifying an existing ConfigMap, Red Hat recommends creating a new
ConfigMap with the same content as that of the old one. You can then
update the content as required and change the reference in operator
custom resource (CR) from old to new. This is considered a new CR update
and the pods are reloaded.

If you choose to have your own standalone ConfigMap, provide the name of the

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

85

If you choose to have your own standalone ConfigMap, provide the name of the
ConfigMap as well as the key for the standalone.xml file:

 standaloneConfigMap:
 name: clusterbench-config-map
 key: standalone.xml

NOTE

Creating a ConfigMap from the standalone.xml file is not supported in
JBoss EAP 8.0.

If you want to disable the default HTTP route creation in OpenShift, set disableHTTPRoute
to true:

spec:
 disableHTTPRoute: true

9.1.3.1. Creating a secret

If your application’s CustomResourceDefinition (CRD) file references a Secret, you must create the
Secret before deploying your application on OpenShift using the EAP operator.

Procedure

To create a Secret:

$ oc create secret generic my-secret --from-literal=my-key=devuser --from-literal=my-password='my-
very-secure-pasword'

9.1.3.2. Creating a configMap

If your application’s CustomResourceDefinition (CRD) file references a ConfigMap in the
spec.ConfigMaps field, you must create the ConfigMap before deploying your application on OpenShift
using the EAP operator.

Procedure

To create a configmap:

 $ oc create configmap my-config --from-literal=key1=value1 --from-literal=key2=value2
configmap/my-config created

9.1.3.3. Creating a configMap from a standalone.xml File

You can create your own JBoss EAP standalone configuration instead of using the one in the application
image that comes from JBoss EAP for OpenShift Source-to-Image (S2I). The standalone.xml file must
be put in a ConfigMap that is accessible by the operator.

NOTE

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

86

NOTE

Providing a standalone.xml file from the ConfigMap is not supported in JBoss EAP 8.0.

Procedure

To create a ConfigMap from the standalone.xml file:

 $ oc create configmap clusterbench-config-map --from-file
examples/clustering/config/standalone.xml
configmap/clusterbench-config-map created

9.1.3.4. Configuring persistent storage for applications

If your application requires persistent storage for some data, such as, transaction or messaging logs that
must persist across pod restarts, configure the storage spec. If the storage spec is empty, an EmptyDir
volume is used by each pod of the application. However, this volume does not persist after its
corresponding pod is stopped.

Procedure

1. Specify volumeClaimTemplate to configure resources requirements to store the JBoss EAP
standalone data directory. The name of the template is derived from the name of JBoss EAP.
The corresponding volume is mounted in ReadWriteOnce access mode.

spec:
 storage:
 volumeClaimTemplate:
 spec:
 resources:
 requests:
 storage: 3Gi

The persistent volume that meets this storage requirement is mounted on the
/eap/standalone/data directory.

9.1.4. Viewing metrics of an application using the EAP operator

You can view the metrics of an application deployed on OpenShift using the EAP operator.

When your cluster administrator enables metrics monitoring in your project, the EAP operator
automatically displays the metrics on the OpenShift console.

Prerequisites

Your cluster administrator has enabled monitoring for your project. For more information, see
Enabling monitoring for user-defined projects.

Procedure

1. In the OpenShift Container Platform web console, navigate to Monitoring→ Metrics.

2. On the Metrics screen, type the name of your application in the text box to select your
application. The metrics for your application appear on the screen.

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

87

https://docs.openshift.com/container-platform/4.6/monitoring/enabling-monitoring-for-user-defined-projects.html#enabling-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects

9.1.5. Uninstalling EAP operator using web console

You can delete, or uninstall, EAP operator from your cluster, you can delete the subscription to remove it
from the subscribed namespace. You can also remove the EAP operator’s ClusterServiceVersion (CSV)
and deployment.

NOTE

To ensure data consistency and safety, scale down the number of pods in your cluster to
0 before uninstalling the EAP operator.

You can uninstall the EAP operator using the web console.

WARNING

If you decide to delete the entire wildflyserver definition (oc delete wildflyserver
<deployment_name>), then no transaction recovery process is started and the pod
is terminated regardless of unfinished transactions. The unfinished work that results
from this operation might block the data changes that you later initiate. The data
changes for other JBoss EAP instances involved in transactional enterprise bean
remote calls with this wildflyserver might also be blocked.

Procedure

1. From the Operators→ Installed Operators page, select JBoss EAP.

2. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

3. When prompted by the Remove Operator Subscription window, optionally select the Also
completely remove the Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the pods, deployments, custom resource definitions (CRDs), and custom resources
(CRs) associated with the operator.

4. Click Remove. The EAP operator stops running and no longer receives updates.

9.1.6. Uninstalling JBoss EAP operator using the CLI

You can delete, or uninstall, the EAP operator from your cluster, you can delete the subscription to
remove it from the subscribed namespace. You can also remove the EAP operator’s
ClusterServiceVersion (CSV) and deployment.

NOTE

To ensure data consistency and safety, scale down the number of pods in your cluster to
0 before uninstalling the EAP operator.

You can uninstall the EAP operator using the command line.



Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

88

When using the command line, you uninstall the operator by deleting the subscription and CSV from the
target namespace.

WARNING

If you decide to delete the entire wildflyserver definition (oc delete wildflyserver
<deployment_name>), then no transaction recovery process is started and the pod
is terminated regardless of unfinished transactions. The unfinished work that results
from this operation might block the data changes that you later initiate. The data
changes for other JBoss EAP instances involved in transactional enterprise bean
remote calls with this wildflyserver might also be blocked.

Procedure

1. Check the current version of the EAP operator subscription in the currentCSV field:

$ oc get subscription eap-operator -n openshift-operators -o yaml | grep currentCSV
 currentCSV: eap-operator.v1.0.0

2. Delete the EAP operator’s subscription:

$ oc delete subscription eap-operator -n openshift-operators
subscription.operators.coreos.com "eap-operator" deleted

3. Delete the CSV for the EAP operator in the target namespace using the currentCSV value from
the previous step:

$ oc delete clusterserviceversion eap-operator.v1.0.0 -n openshift-operators
clusterserviceversion.operators.coreos.com "eap-operator.v1.0.0" deleted

9.1.7. JBoss EAP operator for safe transaction recovery

JBoss EAP operator ensures data consistency before terminating your application cluster. To do this,
the operator verifies that all transactions are completed before scaling down the replicas and marking a
pod as clean for termination.

This means that if you want to remove the deployment safely without data inconsistencies, you must
first scale down the number of pods to 0, wait until all pods are terminated, and only then delete the
wildflyserver instance.



CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

89

WARNING

If you decide to delete the entire wildflyserver definition (oc delete wildflyserver
<deployment_name>), then no transaction recovery process is started and the pod
is terminated regardless of unfinished transactions. The unfinished work that results
from this operation might block the data changes that you later initiate. The data
changes for other JBoss EAP instances involved in transactional enterprise bean
remote calls with this wildflyserver might also be blocked.

When the scaledown process begins the pod state (oc get pod <pod_name>) is still marked as
Running, because the pod must complete all the unfinished transactions, including the remote
enterprise beans calls that target it.

If you want to monitor the state of the scaledown process, observe the status of the wildflyserver
instance. For more information, see Monitoring the Scaledown Process. For information about pod
statuses during scaledown, see Pod Status During Scaledown .

9.1.7.1. StatefulSets for stable network host names

The EAP operator that manages the wildflyserver creates a StatefulSet as an underlying object
managing the JBoss EAP pods.

A StatefulSet is the workload API object that manages stateful applications. It manages the deployment
and scaling of a set of pods, and provides guarantees about the ordering and uniqueness of these pods.

The StatefulSet ensures that the pods in a cluster are named in a predefined order. It also ensures that
pod termination follows the same order. For example, let us say, pod-1 has a transaction with heuristic
outcome, and so is in the state of SCALING_DOWN_RECOVERY_DIRTY. Even if pod-0 is in the state
of SCALING_DOWN_CLEAN, it is not terminated before pod-1. Until pod-1 is clean and is terminated,
pod-0 remains in the SCALING_DOWN_CLEAN state. However, even if pod-0 is in the
SCALING_DOWN_CLEAN state, it does not receive any new request and is practically idle.

NOTE

Decreasing the replica size of the StatefulSet or deleting the pod itself has no effect and
such changes are reverted.

9.1.7.2. Monitoring the scaledown process

If you want to monitor the state of the scaledown process, you must observe the status of the
wildflyserver instance. For more information about the different pod statuses during scaledown, see
Pod Status During Scaledown .

Procedure

To observe the state of the scaledown process:

oc describe wildflyserver <name>

The WildFlyServer.Status.Scalingdown Pods and WildFlyServer.Status.Replicas fields



Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

90

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_monitoring-scaledown-process_assembly_jboss-eap-operator-for-safe-transaction-recorvery
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_pod-status-during-scaledown_assembly_jboss-eap-operator-for-safe-transaction-recorvery
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_pod-status-during-scaledown_assembly_jboss-eap-operator-for-safe-transaction-recorvery

The WildFlyServer.Status.Scalingdown Pods and WildFlyServer.Status.Replicas fields
shows the overall state of the active and non-active pods.

The Scalingdown Pods field shows the number of pods which are about to be terminated
when all the unfinished transactions are complete.

The WildFlyServer.Status.Replicas field shows the current number of running pods.

The WildFlyServer.Spec.Replicas field shows the number of pods in ACTIVE state.

If there are no pods in scaledown process the numbers of pods in the
WildFlyServer.Status.Replicas and WildFlyServer.Spec.Replicas fields are equal.

9.1.7.2.1. Pod status during Scaledown

The following table describes the different pod statuses during scaledown:

Table 9.1. Pod Status Description

Pod Status Description

ACTIVE The pod is active and processing requests.

SCALING_DOWN_RECOVERY_INVESTIGATION The pod is about to be scaled down. The scale-down
process is under investigation about the state of
transactions in JBoss EAP.

SCALING_DOWN_RECOVERY_DIRTY JBoss EAP contains some incomplete transactions.
The pod cannot be terminated until they are cleaned.
The transaction recovery process is periodically run
at JBoss EAP and it waits until the transactions are
completed.

SCALING_DOWN_CLEAN The pod is processed by transaction scaled down
processing and is marked as clean to be removed
from the cluster.

9.1.7.3. Scaling down during transactions with heuristic outcomes

When the outcome of a transaction is unknown, automatic transaction recovery is impossible. You must
then manually recover your transactions.

Prerequisites

The status of your pod is stuck at SCALING_DOWN_RECOVERY_DIRTY.

Procedure

1. Access your JBoss EAP instance using CLI.

2. Resolve all the heuristics transaction records in the transaction object store. For more
information, see Recovering Heuristic Outcomes in the Managing Transactions on JBoss EAP .

3. Remove all records from the enterprise bean client recovery folder.

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

91

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/managing_transactions_on_jboss_eap/#recovering_heuristic_outcomes

a. Remove all files from the pod enterprise bean client recovery directory:

$JBOSS_HOME/standalone/data/ejb-xa-recovery
oc exec <podname> rm -rf $JBOSS_HOME/standalone/data/ejb-xa-recovery

4. The status of your pod changes to SCALING_DOWN_CLEAN and the pod is terminated.

9.1.7.4. Configuring the transactions subsystem to use the JDBC storage for transaction
log

In cases where the system does not provide a file system to store transaction logs, use the JBoss EAP
S2I image to configure the JDBC object store.

IMPORTANT

S2I environment variables are not usable when JBoss EAP is deployed as a bootable JAR.
In this case, you must create a Galleon layer or configure a CLI script to make the
necessary configuration changes.

The JDBC object store can be set up with the environment variable
TX_DATABASE_PREFIX_MAPPING. This variable has the same structure as
DB_SERVICE_PREFIX_MAPPING.

Prerequisite

You have created a datasource based on the value of the environment variables.

You have ensured consistent data reads and writes permissions exist between the database and
the transaction manager communicating over the JDBC object store. For more information
see configuring JDBC data sources

Procedure

Set up and configure the JDBC object store through the S2I environment variable.

Example

Narayana JDBC objectstore configuration via s2i env variables
- name: TX_DATABASE_PREFIX_MAPPING
 value: 'PostgresJdbcObjectStore-postgresql=PG_OBJECTSTORE'
- name: POSTGRESJDBCOBJECTSTORE_POSTGRESQL_SERVICE_HOST
 value: 'postgresql'
- name: POSTGRESJDBCOBJECTSTORE_POSTGRESQL_SERVICE_PORT
 value: '5432'
- name: PG_OBJECTSTORE_JNDI
 value: 'java:jboss/datasources/PostgresJdbc'
- name: PG_OBJECTSTORE_DRIVER
 value: 'postgresql'
- name: PG_OBJECTSTORE_DATABASE
 value: 'sampledb'
- name: PG_OBJECTSTORE_USERNAME
 value: 'admin'
- name: PG_OBJECTSTORE_PASSWORD
 value: 'admin'

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

92

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html/transaction_guide/using-jdbc-data-sources#configuring-jdbc-data-sources

Verification

You can verify both the datasource configuration and transaction subsystem configuration by
checking the standalone.xml configuration file oc rsh <podname> cat
/opt/server/standalone/configuration/standalone.xml.
Expected output:

<datasource jta="false" jndi-name="java:jboss/datasources/PostgresJdbcObjectStore" pool-
name="postgresjdbcobjectstore_postgresqlObjectStorePool"
 enabled="true" use-java-context="true" statistics-enabled="${wildfly.datasources.statistics-
enabled:${wildfly.statistics-enabled:false}}">
 <connection-url>jdbc:postgresql://postgresql:5432/sampledb</connection-url>
 <driver>postgresql</driver>
 <security>
 <user-name>admin</user-name>
 <password>admin</password>
 </security>
</datasource>

<!-- under subsystem urn:jboss:domain:transactions -->
<jdbc-store datasource-jndi-name="java:jboss/datasources/PostgresJdbcObjectStore">
 <!-- the pod name was named transactions-xa-0 -->
 <action table-prefix="ostransactionsxa0"/>
 <communication table-prefix="ostransactionsxa0"/>
 <state table-prefix="ostransactionsxa0"/>
</jdbc-store>

9.1.8. Automatically scaling pods with the horizontal pod autoscaler HPA

With EAP operator, you can use a horizontal pod autoscaler HPA to automatically increase or decrease
the scale of an EAP application based on metrics collected from the pods that belong to that EAP
application.

NOTE

Using HPA ensures that transaction recovery is still handled when a pod is scaled down.

Procedure

1. Configure the resources:

apiVersion: wildfly.org/v1alpha1
kind: WildFlyServer
metadata:
 name: eap-helloworld
spec:
 applicationImage: 'eap-helloworld:latest'
 replicas: 1
 resources:
 limits:
 cpu: 500m
 memory: 2Gi
 requests:
 cpu: 100m
 memory: 1Gi

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

93

IMPORTANT

You must specify the resource limits and requests for containers in a pod for
autoscaling to work as expected.

2. Create the Horizontal pod autoscaler:

oc autoscale wildflyserver/eap-helloworld --cpu-percent=50 --min=1 --max=10

Verification

You can verify the HPA behavior by checking the replicas. The number of replicas increase or
decrease depending on the increase or decrease of the workload.

oc get hpa -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
eap-helloworld WildFlyServer/eap-helloworld 217%/50% 1 10 1 4s
eap-helloworld WildFlyServer/eap-helloworld 217%/50% 1 10 4 17s
eap-helloworld WildFlyServer/eap-helloworld 133%/50% 1 10 8 32s
eap-helloworld WildFlyServer/eap-helloworld 133%/50% 1 10 10 47s
eap-helloworld WildFlyServer/eap-helloworld 139%/50% 1 10 10 62s
eap-helloworld WildFlyServer/eap-helloworld 180%/50% 1 10 10 92s
eap-helloworld WildFlyServer/eap-helloworld 133%/50% 1 10 10 2m2s

Additional resources

Automatically scaling pods with the horizontal pod autoscaler

9.1.9. Jarkarta enterprise beans remoting on OpenShift

9.1.9.1. Jakarta Enterprise Beans remoting on openShift

For JBoss EAP to work correctly with enterprise bean remoting calls between different JBoss EAP
clusters on OpenShift, you must understand the enterprise bean remoting configuration options on
OpenShift.

NOTE

When deploying on OpenShift, consider the use of the EAP operator. The EAP operator
uses StatefulSet for the appropriate handling of enterprise bean remoting and
transaction recovery processing. The StatefulSet ensures persistent storage and network
hostname stability even after pods are restarted.

Network hostname stability is required when the JBoss EAP instance is contacted using an enterprise
bean remote call with transaction propagation. The JBoss EAP instance must be reachable under the
same hostname even if the pod restarts. The transaction manager, which is a stateful component, binds
the persisted transaction data to a particular JBoss EAP instance. Because the transaction log is bound
to a specific JBoss EAP instance, it must be completed in the same instance.

To prevent data loss when the JDBC transaction log store is used, make sure your database provides

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/index#nodes-pods-autoscaling
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

To prevent data loss when the JDBC transaction log store is used, make sure your database provides
data-consistent reads and writes. Consistent data reads and writes are important when the database is
scaled horizontally with multiple instances.

An enterprise bean remote caller has two options to configure the remote calls:

Define a remote outbound connection.

Use a programmatic JNDI lookup for the bean at the remote server. For more information, see
Using Remote Jakarta Enterprise Beans Clients .

You must reconfigure the value representing the address of the target node depending on the
enterprise bean remote call configuration method.

NOTE

The name of the target enterprise bean for the remote call must be the DNS address of
the first pod.

The StatefulSet behaviour depends on the ordering of the pods. The pods are named in a predefined
order. For example, if you scale your application to three replicas, your pods have names such as eap-
server-0, eap-server-1, and eap-server-2.

The EAP operator also uses a headless service that ensures a specific DNS hostname is assigned to the
pod. If the application uses the EAP operator, a headless service is created with a name such as eap-
server-headless. In this case, the DNS name of the first pod is eap-server-0.eap-server-headless.

The use of the hostname eap-server-0.eap-server-headless ensures that the enterprise bean call
reaches any EAP instance connected to the cluster. A bootstrap connection is used to initialize the
Jakarta Enterprise Beans client, which gathers the structure of the EAP cluster as the next step.

9.1.9.1.1. Configuring Jakarta Enterprise Beans on OpenShift

You must configure the JBoss EAP servers that act as callers for enterprise bean remoting. The target
server must configure a user with permission to receive the enterprise bean remote calls.

Prerequisites

You have used the EAP operator and the supported JBoss EAP for OpenShift S2I image for
deploying and managing the JBoss EAP application instances on OpenShift.

The clustering is set correctly. For more information about JBoss EAP clustering, see the
Clustering section.

Procedure

1. Create a user in the target server with permission to receive the enterprise bean remote calls:

$JBOSS_HOME/bin/add-user.sh

2. Configure the caller JBoss EAP application server.

a. Create the eap-config.xml file in $JBOSS_HOME/standalone/configuration using the
custom configuration functionality. For more information, see Custom Configuration.

CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM

95

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_jakarta_enterprise_beans_applications/#using_jakarta_enterprise_beans_client
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#headless-services
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_openshift-clustering_assembly_reference-information-for-openshift-container-platform
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#custom_configuration

b. Configure the caller JBoss EAP application server with the wildfly.config.url property:

JAVA_OPTS_APPEND="-
Dwildfly.config.url=$JBOSS_HOME/standalone/configuration/eap-config.xml"

NOTE

If you use the following example for your configuration, replace the
>>PASTE_… ​_HERE<< with username and password you configured.

Example Configuration

<configuration>
 <authentication-client xmlns="urn:elytron:1.0">
 <authentication-rules>
 <rule use-configuration="jta">
 <match-abstract-type name="jta" authority="jboss" />
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="jta">
 <sasl-mechanism-selector selector="DIGEST-MD5" />
 <providers>
 <use-service-loader />
 </providers>
 <set-user-name name="PASTE_USER_NAME_HERE" />
 <credentials>
 <clear-password password="PASTE_PASSWORD_HERE" />
 </credentials>
 <set-mechanism-realm name="ApplicationRealm" />
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

96

CHAPTER 10. TROUBLESHOOTING
Pods can restart for a number of reasons, but a common cause of JBoss EAP pod restarts might include
OpenShift resource constraints, especially out-of-memory issues. See the OpenShift documentation for
more information on OpenShift pod eviction.

10.1. TROUBLESHOOTING POD RESTARTS

By default, JBoss EAP for OpenShift templates are configured to automatically restart affected
containers when they encounter situations like out-of-memory issues. The following steps can help you
diagnose and troubleshoot out-of-memory and other pod restart issues.

1. Get the name of the pod that has been having trouble.
You can see pod names, as well as the number times each pod has restarted with the following
command.

$ oc get pods

2. To diagnose why a pod has restarted, you can examine the JBoss EAP logs of the previous pod,
or the OpenShift events.

a. To see the JBoss EAP logs of the previous pod, use the following command.

oc logs --previous POD_NAME

b. To see the OpenShift events, use the following command.

$ oc get events

3. If a pod has restarted because of a resource issue, you can attempt to modify your OpenShift
pod configuration to increase its resource requests and limits . See the OpenShift
documentation for more information on configuring pod compute resources .

10.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

The JBoss EAP management CLI, EAP_HOME/bin/jboss-cli.sh, is accessible from within a container
for troubleshooting purposes.

IMPORTANT

It is not recommended to make configuration changes in a running pod using the JBoss
EAP management CLI. Any configuration changes made using the management CLI in a
running container will be lost when the container restarts.

To make configuration changes to JBoss EAP for OpenShift, see Configuring your JBoss
EAP server and application.

1. First open a remote shell session to the running pod.

$ oc rsh POD_NAME

2. Run the following command from the remote shell session to launch the JBoss EAP

CHAPTER 10. TROUBLESHOOTING

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-handling-out-of-resource-errors#out-of-resource-eviction-of-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-quota#requests-vs-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/index#dev-compute-resources
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#assembly_configuring-the-jvm-to-run-your-eap-application_default

2. Run the following command from the remote shell session to launch the JBoss EAP
management CLI:

$ /opt/server/bin/jboss-cli.sh

10.3. TROUBLESHOOTING ERRORS WHEN UPDATING HELM CHART
FROM VERSION 1.0.0 TO 1.1.0 ON JBOSS EAP 8

There may be errors when upgrading Helm Chart to the latest version on JBoss EAP 8. If you modify the
immutable field before upgrading Helm Chart, the following error message may be displayed during the
upgrade:

To resolve this error, delete the deployment resource by running the command oc delete deployment
<helm-release-name> before running the command helm upgrade <helm-release-name>.

UPGRADE FAILED: cannot patch "<helm-release-name>" with kind Deployment: Deployment.apps "
<helm-release-name>" is invalid: spec.selector: Invalid value:
v1.LabelSelector{MatchLabels:map[string]string{"app.kubernetes.io/instance":"<helm-release-
name>", "app.kubernetes.io/name":"<helm-release-name>"}, MatchExpressions:
[]v1.LabelSelectorRequirement(nil)}: field is immutable

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

98

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT
CONTAINER PLATFORM

The content in this section is derived from the engineering documentation for this application image.
The content is provided as a reference for development purposes and for testing beyond the scope of
the product documentation.

11.1. INFORMATION ENVIRONMENT VARIABLES

The following environment variables are designed to provide information to the image and should not be
modified by the user:

Table 11.1. Information Environment Variables

Variable Name Description and Value

JBOSS_IMAGE_NAME The image names.

Values:

jboss-eap-8/eap8-openjdk17-builder-openshift-
rhel8 (JDK 17 / RHEL 8)

JBOSS_IMAGE_VERSION The image version.

Value: This is the image version number. See the Red Hat
Container Catalog for the latest values:

JDK 17 / RHEL 8

JBOSS_MODULES_SYSTEM_PKGS A comma-separated list of JBoss EAP system modules
packages that are available to applications.

Value: jdk.nashorn.api

STI_BUILDER Provides OpenShift S2I support for jee project types.

Value: jee

11.2. CONFIGURATION ENVIRONMENT VARIABLES

You can configure the following environment variables to adjust the image without requiring a rebuild.

NOTE

See the JBoss EAP documentation for other environment variables that are not listed
here.

Table 11.2. Configuration environment variables

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

99

https://catalog.redhat.com/search?gs&q=eap8
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/

Variable Name Description

CLI_GRACEFUL_SHUTDOWN If set to any non-zero length value, the image will prevent
shutdown with the TERM signal and will require execution of the
shutdown command using the JBoss EAP management CLI.

Example value: true

CONTAINER_HEAP_PERCENT Set the maximum Java heap size, as a percentage of available
container memory.

Example value: 0.5

CUSTOM_INSTALL_DIRECTORIES A list of comma-separated directories used for installation and
configuration of artifacts for the image during the S2I process.

Example value: custom,shared

DEFAULT_JMS_CONNECTION_FACTOR
Y

This value is used to specify the default JNDI binding for the
Jakarta Messaging connection factory, for example jms-
connection-
factory='java:jboss/DefaultJMSConnectionFactory'.

Example value: java:jboss/DefaultJMSConnectionFactory

ENABLE_ACCESS_LOG Enable logging of access messages to the standard output
channel.

Logging of access messages is implemented using following
methods:

The JBoss EAP 6.4 OpenShift image uses a custom
JBoss Web Access Log Valve.

The JBoss EAP for OpenShift image uses the
Undertow AccessLogHandler in the JBoss EAP 7.4
Development Guide.

Defaults to false.

INITIAL_HEAP_PERCENT Set the initial Java heap size, as a percentage of the maximum
heap size.

Example value: 0.5

JAVA_OPTS_APPEND Server startup options.

Example value: -Dfoo=bar

JBOSS_MODULES_SYSTEM_PKGS_APP
END

A comma-separated list of package names that will be
appended to the JBOSS_MODULES_SYSTEM_PKGS
environment variable.

Example value: org.jboss.byteman

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

100

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#accessloghandler

JGROUPS_CLUSTER_PASSWORD Password used to authenticate the node so it is allowed to join
the JGroups cluster. Required, when using ASYM_ENCRYPT
JGroups cluster traffic encryption protocol. If not set,
authentication is disabled, cluster communication is not
encrypted and a warning is issued. Optional, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol.

Example value: mypassword

JGROUPS_ENCRYPT_KEYSTORE Name of the keystore file within the created secret specified
when using SYM_ENCRYPT JGroups cluster traffic
encryption protocol. If not set, cluster communication is not
encrypted and a warning is issued.

Example value: jgroups.jceks

JGROUPS_ENCRYPT_KEYSTORE_DIR Directory path in which the secret containing the keystore is
mounted.

Example value: /etc/jgroups-encrypt-secret-volume

JGROUPS_ENCRYPT_NAME Name associated with the server’s certificate, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: jgroups

JGROUPS_ENCRYPT_PASSWORD Password used to access the keystore and the certificate, when
using SYM_ENCRYPT JGroups cluster traffic encryption
protocol. If not set, cluster communication is not encrypted and
a warning is issued.

Example value: mypassword

JGROUPS_ENCRYPT_PROTOCOL JGroups protocol to use for encryption of cluster traffic. Can be
either SYM_ENCRYPT or ASYM_ENCRYPT.

Defaults to SYM_ENCRYPT.

Example value: ASYM_ENCRYPT

JGROUPS_PING_PROTOCOL JGroups protocol to use for node discovery. Can be either
dns.DNS_PING or kubernetes.KUBE_PING.

MQ_SIMPLE_DEFAULT_PHYSICAL_DES
TINATION

For backwards compatibility, set to true to use MyQueue and
MyTopic as physical destination name defaults instead of
queue/MyQueue and topic/MyTopic.

Variable Name Description

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

101

OPENSHIFT_DNS_PING_SERVICE_NAM
E

Name of the service exposing the ping port on the servers for
the DNS discovery mechanism.

Example value: eap-app-ping

OPENSHIFT_DNS_PING_SERVICE_POR
T

The port number of the ping port for the DNS discovery
mechanism. If not specified, an attempt is made to discover the
port number from the SRV records for the service, otherwise the
default 8888 is used.

Defaults to 8888.

OPENSHIFT_KUBE_PING_LABELS Clustering labels selector for the Kubernetes discovery
mechanism.

Example value: app=eap-app

OPENSHIFT_KUBE_PING_NAMESPACE Clustering project namespace for the Kubernetes discovery
mechanism.

Example value: myproject

SCRIPT_DEBUG If set to true, ensures that the Bash scripts are executed with
the -x option, printing the commands and their arguments as
they are executed.

Variable Name Description

11.3. EXPOSED PORTS

Table 11.3. Exposed Ports

Port Number Description

8443 HTTPS

11.4. DATASOURCES

Datasources are automatically created based on the value of some of the environment variables.

The most important environment variable is DB_SERVICE_PREFIX_MAPPING, as it defines JNDI
mappings for the datasources. The allowed value for this variable is a comma-separated list of
POOLNAME-DATABASETYPE=PREFIX triplets, where:

POOLNAME is used as the pool-name in the datasource.

DATABASETYPE is the database driver to use.

PREFIX is the prefix used in the names of environment variables that are used to configure the

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

102

PREFIX is the prefix used in the names of environment variables that are used to configure the
datasource.

11.4.1. JNDI mappings for datasources

For each POOLNAME-DATABASETYPE=PREFIX triplet defined in the
DB_SERVICE_PREFIX_MAPPING environment variable, the launch script creates a separate
datasource, which is executed when running the image.

NOTE

The first part (before the equal sign) of the DB_SERVICE_PREFIX_MAPPING should be
lowercase.

The DATABASETYPE determines the driver for the datasource.

For more information about configuring a driver, see Modules, Drivers, and Generic Deployments. The
JDK 8 image has drivers for postgresql and mysql configured by default.

WARNING

Do not use any special characters for the POOLNAME parameter.

DATABASE DRIVERS

Support for using the Red Hat-provided internal datasource drivers with the JBoss EAP
for OpenShift image is now deprecated. Red Hat recommends that you use JDBC drivers
obtained from your database vendor for your JBoss EAP applications.

The following internal datasources are no longer provided with the JBoss EAP for
OpenShift image:

MySQL

PostgreSQL

For more information about installing drivers, see Modules, Drivers, and Generic Deployments.

Note that you can also create a custom layer to install these drivers and datasources if you want to add
them to a provisioned server.

11.4.1.1. Datasource Configuration Environment Variables

To configure other datasource properties, use the following environment variables.

IMPORTANT



CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

103

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/index#s2i_modules_drivers_deployments
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/index#s2i_modules_drivers_deployments

IMPORTANT

Be sure to replace the values for POOLNAME, DATABASETYPE, and PREFIX in the
following variable names with the appropriate values. These replaceable values are
described in this section and in the Datasources section.

Variable Name Description

POOLNAME_DATABASETYPE_SERVICE
_HOST

Defines the database server’s host name or IP address to be
used in the datasource’s connection-url property.

Example value: 192.168.1.3

POOLNAME_DATABASETYPE_SERVICE
_PORT

Defines the database server’s port for the datasource.

Example value: 5432

PREFIX_BACKGROUND_VALIDATION When set to true database connections are validated
periodically in a background thread prior to use. Defaults to
false, meaning the validate-on-match method is enabled by
default instead.

PREFIX_BACKGROUND_VALIDATION_M
ILLIS

Specifies frequency of the validation, in milliseconds, when the
background-validation database connection validation
mechanism is enabled
(PREFIX_BACKGROUND_VALIDATION variable is set to
true). Defaults to 10000.

PREFIX_CONNECTION_CHECKER Specifies a connection checker class that is used to validate
connections for the particular database in use.

Example value:
org.jboss.jca.adapters.jdbc.extensions.postgres.Postg
reSQLValidConnectionChecker

PREFIX_DATABASE Defines the database name for the datasource.

Example value: myDatabase

PREFIX_DRIVER Defines Java database driver for the datasource.

Example value: postgresql

PREFIX_EXCEPTION_SORTER Specifies the exception sorter class that is used to properly
detect and clean up after fatal database connection exceptions.

Example value:
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLE
xceptionSorter

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

104

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_openshift-datasources_assembly_reference-information-for-openshift-container-platform

PREFIX_JNDI Defines the JNDI name for the datasource. Defaults to
java:jboss/datasources/POOLNAME_DATABASETYPE,
where POOLNAME and DATABASETYPE are taken from
the triplet described above. This setting is useful if you want to
override the default generated JNDI name.

Example value: java:jboss/datasources/test-postgresql

PREFIX_JTA Defines Jakarta Transactions option for the non-XA datasource.
The XA datasources are already Jakarta Transactions capable by
default.

Defaults to true.

PREFIX_MAX_POOL_SIZE Defines the maximum pool size option for the datasource.

Example value: 20

PREFIX_MIN_POOL_SIZE Defines the minimum pool size option for the datasource.

Example value: 1

PREFIX_NONXA Defines the datasource as a non-XA datasource. Defaults to
false.

PREFIX_PASSWORD Defines the password for the datasource.

Example value: password

PREFIX_TX_ISOLATION Defines the java.sql.Connection transaction isolation level for
the datasource.

Example value: TRANSACTION_READ_UNCOMMITTED

PREFIX_URL Defines connection URL for the datasource.

Example value:
jdbc:postgresql://localhost:5432/postgresdb

PREFIX_USERNAME Defines the username for the datasource.

Example value: admin

Variable Name Description

11.4.1.2. Examples

These examples show how value of the DB_SERVICE_PREFIX_MAPPING environment variable
influences datasource creation.

11.4.1.2.1. Single Mapping

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

105

Consider value test-postgresql=TEST.

This creates a datasource with java:jboss/datasources/test_postgresql name. Additionally, all the
required settings like password and username are expected to be provided as environment variables
with the TEST_ prefix, for example TEST_USERNAME and TEST_PASSWORD.

11.4.1.2.2. Multiple Mappings

You can specify multiple datasource mappings.

NOTE

Always separate multiple datasource mappings with a comma.

Consider the following value for the DB_SERVICE_PREFIX_MAPPING environment variable: cloud-
postgresql=CLOUD,test-mysql=TEST_MYSQL.

This creates the following two datasources:

1. java:jboss/datasources/test_mysql

2. java:jboss/datasources/cloud_postgresql

Then you can use TEST_MYSQL prefix for configuring things like the username and password for the
MySQL datasource, for example TEST_MYSQL_USERNAME. And for the PostgreSQL datasource, use
the CLOUD_ prefix, for example CLOUD_USERNAME.

11.5. CLUSTERING

11.5.1. Configuring a JGroups Discovery Mechanism

To enable JBoss EAP clustering on OpenShift, configure the JGroups protocol stack in your JBoss EAP
configuration to use either the kubernetes.KUBE_PING or the dns.DNS_PING discovery mechanism.

Although you can use a custom standalone.xml configuration file, it is recommended that you use
Environment variables to configure JGroups in your image build.

The instructions below use environment variables to configure the discovery mechanism for the JBoss
EAP for OpenShift image.

IMPORTANT

If you use Helm chart to deploy an application on top of the JBoss EAP for OpenShift
image, the default discovery mechanism is dns.DNS_PING.

The dns.DNS_PING and kubernetes.KUBE_PING discovery mechanisms are not
compatible with each other. It is not possible to form a supercluster out of two
independent child clusters, with one using the dns.DNS_PING mechanism for discovery
and the other using the kubernetes.KUBE_PING mechanism. Similarly, when performing
a rolling upgrade, the discovery mechanism needs to be identical for both the source and
the target clusters.

11.5.1.1. Configuring KUBE_PING

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

106

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_enviroment-variables_assembly_reference-information-for-openshift-container-platform

To use the KUBE_PING JGroups discovery mechanism:

1. The JGroups protocol stack must be configured to use KUBE_PING as the discovery
mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
kubernetes.KUBE_PING:

JGROUPS_PING_PROTOCOL=kubernetes.KUBE_PING

2. The KUBERNETES_NAMESPACE environment variable must be set to your OpenShift project
name. For example:

KUBERNETES_NAMESPACE=PROJECT_NAME

3. The KUBERNETES_LABELS environment variable should be set. This should match the label
set at the service level. If not set, pods outside of your application (albeit in your namespace) will
try to join. For example:

KUBERNETES_LABELS=application=APP_NAME

4. Authorization must be granted to the service account the pod is running under to be allowed to
access Kubernetes' REST API. This is done using the OpenShift CLI. The following example uses
the default service account in the current project’s namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc project
-q)

Using the eap-service-account in the project namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):eap-service-account -
n $(oc project -q)

NOTE

See Preparing OpenShift to deploy an application for more information on
adding policies to service accounts.

11.5.1.2. Configuring DNS_PING

To use the DNS_PING JGroups discovery mechanism:

1. The JGroups protocol stack must be configured to use DNS_PING as the discovery mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
dns.DNS_PING:

JGROUPS_PING_PROTOCOL=dns.DNS_PING

2. The OPENSHIFT_DNS_PING_SERVICE_NAME environment variable must be set to the name
of the ping service for the cluster.

OPENSHIFT_DNS_PING_SERVICE_NAME=PING_SERVICE_NAME

3. The OPENSHIFT_DNS_PING_SERVICE_PORT environment variable should be set to the port

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#labels
https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html#default-service-accounts-and-roles
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_prepare-for-the-development_assembly_building-and-running-jboss-eap-applicationson-openshift-container-platform

3. The OPENSHIFT_DNS_PING_SERVICE_PORT environment variable should be set to the port
number on which the ping service is exposed. The DNS_PING protocol attempts to discern the
port from the SRV records, otherwise it defaults to 8888.

OPENSHIFT_DNS_PING_SERVICE_PORT=PING_PORT

4. A ping service which exposes the ping port must be defined. This service should be headless
(ClusterIP=None) and must have the following:

a. The port must be named.

b. The service must be annotated with the service.alpha.kubernetes.io/tolerate-unready-
endpoints and the publishNotReadyAddresses properties, both set to true.

NOTE

Use both the service.alpha.kubernetes.io/tolerate-unready-endpoints
and the publishNotReadyAddresses properties to ensure that the ping
service works in both the older and newer OpenShift releases.

Omitting these annotations result in each node forming its own "cluster
of one" during startup. Each node then merges its cluster into the other
nodes' clusters after startup, because the other nodes are not detected
until after they have started.

NOTE

DNS_PING does not require any modifications to the service account and works using the
default permissions.

11.5.2. Configuring JGroups to Encrypt Cluster Traffic

To encrypt cluster traffic for JBoss EAP on OpenShift, you must configure the JGroups protocol stack
in your JBoss EAP configuration to use either the SYM_ENCRYPT or ASYM_ENCRYPT protocol.

Although you can use a custom standalone.xml configuration file, it is recommended that you use
Environment variables to configure JGroups in your image build.

kind: Service
apiVersion: v1
spec:
 publishNotReadyAddresses: true
 clusterIP: None
 ports:
 - name: ping
 port: 8888
 selector:
 deploymentConfig: eap-app
metadata:
 name: eap-app-ping
 annotations:
 service.alpha.kubernetes.io/tolerate-unready-endpoints: "true"
 description: "The JGroups ping port for clustering."

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

108

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#ref_enviroment-variables_assembly_reference-information-for-openshift-container-platform

The instructions below use environment variables to configure the protocol for cluster traffic encryption
for the JBoss EAP for OpenShift image.

IMPORTANT

The SYM_ENCRYPT and ASYM_ENCRYPT protocols are not compatible with each
other. It is not possible to form a supercluster out of two independent child clusters, with
one using the SYM_ENCRYPT protocol for the encryption of cluster traffic and the other
using the ASYM_ENCRYPT protocol. Similarly, when performing a rolling upgrade, the
protocol needs to be identical for both the source and the target clusters.

11.5.2.1. Configuring SYM_ENCRYPT

To use the SYM_ENCRYPT protocol to encrypt JGroups cluster traffic:

1. The JGroups protocol stack must be configured to use SYM_ENCRYPT as the encryption
protocol.
You can do this by setting the JGROUPS_ENCRYPT_PROTOCOL environment variable to
SYM_ENCRYPT:

JGROUPS_ENCRYPT_PROTOCOL=SYM_ENCRYPT

2. The JGROUPS_ENCRYPT_KEYSTORE_DIR environment variable must be set to the
directory path in which the secret containing the keystore is mounted. For example:

JGROUPS_ENCRYPT_KEYSTORE_DIR=/etc/jgroups-encrypt-secret-volume

3. The JGROUPS_ENCRYPT_KEYSTORE environment variable must be set to the name of the
keystore file within the created secret specified. If not set, cluster communication is not
encrypted and a warning is issued. For example:

JGROUPS_ENCRYPT_KEYSTORE=jgroups.jceks

4. The JGROUPS_ENCRYPT_NAME environment variable must be set to the name associated
with the server’s certificate. If not set, cluster communication is not encrypted and a warning is
issued. For example:

JGROUPS_ENCRYPT_NAME=jgroups

5. The JGROUPS_ENCRYPT_PASSWORD environment variable must be set to the password
used to access the keystore and the certificate. If not set, cluster communication is not
encrypted and a warning is issued. For example:

JGROUPS_ENCRYPT_PASSWORD=mypassword

11.5.2.2. Configuring ASYM_ENCRYPT

NOTE

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

109

NOTE

JBoss EAP 8.0 includes a new version of the ASYM_ENCRYPT protocol. The previous
version of the protocol is deprecated. If you specify the
JGROUPS_CLUSTER_PASSWORD environment variable, the deprecated version of
the protocol is used and a warning is printed in the pod log.

To use the ASYM_ENCRYPT protocol to encrypt JGroups cluster traffic, specify ASYM_ENCRYPT as
the encryption protocol, and configure it to use a keystore configured in the elytron subsystem.

-e JGROUPS_ENCRYPT_PROTOCOL="ASYM_ENCRYPT" \
-e JGROUPS_ENCRYPT_NAME="encrypt_name" \
-e JGROUPS_ENCRYPT_PASSWORD="encrypt_password" \
-e JGROUPS_ENCRYPT_KEYSTORE="encrypt_keystore" \
-e JGROUPS_CLUSTER_PASSWORD="cluster_password"

11.5.3. Considerations for scaling up pods

Based on the discovery mechanism in JGroups, a starting node searches for an existing cluster
coordinator node. If a coordinator node is not found within a given timeout, the starting node assumes
that it is the first member and takes up the coordinator status.

When multiple nodes start concurrently, they make an assumption of being the first member that leads
to the creation of a split cluster with multiple partitions. For example, scaling up from 0 to 2 pods using
the DeploymentConfig API may lead to the creation of a split cluster. To avoid this situation, you need
to start the first pod and then scale up to the required number of pods.

NOTE

By default, the JBoss EAP Operator uses the StatefulSet API, which starts the creation
of pods in order, that is, one by one, preventing the creation of split clusters.

11.6. NATIVE HEALTH CHECKS

The JBoss EAP for OpenShift image implements Liveness and readiness probes that are included in
OpenShift by default. For more information, see liveness and readiness probes in the OpenShift
Container Platform Developer Guide.

The following table demonstrates the values necessary for these health checks to pass. If the status is
anything other than the values found below, then the check is failed and the image is restarted per the
image’s restart policy.

Table 11.4. Liveness and Readiness Checks

Performed Test Liveness Readiness

Server Status Any status Running

Boot Errors None None

Deployment Status [a] N/A or no failed entries N/A or no failed entries

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html-single/building_applications/index#application-health

Native Health Checks UP UP

[a] N/A is only a valid state when no deployments are present.

Performed Test Liveness Readiness

11.7. MESSAGING

11.7.1. Configuring External Red Hat AMQ Brokers

You can configure the JBoss EAP for OpenShift image with environment variables to connect to
external Red Hat AMQ brokers.

11.8. SECURITY DOMAINS

To configure a new Security Domain, the user must define the SECDOMAIN_NAME environment
variable.

This results in the creation of a security domain named after the environment variable. The user may
also define the following environment variables to customize the domain:

Table 11.5. Security Domains

Variable name Description

SECDOMAIN_NAME Defines an additional security domain.

Example value: myDomain

SECDOMAIN_PASSWORD_STACKING If defined, the password-stacking module option is enabled
and set to the value useFirstPass.

Example value: true

SECDOMAIN_LOGIN_MODULE The login module to be used.

Defaults to UsersRoles

SECDOMAIN_USERS_PROPERTIES The name of the properties file containing user definitions.

Defaults to users.properties

SECDOMAIN_ROLES_PROPERTIES The name of the properties file containing role definitions.

Defaults to roles.properties

11.9. HTTPS ENVIRONMENT VARIABLES

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

111

Variable name Description

HTTPS_NAME If defined along with HTTPS_PASSWORD and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL name.

This should be the value specified as the alias name of your
keystore if you created it with the keytool -genkey command.

Example value: example.com

HTTPS_PASSWORD If defined along with HTTPS_NAME and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL key
password.

Example value: passw0rd

HTTPS_KEYSTORE If defined along with HTTPS_PASSWORD and
HTTPS_NAME, enables HTTPS and sets the SSL certificate
key file to a relative path under
EAP_HOME/standalone/configuration

Example value: ssl.key

11.10. ADMINISTRATION ENVIRONMENT VARIABLES

Table 11.6. Administration Environment Variables

Variable name Description

ADMIN_USERNAME If both this and ADMIN_PASSWORD are defined, used for the
JBoss EAP management user name.

Example value: eapadmin

ADMIN_PASSWORD The password for the specified ADMIN_USERNAME.

Example value: passw0rd

11.11. S2I

The image includes S2I scripts and Maven. Maven is currently only supported as a build tool for
applications that are supposed to be deployed on JBoss EAP-based containers (or related/descendant
images) on OpenShift.

Only WAR deployments are supported at this time.

11.11.1. Custom Configuration

It is possible to add custom configuration files for the image. All files put into configuration/ directory
will be copied into EAP_HOME/standalone/configuration/. For example to override the default
configuration used in the image, just add a custom standalone.xml into the configuration/ directory.

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

112

See example for such a deployment.

11.11.1.1. Custom Modules

It is possible to add custom modules. All files from the modules/ directory will be copied into
EAP_HOME/modules/. See example for such a deployment.

11.11.2. Deployment Artifacts

By default, artifacts from the source target directory will be deployed. To deploy from different
directories set the ARTIFACT_DIR environment variable in the BuildConfig definition. ARTIFACT_DIR
is a comma-delimited list. For example: ARTIFACT_DIR=app1/target,app2/target,app3/target

11.11.3. Artifact repository mirrors

A repository in Maven holds build artifacts and dependencies of various types, for example, all of the
project JARs, library JARs, plug-ins, or any other project specific artifacts. It also specifies locations
from where to download artifacts while performing the S2I build. Besides using central repositories, it is a
common practice for organizations to deploy a local custom mirror repository.

Benefits of using a mirror are:

Availability of a synchronized mirror, which is geographically closer and faster.

Ability to have greater control over the repository content.

Possibility to share artifacts across different teams (developers, CI), without the need to rely on
public servers and repositories.

Improved build times.

Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at https://10.0.0.1:8443/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build
configuration of the application as follows:

1. Identify the name of the build configuration to apply MAVEN_MIRROR_URL variable against.

oc get bc -o name
buildconfig/eap

2. Update build configuration of eap with a MAVEN_MIRROR_URL environment variable.

oc env bc/eap MAVEN_MIRROR_URL="https://10.0.0.1:8443/repository/internal/"
buildconfig "eap" updated

3. Verify the setting.

oc env bc/eap --list
buildconfigs eap
MAVEN_MIRROR_URL=https://10.0.0.1:8443/repository/internal/

4. Schedule new build of the application.

NOTE

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

113

https://github.com/goldmann/openshift-eap-examples/tree/master/custom-configuration
https://github.com/goldmann/openshift-eap-examples/tree/master/custom-module

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

11.11.3.1. Secure artifact repository mirror URLs

To prevent "man-in-the-middle" attacks through the Maven repository, JBoss EAP requires the use of
secure URLs for artifact repository mirror URLs.

The URL should specify a secure http ("https") and a secure port.

By default, if you specify an unsecure URL, an error will be returned. You can override this behavior using
the the property -Dinsecure.repositories=WARN.

11.11.4. Scripts

run

This script uses the openshift-launch.sh script that configures and starts JBoss EAP with the
standalone.xml configuration.

assemble

This script uses Maven to build the source, create a package (WAR), and move it to the
EAP_HOME/standalone/deployments directory.

11.11.5. Custom Scripts

You can add custom scripts to run when starting a pod, before JBoss EAP is started.

You can add any script valid to run when starting a pod, including CLI scripts.

Two options are available for including scripts when starting JBoss EAP from an image:

Mount a configmap to be executed as postconfigure.sh

Add an install.sh script in the nominated installation directory

11.11.5.1. Mounting a configmap to execute custom scripts

Mount a configmap when you want to mount a custom script at runtime to an existing image (in other
words, an image that has already been built).

To mount a configmap:

1. Create a configmap with content you want to include in the postconfigure.sh.
For example, create a directory called extensions in the project root directory to include the
scripts postconfigure.sh and extensions.cli and run the following command:

$ oc create configmap jboss-cli --from-file=postconfigure.sh=extensions/postconfigure.sh --
from-file=extensions.cli=extensions/extensions.cli

2. Mount the configmap into the pods via the deployment controller (dc).

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

114

$ oc set volume dc/eap-app --add --name=jboss-cli -m /opt/server/extensions -t configmap --
configmap-name=jboss-cli --default-mode='0755' --overwrite

Example postconfigure.sh

#!/usr/bin/env bash
set -x
echo "Executing postconfigure.sh"
$JBOSS_HOME/bin/jboss-cli.sh --file=$JBOSS_HOME/extensions/extensions.cli

Example extensions.cli

embed-server --std-out=echo --server-config=standalone.xml
:whoami
quit

11.11.5.2. Using install.sh to execute custom scripts

Use install.sh when you want to include the script as part of the image when it is built.

To execute custom scripts using install.sh:

1. In the git repository of the project that will be used during s2i build, create a directory called
.s2i.

2. Inside the s2i directory, add a file called environment, with the following content:

$ cat .s2i/environment
CUSTOM_INSTALL_DIRECTORIES=extensions

3. Create a directory called extensions.

4. In the extensions directory, create the file postconfigure.sh with contents similar to the
following (replace placeholder code with appropriate code for your environment):

$ cat extensions/postconfigure.sh
#!/usr/bin/env bash
echo "Executing patch.cli"
$JBOSS_HOME/bin/jboss-cli.sh --file=$JBOSS_HOME/extensions/some-cli-example.cli

5. In the extensions directory, create the file install.sh with contents similar to the following
(replace placeholder code with appropriate code for your environment):

$ cat extensions/install.sh
#!/usr/bin/env bash
set -x
echo "Running $PWD/install.sh"
injected_dir=$1
copy any needed files into the target build.
cp -rf ${injected_dir} $JBOSS_HOME/extensions

11.11.6. Environment variables

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

115

You can influence the way the build is executed by supplying environment variables to the s2i build
command. The environment variables that can be supplied are:

Table 11.7. s2i Environment Variables

Variable name Description

ARTIFACT_DIR The .war, .ear, and .jar files from this directory will be copied
into the deployments/ directory.

Example value: target

ENABLE_GENERATE_DEFAULT_DATAS
OURCE

Optional. When included with the value true, the server is
provisioned with the default datasource. Otherwise, the default
datasource is not included.

GALLEON_PROVISION_LAYERS Optional. Instructs the S2I process to provision the specified
layers. The value is a comma-separated list of layers to
provision, including one base layer and any number of decorator
layers.

Example value: jaxrs

GALLEON_PROVISION_CHANNELS This is a comma separated list of JBoss EAP channels manifest.
The JBoss EAP channel manifest is identified by
groupid:artifactId:[version].

NOTE

The version is optional, which means that the
latest channel manifest will be retrieved. For
JBoss EAP 8.0, use this channel
org.jboss.eap.channels:eap-8.0.

GALLEON_PROVISION_FEATURE_PAC
KS

Builds environment variable to specify a custom Galleon feature
pack for your S2I image. For example: org.jboss.eap:wildfly-
ee-galleon-pack:[version],org.jboss.eap.cloud:eap-
cloud-galleon-pack:[version].

NOTE

When you set up the
GALLEON_PROVISION_CHANNELS=org.
jboss.eap.channels:eap-8.0, the feature-
packs versions are not required.

HTTP_PROXY_HOST Host name or IP address of a HTTP proxy for Maven to use.

Example value: 192.168.1.1

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

116

HTTP_PROXY_PORT TCP Port of a HTTP proxy for Maven to use.

Example value: 8080

HTTP_PROXY_USERNAME If supplied with HTTP_PROXY_PASSWORD, use credentials
for HTTP proxy.

Example value: myusername

HTTP_PROXY_PASSWORD If supplied with HTTP_PROXY_USERNAME, use credentials
for HTTP proxy.

Example value: mypassword

HTTP_PROXY_NONPROXYHOSTS If supplied, a configured HTTP proxy will ignore these hosts.

Example value: some.example.org|*.example.net

MAVEN_ARGS Overrides the arguments supplied to Maven during build.

Example value: -e -Popenshift -DskipTests -
Dcom.redhat.xpaas.repo.redhatga package

MAVEN_ARGS_APPEND Appends user arguments supplied to Maven during build.

Example value: -Dfoo=bar

MAVEN_MIRROR_URL URL of a Maven Mirror/repository manager to configure.

Example value: https://10.0.0.1:8443/repository/internal/

Note that the specified URL should be secure. For details see
Secure artifact repository mirror URLs.

MAVEN_CLEAR_REPO Optionally clear the local Maven repository after the build.

If the server present in the image is strongly coupled to the local
cache, the cache is not deleted and a warning is printed.

Example value: true

APP_DATADIR If defined, directory in the source from where data files are
copied.

Example value: mydata

DATA_DIR Directory in the image where data from $APP_DATADIR will
be copied.

Example value: EAP_HOME/data

Variable name Description

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

117

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#proc_secure-artifact-repository-mirror-urls_assembly_reference-information-for-openshift-container-platform

NOTE

For more information, see Building and running JBoss EAP applications on OpenShift
Container Platform, which uses Maven and the S2I scripts included in the JBoss EAP for
OpenShift image.

11.12. UNSUPPORTED TRANSACTION RECOVERY SCENARIOS

JTS transactions are not supported in OpenShift.

XTS transactions are not supported in OpenShift.

The XATerminator interface that some third parties use for transaction completion and crash
recovery flows is not supported in OpenShift.

Transactions propagated over JBoss Remoting is Unsupported.

NOTE

Transactions propagated over JBoss Remoting is supported using EAP operator.

11.13. INCLUDED JBOSS MODULES

The table below lists included JBoss Modules in the JBoss EAP for OpenShift image.

Table 11.8. Included JBoss Modules

JBoss Module

org.jboss.as.clustering.common

org.jboss.as.clustering.jgroups

org.jboss.as.ee

org.jgroups

org.openshift.ping

net.oauth.core

11.14. EAP OPERATOR: API INFORMATION

The EAP operator introduces the following APIs:

11.14.1. WildFlyServer

WildFlyServer defines a custom JBoss EAP resource.

Table 11.9. WildFlyServer

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

118

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#assembly_building-and-running-jboss-eap-applicationson-openshift-container-platform_default
https://jakarta.ee/specifications/platform/8/apidocs/javax/resource/spi/XATerminator.html
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#con_ejb-remoting-configuration-on-openshift_assembly_jarkarta-enterprise-beans-remoting-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#con_ejb-remoting-configuration-on-openshift_assembly_jarkarta-enterprise-beans-remoting-on-openshift

Field Description Scheme Required

metadata Standard object’s
metadata

ObjectMeta v1 meta false

spec Specification of the
desired behaviour of the
JBoss EAP deployment.

WildFlyServerSpec true

status Most recent observed
status of the JBoss EAP
deployment. Read-only.

WildFlyServerStatus false

11.14.2. WildFlyServerList

WildFlyServerList defines a list of JBoss EAP deployments.

Table 11.10. Table

Field Description Scheme Required

metadata Standard list’s metadata metav1.ListMeta false

items List of WildFlyServer WildFlyServer true

11.14.3. WildFlyServerSpec

WildFlyServerSpec is a specification of the desired behavior of the JBoss EAP resource.

It uses a StatefulSet with a pod spec that mounts the volume specified by storage on
/opt/jboss/wildfly/standalone/data.

Table 11.11. WildFlyServerSpec

Field Description Scheme Required

applicationImage Name of the application
image to be deployed

string false

replicas the desired number of
replicas for the
application

int32] true

standaloneConfigMa
p

Spec to specify how a
standalone
configuration can be
read from a
ConfigMap.

StandaloneConfigMa
pSpec

false

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

119

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#objectmeta-v1-meta
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#wildflyserverspec_default
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#spec-and-status#spec-and-status
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#wildflyserverstatus_default
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#listmeta-v1-meta}
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#wildflyserver_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#standaloneconfigmapspec_default

resources Resources spec to
specify the request or
limits of the Stateful Set.
If omitted, the
namespace defaults are
used.

Resources false

SecurityContext SecurityContext spec
to define privilege and
access control settings
for the pod containers
created by the Stateful
Set. If omitted, default
privileges are used. For
additional information
see securityContext

*corev1.SecurityCon
text

false

storage Storage spec to specify
how storage should be
used. If omitted, an
EmptyDir is used (that
does not persist data
across pod restart)

StorageSpec false

serviceAccountNam
e

Name of the
ServiceAccount to use
to run the JBoss EAP
pods

string false

envFrom List of environment
variables present in the
containers from
configMap or secret

corev1.EnvFromSou
rce

false

env List of environment
variable present in the
containers

corev1.EnvVar false

secrets List of secret names to
mount as volumes in the
containers. Each secret
is mounted as a read-
only volume at
/etc/secrets/<secret
name>

string false

Field Description Scheme Required

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

120

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#Resources
{https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container}
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#securitycontext-v1-core}
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#storagespec_default
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#envfromsource-v1-core}
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#envvar-v1-core}

configMaps List of ConfigMap
names to mount as
volumes in the
containers. Each
ConfigMap is mounted
as a read-only volume
under
/etc/configmaps/<co
nfig map name>

string false

disableHTTPRoute Disable the creation a
route to the HTTP port
of the application
service (false if omitted)

boolean false

sessionAffinity If connections from the
same client IP are
passed to the same
JBoss EAP
instance/pod each time
(false if omitted)

boolean false

Field Description Scheme Required

11.14.4. Resources

Resources defines the configured resources for a WildflyServer resource. If the Resources field is not
defined or Request or Limits is empty, this resource is removed from the StatefulSet. The description
of this resource is a standard Container resource and uses the scheme for
corev1.ResourceRequirements.

11.14.5. StorageSpec

StorageSpec defines the configured storage for a WildFlyServer resource. If neither an EmptyDir nor a
volumeClaimTemplate is defined, a default EmptyDir is used.

The EAP Operator configures the StatefulSet using information from this StorageSpec to mount a
volume dedicated to the standalone/data directory used by JBoss EAP to persist its own data. For
example, transaction log). If an EmptyDir is used, the data does not survive a pod restart. If the
application deployed on JBoss EAP relies on transaction, specify a volumeClaimTemplate, so that the
same persistent volume can be reused upon pod restarts.

Table 11.12. Table

Field Description Scheme Required

emptyDir EmptyDirVolumeSou
rce to be used by the
JBoss EAP StatefulSet

corev1.EmptyDirVolume
Source

false

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

121

https://docs.openshift.com/container-platform/4.10/rest_api/objects/index.html#io.k8s.api.core.v1.ResourceRequirements
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#emptydirvolumesource-v1-core}

volumeClaimTempla
te

A
PersistentVolumeClaim
spec to configure
Resources
requirements to store
JBoss EAP standalone
data directory. The
name of the template is
derived from the
WildFlyServer name.
The corresponding
volume is mounted in
ReadWriteOnce
access mode.

corev1.PersistentVolume
Claim

false

Field Description Scheme Required

11.14.6. StandaloneConfigMapSpec

StandaloneConfigMapSpec defines how JBoss EAP standalone configuration can be read from a
ConfigMap. If omitted, JBoss EAP uses its standalone.xml configuration from its image.

Table 11.13. StandaloneConfigMapSpec

Field Description Scheme Required

name Name of the
ConfigMap containing
the standalone
configuration XML file.

string true

key Key of the ConfigMap
whose value is the
standalone
configuration XML file.
If omitted, the spec finds
the standalone.xml
key.

string false

11.14.7. WildFlyServerStatus

WildFlyServerStatus is the most recent observed status of the JBoss EAP deployment. Read-only.

Table 11.14. WildFlyServerStatus

Field Description Scheme Required

replicas The actual number of
replicas for the
application

int32 true

Red Hat JBoss Enterprise Application Platform 8.0 Using JBoss EAP on OpenShift Container Platform

122

{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#persistentvolumeclaim-v1-core}

selector selector for pods, used
by
HorizontalPodAutoscale
r

string true

hosts Hosts that route to the
application HTTP
service

string true

pods Status of the pods PodStatus true

scalingdownPods Number of pods that are
under scale down
cleaning process

int32 true

Field Description Scheme Required

11.14.8. PodStatus

PodStatus is the most recent observed status of a pod running the JBoss EAP application.

Table 11.15. PodStatus

Field Description Scheme Required

name Name of the pod string true

podIP IP address allocated to
the pod

string true

state State of the pod in the
scale down process. The
state is ACTIVE by
default, which means it
serves requests.

string false

Revised on 2024-02-21 14:04:12 UTC

CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM

123

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/8.0/html-single/using_jboss_eap_on_openshift_container_platform/index#podstatus_assembly_reference-information-for-openshift-container-platform

	Table of Contents
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
	1.1. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
	1.2. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT
	1.3. VERSION COMPATIBILITY AND SUPPORT
	1.3.1. OpenShift 4.x support
	1.3.2. IBM Z Support
	1.3.2.1. Upgrades from JBoss EAP 7.4 to JBoss EAP 8.0 on OpenShift

	1.3.3. Deployment options

	CHAPTER 2. PACKAGE NAMESPACE CHANGE FOR JBOSS EAP 8.0
	2.1. JAVAX TO JAKARTA NAMESPACE CHANGE

	CHAPTER 3. BUILDING AND RUNNING JBOSS EAP APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM
	3.1. PREREQUISITES
	3.2. PREPARING OPENSHIFT TO DEPLOY AN APPLICATION
	3.3. BUILDING APPLICATION IMAGES USING SOURCE-TO-IMAGE IN OPENSHIFT
	3.4. DEPLOYING A THIRD-PARTY APPLICATION ON OPENSHIFT
	3.4.1. Provisioning JBoss EAP servers with the default configuration

	3.5. USING OPENID CONNECT TO SECURE JBOSS EAP APPLICATIONS ON OPENSHIFT
	3.5.1. OpenID Connect configuration in JBoss EAP
	3.5.2. Creating an application secured with OpenID Connect
	3.5.3. Deploying the application on OpenShift
	3.5.4. Environment variable based configuration

	3.6. SECURING APPLICATIONS BY USING SAML
	3.6.1. Keycloak SAML adapter feature pack for securing applications by using SAML
	3.6.2. Configuring Red Hat build of Keycloak as SAML provider for OpenShift
	3.6.3. Creating an application secured with SAML
	3.6.4. Building and deploying a SAML-secured application on OpenShift
	3.6.5. Creating a SSO realm, users, and roles
	3.6.6. Environment variables for configuring the SAML subsystem
	3.6.7. Route discovery in JBoss EAP server
	3.6.8. Additional resources

	3.7. ADDITIONAL RESOURCES

	CHAPTER 4. USING HELM CHARTS TO BUILD AND DEPLOY JBOSS EAP APPLICATIONS ON OPENSHIFT
	4.1. HELM CHART USE CASE
	4.2. HELM CHART CUSTOMIZATION FOR JBOSS EAP ON OPENSHIFT
	4.3. PROVISIONING JBOSS EAP WITH S2I
	4.4. BUILDING AND DEPLOYING JBOSS EAP APPLICATIONS USING HELM CHARTS
	4.5. BUILDING YOUR APPLICATION IMAGE USING THE OPENSHIFT DEVELOPMENT CONSOLE
	4.6. DEPLOYING YOUR APPLICATION IMAGE
	4.6.1. OpenShift volumes for persistent data storage in Helm chart
	4.6.2. Mounting a volume with a Helm chart

	CHAPTER 5. ENVIRONMENT VARIABLES AND MODEL EXPRESSION RESOLUTION
	5.1. PREREQUISITES
	5.2. ENVIRONMENT VARIABLES FOR RESOLVING MANAGEMENT MODEL EXPRESSIONS
	System property to environment variable mapping

	5.3. CONFIGURING ENVIRONMENT VARIABLES ON THE OPENSHIFT CONTAINER PLATFORM
	5.4. OVERRIDING MANAGEMENT ATTRIBUTES WITH ENVIRONMENT VARIABLES

	CHAPTER 6. PROVISIONING A JBOSS EAP SERVER USING THE MAVEN PLUG-IN
	6.1. JBOSS EAP MAVEN PLUG-IN
	6.2. CREATING A JAKARTA EE 10 APPLICATION WITH THE MAVEN
	6.3. USING THE MAVEN PLUG-IN TO PROVISION A JBOSS EAP SERVER
	6.4. THE GALLEON PROVISIONING FILE
	6.5. THE MAVEN PLUG-IN CONFIGURATION ATTRIBUTES
	6.6. HOW TO ENABLE SUPPORT FOR EAP-DATASOURCES-GALLEON-PACK FOR JBOSS EAP 8.0
	6.7. SUPPORTED DRIVERS AND DATA SOURCES
	6.8. USING THE JBOSS EAP MAVEN PLUGIN TO PROVISION A SERVER WITH JDBC DRIVERS AND DATA SOURCES

	CHAPTER 7. CONFIGURING YOUR JBOSS EAP SERVER AND APPLICATION
	7.1. JVM DEFAULT MEMORY SETTINGS
	7.2. JVM GARBAGE COLLECTION SETTINGS
	7.3. JVM ENVIRONMENT VARIABLES
	7.4. DEFAULT DATASOURCE

	CHAPTER 8. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT
	8.1. AVAILABLE JBOSS EAP LAYERS
	8.1.1. Base layers
	datasources-web-server
	jaxrs-server
	cloud-server
	cloud-default-config
	ee-core-profile-server

	8.1.2. Decorator layers
	observability
	web-clustering

	8.2. PROVISIONING USER-DEVELOPED LAYERS IN JBOSS EAP
	8.2.1. Building and using custom Galleon layers for JBoss EAP
	8.2.1.1. Preparing the Maven project
	8.2.1.2. Adding the feature-pack content
	8.2.1.3. Using the custom Galleon feature-pack during S2I build
	8.2.1.4. Importing the JBoss EAP 8 image stream

	8.2.2. Configure Galleon by using advanced environment variables
	8.2.3. Custom Galleon feature pack environment variables

	CHAPTER 9. DEPLOYING YOUR JBOSS EAP APPLICATION ON THE OPENSHIFT CONTAINER PLATFORM
	9.1. JBOSS EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIFT
	9.1.1. Installing EAP operator using the web console
	9.1.2. Installing EAP operator using the CLI
	9.1.3. Deploying a Java application on OpenShift using the EAP operator
	9.1.3.1. Creating a secret
	9.1.3.2. Creating a configMap
	9.1.3.3. Creating a configMap from a standalone.xml File
	9.1.3.4. Configuring persistent storage for applications

	9.1.4. Viewing metrics of an application using the EAP operator
	9.1.5. Uninstalling EAP operator using web console
	9.1.6. Uninstalling JBoss EAP operator using the CLI
	9.1.7. JBoss EAP operator for safe transaction recovery
	9.1.7.1. StatefulSets for stable network host names
	9.1.7.2. Monitoring the scaledown process
	9.1.7.3. Scaling down during transactions with heuristic outcomes
	9.1.7.4. Configuring the transactions subsystem to use the JDBC storage for transaction log

	9.1.8. Automatically scaling pods with the horizontal pod autoscaler HPA
	9.1.9. Jarkarta enterprise beans remoting on OpenShift
	9.1.9.1. Jakarta Enterprise Beans remoting on openShift

	CHAPTER 10. TROUBLESHOOTING
	10.1. TROUBLESHOOTING POD RESTARTS
	10.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI
	10.3. TROUBLESHOOTING ERRORS WHEN UPDATING HELM CHART FROM VERSION 1.0.0 TO 1.1.0 ON JBOSS EAP 8

	CHAPTER 11. REFERENCE INFORMATION FOR OPENSHIFT CONTAINER PLATFORM
	11.1. INFORMATION ENVIRONMENT VARIABLES
	11.2. CONFIGURATION ENVIRONMENT VARIABLES
	11.3. EXPOSED PORTS
	11.4. DATASOURCES
	11.4.1. JNDI mappings for datasources
	11.4.1.1. Datasource Configuration Environment Variables
	11.4.1.2. Examples

	11.5. CLUSTERING
	11.5.1. Configuring a JGroups Discovery Mechanism
	11.5.1.1. Configuring KUBE_PING
	11.5.1.2. Configuring DNS_PING

	11.5.2. Configuring JGroups to Encrypt Cluster Traffic
	11.5.2.1. Configuring SYM_ENCRYPT
	11.5.2.2. Configuring ASYM_ENCRYPT

	11.5.3. Considerations for scaling up pods

	11.6. NATIVE HEALTH CHECKS
	11.7. MESSAGING
	11.7.1. Configuring External Red Hat AMQ Brokers

	11.8. SECURITY DOMAINS
	11.9. HTTPS ENVIRONMENT VARIABLES
	11.10. ADMINISTRATION ENVIRONMENT VARIABLES
	11.11. S2I
	11.11.1. Custom Configuration
	11.11.1.1. Custom Modules

	11.11.2. Deployment Artifacts
	11.11.3. Artifact repository mirrors
	11.11.3.1. Secure artifact repository mirror URLs

	11.11.4. Scripts
	11.11.5. Custom Scripts
	11.11.5.1. Mounting a configmap to execute custom scripts
	11.11.5.2. Using install.sh to execute custom scripts

	11.11.6. Environment variables

	11.12. UNSUPPORTED TRANSACTION RECOVERY SCENARIOS
	11.13. INCLUDED JBOSS MODULES
	11.14. EAP OPERATOR: API INFORMATION
	11.14.1. WildFlyServer
	11.14.2. WildFlyServerList
	11.14.3. WildFlyServerSpec
	11.14.4. Resources
	11.14.5. StorageSpec
	11.14.6. StandaloneConfigMapSpec
	11.14.7. WildFlyServerStatus
	11.14.8. PodStatus

