
Red Hat JBoss Data Virtualization 6.4

Development Guide Volume 3: Reference
Material

This guide is intended for developers

Last Updated: 2018-09-11

Red Hat JBoss Data Virtualization 6.4 Development Guide Volume 3:
Reference Material

This guide is intended for developers

Red Hat Customer Content Services

Legal Notice

Copyright © 2018 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides more information for developers creating custom solutions.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ARCHITECTURE
1.1. TERMINOLOGY
1.2. DATA MANAGEMENT
1.3. QUERY TERMINATION
1.4. PROCESSING
1.5. LOAD BALANCING

CHAPTER 2. SQL SUPPORT
2.1. SQL SUPPORT
2.2. IDENTIFIERS
2.3. EXPRESSIONS
2.4. SCALAR FUNCTIONS
2.5. DML COMMANDS
2.6. DML CLAUSES
2.7. DDL COMMANDS
2.8. XML DOCUMENT GENERATION
2.9. PROCEDURAL LANGUAGE
2.10. PROCEDURES

CHAPTER 3. DATA TYPES
3.1. SUPPORTED TYPES
3.2. TYPE CONVERSIONS
3.3. CONVERSION OF STRING LITERALS
3.4. CONVERTING TO BOOLEAN
3.5. DATE AND TIME CONVERSIONS
3.6. ESCAPED LITERAL SYNTAX

CHAPTER 4. UPDATABLE VIEWS
4.1. UPDATABLE VIEWS
4.2. KEY-PRESERVED TABLE

CHAPTER 5. TRANSACTION SUPPORT
5.1. TRANSACTION SUPPORT
5.2. AUTOCOMMITTXN EXECUTION PROPERTY
5.3. UPDATING MODEL COUNT
5.4. JDBC API FUNCTIONALITY
5.5. J2EE USAGE MODELS
5.6. TRANSACTIONAL BEHAVIOR WITH JBOSS DATA SOURCE TYPES
5.7. LIMITATIONS

CHAPTER 6. VIRTUAL DATABASES
6.1. VDB DEFINITION
6.2. VDB DEFINITION: THE VDB ELEMENT
6.3. VDB DEFINITION: THE IMPORT-VDB ELEMENT
6.4. VDB DEFINITION: THE MODEL ELEMENT
6.5. VDB DEFINITION: THE TRANSLATOR ELEMENT
6.6. DYNAMIC VDBS
6.7. DYNAMIC VDB XML DEPLOYMENT
6.8. DYNAMIC VDB ZIP DEPLOYMENT
6.9. VDB REUSE
6.10. METADATA REPOSITORIES

CHAPTER 7. DATA ROLES

6
6
6
7
7
8

9
9
9

10
18
60
65
79
84
88
98

104
104
106
109
109
109
110

111
111
111

112
112
112
113
113
113
114
115

116
116
117
118
118
120
120
120
120
121
122

124

Table of Contents

1

. .

. .

. .

. .

. .

7.1. DATA ROLES
7.2. ROLE MAPPING
7.3. PERMISSIONS
7.4. DATA ROLE DEFINITION

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES
8.1. SYSTEM SCHEMAS
8.2. VDB METADATA
8.3. REFERENCE KEY COLUMNS
8.4. TABLE METADATA
8.5. PROCEDURE METADATA
8.6. FUNCTION METADATA
8.7. DATA TYPE METADATA
8.8. SYSTEM PROCEDURES
8.9. METADATA PROCEDURES

CHAPTER 9. GENERATED REST SERVICES
9.1. GENERATED REST SERVICES
9.2. REST PROPERTIES
9.3. EXAMPLE VDB WITH REST PROPERTIES
9.4. CONSIDERATIONS FOR GENERATED REST SERVICES
9.5. SECURITY FOR GENERATED REST SERVICES
9.6. AD-HOC REST SERVICES

CHAPTER 10. MULTI-SOURCE MODELS
10.1. MULTI-SOURCE MODELS
10.2. MULTI-SOURCE MODEL CONFIGURATION
10.3. THE MULTI-SOURCE COLUMN
10.4. THE MULTI-SOURCE COLUMN IN SYSTEM METADATA
10.5. MULTI-SOURCE MODELS: PLANNING AND EXECUTION
10.6. MULTI-SOURCE MODELS: SELECT, UPDATE AND DELETE
10.7. MULTI-SOURCE MODELS: INSERT
10.8. MULTI-SOURCE MODELS: STORED PROCEDURES

CHAPTER 11. DDL METADATA
11.1. DDL METADATA
11.2. FOREIGN TABLE
11.3. VIEW
11.4. TABLE OPTIONS
11.5. COLUMN OPTIONS
11.6. TABLE CONSTRAINTS
11.7. INSTEAD OF TRIGGERS
11.8. PROCEDURES AND FUNCTIONS
11.9. VARIABLE ARGUMENT SUPPORT
11.10. FUNCTION OPTIONS
11.11. AGGREGATE FUNCTION OPTIONS
11.12. PROCEDURE OPTIONS
11.13. OPTIONS
11.14. ALTER STATEMENT
11.15. NAMESPACES FOR EXTENSION METADATA
11.16. EXAMPLE DDL METADATA

CHAPTER 12. TRANSLATORS
12.1. JBOSS DATA VIRTUALIZATION CONNECTOR ARCHITECTURE

124
124
125
128

134
134
134
139
139
144
146
148
149
150

152
152
152
152
154
154
155

157
157
157
157
158
158
158
159
159

160
160
160
161
161
162
163
163
164
164
164
166
166
167
167
168
168

170
170

Development Guide Volume 3: Reference Material

2

. .

. .

. .

12.2. TRANSLATORS
12.3. TRANSLATOR PROPERTIES
12.4. TRANSLATORS IN RED HAT JBOSS DATA VIRTUALIZATION
12.5. BASE EXECUTION PROPERTIES
12.6. OVERRIDE EXECUTION PROPERTIES
12.7. PARAMETERIZABLE NATIVE QUERIES
12.8. DELEGATING TRANSLATORS
12.9. AMAZON S3 TRANSLATOR
12.10. AMAZON SIMPLEDB TRANSLATOR
12.11. APACHE ACCUMULO TRANSLATOR
12.12. APACHE SOLR TRANSLATOR
12.13. CASSANDRA TRANSLATOR
12.14. COUCHBASE TRANSLATOR
12.15. FILE TRANSLATOR
12.16. GOOGLE SPREADSHEET TRANSLATOR
12.17. RED HAT JBOSS DATA GRID TRANSLATOR
12.18. JDBC TRANSLATOR
12.19. JPA TRANSLATOR
12.20. LDAP TRANSLATOR
12.21. LOOPBACK TRANSLATOR
12.22. MICROSOFT EXCEL TRANSLATOR
12.23. MONGODB TRANSLATOR
12.24. OBJECT TRANSLATOR
12.25. ODATA TRANSLATOR
12.26. ODATA VERSION 4 TRANSLATOR
12.27. OLAP TRANSLATOR
12.28. SALESFORCE TRANSLATOR
12.29. SAP GATEWAY TRANSLATOR
12.30. WEB SERVICES TRANSLATOR

CHAPTER 13. FEDERATED PLANNING
13.1. FEDERATED PLANNING
13.2. PLANNING OVERVIEW
13.3. EXAMPLE QUERY
13.4. SUBQUERY OPTIMIZATION
13.5. XQUERY OPTIMIZATION
13.6. PARTIAL RESULTS
13.7. FEDERATED OPTIMIZATIONS
13.8. QUERY PLANS
13.9. QUERY PLANNER

APPENDIX A. BNF FOR SQL GRAMMAR
A.1. MAIN ENTRY POINTS
A.2. RESERVED KEYWORDS
A.3. NON-RESERVED KEYWORDS
A.4. RESERVED KEYWORDS FOR FUTURE USE
A.5. TOKENS
A.6. PRODUCTION CROSS-REFERENCE
A.7. PRODUCTIONS

APPENDIX B. DASHBOARD BUILDER
B.1. JBOSS DASHBOARD BUILDER
B.2. LOG IN TO JBOSS DASHBOARD BUILDER
B.3. ADDING A JBOSS DASHBOARD BUILDER USER

170
171
171
173
175
175
175
176
180
183
186
187
187
193
195
196
202
218
219
227
228
231
244
245
248
252
253
261
262

266
266
266
266
268
269
270
270
275
285

296
296
296
304
307
308
311
319

369
369
369
369

Table of Contents

3

. .

. .

APPENDIX C. SUPPORTED DATA SOURCES AND TRANSLATORS
C.1. RECOMMENDED TRANSLATORS FOR DATA SOURCES

APPENDIX D. REVISION HISTORY

371
371

372

Development Guide Volume 3: Reference Material

4

Table of Contents

5

CHAPTER 1. ARCHITECTURE

1.1. TERMINOLOGY

VM or Process - a JBoss EAP instance running JBoss Data Virtualization.

Host - a machine that is "hosting" one or more VMs.

Service - a subsystem running in a VM (often in many VMs) and providing a related set of
functionality

In addition to these main components, the service platform provides a core set of services available to
applications built on top of the service platform. These services are:

Session - the Session service manages active session information.

Buffer Manager - the Buffer Manager service provides access to data management for
intermediate results. See Section 1.2.2, “Buffer Management”.

Transaction - the Transaction service manages global, local, and request scoped transactions.
See Section 5.1, “Transaction Support” for more information.

1.2. DATA MANAGEMENT

1.2.1. Cursoring and Batching

JBoss Data Virtualization cursors all results, regardless of whether they are from one source or many
sources, and regardless of what type of processing (joins, unions, etc.) have been performed on the
results.

JBoss Data Virtualization processes results in batches. A batch is a set of records. The number of rows
in a batch is determined by the buffer system property processor-batch-size and is scaled based on the
estimated memory footprint of the batch.

Client applications have no direct knowledge of batches or batch sizes, but rather specify fetch size.
However the first batch, regardless of fetch size is always proactively returned to synchronous clients.
Subsequent batches are returned based on client demand for the data. Pre-fetching is utilized at both the
client and connector levels.

1.2.2. Buffer Management

The buffer manager manages memory for all result sets used in the query engine. That includes result
sets read from a connection factory, result sets used temporarily during processing, and result sets
prepared for a user. Each result set is referred to in the buffer manager as a tuple source.

When retrieving batches from the buffer manager, the size of a batch in bytes is estimated and then
allocated against the maximum limit.

Memory Management

The buffer manager has two storage managers, these being a memory manager and a disk manager.
The buffer manager maintains the state of all the batches and determines when batches must be
moved from memory to disk.

Disk Management

Development Guide Volume 3: Reference Material

6

Each tuple source has a dedicated file (named by the ID) on disk. This file will be created only if at
least one batch for the tuple source had to be swapped to disk. This is a random access file. The
connector batch size and processor batch size properties define how many rows can exist in a batch
and thus define how granular the batches are when stored into the storage manager. Batches are
always read and written from the storage manager together at once.

The disk storage manager has a cap on the maximum number of open files to prevent running out of
file handles. In cases with heavy buffering, this can cause wait times while waiting for a file handle to
become available (the default max open files is 64).

1.2.3. Cleanup

When a tuple source is no longer needed, it is removed from the buffer manager. The buffer manager
will remove it from both the memory storage manager and the disk storage manager. The disk storage
manager will delete the file. In addition, every tuple source is tagged with a "group name" which is
typically the session ID of the client. When the client's session is terminated (by closing the connection,
server detecting client shutdown, or administrative termination), a call is sent to the buffer manager to
remove all tuple sources for the session.

In addition, when the query engine is shutdown, the buffer manager is shut down, which will remove all
state from the disk storage manager and cause all files to be closed. When the query engine is stopped,
it is safe to delete any files in the buffer directory as they are not used across query engine restarts and
must be due to a system crash where buffer files were not cleaned up.

1.3. QUERY TERMINATION

1.3.1. Canceling Queries

When a query is canceled, processing will be stopped in the query engine and in all connectors involved
in the query. The semantics of what a connector does in response to a cancellation command is
dependent on the connector implementation. For example, JDBC connectors will asynchronously call
cancel on the underlying JDBC driver, which may or may not actually support this method.

1.3.2. User Query Timeouts

User query timeouts in Data Virtualization can be managed on the client-side or server-side. Timeouts
are only relevant for the first record returned. If the first record has not been received by the client within
the specified timeout period, a "cancel" command is issued to the server for the request and no results
are returned to the client. The cancel command is issued asynchronously by the JDBC API without the
client's intervention.

The JDBC API uses the query timeout set by the java.sql.Statement.setQueryTimeout method.
You can also set a default statement timeout via the connection property QUERYTIMEOUT. ODBC
clients may also use QUERYTIMEOUT as an execution property via a set statement to control the
default timeout setting. See Red Hat JBoss Development Guide: Client Development for more on
connection/execution properties and set statements.

Server-side timeouts start when the query is received by the engine. The timeout will be canceled if the
first result is sent back before the timeout has ended. See Section 6.2, “VDB Definition: The VDB
Element” for more on setting the query-timeout VDB property. See the Red Hat JBoss Administration
Guide for more information on setting the default query timeout for all queries.

1.4. PROCESSING

CHAPTER 1. ARCHITECTURE

7

1.4.1. Join Algorithms

Nested loop does the most obvious processing - for every row in the outer source, it compares with
every row in the inner source. Nested loop is only used when the join criteria has no equi-join predicates.

Merge join first sorts the input sources on the joined columns. You can then walk through each side in
parallel (effectively one pass through each sorted source) and when you have a match, emit a row. In
general, merge join is on the order of n+m rather than n*m in nested loop. Merge join is the default
algorithm.

Using costing information the engine may also delay the decision to perform a full sort merge join. Based
upon the actual row counts involved, the engine can choose to build an index of the smaller side (which
will perform similarly to a hash join) or to only partially sort the larger side of the relation.

Joins involving equi-join predicates are also eligible to be made into dependent joins (see Section 13.7.3,
“Dependent Joins”).

1.4.2. Sort-Based Algorithms

Sorting is used as the basis of the Sort (ORDER BY), Grouping (GROUP BY), and DupRemoval
(SELECT DISTINCT) operations. The sort algorithm is a multi-pass merge-sort that does not ever require
all of the result set to be in memory, yet uses the maximal amount of memory allowed by the buffer
manager.

It consists of two phases. The first phase ("sort") will take an unsorted input stream and produce one or
more sorted input streams. Each pass reads as much of the unsorted stream as possible, sorts it, and
writes it back out as a new stream. Since the stream size may be bigger than that of the memory, it may
be written out as many sorted streams.

The second phase ("merge") consists of a set of phases that grab the next batch from as many sorted
input streams as will fit in memory. It then repeatedly grabs the next tuple in sorted order from each
stream and outputs merged sorted batches to a new sorted stream. At completion of the pass, all input
streams are dropped. Hence, each pass reduces the number of sorted streams. The last stream
remaining is the final output.

1.5. LOAD BALANCING

1.5.1. Configure Load Balancing

The Teiid JDBC driver does not perform true load-balancing. You can use it to route queries across the
host:port combinations defined in the URL but it will not do it based on the load. Instead, you need to use
HAProxy.

Development Guide Volume 3: Reference Material

8

CHAPTER 2. SQL SUPPORT

2.1. SQL SUPPORT

Red Hat JBoss Data Virtualization supports SQL for issuing queries and for defining view
transformations. JBoss Data Virtualization provides nearly all of the functionality of SQL-92 DML. SQL-
99 and later features have been added as required. The following does not attempt to cover SQL
exhaustively, but rather highlights usage of SQL within Red Hat JBoss Data Virtualization.

See the appendix for the SQL grammar accepted by Red Hat JBoss Data Virtualization.

2.2. IDENTIFIERS

2.2.1. Identifiers

SQL commands contain references to tables and columns. These references are in the form of
identifiers, which uniquely identify the tables and columns in the context of the command.

All queries are processed in the context of a virtual database (VDB). Because information can be
federated across multiple sources, tables and columns must be scoped in some manner to avoid
conflicts. This scoping is provided by schemas, which contain the information for each data source or set
of views.

Fully qualified table and column names are of the following form, where the separate 'parts' of the
identifier are delimited by periods.

TABLE: <schema_name>.<table_spec>

COLUMN: <schema_name>.<table_spec>.<column_name>

Syntax Rules:

Identifiers can consist of alphanumeric characters, or the underscore (_) character, and must
begin with an alphabetic character. Any Unicode character may be used in an identifier.

Identifiers in double quotes can have any contents. The double quote character can be used if it
is escaped with an additional double quote; for example, "some "" id".

Because different data sources organize tables in different ways (some prepending catalog or
schema or user information) JBoss Data Virtualization allows table specification to be a dot
delimited construct.

NOTE

When a table specification contains a dot, resolving will allow for the match of a
partial name against any number of the end segments in the name. For example,
a table with the fully qualified name
vdbname."sourceschema.sourcetable" would match the partial name
sourcetable.

Columns, schemas, alias identifiers cannot contain a dot.

Identifiers, even when quoted, are not case sensitive in JBoss Data Virtualization.

CHAPTER 2. SQL SUPPORT

9

Some examples of valid fully qualified table identifiers are:

MySchema.Portfolios

"MySchema.Portfolios"

MySchema.MyCatalog.dbo.Authors

Some examples of valid fully qualified column identifiers are:

MySchema.Portfolios.portfolioID

"MySchema.Portfolios"."portfolioID"

MySchema.MyCatalog.dbo.Authors.lastName

Fully qualified identifiers can always be used in SQL commands. Partial or unqualified forms can also be
used, as long as the resulting names are unambiguous in the context of the command. Different forms of
qualification can be mixed in the same query.

2.2.2. Reserved Words

Reserved words in JBoss Data Virtualization include the standard SQL 2003 Foundation, SQL/MED, and
SQL/XML reserved words, as well as JBoss Data Virtualization specific words such as BIGINTEGER,
BIGDECIMAL, or MAKEDEP.

See Also:

Section A.2, “Reserved Keywords”

Section A.4, “Reserved Keywords For Future Use”

2.3. EXPRESSIONS

2.3.1. Expressions

Identifiers, literals, and functions can be combined into expressions. Expressions can be used almost
anywhere in a query -- SELECT, FROM (if specifying join criteria), WHERE, GROUP BY, HAVING, or
ORDER BY.

JBoss Data Virtualization supports the following types of expressions:

Column identifiers

Refer to Section 2.3.2, “Column Identifiers”.

Literals

Refer to Section 2.3.3, “Literals”.

Aggregate functions

Refer to Section 2.3.4, “Aggregate Functions”.

Window functions

Refer to Section 2.3.5, “Window Functions”.

Development Guide Volume 3: Reference Material

10

Case and searched case

Refer to Section 2.3.8, “Case and Searched Case”.

Scalar subqueries

Refer to Section 2.3.9, “Scalar Subqueries”.

Parameter references

Refer to Section 2.3.10, “Parameter References”.

Criteria

Refer to Section 2.3.11, “Criteria”.

2.3.2. Column Identifiers

Column identifiers are used to specify the output columns in SELECT statements, the columns and their
values for INSERT and UPDATE statements, and criteria used in WHERE and FROM clauses. They are
also used in GROUP BY, HAVING, and ORDER BY clauses. The syntax for column identifiers is defined
in Section 2.2.1, “Identifiers”.

2.3.3. Literals

Literal values represent fixed values. These can be any of the standard data types. See Section 3.1,
“Supported Types”.

Syntax Rules:

Integer values will be assigned an integral data type big enough to hold the value (integer, long,
or biginteger).

Floating point values will always be parsed as a double.

The keyword 'null' is used to represent an absent or unknown value and is inherently untyped. In
many cases, a null literal value will be assigned an implied type based on context. For example,
in the function '5 + null', the null value will be assigned the type 'integer' to match the type of the
value '5'. A null literal used in the SELECT clause of a query with no implied context will be
assigned to type 'string'.

Some examples of simple literal values are:

'abc'

'isn''t true' - use an extra single tick to escape a tick in a string with single ticks

5

-37.75e01 - scientific notation

100.0 - parsed as BigDecimal

true

false

CHAPTER 2. SQL SUPPORT

11

'\u0027' - unicode character

2.3.4. Aggregate Functions

Aggregate functions take sets of values from a group produced by an explicit or implicit GROUP BY and
return a single scalar value computed from the group.

JBoss Data Virtualization supports the following aggregate functions:

COUNT(*) - count the number of values (including nulls and duplicates) in a group

COUNT(x) - count the number of values (excluding nulls) in a group

SUM(x) - sum of the values (excluding nulls) in a group

AVG(x) - average of the values (excluding nulls) in a group

MIN(x) - minimum value in a group (excluding null)

MAX(x) - maximum value in a group (excluding null)

ANY(x)/SOME(x) - returns TRUE if any value in the group is TRUE (excluding null)

EVERY(x) - returns TRUE if every value in the group is TRUE (excluding null)

VAR_POP(x) - biased variance (excluding null) logically equals (sum(x^2) -
sum(x)^2/count(x))/count(x); returns a double; null if count = 0

VAR_SAMP(x) - sample variance (excluding null) logically equals (sum(x^2) -
sum(x)^2/count(x))/(count(x) - 1); returns a double; null if count < 2

STDDEV_POP(x) - standard deviation (excluding null) logically equals SQRT(VAR_POP(x))

STDDEV_SAMP(x) - sample standard deviation (excluding null) logically equals
SQRT(VAR_SAMP(x))

TEXTAGG(FOR (expression [as name], ... [DELIMITER char] [QUOTE char]
[HEADER] [ENCODING id] [ORDER BY ...]) - CSV text aggregation of all expressions in
each row of a group. When DELIMITER is not specified, by default comma (,) is used as
delimiter. Double quotes(") is the default quote character. Use QUOTE to specify a different
value. All non-null values will be quoted. If HEADER is specified, the result contains the header
row as the first line. The header line will be present even if there are no rows in a group. This
aggregation returns a BLOB. See Section 2.6.15, “ORDER BY Clause”. Example:

XMLAGG(xml_expr [ORDER BY ...]) - XML concatenation of all XML expressions in a
group (excluding null). The ORDER BY clause cannot reference alias names or use positional
ordering. See Section 2.6.15, “ORDER BY Clause”.

JSONARRAY_AGG(x [ORDER BY ...]) - creates a JSON array result as a CLOB including
null value. The ORDER BY clause cannot reference alias names or use positional ordering. Also
see Section 2.4.15, “JSON Functions”. Integer value example:

TEXTAGG(col1, col2 as name DELIMITER '|' HEADER ORDER BY col1)

jsonArray_Agg(col1 order by col1 nulls first)

Development Guide Volume 3: Reference Material

12

could return

STRING_AGG(x, delim) - creates a lob results from the concatenation of x using the delimiter
delim. If either argument is null, no value is concatenated. Both arguments are expected to be
character (string/clob) or binary (varbinary, blob) and the result will be clob or blob respectively.
DISTINCT and ORDER BY are allowed in STRING_AGG. Example:

could return

agg([DISTINCT|ALL] arg ... [ORDER BY ...]) - this is a user-defined aggregate
function.

ARRAY_AGG(x [ORDER BY …]) - This creates an array with a base type matching the
expression x. The ORDER BY clause cannot reference alias names or use positional ordering.

Syntax Rules:

Some aggregate functions may contain the keyword 'DISTINCT' before the expression,
indicating that duplicate expression values should be ignored. DISTINCT is not allowed in
COUNT(*) and is not meaningful in MIN or MAX (result would be unchanged), so it can be used
in COUNT, SUM, and AVG.

Aggregate functions cannot be used in FROM, GROUP BY, or WHERE clauses without an
intervening query expression.

Aggregate functions cannot be nested within another aggregate function without an intervening
query expression.

Aggregate functions may be nested inside other functions.

Any aggregate function may take an optional FILTER clause of the following form:

The condition may be any boolean value expression that does not contain a subquery or a
correlated variable. The filter will logically be evaluated for each row prior to the grouping
operation. If false, the aggregate function will not accumulate a value for the given row.

User defined aggregate functions need ALL specified if no other aggregate specific constructs
are used to distinguish the function as an aggregate rather than normal function.

For more information on aggregates, refer to Section 2.6.13, “GROUP BY Clause” and Section 2.6.14,
“HAVING Clause”.

2.3.5. Window Functions

JBoss Data Virtualization supports ANSI SQL 2003 window functions. A window function allows an
aggregate function to be applied to a subset of the result set, without the need for a GROUP BY clause.

[null,null,1,2,3]

string_agg(col1, ',' ORDER BY col1 ASC)

'a,b,c'

FILTER (WHERE condition)

CHAPTER 2. SQL SUPPORT

13

A window function is similar to an aggregate function, but requires the use of an OVER clause or window
specification.

Usage:

In the above example, aggregate can be any of those in Section 2.3.4, “Aggregate Functions”. Ranking
can be one of ROW_NUMBER(), RANK(), DENSE_RANK().

Syntax Rules:

Window functions can only appear in the SELECT and ORDER BY clauses of a query
expression.

Window functions cannot be nested in one another.

Partitioning and ORDER BY expressions cannot contain subqueries or outer references.

The ranking (ROW_NUMBER, RANK, DENSE_RANK) functions require the use of the window
specification ORDER BY clause.

An XMLAGG ORDER BY clause cannot be used when windowed.

The window specification ORDER BY clause cannot reference alias names or use positional
ordering.

Windowed aggregates may not use DISTINCT if the window specification is ordered.

2.3.6. Window Functions: Analytical Function Definitions

ROW_NUMBER() - functionally the same as COUNT(*) with the same window specification.
Assigns a number to each row in a partition starting at 1.

RANK() - Assigns a number to each unique ordering value within each partition starting at 1,
such that the next rank is equal to the count of prior rows.

DENSE_RANK() - Assigns a number to each unique ordering value within each partition starting
at 1, such that the next rank is sequential.

2.3.7. Window Functions: Processing

Window functions are logically processed just before creating the output from the SELECT clause.
Window functions can use nested aggregates if a GROUP BY clause is present. There is no guaranteed
effect on the output ordering from the presence of window functions. The SELECT statement must have
an ORDER BY clause to have a predictable ordering.

JBoss Data Virtualization will process all window functions with the same window specification together.
In general, a full pass over the row values coming into the SELECT clause will be required for each
unique window specification. For each window specification the values will be grouped according to the
PARTITION BY clause. If no PARTITION BY clause is specified, then the entire input is treated as a
single partition. The output value is determined based upon the current row value, its peers (that is rows
that are the same with respect to their ordering), and all prior row values based upon ordering in the
partition. The ROW_NUMBER function will assign a unique value to every row regardless of the number
of peers.

aggregate|ranking OVER ([PARTITION BY expression [, expression]*] [ORDER
BY ...])

Development Guide Volume 3: Reference Material

14

Example windowed results:

name salary max_sal rank dense_rank row_num

John 100000 100000 2 2 2

Henry 50000 100000 5 4 5

John 60000 60000 3 3 3

Suzie 60000 150000 3 3 4

Suzie 150000 150000 1 1 1

2.3.8. Case and Searched Case

JBoss Data Virtualization supports two forms of the CASE expression which allows conditional logic in a
scalar expression.

Supported forms:

CASE <expr> (WHEN <expr> THEN <expr>)+ [ELSE expr] END

CASE (WHEN <criteria> THEN <expr>)+ [ELSE expr] END

Each form allows for an output based on conditional logic. The first form starts with an initial expression
and evaluates WHEN expressions until the values match, and outputs the THEN expression. If no
WHEN is matched, the ELSE expression is output. If no WHEN is matched and no ELSE is specified, a
null literal value is output. The second form (the searched case expression) searches the WHEN
clauses, which specify an arbitrary criteria to evaluate. If any criteria evaluates to true, the THEN
expression is evaluated and output. If no WHEN is true, the ELSE is evaluated or NULL is output if none
exists.

2.3.9. Scalar Subqueries

Subqueries can be used to produce a single scalar value in the SELECT, WHERE, or HAVING clauses
only. A scalar subquery must have a single column in the SELECT clause and should return either 0 or 1
row. If no rows are returned, null will be returned as the scalar subquery value. For other types of
subqueries, refer to Section 2.5.10, “Subqueries”.

2.3.10. Parameter References

Parameters are specified using a '?' symbol. Parameters may only be used with prepared statements or
callable statements in JDBC. Each parameter is linked to a value specified by a one-based index in the
JDBC API.

SELECT name, salary, max(salary) over (partition by name) as max_sal,
 rank() over (order by salary) as rank, dense_rank() over (order
by salary) as dense_rank,
 row_number() over (order by salary) as row_num FROM employees

CHAPTER 2. SQL SUPPORT

15

2.3.11. Criteria

Criteria may be:

Predicates that evaluate to true or false

Logical criteria that combines criteria (AND, OR, NOT)

A value expression with type boolean

Usage:

LIKE matches the string expression against the given string pattern. The pattern may contain %
to match any number of characters and _ to match any single character. The escape character
can be used to escape the match characters % and _.

SIMILAR TO is a cross between LIKE and standard regular expression syntax. % and _ are still
used, rather than .* and . respectively.

NOTE

JBoss Data Virtualization does not exhaustively validate SIMILAR TO pattern
values. Rather, the pattern is converted to an equivalent regular expression. Care
should be taken not to rely on general regular expression features when using
SIMILAR TO. If additional features are needed, then LIKE_REGEX should be
used. Usage of a non-literal pattern is discouraged as pushdown support is
limited.

LIKE_REGEX allows for standard regular expression syntax to be used for matching. This
differs from SIMILAR TO and LIKE in that the escape character is no longer used (\ is already
the standard escape mechansim in regular expressions and % and _ have no special meaning.

criteria AND|OR criteria

NOT criteria

(criteria)

expression (=|<>|!=|<|>|<=|>=) (expression|((ANY|ALL|SOME) subquery|
(array_expression)))

expression [NOT] IS NULL

expression [NOT] IN (expression[,expression]*)|subquery

expression [NOT] LIKE pattern [ESCAPE char]

expression [NOT] SIMILAR TO pattern [ESCAPE char]

expression [NOT] LIKE_REGEX pattern

Development Guide Volume 3: Reference Material

16

The runtime engine uses the JRE implementation of regular expressions - see the
java.util.regex.Pattern class for details.

IMPORTANT

JBoss Data Virtualization does not exhaustively validate LIKE_REGEX pattern
values. It is possible to use JRE only regular expression features that are not
specified by the SQL specification. Additionally, not all sources support the same
regular expression syntax or extensions. Care should be taken in pushdown
situations to ensure that the pattern used will have the same meaning in JBoss
Data Virtualization and across all applicable sources.

JBoss Data Virtualization converts BETWEEN into the equivalent form expression >=
minExpression AND expression <= maxExpression.

Where expression has type boolean.

Syntax Rules:

The precedence ordering from lowest to highest is: comparison, NOT, AND, OR.

Criteria nested by parenthesis will be logically evaluated prior to evaluating the parent criteria.

Some examples of valid criteria are:

(balance > 2500.0)

100*(50 - x)/(25 - y) > z

concat(areaCode,concat('-',phone)) LIKE '314%1'

NOTE

Null values represent an unknown value. Comparison with a null value will evaluate to
'unknown', which can never be true even if 'not' is used.

2.3.12. Operator Precedence

JBoss Data Virtualization parses and evaluates operators with higher precedence before those with
lower precedence. Operators with equal precedence are left associative. The following operator
precedence is listed from highest to lowest:

Operator Description

+,- positive/negative value expression

EXISTS(subquery)

expression [NOT] BETWEEN minExpression AND maxExpression

expression

CHAPTER 2. SQL SUPPORT

17

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

*,/ multiplication/division

+,- addition/subtraction

|| concat

criteria see Section 2.3.11, “Criteria”

Operator Description

2.3.13. Criteria Precedence

JBoss Data Virtualization parses and evaluates conditions with higher precedence before those with
lower precedence. Conditions with equal precedence are left associative. The following condition
precedence is listed from highest to lowest:

Condition Description

SQL operators See Section 2.3.1, “Expressions”

EXISTS, LIKE, SIMILAR TO, LIKE_REGEX,
BETWEEN, IN, IS NULL, <, <=, >, >=, =, <>

comparison

NOT negation

AND conjunction

OR disjunction

Note however that to prevent lookaheads the parser does not accept all possible criteria sequences. For
example "a = b is null" is not accepted, since by the left associative parsing we first recognize "a =", then
look for a common value expression. "b is null" is not a valid common value expression. Thus nesting
must be used, for example "(a = b) is null". See BNF for SQL Grammar for all parsing rules.

2.4. SCALAR FUNCTIONS

2.4.1. Scalar Functions

JBoss Data Virtualization provides an extensive set of built-in scalar functions. See Section 2.1, “SQL
Support” and Section 3.1, “Supported Types”.

In addition, JBoss Data Virtualization provides the capability for user defined functions or UDFs. See
Red Hat JBoss Development Guide: Server Development for adding UDFs. Once added, UDFs may be
called like any other function.

2.4.2. Numeric Functions

Development Guide Volume 3: Reference Material

18

Numeric functions return numeric values (integer, long, float, double, biginteger, bigdecimal). They
generally take numeric values as inputs, though some take strings.

Table 2.1. Numeric Functions

Function Definition Data Type Constraint

+ - * / Standard numeric operators x in {integer, long, float, double, biginteger,
bigdecimal}, return type is same as x

NOTE

The precision and scale of
non-bigdecimal arithmetic
function functions results
matches that of Java. The
results of bigdecimal
operations match Java,
except for division, which uses
a preferred scale of max(16,
dividend.scale +
divisor.precision + 1), which
then has trailing zeros
removed by setting the scale
to max(dividend.scale,
normalized scale).

ABS(x) Absolute value of x See standard numeric operators above

ACOS(x) Arc cosine of x x in {double, bigdecimal}, return type is double

ASIN(x) Arc sine of x x in {double, bigdecimal}, return type is double

ATAN(x) Arc tangent of x x in {double, bigdecimal}, return type is double

ATAN2(x,y) Arc tangent of x and y x, y in {double, bigdecimal}, return type is
double

CEILING(x) Ceiling of x x in {double, float}, return type is double

COS(x) Cosine of x x in {double, bigdecimal}, return type is double

COT(x) Cotangent of x x in {double, bigdecimal}, return type is double

DEGREES(x) Convert x degrees to
radians

x in {double, bigdecimal}, return type is double

EXP(x) e^x x in {double, float}, return type is double

FLOOR(x) Floor of x x in {double, float}, return type is double

FORMATBIGDECIMAL(x, y) Formats x using format y x is bigdecimal, y is string, returns string

CHAPTER 2. SQL SUPPORT

19

FORMATBIGINTEGER(x, y) Formats x using format y x is biginteger, y is string, returns string

FORMATDOUBLE(x, y) Formats x using format y x is double, y is string, returns string

FORMATFLOAT(x, y) Formats x using format y x is float, y is string, returns string

FORMATINTEGER(x, y) Formats x using format y x is integer, y is string, returns string

FORMATLONG(x, y) Formats x using format y x is long, y is string, returns string

LOG(x) Natural log of x (base e) x in {double, float}, return type is double

LOG10(x) Log of x (base 10) x in {double, float}, return type is double

MOD(x, y) Modulus (remainder of x / y) x in {integer, long, float, double, biginteger,
bigdecimal}, return type is same as x

PARSEBIGDECIMAL(x, y) Parses x using format y x, y are strings, returns bigdecimal

PARSEBIGINTEGER(x, y) Parses x using format y x, y are strings, returns biginteger

PARSEDOUBLE(x, y) Parses x using format y x, y are strings, returns double

PARSEFLOAT(x, y) Parses x using format y x, y are strings, returns float

PARSEINTEGER(x, y) Parses x using format y x, y are strings, returns integer

PARSELONG(x, y) Parses x using format y x, y are strings, returns long

PI() Value of Pi return is double

POWER(x,y) x to the y power x in {double, bigdecimal, biginteger}, return is
the same type as x

RADIANS(x) Convert x radians to
degrees

x in {double, bigdecimal}, return type is double

RAND() Returns a random number,
using generator established
so far in the query or
initializing with system clock
if necessary.

Returns double.

RAND(x) Returns a random number,
using new generator
seeded with x.

x is integer, returns double.

Function Definition Data Type Constraint

Development Guide Volume 3: Reference Material

20

ROUND(x,y) Round x to y places;
negative values of y
indicate places to the left of
the decimal point

x in {integer, float, double, bigdecimal} y is
integer, return is same type as x

SIGN(x) 1 if x > 0, 0 if x = 0, -1 if x <
0

x in {integer, long, float, double, biginteger,
bigdecimal}, return type is integer

SIN(x) Sine value of x x in {double, bigdecimal}, return type is double

SQRT(x) Square root of x x in {long, double, bigdecimal}, return type is
double

TAN(x) Tangent of x x in {double, bigdecimal}, return type is double

BITAND(x, y) Bitwise AND of x and y x, y in {integer}, return type is integer

BITOR(x, y) Bitwise OR of x and y x, y in {integer}, return type is integer

BITXOR(x, y) Bitwise XOR of x and y x, y in {integer}, return type is integer

BITNOT(x) Bitwise NOT of x x in {integer}, return type is integer

Function Definition Data Type Constraint

2.4.3. Parsing Numeric Data Types from Strings

JBoss Data Virtualization provides a set of functions to parse formatted strings as various numeric data
types:

parseDouble - parses a string as a double

parseFloat - parses a string as a float

parseLong - parses a string as a long

parseInteger - parses a string as an integer

For each function, you have to provide the formatting of the string. The formatting follows the convention
established by the java.text.DecimalFormat class. See examples below.

Input String Function Call to Format String Output Value Output Data Type

'$25.30' parseDouble(cost, '$#,##0.00;
($#,##0.00)')

25.3 double

'25%' parseFloat(percent, '#,##0%') 25 float

'2,534.1' parseFloat(total, '#,##0.###;-#,##0.###') 2534.1 float

CHAPTER 2. SQL SUPPORT

21

'1.234E3' parseLong(amt, '0.###E0') 1234 long

'1,234,567' parseInteger(total, '#,##0;-#,##0') 1234567 integer

Input String Function Call to Format String Output Value Output Data Type

NOTE

See http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html for more
information.

2.4.4. Formatting Numeric Data Types as Strings

JBoss Data Virtualization provides a set of functions to convert numeric data types into formatted strings:

formatDouble - formats a double as a string

formatFloat - formats a float as a string

formatLong - formats a long as a string

formatInteger - formats an integer as a string

For each function, you have to provide the formatting of the string. The formatting follows the convention
established by the java.text.DecimalFormat class. See examples below.

Input Value Input Data Type Function Call to Format String Output String

25.3 double formatDouble(cost, '$#,##0.00;
($#,##0.00)')

'$25.30'

25 float formatFloat(percent, '#,##0%') '25%'

2534.1 float formatFloat(total, '#,##0.###;-#,##0.###') '2,534.1'

1234 long formatLong(amt, '0.###E0') '1.234E3'

1234567 integer formatInteger(total, '#,##0;-#,##0') '1,234,567'

NOTE

See http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html for more
information.

2.4.5. String Functions

String functions generally take strings as inputs and return strings as outputs.

Development Guide Volume 3: Reference Material

22

http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Unless specified, all of the arguments and return types in the following table are strings and all indexes
are one-based. The zero index is considered to be before the start of the string.

IMPORTANT

Non-ASCII range characters or integers used by ASCII(x), CHR(x), and CHAR(x) may
produce different results or exceptions depending on where the function is evaluated
(JBoss Data Virtualization vs. source). JBoss Data Virtualization uses Java default int to
char and char to int conversions, which operates over UTF16 values.

Table 2.2. String Functions

Function Definition DataType Constraint

x || y Concatenation operator x,y in {string}, return type is
string

ASCII(x) Provide ASCII value of the left most
character in x. The empty string will return
null.

return type is integer

CHR(x) CHAR(x) Provide the character for ASCII value x x in {integer}

CONCAT(x, y) Concatenates x and y with ANSI semantics.
If x and/or y is null, returns null.

x, y in {string}

CONCAT2(x, y) Concatenates x and y with non-ANSI null
semantics. If x and y is null, returns null. If
only x or y is null, returns the other value.

x, y in {string}

ENDSWITH(x, y) Checks if y ends with x. If only x or y is null,
returns null.

x, y in {string}, returns boolean

INITCAP(x) Make first letter of each word in string x
capital and all others lowercase

x in {string}

INSERT(str1, start, length,
str2)

Insert string2 into string1 str1 in {string}, start in
{integer}, length in {integer},
str2 in {string}

LCASE(x) Lowercase of x x in {string}

LEFT(x, y) Get left y characters of x x in {string}, y in {integer},
return string

LENGTH(x) Length of x return type is integer

LOCATE(x, y) Find position of x in y starting at beginning
of y

x in {string}, y in {string}, return
integer

LOCATE(x, y, z) Find position of x in y starting at z x in {string}, y in {string}, z in
{integer}, return integer

CHAPTER 2. SQL SUPPORT

23

LPAD(x, y) Pad input string x with spaces on the left to
the length of y

x in {string}, y in {integer},
return string

LPAD(x, y, z) Pad input string x on the left to the length of
y using character z

x in {string}, y in {string}, z in
{character}, return string

LTRIM(x) Left trim x of blank characters x in {string}, return string

QUERYSTRING(path [,
expr [AS name] ...])

Returns a properly encoded query string
appended to the given path. Null valued
expressions are omitted, and a null path is
treated as ''.

Names are optional for column reference
expressions.

e.g. QUERYSTRING('path', 'value' as "&x", '
& ' as y, null as z) returns 'path?
%26x=value&y=%20%26%20'

path, expr in {string}. name is
an identifier

REPEAT(str1,instances) Repeat string1 a specified number of times str1 in {string}, instances in
{integer} return string

RIGHT(x, y) Get right y characters of x x in {string}, y in {integer},
return string

RPAD(input string x, pad
length y)

Pad input string x with spaces on the right to
the length of y

x in {string}, y in {integer},
return string

RPAD(x, y, z) Pad input string x on the right to the length
of y using character z

x in {string}, y in {string}, z in
{character}, return string

RTRIM(x) Right trim x of blank characters x is string, return string

SPACE(x) Repeats space x times x in {integer}

SUBSTRING(x, y)

SUBSTRING(x FROM y)

Get substring from x, from position y to the
end of x

y in {integer}

SUBSTRING(x, y, z)

SUBSTRING(x FROM y
FOR z)

Get substring from x from position y with
length z

y, z in {integer}

Function Definition DataType Constraint

Development Guide Volume 3: Reference Material

24

TO_CHARS(x, encoding) Return a CLOB from the BLOB with the
given encoding. BASE64, HEX, and the
built-in Java Charset names are valid
values for the encoding.

NOTE

For charsets, unmappable
chars will be replaced with
the charset default
character. Binary formats,
such as BASE64, will error
in their conversion to bytes
if an unrecognizable
character is encountered.

x is a BLOB, encoding is a
string, and returns a CLOB

TO_BYTES(x, encoding) Return a BLOB from the CLOB with the
given encoding. BASE64, HEX, and the
builtin Java Charset names are valid values
for the encoding.

x in a CLOB, encoding is a
string, and returns a BLOB

TRANSLATE(x, y, z) Translate string x by replacing each
character in y with the character in z at the
same position.

Note that the second arg (y) and the third
arg (z) must be the same length. If they are
not equal, Red Hat JBoss data Virtualization
throws this exception: 'TEIID30404 Source
and destination character lists must be the
same length.'

x in {string}

TRIM([[LEADING|TRAILIN
G|BOTH] [x] FROM] y)

Trim character x from the leading, trailing,
or both ends of string y. If
LEADING/TRAILING/BOTH is not specified,
BOTH is used by default. If no trim character
x is specified, a blank space ' ' is used for x
by default.

x in {character}, y in {string}

UCASE(x) Uppercase of x x in {string}

UNESCAPE(x) Unescaped version of x. Possible escape
sequences are \b - backspace, \t - tab, \n -
line feed, \f - form feed, \r - carriage return.
\uXXXX, where X is a hex value, can be
used to specify any unicode character.
\XXX, where X is an octal digit, can be used
to specify an octal byte value. If any other
character appears after an escape
character, that character will appear in the
output and the escape character will be
ignored.

x in {string}

Function Definition DataType Constraint

2.4.5.1. Replacement Functions

CHAPTER 2. SQL SUPPORT

25

Use REPLACE to replace all occurrences of a given string with another:

This will replace all occurrences of y with z in x. (x, y, z are strings and the return value is a string.)

REGEXP_REPLACE replaces one or all occurrences of a given pattern with another string:

This will replace one or more occurrences of pattern with sub in str. All arguments are strings and the
return value is a string.

The pattern parameter is expected to be a valid Java regular expression.

The flags argument can be any concatenation of any of the valid flags with the following meanings:

Table 2.3. Flags

Flag Name Meaning

g global Replace all occurrences, not
just the first.

m multiline Match over multiple lines.

i case insensitive Match without case sensitivity.

Here is how you return xxbye Wxx using the global and case insensitive options:

2.4.6. Date/Time Functions

Date and time functions return or operate on dates, times, or timestamps.

Parse and format Date/Time functions use the convention established within the
java.text.SimpleDateFormat class to define the formats you can use with these functions.

Table 2.4. Date and Time Functions

Function Definition Datatype Constraint

CURDATE() Return current date returns date

CURTIME() Return current time returns time

NOW() Return current timestamp (date and time) returns timestamp

REPLACE(x, y, z)

REGEXP_REPLACE(str, pattern, sub [, flags])

regexp_replace('Goodbye World', '[g-o].', 'x', 'gi')

Development Guide Volume 3: Reference Material

26

DAYNAME(x) Return name of day in the default locale x in {date, timestamp},
returns string

DAYOFMONTH(x) Return day of month x in {date, timestamp},
returns integer

DAYOFWEEK(x) Return day of week (Sunday=1, Saturday=7) x in {date, timestamp},
returns integer

DAYOFYEAR(x) Return day number x in {date, timestamp},
returns integer

EXTRACT(YEAR|MONTH|DA
Y|HOUR|MINUTE|SECOND
FROM x)

Return the given field value from the date value
x. Produces the same result as the associated
YEAR, MONTH, DAYOFMONTH, HOUR,
MINUTE, SECOND functions.

The SQL specification also allows for
TIMEZONE_HOUR and TIMEZONE_MINUTE
as extraction targets. In JBoss Data
Virtualization, all date values are in the timezone
of the server.

x in {date, time,
timestamp}, returns
integer

FORMATDATE(x, y) Format date x using format y x is date, y is string,
returns string

FORMATTIME(x, y) Format time x using format y x is time, y is string,
returns string

FORMATTIMESTAMP(x, y) Format timestamp x using format y x is timestamp, y is
string, returns string

FROM_UNIXTIME
(unix_timestamp)

Return the Unix timestamp (in seconds) as a
Timestamp value

Unix timestamp (in
seconds)

HOUR(x) Return hour (in military 24-hour format) x in {time, timestamp},
returns integer

MINUTE(x) Return minute x in {time, timestamp},
returns integer

MODIFYTIMEZONE
(timestamp, startTimeZone,
endTimeZone)

Returns a timestamp based upon the incoming
timestamp adjusted for the differential between
the start and end time zones. i.e. if the server is
in GMT-6, then modifytimezone({ts '2006-01-10
04:00:00.0'},'GMT-7', 'GMT-8') will return the
timestamp {ts '2006-01-10 05:00:00.0'} as read
in GMT-6. The value has been adjusted 1 hour
ahead to compensate for the difference between
GMT-7 and GMT-8.

startTimeZone and
endTimeZone are
strings, returns a
timestamp

Function Definition Datatype Constraint

CHAPTER 2. SQL SUPPORT

27

MODIFYTIMEZONE
(timestamp, endTimeZone)

Return a timestamp in the same manner as
modifytimezone(timestamp, startTimeZone,
endTimeZone), but will assume that the
startTimeZone is the same as the server
process.

Timestamp is a
timestamp;
endTimeZone is a
string, returns a
timestamp

MONTH(x) Return month x in {date, timestamp},
returns integer

MONTHNAME(x) Return name of month in the default locale x in {date, timestamp},
returns string

PARSEDATE(x, y) Parse date from x using format y x, y in {string}, returns
date

PARSETIME(x, y) Parse time from x using format y x, y in {string}, returns
time

PARSETIMESTAMP(x,y) Parse timestamp from x using format y x, y in {string}, returns
timestamp

QUARTER(x) Return quarter x in {date, timestamp},
returns integer

SECOND(x) Return seconds x in {time, timestamp},
returns integer

TIMESTAMPCREATE(date,
time)

Create a timestamp from a date and time date in {date}, time in
{time}, returns
timestamp

Function Definition Datatype Constraint

Development Guide Volume 3: Reference Material

28

TIMESTAMPADD(interval,
count, timestamp)

Add a specified interval (hour, day of week,
month) to the timestamp, where intervals can
be:

1. SQL_TSI_FRAC_SECOND - fractional
seconds (billionths of a second)

2. SQL_TSI_SECOND - seconds

3. SQL_TSI_MINUTE - minutes

4. SQL_TSI_HOUR - hours

5. SQL_TSI_DAY - days

6. SQL_TSI_WEEK - weeks where
Sunday is the first day

7. SQL_TSI_MONTH - months

8. SQL_TSI_QUARTER - quarters (3
months), where the first quarter is
months 1-3

9. SQL_TSI_YEAR - years

NOTE

The full interval amount based
upon calendar fields will be
added. For example adding 1
QUARTER will move the
timestamp up by three full
months and not just to the start
of the next calendar quarter.

The interval constant
may be specified either
as a string literal or a
constant value. Interval
in {string}, count in
{integer}, timestamp in
{date, time, timestamp}

Function Definition Datatype Constraint

CHAPTER 2. SQL SUPPORT

29

TIMESTAMPDIFF(interval,
startTime, endTime)

Calculates the date part intervals crossed
between the two timestamps. interval is one of
the same keywords as those used for
TIMESTAMPADD.

If (endTime > startTime), a positive number will
be returned. If (endTime < startTime), a negative
number will be returned. The date part
difference is counted regardless of how close
the timestamps are. For example, '2000-01-02
00:00:00.0' is still considered 1 hour ahead of
'2000-01-01 23:59:59.999999'.

NOTE

TIMESTAMPDIFF typically
returns an integer, however
JBoss Data Virtualization
returns a long. You will
encounter an exception if you
expect a value out of the integer
range from a pushed down
TIMESTAMPDIFF.

NOTE

The implementation of
TIMESTAMPDIFF in previous
versions returned values based
upon the number of whole
canonical interval
approximations (365 days in a
year, 91 days in a quarter, 30
days in a month, etc.) crossed.
For example the difference in
months between 2013-03-24
and 2013-04-01 was 0, but
based upon the date parts
crossed is 1. See the System
Properties section in Red Hat
JBoss Data Virtualization
Administration and
Configuration Guide for
backwards compatibility.

Interval in {string};
startTime, endTime in
{timestamp}, returns a
long.

WEEK(x) Return week in year (1-53). see also System
Properties for customization.

x in {date, timestamp},
returns integer

Function Definition Datatype Constraint

Development Guide Volume 3: Reference Material

30

YEAR(x) Returns four-digit year. x in {date, timestamp},
returns integer

UNIX_TIMESTAMP
(unix_timestamp)

Returns the long Unix timestamp (in seconds). unix_timestamp String
in the default format of
yyyy/mm/dd hh:mm:ss

Function Definition Datatype Constraint

2.4.7. Parsing Date Data Types from Strings

JBoss Data Virtualization does not implicitly convert strings that contain dates presented in different
formats, such as '19970101' and '31/1/1996' to date-related data types. You can, however, use the
following functions to explicitly convert strings with a different format to the appropriate data type:

parseDate

parseTime

parseTimestamp

For each function, you have to provide the formatting of the string. The formatting follows the convention
established by the java.text.SimpleDateFormat class. See examples below.

Table 2.5. Functions to Parse Dates

String Function Call To Parse String

'19970101' parseDate(myDateString, 'yyyyMMdd')

'31/1/1996' parseDate(myDateString, 'dd''/''MM''/''yyyy')

'22:08:56 CST' parseTime (myTime, 'HH:mm:ss z')

'03.24.2003 at 06:14:32' parseTimestamp(myTimestamp, 'MM.dd.yyyy ''at'' hh:mm:ss')

NOTE

Formatted strings will be based on your default Java locale.

2.4.8. Specifying Time Zones

Time zones can be specified in several formats. Common abbreviations such as EST for "Eastern
Standard Time" are allowed but discouraged, as they can be ambiguous. Unambiguous time zones are
defined in the form continent or ocean/largest city. For example, America/New_York,
America/Buenos_Aires, or Europe/London. Additionally, you can specify a custom time zone by GMT
offset: GMT[+/-]HH:MM.

For example: GMT-05:00

CHAPTER 2. SQL SUPPORT

31

2.4.9. Type Conversion Functions

Within your queries, you can convert between data types using the CONVERT or CAST keyword. Also
see Section 3.2, “Type Conversions”.

Table 2.6. Type Conversion Functions

Function Definition

CONVERT(x, type) Convert x to type, where type is a JBoss Data Virtualization Base Type

CAST(x AS type) Convert x to type, where type is a JBoss Data Virtualization Base Type

These functions are identical other than syntax; CAST is the standard SQL syntax, CONVERT is the
standard JDBC/ODBC syntax.

2.4.10. Choice Functions

Choice functions provide a way to select from two values based on some characteristic of one of the
values.

Table 2.7. Type Conversion Functions

Function Definition Data Type Constraint

COALESCE(x,y
+)

Returns the first non-null
parameter

x and all y's can be any compatible types

IFNULL(x,y) If x is null, return y; else return x x, y, and the return type must be the same type but
can be any type

NVL(x,y) If x is null, return y; else return x x, y, and the return type must be the same type but
can be any type

NULLIF(param
1, param2)

Equivalent to case when (param1
= param2) then null else param1

param1 and param2 must be compatible comparable
types

NOTE

IFNULL and NVL are aliases of each other. They are the same function.

2.4.11. Decode Functions

Decode functions allow you to have JBoss Data Virtualization examine the contents of a column in a
result set and alter, or decode, the value so that your application can better use the results.

Table 2.8. Decode Functions

Development Guide Volume 3: Reference Material

32

Function Definition Data Type Constraint

DECODESTRING(x, y [,
z])

Decode column x using value pairs in y (with optional
delimiter, z) and return the decoded column as a set
of strings.

WARNING

Deprecated. Use a CASE
expression instead.

All string

DECODEINTEGER(x, y
[, z])

Decode column x using value pairs in y (with optional
delimiter z) and return the decoded column as a set
of integers.

WARNING

Deprecated. Use a CASE
expression instead.

All string parameters,
return integer

Within each function call, you include the following arguments:

1. x is the input value for the decode operation. This will generally be a column name.

2. y is the literal string that contains a delimited set of input values and output values.

3. z is an optional parameter on these methods that allows you to specify what delimiter the string
specified in y uses.

For example, your application might query a table called PARTS that contains a column called
IS_IN_STOCK which contains a Boolean value that you need to change into an integer for your
application to process. In this case, you can use the DECODEINTEGER function to change the Boolean
values to integers:

When JBoss Data Virtualization encounters the value false in the result set, it replaces the value with 0.

If, instead of using integers, your application requires string values, you can use the DECODESTRING
function to return the string values you need:





SELECT DECODEINTEGER(IS_IN_STOCK, 'false, 0, true, 1') FROM
PartsSupplier.PARTS;

SELECT DECODESTRING(IS_IN_STOCK, 'false, no, true, yes, null') FROM
PartsSupplier.PARTS;

CHAPTER 2. SQL SUPPORT

33

In addition to two input/output value pairs, this sample query provides a value to use if the column does
not contain any of the preceding input values. If the row in the IS_IN_STOCK column does not contain
true or false, JBoss Data Virtualization inserts a null into the result set.

When you use these DECODE functions, you can provide as many input/output value pairs as you
would like within the string. By default, JBoss Data Virtualization expects a comma delimiter, but you can
add a third parameter to the function call to specify a different delimiter:

You can use keyword null in the DECODE string as either an input value or an output value to represent
a null value. However, if you need to use the literal string null as an input or output value (which means
the word null appears in the column and not a null value) you can put the word in quotes: "null".

If the DECODE function does not find a matching output value in the column and you have not specified
a default value, the DECODE function will return the original value JBoss Data Virtualization found in that
column.

2.4.12. Lookup Function

The Lookup function provides a way to speed up access to values in a lookup table (also known as a
code table or reference table). The Lookup function caches all key and return column pairs specified in
the function for the given table. Subsequent lookups against the same table using the same key and
return columns will use the cached values. This caching accelerates response time to queries that use
the lookup tables.

In the following example, based on the lookup table, codeTable, the following function will find the row
where keyColumn has the value, keyValue, and return the associated returnColumn value (or null if
no matching key is found).

codeTable must be a string literal that is the fully qualified name of the target table. returnColumn
and keyColumn must also be string literals and match corresponding column names in codeTable.
keyValue can be any expression that must match the datatype of the keyColumn. The return data type
matches that of returnColumn.

Consider the following example in which the ISOCountryCodes table is used to translate country
names to ISO codes:

CountryName represents a key column and CountryCode represents the ISO code of the country. A
query to this lookup table would provide a CountryName, in this case 'UnitedStates', and expect a
CountryCode in response.

SELECT DECODESTRING(IS_IN_STOCK, 'false:no:true:yes:null',':') FROM
PartsSupplier.PARTS;

SELECT DECODESTRING(IS_IN_STOCK,
'null,no,"null",no,nil,no,false,no,true,yes') FROM PartsSupplier.PARTS;

LOOKUP(codeTable, returnColumn, keyColumn, keyValue)

lookup('ISOCountryCodes', 'CountryCode', 'CountryName', 'UnitedStates')

Development Guide Volume 3: Reference Material

34

NOTE

JBoss Data Virtualization unloads these cached lookup tables when you stop and restart
JBoss Data Virtualization. Thus, it is best not to use this function for data that is subject to
updates or specific to a session or user (including row based security and column
masking effects). It is best used for data that does not change over time. See the Red Hat
JBoss Data Virtualization Administration and Configuration Guide for more on the caching
aspects of the lookup function.

IMPORTANT

The key column must contain unique values. If the column contains duplicate
values, an exception will be thrown.

2.4.13. System Functions

System functions provide access to information in JBoss Data Virtualization from within a query.

Function Definition Data Type Constraint

COMMANDPAYLOAD([key]) If the key parameter is provided,
the command payload object is
cast to a java.util.Properties object
and the corresponding property
value for the key is returned. If the
key is not specified, the return
value is the command payload
toString value.

The command payload is set by
the
TeiidStatement.setPaylo
ad method on the Data
Virtualization JDBC API
extensions on a per-query basis.

key in {string}, return value is
string

CHAPTER 2. SQL SUPPORT

35

ENV(key) Retrieve a system environment
property.

NOTE

The only key
specific to the
current session is
'sessionid'. The
preferred
mechanism for
getting the
session id is with
the session_id()
function.

NOTE

To prevent
untrusted access
to system
properties, this
function is not
enabled by
default. The ENV
function may be
enabled via the
allowEnvFunction
property.

key in {string}, return value is
string

SESSION_ID() Retrieve the string form of the
current session id.

return value is string

USER() Retrieve the name of the user
executing the query.

return value is string

CURRENT_DATABASE() Retrieve the catalog name of the
database which, for the VDB, is
the VDB name.

return value is string

TEIID_SESSION_GET(name) Retrieve the session variable.

A null name will return a null
value. Typically you will use the a
get wrapped in a CAST to convert
to the desired type.

name in {string}, return value is
object

Function Definition Data Type Constraint

Development Guide Volume 3: Reference Material

36

TEIID_SESSION_SET(name,
value)

Set the session variable.

The previous value for the key or
null will be returned. A set has no
effect on the current transaction
and is not affected by
commit/rollback.

name in {string}, value in {object},
return value is object.

NODE_ID() This retrieves the node id. This is
typically the system property
value for jboss.node.name
which is not set for Red Hat JDV
embedded.

The returned value is a string.

Function Definition Data Type Constraint

2.4.14. XML Functions

XML functions allow you to work with XML data. The examples provided for the XML functions use this
table structure:

The table structure is populated with this example data:

Table 2.9. Sample Data

CustomerI
D

CustomerN
ame

ContactNa
me

Address City PostalCode Country

87 Wartian
Herkku

Pirkko
Koskitalo

Torikatu 38 Oulu 90110 Finland

88 Wellington
Importadora

Paula
Parente

Rua do
Mercado, 12

Resende 08737-363 Brazil

89 White
Clover
Markets

Karl
Jablonski

305 - 14th
Ave. S.
Suite 3B

Seattle 98128 USA

XMLCAST

Cast to or from XML:

TABLE Customer (
 CustomerId integer PRIMARY KEY,
 CustomerName varchar(25),
 ContactName varchar(25)
 Address varchar(50),
 City varchar(25),
 PostalCode varchar(25),
 Country varchar(25),
);

XMLCAST(expression AS type)

CHAPTER 2. SQL SUPPORT

37

The expression or type must be XML. The returned value will be a type. This is the same functionality
as XMLTABLE uses to convert values to the desired runtime type, with the exception that array type
targets are not supported with XMLCAST.

XMLCOMMENT

This returns an XML comment.

The comment is a string. The returned value is XML.

XMLCONCAT

This returns XML with the concatenation of the given XML types. If a value is null, it will be ignored. If
all values are null, null is returned. This is how you concatenate two or more XML fragments:

The content is XML. The returned value is XML.

XMLELEMENT

Returns an XML element with the given name and content. If the content value is of a type other than
XML, it will be escaped when added to the parent element. Null content values are ignored.
Whitespace in XML or the string values of the content is preserved, but no whitespace is added
between content values.

XMLNAMESPACES is used to provide namespace information. NO DEFAULT is equivalent to
defining the default namespace to the null URI - xmlns="". Only one DEFAULT or NO DEFAULT
namespace item may be specified. The namespace prefixes xmlns and xml are reserved.

If an attribute name is not supplied, the expression must be a column reference, in which case the
attribute name will be the column name. Null attribute values are ignored.

For example, with an xml_value of <doc/>,

XMLCOMMENT(comment)

XMLCONCAT(content [, content]*)

SELECT XMLCONCAT(XMLELEMENT("name", CustomerName), XMLPARSE(CONTENT '
 <a>
 b
 ' WELLFORMED)) FROM Customer c WHERE c.CustomerID = 87;
==
 <name>
 Wartian Herkku
 </name>
 <a>
 b

XMLELEMENT([NAME] name [, <NSP>] [, <ATTR>][, content]*)
ATTR:=XMLATTRIBUTES(exp [AS name] [, exp [AS name]]*)
NSP:=XMLNAMESPACES((uri AS prefix | DEFAULT uri | NO DEFAULT))+

Development Guide Volume 3: Reference Material

38

returns

name and prefix are identifiers. uri is a string literal. content can be any type. Return value is
XML. The return value is valid for use in places where a document is expected.

XMLFOREST

Returns an concatenation of XML elements for each content item. See XMLELEMENT for the
definition of NSP. If a name is not supplied for a content item, the expression must be a column
reference, in which case the element name will be a partially escaped version of the column name.

name is an identifier. content can be any type. Return value is XML.

You can use XMLFORREST to simplify the declaration of multiple XMLELEMENTS, XMLFOREST
function allows you to process multiple columns at once:

XMLELEMENT(NAME "elem", 1, '<2/>', xml_value)

<elem>1<2/><doc/><elem/>

SELECT XMLELEMENT("name", CustomerName)
FROM Customer c
WHERE c.CustomerID = 87;

==
<name>Wartian Herkku</name>
"Multiple Columns"
SELECT XMLELEMENT("customer",
 XMLELEMENT("name", c.CustomerName),
 XMLELEMENT("contact", c.ContactName))
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact>
</customer>
"Columns as Attributes"
SELECT XMLELEMENT("customer",
 XMLELEMENT("name", c.CustomerName,
 XMLATTRIBUTES(
 "contact" as c.ContactName,
 "id" as c.CustomerID
)
)
)
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer>
 <name contact="Pirkko Koskitalo" id="87">Wartian Herkku</name>
</customer>

XMLFOREST(content [AS name] [, <NSP>] [, content [AS name]]*)

CHAPTER 2. SQL SUPPORT

39

XMLAGG

XMLAGG is an aggregate function, that takes a collection of XML elements and returns an
aggregated XML document.

In the XMLElement example, each row in the Customer table generates a row of XML if there are
multiple rows matching the criteria. This will be valid XML, but it will not be well formed, because it
lacks the root element. Use XMLAGG to correct that:

SELECT XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
))
FROM Customer c
WHERE c.CustomerID = 87;

==
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact>
</customer>
XMLAGG

XMLAGG is an aggregate function, that takes a collection of XML elements
and returns an aggregated XML document.
XMLAGG(xml)

From above example in XMLElement, each row in the Customer table table
will generate row of XML if there are multiple rows matching the
criteria. That will generate a valid XML, but it will not be well
formed, because it lacks the root element. XMLAGG can used to correct
that
"Example"
SELECT XMLELEMENT("customers",
 XMLAGG(
 XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
)))
FROM Customer c

==
<customers>
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact>
</customer>
<customer><name>Wellington Importadora</name><contact>Paula
Parente</contact></customer>
<customer><name>White Clover Markets</name><contact>Karl
Jablonski</contact></customer>
</customers>

XMLAGG(xml)

SELECT XMLELEMENT("customers",

Development Guide Volume 3: Reference Material

40

XMLPARSE

Returns an XML type representation of the string value expression. If DOCUMENT is specified, then
the expression must have a single root element and may or may not contain an XML declaration. If
WELLFORMED is specified then validation is skipped; this is especially useful for CLOB and BLOB
known to already be valid.

expr in {string, clob, blob and varbinary}. Return value is XML.

If DOCUMENT is specified then the expression must have a single root element and may or may not
contain an XML declaration. If WELLFORMED is specified then validation is skipped; this is especially
useful for CLOB and BLOB known to already be valid.

Will return a SQLXML with contents:

XMLPI

Returns an XML processing instruction.

name is an identifier. content is a string. Return value is XML.

XMLQUERY

 XMLAGG(
 XMLELEMENT("customer",
 XMLFOREST(
 c.CustomerName AS "name",
 c.ContactName AS "contact"
)))
FROM Customer c

==
<customers>
<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact>
</customer>
<customer><name>Wellington Importadora</name><contact>Paula
Parente</contact></customer>
<customer><name>White Clover Markets</name><contact>Karl
Jablonski</contact></customer>
</customers>

XMLPARSE((DOCUMENT|CONTENT) expr [WELLFORMED])

SELECT XMLPARSE(CONTENT '<customer><name>Wartian Herkku</name>
<contact>Pirkko Koskitalo</contact></customer>' WELLFORMED);

<customer><name>Wartian Herkku</name><contact>Pirkko Koskitalo</contact>
</customer>

XMLPI([NAME] name [, content])

CHAPTER 2. SQL SUPPORT

41

Returns the XML result from evaluating the given xquery. See XMLELEMENT for the definition of
NSP. Namespaces may also be directly declared in the XQuery prolog.

The optional PASSING clause is used to provide the context item, which does not have a name, and
named global variable values. If the XQuery uses a context item and none is provided, then an
exception will be raised. Only one context item may be specified and should be an XML type. All non-
context non-XML passing values will be converted to an appropriate XML type.

The ON EMPTY clause is used to specify the result when the evaluated sequence is empty. EMPTY
ON EMPTY, the default, returns an empty XML result. NULL ON EMPTY returns a null result.

xquery in string. Return value is XML.

NOTE

XMLQUERY is part of the SQL/XML 2006 specification.

See also XMLTABLE.

XMLEXISTS

Returns true if a non-empty sequence would be returned by evaluating the given xquery.

Namespaces may also be directly declared in the xquery prolog.

The optional PASSING clause is used to provide the context item, which does not have a name, and
named global variable values. If the xquery uses a context item and none is provided, then an
exception will be raised. Only one context item may be specified and should be an XML type. All non-
context non-XML passing values will be converted to an appropriate XML type. Null/Unknown will be
returned if the context item evaluates to null.

xquery in string. Return value is boolean.

XMLEXISTS is part of the SQL/XML 2006 specification.

XMLSERIALIZE

Returns a character type representation of the XML expression.

datatype may be character (string, varchar, clob) or binary (blob, varbinary). CONTENT is the
default. If DOCUMENT is specified and the XML is not a valid document or fragment, then an
exception is raised.

Return value matches data type. If no data type is specified, then CLOB will be assumed.

XMLQUERY([<NSP>] xquery [<PASSING>] [(NULL|EMPTY) ON EMPTY]]
PASSING:=PASSING exp [AS name] [, exp [AS name]]*

XMLEXISTS([<NSP>] xquery [<PASSING>]]

PASSING:=PASSING exp [AS name] [, exp [AS name]]*

XMLSERIALIZE([(DOCUMENT|CONTENT)] xml [AS datatype] [ENCODING enc]
[VERSION ver] [(INCLUDING|EXCLUDING) XMLDECLARATION])

Development Guide Volume 3: Reference Material

42

The encoding enc is specified as an identifier. A character serialization may not specify an encoding.
The version ver is specified as a string literal. If a particular XMLDECLARATION is not specified,
then the result will have a declaration only if performing a non UTF-8/UTF-16 or non version 1.0
document serialization or the underlying XML has an declaration. If CONTENT is being serialized,
then the declaration will be omitted if the value is not a document or element.

The following example produces a BLOB of XML in UTF-16 including the appropriate byte order mark
of FE FF and XML declaration:

XMLTEXT

This returns XML text.

The text is a string and the returned value is XML.

XSLTRANSFORM

Applies an XSL stylesheet to the given document.

doc and xsl in {string, clob, xml}. Return value is a CLOB. If either argument is null, the result is null.

XPATHVALUE

Applies the XPATH expression to the document and returns a string value for the first matching result.
For more control over the results and XQuery, use the XMLQUERY function.

Matching a non-text node will still produce a string result, which includes all descendant text nodes.

doc and xpath in {string, clob, xml}. Return value is a string.

When the input document utilizes namespaces, it is sometimes necessary to specify XPATH that
ignores namespaces. For example, given the following XML,

the following function results in 'Hello World'.

2.4.15. JSON Functions

XMLSERIALIZE(DOCUMENT value AS BLOB ENCODING "UTF-16" INCLUDING
XMLDECLARATION)

XMLTEXT(text)

XSLTRANSFORM(doc, xsl)

XPATHVALUE(doc, xpath)

<?xml version="1.0" ?>
 <ns1:return xmlns:ns1="http://com.test.ws/exampleWebService">Hello<x>
World</x></return>

xpathValue(value, '/*[local-name()="return"])

CHAPTER 2. SQL SUPPORT

43

JSON functions provide functionality for working with JSON (JavaScript Object Notation) data.

JSONTOXML

Returns an XML document from JSON. The appropriate UTF encoding (8, 16LE. 16BE, 32LE, 32BE)
will be detected for JSON BLOBS. If another encoding is used, see the TO_CHARS function (see
Section 2.4.5, “String Functions”).

rootElementName is a string, json is in {clob, blob}. Return value is XML. The result is always a
well-formed XML document.

The mapping to XML uses the following rules:

The current element name is initially the rootElementName, and becomes the object value
name as the JSON structure is traversed.

All element names must be valid XML 1.1 names. Invalid names are fully escaped according
to the SQLXML specification.

Each object or primitive value will be enclosed in an element with the current name.

Unless an array value is the root, it will not be enclosed in an additional element.

Null values will be represented by an empty element with the attribute xsi:nil="true"

Boolean and numerical value elements will have the attribute xsi:type set to boolean and
decimal respectively.

Example 2.1. Sample JSON to XML for jsonToXml('person', x)

JSON:

XML:

Example 2.2. Sample JSON to XML for jsonToXml('person', x) with a root array.

JSON:

XML (Notice there is an extra "person" wrapping element to keep the XML well-formed):

JSONTOXML(rootElementName, json)

{ "firstName" : "John" , "children" : ["Randy", "Judy"] }

<?xml version="1.0" ?
><person><firstName>John</firstName><children>Randy</children><childr
en>Judy</children></person>

[{ "firstName" : "George" }, { "firstName" : "Jerry" }]

<?xml version="1.0" ?
><person><person><firstName>George</firstName></person><person><first
Name>Jerry</firstName></person></person>

Development Guide Volume 3: Reference Material

44

http://www.json.org/

JSON:

Example 2.3. Sample JSON to XML for jsonToXml('root', x) with an invalid name.

XML:

Example 2.4. Sample JSON to XML for jsonToXml('root', x) with an invalid name.

JSONARRAY

Returns a JSON array.

value is any object convertable to a JSON value (see Section 2.4.16, “Conversion to JSON”). Return
value is a CLOB marked as being valid JSON. Null values will be included in the result as null literals.

For example:

returns

JSONOBJECT

Returns a JSON object.

value is any object convertable to a JSON value (see Section 2.4.16, “Conversion to JSON”). Return
value is a clob marked as being valid JSON.

Null values will be included in the result as null literals.

If a name is not supplied and the expression is a column reference, the column name will be used
otherwise exprN will be used where N is the 1-based index of the value in the JSONARRAY
expression.

For example:

{"/invalid" : "abc" }

<?xml version="1.0" ?>
<root>
 <_u002F_invalid>abc</_u002F_invalid>
</root>

JSONARRAY(value...)

jsonArray('a"b', 1, null, false, {d'2010-11-21'})

["a\"b",1,null,false,"2010-11-21"]

JSONARRAY(value [as name] ...)

CHAPTER 2. SQL SUPPORT

45

returns

JSONPARSE

Validates and returns a JSON result.

value is blob with an appropriate JSON binary encoding (UTF-8, UTF-16, or UTF-32) or clob.
wellformed is a boolean indicating that validation should be skipped. Return value is a CLOB
marked as being valid JSON.

A null for either input will return null.

JSONARRAY_AGG

This creates a JSON array result as a Clob, including a null value. This is similar to JSONARRAY but
aggregates its contents into single object.

You can also wrap the array:

2.4.16. Conversion to JSON

A straightforward specification compliant conversion is used for converting values into their appropriate
JSON document form.

null values are included as the null literal.

values parsed as JSON or returned from a JSON construction function (JSONPARSE,
JSONARRAY, JSONARRAY_AGG) will be directly appended into a JSON result.

jsonObject('a"b' as val, 1, null as "null")

{"val":"a\"b","expr2":1,"null":null}

JSONPARSE(value, wellformed)

jsonParse('"a"')

SELECT JSONARRAY_AGG(JSONOBJECT(CustomerId, CustomerName))
FROM Customer c
WHERE c.CustomerID >= 88;
==
[{"CustomerId":88, "CustomerName":"Wellington Importadora"},
{"CustomerId":89, "CustomerName":"White Clover Markets"}]

SELECT JSONOBJECT(JSONARRAY_AGG(JSONOBJECT(CustomerId as id,
CustomerName as name)) as Customer)
FROM Customer c
WHERE c.CustomerID >= 88;
==
{"Customer":[{"id":89,"name":"Wellington Importadora"},
{"id":100,"name":"White Clover Markets"}]}

Development Guide Volume 3: Reference Material

46

boolean values are included as true/false literals

numeric values are included as their default string conversion - in some circumstances if not a
number or +-infinity results are allowed, invalid JSON may be obtained.

string values are included in their escaped/quoted form.

binary values are not implicitly convertible to JSON values and require a specific prior to
inclusion in JSON.

all other values will be included as their string conversion in the appropriate escaped/quoted
form.

2.4.17. Spatial Functions

Spatial functions provide functionality for working with geospatial data. Red Hat JBoss Data Virtualization
relies on the JTS Topology Suite to provide partial support for the OpenGIS Simple Features
Specification For SQL Revision 1.1.

Most Geometry support is limited to two dimensions due to the WKB and WKT formats.

IMPORTANT

Geometry support is still evolving. There may be minor differences between Data
Virtualization and pushdown results that will need to be further refined.

Conversion Functions

ST_GeomFromText

Returns a geometry from a Clob in WKT format.

text is a clob, srid is an optional integer. Return value is a geometry.

ST_GeomFromWKB/ST_GeomFromBinary

Returns a geometry from a blob in WKB format.

bin is a blob, srid is an optional integer. Return value is a geometry.

ST_GeomFromGeoJSON

Returns a geometry from a Clob in GeoJSON format.

text is a clob, srid is an optional integer. Return value is a geometry.

ST_GeomFromGML

 ST_GeomFromText(text [, srid])

ST_GeomFromWKB(bin [, srid])

ST_GeomFromGeoJson(text [, srid])

CHAPTER 2. SQL SUPPORT

47

Returns a geometry from a Clob in GML2 format.

text is a clob, srid is an optional integer. Return value is a geometry.

ST_AsText

The geom is a geometry. Return value is clob in WKT format.

ST_AsBinary

The geom is a geometry. Return value is a blob in WKB format.

ST_GeomFromEWKB

Returns a geometry from a blob in EWKB format.

The bin is a blob. Return value is a geometry. Only two dimensions are supported.

ST_AsGeoJSON

The geom is a geometry. Return value is a clob with the GeoJSON value.

ST_AsGML

The geom is a geometry. Return value is a clob with the GML2 value.

ST_AsEWKT

The geom is a geometry. Return value is a clob with the EWKT value. The EWKT value is the WKT
value with the SRID prefix.

ST_AsKML

ST_GeomFromGML(text [, srid])

ST_GeomAsText(geom)

ST_GeomAsBinary(geom)

ST_GeomFromEWKB(bin)

ST_GeomAsGeoJSON(geom)

ST_GeomAsGML(geom)

ST_AsEWKT(geom)

Development Guide Volume 3: Reference Material

48

The geom is a geometry. Return value is a clob with the KML value. The KML value is effectively a
simplified GML value and projected into SRID 4326.

Operators

&&

Returns true if the bounding boxes of geom1 and geom2 intersect.

geom1 and geom2 are geometries. The returned value is a boolean.

Relationship Functions

ST_CONTAINS

Returns true if geom1 contains geom2 contains another.

geom1, geom2 are geometries. Return value is a boolean.

ST_CROSSES

Returns true if the geometries cross.

The geom1 and geom2 are geometries. Return value is a boolean.

ST_DISJOINT

Returns true if the geometries are disjoint.

The geom1 and geom2 are geometries. Return value is a boolean.

ST_DISTANCE

Returns the distance between two geometries.

The geom1 and geom2 are geometries. Return value is a double.

ST_AsKML(geom)

geom1 && geom2

ST_CONTAINS(geom1, geom2)

ST_CROSSES(geom1, geom2)

ST_DISJOINT(geom1, geom2)

ST_DISTANCE(geom1, geom2)

CHAPTER 2. SQL SUPPORT

49

ST_EQUALS

Returns true if the two geometries are spatially equal - the points and order may differ, but neither
geometry lies outside of the other.

The geom1 and geom2 are geometries. Return value is a boolean.

ST_INTERSECTS

Returns true if the geometries intersect.

The geom1 and geom2 are geometries. Return value is a boolean.

ST_OVERLAPS

Returns true if the geometries overlap.

The geom1 and geom2 are geometries. Return value is a boolean.

ST_TOUCHES

Returns true if the geometries touch.

The geom1 and geom2 are geometries. Return value is a boolean.

ST_DWithin

Returns true if the geometries are within a given distance of one another.

geom1 and geom2 are geometries. dist is a double. The returned value is a boolean.

ST_OrderingEquals

Returns true if geom1 and geom2 have the same structure and the same ordering of points.

geom1 and geom2 are geometries. The returned value is a boolean.

ST_Relate

ST_EQUALS(geom1, geom2)

ST_INTERSECT(geom1, geom2)

ST_OVERLAPS(geom1, geom2)

ST_TOUCHES(geom1, geom2)

ST_DWithin(geom1, geom2, dist)

ST_OrderingEquals(geom1, geom2)

Development Guide Volume 3: Reference Material

50

Test or return the intersection of geom1 and geom2.

The geom1 and geom2 are geometries. Pattern is a nine character DE-9IM pattern string. The
returned value is a boolean.

ST_Within

Returns true if geom1 is completely inside geom2.

The geom1 and geom2 are geometries. The returned value is a boolean.

Attributes and Tests

ST_Area

Returns the area of geom.

The geom is a geometry. Return value is a double.

ST_CoordDim

Returns the coordinate dimensions of geom.

The geom is a geometry. The returned value is an integer between 0 and 3.

ST_Dimension

This returns the dimension of geom.

The geom is a geometry. The returned value is an integer between 0 and 3.

ST_EndPoint

This returns the endpoint of the LineString geom. Returns null if geom is not a LineString.

The geom is a geometry. The returned value is a geometry.

ST_Relate(geom1, geom2, pattern)

ST_Within(geom1, geom2)

ST_Area(geom)

ST_CoordDim(geom)

ST_Dimension(geom)

ST_EndPoint(geom)

CHAPTER 2. SQL SUPPORT

51

ST_ExteriorRing

Returns the exterior ring or shell LineString of the Polygon geom. Returns null if geom is not a
Polygon.

The geom is a geometry. The returned value is a geometry.

ST_GeometryN

Returns the nth geometry at the given 1-based index in geom. Returns null if a geometry at the given
index does not exist. Non collection types return themselves at the first index.

The geom is a geometry. The index is an integer. The returned value is a geometry.

ST_GeometryType

Returns the type name of geom as ST_name, where the name will be LineString, Polygon, Point and
so forth.

The geom is a geometry. The returned value is a string.

ST_HasArc

Tests if the geometry has a circular string. Will currently only report false as curved geometry types
are not supported.

The geom is a geometry. The returned value is a geometry.

ST_InteriorRingN

Returns the nth interior ring LinearString geometry at the given 1-based index in geom. Returns null if
a geometry at the given index does not exist or if geom is not a Polygon.

The geom is a geometry. The index is an integer. The returned value is a geometry.

ST_IsClosed

Returns true if LineString geom is closed. Returns false if geom is not a LineString

ST_ExteriorRing(geom)

ST_GeometryN(geom, index)

ST_GeometryType(geom)

ST_HasArc(geom)

ST_InteriorRingN(geom, index)

ST_IsClosed(geom)

Development Guide Volume 3: Reference Material

52

The geom is a geometry. The index is an integer. The returned value is a boolean.

ST_IsEmpty

Returns true if the set of points is empty.

The geom is a geometry. The returned value is a boolean.

ST_IsRing

Returns true if the LineString geom is a ring. Returns false if geom is not a LineString.

The geom is a geometry. The returned value is a boolean.

ST_IsSimple

Returns true if the geom is simple.

The geom is a geometry. The returned value is a boolean.

ST_IsValid

Returns true if the geom is valid.

The geom is a geometry. The returned value is a boolean.

ST_Length

Returns the length of a (Multi)LineString otherwise 0.

The geom is a geometry. The returned value is a double.

ST_NumGeometries

Returns the number of geometries in the geom. Will return 1 if it is not a geometry collection.

The geom is a geometry. The returned value is an integer.

ST_IsEmpty(geom)

ST_IsRing(geom)

ST_IsSimple(geom)

ST_IsValid(geom)

ST_Length(geom)

ST_NumGeometries(geom)

CHAPTER 2. SQL SUPPORT

53

ST_NumInteriorRings

Returns the number of interior rings in the Polygon geom. Returns null if geom is not a Polygon.

The geom is a geometry. The returned value is an integer.

ST_NunPoints

Returns the number of points in a geom.

The geom is a geometry. The returned value is an integer.

ST_PointOnSurface

Returns a point that is guaranteed to be on the surface of the geom.

The geom is a geometry. The returned value is a point geometry.

ST_Perimeter

Returns the perimeter of the (Multi)Polygon geom. It ill return 0 if the geom is not a (multi)polygon.

The geom is a geometry. The returned value is a double.

ST_PointN

Returns the nth Point at the given 1-based index in geom. Returns null if a point at the given index
does not exist or if the geom is not a LineString.

The geom is a geometry. The index is an integer. The returned value is a geometry.

ST_SRID

Returns the SRID for the geometry.

The geom is a geometry. Return value is an integer. A 0 value rather than null will be returned for an
unknown SRID on a non-null geometry.

ST_NumInteriorRings(geom)

ST_NunPoints(geom)

ST_PointOnSurface(geom)

ST_Perimeter(geom)

ST_PointN(geom, index)

ST_SRID(geom)

Development Guide Volume 3: Reference Material

54

ST_SetSRID

Set the SRID for the given geometry.

The geom is a geometry. The srid is an integer. The returned value is a geometry. Only the SRID
metadata for the geometry is modified.

ST_StartPoint

Returns the start Point of the LineString geom. Returns null if geom is not a LineString.

The geom is a geometry. The returned value is a geometry.

ST_X

Returns the X ordinate value, or null if the point is empty. It throws an exception if the geometry is not
a point.

The geom is a geometry. The returned value is a double.

ST_Y

Returns the Y ordinate value, or null if the point is empty. It throws an exception if the geometry is not
a point.

The geom is a geometry. The returned value is a double.

ST_Z

Returns the Z ordinate value, or null if the point is empty. It throws an exception if the geometry is not
a point. It will typically return null as three dimensions are not fully supported.

The geom is a geometry. The returned value is a double.

Miscellaneous Functions

ST_Boundary

Computes the boundary of the given geometry.

ST_SetSRID(geom, srid)

ST_StartPoint(geom)

ST_X(geom)

ST_Y(geom)

ST_Z(geom)

CHAPTER 2. SQL SUPPORT

55

The geom is a geometry. The returned value is a geometry.

ST_Buffer

Computes the geometry that has points within the given distance of a geom.

The geom is a geometry. The distance is a double. The returned value is a geometry.

ST_Centroid

Computes the geometric center point of a geom.

The geom is a geometry. The returned value is a geometry.

ST_ConvexHull

Return the smallest convex polygon that contains all of the points in a geom.

The geom is a geometry. The returned value is a geometry.

ST_Difference

Computes the closure of the set of the points contained in geom1 that are not in geom2.

The geom1 and geom2 are the geometry. The returned value is a geometry.

ST_Envelope

Computes the 2D bounding box of the given geometry.

The geom is a geometry. The returned value is a geometry.

ST_Force_2D

Removes the z coordinate value if it is present.

ST_Boundary(geom)

ST_Buffer(geom, distance)

ST_Centroid(geom)

ST_ConvexHull(geom)

ST_Difference(geom1, geom2)

ST_Envelope(geom)

ST_Force_2D(geom)

Development Guide Volume 3: Reference Material

56

The geom is a geometry. The returned value is a geometry.

ST_Intersection

Computes the point set intersection of the points contained in geom1 and geom2.

The geom1 and geom2 are the geometry. The returned value is a geometry.

ST_Simplify

Simplifies a geometry using the Douglas-Peucker algorithm, but may oversimplify to an invalid or
empty geometry.

The geom is a geometry. distanceTolerance is a double. The returned value is a geometry.

ST_SimplifyPreserveTopology

Simplifies a Geometry using the Douglas-Peucker algorithm. This always returns a valid geometry.

The geom is a geometry. distanceTolerance is a double. The returned value is a geometry.

ST_SnapToGrid

Snaps all of the points in the geometry to a grid of a given size.

The geom is a geometry. Size is a double. The returned value is a geometry.

ST_SymDifference

Return the part of geom1 that does not intersect with geom2 and vice versa.

The geom1 and geom2 are the geometry. The returned value is a geometry.

ST_Transform

Transforms the geometry value from one coordinate system to another.

ST_Intersection(geom1, geom2)

ST_Simplify(geom, distanceTolerance)

ST_SimplifyPreserveTopology(geom, distanceTolerance)

ST_SnapToGrid(geom, size)

ST_SymDifference(geom1, geom2)

ST_Tranform(geom, srid)

CHAPTER 2. SQL SUPPORT

57

The geom is a geometry. srid is an integer. Return value is a geometry. The srid value and the srid of
the geometry value must exist in the SPATIAL_REF_SYS view.

ST_Union

Returns a geometry that represents the point set containing all of geom1 and geom2.

The geom1 and geom2 are the geometry. The returned value is a geometry.

Aggregate Functions

ST_Extent

Computes the 2D bounding box around all of the geometric values. All values should have the same
srid.

The geom is a geometry. The returned value is a geometry.

Construction Functions

ST_Point

Returns the point for the given coordinates.

The x and y are doubles. The returned value is a point geometry.

ST_Polygon

Returns the polygon for the given shell and srid.

The geom is a linear ring geometry and the srid is an integer. The returned value is a polygon
geometry.

2.4.18. Security Functions

Security functions provide the ability to interact with the security system.

HASROLE

ST_Union(geom1, geom2)

ST_Extent(geom)

ST_Point(x, y)

ST_Polygon(geom, srid)

hasRole([roleType,] roleName)

Development Guide Volume 3: Reference Material

58

Whether the current caller has the JBoss Data Virtualization data role roleName.

roleName must be a string, the return type is boolean.

The two argument form is provided for backwards compatibility. roleType is a string and must be
'data'.

Role names are case-sensitive and only match JBoss Data Virtualization data roles (see Section 7.1,
“Data Roles”). JAAS roles/groups names are not valid for this function, unless there is corresponding
data role with the same name.

2.4.19. Miscellaneous Functions

array_get

Returns the object value at a given array index.

array is the object type, index must be an integer, and the return type is object.

One-based indexing is used. The actual array value must be a java.sql.Array or Java array type.
An exception will be thrown if the array value is the wrong type of the index is out of bounds.

array_length

Returns the length for a given array.

array is the object type, and the return type is integer.

The actual array value must be a java.sql.Array or Java array type. An exception will be thrown if
the array value is the wrong type.

uuid

Returns a universally unique identifier.

The return type is string.

Generates a type 4 (pseudo randomly generated) UUID using a cryptographically strong random
number generator. The format is XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX where each X is
a hex digit.

2.4.20. Nondeterministic Function Handling

JBoss Data Virtualization categorizes functions by varying degrees of determinism. When a function is
evaluated and to what extent the result can be cached are based upon its determinism level.

array_get(array, index)

array_length(array)

uuid()

CHAPTER 2. SQL SUPPORT

59

1. Deterministic - the function will always return the same result for the given inputs. Deterministic
functions are evaluated by the engine as soon as all input values are known, which may occur
as soon as the rewrite phase. Some functions, such as the lookup function, are not truly
deterministic, but is treated as such for performance. All functions not categorized below are
considered deterministic.

2. User Deterministic - the function will return the same result for the given inputs for the same
user. This includes the hasRole and user functions. User deterministic functions are evaluated
by the engine as soon as all input values are known, which may occur as soon as the rewrite
phase. If a user deterministic function is evaluated during the creation of a prepared processing
plan, then the resulting plan will be cached only for the user.

3. Session Deterministic - the function will return the same result for the given inputs under the
same user session. This category includes the env function. Session deterministic functions are
evaluated by the engine as soon as all input values are known, which may occur as soon as the
rewrite phase. If a session deterministic function is evaluated during the creation of a prepared
processing plan, then the resulting plan will be cached only for the user's session.

4. Command Deterministic - the result of function evaluation is only deterministic within the scope
of the user command. This category include the curdate, curtime, now, and
commandpayload functions. Command deterministic functions are delayed in evaluation until
processing to ensure that even prepared plans utilizing these functions will be executed with
relevant values. Command deterministic function evaluation will occur prior to pushdown;
however, multiple occurrences of the same command deterministic time function are not
guaranteed to evaluate to the same value.

5. Nondeterministic - the result of function evaluation is fully nondeterministic. This category
includes the rand function and UDFs marked as nondeterministic. Nondeterministic functions
are delayed in evaluation until processing with a preference for pushdown. If the function is not
pushed down, then it may be evaluated for every row in its execution context (for example, if the
function is used in the select clause).

2.5. DML COMMANDS

2.5.1. DML Commands

JBoss Data Virtualization supports SQL for issuing queries and defining view transformations; see also
Section 2.9.1, “Procedural Language” and Section 2.10.1, “Virtual Procedures” for how SQL is used in
virtual procedures and update procedures. Nearly all these features follow standard SQL syntax and
functionality, so any SQL reference can be used for more information.

There are 4 basic commands for manipulating data in SQL, corresponding to the standard create, read,
update and delete (CRUD) operations: INSERT, SELECT, UPDATE, and DELETE. A MERGE statement
acts as a combination of INSERT and UPDATE. In addition, procedures can be executed using the
EXECUTE command or through a procedural relational command. See Section 2.5.8, “Procedural
Relational Command”.

2.5.2. SELECT Command

The SELECT command is used to retrieve records for any number of relations.

A SELECT command consists of several clauses:

[WITH ...]

Development Guide Volume 3: Reference Material

60

SELECT ...

[FROM ...]

[WHERE ...]

[GROUP BY ...]

[HAVING ...]

[ORDER BY ...]

[(LIMIT ...) | ([OFFSET ...] [FETCH ...])]

[OPTION ...]

See Section 2.6.1, “DML Clauses” for more information about all of these clauses.

All of these clauses other than OPTION are defined by the SQL specification. The specification also
specifies the order that these clauses will be logically processed. Below is the processing order where
each stage passes a set of rows to the following stage. Note that this processing model is logical and
does not represent the way any actual database engine performs the processing, although it is a useful
model for understanding questions about SQL.

WITH stage - gathers all rows from all WITH items in the order listed. Subsequent WITH items
and the main query can reference a WITH item as if it is a table.

FROM stage - gathers all rows from all tables involved in the query and logically joins them with
a Cartesian product, producing a single large table with all columns from all tables. Joins and
join criteria are then applied to filter rows that do not match the join structure.

WHERE stage - applies a criteria to every output row from the FROM stage, further reducing the
number of rows.

GROUP BY stage - groups sets of rows with matching values in the GROUP BY columns.

HAVING stage - applies criteria to each group of rows. Criteria can only be applied to columns
that will have constant values within a group (those in the grouping columns or aggregate
functions applied across the group).

SELECT stage - specifies the column expressions that should be returned from the query.
Expressions are evaluated, including aggregate functions based on the groups of rows, which
will no longer exist after this point. The output columns are named using either column aliases or
an implicit name determined by the engine. If SELECT DISTINCT is specified, duplicate removal
will be performed on the rows being returned from the SELECT stage.

ORDER BY stage - sorts the rows returned from the SELECT stage as desired. Supports sorting
on multiple columns in specified order, ascending or descending. The output columns will be
identical to those columns returned from the SELECT stage and will have the same name.

LIMIT stage - returns only the specified rows (with skip and limit values).

This model helps to understand how SQL works. For example, columns aliased in the SELECT clause
can only be referenced by alias in the ORDER BY clause. Without knowledge of the processing model,
this can be somewhat confusing. Seen in light of the model, it is clear that the ORDER BY stage is the

CHAPTER 2. SQL SUPPORT

61

only stage occurring after the SELECT stage, which is where the columns are named. Because the
WHERE clause is processed before the SELECT, the columns have not yet been named and the aliases
are not yet known.

NOTE

The explicit table syntax TABLE x may be used as a shortcut for SELECT * FROM x.

2.5.3. INSERT Command

The INSERT command is used to add a record to a table.

Example Syntax

INSERT INTO table (column,...) VALUES (value,...)

INSERT INTO table (column,...) query

2.5.4. UPDATE Command

The UPDATE command is used to modify records in a table. The operation will result in 1 or more
records being updated, or in no records being updated if none match the criteria.

Example Syntax

UPDATE table SET (column=value,...) [WHERE criteria]

2.5.5. DELETE Command

The DELETE command is used to remove records from a table. The operation will result in 1 or more
records being deleted, or in no records being deleted if none match the criteria.

Example Syntax

DELETE FROM table [WHERE criteria]

2.5.6. MERGE Command

The MERGE command, also known as UPSERT, is used to add and/or update records. The JBoss Data
Virtualization (non-ANSI) MERGE is simply a modified INSERT statement that requires the target table to
have a primary key and for the target columns to cover the primary key. The MERGE operation will then
check the existence of each row prior to INSERT and instead perform an UPDATE if the row already
exists.

Example Syntax

MERGE INTO table (column,...) VALUES (value,...)

MERGE INTO table (column,...) query

Development Guide Volume 3: Reference Material

62

NOTE

The MERGE statement is not currently pushed to sources, but rather will be broken down
into the respective insert/update operations.

2.5.7. EXECUTE Command

The EXECUTE command is used to execute a procedure, such as a virtual procedure or a stored
procedure. Procedures may have zero or more scalar input parameters. The return value from a
procedure is a result set or the set of inout/out/return scalars. Note that EXEC or CALL can be used as a
short form of this command.

Example Syntax

EXECUTE proc()

CALL proc(value, ...)

EXECUTE proc(name1=>value1,name4=>param4, ...) - named parameter syntax

Syntax Rules:

The default order of parameter specification is the same as how they are defined in the
procedure definition.

You can specify the parameters in any order by name. Parameters that have default values
and/or are nullable in the metadata, can be omitted from the named parameter call and will have
the appropriate value passed at runtime.

Positional parameters that are have default values and/or are nullable in the metadata, can be
omitted from the end of the parameter list and will have the appropriate value passed at runtime.

If the procedure does not return a result set, the values from the RETURN, OUT, and IN_OUT
parameters will be returned as a single row when used as an inline view query.

A VARIADIC parameter may be repeated 0 or more times as the last positional argument.

2.5.8. Procedural Relational Command

Procedural relational commands use the syntax of a SELECT to emulate an EXEC. In a procedural
relational command a procedure group name is used in a FROM clause in place of a table. That
procedure will be executed in place of normal table access if all of the necessary input values can be
found in criteria against the procedure. Each combination of input values found in the criteria results in
an execution of the procedure.

Example Syntax

SELECT * FROM proc

SELECT output_param1, output_param2 FROM proc WHERE input_param1 = 'x'

SELECT output_param1, output_param2 FROM proc, table WHERE input_param1 = table.col1
AND input_param2 = table.col2

Syntax Rules:

CHAPTER 2. SQL SUPPORT

63

The procedure as a table projects the same columns as an exec with the addition of the input
parameters. For procedures that do not return a result set, IN_OUT columns will be projected as
two columns, one that represents the output value and one named {column name}_IN that
represents the input of the parameter.

Input values are passed via criteria. Values can be passed by '=','is null', or 'in' predicates.
Disjuncts are not allowed. It is also not possible to pass the value of a non-comparable column
through an equality predicate.

The procedure view automatically has an access pattern on its IN and IN_OUT parameters
which allows it to be planned correctly as a dependent join when necessary or fail when
sufficient criteria cannot be found.

Procedures containing duplicate names between the parameters (IN, IN_OUT, OUT, RETURN)
and result set columns cannot be used in a procedural relational command.

Default values for IN, IN_OUT parameters are not used if there is no criteria present for a given
input. Default values are only valid for named procedure syntax. See Section 2.5.7, “EXECUTE
Command”.

NOTE

The usage of 'in' or join criteria can result in the procedure being executed multiple times.

NOTE

None of the issues listed in the syntax rules above exist if a nested table reference is
used. See Section 2.6.5, “FROM Clause”.

2.5.9. Set Operations

JBoss Data Virtualization supports the UNION, UNION ALL, INTERSECT, EXCEPT set operations as
ways of combining the results of query expressions.

Usage:

queryExpression (UNION|INTERSECT|EXCEPT) [ALL] queryExpression [ORDER
BY...]

Syntax Rules:

The output columns will be named by the output columns of the first set operation branch.

Each SELECT must have the same number of output columns and compatible data types for
each relative column. Data type conversion will be performed if data types are inconsistent and
implicit conversions exist.

If UNION, INTERSECT, or EXCEPT is specified without all, then the output columns must be
comparable types.

INTERSECT ALL, and EXCEPT ALL are currently not supported.

2.5.10. Subqueries

Development Guide Volume 3: Reference Material

64

A subquery is an SQL query embedded within another SQL query. The query containing the subquery is
the outer query.

Supported subquery types:

Scalar subquery - a subquery that returns only a single column with a single value. Scalar
subqueries are a type of expression and can be used where single valued expressions are
expected.

Correlated subquery - a subquery that contains a column reference to form the outer query.

Uncorrelated subquery - a subquery that contains no references to the outer subquery.

2.5.11. Inline Views

Subqueries in the FROM clause of the outer query (also known as "inline views") can return any number
of rows and columns. This type of subquery must always be given an alias. An inline view is nearly
identical to a traditional view.

See Also:

Section 2.6.2, “WITH Clause”

2.5.12. Alternative Subquery Usage

Subqueries are supported in quantified criteria, the EXISTS predicate, the IN predicate, and as Scalar
Subqueries (see Section 2.3.9, “Scalar Subqueries”).

Example 2.5. Example Subquery in WHERE Using EXISTS

Example 2.6. Example Quantified Comparison Subqueries

Example 2.7. Example IN Subquery

See also Subquery Optimization .

2.6. DML CLAUSES

SELECT a FROM (SELECT Y.b, Y.c FROM Y WHERE Y.d = 3) AS X WHERE a = X.c
AND b = X.b

SELECT a FROM X WHERE EXISTS (SELECT 1 FROM Y WHERE c=X.a)

SELECT a FROM X WHERE a >= ANY (SELECT b FROM Y WHERE c=3)
SELECT a FROM X WHERE a < SOME (SELECT b FROM Y WHERE c=4)
SELECT a FROM X WHERE a = ALL (SELECT b FROM Y WHERE c=2)

SELECT a FROM X WHERE a IN (SELECT b FROM Y WHERE c=3)

CHAPTER 2. SQL SUPPORT

65

2.6.1. DML Clauses

DML clauses are used in various SQL commands (see Section 2.5.1, “DML Commands”) to specify
particular relations and how to present them. Nearly all these features follow standard SQL syntax and
functionality, so any SQL reference can be used for more information.

2.6.2. WITH Clause

JBoss Data Virtualization supports non-recursive common table expressions via the WITH clause. WITH
clause items may be referenced as tables in subsequent WITH clause items and in the main query. The
WITH clause can be thought of as providing query-scoped temporary tables.

Usage:

Syntax Rules:

All of the projected column names must be unique. If they are not unique, then the column name
list must be provided.

If the columns of the WITH clause item are declared, then they must match the number of
columns projected by the query expression.

Each WITH clause item must have a unique name.

NOTE

The WITH clause is also subject to optimization and its entries may not be processed if
they are not needed in the subsequent query.

2.6.3. Recursive Common Table Expressions

A recursive common table expression is a special form of a common table expression that is allowed to
refer to itself to build the full common table result in a recursive or iterative fashion.

The recursive query expression is allowed to refer to the common table by name. Processing flows with
the anchor query expression executed first. The results are added to the common table and are
referenced for the execution of the recursive query expression. The process is repeated against the new
results until there are no more intermediate results.

IMPORTANT

A non-terminating recursive common table expression can lead to excessive processing.

To prevent runaway processing of a recursive common table expression, processing is by default limited
to 10000 iterations. Recursive common table expressions that are pushed down are not subject to this
limit, but may be subject to other source-specific limits. The limit can be modified by setting the session
variable teiid.maxRecusion to a larger integer value. Once the maximum has been exceeded, an
exception is thrown.

WITH name [(column, ...)] AS (query expression) ...

WITH name [(column, ...)] AS (anchor query expression UNION [ALL]
recursive query expression) ...

Development Guide Volume 3: Reference Material

66

This fails because the recursion limit is reached before processing completes:

2.6.4. SELECT Clause

SQL queries start with the SELECT keyword and are often referred to as "SELECT statements". JBoss
Data Virtualization supports most of the standard SQL query constructs.

Usage:

Syntax Rules:

Aliased expressions are only used as the output column names and in the ORDER BY clause.
They cannot be used in other clauses of the query.

DISTINCT may only be specified if the SELECT symbols are comparable.

2.6.5. FROM Clause

The FROM clause specifies the target table(s) for SELECT, UPDATE, and DELETE statements.

Example Syntax:

FROM table [[AS] alias]

FROM table1 [INNER|LEFT OUTER|RIGHT OUTER|FULL OUTER] JOIN table2 ON join-criteria

FROM table1 CROSS JOIN table2

FROM (subquery) [AS] alias

FROM TABLE(subquery) [AS] alias

NOTE

See Section 2.6.7, “Nested Tables”.

FROM table1 JOIN /*+ MAKEDEP */ table2 ON join-criteria

FROM table1 JOIN /*+ MAKENOTDEP */ table2 ON join-criteria

FROM /*+ MAKEIND */ table1 JOIN table2 ON join-criteria

FROM /*+ NO_UNNEST */ vw1 JOIN table2 ON join-criteria

FROM table1 left outer join /*+ optional */ table2 ON join-criteria

SELECT teiid_session_set('teiid.maxRecursion', 25);
WITH n (x) AS (values('a') UNION select chr(ascii(x)+1) from n where x <
'z') select * from n

SELECT [DISTINCT|ALL] ((expression [[AS] name])|(group
identifier.STAR))*|STAR ...

CHAPTER 2. SQL SUPPORT

67

NOTE

See Section 2.5.10, “Subqueries”.

FROM TEXTTABLE...

NOTE

See Section 2.6.8, “Nested Tables: TEXTTABLE”.

FROM XMLTABLE...

NOTE

See Section 2.6.9, “Nested Tables: XMLTABLE”.

FROM ARRAYTABLE...

NOTE

See Section 2.6.10, “Nested Tables: ARRAYTABLE”.

FROM OBJECTTABLE...

NOTE

See Section 2.6.11, “Nested Tables: OBJECTTABLE”.

FROM (SELECT ...)

NOTE

See Section 2.5.10, “Subqueries”.

2.6.6. FROM Clause Hints

From clause hints are typically specified in a comment block. If multiple hints apply, they should be
placed in the same comment block. For example:

Dependent Joins Hints

MAKEIND, MAKEDEP, and MAKENOTDEP are hints used to control dependent join behavior (see
Section 13.7.3, “Dependent Joins”). They should only be used in situations where the optimizer does
not choose the most optimal plan based upon query structure, metadata, and costing information. The
hints may appear in a comment following the FROM keyword. The hints can be specified against any
FROM clause, not just a named table.

FROM /*+ MAKEDEP PRESERVE */ (tbl1 inner join tbl2 inner join tbl3 on
tbl2.col1 = tbl3.col1 on tbl1.col1 = tbl2.col1), tbl3 WHERE tbl1.col1 =
tbl2.col1

Development Guide Volume 3: Reference Material

68

NO_UNNEST

NO_UNNEST can be specified against a FROM clause or view to instruct the planner not to merge
the nested SQL in the surrounding query - also known as view flattening. This hint only applies to
JBoss Data Virtualization planning and is not passed to source queries. NO_UNNEST may appear in
a comment following the FROM keyword.

PRESERVE

The PRESERVE hint can be used against an ANSI join tree to preserve the structure of the join
rather than allowing the JBoss Data Virtualization optimizer to reorder the join. This is similar in
function to the Oracle ORDERED or MySQL STRAIGHT_JOIN hints.

2.6.7. Nested Tables

Nested tables may appear in the FROM clause with the TABLE keyword. They are an alternative to
using a view with normal join semantics. The columns projected from the command contained in the
nested table may be used just as any of the other FROM clause projected columns in join criteria, the
where clause, etc.

A nested table may have correlated references to preceding FROM clause column references as long as
INNER and LEFT OUTER joins are used. This is especially useful in cases where the nested expression
is a procedure or function call.

Valid example:

Invalid example, since t1 appears after the nested table in the FROM clause:

NOTE

The usage of a correlated nested table may result in multiple executions of the table
expression - once for each correlated row.

2.6.8. Nested Tables: TEXTTABLE

The TEXTTABLE function processes character input to produce tabular output. It supports both fixed
and delimited file format parsing. The function itself defines what columns it projects. The TEXTTABLE
function is implicitly a nested table and may be used within FROM clauses.

FROM /*+ PRESERVE */ (tbl1 inner join tbl2 inner join tbl3 on tbl2.col1
= tbl3.col1 on tbl1.col1 = tbl2.col1)

select * from t1, TABLE(call proc(t1.x)) t2

select * from TABLE(call proc(t1.x)) t2, t1

TEXTTABLE(expression [SELECTOR string] COLUMNS <COLUMN>, ... [NO ROW
DELIMITER] [DELIMITER char] [(QUOTE|ESCAPE) char] [HEADER [integer]] [SKIP
integer]) AS name

COLUMN := name (FOR ORDINALITY | ([HEADER string] datatype [WIDTH integer
[NO TRIM]] [SELECTOR string integer]))

CHAPTER 2. SQL SUPPORT

69

Parameters

expression is the text content to process, which should be convertible to CLOB.

SELECTOR specifies that delimited lines should only match if the line begins with the selector
string followed by a delimiter. The selector value is a valid column value. If a TEXTTABLE
SELECTOR is specified, a SELECTOR may also be specified for column values. A column
SELECTOR argument will select the nearest preceding text line with the given SELECTOR
prefix and select the value at the given 1-based integer position (which includes the selector
itself). If no such text line or position with a given line exists, a null value will be produced.

NO ROW DELIMITER indicates that fixed parsing should not assume the presence of newline
row delimiters.

DELIMITER sets the field delimiter character to use. Defaults to ','.

QUOTE sets the quote, or qualifier, character used to wrap field values. Defaults to '"'.

ESCAPE sets the escape character to use if no quoting character is in use. This is used in
situations where the delimiter or new line characters are escaped with a preceding character,
e.g. \,

HEADER specifies the text line number (counting every new line) on which the column names
occur. All lines prior to the header will be skipped. If HEADER is specified, then the header line
will be used to determine the TEXTTABLE column position by case-insensitive name matching.
This is especially useful in situations where only a subset of the columns are needed. If the
HEADER value is not specified, it defaults to 1. If HEADER is not specified, then columns are
expected to match positionally with the text contents.

SKIP specifies the number of text lines (counting every new line) to skip before parsing the
contents. You can still specify a HEADER with SKIP.

A FOR ORDINALITY column is typed as integer and will return the 1-based item number as its
value.

WIDTH indicates the fixed-width length of a column in characters - not bytes. The CR NL newline
value counts as a single character.

NO TRIM specifies that the text value should not be trimmed of all leading and trailing white
space.

Syntax Rules:

If width is specified for one column it must be specified for all columns and be a non-negative
integer.

If width is specified, then fixed width parsing is used and ESCAPE, QUOTE, and HEADER
should not be specified.

If width is not specified, then NO ROW DELIMITER cannot be used.

The column names must not contain duplicates.

Examples

Use of the HEADER parameter, returns 1 row ['b']:

Development Guide Volume 3: Reference Material

70

Use of fixed width, returns 2 rows ['a', 'b', 'c'], ['d', 'e', 'f']:

Use of fixed width without a row delimiter, returns 3 rows ['a'], ['b'], ['c']:

Use of ESCAPE parameter, returns 1 row ['a,', 'b']:

As a nested table:

Use of SELECTOR, returns 2 rows ['c', 'd', 'b'], ['c', 'f', 'b']:

2.6.9. Nested Tables: XMLTABLE

The XMLTABLE function uses XQuery to produce tabular output. The XMLTABLE function is implicitly a
nested table and may be used within FROM clauses. XMLTABLE is part of the SQL/XML 2006
specification.

Usage:

See XMLELEMENT for the definition of NSP - XMLNAMESPACES.

See XMLQUERY for the definition of PASSING.

NOTE

See also XQuery Optimization.

Parameters

SELECT * FROM TEXTTABLE(UNESCAPE('col1,col2,col3\na,b,c') COLUMNS
col2 string HEADER) x

SELECT * FROM TEXTTABLE(UNESCAPE('abc\ndef') COLUMNS col1 string
width 1, col2 string width 1, col3 string width 1) x

SELECT * FROM TEXTTABLE('abc' COLUMNS col1 string width 1 NO ROW
DELIMITER) x

SELECT * FROM TEXTTABLE('a:,,b' COLUMNS col1 string, col2 string
ESCAPE ':') x

SELECT x.* FROM t, TEXTTABLE(t.clobcolumn COLUMNS first string,
second date SKIP 1) x

SELECT * FROM TEXTTABLE('a,b\nc,d\nc,f' SELECTOR 'c' COLUMNS col1
string, col2 string col3 string SELECTOR 'a' 2) x

XMLTABLE([<NSP>,] xquery-expression [<PASSING>] [COLUMNS <COLUMN>, ...)]
AS name

COLUMN := name (FOR ORDINALITY | (datatype [DEFAULT expression] [PATH
string]))

CHAPTER 2. SQL SUPPORT

71

The optional XMLNAMESPACES clause specifies the namespaces for use in the XQuery and
COLUMN path expressions.

The xquery-expression must be a valid XQuery. Each sequence item returned by the xquery will
be used to create a row of values as defined by the COLUMNS clause.

If COLUMNS is not specified, then that is the same as having the COLUMNS clause:
"COLUMNS OBJECT_VALUE XML PATH '.'", which returns the entire item as an XML value.

A FOR ORDINALITY column is typed as integer and will return the one-based item number as
its value.

Each non-ordinality column specifies a type and optionally a PATH and a DEFAULT expression.

If PATH is not specified, then the path will be the same as the column name.

Syntax Rules:

Only 1 FOR ORDINALITY column may be specified.

The columns names must not contain duplicates.

The blob data type is supported, but there is only built-in support for xs:hexBinary values. For
xs:base64Binary, use a workaround of a PATH that uses the explicit value constructor
"xs:base64Binary(<path>)".

Examples

Use of passing, returns 1 row [1]:

As a nested table:

2.6.10. Nested Tables: ARRAYTABLE

The ARRAYTABLE function processes an array input to produce tabular output. The function itself
defines what columns it projects. The ARRAYTABLE function is implicitly a nested table and may be
used within FROM clauses.

Usage:

ARRAYTABLE(expression COLUMNS <COLUMN>, ...) AS name

COLUMN := name datatype

Parameters

expression - the array to process, which should be a java.sql.Array or java array value.

select * from xmltable('/a' PASSING xmlparse(document '')
COLUMNS id integer PATH '@id') x

select x.* from t, xmltable('/x/y' PASSING t.doc COLUMNS first
string, second FOR ORDINALITY) x

Development Guide Volume 3: Reference Material

72

Syntax Rules:

The columns names must not contain duplicates.

Examples

As a nested table:

ARRAYTABLE is effectively a shortcut for using the array_get function (see Section 2.4.19,
“Miscellaneous Functions”) in a nested table. For example:

is the same as

2.6.11. Nested Tables: OBJECTTABLE

The OBJECTTABLE function processes an object input to produce tabular output. The function itself
defines what columns it projects. The OBJECTTABLE function is implicitly a nested table and may be
correlated to preceding FROM clause entries.

Usage:

Parameters

lang - an optional string literal that is the case sensitive language name of the scripts to be
processed. The script engine must be available via a JSR-223 ScriptEngineManager lookup. In
some instances this may mean making additional modules available to your VDB, which can be
done via the same process as adding modules/libraries for UDFs (see Non-Pushdown Support
for User-Defined Functions in the Development Guide: Server Development). If a LANGUAGE is
not specified, the default of 'teiid_script' (see below) will be used.

name - an identifier that will bind the val expression value into the script context.

rowScript is a string literal specifying the script to create the row values. For each non-null item
the Iterator produces the columns will be evaluated.

colName/colType are the id/data type of the column, which can optionally be defaulted with the
DEFAULT clause expression defaultExpr.

colScript is a string literal specifying the script that evaluates to the column value.

Syntax Rules:

The column names must be not contain duplicates.

select x.* from (call source.invokeMDX('some query')) r,
arraytable(r.tuple COLUMNS first string, second bigdecimal) x

ARRAYTABLE(val COLUMNS col1 string, col2 integer) AS X

TABLE(SELECT cast(array_get(val, 1) AS string) AS col1,
cast(array_get(val, 2) AS integer) AS col2) AS X

OBJECTTABLE([LANGUAGE lang] rowScript [PASSING val AS name ...] COLUMNS
colName colType colScript [DEFAULT defaultExpr] ...) AS id

CHAPTER 2. SQL SUPPORT

73

JBoss Data Virtualization will place several special variables in the script execution context. The
CommandContext is available as teiid_context. Additionally the colScripts may access teiid_row
and teiid_row_number. teiid_row is the current row object produced by the row script.
teiid_row_number is the current 1-based row number.

rowScript is evaluated to an Iterator. If the results is already an Iterator, it is used directly. If the
evaluation result is an Iteratable, then an Iterator will be obtained. Any other Object will be
treated as an Iterator of a single item). In all cases null row values will be skipped.

NOTE

While there is no restriction what can be used as a PASSING variable names you should
choose names that can be referenced as identifiers in the target language.

Examples

Accessing special variables:

The result would be a row with two columns containing the user name and 1 respectively.

NOTE

Due to their mostly unrestricted access to Java functionality, usage of languages other
than teiid_script is restricted by default. A VDB must declare all allowable languages by
name in the allowed-languages VDB property (see Section 6.1, “VDB Definition”) using a
comma separated list. The names are case sensitive names and should be separated
without whitespace. Without this property it is not possible to use OBJECTTABLE even
from within view definitions that are not subject to normal permission checks. Data Roles
are also secured with User Query Permissions.

teiid_script

teiid_script is a simple scripting expression language that allows access to passing and special variables
as well as any non-void 0-argument methods on objects. A teiid_script expression begins by referencing
the passing or special variable. Then any number of .method accessors may be chained to evaluate the
expression to a different value. Methods may be accessed by their property names, for example foo
rather than getFoo. If the object both a getFoo() and foo() method, then the accessor foo references
foo() and getFoo should be used to call the getter.

teiid_script is effectively dynamically typed as typing is performed at runtime. If a accessor does not exist
on the object or if the method is not accessible, then an exception will be raised.

Examples

To get the VDB description string:

2.6.12. WHERE Clause

SELECT x.* FROM OBJECTTABLE('teiid_context' COLUMNS "user" string
'teiid_row.userName', row_number integer 'teiid_row_number') AS x

teiid_context.session.vdb.description

Development Guide Volume 3: Reference Material

74

The WHERE clause defines the criteria to limit the records affected by SELECT, UPDATE, and DELETE
statements.

Usage:

See Also:

Section 2.3.11, “Criteria”

2.6.13. GROUP BY Clause

The GROUP BY clause denotes that rows should be grouped according to the specified expression
values. One row will be returned for each group, after optionally filtering those aggregate rows based on
a HAVING clause.

Usage:

Syntax Rules:

Column references in the GROUP BY clause must be unaliased output columns.

Expressions used in the GROUP BY clause must appear in the SELECT clause.

Column references and expressions in the SELECT clause that are not used in the GROUP BY
clause must appear in aggregate functions.

If an aggregate function is used in the SELECT clause and no GROUP BY is specified, an
implicit GROUP BY will be performed with the entire result set as a single group. In this case,
every column in the SELECT must be an aggregate function as no other column value will be
fixed across the entire group.

The group by columns must be of a comparable type.

Just like normal grouping, rollup processing logically occurs before the HAVING clause is processed. A
ROLLUP of expressions will produce the same output as a regular grouping with the addition of
aggregate values computed at higher aggregation levels. For N expressions in the ROLLUP, aggregates
will be provided over (), (expr1), (expr1, expr2) and so on, up to (expr1, … exprN-1) with the other
grouping expressions in the output as null values. Here is an example using the normal aggregation
query:

This is what is returned:

Table 2.10. Returned Data

Country City Amount

US St Louis 10000

WHERE criteria

GROUP BY expression (,expression)*

SELECT country, city, sum(amount) from sales group by country, city

CHAPTER 2. SQL SUPPORT

75

US Raleigh 150000

US Denver 20000

UK Birmingham 50000

UK London 75000

Country City Amount

In contrast, here is the rollup query:

This is what it returns:

Table 2.11. Returned Data from Rollup

Country City Amount

US St Louis 10000

US Raleigh 150000

US Denver 20000

US Null 180000

UK Birmingham 50000

UK London 75000

UK Null 125000

NOTE

Not all sources support ROLLUPs and some optimizations compared to normal aggregate
processing may be inhibited by the use of a ROLLUP.

NOTE

Support for ROLLUPs in Red Hat JBoss Data Virtualization is currently limited, compared
to the SQL specification.

2.6.14. HAVING Clause

SELECT country, city, sum(amount) from sales group by rollup(country,
city)

Development Guide Volume 3: Reference Material

76

The HAVING clause operates exactly as a WHERE clause although it operates on the output of a
GROUP BY. It supports the same syntax as the WHERE clause.

Syntax Rules:

Expressions used in the GROUP BY clause must either contain an aggregate function: COUNT,
AVG, SUM, MIN, MAX. or be one of the grouping expressions.

2.6.15. ORDER BY Clause

The ORDER BY clause specifies how records should be sorted. The options are ASC (ascending) and
DESC (descending).

Usage:

Syntax Rules:

Sort columns may be specified positionally by a 1-based positional integer, by SELECT clause
alias name, by SELECT clause expression, or by an unrelated expression.

Column references may appear in the SELECT clause as the expression for an aliased column
or may reference columns from tables in the FROM clause. If the column reference is not in the
SELECT clause the query must not be a set operation, specify SELECT DISTINCT, or contain a
GROUP BY clause.

Unrelated expressions, expressions not appearing as an aliased expression in the SELECT
clause, are allowed in the ORDER BY clause of a non-set QUERY. The columns referenced in
the expression must come from the FROM clause table references. The column references
cannot be to alias names or positional.

The ORDER BY columns must be of a comparable type.

If an ORDER BY is used in an inline view or view definition without a LIMIT clause, it will be
removed by the JBoss Data Virtualization optimizer.

If NULLS FIRST/LAST is specified, then nulls are guaranteed to be sorted either first or last. If
the null ordering is not specified, then results will typically be sorted with nulls as low values,
which is the JBoss Data Virtualization internal default sorting behavior. However not all sources
return results with nulls sorted as low values by default, and JBoss Data Virtualization may
return results with different null orderings.

WARNING

The use of positional ordering is no longer supported by the ANSI SQL standard and
is a deprecated feature in JBoss Data Virtualization. It is preferable to use alias
names in the ORDER BY clause.

2.6.16. LIMIT Clause

ORDER BY expression [ASC|DESC] [NULLS (FIRST|LAST)], ...



CHAPTER 2. SQL SUPPORT

77

The LIMIT clause specifies a limit on the number of records returned from the SELECT command. An
optional offset (the number of rows to skip) can be specified. The LIMIT clause can also be specified
using the SQL 2008 OFFSET/FETCH FIRST clauses. If an ORDER BY is also specified, it will be applied
before the OFFSET/LIMIT are applied. If an ORDER BY is not specified there is generally no guarantee
what subset of rows will be returned.

Usage:

Syntax Rules:

The limit/offset expressions must be a non-negative integer or a parameter reference (?). An
offset of 0 is ignored. A limit of 0 will return no rows.

The terms FIRST/NEXT are interchangeable as well as ROW/ROWS.

The LIMIT clause may take an optional preceding NON_STRICT hint to indicate that push
operations should not be inhibited even if the results will not be consistent with the logical
application of the limit. The hint is only needed on unordered limits, e.g. "SELECT * FROM VW
/*+ NON_STRICT */ LIMIT 2".

Examples:

LIMIT 100 - returns the first 100 records (rows 1-100)

LIMIT 500, 100 - skips 500 records and returns the next 100 records (rows 501-600)

OFFSET 500 ROWS - skips 500 records

OFFSET 500 ROWS FETCH NEXT 100 ROWS ONLY - skips 500 records and returns the next
100 records (rows 501-600)

FETCH FIRST ROW ONLY - returns only the first record

2.6.17. INTO Clause

WARNING

Usage of the INTO Clause for inserting into a table has been been deprecated. An
INSERT with a query command should be used instead. Refer to Section 2.5.3,
“INSERT Command”.

2.6.18. OPTION Clause

The OPTION keyword denotes options the user can pass in with the command. These options are
specific to JBoss Data Virtualization and not covered by any SQL specification.

LIMIT [offset,] limit

[OFFSET offset ROW|ROWS] [FETCH FIRST|NEXT [limit] ROW|ROWS ONLY



Development Guide Volume 3: Reference Material

78

Usage:

Supported options:

MAKEDEP table [(,table)*] - specifies source tables that will be made dependent in the join

MAKENOTDEP table [(,table)*] - prevents a dependent join from being used

NOCACHE [table (,table)*] - prevents cache from being used for all tables or for the given tables

Examples:

OPTION MAKEDEP table1

OPTION NOCACHE

All tables specified in the OPTION clause should be fully qualified, however the name may match either
an alias name or the fully qualified name.

NOTE

Previous versions of JBoss Data Virtualization accepted the PLANONLY, DEBUG, and
SHOWPLAN option arguments. These are no longer accepted in the OPTION clause.
See Red Hat JBoss Data Virtualization Development Guide: Client Development for
replacements to those options.

2.7. DDL COMMANDS

2.7.1. DDL Commands

JBoss Data Virtualization supports a subset of DDL to create/drop temporary tables and to manipulate
procedure and view definitions at runtime. It is not currently possible to arbitrarily drop/create non-
temporary metadata entries. See Section 11.1, “DDL Metadata” for DDL usage to define schemas within
a VDB.

NOTE

A MetadataRepository must be configured to make a non-temporary metadata update
persistent. See Runtime Metadata Updates in Red Hat JBoss Data Virtualization
Development Guide: Server Development for more information.

2.7.2. Local and Global Temporary Tables

Red Hat JBoss Data Virtualization supports creating temporary tables. Temporary tables are dynamically
created, but are treated as any other physical table.

2.7.2.1. Local Temporary Tables

OPTION option, (option)*

CHAPTER 2. SQL SUPPORT

79

Local temporary tables can be defined implicitly by referencing them in an INSERT statement or explicitly
with a CREATE TABLE statement. Implicitly created temporary tables must have a name that starts with
'#'.

Creation syntax:

Local temporary tables can be defined explicitly with a CREATE TABLE statement:

Use the SERIAL data type to specify a NOT NULL and auto-incrementing INTEGER column.
The starting value of a SERIAL column is 1.

Local temporary tables can be defined implicitly by referencing them in an INSERT statement.

NOTE

If #name does not exist, it will be defined using the given column names and
types from the value expressions.

NOTE

If #name does not exist, it will be defined using the target column names and the
types from the query derived columns. If target columns are not supplied, the
column names will match the derived column names from the query.

Drop syntax:

DROP TABLE name

The following example is a series of statements that loads a temporary table with data from two sources,
and with a manually inserted record, and then uses that temp table in a subsequent query.

2.7.2.2. Global Temporary Tables

You can create global temporary tables in Teiid Designer or through the metadata you supply at deploy
time. Unlike local temporary tables, you cannot create them at runtime. Your global temporary tables
share a common definition through a schema entry. However, a new instance of the temporary table is
created in each session. The table is then dropped when the session ends. (There is no explicit drop
support.) A common use for a global temporary table is to pass results into and out of procedures.

CREATE LOCAL TEMPORARY TABLE name (column type [NOT NULL], ...
[PRIMARY KEY (column, ...)])

INSERT INTO #name (column, ...) VALUES (value, ...)

INSERT INTO #name [(column, ...)] select c1, c2 from t

...
CREATE LOCAL TEMPORARY TABLE TEMP (a integer, b integer, c integer);
INSERT * INTO temp FROM Src1; INSERT * INTO temp FROM Src2;
INSERT INTO temp VALUES (1,2,3);
SELECT a,b,c FROM Src3, temp WHERE Src3.a = temp.b;
...

Development Guide Volume 3: Reference Material

80

If you use the SERIAL data type, then each session’s instance of the global temporary table will have its
own sequence.

You must explicitly specify UPDATABLE if you want to update the temporary table.

2.7.2.3. Common Features

Here are the features of global and local temporary tables:

Primary Key Support

All key columns must be comparable.

If you use a primary key, it will create a clustered index that supports search improvements for
comparison, in, like, and order by.

You can use Null as a primary key value, but there must only be one row that has an all-null
key.

Transaction Support

THere is a READ_UNCOMMITED transaction isolation level. There are no locking mechanisms
available to support higher isolation levels and the result of a rollback may be inconsistent across
multiple transactions. If concurrent transactions are not associated with the same local
temporary table or session, then the transaction isolation level is effectively serializable. If you
want full consistency with local temporary tables, then only use a connection with 1 transaction
at a time. This mode of operation is ensured by connection pooling that tracks connections by
transaction.

Limitations

With the CREATE TABLE syntax only basic table definition (column name and type information)
and an optional primary key are supported. For global temporary tables additional metadata in
the create statement is effectively ignored when creating the temporary table instance - but may
still be utilized by planning similar to any other table entry.

You can use ON COMMIT PRESERVE ROWS. No other ON COMMIT clause is supported.

You cannot use the "drop behavior" option in the drop statement.

Temporary tables are not fail-over safe.

Non-inlined LOB values (XML, CLOB, BLOB) are tracked by reference rather than by value in a
temporary table. If you insert LOB values from external sources in your temporary table, they
may become unreadable when the associated statement or connection is closed.

2.7.3. Foreign Temporary Tables

Unlike a local temporary table, a foreign temporary table is a reference to an actual source table that is
created at runtime rather than during the metadata load.

A foreign temporary table requires explicit creation syntax:

CREATE GLOBAL TEMPORARY TABLE name (column type [NOT NULL], ... [PRIMARY
KEY (column, ...)]) OPTIONS (UPDATABLE 'true')

CHAPTER 2. SQL SUPPORT

81

Where the table creation body syntax is the same as a standard CREATE FOREIGN TABLE DDL
statement (see Section 11.1, “DDL Metadata”). In general usage of DDL OPTION, clauses may be
required to properly access the source table, including setting the name in source, updatability, native
types, etc.

The schema name must specify an existing schema/model in the VDB. The table will be accessed as if it
is on that source, however within JBoss Data Virtualization the temporary table will still be scoped the
same as a non-foreign temporary table. This means that the foreign temporary table will not belong to a
JBoss Data Virtualization schema and will be scoped to the session or procedure block where created.

The DROP syntax for a foreign temporary table is the same as for a non-foreign temporary table.

Neither a CREATE nor a corresponding DROP of a foreign temporary table issue a pushdown
command, rather this mechanism simply exposes a source table for use within JBoss Data Virtualization
on a temporary basis.

There are two usage scenarios for a FOREIGN TEMPORARY TABLE. The first is to dynamically access
additional tables on the source. The other is to replace the usage of a JBoss Data Virtualization local
temporary table for performance reasons. The usage pattern for the latter case would look like:

Note the usage of the native procedure to pass source specific CREATE ddl to the source. JBoss Data
Virtualization does not currently attempt to pushdown a source creation of a temporary table based upon
the CREATE statement. Some other mechanism, such as the native procedure shown above, must be
used to first create the table. Also note the table is explicitly marked as updatable, since DDL defined
tables are not updatable by default.

The source's handling of temporary tables must also be understood to make this work as intended.
Sources that use the same GLOBAL table definition for all sessions while scoping the data to be session
specific (such as Oracle) or sources that support session scoped temporary tables (such as
PostgreSQL) will work if accessed under a transaction. A transaction is necessary because:

the source on commit behavior (most likely DELETE ROWS or DROP) will ensure clean-up.
Keep in mind that a JBoss Data Virtualization DROP does not issue a source command and is
not guaranteed to occur (in some exception cases, loss of DB connectivity, hard shutdown, etc.).

the source pool when using track connections by transaction will ensure that multiple uses of
that source by JBoss Data Virtualization will use the same connection/session and thus the
same temporary table and data.

CREATE FOREIGN TEMPORARY TABLE name ... ON schema

//- create the source table
call source.native("CREATE GLOBAL TEMPORARY TABLE name IF NOT EXISTS ON
COMMIT DELETE ROWS");
//- bring the table into JBoss Data Virtualization
CREATE FOREIGN TEMPORARY TABLE name ... OPTIONS (UPDATABLE true)
//- use the table
...
//- forget the table
DROP TABLE name

Development Guide Volume 3: Reference Material

82

NOTE

Since the ON COMMIT clause is not yet supported by JBoss Data Virtualization, it is
important to consider that the source table ON COMMIT behavior will likely be different
that the default, PRESERVE ROWS, for JBoss Data Virtualization local temporary tables.

2.7.4. Alter View

Usage:

Syntax Rules:

The alter query expression may be prefixed with a cache hint for materialized view definitions.
The hint will take effect the next time the materialized view table is loaded.

2.7.5. Alter Procedure

Usage:

Syntax Rules:

The alter block should not include 'CREATE VIRTUAL PROCEDURE'

The alter block may be prefixed with a cache hint for cached procedures.

2.7.6. Create Trigger

Usage:

Syntax Rules:

The target, name, must be an updatable view.

An INSTEAD OF TRIGGER must not yet exist for the given event.

Triggers are not yet true schema objects. They are scoped only to their view and have no name.

Limitations:

There is no corresponding DROP operation. See Section 2.7.7, “Alter Trigger” for
enabling/disabling an existing trigger.

2.7.7. Alter Trigger

Usage:

ALTER VIEW name AS queryExpression

ALTER PROCEDURE name AS block

CREATE TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE AS FOR EACH ROW
block

CHAPTER 2. SQL SUPPORT

83

Syntax Rules:

The target, name, must be an updatable view.

Triggers are not yet true schema objects. They are scoped only to their view and have no name.

Update Procedures must already exist for the given trigger event. See Section 2.10.6, “Update
Procedures”.

NOTE

If the default inherent update is chosen in Teiid Designer, any SQL associated with
update (shown in a greyed out text box) is not part of the VDB and cannot be enabled with
an alter trigger statement.

2.8. XML DOCUMENT GENERATION

IMPORTANT

The features in this section are deprecated. They will no longer be supported in a future
release.

2.8.1. XML Document Generation

XML documents can be constructed dynamically using XML Document Models. A document model is
generally created from a schema. The document model is bound to relevant SQL statements through
mapping classes. See the Red Hat JBoss Data Virtualization User Guide for more information about
creating document models.

Querying XML documents is similar to querying relational tables. An idiomatic SQL variant with special
scalar functions provides control over which parts of a given document to return.

NOTE

XML documents may also be created via XQuery with the XMLQuery function or with
various other SQL/XML functions.

2.8.2. XML SELECT Command

A valid XML SELECT Command against a document model is of the form:

The use of any other SELECT clause is not allowed.

The fully qualified name for an XML element is:

ALTER TRIGGER ON name INSTEAD OF INSERT|UPDATE|DELETE (AS FOR EACH ROW
block) | (ENABLED|DISABLED)

SELECT ... FROM ... [WHERE ...] [ORDER BY ...]

"model"."document name".[path to element]."element name"

Development Guide Volume 3: Reference Material

84

The fully qualified name for an attribute is:

Partially qualified names for elements and attributes can be used as long as the partial name is unique.

2.8.3. XML SELECT: FROM Clause

This clause specifies the document to generate. Document names resemble other virtual groups -
"model"."document name".

Syntax Rules:

The FROM clause must contain only one unary clause specifying the desired document.

2.8.4. XML SELECT: SELECT Clause

The SELECT clause determines which parts of the XML document are generated for output.

Example Syntax:

select * from model.doc

select model.doc.root.parent.element.* from model.doc

select element, element1.@attribute from model.doc

Syntax Rules:

SELECT * and SELECT "xml" are equivalent and specify that every element and attribute of the
document should be output.

The SELECT clause of an XML Query may only contain *, "xml", or element and attribute
references from the specified document. Any other expressions are not allowed.

If the SELECT clause contains an element or attribute reference (other than * or "xml") then only
the specified elements, attributes, and their ancestor elements will be in the generated
document.

element.* specifies that the element, its attribute, and all child content should be output.

2.8.5. XML SELECT: WHERE Clause

The WHERE clause specifies how to filter content from the generated document based upon values
contained in the underlying mapping classes. Most predicates are valid in an XML SELECT Command,
however combining value references from different parts of the document may not always be allowed.

Criteria is logically applied to a context which is directly related to a mapping class. Starting with the root
mapping class, there is a root context that describes all of the top level repeated elements that will be in
the output document. Criteria applied to the root or any other context will change the related mapping
class query to apply the affects of the criteria, which can include checking values from any of the
descendant mapping classes.

Example Syntax:

"model"."document name".[path to element]."element name".[@]"attribute
name"

CHAPTER 2. SQL SUPPORT

85

Example Syntax:

select element, element1.@attribute from model.doc where element1.@attribute = 1

select element, element1.@attribute from model.doc where context(element1,
element1.@attribute) = 1

Syntax Rules:

Each criteria conjunct must refer to a single context and can be criteria that applies to a mapping
class, contain a rowlimit function, or contain rowlimitexception function. Refer to
Section 2.8.9, “ROWLIMIT Function” and Section 2.8.10, “ROWLIMITEXCEPTION Function”.

Criteria that applies to a mapping class is associated to that mapping class using the context
function. The absence of a context function implies the criteria applies to the root context. Refer
to Section 2.8.8, “CONTEXT Function”.

At a given context the criteria can span multiple mapping classes provided that all mapping
classes involved are either parents of the context, the context itself, or a descendant of the
context.

NOTE

Implied root context user criteria against a document model with sibling root mapping
classes is not generally semantically correct. It is applied as if each of the conjuncts is
applied to only a single root mapping class. This behavior is the same as prior releases
but may be fixed in a future release.

2.8.6. XML SELECT: ORDER BY Clause

The XML SELECT Command ORDER BY clause specifies ordering for the referenced mapping class
queries.

Syntax Rules:

Each ORDER BY item must be an element or attribute reference tied a output value from a
mapping class.

The order of the ORDER BY items is the relative order applied to their respective mapping
classes.

2.8.7. XML SELECT Command Specific Functions

XML SELECT Command functions resemble scalar functions, but act as hints in the WHERE clause:

CONTEXT Function

ROWLIMIT Function

ROWLIMITEXCEPTION Function

These functions are only valid in an XML SELECT Command.

2.8.8. CONTEXT Function

Development Guide Volume 3: Reference Material

86

This function selects the context for the containing conjunct.

CONTEXT(arg1, arg2)

Syntax Rules:

Context functions apply to the whole conjunct.

The first argument must be an element or attribute reference from the mapping class whose
context the criteria conjunct will apply to.

The second parameter is the return value for the function.

2.8.9. ROWLIMIT Function

This function limits the rows processed for the given context.

ROWLIMIT(arg)

Syntax Rules:

The first argument must be an element or attribute reference from the mapping class whose
context the row limit applies.

The ROWLIMIT function must be used in equality comparison criteria with the right hand
expression equal to an positive integer number or rows to limit.

Only one row limit or row limit exception may apply to a given context.

2.8.10. ROWLIMITEXCEPTION Function

This function limits the rows processed for the given context and throws an exception if the given number
of rows is exceeded.

ROWLIMITEXCEPTION(arg)

Syntax Rules:

The first argument must be an element or attribute reference from the mapping class whose
context the row limit exception applies.

The ROWLIMITEXCEPTION function must be used in equality comparison criteria with the right
hand expression equal to an positive integer number or rows to limit.

Only one row limit or row limit exception may apply to a given context.

2.8.11. Document Generation

Document generation starts with the root mapping class and proceeds iteratively and hierarchically over
all of the child mapping classes. This can result in a large number of query executions. For example if a
document has a root mapping class with 3 child mapping classes. Then for each row selected by the
root mapping class after the application of the root context criteria, each of the child mapping classes
queries will also be executed.

CHAPTER 2. SQL SUPPORT

87

NOTE

By default, XML generated by XML documents are not checked for correctness vs. the
relevant schema. It is possible that the mapping class queries, the usage of specific
SELECT or WHERE clause values will generate a document that is not valid with respect
to the schema. Refer to Section 2.8.12, “Document Validation” for information to ensure
correctness.

Sibling or cousin elements defined by the same mapping class that do not have a common parent in that
mapping class will be treated as independent mapping classes during planning and execution. This
allows for a more document-centric approach when applying WHERE criteria and ORDER BY clauses to
mapping classes.

2.8.12. Document Validation

If the execution property XMLValidation is set to 'true' generated documents will be checked for
correctness. However, correctness checking will not prevent invalid documents from being generated,
since correctness is checked after generation.

2.9. PROCEDURAL LANGUAGE

2.9.1. Procedural Language

JBoss Data Virtualization supports a procedural language for defining virtual procedures. These are
similar to stored procedures in relational database management systems. You can use this language to
define the transformation logic for decomposing INSERT, UPDATE, and DELETE commands against
views; these are known as update procedures. See Section 2.10.1, “Virtual Procedures” and
Section 2.10.6, “Update Procedures” for more information.

2.9.2. Command Statement

A command statement executes a DML command, DDL command or dynamic SQL against one or more
data sources. See Section 2.5.1, “DML Commands” and Section 2.7.1, “DDL Commands”.

Usage:

Example 2.8. Example Command Statements

EXECUTE commands may access IN/OUT, OUT, and RETURN parameters. To access the return value
the statement will have the form var = EXEC proc.... To access OUT or IN/OUT values named
parameter syntax must be used. For example, EXEC proc(in_param=>'1', out_param=>var)
will assign the value of the out parameter to the variable var. It is expected that the data type of
parameter will be implicitly convertible to the data type of the variable.

The RETURN clause determines if the result of the command is returnable from the procedure. WITH
RETURN is the default. If the command does not return a result set or the procedure does not return a

command [(WITH|WITHOUT) RETURN];

SELECT * FROM MySchema.MyTable WHERE ColA > 100 WITHOUT RETURN;
INSERT INTO MySchema.MyTable (ColA,ColB) VALUES (50, 'hi');

Development Guide Volume 3: Reference Material

88

result set, the RETURN clause is ignored. If WITH RETURN is specified, the result set of the command
must match the expected result set of the procedure. Only the last successfully executed statement
executed WITH RETURN will be returned as the procedure result set. If there are no returnable result
sets and the procedure declares that a result set will be returned, then an empty result set is returned.

2.9.3. Dynamic SQL

Dynamic SQL allows for the execution of an arbitrary SQL command in a virtual procedure. Dynamic
SQL is useful in situations where the exact command form is not known prior to execution.

Usage:

EXECUTE IMMEDIATE <expression> [AS <variable> <type> [, <variable>
<type>]* [INTO <variable>]] [USING <variable>=<expression> [,<variable>=
<expression>]*] [UPDATE <literal>]

Syntax Rules:

The "AS" clause is used to define the projected symbols names and types returned by the
executed SQL string. The "AS" clause symbols will be matched positionally with the symbols
returned by the executed SQL string. Non-convertible types or too few columns returned by the
executed SQL string will result in an error.

The "INTO" clause will project the dynamic SQL into the specified temp table. With the "INTO"
clause specified, the dynamic command will actually execute a statement that behaves like an
INSERT with a QUERY EXPRESSION. If the dynamic SQL command creates a temporary table
with the "INTO" clause, then the "AS" clause is required to define the table's metadata.

The "USING" clause allows the dynamic SQL string to contain variable references that are
bound at runtime to specified values. This allows for some independence of the SQL string from
the surrounding procedure variable names and input names. In the dynamic command "USING"
clause, each variable is specified by short name only. However in the dynamic SQL the "USING"
variable must be fully qualified to "DVAR.". The "USING" clause is only for values that will be
used in the dynamic SQL as legal expressions. It is not possible to use the "USING" clause to
replace table names, keywords, etc. This makes using symbols equivalent in power to normal
bind (?) expressions in prepared statements. The "USING" clause helps reduce the amount of
string manipulation needed. If a reference is made to a USING symbol in the SQL string that is
not bound to a value in the "USING" clause, an exception will occur.

The "UPDATE" clause is used to specify the updating model count. Accepted values are (0,1,*).
0 is the default value if the clause is not specified. See Section 5.3, “Updating Model Count”.

Example 2.9. Example Dynamic SQL

...
/* Typically complex criteria would be formed based upon inputs to the
procedure.
 In this simple example the criteria is references the using clause to
isolate
 the SQL string from referencing a value from the procedure directly */
DECLARE string criteria = 'Customer.Accounts.Last = DVARS.LastName';

/* Now we create the desired SQL string */
DECLARE string sql_string = 'SELECT ID, First || '' '' || Last AS Name,
Birthdate FROM Customer.Accounts WHERE ' || criteria;

CHAPTER 2. SQL SUPPORT

89

Here is an example showing a more complex approach to building criteria for the dynamic SQL string. In
short, the virtual procedure AccountAccess.GetAccounts has inputs ID, LastName, and bday. If a value is
specified for ID it will be the only value used in the dynamic SQL criteria. Otherwise if a value is specified
for LastName the procedure will detect if the value is a search string. If bday is specified in addition to
LastName, it will be used to form compound criteria with LastName.

Example 2.10. Example Dynamic SQL with USING clause and dynamically built criteria string

2.9.4. Dynamic SQL Limitations

The use of dynamic SQL command results in an assignment statement requires the use of a
temp table.

Example 2.11. Example Assignment

/* The execution of the SQL string will create the #temp table with the
columns (ID, Name, Birthdate).
 Note that we also have the USING clause to bind a value to LastName,
which is referenced in the criteria. */
EXECUTE IMMEDIATE sql_string AS ID integer, Name string, Birthdate date
INTO #temp USING LastName='some name';
/* The temp table can now be used with the values from the Dynamic SQL
*/
loop on (SELECT ID from #temp) as myCursor
...

...
DECLARE string crit = null;
IF (AccountAccess.GetAccounts.ID IS NOT NULL)
 crit = '(Customer.Accounts.ID = DVARS.ID)';
ELSE IF (AccountAccess.GetAccounts.LastName IS NOT NULL)
BEGIN
 IF (AccountAccess.GetAccounts.LastName == '%')
 ERROR "Last name cannot be %";
 ELSE IF (LOCATE('%', AccountAccess.GetAccounts.LastName) < 0)
 crit = '(Customer.Accounts.Last = DVARS.LastName)';
 ELSE
 crit = '(Customer.Accounts.Last LIKE DVARS.LastName)';
 IF (AccountAccess.GetAccounts.bday IS NOT NULL)
 crit = '(' || crit || ' and (Customer.Accounts.Birthdate =
DVARS.BirthDay))';
END
ELSE
 ERROR "ID or LastName must be specified.";
EXECUTE IMMEDIATE 'SELECT ID, First || '' '' || Last AS Name, Birthdate
FROM Customer.Accounts WHERE ' || crit USING
ID=AccountAccess.GetAccounts.ID,
LastName=AccountAccess.GetAccounts.LastName,
BirthDay=AccountAccess.GetAccounts.Bday;
...

Development Guide Volume 3: Reference Material

90

The construction of appropriate criteria will be cumbersome if parts of the criteria are not
present. For example if "criteria" were already NULL, then the following example results in
"criteria" remaining NULL.

Example 2.12. Example Dangerous NULL handling

The preferred approach is for the user to ensure the criteria is not NULL prior its usage. If this is
not possible, a good approach is to specify a default as shown in the following example.

Example 2.13. Example NULL handling

If the dynamic SQL is an UPDATE, DELETE, or INSERT command, and the user needs to
specify the "AS" clause (which would be the case if the number of rows effected needs to be
retrieved). The user will still need to provide a name and type for the return column if the into
clause is specified.

Example 2.14. Example with AS and INTO clauses

Unless used in other parts of the procedure, tables in the dynamic command will not be seen as
sources in Teiid Designer.

When using the "AS" clause only the type information will be available to Teiid Designer. Result
set columns generated from the "AS" clause then will have a default set of properties for length,
precision, etc.

2.9.5. Declaration Statement

A declaration statement declares a variable and its type. After you declare a variable, you can use it in
that block within the procedure and any sub-blocks. A variable is initialized to null by default, but can also
be assigned the value of an expression as part of the declaration statement.

Usage:

EXECUTE IMMEDIATE <expression> AS x string INTO #temp;
DECLARE string VARIABLES.RESULT = (SELECT x FROM #temp);

...
criteria = '(' || criteria || ' and (Customer.Accounts.Birthdate =
DVARS.BirthDay))';

...
criteria = '(' || nvl(criteria, '(1 = 1)') || ' and
(Customer.Accounts.Birthdate = DVARS.BirthDay))';

/* This name does not need to match the expected update command
symbol "count". */
EXECUTE IMMEDIATE <expression> AS x integer INTO #temp;

CHAPTER 2. SQL SUPPORT

91

Example Syntax

Syntax Rules:

You cannot redeclare a variable with a duplicate name in a sub-block

The VARIABLES group is always implied even if it is not specified.

The assignment value follows the same rules as for an Assignment Statement.

In addition to the standard types, you may specify EXCEPTION if declaring an exception
variable.

2.9.6. Assignment Statement

An assignment statement assigns a value to a variable by evaluating an expression.

Usage:

Example Syntax

2.9.7. Special Variables

The VARIABLES.ROWCOUNT integer variable will contain the numbers of rows affected by the last
INSERT/UPDATE/DELETE statement executed. Inserts that are processed by dynamic SQL with an INTO
clause also update the ROWCOUNT.

2.9.8. Compound Statement

A compound statement (or block) logically groups a series of statements. Temporary tables and variables
created in a compound statement are local only to that block and are destroyed when exiting the block.

Usage:

DECLARE <type> [VARIABLES.]<name> [= <expression>];

declare integer x;
declare string VARIABLES.myvar = 'value';

<variable reference> = <expression>;

myString = 'Thank you';
VARIABLES.x = (SELECT Column1 FROM MySchema.MyTable);

...
UPDATE FOO SET X = 1 WHERE Y = 2;
DECLARE INTEGER UPDATED = VARIABLES.ROWCOUNT;
...

[label :] BEGIN [[NOT] ATOMIC]
 statement*

Development Guide Volume 3: Reference Material

92

NOTE

Where a block is expected by an IF, LOOP, WHILE, etc., a single statement is also
accepted by the parser. Even though the block BEGIN/END are not expected, the
statement will execute as if wrapped in a BEGIN/END pair.

Syntax Rules

If NOT ATOMIC or no ATOMIC clause is specified, the block will be executed non-atomically.

If the ATOMIC clause is specified, the block must execute atomically. If a transaction is already
associated with the thread, no additional action will be taken - savepoints and/or sub-
transactions are not currently used. Otherwise a transaction will be associated with the execution
of the block.

The label must not be the same as any other label used in statements containing this one.

2.9.9. Exception Handling

If the EXCEPTION clause is used within a compound statement, any processing exception emitted from
statements will be caught with the flow of execution transferring to EXCEPTION statements. Any block
level transaction started by this block will commit if the exception handler successfully completes. If
another exception or the original exception is emitted from the exception handler the transaction will
rollback. Any temporary tables or variables specific to the BLOCK will not be available to the exception
handler statements.

NOTE

Only processing exceptions, which are typically caused by errors originating at the
sources or with function execution, are caught. A low-level internal error or Java
RuntimeException will not be caught.

To aid in the processing of a caught exception the EXCEPTION clause specifies a group name that
exposes the significant fields of the exception. The exception group will contain:

Variable Type Description

STATE string The SQL State

ERRORCODE integer The error or vendor code. In the
case of an internal exception, this
will be the integer suffix of the
TEIIDxxxx code

TEIIDCODE string The full event code. Typically
TEIIDxxxx.

[EXCEPTION ex
 statement*
]
END

CHAPTER 2. SQL SUPPORT

93

EXCEPTION object The exception being caught, will
be an instance of
TeiidSQLException

CHAIN object The chained exception or cause of
the current exception

Variable Type Description

NOTE

JBoss Data Virtualization does not yet fully comply with the ANSI SQL specification on
SQL State usage. For errors without an underlying SQLException cause, it is best to use
the event code.

The exception group name may not be the same as any higher level exception group or loop cursor
name.

Example 2.15. Example Exception Group Handling

2.9.10. If Statement

An IF statement evaluates a condition and executes one of two statements depending on the result. You
can nest IF statements to create complex branching logic. A dependent ELSE statement will execute its
statement only if the IF statement evaluates to false.

Usage:

Example 2.16. Example If Statement

BEGIN
 DECLARE EXCEPTION e = SQLEXCEPTION 'this is bad' SQLSTATE 'xxxxx';
 RAISE variables.e;
EXCEPTION e
 IF (e.state = 'xxxxx')
 //in this trivial example, we'll always hit this branch and log
the exception
 RAISE SQLWARNING e.exception;
 ELSE
 RAISE e.exception;
END

IF (criteria)
 block
[ELSE
 block]
END

IF (var1 = 'North America')

Development Guide Volume 3: Reference Material

94

The criteria may be any valid boolean expression or an IS DISTINCT FROM predicate referencing row
values:

In this example, rowVal and rowValOther are references to row value group. Use this instead of
update triggers on views to quickly determine if the row values are changing:

IS DISTINCT FROM considers null values equivalent and never produces an UNKNOWN value.

NOTE

NULL values should be considered in the criteria of an IF statement. IS NULL criteria can
be used to detect the presence of a NULL value.

2.9.11. Loop Statement

A LOOP statement is an iterative control construct that is used to cursor through a result set.

Usage:

Syntax Rules

The label must not be the same as any other label used in statements containing this one.

2.9.12. While Statement

A WHILE statement is an iterative control construct that is used to execute a block repeatedly whenever
a specified condition is met.

Usage:

Syntax Rules

BEGIN
 ...statement...
END ELSE
BEGIN
 ...statement...
END

rowVal IS [NOT] DISTINCT FROM rowValOther

IF ("new" IS DISTINCT FROM "old")
BEGIN
 ...statement...
END

[label :] LOOP ON <select statement> AS <cursorname>
 block

[label :] WHILE <criteria>
 block

CHAPTER 2. SQL SUPPORT

95

The label must not be the same as any other label used in statements containing this one.

2.9.13. Continue Statement

A CONTINUE statement is used inside a LOOP or WHILE construct to continue with the next loop by
skipping over the rest of the statements in the loop. It must be used inside a LOOP or WHILE statement.

Usage:

Syntax Rules

If the label is specified, it must exist on a containing LOOP or WHILE statement.

If no label is specified, the statement will affect the closest containing LOOP or WHILE
statement.

2.9.14. Break Statement

A BREAK statement is used inside a LOOP or WHILE construct to break from the loop. It must be used
inside a LOOP or WHILE statement.

Usage:

Syntax Rules

If the label is specified, it must exist on a containing LOOP or WHILE statement.

If no label is specified, the statement will affect the closest containing LOOP or WHILE
statement.

2.9.15. Leave Statement

A LEAVE statement is used inside a compound, LOOP, or WHILE construct to leave to the specified
label.

Usage:

Syntax Rules

The label must exist on a containing compound statement, LOOP, or WHILE statement.

2.9.16. Return Statement

A Return statement gracefully exits the procedure and optionally returns a value.

Usage:

CONTINUE [label];

BREAK [label];

LEAVE label;

Development Guide Volume 3: Reference Material

96

Syntax Rules

If an expression is specified, the procedure must have a return parameter and the value must be
implicitly convertible to the expected type.

Even if the procedure has a return value, it is not required to specify a return value in a RETURN
statement.

2.9.17. Error Statement

An ERROR statement declares that the procedure has entered an error state and should abort. This
statement will also roll back the current transaction, if one exists. Any valid expression can be specified
after the ERROR keyword.

Usage:

Example 2.17. Example Error Statement

An ERROR statement is equivalent to:

2.9.18. Raise Statement

A RAISE statement is used to raise an exception or warning. When raising an exception, this statement
will also roll back the current transaction, if one exists.

Usage:

Where exception may be a variable reference to an exception or an exception expression.

Syntax Rules

If SQLWARNING is specified, the exception will be sent to the client as a warning and the
procedure will continue to execute.

A null warning will be ignored. A null non-warning exception will still cause an exception to be
raised.

Example 2.18. Example Raise Statement

RETURN [expression];

ERROR message;

ERROR 'Invalid input value: ' || nvl(Acct.GetBalance.AcctID, 'null');

RAISE SQLEXCEPTION message;

RAISE [SQLWARNING] exception;

RAISE SQLWARNING SQLEXCEPTION 'invalid' SQLSTATE '05000';

CHAPTER 2. SQL SUPPORT

97

2.9.19. Exception Expression

An exception expression creates an exception that can be raised or used as a warning.

Usage:

Syntax Rules

Any of the values may be null;

message and state are string expressions specifying the exception message and SQL state
respectively. JBoss Data Virtualization does not yet fully comply with the ANSI SQL specification
on SQL state usage, but you are allowed to set any SQL state you choose.

code is an integer expression specifying the vendor code

exception must be a variable reference to an exception or an exception expression and will be
chained to the resulting exception as its parent.

2.10. PROCEDURES

2.10.1. Virtual Procedures

Virtual procedures are defined using the JBoss Data Virtualization procedural language (see
Section 2.9.1, “Procedural Language”). A virtual procedure has zero or more input parameters, and a
result set return type. Virtual procedures support the ability to execute queries and other SQL
commands, define temporary tables, add data to temporary tables, walk through result sets, use loops,
and use conditional logic.

Usage:

The CREATE VIRTUAL PROCEDURE line indicates the beginning of the procedure. Within the body of
the procedure, any valid statement may be used. See Section 2.9.1, “Procedural Language”.

There is no explicit cursoring or return statement, rather the last command statement executed in the
procedure that returns a result set will be returned as the result. The output of that statement must match
the expected result set and parameters of the procedure.

2.10.2. Virtual Procedure Parameters

Virtual procedures can take zero or more IN/INOUT parameters and may also have any number of OUT
parameters and an optional RETURN parameter. Each input has the following information that is used
during runtime processing:

Name - The name of the input parameter.

Datatype - The design-time type of the input parameter.

SQLEXCEPTION message [SQLSTATE state [, code]] CHAIN exception

CREATE VIRTUAL PROCEDURE
block

Development Guide Volume 3: Reference Material

98

Default value - The default value if the input parameter is not specified.

Nullable - NO_NULLS, NULLABLE, NULLABLE_UNKNOWN; parameter is optional if nullable,
and is not required to be listed when using named parameter syntax

You reference a parameter in a virtual procedure by using the fully-qualified name of the param (or less if
unambiguous). For example, MySchema.MyProc.Param1.

Example 2.19. Example of Referencing an Input Parameter and Assigning an Out Parameter
for 'GetBalance' Procedure

If an INOUT parameter is not assigned any value in a procedure it will remain the value it was assigned
for input. Any OUT/RETURN parameter not assigned a value will remain the as the default NULL value.
The INOUT/OUT/RETURN output values are validated against the NOT NULL metadata of the
parameter.

2.10.3. Example Virtual Procedures

This example is a LOOP that walks through a cursored table and uses CONTINUE and BREAK.

Example 2.20. Virtual Procedure Using LOOP, CONTINUE, BREAK

This example is uses conditional logic to determine which of two SELECT statements to execute.

CREATE VIRTUAL PROCEDURE
BEGIN
 MySchema.GetBalance.RetVal = UPPER(MySchema.GetBalance.AcctID);
 SELECT Balance FROM MySchema.Accts WHERE MySchema.Accts.AccountID =
MySchema.GetBalance.AcctID;
END

CREATE VIRTUAL PROCEDURE
BEGIN
 DECLARE double total;
 DECLARE integer transactions;
 LOOP ON (SELECT amt, type FROM CashTxnTable) AS txncursor
 BEGIN
 IF(txncursor.type <> 'Sale')
 BEGIN
 CONTINUE;
 END ELSE
 BEGIN
 total = (total + txncursor.amt);
 transactions = (transactions + 1);
 IF(transactions = 100)
 BEGIN
 BREAK;
 END
 END
 END
 SELECT total, (total / transactions) AS avg_transaction;
END

CHAPTER 2. SQL SUPPORT

99

Example 2.21. Virtual Procedure with Conditional SELECT

2.10.4. Executing Virtual Procedures

You execute procedures using the SQL EXECUTE command. See Section 2.5.7, “EXECUTE
Command”.

If the procedure has defined inputs, you specify those in a sequential list, or using "name=value" syntax.
You must use the name of the input parameter, scoped by the full procedure name if the parameter
name is ambiguous in the context of other columns or variables in the procedure.

A virtual procedure call will return a result set like any SELECT, so you can use this in many places you
can use a SELECT. Typically you'll use the following syntax:

2.10.5. Virtual Procedure Limitations

A virtual procedure can only return one result set. If you need to pass in a result set or pass out multiple
result sets, then consider using global temporary tables instead.

2.10.6. Update Procedures

Views are abstractions above physical sources. They typically union or join information from multiple
tables, often from multiple data sources or other views. JBoss Data Virtualization can perform update
operations against views. Update commands - INSERT, UPDATE, or DELETE - against a view require
logic to define how the tables and views integrated by the view are affected by each type of command.
This transformation logic is invoked when an update command is issued against a view. Update
procedures define the logic for how a user's update command against a view should be decomposed into
the individual commands to be executed against the underlying physical sources. Similar to virtual
procedures , update procedures have the ability to execute queries or other commands, define
temporary tables, add data to temporary tables, walk through result sets, use loops, and use conditional
logic.

CREATE VIRTUAL PROCEDURE
BEGIN
 DECLARE string VARIABLES.SORTDIRECTION;
 VARIABLES.SORTDIRECTION = PartsVirtual.OrderedQtyProc.SORTMODE;
 IF (ucase(VARIABLES.SORTDIRECTION) = 'ASC')
 BEGIN
 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >
PartsVirtual.OrderedQtyProc.QTYIN ORDER BY
PartsVirtual.SupplierInfo.PART_ID;
 END ELSE
 BEGIN
 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >
PartsVirtual.OrderedQtyProc.QTYIN ORDER BY
PartsVirtual.SupplierInfo.PART_ID DESC;
 END
END

SELECT * FROM (EXEC ...) AS x

Development Guide Volume 3: Reference Material

100

You can also use INSTEAD OF triggers on views in a similar way to how they would be used in
traditional databases. You can only have one FOR EACH ROW procedure for each INSERT, UPDATE, or
DELETE operation against a view.

2.10.7. Update Procedure Processing

1. The user application submits the SQL command through one of SOAP, JDBC, or ODBC.

2. The view this SQL command is executed against is detected.

3. The correct procedure is chosen depending upon whether the command is an INSERT,
UPDATE, or DELETE.

4. The procedure is executed. The procedure itself can contain SQL commands of its own which
can be of different types than the command submitted by the user application that invoked the
procedure.

5. Commands, as described in the procedure, are issued to the individual physical data sources or
other views.

6. A value representing the number of rows changed is returned to the calling application.

2.10.8. The FOR EACH ROW Procedure

A FOR EACH ROW procedure will evaluate its block for each row of the view affected by the update
statement. For UPDATE and DELETE statements this will be every row that passes the WHERE
condition. For INSERT statements there will be 1 new row for each set of values from the VALUES or
query expression. The rows updated is reported as this number regardless of the affect of the underlying
procedure logic.

JBoss Data Virtualization FOR EACH ROW update procedures function like INSTEAD OF triggers in
traditional databases. There may only be 1 FOR EACH ROW procedure for each INSERT, UPDATE, or
DELETE operation against a view. FOR EACH ROW update procedures can also be used to emulate
BEFORE/AFTER each row triggers while still retaining the ability to perform an inherent update. This
BEFORE/AFTER trigger behavior with an inherent update can be achieved by creating an additional
updatable view over the target view with update procedures of the form:

Usage:

The BEGIN and END keywords are used to denote block boundaries. Within the body of the procedure,
any valid statement may be used. See Section 2.9.1, “Procedural Language”.

CREATE TRIGGER ON view_name INSTEAD OF INSERT|UPDATE|DELETE AS
FOR EACH ROW
...

FOR EACH ROW
 BEGIN ATOMIC
 ...
 END

CHAPTER 2. SQL SUPPORT

101

NOTE

Use of the ATOMIC keyword is currently optional for backward compatibility, but unlike a
normal block, the default for INSTEAD OF is atomic.

2.10.9. Special Variables for Update Procedures

You can use a number of special variables when defining your update procedure.

NEW

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an
equivalent variable named NEW.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are
initialized to the values in the INSERT VALUES clause or the UPDATE SET clause respectively.

In an UPDATE procedure, the default value of these variables, if they are not set by the command, is
the old value. In an INSERT procedure, the default value of these variables is the default value of the
virtual table attributes. See CHANGING variables for distinguishing defaults from passed values.

OLD

Every attribute in the view whose UPDATE and DELETE transformations you are defining has an
equivalent variable named OLD.<column_name>

When a DELETE or UPDATE command is executed against the view, these variables are initialized
to the current values of the row being deleted or updated respectively.

CHANGING

Every attribute in the view whose UPDATE and INSERT transformations you are defining has an
equivalent variable named CHANGING.<column_name>

When an INSERT or an UPDATE command is executed against the view, these variables are
initialized to true or false depending on whether the INPUT variable was set by the command. A
CHANGING variable is commonly used to differentiate between a default insert value and one
specified in the user query.

For example, for a view with columns A, B, C:

If User Executes... Then...

INSERT INTO VT (A, B) VALUES (0,
1)

CHANGING.A = true, CHANGING.B = true,
CHANGING.C = false

UPDATE VT SET C = 2 CHANGING.A = false, CHANGING.B = false,
CHANGING.C = true

2.10.10. Example Update Procedures

For example, for a view with columns A, B, C:

Development Guide Volume 3: Reference Material

102

Example 2.22. Sample DELETE Procedure

Example 2.23. Sample UPDATE Procedure

2.10.11. Comments

Red Hat JBoss Data Virtualization supports multi-line comments enclosed with /* */:

You can also add single line comments:

You can also nest comments.

FOR EACH ROW
BEGIN
 DELETE FROM X WHERE Y = OLD.A;
 DELETE FROM Z WHERE Y = OLD.A; // cascade the delete
END

FOR EACH ROW
BEGIN
 IF (CHANGING.B)
 BEGIN
 UPDATE Z SET Y = NEW.B WHERE Y = OLD.B;
 END
END

/* comment
comment
comment... */

SELECT ... -- comment

CHAPTER 2. SQL SUPPORT

103

CHAPTER 3. DATA TYPES

3.1. SUPPORTED TYPES

JBoss Data Virtualization supports a core set of runtime types. Runtime types can be different from
semantic types defined in type fields at design time. The runtime type can also be specified at design
time or it will be automatically chosen as the closest base type to the semantic type.

NOTE

Even if a type is declared with a length, precision, or scale argument, these restrictions
are effectively ignored by the runtime system, but may be enforced by OData, ODBC or
JDBC.

Table 3.1. JBoss Data Virtualization Runtime Types

Type Description Java Runtime Class JDBC Type ODBC Type

string or
varchar

variable length character
string with a maximum
length of 4000. Note that
the length cannot be
explicitly set with the type
declaration, e.g.
varchar(100) is invalid.

java.lang.String VARCHAR VARCHAR

varbinary variable length binary
string with a maximum
length of 8192. Note that
the length cannot be
explicitly set with the type
declaration, e.g.
varbinary(100) is invalid.

byte[] [a] VARBINARY VARBINARY

char a single Unicode character java.lang.Character CHAR CHAR

boolean a single bit, or Boolean,
that can be true, false, or
null (unknown)

java.lang.Boolean BIT SMALLINT

byte or
tinyint

numeric, integral type,
signed 8-bit

java.lang.Byte TINYINT SMALLINT

short or
smallint

numeric, integral type,
signed 16-bit

java.lang.Short SMALLINT SMALLINT

Development Guide Volume 3: Reference Material

104

integer or
serial

numeric, integral type,
signed 32-bit. The serial
type also implies not null
and has an auto-
incrementing value that
starts at 1. Serial types are
not automatically UNIQUE.

java.lang.Integer INTEGER INTEGER

long or
bigint

numeric, integral type,
signed 64-bit

java.lang.Long BIGINT NUMERIC

biginteger numeric, integral type,
arbitrary precision of up to
1000 digits

java.math.BigInteger NUMERIC NUMERIC

float or real numeric, floating point type,
32-bit IEEE 754 floating-
point numbers

java.lang.Float REAL FLOAT

double numeric, floating point type,
64-bit IEEE 754 floating-
point numbers

java.lang.Double DOUBLE DOUBLE

bigdecimal
or decimal

numeric, floating point type,
arbitrary precision of up to
1000 digits. Note that the
precision and scale cannot
be explicitly set with the
type literal, e.g. decimal(38,
2).

java.math.BigDecimal NUMERIC NUMERIC

date datetime, representing a
single day (year, month,
day)

java.sql.Date DATE DATE

time datetime, representing a
single time (hours,
minutes, seconds,
milliseconds)

java.sql.Time TIME TIME

timestamp datetime, representing a
single date and time (year,
month, day, hours,
minutes, seconds,
milliseconds,
nanoseconds)

java.sql.Timestamp TIMESTAMP TIMESTAMP

Type Description Java Runtime Class JDBC Type ODBC Type

CHAPTER 3. DATA TYPES

105

object any arbitrary Java object,
must implement
java.lang.Serializable

Any JAVA_OBJECT VARCHAR

blob binary large object,
representing a stream of
bytes

java.sql.Blob [b] BLOB VARCHAR

clob character large object,
representing a stream of
characters

java.sql.Clob [c] CLOB VARCHAR

xml XML document java.sql.SQLXML [d] JAVA_OBJECT VARCHAR

geometry Geospatial Object java.sql.Blob [e] BLOB BLOB

[a] The runtime type is org.teiid.core.types.BinaryType. Translators will need to explicitly handle BinaryType values. UDFs
will instead have a byte[] value passed.

[b] The concrete type is expected to be org.teiid.core.types.BlobType

[c] The concrete type is expected to be org.teiid.core.types.ClobType

[d] The concrete type is expected to be org.teiid.core.types.XMLType

[e] The concrete type is expected to be org.teiid.core.types.GeometryType

Type Description Java Runtime Class JDBC Type ODBC Type

Red Hat JBoss Data Virtualization also supports arrays. Designate an array by adding [] to the type
declaration for each array dimension.

NOTE

This feature is limited at present.

IMPORTANT

Red Hat JBoss Data Virtualization normally handles arrays in memory. Red Hat advises
you not to reply on large array values. Also arrays of lobs are not not handled correctly
when serialized.

3.2. TYPE CONVERSIONS

string[]

integer[][]

Development Guide Volume 3: Reference Material

106

Data types may be converted from one form to another either explicitly or implicitly. Implicit conversions
automatically occur in criteria and expressions to ease development. Explicit data type conversions
require the use of the CONVERT function or CAST keyword.

NOTE

Array conversions are only valid if you use them to convert or cast to and from compatible
object arrays. You cannot, for example, cast from integer[] to long[].

Type Conversion Considerations

Any type may be implicitly converted to the OBJECT type.

The OBJECT type may be explicitly converted to any other type.

The NULL value may be converted to any type.

Any valid implicit conversion is also a valid explicit conversion.

Situations involving literal values that would normally require explicit conversions may have the
explicit conversion applied implicitly if no loss of information occurs.

If widenComparisonToString is false (the default), when Red Hat JBoss Data Virtualization
detects that an explicit conversion that can not be applied implicitly in criteria, it will throw an
exception. If widenComparisonToString is true, then depending upon the comparison, a
widening conversion is applied or the criteria are treated as false.

With widenComparisonToString is false and created_by is a date, rather than converting
not a date to a date value, Red Hat JBoss Data Virtualization throws an exception.

When Red Hat JBoss Data Virtualization detects that an explicit conversion can not be applied
implicitly in criteria, the criteria will be treated as false. For example:

Given that created_by is typed as date, rather than converting 'not a date' to a date value,
the criteria will remain as a string comparison and therefore be false.

Explicit conversions that are not allowed between two types will result in an exception before
execution. Allowed explicit conversions may still fail during processing if the runtime values are
not actually convertible.

SELECT * FROM my.table WHERE created_by = 'not a date'

SELECT * FROM my.table WHERE created_by = 'not a date'

CHAPTER 3. DATA TYPES

107

WARNING

The JBoss Data Virtualization conversions of
float/double/bigdecimal/timestamp to string rely on the JDBC/Java defined
output formats. Pushdown behavior attempts to mimic these results, but
may vary depending upon the actual source type and conversion logic. Care
must be taken to not assume the string form in criteria or other places
where a variation may cause different results.

Table 3.2. Type Conversions

Source
Type

Valid Implicit Target Types Valid Explicit Target Types

string clob char, boolean, byte, short, integer, long,
biginteger, float, double, bigdecimal, xml [a]

char string

boolean string, byte, short, integer, long, biginteger,
float, double, bigdecimal

byte string, short, integer, long, biginteger, float,
double, bigdecimal

boolean

short string, integer, long, biginteger, float, double,
bigdecimal

boolean, byte

integer string, long, biginteger, double, bigdecimal boolean, byte, short, float

long string, biginteger, bigdecimal boolean, byte, short, integer, float, double

biginteger string, bigdecimal boolean, byte, short, integer, long, float,
double

bigdecimal string boolean, byte, short, integer, long, biginteger,
float, double

date string, timestamp

time string, timestamp

timestamp string date, time

clob string



Development Guide Volume 3: Reference Material

108

xml string [b]

[a] string to xml is equivalent to XMLPARSE(DOCUMENT exp).

[b] xml to string is equivalent to XMLSERIALIZE(exp AS STRING).

Source
Type

Valid Implicit Target Types Valid Explicit Target Types

3.3. CONVERSION OF STRING LITERALS

JBoss Data Virtualization automatically converts string literals within an SQL statement to their implied
types. This typically occurs in a criteria comparison where an expression with a different data type is
compared to a literal string:

Here if the created_by column has the data type of date, JBoss Data Virtualization automatically converts
the string literal to a date data type as well.

3.4. CONVERTING TO BOOLEAN

JBoss Data Virtualization can automatically convert literal strings and numeric type values to Boolean
values as follows:

Table 3.3. Boolean Conversions

Type Literal Value Boolean Value

String 'false' false

'unknown' null

other true

Numeric 0 false

other true

3.5. DATE AND TIME CONVERSIONS

JBoss Data Virtualization can implicitly convert properly formatted literal strings to their associated date-
related data types as follows:

Table 3.4. Date and Time Conversions

SELECT * FROM my.table WHERE created_by = '2003-01-02'

CHAPTER 3. DATA TYPES

109

String Literal Format Possible Implicit Conversion Type

yyyy-mm-dd DATE

hh:mm:ss TIME

yyyy-mm-dd hh:mm:ss.[fff...] TIMESTAMP

The formats above are those expected by the JDBC date types. To use other formats see the functions
PARSEDATE , PARSETIME , PARSETIMESTAMP .

3.6. ESCAPED LITERAL SYNTAX

Rather than relying on implicit conversion, data type values may be expressed directly in SQL using
escape syntax to define the type. Ensure the string value you supply matches the expected format
exactly or an exception will occur.

Table 3.5. Escaped Literal Syntax

Data type Escaped Syntax Standard Literal

BOOLEAN {b 'true'} TRUE

DATE {d 'yyyy-mm-dd'} DATE 'yyyy-mm-dd'

TIME {t 'hh-mm-ss'} TIME 'hh-mm-ss'

TIMESTAMP {ts 'yyyy-mm-dd hh:mm:ss.[fff...]'} TIMESTAMP 'yyyy-mm-dd[
hh:mm:ss.[fff…]]'

Development Guide Volume 3: Reference Material

110

CHAPTER 4. UPDATABLE VIEWS

4.1. UPDATABLE VIEWS

Any view may be marked as updatable. In many circumstances the view definition may allow the view to
be inherently updatable without the need to manually define handling of INSERT/UPDATE/DELETE
operations.

An inherently updatable view cannot be defined with a query that has:

A set operation (INTERSECT, EXCEPT, UNION).

SELECT DISTINCT

Aggregation (aggregate functions, GROUP BY, HAVING)

A LIMIT clause

A UNION ALL can define an inherently updatable view only if each of the UNION branches is itself
inherently updatable. A view defined by a UNION ALL can support inherent INSERTs if it is a partitioned
union and the INSERT specifies values that belong to a single partition. Refer to Partitioned Union.

Any view column that is not mapped directly to a column is not updatable and cannot be targeted by an
UPDATE set clause or be an INSERT column.

If a view is defined by a join query or has a WITH clause it may still be inherently updatable. However in
these situations there are further restrictions and the resulting query plan may execute multiple
statements. For a non-simple query to be updatable, it is required:

An INSERT/UPDATE can only modify a single key-preserved table.

To allow DELETE operations there must be only a single key-preserved table.

If the default handling is not available or you wish to have an alternative implementation of an
INSERT/UPDATE/DELETE, then you may use update procedures (see Section 2.10.6, “Update
Procedures”) to define procedures to handle the respective operations.

4.2. KEY-PRESERVED TABLE

A key-preserved table has a primary or unique key that would remain unique if it were projected into the
result of the query. Note that it is not actually required for a view to reference the key columns in the
SELECT clause. The query engine can detect a key preserved table by analyzing the join structure. The
engine will ensure that a join of a key-preserved table must be against one of its foreign keys.

CHAPTER 4. UPDATABLE VIEWS

111

CHAPTER 5. TRANSACTION SUPPORT

5.1. TRANSACTION SUPPORT

JBoss Data Virtualization uses XA transactions for participating in global transactions and for
demarcating its local and command scoped transactions. Refer to the Red Hat JBoss Data Virtualization
Development Guide Volume 1: Client Development for more information about the transaction
subsystem.

Table 5.1. JBoss Data Virtualization Transaction Scopes

Scope Description

Command Treats the user command as if all source commands are executed within the scope of
the same transaction. The AutoCommitTxn execution property controls the behavior of
command level transactions.

Local The transaction boundary is local defined by a single client session.

Global JBoss Data Virtualization participates in a global transaction as an XA Resource.

The default transaction isolation level for JBoss Data Virtualization is READ_COMMITTED.

5.2. AUTOCOMMITTXN EXECUTION PROPERTY

Since user level commands may execute multiple source commands, users can specify the
AutoCommitTxn execution property to control the transactional behavior of a user command when not in
a local or global transaction.

Table 5.2. AutoCommitTxn Settings

Setting Description

OFF Do not wrap each command in a transaction. Individual source commands may
commit or rollback regardless of the success or failure of the overall command.

ON Wrap each command in a transaction. This mode is the safest, but may introduce
performance overhead.

DETECT This is the default setting. Will automatically wrap commands in a transaction, but
only if the command seems to be transactionally unsafe.

The concept of command safety with respect to a transaction is determined by Red Hat JBoss Data
Virtualization based upon command type, the transaction isolation level, and available metadata. A
wrapping transaction is not needed if any of the following is true:

A user command is fully pushed to the source.

The user command is a SELECT (including XML) and the transaction isolation is not
REPEATABLE_READ nor SERIALIZABLE.

Development Guide Volume 3: Reference Material

112

The user command is a stored procedure and the transaction isolation is not
REPEATABLE_READ nor SERIALIZABLE and the updating model count is zero.

The update count may be set on all procedures as part of the procedure metadata in the model.

5.3. UPDATING MODEL COUNT

The term "updating model count" refers to the number of times any model is updated during the
execution of a command. It is used to determine whether a transaction, of any scope, is required to
safely execute the command.

Table 5.3. Updating Model Count Settings

Count Description

0 No updates are performed by this command.

1 Indicates that only one model is updated by this command (and its subcommands). Also
the success or failure of that update corresponds to the success or failure of the
command. It should not be possible for the update to succeed while the command fails.
Execution is not considered transactionally unsafe.

* Any number greater than 1 indicates that execution is transactionally unsafe and an XA
transaction will be required.

5.4. JDBC API FUNCTIONALITY

The transaction scopes in Section 5.1, “Transaction Support” map to the following JDBC modes:

Command

Connection autoCommit property set to true.

Local

Connection autoCommit property set to false. The transaction is committed by setting autoCommit to
true or calling java.sql.Connection.commit . The transaction can be rolled back by a call to
java.sql.Connection.rollback.

Global

The XAResource interface provided by an XAConnection is used to control the transaction. Note that
XAConnections are available only if JBoss Data Virtualization is consumed through its
XADataSource, org.teiid.jdbc.TeiidDataSource. JEE containers or data access APIs
typically control XA transactions on behalf of application code.

5.5. J2EE USAGE MODELS

J2EE provides three ways to manage transactions for beans:

Client-Controlled

The client of a bean begins and ends a transaction explicitly.

CHAPTER 5. TRANSACTION SUPPORT

113

Bean-Managed

The bean itself begins and ends a transaction explicitly.

Container-Managed

The application server container begins and ends a transaction automatically.

In any of these cases, transactions may be either local or XA transactions, depending on how the code
and descriptors are written. Some kinds of beans (stateful session beans and entity beans) are not
required by the spec to support non-transactional sources, although the spec does allow an application
server to optionally support this with the caution that this is not portable or predictable. Generally
speaking, to support most typical EJB activities in a portable fashion requires some kind of transaction
support.

5.6. TRANSACTIONAL BEHAVIOR WITH JBOSS DATA SOURCE TYPES

JBoss Enterprise Application Platform allows creation of different types of data sources, based on their
transactional capabilities. The type of data source you create for your VDB's sources also dictates if that
data source will be participating the distributed transaction or not, irrespective of the transaction scope
you selected from above. Here are different types of data sources:

xa-datasource: Capable of participating in the distributed transaction using XA. This is the
recommended type be used with any JBoss Data Virtualization sources.

local-datasource: Does not participate in XA, unless this is the only local-datasource participating
among other xa-datasources in the current distributed transaction. This technique is called last
commit optimization. However, if you have more than one local datasource participating in a
transaction, the transaction manager will throw an exception: "Could not enlist in transaction on
entering meta-aware object!".

no-tx-datasource: Does not participate in distributed transaction at all. In the scope of a JBoss
Data Virtualization command over multiple sources, you can include this type of datasource in
the same distributed transaction context, however this source will not be subject to any
transactional participation. Any changes done on this source as part of the transaction scope,
cannot be rolled back.

For example, if you have three different sources A, B, C being used in JBoss Data Virtualization, here
are some variations on how they behave with different types of data sources. The suffixes "xa", "local",
"no-tx" define different type of sources used.

A-xa B-xa, C-xa : Can participate in all transactional scopes. No restrictions.

A-xa, B-xa, c-local: Can participate in all transactional scopes. Note that there is only one single
source, "local". It is assumed that, in the Global scope, any third party datasource other than
JBoss Data Virtualization datasource is also XA.

A-xa, B-xa, C-no-tx : Can participate in all transactional scopes. Note "C" is not bound by any
transactional contract. A and B are the only participants in the XA transaction.

A-xa, B-local, C-no-tx : Can participate in all transactional scopes. Note "C" is not bound by any
transactional contract, and there is only a single "local" source.

If any two or more sources are "local" : They can only participate in Command mode with
"autoCommitTxn=OFF". Otherwise they will end with an exception and the message "Could not
enlist in transaction on entering meta-aware object!;" because it is not possible to do a XA

Development Guide Volume 3: Reference Material

114

transaction with "local" datasources.

A-no-tx, B-no-tx, C-no-tx : Can participate in all transaction scopes, but none of the sources will
be bound by transactional terms. This is equivalent to not using transactions or setting
Command mode with "autoCommitTxn=OFF".

IMPORTANT

Teiid Designer creates a "local" data source by default. This is not optimal for XA
transactions. To create XA datasources, use the Management Console. You can find
examples in the EAP_HOME/docs/teiid/datasources directory.

If your datasource is not XA, and not the only local source and cannot use "no-tx", then you can look into
extending the source to implement the compensating XA implementation. Define your own resource
manager for your source and manage the transaction the way you want it to behave. Note that this could
be complicated if your source natively does not support the distributed XA protocol.

In summary:

Use XA datasource if possible

Use no-tx datasource if applicable

Use autoCommitTxn = OFF, and let go distributed transactions, though not recommended

Write a compensating XA based implementation.

Table 5.4. Data Virtualization Transaction Participation

Teiid-Tx-Scope XA source Local Source No-Tx Source

Local always Only If Single Source never

Global always Only If Single Source never

Auto-commit=true, AutoCommitTxn=ON always Only If Single Source never

Auto-commit=true, AutoCommitTxn=OFF never never never

Auto-commit=true,
AutoCommitTxn=DETECT

always Only If Single Source never

5.7. LIMITATIONS

The client setting of transaction isolation level is not propagated to the connectors. The
transaction isolation level can be set on each XA connector, however this isolation level is fixed
and cannot be changed at runtime for specific connections/commands.

CHAPTER 5. TRANSACTION SUPPORT

115

CHAPTER 6. VIRTUAL DATABASES

6.1. VDB DEFINITION

A VDB or virtual database definition is contained in an XML file. For .vdb archive files created in the
design tool, this file is embedded in the archive and most fields can be updated through tooling. The XML
schema for this file can be found in the EAP_HOME/docs/teiid/schema directory.

Example 6.1. Example VDB XML

<vdb name="${vdb-name}" version="${vdb-version}">

 <!-- VDB properties -->
 <property name="${property-name}" value="${property-value}" />

 <!-- UDF defined in an AS module, see Developers Guide -->
 <property name ="lib" value ="{module-name}"></property>

 <import-vdb name="..." version="..." import-data-
policies="true|false"/>

 <!-- define a model fragment for each data source -->
 <model visible="true" name="${model-name}" type="${model-type}" >

 <property name="..." value="..." />

 <source name="${source-name}" translator-name="${translator-
name}" connection-jndi-name="${deployed-jndi-name}">

 <metadata type="${repository-type}">raw text</metadata>

 </model>

 <!-- define a model with multiple sources - see Multi-Source Models -
->
 <model name="${model-name}" path="/Test/Customers.xmi">
 <property name="multisource" value="true"/>
 . . .
 <source name="${source-name}"
 translator-name="${translator-name}" connection-jndi-
name="${deployed-jndi-name}"/>
 <source . . . />
 <source . . . />
 </model>

 <!-- see Reference Guide - Data Roles -->
 <data-role name="${role-name}">
 <description>${role-description}</description>
 . . .
 </data-role>

 <!-- create translator instances that override default properties --
>
 <translator name="${translator-name}" type="${translator-type}" />

Development Guide Volume 3: Reference Material

116

6.2. VDB DEFINITION: THE VDB ELEMENT

Attributes

name

The name of the VDB. The VDB name referenced through the driver or datasource during the
connection time.

version

The version of the VDB (should be an positive integer). This determines the deployed directory
location (see Name), and provides an explicit versioning mechanism to the VDB name.

Property Elements

cache-metadata

Can be "true" or "false". If "false", JBoss Data Virtualization will obtain metadata once for every
launch of the VDB. "true" will save a file containing the metadata into the
EAP_HOME/MODE/data directory. Defaults to "false" for -vdb.xml deployments otherwise
"true".

query-timeout

Sets the default query timeout in milliseconds for queries executed against this VDB. 0 indicates
that the server default query timeout should be used. Defaults to 0. Will have no effect if the
server default query timeout is set to a lesser value. Note that clients can still set their own
timeouts that will be managed on the client side.

lib

Set to a list of modules for the VDB classpath for user defined function loading. See also
Support for Non-Pushdown User Defined Functions in Red Hat JBoss Data Virtualization
Development Guide: Server Development.

security-domain

Set to the security domain to use if a specific security domain is applicable to the VDB.
Otherwise the security domain list from the transport will be used.

IMPORTANT

An administrator needs to configure a matching "custom-security" login module in
the standalone.xml configuration file before the VDB is deployed.

 <property name="..." value="..." />

 </translator>
</vdb>

<property name="security-domain" value="custom-security" />

CHAPTER 6. VIRTUAL DATABASES

117

connection.XXX

This is for use by the ODBC transport and OData. They use it to set the default
connection/execution properties. Note that the properties are set on the connection after it has
been established.

authentication-type

Authentication type of configured security domain. Allowed values currently are (GSS,
USERPASSWORD). The default is set on the transport (typically USERPASSWORD).

password-pattern

Regular expression matched against the connecting user's name that determines if
USERPASSWORD authentication is used. password-pattern Takes precedence of over
authentication-type. The default is authentication-type.

gss-pattern

Regular expression matched against the connecting user's name that determines if GSS
authentication is used. gss-pattern Takes precedence of over password-pattern. The default is
password-pattern.

model.visible

Used to override the visibility of imported vdb models, where model is the name of the imported
model..

include-pg-metadata

By default, PG metadata is always added to VDB unless System Properties set property
org.teiid.addPGMetadata to false. This property enables adding PG metadata per VDB. Please
note that if you are using ODBC to access your VDB, the VDB must include PG metadata.

lazy-invalidate

By default TTL expiration will be invalidating. Setting lazy-invalidate to true makes ttl refreshes
non-invalidating.

6.3. VDB DEFINITION: THE IMPORT-VDB ELEMENT

Attributes

name The name of the VDB to be imported.

version The version of the VDB to be imported (should be an positive integer).

import-data-policies Optional attribute to indicate whether the data policies should be imported
as well. Defaults to TRUE.

6.4. VDB DEFINITION: THE MODEL ELEMENT

<property name="connection.partialResultsMode" value="true" />

Development Guide Volume 3: Reference Material

118

Attributes

name

This is the name of the model is used as a top level schema name for all of the metadata
imported from the connector. The name must be unique among all Models in the VDB and must
not contain the '.' character.

version

This is the version of the VDB (it should be an positive integer). This determines the deployed
directory location (see Name), and provides an explicit versioning mechanism for the VDB
name.

visibility

By default this value is set to "true". When the value is set to "false", this model will not be visible
to JDBC metadata queries. Usually it is used to hide a model from client applications that must
not directly issue queries against it. However, this does not prohibit either client applications or
other view models from using it, if they know its schema.

Source Element

A source is a named binding of a translator and connection source to a model.

name

The name of the source to use for this model. This can be any name you like, but will typically
be the same as the model name. Having a name different from the model name is only useful in
multi-source scenarios. In multi-source, the source names under a given model must be unique.
If you have the same source bound to multiple models it may have the same name for each. An
exception will be raised if the same source name is used for different sources.

translator-name

The name or type of the JBoss Data Virtualization Translator to use. Possible values include the
built-in types (ws, file, ldap, oracle, sqlserver, db2, derby, etc.) and translators defined in the
translators section.

connection-jndi-name

The JNDI name of this source's connection factory. Check out the deploying VDB dependencies
section for info. You also need to deploy these connection factories before you can deploy the
VDB.

Property Elements

importer.<propertyname>

Property to be used by the connector importer for the model for purposes importing metadata.
See possible property name/values in the Translator specific section. Note that using these
properties you can narrow or widen the data elements available for integration.

Metadata Element

The optional metadata element defines the metadata repository type and optional raw metadata
to be consumed by the metadata repository.

CHAPTER 6. VIRTUAL DATABASES

119

type

The metadata repository type. Defaults to INDEX for Designer VDBs and NATIVE for non-
Designer VDB source models. For all other deployments/models a value must be specified.
Built-in types include DDL, NATIVE, INDEX, and DDL-FILE. The usage of the raw text
varies with the by type. The raw text is not used with NATIVE and INDEX (only for Designer
VDBs) metadata repositories. The raw text for DDL is expected to be a series of DDL
statements that define the schema. DDL-FILE (used only with zip deployments) is similar to
DDL, except that the raw text specifies an absolute path relative to the vdb root of the
location of a file containing the DDL. See also about a Custom Metadata Repository in Red
Hat JBoss Development Guide: Server Development.

6.5. VDB DEFINITION: THE TRANSLATOR ELEMENT

Attributes

name

The name of the Translator. Referenced by the source element.

type

The base type of the Translator. Can be one of the built-in types (ws, file, ldap, oracle, sqlserver,
db2, derby, etc.).

Property Elements

Set a value that overrides a translator default property. See possible property name/values in the
Translator specific section.

6.6. DYNAMIC VDBS

Data integration is also available via a "Dynamic VDB" without the need for Teiid Designer tooling.
Dynamic VDBs can be deployed either by XML or ZIP. Example files are provided with the installation of
JBoss Data Virtualization.

6.7. DYNAMIC VDB XML DEPLOYMENT

You can create a NAME-vdb.xml file. The XML file captures information about the VDB, the sources it
integrates, and preferences for importing metadata.

NOTE

The VDB name pattern must adhere to "-vdb.xml" for the VDB deployer to recognize this
file.

The XML schema for these files is found in EAP_HOME/docs/teiid/schema/vdb-deployer.xsd.

6.8. DYNAMIC VDB ZIP DEPLOYMENT

For more complicated scenarios you can deploy a VDB via a ZIP file similar. In a VDB ZIP deployment:

Development Guide Volume 3: Reference Material

120

The deployment must end with the extension .vdb.

The VDB XML file must be named vdb.xml and placed in the ZIP under the META-INF
directory.

If a lib folder exists, any JARs found underneath will automatically be added to the VDB
classpath.

For backwards compatibility with Teiid Designer VDBs, if any .INDEX file exists, the default
metadata repository will be assumed to be INDEX.

Files within the VDB ZIP are accessible by a Custom Metadata Repository using the
MetadataFactory.getVDBResources() method, which returns a map of all
VDBResources in the VDB keyed by absolute path relative to the VDB root. See Red Hat JBoss
Data Virtualization Development Guide: Server Development for more information about custom
metadata repositories.

The built-in DDL-FILE metadata repository type may be used to define DDL-based metadata in
files outside of the vdb.xml. This improves the memory footprint of the VDB metadata and the
maintainability of vdb.xml.

Example 6.2. Example VDB Zip Structure

In the above example the vdb.xml could use a DDL-FILE metadata type for schema1:

6.9. VDB REUSE

VDBs may reuse other VDBs deployed in the same server instance by using an "import-vdb" declaration
in the vdb.xml file (see Section 6.1, “VDB Definition”). An imported VDB can have its tables and
procedures referenced by views and procedures in the importing VDB as if they are part of the VDB.
Imported VDBs are required to exist before an importing VDB may start. If an imported VDB is
undeployed, then any importing VDB will be stopped.

An imported VDB includes all of its models and may not conflict with any model, data policy, or source
already defined in the importing VDB. Once a VDB is imported it is mostly operationally independent
from the base VDB. Only cost related metadata may be updated for an object from an imported VDB in
the scope of the importing VDB. All other updates must be made through the original VDB, but they will
be visible in all imported VDBs. Even materialized views are separately maintained for an imported VDB
in the scope of each importing VDB.

Example 6.3. Example reuse VDB XML

/META-INF
 vdb.xml
/ddl
 schema1.ddl
/lib
 some-udf.jar

<model name="schema1" ...
 <metadata type="DDL-FILE">/ddl/schema1.ddl<metadata>
</model>

CHAPTER 6. VIRTUAL DATABASES

121

In the above example the reuse VDB will have access to all of the models defined in the common VDB
and adds in the "new-model".

6.10. METADATA REPOSITORIES

Traditionally the metadata for a Virtual Database is built by Teiid Designer and supplied to Teiid engine
through a VDB archive file. This VDB file contains .INDEX metadata files. By default they are loaded by
a MetadataRepository with the name INDEX. Other built-in metadata repositories include the following:

NATIVE

This is only applicable on source models (and is also the default), when used the metadata for the model
is retrieved from the source database itself.

DDL

This is applicable to both source and view models. See DDL Metadata for more information on how to
use this feature.

DDL-FILE

<vdb name="reuse" version="1">

 <import-vdb name="common" version="1" import-data-policies="false"/>

 <model visible="true" type="VIRTUAL" name="new-model">
 <metadata type = "DDL"><![CDATA[
 CREATE VIEW x (
 y varchar
) AS
 select * from old-model.tbl;
]]>
 </metadata>
 </model>
</vdb>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="NATIVE"></metadata>
 </model>
</vdb>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="DDL">
 DDL Here
 </metadata>
 </model>
</vdb>

Development Guide Volume 3: Reference Material

122

DDL is applicable to both source and view models in zip VDB deployments. See DDL Metadata for more
information on how to use this feature.

Chaining Repositories

When defining the metadata type for a model, multiple metadata elements can be used. All the
repository instances defined are consulted in the order configured to gather the metadata for the given
model.

For the above model, NATIVE importer is first used, then DDL importer used to add additional metadata
to NATIVE imported metadata.

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="DDL-FILE">/accounts.ddl</metadata>
 </model>
</vdb>

<vdb name="{vdb-name}" version="1">
 <model name="{model-name}" type="PHYSICAL">
 <source name="AccountsDB" translator-name="oracle" connection-
jndi-name="java:/oracleDS"/>
 <metadata type="NATIVE"/>
 <metadata type="DDL">
 DDL Here
 </metadata>
 </model>
</vdb>

CHAPTER 6. VIRTUAL DATABASES

123

CHAPTER 7. DATA ROLES

7.1. DATA ROLES

Data roles, also called entitlements, are sets of permissions defined per VDB that dictate data access
(create, read, update, delete). Data roles use a fine-grained permission system that JBoss Data
Virtualization will enforce at runtime and provide audit log entries for access violations. Refer to the
Administration and Configuration Guide and Development Guide: Server Development for more
information about Logging and Custom Logging.

Prior to applying data roles, you should consider restricting source system access through the
fundamental design of your VDB. Foremost, JBoss Data Virtualization can only access source entries
that are represented in imported metadata. You should narrow imported metadata to only what is
necessary for use by your VDB. When using Teiid Designer, you may then go further and modify the
imported metadata at a granular level to remove specific columns or indicate tables that are not to be
updated, etc.

If data role validation is enabled and data roles are defined in a VDB, then access permissions will be
enforced by the JBoss Data Virtualization Server. The use of data roles may be disabled system wide
using the setting for the teiid subsystem policy-decider-module. Data roles also have built-in system
functions (see Section 2.4.18, “Security Functions”) that can be used for row-based and other
authorization checks.

The hasRole system function will return true if the current user has the given data role. The hasRole
function can be used in procedure or view definitions to allow for a more dynamic application of security -
which allows for things such as value masking or row level security.

NOTE

See the Security Guide for details on using an alternative authorization scheme.

WARNING

Data roles are only checked if present in a VDB. A VDB deployed without data roles
can be used by any authenticated user.

7.2. ROLE MAPPING

Each JBoss Data Virtualization data role can be mapped to any number of container roles or any
authenticated user. Control role membership through whatever system the JBoss Data Virtualization
security domain login modules are associated with.

It is possible for a user to have any number of container roles, which in turn imply a subset of JBoss Data
Virtualization data roles. Each applicable JBoss Data Virtualization data role contributes cumulatively to
the permissions of the user. No one role supersedes or negates the permissions of the other data roles.



Development Guide Volume 3: Reference Material

124

NOTE

If you have an alternative security domain that your VDB should use, set the VDB
security-domain property to the relevant domain.

7.3. PERMISSIONS

7.3.1. User Query Permissions

CREATE, READ, UPDATE, DELETE (CRUD) permissions can be set for any resource path in a VDB. A
resource path can be as specific as the fully qualified name of a column or as general a top level model
(schema) name. Permissions granted to a particular path apply to it and any resource paths that share
the same partial name. For example, granting read to "model" will also grant read to "model.table",
"model.table.column", etc. Allowing or denying a particular action is determined by searching for
permissions from the most to least specific resource paths. The first permission found with a specific
allow or deny will be used. Thus it is possible to set very general permissions at high-level resource path
names and to override only as necessary at more specific resource paths.

Permission grants are only needed for resources that a role needs access to. Permissions are also only
applied to the columns/tables/procedures in the user query - not to every resource accessed transitively
through view and procedure definitions. It is important therefore to ensure that permission grants are
applied consistently across models that access the same resources.

WARNING

Non-visible models are accessible by user queries. To restrict user access at a
model level, at least one data role should be created to enable data role checking. In
turn that role can be mapped to any authenticated user and should not grant
permissions to models that should be inaccessible.

Permissions are not applicable to the SYS and pg_catalog schemas. These metadata reporting schemas
are always accessible regardless of the user. The SYSADMIN schema however may need permissions
as applicable.

7.3.2. Assigning Permissions

To process a SELECT statement or a stored procedure execution, the user account requires the
following access rights:

1. READ - on the Table(s) being accessed or the procedure being called.

2. READ - on every column referenced.

To process an INSERT statement, the user account requires the following access rights:

1. CREATE - on the Table being inserted into.

2. CREATE - on every column being inserted on that Table.



CHAPTER 7. DATA ROLES

125

To process an UPDATE statement, the user account requires the following access rights:

1. UPDATE - on the Table being updated.

2. UPDATE - on every column being updated on that Table.

3. READ - on every column referenced in the criteria.

To process a DELETE statement, the user account requires the following access rights:

1. DELETE - on the Table being deleted.

2. READ - on every column referenced in the criteria.

To process a EXEC/CALL statement, the user account requires the following access rights:

1. EXECUTE (or READ) - on the Procedure being executed.

To process any function, the user account requires the following access rights:

1. EXECUTE (or READ) - on the Function being called.

To process any ALTER or CREATE TRIGGER statement, the user account requires the following access
rights:

1. ALTER - on the view or procedure that is effected. INSTEAD OF Triggers (update procedures)
are not yet treated as full schema objects and are instead treated as attributes of the view.

To process any OBJECTTABLE function, the user account requires the following access rights:

1. LANGUAGE - specifying the language name that is allowed.

To process any statement against a JBoss Data Virtualization temporary table requires the following
access rights:

1. allow-create-temporary-tables attribute on any applicable role

2. CREATE - against the target source/schema if defining a FOREIGN temporary table.

7.3.3. Row and Column-Based Security Conditions

Although specified in a similar way to user query CRUD permissions, row-based and column-based
permissions may be used together or separately to control at a more granular and consistent level the
data returned to users.

7.3.4. Row-Based Security Conditions

A permission against a fully qualified table/view/procedure may also specify a condition. Unlike the allow
actions defined above, a condition is always applied - not only at the user query level. The condition can
be any valid SQL referencing the columns of the table/view/procedure. The condition will act as a row-
based filter and as a checked constraint for insert/update operations.

7.3.5. Applying Row-Based Security Conditions

A condition is applied conjunctively to UPDATE/DELETE/SELECT WHERE clauses against the affected
resource. Those queries will therefore only ever be effective against the subset of rows that pass the

Development Guide Volume 3: Reference Material

126

condition, i.e. "SELECT * FROM TBL WHERE something AND condition ". The condition will be
present regardless of how the table/view is used in the query, whether via a union, join, etc.

Inserts and updates against physical tables affected by a condition are further validated so that the
insert/change values must pass the condition (evaluate to true) for the insert/update to succeed - this is
effectively the same as an SQL constraint. This will happen for all styles of insert/update - insert with
query expression, bulk insert/update, etc. Inserts/updates against views are not checked with regards to
the constraint. You can disable the insert/update constraint check by setting the condition constraint flag
to false. This is typically only needed in circumstances when the condition cannot always be evaluated.
However disabling the condition as a constraint drops the condition from consideration when logically
evaluating the constraint. Any other condition constraints will still be evaluated.

Across multiple applicable roles, if more than one condition applies to the same resource, the conditions
will be accumulated disjunctively via OR, i.e. "(condition1) OR (condition2) ...". Therefore granting a
permission with the condition "true" will allow users in that role to see all rows of the given resource.

7.3.6. Considerations When Using Conditions

Be aware that non-pushdown conditions may adversely impact performance. Avoid using multiple
conditions against the same resource as any non-pushdown condition will cause the entire OR statement
to not be pushed down. If you need to insert permission conditions, be careful when adding an inline view
as this can cause performance problems if your sources do not support them.

Note that pushdown of multi-row insert/update operations is inhibited since conditions must be checked
for each row.

You can manage permission conditions on a per-role basis, but another approach is to add condition
permissions to any authenticated role. By doing it this way, the conditions are generalized for anyone
using hasRole, user, or other security functions. The advantage of this latter approach is that it
provides you with a static row-based policy. As a result, all of your query plans can be shared between
your users.

How you handle null values is up to you. You can implement ISNULL checks to ensure that null values
are allowed when a column is "nullable".

7.3.7. Limitations to Using Conditions

Conditions on source tables that act as check constraints must currently not contain correlated
subqueries.

Conditions may not contain aggregate or windowed functions.

Tables and procedures referenced via subqueries will still have row-based filters and column
masking applied to them.

NOTE

Row-based filter conditions are enforced even for materialized view loads.

You should ensure that tables consumed to produce materialized views do not have row-based
filter conditions on them that could affect the materialized view results.

7.3.8. Column Masking

CHAPTER 7. DATA ROLES

127

A permission against a fully qualified table/view/procedure column may also specify a mask and
optionally a condition. When the query is submitted the roles are consulted and the relevant
mask/condition information are combined to form a searched case expression to mask the values that
would have been returned by the access. Unlike the CRUD allow actions defined above, the resulting
masking effect is always applied - not only at the user query level. The condition and expression can be
any valid SQL referencing the columns of the table/view/procedure. Procedure result set columns may
be referenced as proc.col.

7.3.9. Applying Column Masking

Column masking is applied only against SELECTs. Column masking is applied logically after the affect of
row based security. However since both views and source tables may have row and column based
security, the actual view level masking may take place on top of source level masking. If the condition is
specified along with the mask, then the effective mask expression effects only a subset of the rows:
"CASE WHEN condition THEN mask ELSE column". Otherwise the condition is assumed to be TRUE,
meaning that the mask applies to all rows.

If multiple roles specify a mask against a column, the mask order argument will determine their
precedence from highest to lowest as part of a larger searched case expression. For example a mask
with the default order of 0 and a mask with an order of 1 would be combined as "CASE WHEN
condition1 THEN mask1 WHEN condition0 THEN mask0 ELSE column".

7.3.10. Column Masking Considerations

Non-pushdown masking conditions/expressions may adversely impact performance, since their
evaluation may inhibit pushdown of query constructs on top of the affected resource. In some
circumstances the insertion of masking may require that the plan be altered with the addition of an inline
view, which can result in adverse performance against sources that do not support inline views.

In addition to managing masking on a per-role basis with the use of the order value, another approach is
to specify masking in a single any authenticated role such that the conditions/expressions are
generalized for all users/roles using the hasRole , user , and other such security functions. The
advantage of the latter approach is that there is effectively a static masking policy in effect such that all
query plans can still be shared between users.

7.3.11. Column Masking Limitations

In the event that two masks have the same order value, it is not well defined what order they are
applied in.

Masks or their conditions may not contain aggregate or windowed functions.

Tables and procedures referenced via subqueries will still have row-based filters and column
masking applied to them.

NOTE

Masking is enforced even for materialized view loads.

You should ensure that tables consumed to produce materialized views do not have masking on
them that could affect the materialized view results.

7.4. DATA ROLE DEFINITION

Development Guide Volume 3: Reference Material

128

7.4.1. Data Role Definition

Data roles are defined inside the vdb.xml file. (You will find this inside the .vdb zip archive under
META-INF/vdb.xml if you used Teiid Designer). The vdb.xml file is checked against the vdb-
deployer.xsd schema file found in the EAP_HOME/docs/teiid/schema directory.

7.4.2. Data Role Definition Example

Consider the scenario in which a VDB defines a table "TableA" in schema "modelName" with columns
(column1, column2) - note that the column types do not matter.

We wish to define three roles "RoleA", "RoleB", "RoleC" with the following permissions:

1. RoleA has permissions to read, write access to TableA, but can not delete.

2. RoleB has no permissions that allow access to TableA

3. RoleC has permissions that only allow read access to TableA.column1

Example 7.1. vdb.xml defining RoleA, RoleB, and RoleC

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="RoleA">
 <description>Allow all, except Delete</description>

 <permission>
 <resource-name>modelName.TableA</resource-name>
 <allow-create>true</allow-create>
 <allow-read>true</allow-read>
 <allow-update>true</allow-update>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

 <data-role name="RoleC">
 <description>Allow read only</description>

 <permission>
 <resource-name>modelName.TableA</resource-name>
 <allow-read>true</allow-read>
 </permission>

 <permission>
 <resource-name>modelName.TableA.colum2</resource-name>
 <allow-read>false</allow-read>
 </permission>

CHAPTER 7. DATA ROLES

129

The above XML defined two data roles, "RoleA" which allows everything except delete on the table,
"RoleC" that allows only read operation on the table. Since JBoss Data Virtualization uses deny by
default, there is no explicit data-role entry needed for "RoleB". Note that explicit column permissions are
not needed for RoleA, since the parent resource path, modelName.TableA, permissions still apply.
RoleC however must explicitly disallow read to column2.

The "mapped-role-name" defines the container JAAS roles that are assigned the data role. For assigning
roles to your users in the JBoss EAP, see the instructions for the selected Login Module. See the
Administrator Guide for configuring Login Modules.

7.4.3. Data Role Definition Example: Additional Attributes

You may also choose to allow any authenticated user to have a data role by setting the any-
authenticated attribute value to true on data-role element.

The "allow-create-temporary-tables" data-role boolean attribute is used to explicitly enable or disable
temporary table usage for the role. If it is left unspecified, then the value will be defaulted to false.

Example 7.2. Temp Table Role for Any Authenticated

7.4.4. Data Role Definition Example: Language Access

The following shows a vdb xml that allows the use of the javascript language. The allowed-languages
property enables the languages use for any purpose in the vdb, while the allow-language permission
allows the language to be used by users with RoleA.

Example 7.3. vdb.xml allowing JavaScript access

 <mapped-role-name>role2</mapped-role-name>
 </data-role>
</vdb>

<data-role name="role" any-authenticated="true" allow-create-temporary-
tables="true">
 <description>Temp Table Role for Any Authenticated</description>

 <permission>
 ...
 </permission>

</data-role>

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <property name="allowed-languages" value="javascript"/>

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

Development Guide Volume 3: Reference Material

130

7.4.5. Data Role Definition Example: Row-Based Security

The following shows a VDB XML definition utilizing a condition to restrict access. The condition acts as
both a filter and constraint. Even though RoleA opens up read/insert access to modelName.tblName, the
base-role condition will ensure that only values of column1 matching the current user can be read or
inserted. Note that here the constraint enforcement has been disabled.

Example 7.4. vdb.xml allowing conditional access

 <data-role name="RoleA">
 <description>Read and javascript access.</description>

 <permission>
 <resource-name>modelName</resource-name>
 <allow-read>true</allow-read>
 </permission>

 <permission>
 <resource-name>javascript</resource-name>
 <allow-language>true</allow-language>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

</vdb>

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="base-role" any-authenticated="true">
 <description>Conditional access</description>

 <permission>
 <resource-name>modelName.tblName</resource-name>
 <condition constraint="false">column1=user()</condition>
 </permission>

 </data-role>

 <data-role name="RoleA">
 <description>Read/Insert access.</description>

 <permission>
 <resource-name>modelName.tblName</resource-name>
 <allow-read>true</allow-read>
 <allow-create>true</allow-create>
 </permission>

CHAPTER 7. DATA ROLES

131

7.4.6. Data Role Definition Example: Column Masking

The following shows VDB XML utilizing column masking. Here the RoleA column1 mask takes
precedence over the base-role mask, but only for a subset of the rows as specified by the condition. For
users without RoleA, access to column1 will effectively be replaced with "CASE WHEN column1=user()
THEN column1 END", while for users with RoleA, access to column1 will effectively be replaced with
"CASE WHEN column2='x' THEN column1 WHEN TRUE THEN CASE WHEN column1=user() THEN
column1 END END".

Example 7.5. vdb.xml with column masking

 <mapped-role-name>role1</mapped-role-name>

 </data-role>

</vdb>

<?xml version="1.0" encoding="UTF-8"?>
<vdb name="sample" version="1">

 <model name="modelName">
 <source name="source-name" translator-name="oracle" connection-
jndi-name="java:myDS" />
 </model>

 <data-role name="base-role" any-authenticated="true">
 <description>Masking</description>

 <permission>
 <resource-name>modelName.tblName.column1</resource-name>
 <mask>CASE WHEN column1=user() THEN column1 END</mask>
 </permission>

 </data-role>

 <data-role name="RoleA">
 <description>Read/Insert access.</description>

 <permission>
 <resource-name>modelName.tblName</resource-name>
 <allow-read>true</allow-read>
 <allow-create>true</allow-create>
 </permission>

 <permission>
 <resource-name>modelName.tblName.column1</resource-name>
 <condition>column2='x'</condition>
 <mask order="1">column1</mask>
 </permission>

 <mapped-role-name>role1</mapped-role-name>

Development Guide Volume 3: Reference Material

132

 </data-role>

</vdb>

CHAPTER 7. DATA ROLES

133

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

8.1. SYSTEM SCHEMAS

The built-in SYS and SYSADMIN schemas provide metadata tables and procedures against the current
virtual database.

8.2. VDB METADATA

SYSADMIN.Usage

This table supplies information about how views and procedures are defined:

Column Name Type Description

VDBName string VDB name.

UID string Object UID.

object_type string Type of object (StoredProcedure,
View, and so forth).

Name string Object Name or parent name.

ElementName string Name of column or parameter
(may be null to indicate a table or
procedure).

Uses_UID string Used object UID.

Uses_object_type string Used object type.

Uses_SchemaName string Used object schema.

Uses_Name string Used object name or parent
name.

Uses_ElementName string Used column or parameter name
(may be null to indicate a
table/procedure level
dependency).

Schema_Name string Schema name.

Every column, parameter, table, or procedure referenced in a procedure or view definition will be
shown as used. Likewise every column, parameter, table, or procedure referenced in the expression
that defines a view column will be shown as used by that column. Here is an example of how it is
used:

SELECT * FROM SYSADMIN.Usage

Development Guide Volume 3: Reference Material

134

Recursive common table queries can be used to determine transitive relationships:

This example finds all outgoing usage:

SYSADMIN.MatViews

This table supplies information about all the materialized views in the virtual database:

Column Name Type Description

VDBName string VDB name.

SchemaName string Schema name.

Name string Short group name.

TargetSchemaName string Name of the materialized table
schema. Will be null for internal
materialization.

TargetName string Name of the materialized table.

Valid boolean True if materialized table is
currently valid. Will be null for
external materialization.

LoadState boolean The load state, can be one of
NEEDS_LOADING, LOADING,
LOADED, FAILED_LOAD. Will be
null for external materialization.

with im_using as (
 select 0 as level, uid, Uses_UID, Uses_Name, Uses_Object_Type,
Uses_ElementName
 from usage where uid = (select uid from sys.tables where
name='table name' and schemaName='schema name')
 union all
 select level + 1, usage.uid, usage.Uses_UID, usage.Uses_Name,
usage.Uses_Object_Type, usage.Uses_ElementName
 from usage, im_using where level < 10 and usage.uid =
im_using.Uses_UID) select * from im_using

with uses_me as (
 select 0 as level, uid, Uses_UID, Name, Object_Type, ElementName
 from usage where uses_uid = (select uid from sys.tables where
name='table name' and schemaName='schema name')
 union all
 select level + 1, usage.uid, usage.Uses_UID, usage.Name,
usage.Object_Type, usage.ElementName
 from usage, uses_me where level < 10 and usage.uses_uid =
uses_me.UID) select * from uses_me

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

135

Updated timestamp The timestamp of the last full
refresh. Will be null for external
materialization.

Cardinality integer The number of rows in the
materialized view table. Will be
null for external materialization.

Column Name Type Description

Valid, LoadState, Updated, and Cardinality may be checked for external materialized views with the
SYSADMIN.matViewStatus procedure:

SELECT * FROM SYSADMIN.MatViews

SYSADMIN.Triggers

This table provides the triggers in the virtual database.

Column Name Type Description

VDBName string VDB name.

SchemaName string Schema name.

TableName string Table name.

Name string Trigger name.

TriggerType string Trigger type.

TriggerEvent string Triggering event.

Status string Is Enabled.

Body clob Trigger action (for each row).

TableUID string Table unique Id.

SELECT * FROM SYSADMIN.Triggers

SYSADMIN.Views

This table provides the views in the virtual database.

Development Guide Volume 3: Reference Material

136

Column Name Type Description

VDBName string VDB name.

SchemaName string Schema name.

Name string View name.

Body clob View Definition Body (SELECT …)

UID string Table unique Id.

Here is an example:

SYSADMIN.StoredProcedures

This table provides the stored procedures in the virtual database.

Column Name Type Description

VDBName string VDB name.

SchemaName string Schema name.

Name string Procedure name.

Body clob Procedure Definition Body (BEGIN
…)

UID string Unique ID.

SELECT * FROM SYSADMIN.StoredProcedures

SYSADMIN.VDBResources

This table provides the current VDB contents.

Column Name Type Description

resourcePath string The path to the contents.

contents blob The contents as a blob.

SELECT * FROM SYSADMIN.Views

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

137

SYS.VirtualDatabases

This table supplies information about the currently connected virtual database, of which there is
always exactly one (in the context of a connection).

Column Name Type Description

Name string The name of the VDB

Version string The version of the VDB

SYS.Schemas

This table supplies information about all the schemas in the virtual database, including the system
schema itself (System).

Column Name Type Description

VDBName string VDB name

Name string Schema name

IsPhysical boolean True if this represents a source

UID string Unique ID

OID integer Unique ID

Description string Description

PrimaryMetamodelURI string URI for the primary metamodel
describing the model used for
this schema

SYS.Properties

This table supplies user-defined properties on all objects based on metamodel extensions. Normally,
this table is empty if no metamodel extensions are being used.

Column Name Type Description

Name string Extension property name

Value string Extension property value

UID string Key unique ID

OID integer Unique ID

Development Guide Volume 3: Reference Material

138

ClobValue clob Clob Value

Column Name Type Description

WARNING

The OID column is no longer used on system tables. Use UID instead.

8.3. REFERENCE KEY COLUMNS

Column Name Type Description

PKTABLE_CAT string VDB name

PKTABLE_SCHEM string Schema Name

PKTABLE_NAME string Table/View Name

PKCOLUMN_NAME string Column Name

FKTABLE_CAT string VDB Name

FKTABLE_SCHEM string Schema Name

FKTABLE_NAME string Table/View Name

FKCOLUMN_NAME string Column Name

KEY_SEQ short Key Sequence

UPDATE_RULE integer Update Rule

DELETE_RULE integer Delete Rule

FK_NAME string FK Name

PK_NAME string PK Name

DEFERRABILITY integer -

8.4. TABLE METADATA



CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

139

SYS.Tables

This table supplies information about all the groups (tables, views and documents) in the virtual
database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Short group name

Type string Table type (Table, View,
Document, ...)

NameInSource string Name of this group in the source

IsPhysical boolean True if this is a source table

SupportsUpdates boolean True if group can be updated

UID string Group unique ID

OID integer Unique ID

Cardinality integer Approximate number of rows in
the group

Description string Description

IsSystem boolean True if in system table

IsMaterialized boolean True if materialized.

SYS.Columns

This table supplies information about all the elements (columns, tags, attributes, etc) in the virtual
database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

TableName string Table name

Name string Element name (not qualified)

Development Guide Volume 3: Reference Material

140

Position integer Position in group (1-based)

NameInSource string Name of element in source

DataType string Data Virtualization runtime data
type name

Scale integer Number of digits after the
decimal point

ElementLength integer Element length (mostly used for
strings)

sLengthFixed boolean Whether the length is fixed or
variable

SupportsSelect boolean Element can be used in SELECT

SupportsUpdates boolean Values can be inserted or
updated in the element

IsCaseSensitive boolean Element is case-sensitive

IsSigned boolean Element is signed numeric value

IsCurrency boolean Element represents monetary
value

IsAutoIncremented boolean Element is auto-incremented in
the source

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

MinRange string Minimum value

MaxRange string Maximum value

DistinctCount integer Distinct value count, -1 can
indicate unknown

NullCount integer Null value count, -1 can indicate
unknown

SearchType string Searchability: "Searchable", "All
Except Like", "Like Only",
"Unsearchable"

Format string Format of string value

Column Name Type Description

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

141

DefaultValue string Default value

JavaClass string Java class that will be returned

Precision integer Number of digits in numeric
value

CharOctetLength integer Measure of return value size

Radix integer Radix for numeric values

GroupUpperName string Upper-case full group name

UpperName string Upper-case element name

UID string Element unique ID

OID integer Unique ID

Description string Description

Column Name Type Description

SYS.Keys

This table supplies information about primary, foreign, and unique keys.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Table Name string Table name

Name string Key name

Description string Description

NameInSource string Name of key in source system

Type string Type of key: "Primary", "Foreign",
"Unique", etc

IsIndexed boolean True if key is indexed

RefKeyUID string Referenced key UID (if foreign
key)

Development Guide Volume 3: Reference Material

142

UID string Key unique ID

OID integer Unique ID

TableUID string -

RefTableUID string -

ColPositions short[] -

Column Name Type Description

SYS.KeyColumns

This table supplies information about the columns referenced by a key.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

TableName string Table name

Name string Element name

KeyName string Key name

KeyType string Key type: "Primary", "Foreign",
"Unique", etc

RefKeyUID string Referenced key UID

UID string Key UID

OID integer Unique ID

Position integer Position in key

WARNING

The OID column is no longer used on system tables. Use UID instead.

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

143

SYS.Spatial_Sys_Ref

Here are the attributes for this table:

Column Name Type Description

srid integer Spatial Reference Identifier

auth_name string Name of the standard or
standards body.

auth_srid integer SRID for the auth_name
authority.

srtext string Well-Known Text representation

proj4text string For use with the Proj4 library.

SYS.Geometry_Columns

Here are the attributes for this table:

Column Name Type Description

F_TABLE_CATALOG string catalog name

F_TABLE_SCHEMA string schema name

F_TABLE_NAME string table name

F_GEOMETRY_COLUMN string column name

COORD_DIMENSION integer Number of coordinate
dimensions

SRID integer Spatial Reference Identifier

TYPE string Geometry type name

NOTE

The coord_dimension and srid properties are determined from the coord_dimension and
the srid extension properties on the column. When possible, these values are set
automatically by the relevant importer. If they are not set, they are reported as 2 and 0
respectively. If client logic expects actual values, then you may need to set them
manually.

8.5. PROCEDURE METADATA

Development Guide Volume 3: Reference Material

144

SYS.Procedures

This table supplies information about the procedures in the virtual database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Procedure name

NameInSource string Procedure name in source
system

ReturnsResults boolean Returns a result set

UID string Procedure UID

OID integer Unique ID

Description string Description

SYS.ProcedureParams

This supplies information on procedure parameters.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

ProcedureName string Procedure name

Name string Parameter name

DataType string Data Virtualization runtime data
type name

Position integer Position in procedure args

Type string Parameter direction: "In", "Out",
"InOut", "ResultSet",
"ReturnValue"

Optional boolean Parameter is optional

Precision integer Precision of parameter

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

145

TypeLength integer Length of parameter value

Scale integer Scale of parameter

Radix integer Radix of parameter

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

UID string Procedure UID

Description string Description

OID integer Unique ID

Column Name Type Description

WARNING

The OID column is no longer used on system tables. Use UID instead.

8.6. FUNCTION METADATA

SYS.Functions

This table supplies information about the functions in the virtual database.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

Name string Function name

NameInSource string Function name in source system

UID string Function UID

Description string Description

IsVarArgs boolean Does the function accept
variable arguments?



Development Guide Volume 3: Reference Material

146

SYS.FunctionParams

This supplies information on functionparameters.

Column Name Type Description

VDBName string VDB name

SchemaName string Schema Name

FunctionName string Function name

FunctionUID string Function UID

Name string Parameter name

DataType string Data Virtualization runtime data
type name

Position integer Position in function args

Type string Parameter direction: "In", "Out",
"InOut", "ResultSet",
"ReturnValue"

Precision integer Precision of parameter

TypeLength integer Length of parameter value

Scale integer Scale of parameter

Radix integer Radix of parameter

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

UID string Function Parameter UID

Description string Description

OID integer Unique ID

WARNING

The OID column is no longer used on system tables. Use UID instead.

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

147

8.7. DATA TYPE METADATA

SYS.DataTypes

This table supplies information on data types. See Section 3.1, “Supported Types”.

Column Name Type Description

Name string JBoss Data Virtualization design-
time type name

IsStandard boolean Always false

IsPhysical boolean Always false

TypeName string Design-time type name (same as
Name)

JavaClass string Java class returned for this type

Scale integer Max scale of this type

TypeLength integer Max length of this type

NullType string Nullability: "Nullable", "No Nulls",
"Unknown"

IsSigned boolean Is signed numeric?

IsAutoIncremented boolean Is auto-incremented?

IsCaseSensitive boolean Is case-sensitive?

Precision integer Max precision of this type

Radix integer Radix of this type

SearchType string Searchability: "Searchable", "All
Except Like", "Like Only",
"Unsearchable"

UID string Data type unique ID

OID integer Unique ID

RuntimeType string JBoss Data Virtualization runtime
data type name

BaseType string Base type

Description string Description of type

Development Guide Volume 3: Reference Material

148

WARNING

The OID column is no longer used on system tables. Use UID instead.

8.8. SYSTEM PROCEDURES

SYS.getXMLSchemas

Returns a result set with a single column, schema, containing the schemas as clobs.

SYS.getXMLSchemas(document in string) returns schema string

SYSADMIN.logMsg

Log a message to the underlying logging system.

SYSADMIN.logMsg(logged RETURN boolean, level IN string, context IN
string, msg IN object)

Returns true if the message was logged. level can be one of the log4j levels: OFF, FATAL, ERROR,
WARN, INFO, DEBUG, TRACE. level defaults to 'DEBUG' and context defaults to
'org.teiid.PROCESSOR'

SYSADMIN.isLoggable

Tests if logging is enabled at the given level and context.

SYSADMIN.isLoggable(loggable RETURN boolean, level IN string, context IN
string)

Returns true if logging is enabled. level can be one of the log4j levels: OFF, FATAL, ERROR, WARN,
INFO, DEBUG, TRACE. level defaults to 'DEBUG' and context defaults to 'org.teiid.PROCESSOR'

SYSADMIN.refreshMatView

Returns integer RowsUpdated. -1 indicates a load is in progress, otherwise the cardinality of the table
is returned.

SYSADMIN.refreshMatView(RowsUpdated return integer, ViewName in string,
Invalidate in boolean)

SYSADMIN.refreshMatViewRow

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. 0 indicates that
the specified row did not exist in the live data query or in the materialized table.

SYSADMIN.refreshMatViewRow(RowsUpdated return integer, ViewName in
string, Key in object)

SYSADMIN.refreshMatViewRows



CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

149

Refreshes rows in an internal materialized view.

Returns integer RowsUpdated. -1 indicates the materialized table is currently invalid. Any row that
does not exist in the live data query or in the materialized table will not count toward the
RowsUpdated.

SYSADMIN.refreshMatViewRows(OUT RowsUpdated integer NOT NULL RESULT, IN
ViewName string NOT NULL, VARIADIC Key object[] NOT NULL)

Using SAMPLEMATVIEW as an example and assuming the primary key only contains one column,
id, here is how you update all rows:

Assuming the primary key contains more columns, id, a and b compose of the primary key, here is
how you update all rows:

SYSADMIN.updateMatView

Use the updateMatView procedure to update a subset of an internal or external materialized table
based on the refresh criteria.

The refresh criteria may reference the view columns by qualified name, but all instances of '.' in the
view name are replaced by '_' as an alias is actually being used.

This returns the integer RowsUpdated. -1 indicates that the materialized table is currently invalid. -3
indicates there was an exception when performing the update.

SYS.ArrayIterate

Returns a resultset with a single column with a row for each value in the array.

SYS.ArrayIterate(IN val object[]) RETURNS TABLE (col object)

This produces two rows, 'b', and 'd':

8.9. METADATA PROCEDURES

SYSADMIN.setTableStats

Set statistics for the given table.

SYSADMIN.setTableStats(TableName in string, Cardinality in integer)

EXEC SYSADMIN.refreshMatViewRows('TestMat.SAMPLEMATVIEW', ('100',),
('101',), ('102',))

EXEC SYSADMIN.refreshMatViewRows('TestMat.SAMPLEMATVIEW', ('100', 'a0',
'b0'), ('101', 'a1', 'b1'), ('102', 'a2', 'b2'))

SYSADMIN.updateMatView(IN schemaName string NOT NULL, IN viewName string
NOT NULL, IN refreshCriteria string) RETURNS integer

select array_get(cast(x.col as string[]), 2) from (exec
arrayiterate((('a', 'b'),('c','d')))) x

Development Guide Volume 3: Reference Material

150

SYSADMIN.setColumnStats

Set statistics for the given column.

SYSADMIN.setColumnStats(TableName in string, ColumnName in string,
DistinctCount in integer, NullCount in integer, Max in string, Min in
string)

All stat values are nullable. Passing a null stat value will leave corresponding metadata value
unchanged.

SYSADMIN.setProperty

Set an extension metadata property for the given record. Extension metadata is typically used by
translators.

SYSADMIN.setProperty(OldValue return clob, Uid in string, Name in
string, Value in clob)

Setting a value to null will remove the property.

The use of this procedure will not trigger replanning of associated prepared plans.

CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES

151

CHAPTER 9. GENERATED REST SERVICES

9.1. GENERATED REST SERVICES

Using DDL metadata, properties can be specified that enable JBoss Data Virtualization procedures to be
exposed as a REST based services.

When a VDB includes this metadata and is deployed in JBoss EAP, and if the VDB is valid and after the
metadata is loaded, then a REST war is generated automatically and deployed into the local JBoss EAP
server.

9.2. REST PROPERTIES

The following properties can be specified on a JBoss Data Virtualization virtual procedure.

Property Name Description Is Required Allowed Values

METHOD HTTP Method to use Yes GET | POST| PUT |
DELETE

URI URI of procedure Yes ex:/procedure

PRODUCES Type of content
produced by the service

no xml | json | plain | any
text

CHARSET When procedure returns
Blob, and content type
text based, this
character set to used to
convert the data

no US-ASCII | UTF-8

The above properties must be defined with NAMESPACE 'http://teiid.org/rest' on the metadata. Here is
an example VDB that defines the REST based service.

9.3. EXAMPLE VDB WITH REST PROPERTIES

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="sample" version="1">
 <property name="UseConnectorMetadata" value="true" />
 <property name="{http://teiid.org/rest}auto-generate" value="true"/>

 <model name="PM1">
 <source name="text-connector" translator-name="loopback" />
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE G1 (e1 string, e2 integer);
 CREATE FOREIGN TABLE G2 (e1 string, e2 integer);
]]> </metadata>
 </model>
 <model name="View" type ="VIRTUAL">
 <metadata type="DDL"><![CDATA[
 SET NAMESPACE 'http://teiid.org/rest' AS REST;

Development Guide Volume 3: Reference Material

152

The REST VDB is deployed with "{vdb-name}_{vdb-version}" context. The model name is prepended to
uri of the service call. For example the procedure in above example can be accessed as

where "sample_1" is context, "view" is model name, "g1" is URI, and 123 is parameter {p1} from URI.

NOTE

<property name="{ http://teiid.org/rest }auto-generate" value="true"/>, can be used to
control the generation of the REST based WAR based on the VDB. This property along
with at least one procedure with REST based extension metadata is required to generate
a REST WAR file. Also, the procedure will return the result set with single column of either
XML, CLOB, BLOB or String. When PRODUCES property is not defined, this property is
derived from the result column that is projected out.

When designing the procedures that will be invoked through GET based call, the input parameters for
procedures can be defined in the PATH of the URI, as the {p1} example above, or they can also be
defined as query parameter, or combination of both. Here is an example:

Make sure that the number of parameters defined on the URI and query match to the parameters defined
on procedure definition. If you defined a default value for a parameter on the procedure, and that
parameter going to be passed in query parameter on URL then you have choice to omit that query
parameter, if you defined as PATH you must supply a value for it.

'POST' methods MUST not be defined with URI with PATHS for parameters as in GET operations, the
procedure parameters are automatically added as @FormParam annotations on the generated
procedure. A client invoking this service must use FORM to post the values for the parameters. The
FORM field names MUST match the names of the procedure parameters names.

If any one of the procedure parameters are BLOB, CLOB or XML type, then POST operation can be only
invoked using "multipart/form-data" RFC-2388 protocol. This allows user to upload large binary or XML
files efficiently to Teiid using streaming".

If a parameter to the procedure is VARBINARY type then the value of the parameter must be properly
BASE64 encoded, irrespective of the HTTP method used to execute the procedure. If this VARBINARY
has large content, then consider using BLOB.

 CREATE VIRTUAL PROCEDURE g1Table(IN p1 integer) RETURNS TABLE
(xml_out xml) OPTIONS (UPDATECOUNT 0, "REST:METHOD" 'GET', "REST:URI"
'g1/{p1}')
 AS
 BEGIN
 SELECT XMLELEMENT(NAME "rows", XMLATTRIBUTES (g1Table.p1
as p1), XMLAGG(XMLELEMENT(NAME "row", XMLFOREST(e1, e2)))) AS xml_out FROM
PM1.G1;
 END
]]> </metadata>
 </model>

</vdb>

http://{host}:8080/sample_1/view/g1/123

http://{host}:8080/sample_1/view/g1?p1=123
http://{host}:8080/sample_1/view/g1/123?p2=foo

CHAPTER 9. GENERATED REST SERVICES

153

http://teiid.org/rest

9.4. CONSIDERATIONS FOR GENERATED REST SERVICES

If you defined a procedure that returns a XML content, then REST service call must be called with
"accepts" HTTP header of "application/xml". Also, if you defined a procedure that returns a JSON
content and PRODUCES property is defined "json" then HTTP client call must include the "accepts"
header of "application/json". In the situations where "accepts" header is missing, and only one procedure
is defined with unique path, that procedure will be invoked. If there are multiple procedures with same
URI path, for example one generating XML and another generating JSON content, then "accepts" header
directs the REST engine as to which procedure will be invoked to get the results. A wrong "accepts"
header will result in error.

WARNING

Ensure the number of parameters defined on the URI must match to the parameters
defined on procedure definition. An error with parameter definition will result in
procedure being skipped from generation of REST based service or error with 'GET'
based methods. 'POST' methods do not need to be defined with URI paths, the
procedure parameters are automatically added as @FormParam annotations on the
generated procedure.

9.5. SECURITY FOR GENERATED REST SERVICES

By default all the generated Rest based services are secured using "HTTPBasic" with security domain
"teiid-security" and with security role "rest". However, these properties can be customized by defining the
then in vdb.xml file.

Example 9.1. Example vdb.xml file security specification

security-type - defines the security type. allowed values are "HttpBasic" or "none". If omitted will
default to "HttpBasic"

security-domain - defines JAAS security domain to be used with HttpBasic. If omitted will default
to "teiid-security"



<vdb name="sample" version="1">
 <property name="UseConnectorMetadata" value="true" />
 <property name="{http://teiid.org/rest}auto-generate" value="true"/>
 <property name="{http://teiid.org/rest}security-type"
value="HttpBasic"/>
 <property name="{http://teiid.org/rest}security-domain"
value="teiid-security"/>
 <property name="{http://teiid.org/rest}security-role"
value="example-role"/>
 <property name="{http://teiid.org/rest}passthrough-auth"
value="true"/>

 ...
</vdb>

Development Guide Volume 3: Reference Material

154

security-role - security role that HttpBasic will use to authorize the users. If omitted the value will
default to "rest"

passthough-auth - when defined the pass-through-authentication is used to login in to JBoss
Data Virtualization. When this is set to "true", make sure that the "embedded" transport
configuration in standalone.xml has defined a security-domain that can be authenticated
against. Failure to add the configuration change will result in authentication error. Defaults to
false.

IMPORTANT

it is our intention to provide other types of security based on ws-security in future
releases.

9.6. AD-HOC REST SERVICES

Apart from the explicitly defined procedure based rest services, the generated jax-rs war file will also
implicitly include a special rest based service under URI "/query" that can take any XML or JSON
producing SQL as parameter and expose the results of that query as result of the service. This service is
defined with "POST", accepting a Form Parameter named "sql". For example, after you deploy the VDB
defined in above example, you can issue a HTTP POST call as

A sample HTTP Request from Java can be made like below:

 http://localhost:8080/sample_1/view/query
 sql=SELECT XMLELEMENT(NAME "rows",XMLAGG(XMLELEMENT(NAME "row",
XMLFOREST(e1, e2)))) AS xml_out FROM PM1.G1

 public static String httpCall(String url, String method, String
params) throws Exception {
 StringBuffer buff = new StringBuffer();
 HttpURLConnection connection = (HttpURLConnection) new
URL(url).openConnection();
 connection.setRequestMethod(method);
 connection.setDoOutput(true);

 if (method.equalsIgnoreCase("post")) {
 OutputStreamWriter wr = new
OutputStreamWriter(connection.getOutputStream());
 wr.write(params);
 wr.flush();
 }

 BufferedReader serverResponse = new BufferedReader(new
InputStreamReader(connection.getInputStream()));
 String line;
 while ((line = serverResponse.readLine()) != null) {
 buff.append(line);
 }
 return buff.toString();
 }

 public static void main(String[] args) throws Exception {

CHAPTER 9. GENERATED REST SERVICES

155

 String params = URLEncoder.encode("sql", "UTF-8") + "=" +
URLEncoder.encode("SELECT XMLELEMENT(NAME "rows",XMLAGG(XMLELEMENT(NAME
"row", XMLFOREST(e1, e2)))) AS xml_out FROM PM1.G1", "UTF-8");
 httpCall("http://localhost:8080/sample_1/view/query", "POST",
params);
 }

Development Guide Volume 3: Reference Material

156

CHAPTER 10. MULTI-SOURCE MODELS

10.1. MULTI-SOURCE MODELS

Multi-source models can be used to quickly access data in multiple sources with homogeneous
metadata. When you have multiple instances of data that are using identical schema (horizontal
sharding), JBoss Data Virtualization can help you aggregate data across all the instances, using "multi-
source" models. In this scenario, instead of creating/importing a model for every data source, user must
define one source model that represents the schema and configure multiple data "sources" underneath
it. During runtime, when a query issued against this model, the query engine analyzes the information
and gathers the required data from all the sources configured and aggregates the results and provides in
a single result set. Since all sources use the same physical metadata, this feature is most appropriate for
accessing the same source type with multiple instances.

10.2. MULTI-SOURCE MODEL CONFIGURATION

To mark a model as multi-source, multisource can be set to true and then more than one source can be
listed for the model in the vdb.xml file. The following example shows a single model dynamic VDB with
multiple sources defined.

NOTE

Currently the tooling support for managing the multi-source feature is limited, so if you
need to use this feature build the VDB as usual in the Teiid Designer and then edit the
vdb.xml file in the VDB archive using a Text editor to add the additional sources as
defined above. You must deploy a separate data source for each source defined in the
XML file.

In the above example, the VDB defined has single model called Customers, that has multiple sources
(chicago, newyork, and la) that define different instances of data.

10.3. THE MULTI-SOURCE COLUMN

<vdb name="vdbname" version="1">
 <model visible="true" type="PHYSICAL" name="Customers"
path="/Test/Customers.xmi">
 <property name="multisource" value="true"/>
 <!-- optional properties
 <property name="multisource.columnName" value="somename"/>
 <property name="multisource.addColumn" value="true"/>
 -->
 <source name="chicago"
 translator-name="oracle" connection-jndi-name="chicago-
customers"/>
 <source name="newyork"
 translator-name="oracle" connection-jndi-name="newyork-
customers"/>
 <source name="la"
 translator-name="oracle" connection-jndi-name="la-
customers"/>
 </model>
</vdb>

CHAPTER 10. MULTI-SOURCE MODELS

157

When a model is marked as multi-source, the engine will add or use an existing column on each table to
represent the source name values. In the above vdb.xml the column would return chicago , la ,
newyork for each of the respective sources. The name of the column defaults to SOURCE_NAME, but
is configurable by setting the model property multisource.columnName . If a column already exists on the
table (or an IN procedure parameter) with the same name, the engine will assume that it should
represent the multi-source column and it will not be used to retrieve physical data. If the multi-source
column is not present, the generated column will be treated as a pseudo column which is not selectable
via wildcards (* nor tbl.*).

This allows queries like the following:

10.4. THE MULTI-SOURCE COLUMN IN SYSTEM METADATA

The pseudo column is by default not present in your actual metadata; it is not added on source
tables/procedures when you import the metadata. If you would like to use the multi-source column in
your transformations to control which sources are accessed or updated or you would like the column
reported via metadata facilities, there are several options:

With either VDB type to make the multi-source column present in the system metadata, you can
set the model property multisource.addColumn to true on a multi-source model. Care must be
taken though when using this property in Teiid Designer as any transformation logic
(views/procedures) that you have defined will not have been aware of the multi-source column
and may fail validation upon server deployment.

If using Teiid Designer, you can manually add the multi-source column.

If using Dynamic VDBs, the pseudo-column will already be available to transformations, but will
not be present in your System metadata by default. If you are using DDL and you would like to
be selective (rather than using the multisource.addColumn property), you can manually add the
column via DDL.

10.5. MULTI-SOURCE MODELS: PLANNING AND EXECUTION

The planner logically treats a multi-source table as if it were a view containing the union all of the
respective source tables. More complex partitioning scenarios, such as heterogeneous sources or list
partitioning will require the use of a Partitioned Union.

Most of the federated optimizations available over unions are still applicable in multi-source mode. This
includes aggregation pushdown/decomposition, limit pushdown, join partitioning, etc.

10.6. MULTI-SOURCE MODELS: SELECT, UPDATE AND DELETE

A multi-source query against a SELECT/UPDATE/DELETE may affect any subset of the sources
based upon the evaluation of the WHERE clause.

The multi-source column may not be targeted in an update change set.

The sum of the update counts for UPDATEs/DELETEs will be returned as the resultant update
count.

select * from table where SOURCE_NAME = 'newyork'
update table column=value where SOURCE_NAME='chicago'
delete from table where column = x and SOURCE_NAME='la'
insert into table (column, SOURCE_NAME) VALUES ('value', 'newyork')

Development Guide Volume 3: Reference Material

158

When running under a transaction in a mode that detects the need for a transaction and multiple
updates may performed or a transactional read is required and multiple sources may be read
from, a transaction will be started to enlist each source.

10.7. MULTI-SOURCE MODELS: INSERT

A multi-source INSERT must use the source_name column as an insert column to specify which
source will be targeted by the INSERT. Only an INSERT using the VALUES clause is supported.

10.8. MULTI-SOURCE MODELS: STORED PROCEDURES

A physical stored procedure requires the addition of a string in parameter matching the multi-source
column name to specify which source the procedure is executed on. If the parameter is not present and
defaults to a null value, then the procedure will be executed on each source. It is not possible to execute
procedures that are required to return IN/OUT, OUT, or RETURN parameters values on more than 1
source.

Example 10.1. Example DDL

Example 10.2. Example Calls Against A Single Source

Example 10.3. Example Calls Against All Sources

CREATE FOREIGN PROCEDURE PROC (arg1 IN STRING NOT NULL, arg2 IN STRING,
SOURCE_NAME IN STRING)

CALL PROC(arg1=>'x', SOURCE_NAME=>'sourceA')
EXEC PROC('x', 'y', 'sourceB')

CALL PROC(arg1=>'x')
EXEC PROC('x', 'y')

CHAPTER 10. MULTI-SOURCE MODELS

159

CHAPTER 11. DDL METADATA

11.1. DDL METADATA

A VDB can define models/schemas using DDL. Here is a small example of how one can define a view
inside the -vdb.xml file. See the <metadata> element under <model>.

Example 11.1. Example to show view definition

Another complete DDL based example is at the end of this section.

NOTE

The declaration of metadata using DDL, NATIVE or DDL-FILE is supported out of the
box, however the MetadataRepository interface allows users to plug-in their own
metadata facilities. For example, you can write a Hibernate based store that can feed the
necessary metadata. You can find out more about custom metadata repositories in Red
Hat JBoss Data Virtualization Development Guide: Server Development.

NOTE

The DDL based schema is not constrained to be defined only for the view models.

NOTE

The full grammar for DDL is in the appendix.

11.2. FOREIGN TABLE

A FOREIGN table is a table that is defined on a physical model that represents a real relational table in
source databases like Oracle, SQLServer etc. For relational databases, JBoss Data Virtualization has
the capability to automatically retrieve the database schema information upon the deployment of the
VDB, if one like to auto import the existing schema. However, the user can use below FOREIGN table
semantics, when they would like to explicitly define tables on PHYSICAL models or represent non-
relational data as relational data in custom translators.

<model visible = "true" type = "VIRTUAL" name = "customers">
 <metadata type = "DDL"><![CDATA[
 CREATE VIEW PARTS (
 PART_ID integer PRIMARY KEY,
 PART_NAME varchar(255),
 PART_COLOR varchar(30),
 PART_WEIGHT varchar(255)
) AS
 select a.id as PART_ID, a.name as PART_NAME, b.color
as PART_COLOR, b.weight as PART_WEIGHT from modelA.part a, modelB.part b
where a.id = b.id
]]>
 </metadata>
</model>

Development Guide Volume 3: Reference Material

160

Example 11.2. Example:Create Foreign Table(Created on PHYSICAL model)

NOTE

See "create table" in Section A.7, “Productions”.

11.3. VIEW

A view is a virtual table. A view contains rows and columns,like a real table. The fields in a view are fields
from one or more real tables from the source or other view models. They can also be expressions made
up multiple columns, or aggregated columns. When column definitions are not defined on the view table,
they will be derived from the projected columns of the view's select transformation that is defined after
the AS keyword.

You can add functions, JOIN statements and WHERE clauses to a view data as if the data were coming
from one single table.

This is how you create a view table on a virtual model:

11.4. TABLE OPTIONS

You can use the following options when creating a table or view. See "create table body" in Section A.7,
“Productions”. Any others properties defined will be considered as extension metadata.

Property Data Type or Allowed Values Description

UUID string This is the unique identifier for a
view.

MATERIALIZED 'TRUE'|'FALSE' This is applicable to views only. It
defines if a table is materialized.

MATERIALIZED_TABLE 'table.name' This is applicable to views only. If
this view is being materialized to a
external database, this defines the
name of the table that is being
materialized.

CREATE FOREIGN TABLE Customer (id integer PRIMARY KEY, firstname
varchar(25), lastname varchar(25), dob timestamp);

CREATE FOREIGN TABLE Order (id integer PRIMARY KEY, customerid integer,
saledate date, amount decimal(25,4), CONSTRAINT fk FOREGIN
KEY(customerid) REFERENCES Customer(id));

CREATE VIEW CustomerOrders (name varchar(50), saledate date, amount
decimal) OPTIONS (CARDINALITY 100, ANNOTATION 'Example')
 AS
 SELECT concat(c.firstname, c.lastname) as name, o.saledate as saledate,
o.amount as amount FROM Customer C JOIN Order o ON c.id = o.customerid;

CHAPTER 11. DDL METADATA

161

CARDINALITY int Costing information. Number of
rows in the table. Used for
planning purposes

UPDATABLE 'TRUE'|'FALSE' Defines if the view is allowed to
update or not

ANNOTATION string Description of the view

Property Data Type or Allowed Values Description

11.5. COLUMN OPTIONS

You can use the following options when specifying columns in the creation of a table or view. Any others
properties defined will be considered as extension metadata.

Property Data Type or Allowed Values Description

UUID string A unique identifier for the column

NAMEINSOURCE string If this is a column name on the
FOREIGN table, this value
represents name of the column in
source database, if omitted the
column name is used when
querying for data against the
source

CASE_SENSITIVE 'TRUE'|'FALSE'

SELECTABLE 'TRUE'|'FALSE' TRUE when this column is
available for selection from the
user query

UPDATABLE 'TRUE'|'FALSE' Defines if the column is updatable.
Defaults to true if the view/table is
updatable.

SIGNED 'TRUE'|'FALSE'

CURRENCY 'TRUE'|'FALSE'

FIXED_LENGTH 'TRUE'|'FALSE'

SEARCHABLE 'SEARCHABLE'|'UNSEARCHABL
E'|'LIKE_ONLY'|'ALL_EXCEPT_LI
KE'

column searchability, usually
dictated by the data type

MIN_VALUE

Development Guide Volume 3: Reference Material

162

MAX_VALUE

CHAR_OCTET_LENGTH integer

ANNOTATION string

NATIVE_TYPE string

RADIX integer

NULL_VALUE_COUNT long costing information. Number of
NULLS in this column

DISTINCT_VALUES long costing information. Number of
distinct values in this column

Property Data Type or Allowed Values Description

11.6. TABLE CONSTRAINTS

Constraints can be defined on table/view to define indexes and relationships to other tables/views. See
"create table body" in Section A.7, “Productions”.

This information is used by the JBoss Data Virtualization optimizer to plan queries or use the indexes in
materialization tables to optimize the access to the data.

CONSTRAINTS are same as one can define on RDBMS.

Example 11.3. Example of CONSTRAINTs

11.7. INSTEAD OF TRIGGERS

A view comprising multiple base tables must use an INSTEAD OF trigger to support inserts, updates and
deletes that reference data in the tables. See "create trigger" in Section A.7, “Productions”.

Based on the select transformation's complexity some times INSTEAD OF Triggers are automatically
provided for the user when "UPDATABLE" OPTION on the view is set to "TRUE". However, using the
CREATE TRIGGER mechanism user can provide/override the default behaviour.

Example 11.4. Example:Define instead of trigger on View

CREATE VIEW CustomerOrders (name varchar(50), saledate date, amount
decimal,
 CONSTRAINT EXAMPLE_INDEX INDEX (name, amount)
 ACCESSPATTERN (name)
 PRIMARY KEY ...

CREATE TRIGGER ON CustomerOrders INSTEAD OF INSERT AS
 FOR EACH ROW
 BEGIN ATOMIC

CHAPTER 11. DDL METADATA

163

11.8. PROCEDURES AND FUNCTIONS

A user can define one of the following functions:

Source Procedure ("CREATE FOREIGN PROCEDURE") - a stored procedure in source

Source Function ("CREATE FOREIGN FUNCTION") - A function that is supported by the
source, where JBoss Data Virtualization will pushdown to source instead of evaluating in the
JBoss Data Virtualization engine.

Virtual Procedure ("CREATE VIRTUAL PROCEDURE") - Similar to stored procedure, however
this is defined using the JBoss Data Virtualization Procedure language and evaluated in the
JBoss Data Virtualization engine.

Function/UDF ("CREATE VIRTUAL FUNCTION") - A user defined function, that can be defined
using the Teiid procedure language or can have the implementation defined using a JAVA
Class.

Here is an example procedure:

Here is an example function:

11.9. VARIABLE ARGUMENT SUPPORT

Instead of using just an IN parameter, the last non optional parameter can be declared VARIADIC to
indicate that it can be repeated 0 or more times when the procedure is called positionally. Section A.7,
“Productions”.

Example 11.5. Example:Vararg procedure

11.10. FUNCTION OPTIONS

 INSERT INTO Customer (...) VALUES (NEW.value ...);
 END

CREATE VIRTUAL PROCEDURE CustomerActivity(customerid integer) RETURNS
(name varchar(25), activitydate date, amount decimal) AS
 BEGIN
 ...
 END

CREATE VIRTUAL FUNCTION CustomerRank(customerid integer) RETURNS integer
AS
 BEGIN
 ...
 END

CREATE FOREIGN PROCEDURE proc (x integer, VARIADIC z integer) returns (x
string);

Development Guide Volume 3: Reference Material

164

You can use the following options when creating functions. See "create procedure" in Section A.7,
“Productions”. Any others properties defined will be considered as extension metadata.

Property Data Type or Allowed Values Description

UUID string unique Identifier

NAMEINSOURCE If this is source function/procedure
the name in the physical source,
if different from the logical name
given above

ANNOTATION string Description of the
function/procedure

CATEGORY string Function Category

DETERMINISM
NONDETERMINISTIC

COMMAND_DETERMIN
ISTIC

SESSION_DETERMINIS
TIC

USER_DETERMINISTIC

VDB_DETERMINISTIC

DETERMINISTIC

NULL-ON-NULL 'TRUE'|'FALSE'

JAVA_CLASS string Java Class that defines the
method in case of UDF

JAVA_METHOD string The Java method name on the
above defined java class for the
UDF implementation

VARARGS 'TRUE'|'FALSE' Indicates that the last argument of
the function can be repeated 0 to
any number of times. default false.
It is more proper to use a
VARIADIC parameter.

AGGREGATE 'TRUE'|'FALSE' Indicates the function is a user
defined aggregate function.
Properties specific to aggregates
are listed below:

Note that NULL-ON-NULL, VARARGS, and all of the AGGREGATE properties are also valid relational
extension metadata properties that can be used on source procedures marked as functions.

CHAPTER 11. DDL METADATA

165

You can also create FOREIGN functions that are supported by a source. See the section on user
defined functions in Red Hat JBoss Data Virtualization Development Guide: Server Development for
more information about source supported functions.

11.11. AGGREGATE FUNCTION OPTIONS

Property Data Type or Allowed Values Description

ANALYTIC 'TRUE'|'FALSE' indicates the aggregate function
must be windowed. default false.

ALLOWS-ORDERBY 'TRUE'|'FALSE' indicates the aggregate function
supports an ORDER BY clause.
default false

ALLOWS-DISTINCT 'TRUE'|'FALSE' indicates the aggregate function
supports the DISTINCT keyword.
default false

DECOMPOSABLE 'TRUE'|'FALSE' indicates the single argument
aggregate function can be
decomposed as agg(agg(x)) over
subsets of data. default false

USES-DISTINCT-ROWS 'TRUE'|'FALSE' indicates the aggregate function
effectively uses distinct rows
rather than all rows. default false

Note that virtual functions defined using the Teiid procedure language cannot be aggregate functions.

NOTE

If you have defined a UDF (virtual) function without a Teiid procedure definition, then it
must be accompanied by its implementation in Java. To configure the Java library as
dependency to the VDB, see Support for User-Defined Functions in Red Hat JBoss Data
Virtualization Development Guide: Server Development.

11.12. PROCEDURE OPTIONS

You can use the following options when creating procedures. Any others properties defined will be
considered as extension metadata.

Property Data Type or Allowed Values Description

UUID string Unique Identifier

NAMEINSOURCE string In the case of source

ANNOTATION string Description of the procedure

Development Guide Volume 3: Reference Material

166

UPDATECOUNT int if this procedure updates the
underlying sources, what is the
update count, when update count
is >1 the XA protocol for execution
is enforced

Property Data Type or Allowed Values Description

11.13. OPTIONS

Options can be provided for several commands. See "options clause" in Section A.7, “Productions”.

NOTE

Any option name of the form prefix:key will attempt to be resolved against the current set
of namespaces. Failure to resolve will result in the option name being left as is. A
resolved name will be replaced with {uri}key. See also Namespaces for Extension
Metadata.

Options can also be added using the ALTER statement.

11.14. ALTER STATEMENT

ALTER statements currently primarily support adding OPTIONS properties to Tables, Views and
Procedures. Using a ALTER statement, you can either add, modify or remove a property.

See "alter column options", "alter options", and "alter options list" in Section A.7, “Productions”.

Example 11.6. Example ALTER

ALTER statements are especially useful, when user would like to modify/enhance the metadata that has
been imported from a NATIVE datasource. For example, if you have a database called "northwind", and
you imported that metadata and would like to add CARDINALITY to its "customer" table, you can use
ALTER statement, along with "chainable" metadata repositories feature to add this property to the
desired table. The below shows an example -vdb.xml file, that illustrates the usage.

Example 11.7. Example VDB

ALTER FOREIGN TABLE "customer" OPTIONS (ADD CARDINALITY 10000);
ALTER FOREIGN TABLE "customer" ALTER COLUMN "name" OPTIONS(SET UPDATABLE
FALSE)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="northwind" version="1">
 <model name="nw">
 <property name="importer.importKeys" value="true"/>
 <property name="importer.importProcedures" value="true"/>
 <source name="northwind-connector" translator-name="mysql"
connection-jndi-name="java:/nw-ds"/>

CHAPTER 11. DDL METADATA

167

11.15. NAMESPACES FOR EXTENSION METADATA

When defining the extension metadata in the case of Custom Translators, the properties on
tables/views/procedures/columns can define namespace for the properties such that they will not collide
with properties specific to JBoss Data Virtualization. The property should be prefixed with alias of the
Namespace. Prefixes starting with teiid_ are reserved for use by JBoss Data Virtualization.

See "option namespace" in Section A.7, “Productions”.

Example 11.8. Example of Namespace

Table 11.1. Built-in Namespace Prefixes

Prefix URI Description

teiid_rel http://www.teiid.org/ext/relational/2
012

Relational extensions. Uses
include function and native query
metadata

teiid_sf http://www.teiid.org/translator/sale
sforce/2012

Salesforce extensions.

11.16. EXAMPLE DDL METADATA

 <metadata type = "NATIVE,DDL"><![CDATA[
 ALTER FOREIGN TABLE "customer" OPTIONS (ADD CARDINALITY
10000);
 ALTER FOREIGN TABLE "customer" ALTER COLUMN "name"
OPTIONS(SET UPDATABLE FALSE);
]]>
 </metadata>
 </model>
</vdb>

SET NAMESPACE 'http://custom.uri' AS foo

CREATE VIEW MyView (...) OPTIONS ("foo:mycustom-prop" 'anyvalue')

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="twitter" version="1">

 <description>Shows how to call Web Services</description>

 <property name="UseConnectorMetadata" value="cached" />

 <model name="twitter">
 <source name="twitter" translator-name="rest" connection-jndi-
name="java:/twitterDS"/>
 </model>
 <model name="twitterview" type="VIRTUAL">

Development Guide Volume 3: Reference Material

168

http://www.teiid.org/ext/relational/2012
http://www.teiid.org/translator/salesforce/2012

 <metadata type="DDL"><![CDATA[
 CREATE VIRTUAL PROCEDURE getTweets(query varchar) RETURNS
(created_on varchar(25), from_user varchar(25), to_user varchar(25),
 profile_image_url varchar(25), source varchar(25), text
varchar(140)) AS
 select tweet.* from
 (call twitter.invokeHTTP(action => 'GET',
endpoint =>querystring('',query as "q"))) w,
 XMLTABLE('results' passing JSONTOXML('myxml',
w.result) columns
 created_on string PATH 'created_at',
 from_user string PATH 'from_user',
 to_user string PATH 'to_user',
 profile_image_url string PATH
'profile_image_url',
 source string PATH 'source',
 text string PATH 'text') tweet;
 CREATE VIEW Tweet AS select * FROM twitterview.getTweets;
]]> </metadata>
 </model>

 <translator name="rest" type="ws">
 <property name="DefaultBinding" value="HTTP"/>
 <property name="DefaultServiceMode" value="MESSAGE"/>
 </translator>
</vdb>

CHAPTER 11. DDL METADATA

169

CHAPTER 12. TRANSLATORS

12.1. JBOSS DATA VIRTUALIZATION CONNECTOR ARCHITECTURE

The process of integrating data from an enterprise information system into JBoss Data Virtualization
requires one to two components:

1. a translator (mandatory) and

2. a resource adapter (optional), also known as a connector. Most of the time, this will be a Java
EE Connector Architecture (JCA) Adapter.

A translator is used to:

translate JBoss Data Virtualization commands into commands understood by the datasource for
which the translator is being used,

execute those commands,

return batches of results from the datasource, translated into the formats that JBoss Data
Virtualization is expecting.

A resource adapter (or connector):

handles all communications with individual enterprise information systems, (which can include
databases, data feeds, flat files and so forth),

can be a JCA Adapter or any other custom connection provider (the JCA specification ensures
the writing, packaging and configuration are undertaken in a consistent manner),

NOTE

Many software vendors provide JCA Adapters to access different systems. Red
Hat recommends using vendor-supplied JCA Adapters when using JMS with
JCA. See
http://docs.oracle.com/cd/E21764_01/integration.1111/e10231/adptr_jms.htm

removes concerns such as connection information, resource pooling, and authentication for
translators.

With a suitable translator (and optional resource adapter), any datasource or Enterprise Information
System can be integrated with JBoss Data Virtualization.

12.2. TRANSLATORS

A translator acts as the bridge between JBoss Data Virtualization and an external system, which is most
commonly accessed through a JCA resource adapter. Translators indicate what SQL constructs are
supported and what import metadata can be read from particular datasources.

A translator is typically paired with a particular JCA resource adapter. A JCA resource adapter is not
needed in instances where features such as pooling, environment dependent configuration
management, or advanced security handling are not needed.

Development Guide Volume 3: Reference Material

170

http://docs.oracle.com/cd/E21764_01/integration.1111/e10231/adptr_jms.htm

NOTE

See Red Hat JBoss Data Virtualization Development Guide: Server Development for
more information on developing custom translators and JCA resource adapters.

See the Red Hat JBoss Data Virtualization Administration and Configuration Guide and
the examples in EAP_HOME/docs/teiid/datasources for more information about
configuring resource adapters.

12.3. TRANSLATOR PROPERTIES

Translators can have a number of configurable properties. These are divided among the following
categories:

Execution Properties - these properties determine aspects of how data is retrieved. A list of
properties common to all translators are provided in Section 12.5, “Base Execution Properties”.

NOTE

The execution properties for a translator typically have reasonable defaults. For
specific translator types, base execution properties are already tuned to match
the source. In most cases the user will not need to adjust their values.

Importer Properties - these properties determine what metadata is read for import. There are no
common importer properties.

NOTE

The import capabilities of translators is currently only used by dynamic VDBs and not by
Teiid Designer. See Section 6.6, “Dynamic VDBs”.

12.4. TRANSLATORS IN RED HAT JBOSS DATA VIRTUALIZATION

These are the non-JDBC translators you can use:

accumulo

amazon-s3

cassandra

couchbase

excel

file

google-spreadsheet

infinispan-cache

infinispan-cache-dsl

infinispan-cache-hotrod

CHAPTER 12. TRANSLATORS

171

jpa2

ldap

loopback

map-cache

mongodb

odata

odata4

olap

salesforce

salesforce-34

sap-gateway

sap-nw-gateway

simpledb

solr

ws

There is also a series of JDBC-based translator types you can use:

jdbc-ansi

jdbc-simple

access

actian-vector

db2

derby

hbase

excel-odbc

greenplum

h2

hana

hive

hsql

Development Guide Volume 3: Reference Material

172

impala

ingres

ingres93

intersystems-cache

informix

metamatrix

modeshape

mysql5

netezza

oracle

osisoft-pi

postgresql

prestodb

redshift

sqlserver

sybase

teiid

teradata

vertica

If none of these translators is suitable for your system then you can develop a custom one.

12.5. BASE EXECUTION PROPERTIES

The following execution properties are shared by all translators.

Table 12.1. Base Execution Properties

Name Description Default

Immutable Set to true to indicate that the source never changes. false

RequiresCriteria Set to true to indicate that source
SELECT/UPDATE/DELETE queries require a
WHERE clause.

false

CHAPTER 12. TRANSLATORS

173

SupportsOrderBy Set to true to indicate that the ORDER BY clause is
supported.

false

SupportsOuterJoins Set to true to indicate that OUTER JOINs are
supported.

false

SupportsFullOuterJoins If outer joins are supported, true indicates that FULL
OUTER JOINs are supported.

false

SupportsInnerJoins Set to true to indicate that INNER JOINs are
supported.

false

SupportedJoinCriteria If joins are supported, defines what criteria may be
used as the join criteria. May be one of (ANY,
THETA, EQUI, or KEY).

ANY

MaxInCriteriaSize If in criteria are supported, defines what the
maximum number of in entries are per predicate. -1
indicates no limit.

-1

MaxDependentInPredicates If IN criteria are supported, defines what the
maximum number of predicates that can be used for
a dependent join. Values less than 1 indicate to use
only one IN predicate per dependent value pushed.

-1

DirectQueryProcedureName f the direct query procedure is supported on the
translator, this property indicates the name of the
procedure.

native

SupportsDirectQueryProcedure Set to true to indicate the translator supports the
direct execution of commands

false

ThreadBound Set to true to indicate the translator's Executions
should be processed by only a single thread

false

CopyLobs If true, then returned LOBs (clob, blob, sql/xml) will
be copied by the engine in a memory-safe manner.
Use this option if the source does not support
memory-safe LOBs or you want to disconnect LOBs
from the source connection.

false

Name Description Default

NOTE

Only a subset of the supports metadata can be set through execution properties. If more
control is needed, see Red Hat JBoss Data Virtualization Development Guide: Server
Development.

There are no base importer settings.

Development Guide Volume 3: Reference Material

174

12.6. OVERRIDE EXECUTION PROPERTIES

You can override execution properties for any translator in the vdb.xml file:

The above XML fragment is overriding the oracle translator and altering the behavior of RequiresCriteria
property setting it to true. Note that the modified translator is only available in the scope of this VDB.

12.7. PARAMETERIZABLE NATIVE QUERIES

In some situations the teiid_rel:native-query property and native procedures accept parameterizable
strings that can positionally reference IN parameters. A parameter reference has the form $integer, for
example, $1. Note that one-based indexing is used and that only IN parameters may be referenced.
$integer is reserved, but may be escaped with another $, for example, $$1. The value will be bound as a
prepared value or a literal in a source specific manner. The native query must return a result set that
matches the expectation of the calling procedure.

For example, the native query "select c from g where c1 = $1 and c2 = '$$1'" results in a JDBC source
query of "select c from g where c1 = ? and c2 = '$1'", where ? will be replaced with the actual value
bound to parameter 1.

12.8. DELEGATING TRANSLATORS

You can create a delegating translator by extending the
org.teiid.translator.BaseDelegatingExecutionFactory class.

Once your classes are packaged as a custom translator, you will be able to wire another translator
instance into your delegating translator at runtime in order to intercept all of the calls to the delegate.
This base class does not provide any functionality on its own, other than delegation.

Table 12.2. Execution Properties

Name Description Default

delegateName Translator instance name to
delegate to.

As an example, consider if you are currently using "oracle" translator in your VDB and you need to
intercept the calls going through this translator.

You first write a custom delegating translator:

<translator type="oracle-override" name="oracle">
 <property name="RequiresCriteria" value="true"/>
</translator>

@Translator(name="interceptor", description="interceptor")
public class InterceptorExecutionFactory extends
org.teiid.translator.BaseDelegatingExecutionFactory{
 @Override
 public void getMetadata(MetadataFactory metadataFactory, C conn)
throws TranslatorException {
 // do intercepting code here..

CHAPTER 12. TRANSLATORS

175

Then you deploy this translator.

Then modify your -vdb.xml or .vdb file:

We have defined a "translator" called "oracle-interceptor", which is based on the custom translator
"interceptor" from above, and supplied the translator it required to delegate to "oracle" as its
delegateName. Then, we used this override translator "oracle-interceptor" in the VDB. Now any calls
going into this VDB model's translator will be intercepted by your code to do whatever you need to do.

12.9. AMAZON S3 TRANSLATOR

The Amazon S3 translator, known by the type name amazon-s3, allows you to use Amazon S3 object
resources. The Web Service Data Source resource-adapter is used to access it. Use it together with
TEXTTABLE or XMLTABLE table functions to access CSV and XML formatted data. This translator
supports access to Amazon S3 using access-key and secret-key.

Here is sample VDB that is reading a CSV file from Amazon S3 with name 'g2.txt' in the Amazon S3
bucket called 'teiidbucket':

e1,e2,e3
5,'five',5.0
6,'six',6.0
7,'seven',7.0

 // If you need to call the original delegate, do not call if
do not need to.
 // but if you did not call the delegate fulfill the method
contract
 super.getMetadata(metadataFactory, conn);

 // do more intercepting code here..
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="myvdb" version="1">

 <model name="mymodel">
 <source name="source" translator-name="oracle-interceptor"
connection-jndi-name="java:oracle-ds"/>
 </model>

 <!-- the below it is called translator overriding, where you can
set different properties -->
 <translator name="oracle-interceptor" type="interceptor" />
 <property name="delegateName" value="oracle" />
 </translator>
</vdb>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="example" version="1">
 <model name="s3">
 <source name="web-connector" translator-name="user-s3" connection-
jndi-name="java:/amazon-s3"/>

Development Guide Volume 3: Reference Material

176

Use the translator override mechanism to supply these properties:

Table 12.3. Properties

Name Description Default

Encoding The encoding that should be used
for CLOBs returned by the
getTextFiles procedure. The value
should match an encoding known
to the JRE.

The system default encoding.

Accesskey Amazon Security Access Key.
Log in to Amazon console to find
your security access key. When
provided, this becomes the default
access key

n/a

Secretkey Amazon Security secret Key. Log
in to Amazon console to find your
security secret key. When
provided, this becomes the default
secret key.

n/a

Region Amazon Region to be used with
the request. When provided this
will be default region used.

n/a

Bucket Amazon S3 bucket name, if
provided this will serve as default
bucket to be used for all the
requests

n/a

 </model>
 <model name="Stocks" type="VIRTUAL">
 <metadata type="DDL">
 CREATE VIEW G2 (e1 integer, e2 string, e3 double,PRIMARY KEY (e1))
 AS SELECT SP.e1, SP.e2,SP.e3
 FROM (EXEC s3.getTextFile(name=>'g2.txt')) AS f,
 TEXTTABLE(f.file COLUMNS e1 integer, e2 string, e3 double
HEADER) AS SP;
 </metadata>
 </model>
 <translator name="user-s3" type="amazon-s3">
 <property name="accesskey" value="xxxx"/>
 <property name="secretkey" value="xxxx"/>
 <property name="region" value="us-east-1"/>
 <property name="bucket" value="teiidbucket"/>
 </translator>
</vdb>

CHAPTER 12. TRANSLATORS

177

Encryption When SSE-C type encryption
used, where customer supplies
the encryption key, this key will be
used for defining the "type" of
encryption algorithm used.
Supported are AES-256, AWS-
KMS. If provided this will be used
as default algorithm for all "get"
based calls

n/a

Encryptionkey When SSE-C type encryption
used, where customer supplies
the encryption key, this key will be
used for defining the "encryption
key". If provided this will be used
as default key for all "get" based
calls

n/a

Name Description Default

When you add a model (schema) as in the example, the following procedure calls are available for you
to execute against Amazon S3.

NOTE

Bucket, region, accesskey, secretkey, encryption and encryptionkey are optional or
nullable parameters in most of the methods provided. (You do not need to provide them if
they are already configured using translator override properties.)

getTextFile(… ​) retrieves the given named object as a text file from a specified bucket and region using
the provided security credentials as a clob.

NOTE

The endpoint is optional. When it is provided, this URL is used instead of the one
constructed by the supplied properties.

Use encryption and encryptionkey only if server-side security with customer supplied keys
(SSE-C) is in force.

If stream is set to true, then returned lobs may only be read once and are not buffered to disk.

getTextFile(string name NOT NULL, string bucket, string region,
 string endpoint, string accesskey, string secretkey,string encryption,
string encryptionkey, boolean stream default false)
 returns TABLE(file blob, endpoint string, lastModified string, etag
string, size long);

exec getTextFile(name=>'myfile.txt');

SELECT SP.e1, SP.e2,SP.e3, f.lastmodified

Development Guide Volume 3: Reference Material

178

getFile(… ​) retrieves the given named object as a binary file from a specified bucket and region using the
provided security credentials as a blob.

saveFile(… ​) save the CLOB, BLOB, or XML value to a given name and bucket. In this procedure,
signature contents parameter can be any of the lob types:

NOTE

saveFile does NOT support streaming or chunked-based upload of contents. If you try to
load very large objects there is a risk of encountering out-of-memory issues. This method
does not support SSE-C based security encryption either.

deleteFile(… ​) deletes the named object from the bucket.

Here is an example:

list(… ​) lists the contents of the bucket.

The resulting output is the XML file that Amazon S3 provides:

 FROM (EXEC getTextFile(name=>'myfile.txt')) AS f,
 TEXTTABLE(f.file COLUMNS e1 integer, e2 string, e3 double HEADER) AS
SP;

getFile(string name NOT NULL, string bucket, string region,
 string endpoint, string accesskey, string secretkey, string encryption,
string encryptionkey, boolean stream default false)
 returns TABLE(file blob, endpoint string, lastModified string, etag
string, size long)

exec getFile(name=>'myfile.xml', bucket=>'mybucket', region=>'us-east-1',
accesskey=>'xxxx', secretkey=>'xxxx');

select b.* from (exec getFile(name=>'myfile.xml', bucket=>'mybucket',
region=>'us-east-1', accesskey=>'xxxx', secretkey=>'xxxx')) as a,
XMLTABLE('/contents' PASSING XMLPARSE(CONTENT a.result WELLFORMED) COLUMNS
e1 integer, e2 string, e3 double) as b;

call saveFile(string name NOT NULL, string bucket, string region, string
endpoint,
 string accesskey, string secretkey, contents object)

exec saveFile(name=>'g4.txt', contents=>'e1,e2,e3\n1,one,1.0\n2,two,2.0');

call deleteFile(string name NOT NULL, string bucket, string region, string
endpoint, string accesskey, string secretkey)

exec deleteFile(name=>'myfile.txt');

call list(string bucket, string region, string accesskey, string
secretkey, nexttoken string)
 returns Table(result clob)

CHAPTER 12. TRANSLATORS

179

You can parse this into a view:

When all properties like bucket, region, accesskey and secretkey are defined as translator override
properties one can also simply issue this:

NOTE

If there are more then 1000 objects in the bucket, then the value 'NextContinuationToken'
need to be supplied as the 'nexttoken' into the list call to fetch the next batch of objects.

The resource adapter for this translator is provided through the Web Service Data Source.

12.10. AMAZON SIMPLEDB TRANSLATOR

Amazon SimpleDB is a web service for running queries on structured data in real time. This service
works in close conjunction with Amazon Simple Storage Service (Amazon S3) and Amazon Elastic
Compute Cloud (Amazon EC2), collectively providing the ability to store, process and query data sets in
the cloud. These services are designed to make web-scale computing easier and more cost-effective for
developers.

This translator provides you with a way to connect to Amazon SimpleDB and it also provides relational
functionality to add records directly from a user or from other sources that are integrated with Teiid. It
does so via SQL. It also gives you the ability to read, update and delete existing records from the
SimpleDB store.

<?xml version="1.0" encoding="UTF-8"?>/n
<ListBucketResult
 xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <Name>teiidbucket</Name>
 <Prefix></Prefix>
 <KeyCount>1</KeyCount>
 <MaxKeys>1000</MaxKeys>
 <IsTruncated>false</IsTruncated>
 <Contents>
 <Key>g2.txt</Key>
 <LastModified>2017-08-08T16:53:19.000Z</LastModified>
 <ETag>"fa44a7893b1735905bfcce59d9d9ae2e"</ETag>
 <Size>48</Size>
 <StorageClass>STANDARD</StorageClass>
 </Contents>
</ListBucketResult>

select b.* from (exec list(bucket=>'mybucket', region=>'us-east-1')) as a,
 XMLTABLE(XMLNAMESPACES(DEFAULT 'http://s3.amazonaws.com/doc/2006-03-
01/'), '/ListBucketResult/Contents'
 PASSING XMLPARSE(CONTENT a.result WELLFORMED) COLUMNS Key string,
LastModified string, ETag string, Size string,
 StorageClass string, NextContinuationToken string PATH
'../NextContinuationToken') as b;

SELECT * FROM Bucket

Development Guide Volume 3: Reference Material

180

Amazon SimpleDB is a hosted key/value store where a single key can contain multiple attribute
name/value pairs where "value" can also be a multi-value.

When you import the metadata from SimpleDB into Teiid, the constructs are aligned like this:

Table 12.4. Registry Properties

Simple DB Name SQL (Teiid)

Domain Table

Item Name Column (ItemName) Primary Key

attribute - single value Column - String Datatype

attribute - multi value Column - String Array Datatype

Since all attributes are considered, by default, to be string data types, columns are defined with string
data type. However, during modeling of the schema in Designer, you can use various other data types
supported through Teiid to define a data type of column, if you wish to expose one.

IMPORTANT

If you did modify the data type be something other than a string, do not use these
changed columns in comparison queries, as SimpleDB does only lexicographical
matching. To avoid using them, set the "SearchType" on the changed column to
"UnSearchable"

This is an example Dynamic VDB that shows how you define the SimpleDB translator:

NOTE

The translator does not provide a connection to the SimpleDB. For that purpose, Teiid has
a JCA adapter that provides a connection to SimpleDB using Amazon SDK Java libraries.
To define such connector, see Amazon SimpleDB Data Sources or see an example in the
jboss-as/docs/teiid/datasources/simpledb file.

If you are using Designer Tooling, to create a VDB, you can create or use a Teiid Designer Model
project. Use the "Teiid Connection - Source Model" importer, create a SimpleDB Data Source using the
Data Source Creation wizard and use simpledb as the translator in the importer. The table is created in a
source model by this importer, providing that the data is already defined on Amazon SimpleDB. Create a
VDB and deploy into Teiid Server and use either jdbc, odbc or odata to query it.

The Amazon SimpleDB Translator currently has no import or execution properties.

<vdb name="myvdb" version="1">
 <model name="simpledb">
 <source name="node" translator-name="simpledb" connection-jndi-
name="java:/simpledbDS"/>
 </model>
<vdb>

CHAPTER 12. TRANSLATORS

181

The Amazon SimpleDB Translator supports SELECT statements with a restrictive set of capabilities
including: comparison predicates, IN predicates, LIMIT and ORDER BY. Insert, update, delete are also
supported.

Attributes with multiple values will defined as string array type. So this column is treated SQL Array type.
This table shows the SimpleDB way of querying compared with the Teiid way of querying:

Table 12.5. Registry Properties

SimpleDB Query Teiid Query

select * from mydomain where Rating = '4 stars' or Rating = '****' select * from mydomain where
Rating = ('4 stars','****')

select * from mydomain where Keyword = 'Book' and Keyword =
'Hardcover'

select * from mydomain where
intersection(Keyword,'Book','Hardcov
er')

select * from mydomain where every(Rating) = '****' select * from mydomain where
every(Rating) = '****'

If you want to Insert/Update/Delete you can write prepare statements or you can compose SQL
statements like this:

WARNING

The Direct Query Support feature is turned off by default because of the security risk
this exposes to execute any command against the source. To enable this feature,
override the execution property called SupportsDirectQueryProcedure to true.

NOTE

By default the name of the procedure that executes the queries directly is called native.
Override the execution property DirectQueryProcedureName to change it to another
name.

The SimpleDB translator provides a procedure to execute any ad-hoc simpledb query directly against
the source without Teiid parsing or resolving. Since the metadata of this procedure's results are not
known to Teiid, they are returned as an object array. ARRAYTABLE can be used construct tabular
output for consumption by client applications. Direct query supported for "select" based calls.

INSERT INTO mydomain (ItemName, title, author, year, pages, keyword,
rating) values ('0385333498', 'The Sirens of Titan', 'Kurt Vonnegut',
('1959'), ('Book', Paperback'), ('*****','5 stars','Excellent'))



SELECT X.*
 FROM simpledb_source.native('SELECT firstname, lastname FROM users') n,
ARRAYTABLE(n.tuple COLUMNS firstname string, lastname string) AS X

Development Guide Volume 3: Reference Material

182

The Teiid-specific Amazon SimpleDB Resource Adapter should be used with this translator

12.11. APACHE ACCUMULO TRANSLATOR

The Apache Accumulo Translator, known by the type name accumulo, exposes querying functionality for
Accumulo Data Sources.

Here are some use cases for this translator:

The Accumulo source can be used in JDV, to continually add/update the documents in the
Accumulo system from other sources automatically.

Access Accumulo through the SQL interface.

Make use of cell-level security through enterprise roles.

The Accumulo translator can be used as an indexing system to gather data from other enterprise
sources such as RDBMS, Web Services, SalesForce and so forth, all in a single-client call
transparently with out any coding.

Apache Accumulo is distributed key value store with a unique data model. It allows you to group its key-
value pairs in a collection called a "table". Define a schema representing Accumulo table structures in
JDV using DDL or Teiid Designer with the metadata extension properties defined below. Since no data
type information is defined on the columns, by default all of the columns are considered to be string data
types. However, during modeling of the schema, one can use various other data types supported through
JDV to define a data type of column, that the user wants to expose. Once this schema is defined and
exposed through VDB in a JDV database, and Accumulo data sources are created, the user can issue
"INSERT/UPDATE/DELETE" based SQL calls to insert/update/delete records into the Accumulo, and
issue "SELECT" based calls to retrieve records from Accumulo.

IMPORTANT

By default, the Accumulo table structure is flat and thus can not define relationships
among tables. A SQL JOIN is performed in the JDV layer rather than pushed to source
even if both tables on either side of the JOIN reside in the Accumulo. Currently any
criteria based on EQUALITY and/or COMPARISON using complex AND/OR clauses are
handled by Accumulo translator and will be properly executed at source.

Here is an example Dynamic VDB:

The translator does NOT provide a connection to the Accumulo. For that purpose, Teiid has a JCA
adapter that provides a connection to Accumulo using Accumulo Java libraries.

If you are using the Designer Tooling, to create a VDB create/use a Teiid Designer Model project, use
the "Teiid Connection- Source Model" importer, create Accumulo Data Source using data source creation
wizard and use accumulo as translator in the importer. The table is created in a source model by the
time you finish with this importer. Create a VDB and deploy into Teiid Server and use either jdbc, odbc or
odata to query.

<vdb name="myvdb" version="1">
 <model name="accumulo">
 <source name="node-one" translator-name="accumulo" connection-
jndi-name="java:/accumuloDS"/>
 </model>
<vdb>

CHAPTER 12. TRANSLATORS

183

The Accumulo translator is capable of traversing through Accumulo table structures and build a metadata
structure for Teiid translator. The schema importer can understand simple tables by traversing a single
ROWID of data, then looks for all the unique keys, based on it and comes up with a tabular structure for
Accumulo based table. Using the following import properties, you can further refine the import behavior.

Table 12.6. Import Properties

Property Name Description Required? Default

ColumnNamePattern How the
column name
is to be
formed

false {CF}_{CQ}

ValueIn Where the
value for
column is
defined CQ or
VALUE

false {VALUE}

NOTE

{CQ}, {CF}, {ROWID} are expressions that you can use to define above properties in any
pattern, and respective values of Column Qualifer, Column Familiy or ROWID will be
replaced at import time. ROW ID of the Accumulo table, is automatically created as
ROWID column, and will be defined as Primary Key on the table.

You can also define the metadata for the Accumulo based model, using DDL or using the Teiid Designer.
When doing such exercise, the Accumulo Translator currently defines following extended metadata
properties to be defined on its Teiid schema model to guide the translator to make proper decisions. The
following properties are described under NAMESPACE "http://www.teiid.org/translator/accumulo/2013",
for user convenience this namespace has alias name teiid_accumulo defined in JDV. To define an
extension property use expression like "teiid_accumulo:{property-name} value". All the properties below
are intended to be used as OPTION properties on COLUMNS. See DDL Metadata for more information
on defining DDL based metadata.

Table 12.7. Extension Metadata Properties

Property Name Description Required? Default

CF Column
Family

true none

CQ Column
Qualifier

false empty

VALUE-IN Value of
column
defined in.
Possible
values
(VALUE, CQ)

false VALUE

Here is an example for a table called "User". A scan returns the following data:

Development Guide Volume 3: Reference Material

184

root@teiid> table User
root@teiid User> scan
 1 name:age [] 43
 1 name:firstname [] John
 1 name:lastname [] Does
 2 name:age [] 10
 2 name:firstname [] Jane
 2 name:lastname [] Smith
 3 name:age [] 13
 3 name:firstname [] Mike
 3 name:lastname [] Davis

If you used the default importer from the Accumulo translator (like the Dynamic VDB defined above), the
table will look like this:

You can set import property 'ColumnNamePattern' to "{CQ}" to generate the column names based on
Column Qualifier instead of the default "{CF}_{CQ}" pattern. Then the metadata will look like this:

Using import properties you can dictate how the table is to be modeled. If the column name is defined as
{CF}, you can use "ColumnNamePattern" as "{CF}". If the value for that column exists in the Column
Qualifier then you can use "ValueIn" as "{CQ}". If you did not use the built-in import (not using Teiid
Designer's Teiid Connection >> Source Model or Dynamic VDB), and would like to manually design the
table in Designer then you must make sure you supply the Extension Metadata Properties defined above
on the User table's columns from Accumulo extended metadata(In Designer, right-click on Model, and
select "Model Extension Definitions" and select Accumulo.

The Red Hat JBoss Data Virtualization-specific Accumulo Resource Adapter must be used with this
translator.

CREATE FOREIGN TABLE "User" (
 rowid string OPTIONS (UPDATABLE FALSE, SEARCHABLE 'All_Except_Like'),
 name_age string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'age',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 name_firstname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'firstname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 name_lastname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'lastname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 CONSTRAINT PK0 PRIMARY KEY(rowid)
) OPTIONS (UPDATABLE TRUE);

CREATE FOREIGN TABLE "User" (
 rowid string OPTIONS (UPDATABLE FALSE, SEARCHABLE 'All_Except_Like'),
 age string OPTIONS (SEARCHABLE 'All_Except_Like', "teiid_accumulo:CF"
'name', "teiid_accumulo:CQ" 'age', "teiid_accumulo:VALUE-IN" '{VALUE}'),
 firstname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'firstname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 lastname string OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_accumulo:CF" 'name', "teiid_accumulo:CQ" 'lastname',
"teiid_accumulo:VALUE-IN" '{VALUE}'),
 CONSTRAINT PK0 PRIMARY KEY(rowid)
) OPTIONS (UPDATABLE TRUE);

CHAPTER 12. TRANSLATORS

185

You cannot perform native queries or use direct query procedures with this translator.

12.12. APACHE SOLR TRANSLATOR

The Apache SOLR Translator, known by the type name solr, exposes querying functionality to Solr Data
Sources. Apache Solr is a search engine built on top of Apache Lucene for indexing and searching. This
translator provides an easy way to connect to existing or new Solr search systems, and provides way to
add documents/records directly from user or other sources that are integrated with JDV. It also gives
ability to read/update/delete existing documents from Solr Search system.

The Solr Translator currently has no import or execution properties. It does not define any extension
metadata.

Here are some usecases for this translator:

Solr source can be used in Teiid, to continually add/update the documents in the search system
from other sources automatically.

If the search fields are stored in Solr system, this can be used as very low latency data retrieval
for serving high traffic applications.

The Solr translator can be used as a fast full-text search system. The Solr document might only
contain index information. If so, then the results will be an inverted index. You can use this to
gather target documents from the other enterprise sources such as RDBMS, Web Services,
SalesForce and so on, and consolidate them all in a single client call without any coding.

Solr search system provides searches based on indexed search fields. Each Solr instance is typically
configured with a single core that defines multiple fields with different type information. Teiid metadata
querying mechanism is equipped with "Luke" based queries, that at deploy time of the VDB use this
mechanism to retrieve all the stored/indexed fields. Currently Teiid does NOT support dynamic fields and
non-stored fields. Based on retrieved fields, Solr translator exposes a single table that contains all the
fields. If a field is multi-value based, its type is represented as Array type.

Once this table is exposed through VDB in a Teiid database, and Solr Data Sources is created, the user
can issue "INSERT/UPDATE/DELETE" based SQL calls to insert/update/delete documents into the Solr,
and issue "SELECT" based calls to retrieve documents from Solr. You can use full range of SQL with
Teiid system integrating other sources along with Solr source.

The Solr Translator supports SELECT statements with a restrictive set of capabilities including:
comparison predicates, IN predicates, LIMIT and Order By.

Here is an example dynamic VDB:

The translator does NOT provide a connection to the Solr. For that purpose, Teiid has a JCA adapter
that provides a connection to Solr using the SolrJ Java library. See an example in see an example in
jboss-as/docs/teiid/datasources/solr

If you are using Designer Tooling, to create VDB then create/use a Teiid Designer Model project, use the
"Teiid Connection - Source Model" importer, create a Solr Data Source using the Data Source Creation

<vdb name="search" version="1">
 <model name="solr">
 <source name="node-one" translator-name="solr" connection-jndi-
name="java:/solrDS"/>
 </model>
<vdb>

Development Guide Volume 3: Reference Material

186

Wizard and use solr as translator in the importer. The search table is created in a source model by the
time you finish with this importer. Create a VDB and deploy into Teiid Server and use either jdbc, odbc or
odata to query.

Use the JDV-specific Solr Resource Adapter with this translator.

12.13. CASSANDRA TRANSLATOR

The Cassandra Translator, known by the type name cassandra, exposes querying functionality to
Cassandra Data Sources. The translator translates Teiid push down commands into Cassandra CQL.

The Cassandra Translator currently has no import or execution properties.

The Cassandra Translator supports only SELECT statements with a restrictive set of capabilities
including: count(*), comparison predicates, IN predicates, and LIMIT. Consider a custom extension or
create an enhancement request should your usage require additional capabilities.

The Teiid-specific Cassandra Resource Adapter should be used with this translator.

Cassandra source procedures may be created using the teiid_rel:native-query extension. The procedure
will invoke the native-query similar to a direct procedure call with the benefits that the query is
predetermined and that result column types are known, rather than requiring the use of ARRAYTABLE or
similar functionality.

WARNING

The direct query procedure feature is turned off by default because of the security
risk this exposes to execute any command against the source. To enable this
feature, override the execution property called SupportsDirectQueryProcedure to
true.

By default the name of the procedure that executes the queries directly is called
native. Override the execution property DirectQueryProcedureName to change it to
another name.

The Cassandra translator provides a procedure to execute any ad-hoc CQL query directly against the
source without Teiid parsing or resolving. Since the metadata of this procedure's results are not known to
Teiid, they are returned as an object array. ARRAYTABLE can be used construct tabular output for
consumption by client applications.

12.14. COUCHBASE TRANSLATOR

The Couchbase Translator, known by the type name couchbase, exposes querying functionality for
Couchbase data sources. The Couchbase Translator provides a solution for integrating Couchbase



SELECT X.*
 FROM cassandra_source.native('SELECT firstname, lastname FROM users
WHERE birth_year = $1 AND country = $2 ALLOW FILTERING', 1981, 'US') n,
 ARRAYTABLE(n.tuple COLUMNS firstname string, lastname string) AS X

CHAPTER 12. TRANSLATORS

187

JSON documents with the relational model. This allows applications to use normal SQL queries against
a Couchbase server. The translator converts Red Hat JBoss Data Virtualization push-down commands
into Couchbase N1QL.

Couchbase is able to store data that does not follow the rules that apply to traditional relational tables
and columns.

Because metadata and traditional JDBC toolsets might not support these data structures, the data needs
to be mapped to a relational form. To achieve this, the Couchbase translator automatically generates
schema when the VDB is deployed.

NOTE

Alternatively, you can create the schema manually using a source model.

The generated schema are tables and procedures. The procedures allow you to execute native queries.
The tables are used to map to documents in a specific namespace. There are two kinds of table:

1. Regular Tables: these map to keyspaces.

2. Array Tables: these map to arrays in documents.

A table option differentiates regular tables from array tables.

To ensure consistent support for your Couchbase data, use importer properties to define your generated
schema:

Table 12.8. Importer Options

Name Description Default

sampleSize Set the SampleSize property to
the number of documents that you
want the connector to sample.

100

sampleKeyspaces This is a comma-separated list of
the keyspace names, used to
control which keyspaces will be
mapped. The smaller the scope of
the keyspaces, the larger the
sampleSize. Use this if you want
to focus on a specific keyspace
and want more precise metadata.

All

<model name="CouchbaseModel">
 <property name="importer.sampleSize" value="100"/>
 <property name="importer.typeNameList" value="`test`:`type`"/>
 <source name="couchbase" translator-name="translator-couchbase"
connection-jndi-name="java:/couchbaseDS"/>
</model>

Development Guide Volume 3: Reference Material

188

typeNameList This is a comma-separated list of
key/value pairs that the keyspaces
use to specify document types.
Each list item must be a keyspace
name surrounded by back quotes,
a colon, and an attribute name
enclosed in back quotes:
`KEYSPACE`:`ATTRIBUTE`,
`KEYSPACE`:`ATTRIBUTE`,
`KEYSPACE`:`ATTRIBUTE`.
The keyspaces must be under the
same namespace. The attribute
must be a non-object or array,
resident on the root of keyspace,
and its type should be the
equivalent String. If a
typeNameList that is set on a
specific keyspace has multiple
types, and a document has all
these types, the first one will be
chosen. For example, the
TypeNameList below indicates
that the keyspaces test and
default use the type attribute to
specify the type of each
document. During schema
generation, all type referenced
values are treated as though they
are table names:
TypeNameList=`test`:`ty
pe`,`default`:`type`:`t
ype` The TypeNameList
indicates that the keyspace test
use type, name and category
attribute to specify the type of
each document, during schema
generation, the teiid connector
scan the documents under test, if
a document has attribute as any
of type, name and category, its
referenced value will be treated
as table name:
TypeNameList=`test`:`ty
pe`,`test`:`name`,`test
`:`category`

100

Name Description Default

Table 12.9. Additional Table Options

Name Description

CHAPTER 12. TRANSLATORS

189

teiid_couchbase:NAMEDTYPEPAIR A NAMEDTYPEPAIR OPTION in table declare the
name of typed key/value pair. This option is used
once the typeNameList importer property is used and
the table is typeName referenced table.

teiid_couchbase:ISARRAYTABLE A ISARRAYTABLE OPTION in table used to
differentiate the array table from the regular table:

A regular table represent data from
collections of Couchbase documents.
Documents appear as rows, and all
attributes that are not arrays appear as
columns. In each table, the primary key
column named as documentID that that
identifies which Couchbase document each
row comes from. If no typed name defined
the table name is the keyspace name, but in
the Couchbase layer, the name of the table
will be translate to keyspace name.

If a table defined the ISARRAYTABLE
OPTION, then it provides support for arrays.
Each array table contains the data from one
array, and each row in the table represents
an element from the array. If an element
contains a nested array, an additional virtual
table is needed to expand the nested data.
In each array table there also has a
documentID column play as a foreign key
that identifies the Couchbase document
from which the array comes and references
the documentID from the normal table. An
index column (with the suffix _IDX in its
name) to indicate the position of the element
within the array.

Name Description

Couchbase-supported Red Hat JBoss Data Virtualization data types are String, Boolean, Integer, Long,
Double, BigInteger, and BigDecimal.

Each table must have a document ID column. It may be arbitrarily named, but it needs to be a string
column marked as the primary key.

Here are the tables that the Couchbase connector will generate if it is connected to a Couchbase
database in which the keyspace named test under the namespace default contains two kinds of
documents named Customer and Order. The Customer document is of the type Customer. The
SavedAddresses attribute is an array:

{
 "ID": "Customer_12345",
 "Name": "John Doe",
 "SavedAddresses": [
 "123 Main St.",
 "456 1st Ave"

Development Guide Volume 3: Reference Material

190

The Order document is of type Order. The CreditCard attribute is an object, and the Items attribute is an
array of objects.

When the virtual database deploys and loads the metadata, the connector exposes these collections.

The Couchbase Translator supports INSERT, UPSERT, UPDATE, DELETE, SELECT and bulk INSERT
statements with a restrictive set of capabilities including: count(*), comparison predicates, Order By,
Group By, and LIMIT. Consider a custom extension or create an enhancement request should your
usage require additional capabilities. If you are using the Teiid Designer tool, this is how you create the
VDB:

1. Click Teiid Connection -> Source Model

2. Create a new JBoss data source connection profile, by specifying Couchbase Data Sources as
the JNDI name for the resource adapter. Select Couchbase as the translator type.

3. Click Finish.

4. Create a VDB and deploy into Teiid Server and use either jdbc, odbc or odata to query.

Use the DV-specific Couchbase Resource Adapter with this translator.

Create source procedures by using the teiid_rel:native-query extension. The procedure will
invoke the native query similar to a direct procedure call with the benefits that the query is
predetermined and that the result column types are known:

],
 "type": "Customer"
}

{
 "CreditCard": {
 "CVN": 123,
 "CardNumber": "4111 1111 1111 111",
 "Expiry": "12/12",
 "Type": "Visa"
 },
 "CustomerID": "Customer_12345",
 "Items": [
 {
 "ItemID": 89123,
 "Quantity": 1
 },
 {
 "ItemID": 92312,
 "Quantity": 5
 }
],
 "Name": "Air Ticket",
 "type": "Order"
}

EXEC CouchbaseVDB.native('DELETE FROM test USE KEYS ["customer-3", "order-
3"]')

CHAPTER 12. TRANSLATORS

191

Use getDocuments to return JSON documents that match the given document id or id pattern as
BLOBs:

id: This is the document id or SQL like pattern of what documents to return, for example, the '%'
sign is used to define wildcards (missing letters) both before and after the pattern.

keyspace: This is the keyspace name used to retrieve the documents.

IMPORTANT

Couchbase supports the following data types: String, Boolean, Integer, Long, Double,
BigInteger, and BigDecimal. You cannot create a source model with other data types.

Each table is expected to have a document ID column. It may be arbitrarily named, but it
needs to be a string column marked as the primary key.

NOTE

You should always use translator-generated schema. If, however for any reason, you do
need to alter the schema manually, do it in this way:

1. Generate the schema using the translator.

2. Use the Web Management Console or the Adminshell to review the schema and
make your edits.

3. Add the resulting schema to the VDB.

Strictly base your schema on the principles listed in Generating a Schema. Ensure every
table has a document ID column. It may be arbitrarily named, but it needs to be a string
column marked as the primary key.

12.14.1. Couchbase Data Model

Couchbase data is stored in JSON documents. Each document may contain these items:

a key pair with no typed value.

nested arrays.

arrays of differently-typed elements.

nested documents which contain the above three items.

These items do not follow the rules of data typing and structure that apply to traditional relational tables
and columns. To map the documents to a relational form, the Red Hat JBoss Data Virtualization
Couchbase connector generates a database schema that maps the Couchbase data to a JDBC-
compatible format, using the MetadataProcessor to load the metadata.

To map documents to JDBC-compatible tables:

getDocuments(id, keyspace)

call getDocuments('customer%', 'test')

Development Guide Volume 3: Reference Material

192

the keyspace/bucket is mapped as the top table which contains all of the key/value pairs not
including the nested arrays/documents. The key is mapped to the column name and the value
type is mapped to column type.

The nested arrays/documents are mapped to different tables with names in this format:
parenttable_nestarray(ordocument)key.

each table has a primary key column mapped to the document id.

if a nested array has a nested array item, the array item is treated as an object.

Here is an example schema, showing the documents "Customer" and "Order" residing under a keyspace
called "test":

12.15. FILE TRANSLATOR

12.15.1. File Translator

The file translator exposes stored procedures to leverage file system resources exposed by the file
resource adapter. It will commonly be used with the TEXTTABLE or XMLTABLE table functions to use
CSV or XML formatted data. See Section 2.6.8, “Nested Tables: TEXTTABLE” and Section 2.6.9,
“Nested Tables: XMLTABLE”.

 Customer

 "ID": "Customer_12345",
 "Name": "John Doe",
 "SavedAddresses": [
 "123 Main St.",
 "456 1st Ave"
],
 "Type": "Customer"

 Order

 "CreditCard": {
 "CVN": 123,
 "CardNumber": "4111 1111 1111 1111",
 "Expiry": 12/12",
 "Type": "Visa"
 },
 "CustomerID": "Customer_12345",
 "Items": [
 {
 "ItemID": 89123,
 "Quantity": 1
 },
 {
 "ItemId": 92312,
 "Quantity": 5
 }
],
 "Name": "Air Ticket",
 "Type": "Order"

CHAPTER 12. TRANSLATORS

193

The file translator is implemented by the org.teiid.translator.file.FileExecutionFactory
class and known by the translator type name file.

NOTE

The resource adapter for this translator is provided by configuring the file data source in
the JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and
Configuration Guide for more configuration information.

12.15.2. File Translator: Execution Properties

Table 12.10. Execution Properties

Name Description Default

Encoding The encoding that must be used for CLOBs returned by the
getTextFiles procedure.

The system
default
encoding

ExceptionIfFileNotFound Throw an exception in getFiles or getTextFiles if the specified
file/directory does not exist.

true (false
in previous
releases)

12.15.3. File Translator: Usage

Retrieve all files as BLOBs with an optional extension at the given path.

If the extension path is specified, then it will filter all of the files in the directory referenced by the base
path. If the extension pattern is not specified and the path is a directory, then all files in the directory will
be returned. Otherwise the single file referenced will be returned. If the path does not exist, then no
results will be returned if ExceptionIfFileNotFound is false, otherwise an exception will be raised.

Retrieve all files as CLOB(s) with the an optional extension at the given path.

getTextFiles will retrieve the same files as getFiles, only the results will be CLOB values using the
encoding execution property as the character set.

Save the CLOB, BLOB, or XML value to the given path.

The path is a reference to either a new file location or an existing file to overwrite completely.

NOTE

Native or direct query execution is not supported on the File Translator.

call getFiles('path/*.ext')

call getTextFiles('path/*.ext')

call saveFile('path', value)

Development Guide Volume 3: Reference Material

194

12.16. GOOGLE SPREADSHEET TRANSLATOR

12.16.1. Google Spreadsheet Translator

The Google spreadsheet translator is used to connect to a Google spreadsheet.

The Google spreadsheet translator is implemented by the
org.teiid.translator.google.SpreadsheetExecutionFactory class and known by the
translator type name google-spreadsheet.

The query approach expects the data in the worksheet to be in a specific format. Namely:

Any column that has data can be queried.

All datatypes (including strings) featuring empty cells are returned as NULL.

If the first row is present and contains string values, then it will be assumed to represent the
column labels.

If you are using a dynamic VDB, the metadata for your Google account (worksheets and information
about columns in worksheets) are loaded upon translator start up. If you make any changes in data
types, it is advisable to restart your VDB.

The translator supports queries against a single sheet. It supports ordering, aggregation, basic
predicates, and most of the functions supported by the spreadsheet query language.

There are no Google spreadsheet importer settings, but it does provide metadata for dynamic VDBs.

NOTE

The resource adapter for this translator is provided by configuring the google data
source in the JBoss EAP instance. See the Red Hat JBoss Data Virtualization
Administration and Configuration Guide for more configuration information.

12.16.2. Google Spreadsheet Translator: Native Queries

Google spreadsheet source procedures may be created using the teiid_rel:native-query extension (see
Section 12.7, “Parameterizable Native Queries”) The procedure will invoke the native query similar to an
native procedure call with the benefits that the query is predetermined and that result column types are
known, rather than requiring the use of ARRAYTABLE (Section 2.6.10, “Nested Tables:
ARRAYTABLE”) or similar functionality.

12.16.3. Google Spreadsheet Translator: Native Procedure

CHAPTER 12. TRANSLATORS

195

WARNING

This feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the
translator property called "SupportsNativeQueries" to true. See Section 12.6,
“Override Execution Properties”.

Google spreadsheet translator provides a procedure with name native that gives ability to execute any
ad hoc native Google spreadsheet queries directly against the source without any JBoss Data
Virtualization parsing or resolving. Since the metadata of this procedure's execution results are not
known to the JBoss Data Virtualization and they are returned as object array. Users can use
ARRAYTABLE (Section 2.6.10, “Nested Tables: ARRAYTABLE”) to construct a build a tabular output
for consumption by client applications.

JBoss Data Virtualization exposes this procedure with a simple query structure:

Example 12.1. Select Example

The first argument takes semi-colon(;) separated name value pairs of following properties to execute the
procedure:

Property Description Required

worksheet Google spreadsheet name yes

query spreadsheet query yes

limit number rows to fetch no

offset offset of rows to fetch from limit or
beginning

no

NOTE

By default the name of the procedure that executes the queries directly is called native ,
however the user can set the Override Execution Properties property (see Section 12.6,
“Override Execution Properties”) on NativeQueryProcedureName in the vdb.xml file to
change it to any other procedure name.

12.17. RED HAT JBOSS DATA GRID TRANSLATOR



SELECT x.* FROM (call pm1.native('worksheet=People;query=SELECT A, B,
C')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String)
AS x

Development Guide Volume 3: Reference Material

196

The Red Hat JBoss Data Grid translator, known by the type name infinispan-hotrod, exposes the
Red Hat JBoss Data Grid cache store that is to be queried using SQL. The translator uses the HotRod
protocol to connect the remote JDG cluster farm. This translator does not work with any arbitary
key/value mappings. However, if the JDG store is defined with the probuf file then this translator works
with the definition objects found in that file. The resource adapter for this translator is the Infinispan Data
Source.

This sample VDB reads metadata from a protobuf file based on the AddressBook quick start:

A connection to Red Hat JBoss Data Grid is required. Here is an example configuration for the resource
adapter. Be sure to edit the "RemoteServerList" to reflect your server's location.

Connect to the VDB using the JDBC driver and issue SQL statements like this:

There are three different ways to define the metadata for the model. Choose the one that best fits your
needs.

In the first method, the user can register a .proto file with the translator configuration, which is read
and converted to the model’s schema. This file is then registered in Red Hat JBoss Data Grid.

<vdb name="addressbook" version="1">
 <model name="ispn">
 <property name="importer.ProtobufName" value="addressbook.proto"/>
 <source name="localhost" translator-name="infinispan-hotrod"
connection-jndi-name="java:/ispnDS"/>
 <metadata type = "NATIVE"/>
 </model>
</vdb>

<resource-adapter id="infinispanDS">
 <module slot="main" id="org.jboss.teiid.resource-
adapter.infinispan.hotrod"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.infinispan.hotrod.InfinispanManagedConnec
tionFactory"
 jndi-name="java:/ispnDS" enabled="true" use-java-
context="true" pool-name="teiid-ispn-ds">
 <config-property name="RemoteServerList">
 localhost:11222
 </config-property>
 </connection-definition>
 </connection-definitions>
</resource-adapter>

select * from Person;
select * PhoneNumber where number = <value>;

insert into Person (...) values (...);
update Person set name = <value> where id = <value>;
delete from person where id = <value>;

<vdb name="vdbname" version="1">
 <model name="modelname">

CHAPTER 12. TRANSLATORS

197

In the second method, if the protobuf file has already been registered in your Red Hat JBoss Data Grid
node, Red Hat JBoss Data Virtualization can obtain it and read the protobuf directly from the cache:

The third method is to use metadata tags to define the DDL directly:

NOTE

Red Hat JBoss Data Grid restricts the name of the source model because the protobuf
code is based on the Java package naming constraints. The model name becomes the
package name in the .proto file. This is due to a limitation in the way that the protobuf is
defined. Because Red Hat JBoss Data Grid uses Java, the package name must follow the
Java package naming standards. Dashes, for instance, are not allowed.

For this option, a compatible protobuf definition is generated automatically during the deployment of the
VDB and registered in Red Hat JBoss Data Grid. Please note, if for any reason the DDL is modified
(Name changed, type changed, add/remove columns) after the initial VDB is deployed, then previous
version of the protobuf file and data contents need to be manually cleared before next revision of the
VDB is deployed. Failure to clear will result in data encoding/corruption issues.

Here is a protobuf file that has been converted to a relational schema:

..
 <property name="importer.ProtoFilePath"
value="/path/to/myschema.proto"/>
..
 </model>
</vdb>

<vdb name="vdbname" version="1">
 <model name="modelname">
..
 <property name="importer.ProtobufName" value="existing.proto"/>
..
 </model>
</vdb>

<model name="ispn">
 <source name="localhost" translator-name="infinispan-hotrod"
connection-jndi-name="java:/ispnDS"/>
 <metadata type = "DDL">
 CREATE FOREIGN TABLE G1 (e1 integer PRIMARY KEY, e2
varchar(25), e3 double) OPTIONS(UPDATABLE true, , "teiid_ispn:cache"
'g1Cache');

 </metadata>
 <metadata type = "NATIVE"/>
 </model>

package quickstart;

/* @Indexed */
message Person {

 /* @IndexedField */

Development Guide Volume 3: Reference Material

198

This DDL is generated:

 required string name = 1;

 /* @Id @IndexedField(index=false, store=false) */
 required int32 id = 2;

 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 /* @Indexed */
 message PhoneNumber {

 /* @IndexedField */
 required string number = 1;

 /* @IndexedField(index=false, store=false) */
 optional PhoneType type = 2 [default = HOME];
 }

 /* @IndexedField(index=true, store=false) */
 repeated PhoneNumber phone = 4;
}

CREATE FOREIGN TABLE Person (
 name string NOT NULL OPTIONS (ANNOTATION '@IndexedField', SEARCHABLE
'Searchable', NATIVE_TYPE 'string', "teiid_ispn:TAG" '1'),
 id integer NOT NULL OPTIONS (ANNOTATION '@Id
@IndexedField(index=false, store=false)', NATIVE_TYPE 'int32',
"teiid_ispn:TAG" '2'),
 email string OPTIONS (SEARCHABLE 'Searchable', NATIVE_TYPE 'string',
"teiid_ispn:TAG" '3'),
 CONSTRAINT PK_ID PRIMARY KEY(id)
) OPTIONS (ANNOTATION '@Indexed', NAMEINSOURCE 'quickstart.Person',
UPDATABLE TRUE, "teiid_ispn:cache" 'personCache');

CREATE FOREIGN TABLE PhoneNumber (
 number string NOT NULL OPTIONS (ANNOTATION '@IndexedField', SEARCHABLE
'Searchable', NATIVE_TYPE 'string', "teiid_ispn:TAG" '1'),
 type integer DEFAULT '1' OPTIONS (ANNOTATION
'@IndexedField(index=false, store=false)', NATIVE_TYPE 'PhoneType',
"teiid_ispn:TAG" '2'),
 Person_id integer OPTIONS (NAMEINSOURCE 'id', SEARCHABLE 'Searchable',
"teiid_ispn:PSEUDO" 'phone'),
 CONSTRAINT FK_PERSON FOREIGN KEY(Person_id) REFERENCES Person (id)
) OPTIONS (ANNOTATION '@Indexed', NAMEINSOURCE
'quickstart.Person.PhoneNumber',
 UPDATABLE TRUE, "teiid_ispn:MERGE" 'model.Person',
"teiid_ispn:PARENT_COLUMN_NAME" 'phone',
 "teiid_ispn:PARENT_TAG" '4');

CHAPTER 12. TRANSLATORS

199

Table 12.11. Mappings

JBoss Data Grid Mapped to Relational Entity Example

Message Table. Person.

enum Integer attribute in table. NA.

repeated Use as an array for simple types
or as a separate table with one-to-
many relationship to parent
message.

PhoneNumber.

All required fields are modeled as non-null columns.

All indexed columns are marked as searchable.

The default values are captured.

To enable updates, the top level message object must define the @id annotation on one of its
columns.

NOTE

Notice the @Id annotation on the Person message’s "id" attribute in protobuf file. This is
not defined by JDG, but required by Red Hat JBoss Data Virtualization to identify the key
column of the cache entry. In the absence of this annotation, only "read only" access
(SELECT) is provided to top level objects. Any access to complex objects will not be
provided.

When the .proto file has more than one single top level "message" object to be stored as the root
object in the cache, each of the objects must be stored in a different cache to avoid key conflicts in a
single cache store. Since each of the messages will be in a different cache store, you can define the
cache store name for the "message" object. For this, define an extension property called teiid_ispn:cache
on the corresponding Red Hat JBoss Data Virtualization table:

There are no defined execution properties for this translator.

Importer properties define the behavior options of the translator during the metadata import from the
physical source.

<model name="ispn">
 <property name="importer.ProtobufName" value="addressbook.proto"/>
 <source name="localhost" translator-name="infinispan-hotrod"
connection-jndi-name="java:/ispnDS"/>
 <metadata type = "NATIVE"/>
 <metadata type = "DDL">
 ALTER FOREIGN TABLE Person OPTIONS (SET "teiid_ispn:cache"
'<cache-name>');

 </metadata>
 </model>

Development Guide Volume 3: Reference Material

200

Table 12.12. Mappings

Name Description Default

ProtoFilePath The file path to a Protobuf
.proto file accessible to the
server to be read and convert into
metadata.

NA.

ProtobufName The name of the Protobuf
.protofile that has been
registered with the JDG node, that
Red Hat JBoss Data Virtualization
will read and convert into
metadata. The property value
must exactly match the registered
name.

NA.

Here are the translator's limitations:

Bulk update support is not available.

Transactions are not supported. The last edit stands.

Aggregate functions like SUM, AVG etc are not supported on inner objects.

UPSERT support on complex objects is always results in INSERT.

LOBS are not streamed, use caution as this can lead to OOM errors.

There is no function library in JDG.

Array objects can not be projected but they do show up in the metadata.

When using DATE/TIMESTAMP/TIME types in Teiid metadata, they are by default marshaled
into a LONG type in JDG.

SSL and identity support is not currently available.

Native or direct query execution is not supported.

<vdb name="vdbname" version="1">
 <model name="modelname">
..
 <property name="importer.ProtoFilePath"
value="/path/to/myschema.proto"/>
..
 </model>
</vdb>

CHAPTER 12. TRANSLATORS

201

IMPORTANT

The infinispan-hotrod translator requires the default cache to be configured. If you remove
the default cache because you do not need it, you will encounter a failure. This is because
the default cache is referenced. To work around this issue, ensure the default cache is
available and correctly configured.

12.18. JDBC TRANSLATOR

12.18.1. JDBC Translator

The JDBC translator bridges between SQL semantic and data type difference between JBoss Data
Virtualization and a target RDBMS.

The base JDBC translator is implemented by the
org.teiid.translator.jdbc.JDBCExecutionFactory class.

NOTE

The resource adapter for a particular JDBC translator is provided by configuring the
corresponding data source in the JBoss EAP instance. See the Red Hat JBoss Data
Virtualization Administration and Configuration Guide for more configuration information.

12.18.2. JDBC Translator: Execution Properties

The following execution properties are shared by all JDBC translators.

Table 12.13. Execution Properties

Name Description Default

DatabaseTimeZone The time zone of the database.
Used when fetching date, time, or
timestamp values.

The system default time zone

DatabaseVersion The specific database version.
Used to further tune pushdown
support.

The base supported version or
derived from the
DatabaseMetadata.getPro
duceVersion string. Automatic
detection requires a Connection. If
there are circumstances where
you are getting an exception from
capabilities being unavailable
(most likely due to an issue
obtaining a Connection), then set
the DatabaseVersion
property. Use the
JDBCExecutionFactory.us
esDatabaseVersion()
method to control whether your
translator requires a connection to
determine capabilities.

Development Guide Volume 3: Reference Material

202

TrimStrings Set to true to trim trailing
whitespace from fixed length
character strings. Note that JBoss
Data Virtualization only has a
string, or varchar, type that treats
trailing whitespace as meaningful.

false

UseBindVariables Set to true to indicate that
PreparedStatements will be used
and that literal values in the
source query will be replaced with
bind variables. If false, only LOB
values will trigger the use of
PreparedStatements.

true

UseCommentsInSourceQuery This will embed a leading
comment with session/request id
in source SQL query for
informational purposes

false

CommentFormat MessageFormat string to be used
if UseCommentsInSourceQuery is
enabled. Available properties:

0 - session id string

1 - parent request id
string

2 - request part id string

3 - execution count id
string

4 - user name string

5 - vdb name string

6 - vdb version integer

7 - is transactional
boolean

/*teiid sessionid:{0},
requestid:{1}.{2}*/

MaxPreparedInsertBatchSize The max size of a prepared insert
batch.

2048

StructRetrieval Struct retrieval mode can be one
of OBJECT - getObject value
returned, COPY - returned as a
SerialStruct, ARRAY - returned as
an Array)

OBJECT

Name Description Default

CHAPTER 12. TRANSLATORS

203

EnableDependentJoins For sources that support
temporary tables (DB2, Derby, H2,
HSQL 2.0+, MySQL 5.0+, Oracle,
PostgreSQL, SQLServer, Sybase)
allow dependent join pushdown

false

Name Description Default

12.18.3. JDBC Translator: Importer Properties

The following properties are shared by all JDBC translators.

Table 12.14. Importer Properties

Name Description Default

catalog See DatabaseMetaData.getTables at
http://download.oracle.com/javase/6/docs/api/java/sql
/DatabaseMetaData.html for more information.

null

importRowIdAsBinary 'true' will import RowId columns as varbinary values. false

schemaPattern See DatabaseMetaData.getTables at
http://download.oracle.com/javase/6/docs/api/java/sql
/DatabaseMetaData.html for more information.

null

tableNamePattern See DatabaseMetaData.getTables at
http://download.oracle.com/javase/6/docs/api/java/sql
/DatabaseMetaData.html for more information.

null

procedureNamePattern See DatabaseMetaData.getProcedures at
http://download.oracle.com/javase/6/docs/api/java/sql
/DatabaseMetaData.html for more information.

null

tableTypes Comma separated list - without spaces - of imported
table types. See DatabaseMetaData.getTables at
http://download.oracle.com/javase/6/docs/api/java/sql
/DatabaseMetaData.html for more information.

null

excludeTables A case-insensitive regular expression that when
matched against a fully qualified JBoss Data
Virtualization table name will exclude it from import.
Applied after table names are retrieved. Use a
negative look-ahead (?!<inclusion pattern>).* to act
as an inclusion filter.

null

Development Guide Volume 3: Reference Material

204

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html
http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

excludeProcedures A case-insensitive regular expression that when
matched against a fully qualified JBoss Data
Virtualization procedure name will exclude it from
import. Applied after procedure names are retrieved.
Use a negative look-ahead (?!<inclusion pattern>).*
to act as an inclusion filter.

null

autoCreateUniqueConstraints True to create a unique constraint if one is not found
for a foreign keys

true

useFullSchemaName When false, directs the importer to drop the source
catalog/schema from the JBoss Data Virtualization
object name, so that the JBoss Data Virtualization
fully qualified name will be in the form of <model
name>.<table name>. Note that when this is false, it
may lead to objects with duplicate names when
importing from multiple schemas, which results in an
exception. This option does not affect the name in
source property.

true

importKeys Set to true to import primary and foreign keys. true

importIndexes Set to true to import index/unique key/cardinality
information.

false

importApproximateIndexes Set to true to import approximate index information.
See DatabaseMetaData.getIndexInfo at
http://download.oracle.com/javase/6/docs/api/java/sql
/DatabaseMetaData.html for more information.

true

importProcedures Set to true to import procedures and procedure
columns. Note that it is not always possible to import
procedure result set columns due to database
limitations. It is also not currently possible to import
overloaded procedures.

true

widenUnsignedTypes Set to true to convert unsigned types to the next
widest type. For example SQL Server reports tinyint
as an unsigned type. With this option enabled, tinyint
would be imported as a short instead of a byte.

true

quoteNameInSource Set to false to override the default and direct JBoss
Data Virtualization to create source queries using
unquoted identifiers.

true

Name Description Default

CHAPTER 12. TRANSLATORS

205

http://download.oracle.com/javase/6/docs/api/java/sql/DatabaseMetaData.html

useProcedureSpecificName Set to true to allow the import of overloaded
procedures (which will normally result in a duplicate
procedure error) by using the unique procedure-
specific name as the JBoss Data Virtualization name.
This option will only work with JDBC 4.0 compatible
drivers that report specific names.

false

useCatalogName Set to true to use any non-null/non-empty catalog
name as part of the name in source, e.g.
"catalog"."table"."column", and in the JBoss Data
Virtualization runtime name if useFullSchemaName is
true. Set to false to not use the catalog name in
either the name in source or the JBoss Data
Virtualization runtime name. Must be set to false for
sources that do not fully support a catalog concept,
but return a non-null catalog name in their metadata,
such as HSQL.

true

useQualifiedName True will use name qualification for both the Teiid
name and name in source as dictated by the
useCatalogName and useFullSchemaName
properties. Set to false to disable all qualification for
both the Teiid name and the name in source, which
effectively ignores the useCatalogName and
useFullSchemaName properties. Note: when false
this may lead to objects with duplicate names when
importing from multiple schemas, which results in an
exception.

true

useAnyIndexCardinality True will use the maximum cardinality returned from
DatabaseMetaData.getIndexInfo. importKeys or
importIndexes needs to be enabled for this setting to
have an effect. This allows for better stats gathering
from sources that do not support returning a
statistical index.

false

importStatistics This uses database-dependent logic to determine the
cardinality if none is determined. (This is currently
only supported on Oracle and MySQL.)

false

Name Description Default

WARNING

The default import settings will traverse all available metadata. This import process
is time consuming and full metadata import is not needed in most situations. In most
situations you will limit import by at least schemaPattern and tableTypes.



Development Guide Volume 3: Reference Material

206

Example importer settings to only import tables and views from my-schema.

12.18.4. JDBC Translator: Translator Types

JBoss Data Virtualization has a range of specific translators that target the most popular open source
and proprietary databases.

NOTE

To decrease the amount of time it takes to import data from a source, you can set these
parameter values:

jdbc-ansi

This translator provides support for most SQL constructs supported by JBoss Data Virtualization,
except for row limit/offset and EXCEPT/INTERSECT. It translates source SQL into ANSI compliant
syntax.

This translator can be used when another more specific type is not available.

jdbc-simple

This translator is the same as jdbc-ansi, except that it disables support for function, UNION and
aggregate pushdown.

access

This translator is for use with Microsoft Access 2003 or later.

actian-vector

This translator is for use Actian Vector in Hadoop.

NOTE

Download the JDBC driver from http://esd.actian.com/platform. Note that the port
number in the connection URL is "AH7" which maps to 16967.

db2

This translator is for use with DB2 8 or later (and DB2 for i 5.4 or later).

Execution properties specific to DB2:

DB2ForI indicates that the DB2 instance is DB2 for i. The default is "false".

 <model ...

 <property name="importer.tableTypes" value="TABLE,VIEW"/>
 <property name="importer.schemaPattern" value="my-schema"/>
 ...
</model>

schemaPattern = {targetSchema}
tableTypes = TABLE

CHAPTER 12. TRANSLATORS

207

hbase

The Apache HBase Translator exposes querying functionality to HBase Tables. Apache Phoenix is an
SQL interface for HBase. With the Phoenix Data Sources, the translator translates Teiid push-down
commands into Phoenix SQL.

The HBase Translator does not support Join commands, because Phoenix has more simple
constraints. The only supported is that for the Primary Key, which maps to the HBase Table Row ID.
This translator is developed with Phoenix 4.x for HBase 0.98.1+.

WARNING

The translator implements INSERT/UPDATE through the Phoenix UPSERT
operation. This means you can see different behavior than with standard
INSERT/UPDATE, such as repeated inserts will not throw a duplicate key
exception, but will instead update the row in question.

WARNING

Due to Phoenix driver limitations, the importer will not look for unique constraints
and does not import foreign keys by default.

WARNING

The Phoenix driver does not have robust handling of time values. If your time
values are normalized to use a date component of 1970-01-01, then the default
handling will work correctly. If not, then the time column should be modeled as
timestamp instead.

If you use the translator for Apache HBase, be aware that insert statements can rewrite data. To
illustrate, here is a standard set of SQL queries:

Normally, the second INSERT command would fail as the uniqueness of the primary key would be
corrupted. However, with the HBase translator, the command will not fail. Rather, it will rewrite the
data in the table, (so "name1" would become "name2"). This is because the translator converts the
INSERT command into an UPSERT command.







CREATE TABLE TableA (id integer PRIMARY KEY, name varchar(10));
INSERT INTO TableA (id, name) VALUES (1, 'name1');
INSERT INTO TableA (id, name) VALUES (1, 'name2');

Development Guide Volume 3: Reference Material

208

Derby

derby - for use with Derby 10.1 or later.

excel-odbc

IMPORTANT

This translator is now deprecated as the JDBC-ODBC bridge has been removed from
Java 1.8.

This translator is for use with Excel 2003 or later via a JDBC-ODBC bridge.

greenplum

This translator is for use with the Greenplum database.

h2

This translator is for use with h2 version 1.1 or later.

hana

This translator is for use with SAP Hana.

hive

This translator is for use with Hive v.10 and Apache SparkSQL v1.0 and later.

Spark is configured to use the Hive Metastore and its configured target to store data. Apache Spark
introduces a new computational model alternative to MapReduce. To access data stored in Apache
Spark, use the hive jdbc driver while connecting to a hive-specific JDBC URL.

Hive has limited support for data types as it does not support time-based types, XML or LOBs. A view
table can use these types but you would need to configure the translator to specify the necessary
transformations. In these situations, the evaluations will be done in the JBoss Data Virtualization
engine.

IMPORTANT

The Hive translator does not use the DatabaseTimeZone property.

IMPORTANT

The Hive importer does not have concept of catalog or source schema, nor does it
import keys, procedures and indexes.

Another limitation of Hive is that it only supports EQUI joins. If you try to use any other kind of join on
the source tables, you will have inefficient queries. To write criteria based on partitioned columns,
model them on source tables, but do not include them in selection columns.

These importer qualities are specific to the Hive translator:

trimColumnNames: For Hive 0.11.0 and later the DESCRIBE command metadata is returned
with padding. Set to true to strip white space from column names. By default it is set to false.

CHAPTER 12. TRANSLATORS

209

useDatabaseMetaData: For Hive 0.13.0 and later the normal JDBC DatabaseMetaData
facilities are sufficient to perform an import. Set to true to use the normal import logic with the
option to import index information disabled. Defaults to false. When true, trimColumnNames
has no effect. If it is set to false, the typical JDBC DatabaseMetaData calls are not used so
not all of the common JDBC importer properties are applicable to Hive. You can still use
excludeTables anyway.

IMPORTANT

When the database name used in the Hive is differs from "default", the
metadata retrieval and execution of queries does not work as expected in
Teiid, as Hive JDBC driver seems to be implicitly connecting (tested with
versions lower than 0.12) to "default" database, thus ignoring the database
name mentioned on connection URL. You can work around this in Red Hat
JBoss Data Virtualization in the JBoss EAP environment by setting the
following in data source configuration:

This is fixed in version 0.13 and later of the Hive driver.

hsql

This translator is for use with HSQLDB 1.7 or later.

impala

This translator is for use with Cloudera Impala 1.2.1 or later.

Impala has limited support for data types. It does not have native support for time/date/xml or LOBs.
These limitations are reflected in the translator capabilities. A Teiid view can use these types,
however the transformation would need to specify the necessary conversions. Note that in those
situations, the evaluations will be done in Teiid engine.

Impala only supports EQUI join, so using any other joins types on its source tables will result in
inefficient queries.

To write criteria based on partitioned columns, model them on the source table, but do not include
them in selection columns.

IMPORTANT

The Impala importer does not currently use typical JDBC DatabaseMetaData calls, nor
does it have the concept of catalog or source schema, nor does it import keys,
procedures, indexes, etc. Thus not all of the common JDBC importer properties are
applicable to Impala. You may still use excludeTables.

Impala specific importer properties:

useDatabaseMetaData - Set to true to use the normal import logic with the option to import index
information disabled. Defaults to false.

If false the typical JDBC DatabaseMetaData calls are not used so not all of the common JDBC
importer properties are applicable to Impala. (You can still use excludeTables regardless.)

<new-connection-sql>use {database-name}</new-
connection-sql>

Development Guide Volume 3: Reference Material

210

IMPORTANT

Some versions of Impala require the use of a LIMIT when performing an ORDER BY.
If no default is configured in Impala, an exception can occur when a Teiid query with
an ORDER BY but no LIMIT is issued. You must set an Impala wide default, or
configure the connection pool to use a new connection SQL string to issue a SET
DEFAULT_ORDER_BY_LIMIT statement. See the Cloudera documentation for more
on limit options, such as controlling what happens when the limit is exceeded.

ingres

This translator is for use with Ingres 2006 or later.

ingres93

This translator is for use with Ingres 9.3 or later.

intersystems-cache

For use with Intersystems Cache Object database (only relational aspect of it)

informix

For use with any Informix version.

metamatrix

This translator is for use with MetaMatrix 5.5.0 or later.

modeshape

This translator is for use with Modeshape 2.2.1 or later.

The PATH, NAME, LOCALNODENAME, DEPTH, and SCORE functions are accessed as pseudo-
columns, e.g. "nt:base"."jcr:path".

JBoss Data Virtualization user defined functions (prefixed by JCR_) are available for CONTAINS,
ISCHILDNODE, ISDESCENDENT, ISSAMENODE, REFERENCE. See the JCRFunctions.xmi file.

If a selector name is needed in a JCR function, you can use the pseudo-column "jcr:path". For
example, JCR_ISCHILDNODE(foo.jcr_path, 'x/y') would become ISCHILDNODE(foo, 'x/y') in the
ModeShape query.

An additional pseudo-column "mode:properties" can be imported by setting the ModeShape JDBC
connection property teiidsupport=true. The "mode:properties" column should be used by the
JCR_REFERENCE and other functions that expect a .* selector name. For example,
JCR_REFERENCE(nt_base.jcr_properties) would become REFERENCE("nt:base".*) in the
ModeShape query.

mysql5

This translator is for use with MySQL version 5 or later. It also works with backwards-compatible
MySQL derivatives, including MariaDB.

The MySQL Translator expects the database or session to be using ANSI mode. If the database is
not using ANSI mode, an initialization query must be used on the pool to set ANSI mode:

set SESSION sql_mode = 'ANSI'

CHAPTER 12. TRANSLATORS

211

If you deal with null timestamp values, then set the connection property
zeroDateTimeBehavior=convertToNull. Otherwise you'll get conversion errors in Teiid that '0000-00-
00 00:00:00' cannot be converted to a timestamp.

netezza

This translator is for use with any Netezza version.

IMPORTANT

The current Netezza vendor supplied JDBC driver performs poorly with single
transactional updates. As is generally the case, use batched updates when possible.

Netezza-specific execution properties:

SqlExtensionsInstalled- indicates that SQL Extensions including support fo REGEXP_LIKE are
installed. Defaults to false.

oracle

This translator is for use with Oracle 9i or later.

Sequences may be used with the Oracle translator. A sequence may be modeled as a table with a
name in source of DUAL and columns with the name in source set to this:

Teiid 8.4 and Prior Oracle Sequence DDL

With Teiid 8.5 it is no longer necessary to rely on a table representation and Oracle specific handling
for sequences. See DDL Metadata for representing currval and nextval as source functions.

You can also use a sequence as the default value for insert columns by setting the column to
autoincrement and the name in source to this:

A rownum column can be added to any Oracle physical table to support the rownum pseudo-column.
The name of the column has to be rownum.

These rownum columns do not have the same semantics as the Oracle rownum construct so care
must be taken in their usage.

Oracle specific importer properties:

useGeometryType- Use the Teiid Geomety type when importing columns with a source type of
SDO_GEOMETRY. Defaults to false.

useIntegralTypes- Use integral types rather than decimal when the scale is 0. Defaults to false.

Execution properties specific to Oracle:

<sequence name>.[nextval|currval].

CREATE FOREIGN TABLE seq (nextval integer OPTIONS (NAMEINSOURCE
'seq.nextval'), currval integer options (NAMEINSOURCE 'seq.currval'))
OPTIONS (NAMEINSOURCE 'DUAL')

<element name>:SEQUENCE=<sequence name>.<sequence value>

Development Guide Volume 3: Reference Material

212

OracleSuppliedDriver - indicates that the Oracle supplied driver (typically prefixed by ojdbc) is
being used. Defaults to true. Set to false when using DataDirect or other Oracle JDBC
drivers.

Oracle translator supports geo spatial functions. The supported functions are:

Relate = sdo_relate

Nearest_Neighbor = dso_nn

Within_Distance = sdo_within_distance

Nearest_Neighbour_Distance = sdo_nn_distance

Filter = sdo_filter

osisoft-pi

The OSISoft Translator, known by the type name osisoft-pi, is for use with OSIsoft PI OLEDB
Enterprise. This translator uses the JDBC driver provided by the OSISoft.

CREATE FOREIGN FUNCTION sdo_relate (arg1 string, arg2 string,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 Object, arg2 Object,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 string, arg2 Object,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_relate (arg1 Object, arg2 string,
arg3 string) RETURNS string;

CREATE FOREIGN FUNCTION sdo_nn (arg1 string, arg2 Object,
arg3 string, arg4 integer) RETURNS string;
CREATE FOREIGN FUNCTION sdo_nn (arg1 Object, arg2 Object,
arg3 string, arg4 integer) RETURNS string;
CREATE FOREIGN FUNCTION sdo_nn (arg1 Object, arg2 string,
arg3 string, arg4 integer) RETURNS string;

CREATE FOREIGN FUNCTION sdo_within_distance (arg1 Object, arg2
Object, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_within_distance (arg1 string, arg2
Object, arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_within_distance (arg1 Object, arg2
string, arg3 string) RETURNS string;

CREATE FOREIGN FUNCTION sdo_nn_distance (arg integer) RETURNS
integer;

CREATE FOREIGN FUNCTION sdo_filter (arg1 Object, arg2 string,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_filter (arg1 Object, arg2 Object,
arg3 string) RETURNS string;
CREATE FOREIGN FUNCTION sdo_filter (arg1 string, arg2 object,
arg3 string) RETURNS string;

CHAPTER 12. TRANSLATORS

213

When you are installing on Linux, make sure you have the OpenSSL libraries installed, and you have
these export statements added correctly to your shell environment variables. Otherwise you can also
add it to the [EAP_HOME]/bin/standalone.sh file or to the [EAP_HOME]/bin/domain.sh file.

To execute from Linux, you also need the gSoap library, as the PI JDBC driver uses SOAP over
HTTPS to communicate with the PI server.

To install on Microsoft Windows, follow the installation program provided by OSISoft for installing the
JDBC drivers. Make sure you have these environment variables configured (the JDBC Driver installer
sets them automatically):

The PI translator is an extension of jdbc-ansi translator, so all standard SQL ANSI queries are
supported. The PI translator also you to perform LATERAL joins with Table Valued Functions (TVF).
Here is an example query:

NOTE

ANSI SQL semantics require a ON clause, but CROSS APPLY or OUTER APPLY do not
use the ON clause. For this reason you must pass in a dummy ON clause like ON (1 =
1), which will be ignored when converted to the APPLY clause which will be pushed
down.

By default this translator sets the importer.ImportKeys to false.

NOTE

You must model the PI data type, GUID, String and define the NATIVE_TYPE on the
column as guid, then the translator will appropriately convert the data back and forth
with the PI datasource’s native GUID type with appropriate type casting from the
string.

postgresql

This translator is for use with 8.0 or later clients and 7.1 or later server.

PostgreSQL specific execution properties:

PostGisVersion - indicate the PostGIS version in use. Defaults to 0 meaning PostGIS is not installed.
Will be set automatically if the database version is not set.

export PI_RDSA_LIB=/path/pipc/jdbc/lib/libRdsaWrapper-1.5b.so
export PI_RDSA_LIB64=/path/pipc/jdbc/lib/libRdsaWrapper64-1.5b.so

PI_RDSA_LIB C:\Program Files (x86)\PIPC\JDBC\RDSAWrapper.dll
PI_RDSA_LIB64 C:\Program Files\PIPC\JDBC\RDSAWrapper64.dll

SELECT EH.Name, BT."Time", BT."Number of Computers", BT."Temperature"
FROM Sample.Asset.ElementHierarchy EH LEFT JOIN LATERAL (exec
"TransposeArchive_Building Template"(EH.ElementID,
TIMESTAMPADD(SQL_TSI_HOUR, -1, now()), now())) BT on 1=1 WHERE
EH.ElementID IN (SELECT ElementID FROM Sample.Asset.ElementHierarchy
WHERE Path='\Data Center\')

Development Guide Volume 3: Reference Material

214

ProjSupported - boolean indicating if Proj is support for PostGis. Will be set automatically if the
database version is not set.

prestodb

The PrestoDB translator, known by the type name prestodb, exposes querying functionality to
PrestoDB Data Sources. In data integration respect, PrestoDB has very similar capabilities of Teiid,
however it goes beyond in terms of distributed query execution with multiple worker nodes. Teiid's
execution model is limited to single execution node and focuses more on pushing the query down to
sources. Currently Teiid has much more complete query support and many enterprise features.

The PrestoDB translator supports only SELECT statements with a restrictive set of capabilities. This
translator is developed with 0.85 version of PrestoDB and capabilities are designed for this version.
With new versions of PrestoDB Teiid will adjust the capabilities of this translator. Since PrestoDB
exposes a relational model, the usage of this is no different than any RDBMS source like Oracle, DB2
etc. For configuring the PrestoDB consult the PrestoDB documentation.

NOTE

PrestoDB does not support multiple columns in the ORDER BY in JOIN situations. The
translator property supportsOrderBy can be used to disable Order by in some
specific situations.

NOTE

Some versions of PrestoDB do not support nulls as valid values in subqueries.

NOTE

PrestoDB does not support transactions. To overcome issues caused by this limitation,
define the datasource as non-transactional.

NOTE

Every catalog in PrestoDB has an information_schema by default. If you have to
configure multiple catalogs, use import options to filter the schemas, to avoid a
duplicate table error that causes the VDB deploy to fail. For instance, set catalog to
a specific catalog name to match the catalog name as it is stored in the PrestoDB, set
schemaPattern to a regular expression to filter schemas by matching result and set
excludeTables to a regular expression to filter tables by matching results.

NOTE

The PrestoDB JDBC driver uses the Joda-Time library to work with
time/date/timestamps. If you need to customize your server’s time zone (using the
setting -Duser.timezone via JAVA_OPTS), you cannot use the GMT/… ​ ID as
Joda-Time does not recognize it. However, you can use equivalent ETC/... ID.

redshift

The Redshift Translator, known by the type name redshift, is for use with the Redshift database. This
translator is an extension of the PostgreSQL Translator and inherits its options.

CHAPTER 12. TRANSLATORS

215

sqlserver

This translator is for use with SQL Server 2000 or later. A SQL Server JDBC driver version 2.0 or
later (or compatible e.g. JTDS 1.2 or later) must be used. The SQL Server DatabaseVersion
property may be set to 2000, 2005, 2008, or 2012, but otherwise expects a standard version number,
for example, 10.0.

Execution properties specific to SQL Server:

JtdsDriver - indicates that the open source JTDS driver is being used. Defaults to false.

sybase

This translator is for use with Sybase version 12.5 or later. If used in a dynamic vdb and no import
properties are specified (not recommended, see import properties below), then exceptions can be
thrown retrieving system table information. Specify a schemaPattern or use excludeTables to exclude
system tables if this occurs.

If the name in source metadata contains quoted identifiers (such as reserved words or words
containing characters that would not otherwise be allowed) and you are using a jconnect Sybase
driver, you must first configure the connection pool to enable quoted_identifier.

Example 12.2. Driver URL with SQLINITSTRING

Execution properties specific to Sybase:

JtdsDriver - indicates that the open source JTDS driver is being used. Defaults to false.

IMPORTANT

You must set the connection parameter JCONNECT_VERSION to 6 or later
when using the Sybase data source. If you do not do so, you will encounter an
exception.

sybaseiq

This translator is for use with Sybase IQ version 15.1 or later.

teiid

This translator is for use with Teiid 6.0 or later.

teradata

This translator is for use with Teradata V2R5.1 or later.

vertica

This translator is for use with Vertica 6 or later.

12.18.5. JDBC Translator: Usage

jdbc:sybase:Tds:host.at.some.domain:5000/db_name?SQLINITSTRING=set
quoted_identifier on

Development Guide Volume 3: Reference Material

216

Using JBoss Data Virtualization SQL, the source may be queried as if the tables and procedures were
local to the JBoss Data Virtualization system.

12.18.6. JDBC Translator: Native Queries

Both physical tables and procedures may optionally have native queries associated with them. No
validation of the native query is performed; it is used to generate the source SQL.

For a physical table, setting the teiid_rel:native-query extension metadata to the desired query string will
execute the native query as an inline view in the source query. This feature can only be used against
sources that support inline views. The native query is used as is and is not treated as a parameterized
string. For example, on a physical table y with nameInSource="x" and teiid_rel:native-query="select c
from g", the JBoss Data Virtualization source query "SELECT c FROM y" would generate the SQL query
"SELECT c FROM (select c from g) as x". Note that the column names in the native query must match
the nameInSource of the physical table columns for the resulting SQL to be valid.

For physical procedures, you may also set the teiid_rel:native-query extension metadata to a desired
query string with the added ability to positionally reference IN parameters (see Section 12.7,
“Parameterizable Native Queries”).

A parameter reference has the form $integer, for example, $1. Note that one-based indexing is used and
that only IN parameters may be referenced. $integer is reserved, but may be escaped with another $, for
example, $$1.

By default, bind values will be used for parameter values. In some situations you might need to bind
values directly into the resulting SQL.

The teiid_rel:non-prepared extension metadata property may be set to false to turn off parameter
binding. Note that this option must be used with caution as inbound may allow for SQL injection attacks if
not properly validated. The native query does not need to call a stored procedure. Any SQL that returns
a result set positionally matching the result set expected by the physical stored procedure metadata will
work. For example, on a stored procedure x with teiid_rel:native-query="select c from g where c1 = $1
and c2 = '$$1'", the JBoss Data Virtualization source query "CALL x(?)" would generate the SQL query
"select c from g where c1 = ? and c2 = '$1'". Note that ? in this example will be replaced with the actual
value bound to parameter 1.

12.18.7. JDBC Translator: Native Procedure

WARNING

This feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the
translator property called "SupportsNativeQueries" to true. See Section 12.6,
“Override Execution Properties”.

JDBC translator also provides a procedure with name native that gives ability to execute any ad hoc
native SQL command that is specific to an underlying source directly against the source without any
JBoss Data Virtualization parsing or resolving. The metadata of this procedure's execution results are not



CHAPTER 12. TRANSLATORS

217

known to JBoss Data Virtualization, and they are returned as object array. Users can use the
ARRAYTABLE construct (Section 2.6.10, “Nested Tables: ARRAYTABLE”) to produce tabular output
for client applications.

Example 12.3. Select Example

Example 12.4. Insert Example

Example 12.5. Update Example

Example 12.6. Delete Example

IMPORTANT

By default, the name of the procedure that executes the queries directly is called native ,
however users can override the NativeQueryProcedureName execution property in the
vdb.xml file to change it to any other procedure name. See Section 12.6, “Override
Execution Properties”.

12.19. JPA TRANSLATOR

The JPA translator, known by the type name jpa2, can reverse a JPA object model into a relational
model, which can then be integrated with other relational or non-relational sources.

The JPA Translator currently has no import or execution properties.

JPA source procedures may be created using the teiid_rel:native-query extension. The procedure
invokes the native-query similar to an native procedure call with the benefits that the query is
predetermined and that result column types are known, rather than requiring the use of ARRAYTABLE or
similar functionality.

SELECT x.* FROM (call pm1.native('select * from g1')) w,
 ARRAYTABLE(w.tuple COLUMNS "e1" integer , "e2" string) AS x

SELECT x.* FROM (call pm1.native('insert into g1 (e1,e2) values (?, ?)',
112, 'foo')) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM (call pm1.native('update g1 set e2=? where e1 =
?','blah', 112)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM (call pm1.native('delete from g1 where e1 = ?', 112)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Development Guide Volume 3: Reference Material

218

WARNING

This feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, set the execution
property called SupportsDirectQueryProcedure to true.

NOTE

By default the name of the procedure that executes the queries directly is native. Override
the execution property DirectQueryProcedureName to change it to another name.

The JPA translator provides a procedure to execute any ad-hoc JPA-QL query directly against the
source without Teiid parsing or resolving. Since the metadata of this procedure's results are not known to
Teiid, they are returned as object array. User can use ARRAYTABLE can be used construct tabular
output for consumption by client applications. Teiid exposes this procedure with a query structure.

In this select query, the "search" keyword is followed by a query statement:

In this delete query, the the "delete" keyword is followed by JPA-QL for a delete operation.

In this sample, the "update" keyword must be followed by JPA-QL for the update statement.

In this create query, the create operation sends "create" word as a marker and send the entity as the first
parameter:

12.20. LDAP TRANSLATOR

12.20.1. LDAP Translator

The LDAP translator exposes an LDAP directory tree relationally with pushdown support for filtering via
criteria. This is typically coupled with the LDAP resource adapter.



SELECT x.* FROM (call jpa_source.native('search;FROM Account')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String) AS
x

SELECT x.* FROM (call jpa_source.native('delete;<jpa-ql>')) w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

SELECT x.* FROM
 (call jpa_source.native('update;<jpa-ql>')) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM
 (call jpa_source.native('create;', <entity>)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

CHAPTER 12. TRANSLATORS

219

The LDAP translator is implemented by the
org.teiid.translator.ldap.LDAPExecutionFactory class and known by the translator type
name ldap.

NOTE

The resource adapter for this translator is provided by configuring the ldap data source in
the JBoss EAP instance. See the Red Hat JBoss Data Virtualization Administration and
Configuration Guide for more configuration information.

12.20.2. LDAP Translator: Execution Properties

Table 12.15. Execution Properties

Name Description Default

SearchDefaultBaseDN Default Base DN for LDAP
Searches

null

SearchDefaultScope Default Scope for LDAP
Searches. Can be one of
SUBTREE_SCOPE,
OBJECT_SCOPE,
ONELEVEL_SCOPE.

ONELEVEL_SCOPE

RestrictToObjectClass Restrict Searches to objectClass
named in the Name field for a
table

false

UsePagination Use a PagedResultsControl to
page through large results. This is
not supported by all directory
servers.

false

ExceptionOnSizeLimitExceeded Set to true to throw an exception
when a
SizeLimitExceededException is
received and a LIMIT is not
properly enforced.

false

NOTE

There are no import settings for the LDAP translator; it also does not provide metadata.

If one of the methods below is not used and the attribute is mapped to a non-array type, then any value
may be returned on a read operation. Also insert/update/delete support will not be multi-value aware.

String columns with a default value of "multivalued-concat" will concatenate all attribute values together
in alphabetical order using a ? delimiter. If a multivalued attribute does not have a default value of
"multivalued-concat", then any value may be returned.

Development Guide Volume 3: Reference Material

220

Multiple attribute values may also be supported as an array type. The array type mapping also allows for
insert/update operations.

This example shows a DDL with objectClass and uniqueMember as arrays:

The array values can be retrieved with a SELECT. Here is an example insert with array values:

12.20.3. LDAP Translator: Native Queries

LDAP procedures may optionally have native queries associated with them (see Section 12.7,
“Parameterizable Native Queries”). The operation prefix (for example, select;, insert;, update;, delete; -
see the native procedure logic below) must be present in the native query, but it will not be issued as
part of the query to the source.

The following is an example DDL for an LDAP native procedure:

NOTE

Parameter values have reserved characters escaped, but are otherwise directly
substituted into the query.

12.20.4. LDAP Translator: Native Procedure

WARNING

This feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the
translator property called "SupportsNativeQueries" to true. See Section 12.6,
“Override Execution Properties”. above.

LDAP translator provides a procedure with name native that gives ability to execute any ad hoc native
LDAP queries directly against the source without any JBoss Data Virtualization parsing or resolving. The
metadata of this procedure's execution results are not known to JBoss Data Virtualization, and they are
returned as object array. Users can use the ARRAYTABLE construct (Section 2.6.10, “Nested Tables:

create foreign table ldap_groups (objectClass string[], DN string, name
string options (nameinsource 'cn'), uniqueMember string[]) options
(nameinsource 'ou=groups,dc=teiid,dc=org', updatable true)

insert into ldap_groups (objectClass, DN, name, uniqueMember) values
(('top', 'groupOfUniqueNames'), 'cn=a,ou=groups,dc=teiid,dc=org', 'a',
('cn=Sam Smith,ou=people,dc=teiid,dc=org',))

CREATE FOREIGN PROCEDURE proc (arg1 integer, arg2 string) OPTIONS
("teiid_rel:native-query" 'search;context-name=corporate;filter=(&
(objectCategory=person)(objectClass=user)(!cn=$2));count-
limit=5;timeout=$1;search-scope=ONELEVEL_SCOPE;attributes=uid,cn') returns
(col1 string, col2 string);



CHAPTER 12. TRANSLATORS

221

ARRAYTABLE”) to build tabular output for consumption by client applications. Since there is no known
direct query language for LDAP, JBoss Data Virtualization exposes this procedure with a simple query
structure as below.

12.20.5. LDAP Translator Example: Search

Example 12.7. Search Example

The "search" keyword is followed by the below properties. Each property must be delimited by
semicolon (;) If a property contains a semicolon (;), it must be escaped by another semicolon. See also
Section 12.7, “Parameterizable Native Queries” and the example in Section 12.20.3, “LDAP Translator:
Native Queries”.

Name Description Required

context-name LDAP Context name Yes

filter query to filter the records in the
context

No

count-limit limit the number of results. same
as using LIMIT

No

timeout Time out the query if not finished
in given milliseconds

No

search-scope LDAP search scope, one of
SUBTREE_SCOPE,
OBJECT_SCOPE,
ONELEVEL_SCOPE

No

attributes attributes to retrieve Yes

12.20.6. LDAP Translator Example: Delete

Example 12.8. Delete Example

In the above code, the "delete" keyword is followed by the "DN" string. All the string contents after the
"delete;" are used as the DN.

SELECT x.* FROM (call pm1.native('search;context-name=corporate;filter=
(objectClass=*);count-limit=5;timeout=6;search-
scope=ONELEVEL_SCOPE;attributes=uid,cn')) w,
 ARRAYTABLE(w.tuple COLUMNS "uid" string , "cn" string) AS x

SELECT x.* FROM (call
pm1.native('delete;uid=doe,ou=people,o=teiid.org')) w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

Development Guide Volume 3: Reference Material

222

12.20.7. LDAP Translator Example: Create and Update

Example 12.9. Create Example

In the above code, the "create" keyword is followed by the "DN" string. All the string contents after the
"create;" is used as the DN. It also takes one property called "attributes" which is comma separated list of
attributes. The values for each attribute is specified as separate argument to the "native" procedure.

Update is similar to create:

Example 12.10. Update Example

IMPORTANT

By default, the name of the procedure that executes the queries directly is called native,
however this can be changed by overriding an execution property in the vdb.xml file.
See Section 12.6, “Override Execution Properties”.

12.20.8. LDAP Connector Capabilities Support

LDAP does not provide the same set of functionality as a relational database. The LDAP Connector
supports many standard SQL constructs, and performs the job of translating those constructs into an
equivalent LDAP search statement. For example, the SQL statement:

Uses a number of SQL constructs, including:

SELECT clause support

select individual element support (firstname, lastname, guid)

FROM support

SELECT x.* FROM
 (call
pm1.native('create;uid=doe,ou=people,o=teiid.org;attributes=one,two,thre
e', 'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT x.* FROM
 (call
pm1.native('update;uid=doe,ou=people,o=teiid.org;attributes=one,two,thre
e', 'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

SELECT firstname, lastname, guid
FROM public_views.people
WHERE
(lastname='Jones' and firstname IN ('Michael', 'John'))
OR
guid > 600000

CHAPTER 12. TRANSLATORS

223

WHERE clause criteria support

nested criteria support

AND, OR support

Compare criteria (Greater-than) support

IN support

The LDAP Connector executes LDAP searches by pushing down the equivalent LDAP search filter
whenever possible, based on the supported capabilities. JBoss Data Virtualization automatically provides
additional database functionality when the LDAP Connector does not explicitly provide support for a
given SQL construct. In these cases, the SQL construct cannot be pushed down to the data source, so it
will be evaluated in JBoss Data Virtualization, in order to ensure that the operation is performed.

In cases where certain SQL capabilities cannot be pushed down to LDAP, JBoss Data Virtualization
pushes down the capabilities that are supported, and fetches a set of data from LDAP. JBoss Data
Virtualization then evaluates the additional capabilities, creating a subset of the original data set. Finally,
JBoss Data Virtualization will pass the result to the client. It is useful to be aware of unsupported
capabilities, in order to avoid fetching large data sets from LDAP when possible.

12.20.9. LDAP Connector Capabilities Support List

The LDAP Connector has these capabilities:

SELECT queries

SELECT element pushdown (for example, individual attribute selection)

AND criteria

Compare criteria (e.g. <, <=, >, >=, =, !=)

IN criteria

LIKE criteria.

OR criteria

INSERT, UPDATE, DELETE statements (must meet Modeling requirements)

Due to the nature of the LDAP source, the following capability is not supported:

SELECT queries

The following capabilities are not supported in the LDAP Connector, and will be evaluated by the JBoss
Data Virtualization after data is fetched by the connector:

Functions

Aggregates

BETWEEN Criteria

Case Expressions

Development Guide Volume 3: Reference Material

224

Aliased Groups

Correlated Subqueries

EXISTS Criteria

Joins

Inline views

IS NULL criteria

NOT criteria

ORDER BY

Quantified compare criteria

Row Offset

Searched Case Expressions

Select Distinct

Select Literals

UNION

XA Transactions

The ldap-as-a-datasource quick start shows you how to access data in the OpenLDAP Server. Use the
ldap translator in the vdb.xml file.

The translator does not provide a connection to OpenLDAP. Instead, you can use a JCA adapter that
uses the Java Naming API. To do so, use the following XML fragment in the standalone-teiid.xml
file. See a example in JBOSS-HOME/docs/teiid/datasources/ldap.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="ldapVDB" version="1">
<model name="HRModel">
<source name="local" translator-name="ldap" connection-jndi-
name="java:/ldapDS"/>
</model>
</vdb>

<resource-adapter id="ldapQS">
<module slot="main" id="org.jboss.teiid.resource-adapter.ldap"/>
<connection-definitions>
<connection-definition class-
name="org.teiid.resource.adapter.ldap.LDAPManagedConnectionFactory" jndi-
name="java:/ldapDS" enabled="true" use-java-context="true" pool-
name="ldapDS">
<config-property name="LdapAdminUserPassword">
redhat
</config-property>
<config-property name="LdapAdminUserDN">

CHAPTER 12. TRANSLATORS

225

The code above defines the translator and connector. The LDAP translator can derive the metadata
based on existing Users/Groups in the LDAP Server. You need the user to define the metadata. For
example, you can define a schema using DDL:

When the SELECT operation is executed against a table using JDV, it retrieves the users and groups
from the LDAP Server:

12.20.10. LDAP Attribute Datatype Support

LDAP providers currently return attribute value types of java.lang.String and byte[], and do not
support the ability to return any other attribute value type. The LDAP Connector currently supports
attribute value types of java.lang.String only. Therefore, all attributes are modeled using the String
datatype in Teiid Designer.

Conversion functions that are available in JBoss Data Virtualization allow you to use models that convert
a String value from LDAP into a different data type. Some conversions may be applied implicitly, and do
not require the use of any conversion functions. Other conversions must be applied explicitly, via the use
of CONVERT functions.

Since the CONVERT functions are not supported by the underlying LDAP system, they will be evaluated
in JBoss Data Virtualization. Therefore, if any criteria is evaluated against a converted datatype, that
evaluation cannot be pushed to the data source, since the native type is String.

cn=Manager,dc=example,dc=com
</config-property>
<config-property name="LdapUrl">
ldap://localhost:389
</config-property>
</connection-definition>
</connection-definitions>
</resource-adapter>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="ldapVDB" version="1">
<model name="HRModel">
<metadata type="DDL"><![CDATA[
CREATE FOREIGN TABLE HR_Group (
DN string options (nameinsource 'dn'),
SN string options (nameinsource 'sn'),
UID string options (nameinsource 'uid'),
MAIL string options (nameinsource 'mail'),
NAME string options (nameinsource 'cn')
) OPTIONS(nameinsource 'ou=HR,dc=example,dc=com', updatable true);
</metadata>
</model>
</vdb>

SELECT * FROM HR_Group

Development Guide Volume 3: Reference Material

226

NOTE

When converting from String to other types, be aware that criteria against that new data
type will not be pushed down to the LDAP data source. This may decrease performance
for certain queries.

As an alternative, the data type can remain a string and the client application can make the conversion,
or the client application can circumvent any LDAP supports <= and >=, but has no equivalent for < or >.
In order to support < or > pushdown to the source, the LDAP Connector will translate < to <=, and it will
translate > to >=.

When using the LDAP Connector, be aware that strictly-less-than and strictly-greater-than comparisons
will behave differently than expected. It is advisable to use <= and >= for queries against an LDAP based
data source, since this has a direct mapping to comparison operators in LDAP.

12.20.11. LDAP: Testing Your Connector

You must define LDAP Connector properties accurately or the JBoss Data Virtualization server will
return unexpected results, or none at all. As you deploy the connector in Console, improper configuration
can lead to problems when you attempt to start your connector. You can test your LDAP Connector in
Teiid Designer prior to Console deployment by submitting queries at modeling time for verification.

12.20.12. LDAP: Console Deployment Issues

The Console shows an Exception That Says Error Synchronizing the Server

If you receive an exception when you synchronize the server and your LDAP Connector is the only
service that does not start, it means that there was a problem starting the connector. Verify whether you
have correctly typed in your connector properties to resolve this issue.

12.21. LOOPBACK TRANSLATOR

The Loopback translator, known by the type name loopback, provides a quick testing solution. It
supports all SQL constructs and returns default results, with some configurable behaviour.

Table 12.16. Registry Properties

Name Description Def
ault

ThrowError True to always throw an error fals
e

RowCount Rows returned for non-update
queries.

1

WaitTime True to always throw an error fals
e

CHAPTER 12. TRANSLATORS

227

PollIntervalInMilli if positive results will be
"asynchronously" returned - that is
a DataNotAvailableException will
be thrown initially and the engine
will wait the poll interval before
polling for the results.

-1

DelegateName Set to the name of the translator
which is to be mimicked.

-

Name Description Def
ault

You can also use the Loopback translator to mimic how a real source query would be formed for a given
translator (although loopback will still return dummy data that may not be useful for your situation). To
enable this behavior, set the DelegateName property to the name of the translator you wish to mimic. For
example to disable all capabilities, set the DelegateName property to "jdbc-simple".

A source connection is not required for this translator.

12.22. MICROSOFT EXCEL TRANSLATOR

The Microsoft Excel Translator, known by the type name excel, exposes querying functionality to Excel
documents using File Data Sources. This translator provides an easy way to read an Excel spreadsheet
and provide the contents of the spreadsheet in a tabular form that can be integrated with other sources in
JDV.

NOTE

This translator works on all platforms, including Micrsofot Windows and Linux.

This table describes how the translator converts the data in Excel documents:

Table 12.17. Translation

Excel Term Relational Term

Workbook schema

Sheet Table

Row Row of data

Cell Column Definition or Data of a column

Excel translator supports "source metadata" feature, where given Excel workbook, it can introspect and
build the schema based on the Sheets defined inside it. There are options available to detect header
columns and data columns in a work sheet to define the correct metadata of a table.

Here is an example of Dynamic VDB, that shows you how to expose an Excel spreadsheet:

Development Guide Volume 3: Reference Material

228

"connection-jndi-name" in the code sample above represents the connection to the Excel document. The
Excel translator does NOT provide a connection to the Excel Document. For that purpose, Teiid uses
File JCA adapter that provides a connection to Excel. To define such connector, see File Data Sources
or see an example in jboss-as/docs/teiid/datasources/file. Once you configure both of the
above, you can deploy them to Teiid Server and access the Excel Document using either the JDB,
ODBC or OData protocol.

If you are using Designer Tooling, to create Excel based VDB, use a Teiid Designer Model project. Use
"Teiid Connection - Source Model" importer, create File Data Source using data source creation wizard
and use excel as translator in the importer. Based on the Excel document relevant relational tables will
be created. Create a VDB and deploy into Teiid Server and and access the Excel Document using
JDBC/ODBC/OData protocol.

NOTE

If you have headers in the Excel document, you can guide the import process to select
the cell headers as the column names in the table creation process. See "Import
Properties" section below on defining the "import" properties.

Import properties guide the schema generation part during the deployment of the VDB. This can be used
in Dynamic VDBs or while using "Teiid Connection >> Source Model" in Teiid Designer.

Table 12.18. Import Properties

Property Description Default

importer.excelFileName Defines the name of
the Excel Document

required

importer.headerRowNumber optional, default is
first data row of
sheet

required

importer.dataRowNumber optional, default is
first data row of
sheet

required

NOTE

Red Hat recommends that you define all the above importer properties, so that
information inside the Excel document is correctly interpreted.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="excelvdb" version="1">
 <model name="excel">
 <property name="importer.headerRowNumber" value="1"/>
 <property name="importer.ExcelFileName" value="names.xls"/>
 <source name="connector" translator-name="excel" connection-jndi-
name="java:/fileDS"/>
 </model>
</vdb>

CHAPTER 12. TRANSLATORS

229

NOTE

Purely numerical cells in a column containing mixed types will have a string form matching
their decimal representation, thus integral values will have .0 appended. If you need the
exact text representation, then the cell must be a string value (you can force it to be this
by putting a single quote ' in front of the numeric text of the cell, or by putting a single
space in front of the numeric text.)

Currently there are no Translator Extension properties defined for this translator.

Metadata Extension Properties are the properties that are defined on the schema artifacts like Table,
Column, Procedure to describe how the translator interacts with source systems. All the properties are
defined with namespace "{http://www.teiid.org/translator/excel/2014\}", which also has a recognized alias
"teiid_excel".

Table 12.19. Metadata Extension Properties

Property Schema Item Description Mandatory?

FILE Table Defines Excel Document
name or name pattern

yes

FIRST_DATA_ROW_NUMB
ER

Table Defines the row number
where records start

Optional

CELL_NUMBER Column of
Table

Defines cell number to use
for reading data of particular
column

Yes

Here is an example table that is defined using the Extension Metadata Properties:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<vdb name="excelvdb" version="1">
 <model name="excel">
 <source name="connector" translator-name="excel" connection-jndi-
name="java:/fileDS"/>
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE Person (
 ROW_ID integer OPTIONS (SEARCHABLE 'All_Except_Like',
"teiid_excel:CELL_NUMBER" 'ROW_ID'),
 FirstName string OPTIONS (SEARCHABLE 'Unsearchable',
"teiid_excel:CELL_NUMBER" '1'),
 LastName string OPTIONS (SEARCHABLE 'Unsearchable',
"teiid_excel:CELL_NUMBER" '2'),
 Age integer OPTIONS (SEARCHABLE 'Unsearchable',
"teiid_excel:CELL_NUMBER" '3'),
 CONSTRAINT PK0 PRIMARY KEY(ROW_ID)
) OPTIONS ("NAMEINSOURCE" 'Sheet1',"teiid_excel:FILE"
'names.xlsx', "teiid_excel:FIRST_DATA_ROW_NUMBER" '2')
]> </metadata>
 </model>
</vdb>

Development Guide Volume 3: Reference Material

230

NOTE

"Extended capabilities using ROW_ID column" If you define column, that has extension
metadata property "CELL_NUMBER" with value "ROW_ID", then that column value
contains the row information from Excel document. You can mark this column as Primary
Key. You can use this column in SELECT statements with a restrictive set of capabilities
including: comparison predicates, IN predicates and LIMIT. All other columns can not be
used as predicates in a query.

NOTE

The user does not have to depend upon "source metadata" import, or Designer tool
import to create the schema represented by Excel document, they can manually create a
source table and add the appropriate extension properties to make a fully functional
model. If you introspect the schema model created by the import, it would look like the
code above.

There is no Teiid-specific Excel Resource Adapter. Use the File JCA adapter with this translator.

The Excel translator does not yet support updates.

12.23. MONGODB TRANSLATOR

12.23.1. MongoDB

MongoDB is a document based "schema-less" database with it own query language. It does not map
perfectly with relational concepts or the SQL query language. More and more systems are using this type
of NoSQL store for scalability and performance. For example, applications like storing audit logs or
managing web site data fits well with MongoDB, and does not require using a structural database like
Oracle, Postgres ect. MongoDB uses JSON documents as its primary storage unit, and it can have
additional embedded documents inside the parent document. By using embedded documents it co-
locates the related information to achieve de-normalization that typically requires either duplicate data or
joins to achieve in a relational database.

For MongoDB to work with JBoss Data Virtualization, the challenge for the MongoDB translator is to
design a MongoDB store that can achieve the balance between relational and document based storage.
In our opinion the advantages of "schema-less" design are great at development time. "Schema-less"
can also be a problem with migration of application versions and the ability to query and make use of
returned information effectively.

Since it is hard and may be impossible in certain situations to derive a schema based on existing the
MongoDB collection(s), JBoss Data Virtualization approaches the problem in reverse compared to other
translators. When working with MongoDB, JBoss Data Virtualization requires the user to define the
MongoDB schema upfront using JBoss Data Virtualization metadata. Since JBoss Data Virtualization
only allows relational schema as its metadata, the user needs to define their MongoDB schema in
relational terms using tables, procedures, and functions. For the purposes of MongoDB, the JBoss Data
Virtualization metadata has been extended to support extension properties that can be defined on the
table to convert it into a MongoDB based document. These extension properties let users define how a
MongoDB document is structured and stored. Based on the relationships (primary-key, foreign-key)
defined on a table and the cardinality (ONE-to-ONE, ONE-to-MANY, MANY-to-ONE), relations between
tables are mapped such that related information can be embedded along with the parent document for
co-location (see the de-normalization comment above). Thus a relational schema based design, but
document based storage in MongoDB.

CHAPTER 12. TRANSLATORS

231

12.23.2. MongoDB Translator

The MongoDB translator, known by the type name mongodb, provides a relational view of data that
resides in a MongoDB database. This translator is capable of converting JBoss Data Virtualization SQL
queries into MongoDB based queries. It supports a full range of SELECT, INSERT, UPDATE and
DELETE calls.

The document structure in MongoDB can be more complex than what JBoss Data Virtualization can
currently define. This translator is currently designed for:

Users that are using relational databases and would like to move/migrate their data to MongoDB
to take advantage of scaling and performance, without modifying end user applications that are
currently running.

Users that are starting out with MongoDB and do not have experience with MongoDB, but are
seasoned SQL developers. This provides a low barrier of entry compared to using MongoDB
directly as an application developer.

Integrating other enterprise data sources with MongoDB based data.

NOTE

The MongoDB translator does not currently support native queries.

NOTE

The resource adapter for this translator is provided by configuring the "mongodb" data
source in the JBoss EAP instance. See the Red Hat JBoss Data Virtualization
Administration Guide for more configuration information. An example configuration file is
found at EAP_HOME/docs/teiid/datasources/mongodb.

12.23.3. MongoDB Translator: Example DDL

The name of the translator to use in vdb.xml is "mongodb":

The translator does not provide a connection to the MongoDB. For that purpose, Teiid has a JCA
adapter that provides a connection to MongoDB using the MongoDB Java Driver. To define such
connector, use the following XML fragment in standalone-teiid.xml.

<vdb name="nothwind" version="1">
 <model name="northwind">
 <source name="local" translator-name="mongodb" connection-jndi-
name="java:/mongoDS"/>
 </model>
<vdb>

<resource-adapters>
 <resource-adapter id="mongodb">
 <module slot="main" id="org.jboss.teiid.resource-
adapter.mongodb"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.mongodb.MongoDBManagedConnectionFactory"

Development Guide Volume 3: Reference Material

232

MongoDB translator can derive the metadata based on existing document collections in some scenarios,
however when working with complex documents the interpretation of metadata may be accurate, in
those situations the user MUST define the metadata. For example, you can define a schema using DDL:

When this INSERT operation is executed against table using Teiid, MongoDB translator will create a
document in the MongoDB.

 jndi-name="java:/mongoDS"
 enabled="true"
 use-java-context="true"
 pool-name="teiid-mongodb-ds">

 <!-- MongoDB server list (host:port[;host:port...]) -->
 <config-property
name="RemoteServerList">localhost:27017</config-property>
 <!-- Database Name in the MongoDB -->
 <config-property name="Database">test</config-property>
 <!--
 Uncomment these properties to supply user name
and password
 <config-property name="Username">user</config-
property>
 <config-property name="Password">user</config-
property>
 -->
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
</resource-adapters>

<vdb name="nothwind" version="1">
 <model name="northwind">
 <source name="local" translator-name="mongodb" connection-jndi-
name="java:/mongoDS"/>
 <metadata type="DDL"><![CDATA[
 CREATE FOREIGN TABLE Customer (
 customer_id integer,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');
]> </metadata>
 </model>
<vdb>

INSERT INTO Customer(customer_id, FirstName, LastName) VALUES (1, 'John',
'Doe');

{
 _id: ObjectID("509a8fb2f3f4948bd2f983a0"),
 customer_id: 1,
 FirstName: "John",
 LastName: "Doe"
}

CHAPTER 12. TRANSLATORS

233

If a PRIMARY KEY is defined on the table, then that column name is automatically used as "_id" field in
the MongoDB collection, then document structure is stored in the MongoDB.

If you defined the composite PRIMARY KEY on Customer table, the document structure will look like
this:

MongoDB translator supports automatic mapping of Teiid data types into MongoDB data types, including
the support for Blobs, Clobs and XML. The LOB support is based on GridFS in MongoDB. Arrays are in
this form:

User can get individual items in the array using function array_get, or can transform the array into tabular
structure using ARRATTABLE.

NOTE

Note that even though embedded documents can also be in arrays, the handling of
embedded documents is different from array with scalar values.

CREATE FOREIGN TABLE Customer (
 customer_id integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

CREATE FOREIGN TABLE Customer (
 customer_id integer,
 FirstName varchar(25),
 LastName varchar(25),
 PRIMARY KEY (FirstName, LastName)
) OPTIONS(UPDATABLE 'TRUE');

{
 _id: {
 FirstName: "John",
 LastName: "Doe"
 },
 customer_id: 1,
}

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
 Score: [89, "ninety", 91.0]
}

Development Guide Volume 3: Reference Material

234

NOTE

Regular Expressions, MongoDB::Code, MongoDB::MinKey, MongoDB::MaxKey and
MongoDB::OID are not supported.

12.23.4. MongoDB Translator: Metadata Extensions

Using the above DDL or any other metadata facility, a user can map a table in a relational store into a
document in MongoDB, however to make effective use of MongoDB, you need to be able to build
complex documents, that can co-locate related information, so that data can queried in a single
MongoDB query. Otherwise, since MongoDB does not support join relationships like relational database,
you need to issue multiple queries to retrieve and join data manually. The power of MongoDB comes
from its "embedded" documents and its support of complex data types like arrays and use of the
aggregation framework to be able to query them. This translator provides way to achieve that goals.

When you do not define the complex embedded documents in MongoDB, Teiid can step in for join
processing and provide that functionality, however if you want to make use of the power of MongoDB
itself in querying the data and avoid bringing the unnecessary data and improve performance, you need
to look into building these complex documents.

MongoDB translator defines two additional metadata properties along with other Teiid metadata
properties to aid in building the complex "embedded" documents. You can use the following metadata
properties in your DDL.

teiid_mongo:EMBEDDABLE - Means that data defined in this table is allowed to be included as
an "embeddable" document in any parent document. The parent document is referenced by the
foreign key relationships. In this scenario, Teiid maintains more than one copy of the data in
MongoDB store, one in its own collection and also a copy in each of the parent tables that have
relationship to this table. You can even nest embeddable table inside another embeddable table
with some limitations. Use this property on table, where table can exist, encompass all its
relations on its own. For example, a "Category" table that defines a "Product"'s category is
independent of Product, which can be embeddable in "Products" table.

teiid_mongo:MERGE - Means that data of this table is merged with the defined parent table.
There is only a single copy of the data that is embedded in the parent document. Parent
document is defined using the foreign key relationships.

IMPORTANT

A given table can contain either the "teiid_mongo:EMBEDDABLE" property or the
"teiid_mongo:MERGE" property defining the type of nesting in MongoDB. A table is not
allowed to have both properties.

EMBEDDABLE - Means that data defined in this table is allowed to be included as an
"embeddable" document in a parent document. The parent document is defined by the foreign
key relationships. In this situation, JBoss Data Services maintains more than one copy of the
data in a MongoDB store: one in its own collection and also a copy in each of the parent tables
that have relationship to this table.

EMBEDIN - Means that data of this table is embedded in the defined parent table. There is only
a single copy of the data that is embedded in the parent document.

These properties behave differently for particular relationship types on the schema:

ONE-2-ONE: Here is the DDL structure representing the ONE-2-ONE relationship:

CHAPTER 12. TRANSLATORS

235

By default, this will produce two different collections in MongoDB, like with sample data it will
look like this:

You can enhance the storage in MongoDB to a single collection by using "teiid_mongo:MERGE'
extension property on the table's OPTIONS clause:

This will produce a single collection in the MongoDB:

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Address (
 CustomerId integer,
 Street varchar(50),
 City varchar(25),
 State varchar(25),
 Zipcode varchar(6),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

Address
{
 _id: ObjectID("..."),
 CustomerId: 1,
 Street: "123 Lane"
 City: "New York",
 State: "NY"
 Zipcode: "12345"
}

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Address (
 CustomerId integer PRIMARY KEY,
 Street varchar(50),
 City varchar(25),
 State varchar(25),
 Zipcode varchar(6),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Customer');

Development Guide Volume 3: Reference Material

236

Both tables are merged into a single collection that can be queried together using the JOIN
clause in the SQL command. Since the existence of child/additional record has no meaning with
out parent table using the "teiid_mongo:MERGE" extension property is right choice in this
situation.

NOTE

Note that the Foreign Key defined on child table, must refer to Primary Keys on
both parent and child tables to form a One-2-One relationship.

ONE-2-MANY: Typically there are only two tables involved in this relationship. If MANY side is
only associated one table, then use "EMBEDIN" property on MANY side of table and define the
parent. If associated with more than single table, then use "EMBEDDABLE". When MANY side
is stored in ONE side, they are stored as array of embedded document. If associated with more
than single table then use "teiid_mongo:EMBEDDABLE".

Here is a sample DDL:

In this sample, a single Customer can have many orders. There are two options to define the
how we store the MongoDB document. If in your schema, the Customer table's CustomerId is
only referenced in Order table (i.e. Customer information used for only Order purposes), you can
use

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe",
 Address:
 {
 Street: "123 Lane",
 City: "New York",
 State: "NY",
 Zipcode: "12345"
 }
}

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)

CHAPTER 12. TRANSLATORS

237

This will produce a single document for the customer table:

If the customer table is referenced in more tables other than Order table, then use the
"teiid_mongo:EMBEDDABLE" property:

) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Customer');

{
 _id: 1,
 FirstName: "John",
 LastName: "Doe",
 Order:
 [
 {
 _id: 100,
 OrderDate: ISODate("2000-01-01T06:00:00Z")
 Status: 2
 },
 {
 _id: 101,
 OrderDate: ISODate("2001-03-06T06:00:00Z")
 Status: 5
 }
 ...
]
}

CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:EMBEDDABLE" 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Comments (
 CommentID integer PRIMARY KEY,
 CustomerId integer,
 Comment varchar(140),
 FOREIGN KEY (CustomerId) REFERENCES Customer (CustomerId)
) OPTIONS(UPDATABLE 'TRUE');

Development Guide Volume 3: Reference Material

238

This creates three different collections in MongoDB:

Here the Customer table contents are embedded along with other table's data where they were
referenced. This creates duplicated data where multiple of these embedded documents are
managed automatically in the MongoDB translator.

WARNING

All the SELECT, INSERT, DELETE operations that are generated against
the tables with "teiid_mongo:EMBEDDABLE" property are atomic, except for
UPDATES, as there can be multiple operations involved to update all the
copies.

MANY-2-ONE: This is the same as ONE-2-MANY. Apply them in reverse.

Customer
{
 _id: 1,
 FirstName: "John",
 LastName: "Doe"
}

Order
{
 _id: 100,
 CustomerId: 1,
 OrderDate: ISODate("2000-01-01T06:00:00Z")
 Status: 2
 Customer:
 {
 FirstName: "John",
 LastName: "Doe"
 }
}

Comment
{
 _id: 12,
 CustomerId: 1,
 Comment: "This works!!!"
 Customer:
 {
 FirstName: "John",
 LastName: "Doe"
 }
}



CHAPTER 12. TRANSLATORS

239

NOTE

A parent table can have multiple "embedded" and as well as "merge" documents
inside it, it not limited so either one or other. However, please note that MongoDB
imposes document size is limited can not exceed 16MB.

Many-to-Many: This can also mapped with combination of "teiid_mongo:MERGE" and
"teiid_mongo:EMBEDDABLE" properties (partially). Here is a sample DDL:

Modify the DDL so that it looks like this:

A document that looks like this is produced:

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 OrderDate date,
 Status integer
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE OrderDetail (
 OrderID integer,
 ProductID integer,
 PRIMARY KEY (OrderID,ProductID),
 FOREIGN KEY (OrderID) REFERENCES Order (OrderID),
 FOREIGN KEY (ProductID) REFERENCES Product (ProductID)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Products (
 ProductID integer PRIMARY KEY,
 ProductName varchar(40)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 OrderDate date,
 Status integer
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE OrderDetail (
 OrderID integer,
 ProductID integer,
 PRIMARY KEY (OrderID,ProductID),
 FOREIGN KEY (OrderID) REFERENCES Order (OrderID),
 FOREIGN KEY (ProductID) REFERENCES Product (ProductID)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:MERGE" 'Order');

CREATE FOREIGN TABLE Products (
 ProductID integer PRIMARY KEY,
 ProductName varchar(40)
) OPTIONS(UPDATABLE 'TRUE', "teiid_mongo:EMBEDDABLE" 'TRUE');

{
 _id : 10248,
 OrderDate : ISODate("1996-07-04T05:00:00Z"),
 Status : 5

Development Guide Volume 3: Reference Material

240

 OrderDetails : [
 {
 _id : {
 OrderID : 10248,
 ProductID : 11
 Products : {
 ProductID: 11
 ProductName: "Hammer"
 }
 }
 },
 {
 _id : {
 OrderID : 10248,
 ProductID : 14
 Products : {
 ProductID: 14
 ProductName: "Screw Driver"
 }
 }
 }
]
}

Products
{
 {
 ProductID: 11
 ProductName: "Hammer"
 }
 {
 ProductID: 14
 ProductName: "Screw Driver"
 }
}

CHAPTER 12. TRANSLATORS

241

WARNING

Currently nested embedding of documents has limited support due to
capabilities of handling nested arrays is limited in the MongoDB.
Nesting of "EMBEDDABLE" property with multiple levels is allowed but
more than one level with MERGE is not. Also, be careful not to exceed
the document size of 16 MB for a single row, (hence deep nesting is not
recommended).

JOINS between related tables, must use either the "EMBEDDABLE" or
"MERGE" property, otherwise the query will result in error. In order for
Teiid to correctly plan and support the JOINS, in the case that any two
tables are NOT embedded in each other, use allow-joins=false property
on the Foreign Key that represents the relation. Here is an example:

In this case, Teiid will create two collections. However when a user
issues query such as this, instead of resulting in error, the JOIN
processing will happen in the Teiid engine, without the above property it
will result in an error:

The MongoDB translator supports geo-spatial query operators in the "WHERE" clause, when the data is
stored in the GeoJSon format in the MongoDB Document. These functions are supported:



CREATE FOREIGN TABLE Customer (
 CustomerId integer PRIMARY KEY,
 FirstName varchar(25),
 LastName varchar(25)
) OPTIONS(UPDATABLE 'TRUE');

CREATE FOREIGN TABLE Order (
 OrderID integer PRIMARY KEY,
 CustomerId integer,
 OrderDate date,
 Status integer,
 FOREIGN KEY (CustomerId) REFERENCES Customer
(CustomerId) OPTIONS (allow-join 'FALSE')
) OPTIONS(UPDATABLE 'TRUE');

SELECT OrderID, LastName FROM Order JOIN Customer
ON Order.CustomerId = Customer.CustomerId;

CREATE FOREIGN FUNCTION geoIntersects (columnRef string, type string,
coordinates double[][]) RETURNS boolean;
CREATE FOREIGN FUNCTION geoWithin (ccolumnRef string, type string,
coordinates double[][]) RETURNS boolean;
CREATE FOREIGN FUNCTION near (ccolumnRef string, coordinates double[],
maxdistance integer) RETURNS boolean;
CREATE FOREIGN FUNCTION nearSphere (ccolumnRef string, coordinates
double[], maxdistance integer) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonIntersects (ref string, north double,

Development Guide Volume 3: Reference Material

242

Here is a sample query:

IMPORTANT

Red Hat does not certify the geospatial support for MongoDB in JBoss Data Virtualization.

MongoDB translator designed on top of the MongoDB aggregation framework, use of MongoDB version
that supports this framework is mandatory. Apart from SELECT queries, this translator also supports
INSERT, UPDATE and DELETE queries. It also supports grouping, matching, sorting, filtering, limit,
support for LOBs using GridFS and composite primary and foreign keys.

MongoDB source procedures may be created using the teiid_rel:native-query extension. The procedure
will invoke the native-query similar to a direct procedure call with the benefits that the query is
predetermined and that result column types are known, rather than requiring the use of ARRAYTABLE or
similar functionality.

WARNING

This feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the
execution property called SupportsDirectQueryProcedure to true.

NOTE

By default the name of the procedure that executes the queries directly is called native.
Override the execution property DirectQueryProcedureName to change it to another
name.

The MongoDB translator provides a procedure to execute any ad-hoc aggregate query directly against
the source without Teiid parsing or resolving. Since the metadata of this procedure's results are not
known to Teiid, they are returned as an object array containing single blob at array location one(1). This
blob contains the JSON document. XMLTABLE can be used construct tabular output for consumption by
client applications.

In this example, a collection called "city" is looked up with filter that matches the "city" name with
"FREEDOM", using "native" procedure and then using the nested tables feature the output is passed to a

east double, west double, south double) RETURNS boolean;
CREATE FOREIGN FUNCTION geoPolygonWithin (ref string, north double, east
double, west double, south double) RETURNS boolean;

SELECT loc FROM maps where mongo.geoWithin(loc, 'LineString', ((cast(1.0
as double), cast(2.0 as double)), (cast(1.0 as double), cast(2.0 as
double))))



select x.* from TABLE(call native('city;{$match:{"city":"FREEDOM"}}')) t,
 xmltable('/city' PASSING JSONTOXML('city', cast(array_get(t.tuple,
1) as BLOB)) COLUMNS city string, state string) x

CHAPTER 12. TRANSLATORS

243

XMLTABLE construct, where the output from the procedure is sent to a JSONTOXML function to
construct a XML then the results of that are exposed in tabular form.

IMPORTANT

The direct query must be in this format:

MongoDB translator also allows to execute Shell type java script commands like remove, drop,
createIndex.

The commands need to be in this format:

Here is an example:

12.24. OBJECT TRANSLATOR

12.24.1. Object Translator

The Object translator is a bridge for reading Java objects from external sources, such as Map Cache,
and delivering them to the engine for processing. To assist in providing that bridge, the OBJECTTABLE
function must be used to transform the Java object into rows and columns.

These are the types of object translators:

map-cache - supports a local cache that is of type Map and using Key searching. This translator
is implemented by the org.teiid.translator.object.ObjectExecutionFactory
class.

NOTE

See the Red Hat JBoss Data Grid resource adapter for this translator. It can be configured
to look up the cache container through JNDI or created sources (such as
ConfigurationFileName or RemoteServerList).

12.24.2. Object Translator: Execution Properties

The following execution properties are relevant to translating from JBoss Data Grid.

Table 12.20. Execution Properties

Name Description Required Default

"collectionName;{$pipeline instr}+"

"$ShellCmd;collectionName;operationName;{$instr}+"

"$ShellCmd;MyTable;remove;{ qty: { $gt: 20 }}"

Development Guide Volume 3: Reference Material

244

SupportsLuceneSearchi
ng

Setting to true assumes
your objects are
annotated and
Hibernate/Lucene will be
used to search the
cache

N false

Name Description Required Default

12.24.3. Object Translator: Supported Capabilities

The following are the connector capabilities when Key Searching is used:

SELECT command

CompareCriteria - only EQ

InCriteria

The following are the connector capabilities when Hibernate/Lucene Searching is enabled:

SELECT command

CompareCriteria - EQ, NE, LT, GT, etc.

InCriteria

OrCriteria

And/Or Criteria

Like Criteria

INSERT, UPDATE, DELETE

12.24.4. Object Translator: Usage

Retrieve objects from a cache and transform into rows and columns.

The primary object returned by the cache should have a name in source of 'this'. All other
columns will have their name in source (which defaults to the column name) interpreted as the
path to the column value from the primary object.

All columns that are not the primary key nor covered by a lucene index should be marked as
SEARCHABLE 'Unsearchable'.

12.25. ODATA TRANSLATOR

12.25.1. OData Translator

The OData translator exposes the OData V2 and V3 data sources. This translator implements a simple
connection for web services in the same way as the Web Services translator.

CHAPTER 12. TRANSLATORS

245

The OData translator is implemented by the
org.teiid.translator.odata.ODataExecutionFactory class and known by the translator type
name odata.

NOTE

Open Data Protocol (OData) is a Web protocol for querying and updating data that
provides a way to unlock your data and free it from silos that exist in applications today.
OData does this by applying and building upon Web technologies such as HTTP, Atom
Publishing Protocol (AtomPub) and JSON to provide access to information from a variety
of applications, services, and stores. OData is being used to expose and access
information from a variety of sources including, but not limited to, relational databases, file
systems, content management systems and traditional Web sites.

Using this specification from OASIS group, and with the help from framework OData4J, JBoss Data
Virtualization maps OData entities into relational schema. JBoss Data Virtualization supports reading of
CSDL (Conceptual Schema Definition Language) from the OData endpoint provided and converts the
OData schema into relational schema. The below table shows the mapping selections in OData
Translator from CSDL document.

OData Mapped to Relational Entity

EntitySet Table

FunctionImport Procedure

AssociationSet Foreign Keys on the Table*

ComplexType ignored**

* A Many to Many association will result in a link table that can not be selected from, but can be used for
join purposes.

** When used in Functions, an implicit table is exposed. When used to define a embedded table, all the
columns will be in-lined.

All CRUD operations will be appropriately mapped to the resulting entity based on the SQL submitted to
the OData translator.

NOTE

The resource adapter for this translator is provided by configuring the webservice data
source in the JBoss EAP instance. See the Red Hat JBoss Data Virtualization
Administration and Configuration Guide for more configuration information.

Using this specification from OASIS group, with the help from the Olingo framework, Teiid maps OData
V4 CSDL (Conceptual Schema Definition Language) document from the OData endpoint provided and
converts the OData metadata into Teiid's relational schema. The below table shows the mapping
selections in OData V4 Translator from CSDL document

Development Guide Volume 3: Reference Material

246

http://www.odata.org
http://code.google.com/p/odata4j/

12.25.2. OData Translator: Execution Properties

Table 12.21. Execution Properties

Name Description Default

DatabaseTimeZone The time zone of the database.
Used when fetching date, time, or
timestamp values

The system default time zone

12.25.3. OData Translator: Importer Properties

Table 12.22. Importer Properties

Name Description Default

schemaNamespace Namespace of the schema to
import

null

entityContainer Entity Container Name to import default container

Example importer settings to only import tables and views from NetflixCatalog:

12.25.4. OData Translator: Usage

Usage of an OData source is similar to a JDBC translator. The metadata import is supported through the
translator, once the metadata is imported from source system and exposed in relational terms, then this
source can be queried as if the EntitySets and Function Imports were local to the JBoss Data
Virtualization system.

Table 12.23. Execution Properties

Property Description Default

DatabaseTimeZone The time zone of the database.
Used when fetchings date, time,
or timestamp values

The system default time zone

SupportsOdataCount Supports $count True

SupportsOdataFilter Supports $filter True

SupportsOdataOrderBy Supports $orderby true

SupportsOdataSkip Supports $skip True

<property name="importer.schemaNamespace" value="System.Data.Objects"/>
<property name="importer.schemaPattern" value="NetflixCatalog"/>

CHAPTER 12. TRANSLATORS

247

SupportsOdataTop Supports $top True

Property Description Default

Table 12.24. Importer Properties

Property Description Default

schemaNamespace Namespace of the schema to
import

Null

entityContainer Entity Container Name to import Default container

Here are some importer settings to import tables and views only from NetflixCatalog:

NOTE

Sometimes it's possible that the odata server you are querying does not fully implement
all OData specification features. If your OData implementation does not support a certain
feature, then turn off the corresponding capability using "execution Properties", so that
Teiid will not pushdown invalid queries to the translator. For example, to turn off $filter you
add following to your vdb.xml then use "odata-override" as the translator name on your
source model:

NOTE

Native or direct query execution is not supported through OData translator. However, user
can use Web Services Translator's invokehttp method directly to issue a Rest based call
and parse results using SQLXML.

NOTE

Teiid can not only consume OData based data sources, but it can expose any data
source as an Odata based webservice. For more information see OData Support.

12.26. ODATA VERSION 4 TRANSLATOR

12.26.1. OData Version 4 Translator

<property name="importer.schemaNamespace" value="System.Data.Objects"/>
<property name="importer.schemaPattern" value="NetflixCatalog"/>

<translator name="odata-override" type="odata">
<property name="SupportsOdataFilter" value="false"/>
</translator>

Development Guide Volume 3: Reference Material

248

The OData V4 translator, known by the type name "odata4" exposes the OData Version 4 data sources
and uses the Teiid WS resource adapter for making web service calls. This translator is an extension of
the Web Services Translator.

Use the Open Data (OData) 4 Web Protocol to standardize APIs for accessing data from a variety of
sources. OData is an abstraction layer that allows you to access data from such places as databases,
file systems and content management systems. OData provides a REST-based protocol for various
database operations.

OData is useful if you intend to build RESTful APIs as it standardizes the ways in which you build and
consume such things as request and response headers, payload formats, status codes, query options
and so forth. By standardizing these, it frees you to focus on developing your business logic.

Red Hat JBoss Data Virtualization can expose any data source as an OData-based web service.

Red Hat JBoss Data Virtualization maps OData 4 Conceptual Schema Documentation Language
(CSDL) documents to relational entities. It does this in order to convert OData information into a
relational schema understood by Data Virtualization. Here are the mappings to show how the OData
elements are converted:

Table 12.25. Mappings

OData Relational Entity

EntitySet Table

EntityType Table. (This is only mapped if the EntityType is
exposed as the EntitySet in the Entity Container.)

ComplexType Table. (This is mapped only if the complex type is
used as a property in the exposed EntitySet. This
table will be either a child table with a foreign key
[one to one] or [one to many] relationship with its
parent.)

FunctionImport Procedure. (If the return type is EntityType or
ComplexType, the procedure will return a table.)

ActionImport Procedure. (If the return type is EntityType or
ComplexType, the procedure will return a table.)

NavigationProperties Table. (Navigation properties are exposed as tables.
These tables are created with foreign key
relationships to the parent.)

After the entities are generated by these mappings, the translator maps CRUD operations to them based
on them that are derived from the submitted SQL.

The OData translator works in a similar way to the JDBC translator in that, once the metadata is
imported from the source system and exposed in relational terms, then that source can be queried as if
the EntitySets, Function Imports and Action Imports were based locally on the Red Hat JBoss Data
Virtualization system.

CHAPTER 12. TRANSLATORS

249

Here is a sample virtual database that can read the metadata service from the TripPin example (which
you can find on http://odata.org):

1. Configure your resource adapter to look like this:

2. Deployed the virtual database.

3. Connect to it using the JDBC driver.

4. You can then issue SQL queries like these:

NOTE

People_UserName is implicitly added by the metadata.

12.26.1.1. Translator Configuration Options

12.26.1.1.1. Execution Options

Use execution properties to extend or limit the functionality of the translator to match the capabilities of
the physical data source. You will sometimes need to adjust the defaults so that the translator works in
the manner you expect.

<vdb name="trippin" version="1">
 <model name="trippin">
 <source name="odata4" translator-name="odata4" connection-jndi-
name="java:/tripDS"/>
 </model>
</vdb>

<resource-adapter id="trippin">
 <module slot="main" id="org.jboss.teiid.resource-
adapter.webservice"/>
 <transaction-support>NoTransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-
name="org.teiid.resource.adapter.ws.WSManagedConnectionFactory"
jndi-name="java:/tripDS" enabled="true" use-java-context="true"
pool-name="teiid-trip-ds">
 <config-property name="EndPoint">

http://services.odata.org/V4/(S(va3tkzikqbtgu1ist44bbft5))/TripPinSe
rviceRW
 </config-property>
 </connection-definition>
 </connection-definitions>
</resource-adapter>

SELECT * FROM trippin.People;
SELECT * FROM trippin.People WHERE UserName = 'russelwhyte';
SELECT * FROM trippin.People p INNER JOIN trippin.People_Friends pf
ON p.UserName = pf.People_UserName;
EXEC GetNearestAirport(lat, lon) ;

Development Guide Volume 3: Reference Material

250

http://odata.org

Table 12.26. Execution Properties

Name Description Default

SupportsOdataCount Supports $count true

SupportsOdataFilter Supports $filter true

SupportsOdataOrderBy Supports $orderby true

SupportsOdataSkip Supports $skip true

SupportsOdataTop Supports $top true

SupportsUpdates Supports
INSERT/UPDATE/DELETE

true

Sometimes the OData server might not have implemented the entire OData specification. If your OData
implementation does not support a certain feature, then turn off the corresponding capability via the
"execution Properties" so that you do not encounter any unexpected behaviour. Here is how you do so:

1. To turn off $filter, add the following configuration to your vdb.xml file:

2. Use "odata-override" as the source model's translator name.

12.26.1.1.2. Importer Properties

If you wish, you can set the importer's properties. This allows you to define the behavior of the translator
when it is importing the metadata from the physical source giving you more flexibility:

Table 12.27. Importer Properties

Name Description Default

schemaNamespace This is the namespace of the
schema to import.

null

In this example, the importer is told to import only those tables and views from the TripPin service that
have been exposed on odata.org:

<translator name="odata-override" type="odata">
 <property name="SupportsOdataFilter" value="false"/>
</translator>

<property name="importer.schemaNamespace"
value="Microsoft.OData.SampleService.Models.TripPin"/>

CHAPTER 12. TRANSLATORS

251

NOTE

You can leave this property undefined. If you do so, the EntityContainer's default name is
used instead.

12.26.1.1.3. JCA Resource Adapter

The resource adapter for this translator is a web service data source.

IMPORTANT

You cannot perform native or direct query execution through the OData translator.
However, to work around this you can use the Web Services Translator's invokehttp
method directly to issue a REST-based call. You can then parse the results with
SQLXML.

12.27. OLAP TRANSLATOR

12.27.1. OLAP Translator

The OLAP translator exposes stored procedures for calling analysis services backed by an OLAP server
using MDX query language.

The OLAP translator is implemented by the
org.teiid.translator.olap.OlapExecutionFactory class and known by the translator type
name olap.

This translator exposes a stored procedure, invokeMDX, that returns a result set containing tuple array
values for a given MDX query. invokeMDX will commonly be used with the ARRAYTABLE table function
(Section 2.6.10, “Nested Tables: ARRAYTABLE”) to extract the results.

Since the Cube metadata exposed by the OLAP servers and relational database metadata are so
different, there is no single way to map the metadata from one to other. It is best to query OLAP system
using its own native MDX language through. MDX queries my be defined statically or built dynamically in
the JBoss Data Virtualization abstraction layers.

NOTE

The resource adapter for this translator is provided by configuring the data source in the
JBoss EAP instance. Two sample datasource files are provided for accessing OLAP
servers. One is Mondrian specific when the Mondrian server is deployed in the same
JBoss EAP instance as JBoss Data Virtualization (mondrian.xml). To access any other
OLAP servers using XMLA interface, the data source for them can be created using the
example template in olap-xmla.xml. These example files can be found in the
EAP_HOME/docs/teiid/datasources/ directory. See the Red Hat JBoss Data
Virtualization Administration and Configuration Guide for more configuration information.

12.27.2. OLAP Translator: Usage

The OLAP translator exposes one low level procedure for accessing OLAP services: invokeMDX.

invokeMdx returns a result set of the tuples as array values.

Development Guide Volume 3: Reference Material

252

The mdx parameter is a MDX query to be executed on the OLAP server.

The results of the query will be returned such that each row on the row axis will be packed into an array
value that will first contain each hierarchy member name on the row axis then each measure value from
the column axis.

NOTE

Consider using data roles to prevent arbitrary MDX from being submitted to the
invokeMDX procedure. See Section 7.1, “Data Roles”.

12.27.3. OLAP Translator: Native Queries

OLAP source procedures may be created using the teiid_rel:native-query extension. See Section 12.7,
“Parameterizable Native Queries”.

NOTE

The parameter value substitution directly inserts boolean, and number values, and treats
all other values as string literals.

The procedure will invoke the native query similar to an invokeMdx call with the benefits that the query is
predetermined and that result column types are known, rather than requiring the use of ARRAYTABLE (
Section 2.6.10, “Nested Tables: ARRAYTABLE”) or similar functionality.

12.27.4. OLAP Translator: Native Procedure

The invokeMdx procedure is the native procedure for the OLAP translator. It may be disabled or have its
name changed via the common native translator properties like any other source. A call to a native
procedure without any parameters will not attempt to parse the MDX query for parameterization. If
parameters are used, the value substitution directly inserts boolean, and number values, and treats all
other values as string literals.

12.28. SALESFORCE TRANSLATOR

12.28.1. Properties

The Salesforce translators support SELECT, DELETE, INSERT and UPDATE operations against a
Salesforce.com account.

IMPORTANT

Salesforce API version 22.0 support has been deprecated.

The Salesforce translator, known by the type name salesforce, provides Salesforce API 22.0 support.
The translator must be used with the corresponding Salesforce resource adapter of the same API
version.

Procedure invokeMdx(mdx in STRING, params VARIADIC OBJECT) returns table
(tuple object)

CHAPTER 12. TRANSLATORS

253

NOTE

The resource adapter for this translator is provided by configuring the salesforce data
source in the Red Hat JBoss EAP instance.

The Salesforce 34 translator, known by the type name of salesforce-34, provides Salesforce API
34.0 support. The translator must be used with the corresponding Salesforce resource adapter of the
same API version.

You can access Salesforce using a JSON Web Token (JWT) login module for security:

1. Create a self-signed certificate in Salesforce by clicking user->setup->security-controls-
>Certificate and Key Management.

2. Download the certificate and the keystore.

3. Create a connected application and select OAuth and click all the scopes.

4. Save the custom domain.

5. Create a profile and a permission set assigned to the connected application.

6. Add the certificate by clicking Digital Certificate.

7. Add the security domain to the settings file:

12.28.2. Salesforce Translator: Execution Properties

Table 12.28. Execution Properties

 <security-domain name="oauth2-jwt-security">
 <authentication>
 <login-module
code="org.teiid.jboss.oauth.JWTBearerTokenLoginModule"
flag="required" module="org.jboss.teiid.security">
 <module-option name="client-id" value="xxxxx"/>
 <module-option name="client-secret" value="xxxx"/>
 <module-option name="access-token-uri"
value="https://login.salesforce.com/services/oauth2/token"/>
 <module-option name="jwt-audience"
value="https://login.salesforce.com"/>
 <module-option name="jwt-subject" value="your@sf-login.com">
 <module-option name="keystore-type" value="JKS"/>
 <module-option name="keystore-password" value="changeme"/>
 <module-option name="keystore-url"
value="${jboss.server.config.dir}/salesforce.jks"/>
 <module-option name="certificate-alias" value="teiidtest">
 <module-option name="signature-algorithm-name"
value="SHA256withRSA"/>
 </login-module>
 </authentication>
 </security-domain>

Development Guide Volume 3: Reference Material

254

Name Description Default

ModelAuditFields Audit Model Fields false

MaxBulkInsertBatchSize Batch size to use when inserting in bulk 2048

The Salesforce translator can import metadata.

Table 12.29. Import Properties

Name Description Required Default

NormalizeName
s

If the importer should attempt to
modify the object/field names so that
they can be used unquoted.

false true

excludeTables A case-insensitive regular
expression that when matched
against a table name will exclude it
from import. Applied after table
names are retrieved. Use a negative
look-ahead inclusion pattern to act
as an inclusion filter.

false n/a

includeTables A case-insensitive regular
expression that when matched
against a table name will be
included during import. Applied after
table names are retrieved from
source.

false n/a

importStatstics Retrieves cardinalities during import
using the REST API explain plan
feature.

false false

When both includeTables and excludeTables patterns are present during the import, the includeTables
pattern matched first, then the excludePatterns will be applied.

12.28.3. Salesforce Translator: SQL Processing

Salesforce does not provide the same set of functionality as a relational database. For example,
Salesforce does not support arbitrary joins between tables. However, working in combination with the
JBoss Data Virtualization Query Planner, the Salesforce connector supports nearly all of the SQL syntax
supported by JBoss Data Virtualization.

The Salesforce Connector executes SQL commands by pushing down ​ the command to Salesforce
whenever possible, based on the supported capabilities. JBoss Data Virtualization will automatically
provide additional database functionality when the Salesforce Connector does not explicitly provide
support for a given SQL construct. In these cases, the SQL construct cannot be pushed down ​to the data
source, so it will be evaluated in JBoss Data Virtualization, in order to ensure that the operation is
performed.

CHAPTER 12. TRANSLATORS

255

In cases where certain SQL capabilities cannot be pushed down to Salesforce, JBoss Data Virtualization
will push down the capabilities that are supported, and fetch a set of data from Salesforce. Then, JBoss
Data Virtualization will evaluate the additional capabilities, creating a subset of the original data set.
Finally, JBoss Data Virtualization will pass the result to the client.

Neither Salesforce nor the Salesforce Connector support the sum() scalar function, but they do support
CompareCriteriaEquals, so the query that is passed to Salesforce by the connector will be transformed to
this query.

The sum() scalar function will be applied by the JBoss Data Virtualization Query Engine to the result set
returned by the connector.

In some cases multiple calls to the Salesforce application will be made to support the SQL passed to the
connector.

The API in Salesforce to delete objects only supports deleting by ID. In order to accomplish this, the
Salesforce connector will first execute a query to get the IDs of the correct objects, and then delete those
objects. So the above DELETE command will result in the following two commands.

The Salesforce API DELETE call is not expressed in SQL, but the above is an SQL equivalent
expression.

It is useful to be aware of unsupported capabilities, in order to avoid fetching large data sets from
Salesforce and making your queries perform as well as possible.

12.28.4. Salesforce Translator: Multi-Select Picklists

A multi-select pick list is a field type in Salesforce that can contain multiple values in a single field. Query
criteria operators for fields of this type in Salesforce Object Query Language (SOQL) are limited to EQ,
NE, includes and excludes. The full Salesforce documentation for selecting from mullti-select pick lists
can be found at Querying Mulit-select Picklists .

JBoss Data Virtualization SQL does not support the includes or excludes operators, but the Salesforce
connector provides user defined function definitions for these operators that provide equivalent
functionality for fields of type multi-select. The definition for the functions are:

For example, take a single multi-select picklist column called Status that contains all of these values.

current

working

SELECT sum(Reports) FROM Supervisor where Division = 'customer support';

SELECT Reports FROM Supervisor where Division = 'customer support';

DELETE From Case WHERE Status = 'Closed';

SELECT ID From Case WHERE Status = 'Closed';
DELETE From Case where ID IN (<result of query>);

boolean includes(Column column, String param)
boolean excludes(Column column, String param)

Development Guide Volume 3: Reference Material

256

http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content%2Fsforce_api_calls_soql_querying_multiselect_picklists.htm|SkinName=webhelp

critical

For that column, all of the below are valid queries:

EQ and NE criteria will pass to Salesforce as supplied. For example, these queries will not be modified
by the connector.

12.28.5. Salesforce Translator: Selecting All Objects

The Salesforce connector supports calling the queryAll operation from the Salesforce API. The queryAll
operation is equivalent to the query operation with the exception that it returns data about all current and
deleted objects in the system.

The connector determines if it will call the query or queryAll operation via reference to the isDeleted
property present on each Salesforce object, and modeled as a column on each table generated by the
importer. By default this value is set to False when the model is generated and thus the connector calls
query. Users are free to change the value in the model to True, changing the default behavior of the
connector to be queryAll.

The behavior is different if isDeleted is used as a parameter in the query. If the isDeleted column is used
as a parameter in the query, and the value is 'true' the connector will call queryAll.

If the isDeleted column is used as a parameter in the query, and the value is 'false' the connector
performing the default behavior will call the query.

12.28.6. Salesforce Translator: Selecting Updated Objects

If the option is selected when importing metadata from Salesforce, a GetUpdated procedure is generated
in the model with the following structure:

See the description of the GetUpdated operation in the Salesforce documentation for usage details.

12.28.7. Salesforce Translator: Selecting Deleted Objects

SELECT * FROM Issue WHERE true = includes (Status, 'current, working');
SELECT * FROM Issue WHERE true = excludes (Status, 'current, working');
SELECT * FROM Issue WHERE true = includes (Status, 'current;working,
critical');

SELECT * FROM Issue WHERE Status = 'current';
SELECT * FROM Issue WHERE Status = 'current;critical';
SELECT * FROM Issue WHERE Status != 'current;working';

select * from Contact where isDeleted = true;

select * from Contact where isDeleted = false;

GetUpdated (ObjectName IN string,
 StartDate IN datetime,
 EndDate IN datetime,
 LatestDateCovered OUT datetime)
returns
 ID string

CHAPTER 12. TRANSLATORS

257

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getupdated.htm

If the option is selected when importing metadata from Salesforce, a GetDeleted procedure is generated
in the model with the following structure:

See the description of the GetDeleted operation in the Salesforce documentation for usage details.

12.28.8. Salesforce Translator: Relationship Queries

Salesforce does not support joins like a relational database, but it does have support for queries that
include parent-to-child or child-to-parent relationships between objects. These are termed Relationship
Queries. The SalesForce connector supports Relationship Queries through Outer Join syntax.

This query shows the correct syntax to query a SalesForce model with to produce a relationship query
from child to parent. It resolves to the following query to SalesForce.

This query shows the correct syntax to query a SalesForce model with to produce a relationship query
from parent to child. It resolves to the following query to SalesForce.

See the description of the Relationship Queries operation in the SalesForce documentation for
limitations.

12.28.9. Salesforce Translator: Bulk Insert Queries

SalesForce translator also supports bulk insert statements using JDBC batch semantics or SELECT
INTO semantics. The batch size is determined by the execution property MaxBulkInsertBatchSize ,
which can be overridden in the vdb.xml file. The default value of the batch is 2048. The bulk insert
feature uses the async REST based API exposed by Salesforce for execution for better performance.

12.28.10. Salesforce Translator: Supported Capabilities

The following are the connector capabilities supported by the Salesforce Translator. These SQL
constructs are pushed down to Salesforce.

SELECT command

GetDeleted (ObjectName IN string,
 StartDate IN datetime,
 EndDate IN datetime,
 EarliestDateAvailable OUT datetime,
 LatestDateCovered OUT datetime)
returns
 ID string,
 DeletedDate datetime

SELECT Account.name, Contact.Name from Contact LEFT OUTER JOIN Account
on Contact.Accountid = Account.id

SELECT Contact.Account.Name, Contact.Name FROM Contact

select Contact.Name, Account.Name from Account Left outer Join Contact
on Contact.Accountid = Account.id

SELECT Account.Name, (SELECT Contact.Name FROM
Account.Contacts) FROM Account

Development Guide Volume 3: Reference Material

258

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_getdeleted.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_relationships.htm

INSERT Command

UPDATE Command

DELETE Command

CompareCriteriaEquals

InCriteria

LikeCriteria - Supported for String fields only.

RowLimit

AggregatesCountStar

NotCriteria

OrCriteria

CompareCriteriaOrdered

OuterJoins with join criteria KEY

12.28.11. Salesforce Translator: Native Queries

Salesforce procedures may optionally have native queries associated with them. See Section 12.7,
“Parameterizable Native Queries”. The operation prefix (for example, select;, insert;, update;, delete; -
see the native procedure logic below) must be present in the native query, but it will not be issued as
part of the query to the source.

Example 12.11. Example DDL for a SF native procedure

12.28.12. Salesforce Translator: Native Procedure

WARNING

This feature is turned off by default because of the security risk this exposes to
execute any command against the source. To enable this feature, override the
translator property called "SupportsNativeQueries" to true. See Section 12.6,
“Override Execution Properties”.

SalesForce translator provides a procedure with name native that gives ability to execute any ad hoc
native Salesforce queries directly against the source without any JBoss Data Virtualization parsing or

CREATE FOREIGN PROCEDURE proc (arg1 integer, arg2 string) OPTIONS
("teiid_rel:native-query" 'search;SELECT ... complex SOQL ... WHERE col1
= $1 and col2 = $2') returns (col1 string, col2 string, col3 timestamp);



CHAPTER 12. TRANSLATORS

259

resolving. The metadata of this procedure's execution results are not known to JBoss Data Virtualization,
and they are returned as object array. User can use an ARRAYTABLE construct (Section 2.6.10,
“Nested Tables: ARRAYTABLE”) to build a tabular output for consumption by client applications. JBoss
Data Virtualization exposes this procedure with a simple query structure as below.

12.28.13. Salesforce Translator Example: Select

Example 12.12. Select Example

In the above code, the "search" keyword is followed by a query statement.

NOTE

The Salesforce Object Query Language (SOQL) is treated as a parameterized native
query so that parameter values may be inserted in the query string properly. See
Section 12.7, “Parameterizable Native Queries”.

The results returned by search may contain the object Id as the first column value
regardless of whether it was selected. Also queries that select columns from multiple
object types will not be correct.

12.28.14. Salesforce Translator Example: Delete

Example 12.13. Delete Example

In the above code, the "delete;" keyword is followed by the ids to delete as varargs.

12.28.15. Salesforce Translator Example: Create and Update

Example 12.14. Create Example

In the above code, the "create" or "update" keyword must be followed by the following properties.
Attributes must be matched positionally by the procedure variables - thus in the example attribute two
will be set to 2.

SELECT x.* FROM (call pm1.native('search;SELECT Account.Id,
Account.Type, Account.Name FROM Account')) w,
 ARRAYTABLE(w.tuple COLUMNS "id" string , "type" string, "name" String)
AS x

SELECT x.* FROM (call pm1.native('delete;', 'id1', 'id2')) w,
 ARRAYTABLE(w.tuple COLUMNS "updatecount" integer) AS x

SELECT x.* FROM
 (call pm1.native('create;type=table;attributes=one,two,three', 'one',
2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

Development Guide Volume 3: Reference Material

260

Property Name Description Required

type Table Name Yes

attributes comma separated list of names of
the columns

The values for each attribute is specified as separate argument to the "native" procedure.

Update is similar to create, with one more extra property called "id", which defines identifier for the
record.

Example 12.15. Update Example

IMPORTANT

By default the name of the procedure that executes the queries directly is called native,
however user can set override execution property vdb.xml file to change it.

12.29. SAP GATEWAY TRANSLATOR

Teiid provides a translator for SAP Gateway using the OData protocol. This translator is extension of
OData Translator and uses Teiid WS resource adapter for making web service calls. This translator
understands the most of the SAP specific OData extensions to the metadata.

When the metadata is imported from SAP Gateway, the Teiid models are created to accordingly for SAP
specific EntitySet and Property annotations.

These "execution properties" are supported in this translator:

Table 12.30. Execution Properties

Property Description Default

DatabaseTimeZone The time zone of the database.
Used when fetchings date, time,
or timestamp values

The system default time zone

SupportsOdataCount Supports $count True

SupportsOdataFilter Supports $filter True

SupportsOdataOrderBy Supports $orderby True

SELECT x.* FROM
 (call pm1.native('update;id=pk;type=table;attributes=one,two,three',
'one', 2, 3.0)) w,
 ARRAYTABLE(w.tuple COLUMNS "update_count" integer) AS x

CHAPTER 12. TRANSLATORS

261

SupportsOdataSkip Supports $skip True

SupportsOdataTop Supports $top True

Property Description Default

WARNING

If metadata on your service defined "pagable" and/or "topable" as "false' on any
table, you must turn off "SupportsOdataTop" and "SupportsOdataSkip" execution-
properties in your translator, so that you will not end up with wrong results. SAP
metadata has capability to control these in a fine grained fashion any on EnitySet,
however Teiid can only control these at translator level.

WARNING

Sample examples defined at http://scn.sap.com/docs/DOC-31221, we found to be
lacking in full metadata in certain examples. For example, "filterable" clause never
defined on some properties, but if you send a request $filter it will silently ignore it.
You can verify this behavior by directly executing the REST service using a web
browser with respective query. So, Make sure you have implemented your service
correctly, or you can turn off certain features in this translator by using "execution
properties" override.

12.30. WEB SERVICES TRANSLATOR

12.30.1. Web Services Translator

The Web Services translator exposes stored procedures for calling web services.

The Web Services translator is implemented by the
org.teiid.translator.ws.WSExecutionFactory class and known by the translator type name
ws.

The corresponding resource adapter may optionally be configured to point at a specific WSDL. Results
from this translator will commonly be used with the TEXTTABLE or XMLTABLE table functions to use
CSV or XML formatted data. See Section 2.6.8, “Nested Tables: TEXTTABLE” and Section 2.6.9,
“Nested Tables: XMLTABLE” for more details.

There are no importer settings for this translator, but it does provide metadata for dynamic VDBs. If the
connection is configured to point at a specific WSDL, the translator will import all SOAP operations under
the specified service and port as procedures.





Development Guide Volume 3: Reference Material

262

NOTE

The resource adapter for this translator is provided by configuring the webservices data
source in the JBoss EAP instance. See the Red Hat JBoss Data Virtualization
Administration and Configuration Guide for more configuration information.

IMPORTANT

Setting the proper binding value on the translator is recommended as it removes the need
for callers to pass an explicit value. If your service actually uses SOAP11, but the binding
used SOAP12 you will receive execution failures.

12.30.2. Web Services Translator: Execution Properties

Table 12.31. Execution Properties

Name Description When Used Default

DefaultBinding The binding that should be used if one is
not specified. Can be one of HTTP,
SOAP11, or SOAP12

invoke* SOAP12

DefaultServiceMod
e

The default service mode. For SOAP,
MESSAGE mode indicates that the
request will contain the entire SOAP
envelope and not just the contents of the
SOAP body. Can be one of MESSAGE or
PAYLOAD.

invoke* or WSDL
call

PAYLOAD

XMLParamName Used with the HTTP binding (typically
with the GET method) to indicate that the
request document should be part of the
query string.

invoke* null - unused

IMPORTANT

If you want to expose a virtual stored procedure as a SOAP web service which must
implement Basic Auth, you will encounter an exception unless you set this property:

12.30.3. Web Services Translator: Usage

The WS translator exposes two low level procedures for accessing web services: invoke and invokeHttp.

12.30.4. Web Services Translator: Invoke Procedure

Invoke allows for multiple binding, or protocol modes, including HTTP, SOAP11, and SOAP12.

 <validate-on-match>true</validate-on-match>

Procedure invoke(binding in STRING, action in STRING, request in XML,
endpoint in STRING) returns XML

CHAPTER 12. TRANSLATORS

263

The binding may be one of null (to use the default) HTTP, SOAP11, or SOAP12. Action with a SOAP
binding indicates the SOAPAction value. Action with a HTTP binding indicates the HTTP method (GET,
POST, etc.), which defaults to POST.

A null value for the binding or endpoint will use the default value. The default endpoint is specified in the
WS resource adapter configuration. The endpoint URL may be absolute or relative. If it is relative then it
will be combined with the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invoke
procedure with named parameter syntax.

The request XML should be a valid XML document or root element.

If the stream parameter is set to true, the resulting value document can only be read once. This is
appropriate when directly passing the XML into XMLQUERY or XMLTABLE and only a single pass
against the document is needed. If stream is null or false, then the engine may need to save a copy of the
document for repeated use.

12.30.5. Web Services Translator: InvokeHTTP Procedure

invokeHttp can return the byte contents of an HTTP or HTTPS call.

Action indicates the HTTP method (GET, POST, etc.), which defaults to POST.

A null value for endpoint will use the default value. The default endpoint is specified in the WS resource
adapter configuration. The endpoint URL may be absolute or relative. If it is relative then it will be
combined with the default endpoint.

Since multiple parameters are not required to have values, it is often more clear to call the invoke
procedure with named parameter syntax.

The request can be one of SQLXML, STRING, BLOB, or CLOB. The request will be sent as the POST
payload in byte form. For STRING/CLOB values this will default to the UTF-8 encoding. Use the
TO_BYTES function to control the byte encoding.

The optional headers parameter can be used to specify the request header values as a JSON value. The
JSON value should be a JSON object with primitive or list of primitive values.

The procedures above give you anonymous way to execute any web service methods by supplying an
endpoint, with this mechanism you can alter the endpoint defined in WSDL with a different endpoint.
However, if you have access to the WSDL, then you can configure the WSDL URL in the web-service
resource-adapter's connection configuration, Web Service translator can parse the WSDL and provide
the methods under configured port as pre-built procedures as its metadata. If you are using Dynamic
VDB's you will see the procedures in your web service's source model.

call invoke(binding=>'HTTP', action=>'GET')

Procedure invokeHttp(action in STRING, request in OBJECT, endpoint in
STRING, contentType out STRING) returns BLOB

call invokeHttp(action=>'GET')

call invokeHttp(... headers=>jsonObject('application/json' as ContentType,
jsonArray('gzip', 'deflate') as "Accept-Encoding"))

Development Guide Volume 3: Reference Material

264

NOTE

Native queries and the direct query execution procedure are not supported on the Web
Services Translator.

If the stream parameter is set to true, then the resulting lob value may only be used a single time. If
stream is null or false, then the engine may need to save a copy of the result for repeated use. Care must
be used as some operations, such as casting or XMLPARSE may perform validation which results in the
stream being consumed.

The resource adapter for this translator is a Web Service Data Source.

IMPORTANT

Currently you can only use WSDL based Procedures if they participate in WS-Security,
when resource-adapter is configured with correct CXF configuration.

CHAPTER 12. TRANSLATORS

265

CHAPTER 13. FEDERATED PLANNING

13.1. FEDERATED PLANNING

At the core of JBoss Data Virtualization is a federated relational query engine. This query engine allows
you to treat all of your data sources as one virtual database and access them in a single SQL query. This
allows you to focus on building your application, rather than on manually coding joins, and other
relational operations, between data sources.

13.2. PLANNING OVERVIEW

When the query engine receives an incoming SQL query it performs the following operations.

1. Parsing - syntax is validated and converted to internal form.

2. Resolving - all identifiers are linked to metadata, and functions are linked to the function library.

3. Validating - SQL semantics are validated based on metadata references and type signatures.

4. Rewriting - SQL is rewritten to simplify expressions and criteria.

5. Logical plan optimization - the rewritten canonical SQL is converted into a logical plan for in-
depth optimization. The JBoss Data Virtualization optimizer is predominantly rule-based. Based
upon the query structure and hints, a certain rule set will be applied. These rules may in turn
trigger the execution of more rules. Within several rules, JBoss Data Virtualization also takes
advantage of costing information. The logical plan optimization steps can be seen by using the
SHOWPLAN DEBUG clause and are described in Section 13.9.1, “Query Planner”.

6. Processing plan conversion - the logic plan is converted into an executable form where the
nodes are representative of basic processing operations. The final processing plan is displayed
as the query plan. See Section 13.8.1, “Query Plans”.

The logical query plan is a tree of operations used to transform data in source tables to the expected
result set. In the tree, data flows from the bottom (tables) to the top (output).

The primary logical operations and their SQL equivalents are:

select - select or filter rows based on a criteria,

project - project or compute column values,

join,

source - retrieve data from a table,

sort - ORDER BY,

duplicate removal - SELECT DISTINCT,

group - GROUP BY, and

union - UNION.

13.3. EXAMPLE QUERY

Development Guide Volume 3: Reference Material

266

The following example has a query that retrieves all engineering employees born since 1970.

Example 13.1. Example query

Logically, the data from the Employees and Departments tables are retrieved, then joined, then filtered as
specified, and finally the output columns are projected. The canonical query plan thus looks like this:

Figure 13.1. Canonical Query Plan

Data flows from the tables at the bottom upwards through the join, through the select, and finally through
the project to produce the final results. The data passed between each node is logically a result set with
columns and rows.

This is what happens logically , not how the plan is actually executed. Starting from this initial plan, the
query planner performs transformations on the query plan tree to produce an equivalent plan that
retrieves the same results faster. Both a federated query planner and a relational database planner deal
with the same concepts and many of the same plan transformations. In this example, the criteria on the
Departments and Employees tables will be pushed down the tree to filter the results as early as possible.

In both cases, the goal is to retrieve the query results in the fastest possible time. However, the relational
database planner does this primarily by optimizing the access paths in pulling data from storage.

SELECT e.title, e.lastname FROM Employees AS e JOIN
Departments AS d ON e.dept_id = d.dept_id WHERE year(e.birthday) >= 1970
AND d.dept_name = 'Engineering'

CHAPTER 13. FEDERATED PLANNING

267

In contrast, a federated query planner is less concerned about storage access because it is typically
pushing that burden to the data source. The most important consideration for a federated query planner
is minimizing data transfer.

13.4. SUBQUERY OPTIMIZATION

EXISTS subqueries are typically rewrite to "SELECT 1 FROM ..." to prevent unnecessary
evaluation of SELECT expressions.

Quantified compare SOME subqueries are always turned into an equivalent IN predicate or
comparison against an aggregate value. e.g. col > SOME (select col1 from table) would become
col > (select min(col1) from table)

Uncorrelated EXISTs and scalar subquery that are not pushed to the source can be evaluated
prior to source command formation.

Correlated subqueries used in DELETEs or UPDATEs that are not pushed as part of the
corresponding DELETE/UPDATE will cause JBoss Data Virtualization to perform row-by-row
compensating processing. This will only happen if the affected table has a primary key. If it does
not, then an exception will be thrown.

WHERE or HAVING clause IN, Quantified Comparison, Scalar Subquery Compare, and EXISTs
predicates can take the MJ (merge join), DJ (dependent join), or NO_UNNEST (no unnest) hints
appearing just before the subquery. The MJ hint directs the optimizer to use a traditional,
semijoin, or antisemijoin merge join if possible. The DJ is the same as the MJ hint, but
additionally directs the optimizer to use the subquery as the independent side of a dependent
join if possible. The NO_UNNEST hint, which supercedes the other hints, will direct the optimizer
to leave the subquery in place.

Example 13.2. Merge Join Hint Usage

Example 13.3. Dependent Join Hint Usage

Example 13.4. No Unnest Hint Usage

The system property org.teiid.subqueryUnnestDefault controls whether the optimizer will by
default unnest subqueries. If true, then most non-negated WHERE or HAVING clause non-
negated EXISTS or IN subquery predicates can be converted to a traditional join.

The planner will always convert to anitjoin or semijoin vartiants is costing is favorable. Use a hint
to override this behavior if needed.

SELECT col1 from tbl where col2 IN /*+ MJ */ (SELECT col1 FROM
tbl2)

SELECT col1 from tbl where col2 IN /*+ DJ */ (SELECT col1 FROM
tbl2)

SELECT col1 from tbl where col2 IN /*+ NO_UNNEST */ (SELECT col1
FROM tbl2)

Development Guide Volume 3: Reference Material

268

EXISTs and scalar subqueries that are not pushed down, and not converted to merge joins, are
implicitly limited to 1 and 2 result rows respectively.

Conversion of subquery predicates to nested loop joins is not yet available.

13.5. XQUERY OPTIMIZATION

A technique known as document projection is used to reduce the memory footprint of the context item
document. Document projection loads only the parts of the document needed by the relevant XQuery and
path expressions. Since document projection analysis uses all relevant path expressions, even 1
expression that could potentially use many nodes, e.g. //x rather than /a/b/x will cause a larger memory
footprint. With the relevant content removed the entire document will still be loaded into memory for
processing. Document projection will only be used when there is a context item (unnamed PASSING
clause item) passed to XMLTABLE/XMLQUERY. A named variable will not have document projection
performed. In some cases the expressions used may be too complex for the optimizer to use document
projection. You should check the SHOWPLAN DEBUG full plan output to see if the appropriate
optimization has been performed.

With additional restrictions, simple context path expressions allow the processor to evaluate document
subtrees independently - without loading the full document in memory. A simple context path expression
can be of the form "[/][ns:]root/[ns1:]elem/...", where a namespace prefix or element name can also be
the * wild card. As with normal XQuery processing, if namespace prefixes are used in the XQuery
expression, they should be declared using the XMLNAMESPACES clause.

Example 13.5. Streaming Eligible XMLQUERY

Rather than loading the entire doc in-memory as a DOM tree, each child element will be
independently added to the result.

Example 13.6. Streaming Ineligible XMLQUERY

The use of the descendant axis prevents the streaming optimization, but document projection can still
be performed.

When using XMLTABLE, the COLUMN PATH expressions have additional restrictions. They are allowed
to reference any part of the element subtree formed by the context expression and they may use any
attribute value from their direct parentage. Any path expression where it is possible to reference a non-
direct ancestor or sibling of the current context item prevent streaming from being used.

Example 13.7. Streaming Eligible XMLTABLE

The context XQuery and the column path expression allow the streaming optimization, rather than
loading the entire doc in-memory as a DOM tree, each child element will be independently added to
the result.

XMLQUERY('/*:root/*:child' PASSING doc)

XMLQUERY('//child' PASSING doc)

XMLTABLE('/*:root/*:child' PASSING doc COLUMNS fullchild XML PATH '.',
parent_attr string PATH '../@attr', child_val integer)

CHAPTER 13. FEDERATED PLANNING

269

Example 13.8. Streaming Ineligible XMLTABLE

The reference of an element outside of the child subtree in the sibling_attr path prevents the
streaming optimization from being used, but document projection can still be performed.

Column paths should be as targeted as possible to avoid performance issues. A general path such as
'..//child' will cause the entire subtree of the context item to be searched on each output row.

13.6. PARTIAL RESULTS

JBoss Data Virtualization provides the capability to obtain "partial results" in the event of data source
unavailability or failure. This is especially useful when unioning information from multiple sources, or
when doing a left outer join, where you are 'appending' columns to a master record but still want the
record if the extra information is not available.

A source is considered to be 'unavailable' if the connection factory associated with the source issues an
exception in response to a query. The exception will be propagated to the query processor, where it will
become a warning on the statement. See Red Hat JBoss Data Virtualization Development Guide: Client
Development for more on Partial Results Mode and SQLWarnings.

13.7. FEDERATED OPTIMIZATIONS

13.7.1. Access Patterns

Access patterns are used on both physical tables and views to specify the need for criteria against a set
of columns. Failure to supply the criteria will result in a planning error, rather than a runaway source
query. Access patterns can be applied in a set such that only one of the access patterns is required to be
satisfied.

Currently any form of criteria referencing an affected column may satisfy an access pattern.

13.7.2. Pushdown

In federated database systems, pushdown refers to decomposing the user query into source queries that
perform as much work as possible on their respective source system. Pushdown analysis requires
knowledge of source system capabilities, which is provided to JBoss Data Virtualization though the
Connector API. Any work not performed at the source is then processed in the federating system's
relational engine (in JBoss Data Virtualization).

Based upon capabilities, JBoss Data Virtualization will manipulate the query plan to ensure that each
source performs as much joining, filtering, grouping, etc. as possible. In many cases, such as with join
ordering, planning combines standard relational techniques (see Section 13.7.9, “Standard Relational
Techniques”) and heuristics based on cost effectiveness to optimize pushdowns.

Criteria and join push down are typically the most important aspects of the query to push down when
performance is a concern. See Section 13.8.1, “Query Plans” for information about how to read a plan to
ensure that source queries are as efficient as possible.

XMLTABLE('/*:root/*:child' PASSING doc COLUMNS sibling_attr string PATH
'../other_child/@attr')

Development Guide Volume 3: Reference Material

270

13.7.3. Dependent Joins

A special optimization called a dependent join is used to reduce the rows returned from one of the two
relations involved in a multi-source join. In a dependent join, queries are issued to each source
sequentially rather than in parallel, with the results obtained from the first source used to restrict the
records returned from the second. Dependent joins can perform some joins much faster by reducing the
amount of data retrieved from the second source and the number of join comparisons that must be
performed.

The conditions when a dependent join is used are determined by the query planner based on access
patterns, hints, and costing information. There are three different kinds of dependent joins that Teiid
supports:

Join based on in/equality support: where the engine will determine how to break of the queries

Key Pushdown: where the translator has access to the full set of key values and determines
what queries to send

Full Pushdown - where translator ships the all data from the independent side to the translator.
Can be used automatically by costing or can be specified as an option in the hint.

JBoss Data Virtualization supports hints to control dependent join behavior:

MAKEIND - indicates that the clause should be the independent side of a dependent join.

MAKEDEP - indicates that the clause should be the dependent side of a join. MAKEDEP as a
non-comment hint supports optional max and join arguments - MAKEDEP(JOIN) meaning that
the entire join should be pushed, and MAKEDEP(MAX:5000) meaning that the dependent join
should only be performed if there are less than the max number of values from the independent
side.

MAKENOTDEP - prevents the clause from being the dependent side of a join.

These can be placed in either the OPTION clause or directly in the FROM clause. As long as all access
patterns can be met, the MAKEIND, MAKEDEP, and MAKENOTDEP hints override any use of costing
information. MAKENOTDEP supersedes the other hints.

NOTE

The MAKEDEP/MAKEIND hint must only be used if the proper query plan is not chosen
by default. Ensure that your costing information is representative of the actual source
cardinality. An inappropriate MAKEDEP/MAKEIND hint can force an inefficient join
structure and may result in many source queries.

For IN clauses, the engine will filter the values coming from the dependent side. If the number of values
from the independent side exceeds the translators MaxInCriteriaSize, the values will be split into multiple
IN predicates up to MaxDependentPredicates. When the number of independent values exceeds
MaxInCriteriaSize*MaxDependentPredicates, then multiple dependent queries will be issued in parallel.

NOTE

While these hints can be applied to views, the optimizer will by default remove views
when possible. This can result in the hint placement being significantly different than that
which was originally intended. Consider using the NO_UNNEST hint to prevent the
optimizer from removing the view in these cases.

CHAPTER 13. FEDERATED PLANNING

271

A "full pushdown", sometimes also called a "data-ship pushdown", is where all the data from independent
side of the join is sent to dependent side. Currently this is only supported in the JDBC translators. To
enable it, provide translator override property "enableDependentJoins" to "true". The JDBC source must
support creation temp tables (this is determined by using Hibernate dialect capabilities for the source).
Once these properties are enabled and MAKEDEP hint is used, the translator will ship the data as temp
table contents and push the dependent join to the source for full processing.

13.7.4. Copy Criteria

Copy criteria is an optimization that creates additional predicates based upon combining join and where
clause criteria. For example, equi-join predicates (source1.table.column = source2.table.column) are
used to create new predicates by substituting source1.table.column for source2.table.column and vice
versa. In a cross source scenario, this allows for WHERE criteria applied to a single side of the join to be
applied to both source queries.

13.7.5. Projection Minimization

JBoss Data Virtualization ensures that each pushdown query only projects the symbols required for
processing the user query. This is especially helpful when querying through large intermediate view
layers.

13.7.6. Partial Aggregate Pushdown

Partial aggregate pushdown allows for grouping operations above multi-source joins and unions to be
decomposed so that some of the grouping and aggregate functions may be pushed down to the sources.

13.7.7. Optional Join

The optional join hint indicates to omit a joined table if none of its columns are used by the output of the
user query or in a meaningful way to construct the results of the user query. This hint is typically only
used in view layers containing multi-source joins.

The optional join hint is applied as a comment on a join clause. It can be applied in both ANSI and non-
ANSI joins. With non-ANSI joins an entire joined table may be marked as optional.

Example 13.9. Example Optional Join Hint

Suppose this example defines a view layer X. If X is queried in such a way as to not need b.column2,
then the optional join hint will cause b to be omitted from the query plan. The result would be the
same as if X were defined as:

Example 13.10. Example ANSI Optional Join Hint

select a.column1, b.column2 from a, /*+ optional */ b WHERE a.key =
b.key

select a.column1 from a

select a.column1, b.column2, c.column3 from /*+ optional */ (a inner
join b ON a.key = b.key) INNER JOIN c ON a.key = c.key

Development Guide Volume 3: Reference Material

272

In this example the ANSI join syntax allows for the join of a and b to be marked as optional. Suppose
this example defines a view layer X. Only if both column a.column1 and b.column2 are not needed,
e.g. "SELECT column3 FROM X" will the join be removed.

The optional join hint will not remove a bridging table that is still required.

Example 13.11. Example Bridging Table

Suppose this example defines a view layer X. If b.column2 or c.column3 are solely required by a
query to X, then the join on a can be removed. However if a.column1 or both b.column2 and
c.column3 are needed, then the optional join hint will not take effect.

NOTE

When a join clause is omitted via the optional join hint, the relevant criteria is not applied.
Thus it is possible that the query results may not have the same cardinality or even the
same row values as when the join is fully applied.

Left/right outer joins where the inner side values are not used and whose rows under go a
distinct operation will automatically be treated as an optional join and do not require a hint.

Example 13.12. Example Unnecessary Optional Join Hint

WARNING

A simple "SELECT COUNT(*) FROM VIEW" against a view where all join tables are
marked as optional will not return a meaningful result.

Source Hints

Teiid user and transformation queries can contain a meta source hint that can provide additional
information to source queries. The source hint has the form:

The source hint is expected to appear after the query (SELECT, INSERT, UPDATE, DELETE) keyword.

Source hints may appear in any subquery or in views. All hints applicable to a given source query will be
collected and pushed down together as a list. The order of the hints is not guaranteed.

select a.column1, b.column2, c.column3 from /*+ optional */ a, b, c
WHERE ON a.key = b.key AND a.key = c.key

select a.column1, b.column2 from a LEFT OUTER JOIN
/*+optional*/ b ON a.key = b.key



/*+ sh[[KEEP ALIASES]:'arg'] source-name[KEEP ALIASES]:'arg1' ... */

CHAPTER 13. FEDERATED PLANNING

273

The sh arg is optional and is passed to all source queries via the ExecutionContext.getGeneralHints
method. The additional args should have a source-name that matches the source name assigned to the
translator in the VDB.

If the source-name matches, the hint values will be supplied via the ExecutionContext.getSourceHints
method.

Each of the arg values has the form of a string literal - it must be surrounded in single quotes and a
single quote can be escaped with another single quote. Only the Oracle translator does anything with
source hints by default. The Oracle translator will use both the source hint and the general hint (in that
order) if available to form an Oracle hint enclosed in /*+ ... */.

If the KEEP ALIASES option is used either for the general hint or on the applicable source specific hint,
then the table/view aliases from the user query and any nested views will be preserved in the push-down
query. This is useful in situations where the source hint may need to reference aliases and the user does
not wish to rely on the generated aliases (which can be seen in the query plan in the relevant source
queries - see above). However in some situations this may result in an invalid source query if the
preserved alias names are not valid for the source or result in a name collision. If the usage of KEEP
ALIASES results in an error, the query could be modified by preventing view removal with the
NO_UNNEST hint, the aliases modified, or the KEEP ALIASES option could be removed and the query
plan used to determine the generated alias names.

Here are some sample source hints:

13.7.8. Partitioned Union

Union partitioning is inferred from the transformation/inline view. If one (or more) of the UNION columns
is defined by constants and/or has WHERE clause IN predicates containing only constants that make
each branch mutually exclusive, then the UNION is considered partitioned. UNION ALL must be used
and the UNION cannot have a LIMIT, WITH, or ORDER BY clause (although individual branches may
use LIMIT, WITH, or ORDER BY). Partitioning values should not be null.

For example the view definition "select 1 as x, y from foo union all select z, a from foo1 where z in (2, 3)"
would be considered partitioned on column x, since the first branch can only be the value 1 and the
second branch can only be the values 2 or 3.

NOTE

More advanced or explicit partitioning could be considered in the future. The concept of a
partitioned union is used for performing partition-wise joins (see Section 4.1, “Updatable
Views” and Section 13.7.6, “Partial Aggregate Pushdown”).

13.7.9. Standard Relational Techniques

JBoss Data Virtualization also incorporates many standard relational techniques to ensure efficient query
plans.

Rewrite analysis for function simplification and evaluation.

Boolean optimizations for basic criteria simplification.

SELECT /*+ sh:'general hint' */ ...

SELECT /*+ sh KEEP ALIASES:'general hint' my-oracle:'oracle hint' */ ...

Development Guide Volume 3: Reference Material

274

Removal of unnecessary view layers.

Removal of unnecessary sort operations.

Advanced search techniques through the left-linear space of join trees.

Parallelizing of source access during execution.

Subquery optimization (Section 13.4, “Subquery Optimization”)

13.8. QUERY PLANS

13.8.1. Query Plans

When integrating information using a federated query planner, it is useful to be able to view the query
plans that are created, to better understand how information is being accessed and processed, and to
troubleshoot problems.

A query plan is a set of instructions created by a query engine for executing a command submitted by a
user or application. The purpose of the query plan is to execute the user's query in as efficient a way as
possible.

13.8.2. Getting a Query Plan

You can get a query plan any time you execute a command. The SQL options available are as follows:

SET SHOWPLAN [ON|DEBUG]- Returns the processing plan or the plan and the full planner
debug log.

With the above options, the query plan is available from the Statement object by casting to the
org.teiid.jdbc.TeiidStatement interface or by using the "SHOW PLAN" statement.

Example 13.13. Retrieving a Query Plan

The query plan is made available automatically in several JBoss Data Virtualization tools.

13.8.3. Analyzing a Query Plan

Once a query plan has been obtained you will most commonly be looking for:

Source pushdown - what parts of the query were pushed to each source? Ensure that any
predicates, especially against, indexes are pushed.

Join ordering - as federated joins can be quite expensive. They are typically influenced by
costing.

Join criteria type mismatches.

statement.execute("set showplan on");
ResultSet rs = statement.executeQuery("select ...");
TeiidStatement tstatement = statement.unwrap(TeiidStatement.class);
PlanNode queryPlan = tstatement.getPlanDescription();
System.out.println(queryPlan);

CHAPTER 13. FEDERATED PLANNING

275

Join algorithm used - merge, enhanced merge, nested loop and so forth.

Presence of federated optimizations, such as dependent joins.

Join criteria type mismatches.

All of these issues presented above will be present subsections of the plan that are specific to relational
queries. If you are executing a procedure or generating an XML document, the overall query plan will
contain additional information related the surrounding procedural execution.

A query plan consists of a set of nodes organized in a tree structure. As with the above example, you will
typically be interested in analyzing the textual form of the plan.

In a procedural context the ordering of child nodes implies the order of execution. In most other situation,
child nodes may be executed in any order even in parallel. Only in specific optimizations, such as
dependent join, will the children of a join execute serially.

13.8.4. Relational Plans

Relational plans represent the actually processing plan that is composed of nodes that are the basic
building blocks of logical relational operations. Physical relational plans differ from logical relational plans
in that they will contain additional operations and execution specifics that were chosen by the optimizer.

The nodes for a relational query plan are:

Access

Access a source. A source query is sent to the connection factory associated with the source. [For a
dependent join, this node is called Dependent Access.]

Dependent Procedure Access

Access a stored procedure on a source using multiple sets of input values.

Batched Update

Processes a set of updates as a batch.

Project

Defines the columns returned from the node. This does not alter the number of records returned.

Project Into

Like a normal project, but outputs rows into a target table.

Select

Select is a criteria evaluation filter node (WHERE / HAVING). When there is a subquery in the
criteria, this node is called Dependent Select.

Insert Plan Execution

Similar to a project into, but executes a plan rather than a source query. Typically created when
executing an insert into view with a query expression.

Window Function Project

Like a normal project, but includes window functions.

Development Guide Volume 3: Reference Material

276

Join

Defines the join type, join criteria, and join strategy (merge or nested loop).

Union All

There are no properties for this node; it just passes rows through from its children. Depending upon
other factors, such as if there is a transaction or the source query concurrency allowed, not all of the
union children will execute in parallel.

Sort

Defines the columns to sort on, the sort direction for each column, and whether to remove duplicates
or not.

Dup Remove

Removes duplicate rows. The processing uses a tree structure to detect duplicates so that results will
effectively stream at the cost of IO operations.

Grouping

Groups sets of rows into groups and evaluates aggregate functions.

Null

A node that produces no rows. Usually replaces a Select node where the criteria is always false (and
whatever tree is underneath). There are no properties for this node.

Plan Execution

Executes another sub plan. Typically the sub plan will be a non-relational plan.

Dependent Procedure Execution

Executes a sub plan using multiple sets of input values.

Limit

Returns a specified number of rows, then stops processing. Also processes an offset if present.

XML Table

Evaluates XMLTABLE. The debug plan will contain more information about the XQuery/XPath with
regards to their optimization - see the XQuery section below or XQuery Optimization.

Text Table

Evaluates TEXTTABLE

Array Table

Evaluates ARRAYTABLE

Object Table

Evaluates OBJECTTABLE

13.8.5. Relational Plans: Node Statistics

CHAPTER 13. FEDERATED PLANNING

277

Every node has a set of statistics that are output. These can be used to determine the amount of data
flowing through the node. Before execution a processor plan will not contain node statistics. Also the
statistics are updated as the plan is processed, so typically you will want the final statistics after all rows
have been processed by the client.

Table 13.1. Node Statistics

Statistic Description Units

Node Output Rows Number of records output from the node count

Node Next Batch
Process Time

Time processing in this node only millisec

Node Cumulative
Process Time

Elapsed time from beginning of processing to end millisec

Node Cumulative Next
Batch Process Time

Time processing in this node + child nodes millisec

Node Next Batch Calls Number of times a node was called for processing count

Node Blocks Number of times a blocked exception was thrown by this node or a
child

count

In addition to node statistics, some nodes display cost estimates computed at the node.

Table 13.2. Node Cost Estimates

Cost Estimates Description Units

Estimated Node
Cardinality

Estimated number of records that will be output from the node; -1 if
unknown

count

The root node will display additional information.

13.8.6. Source Hints

Table 13.3. Registry Properties

Top level Statistics Description Units

Data Bytes Sent The size of the serialized data result (row and lob
values) sent to the client

bytes

The query processor plan can be obtained in a plain text or xml format. The plan text format is typically
easier to read, while the xml format is easier to process by tooling. When possible tooling should be used
to examine the plans as the tree structures can be deeply nested.

Data flows from the leafs of the tree to the root. Sub plans for procedure execution can be shown inline,

Development Guide Volume 3: Reference Material

278

and are differentiated by different indentation. Given a user query of "SELECT pm1.g1.e1, pm1.g2.e2,
pm1.g3.e3 from pm1.g1 inner join (pm1.g2 left outer join pm1.g3 on pm1.g2.e1=pm1.g3.e1) on
pm1.g1.e1=pm1.g3.e1" the text for a processor plan that does not push down the joins would look like:

ProjectNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 JoinNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 JoinNode
 + Output Columns:
 0: e1 (string)
 1: e1 (string)
 2: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Child 0:
 AccessNode
 + Output Columns:e1 (string)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0 FROM pm1.g1 AS g_0 ORDER BY c_0
 + Model Name:pm1
 + Child 1:
 AccessNode
 + Output Columns:
 0: e1 (string)
 1: e3 (boolean)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0, g_0.e3 AS c_1 FROM pm1.g3 AS
g_0 ORDER BY c_0
 + Model Name:pm1
 + Join Strategy:MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)
 + Join Type:INNER JOIN
 + Join Criteria:pm1.g1.e1=pm1.g3.e1
 + Child 1:
 AccessNode
 + Output Columns:
 0: e1 (string)
 1: e2 (integer)
 + Cost Estimates:Estimated Node Cardinality: -1.0
 + Query:SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM pm1.g2 AS g_0
ORDER BY c_0
 + Model Name:pm1
 + Join Strategy:ENHANCED SORT JOIN (SORT/ALREADY_SORTED)
 + Join Type:INNER JOIN
 + Join Criteria:pm1.g3.e1=pm1.g2.e1
 + Select Columns:

CHAPTER 13. FEDERATED PLANNING

279

Note that the nested join node is using a merge join and expects the source queries from each side to
produce the expected ordering for the join. The parent join is an enhanced sort join which can delay the
decision to perform sorting based upon the incoming rows. Note that the outer join from the user query
has been modified to an inner join since none of the null inner values can be present in the query result.

The same plan in xml form looks like this:

 0: pm1.g1.e1
 1: pm1.g2.e2
 2: pm1.g3.e3

<?xml version="1.0" encoding="UTF-8"?>
<node name="ProjectNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="JoinNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="JoinNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e1 (string)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Child 0">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -
1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0 FROM pm1.g1
AS g_0 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>

Development Guide Volume 3: Reference Material

280

 </property>
 </node>
 </property>
 <property name="Child 1">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e3 (boolean)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -
1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0, g_0.e3 AS
c_1 FROM pm1.g3 AS g_0
 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Join Strategy">
 <value>MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)
</value>
 </property>
 <property name="Join Type">
 <value>INNER JOIN</value>
 </property>
 <property name="Join Criteria">
 <value>pm1.g1.e1=pm1.g3.e1</value>
 </property>
 </node>
 </property>
 <property name="Child 1">
 <node name="AccessNode">
 <property name="Output Columns">
 <value>e1 (string)</value>
 <value>e2 (integer)</value>
 </property>
 <property name="Cost Estimates">
 <value>Estimated Node Cardinality: -1.0</value>
 </property>
 <property name="Query">
 <value>SELECT g_0.e1 AS c_0, g_0.e2 AS c_1 FROM
pm1.g2 AS g_0
 ORDER BY c_0</value>
 </property>
 <property name="Model Name">
 <value>pm1</value>
 </property>
 </node>
 </property>
 <property name="Join Strategy">
 <value>ENHANCED SORT JOIN (SORT/ALREADY_SORTED)</value>

CHAPTER 13. FEDERATED PLANNING

281

Note that the same information appears in each of the plan forms. In some cases it can actually be
easier to follow the simplified format of the debug plan final processor plan. From the Debug Log the
same plan as above would appear as:

These are the node properties:

Common

Output Columns - what columns make up the tuples returned by this node

Data Bytes Sent - how many data byte, not including messaging overhead, were sent by this
query

Planning Time - the amount of time in milliseconds spent planning the query

Relational

Relational Node ID - matches the node ids seen in the debug log Node(id)

Criteria - the boolean expression used for filtering

Select Columns - the columns that define the projection

Grouping Columns - the columns used for grouping

 </property>
 <property name="Join Type">
 <value>INNER JOIN</value>
 </property>
 <property name="Join Criteria">
 <value>pm1.g3.e1=pm1.g2.e1</value>
 </property>
 </node>
 </property>
 <property name="Select Columns">
 <value>pm1.g1.e1</value>
 <value>pm1.g2.e2</value>
 <value>pm1.g3.e3</value>
 </property>
</node>

OPTIMIZATION COMPLETE:
PROCESSOR PLAN:
ProjectNode(0) output=[pm1.g1.e1, pm1.g2.e2, pm1.g3.e3] [pm1.g1.e1,
pm1.g2.e2, pm1.g3.e3]
 JoinNode(1) [ENHANCED SORT JOIN (SORT/ALREADY_SORTED)] [INNER JOIN]
criteria=[pm1.g3.e1=pm1.g2.e1] output=[pm1.g1.e1, pm1.g2.e2, pm1.g3.e3]
 JoinNode(2) [MERGE JOIN (ALREADY_SORTED/ALREADY_SORTED)] [INNER JOIN]
criteria=[pm1.g1.e1=pm1.g3.e1] output=[pm1.g3.e1, pm1.g1.e1, pm1.g3.e3]
 AccessNode(3) output=[pm1.g1.e1] SELECT g_0.e1 AS c_0 FROM pm1.g1 AS
g_0 ORDER BY c_0
 AccessNode(4) output=[pm1.g3.e1, pm1.g3.e3] SELECT g_0.e1 AS c_0,
g_0.e3 AS c_1 FROM pm1.g3 AS g_0 ORDER BY c_0
 AccessNode(5) output=[pm1.g2.e1, pm1.g2.e2] SELECT g_0.e1 AS c_0,
g_0.e2 AS c_1 FROM pm1.g2 AS g_0 ORDER BY c_0

Development Guide Volume 3: Reference Material

282

Query - the source query

Model Name - the model name

Sharing ID - nodes sharing the same source results will have the same sharing id

Dependent Join - if a dependent join is being used

Join Strategy - the join strategy (Nested Loop, Sort Merge, Enhanced Sort, etc.)

Join Type - the join type (Left Outer Join, Inner Join, Cross Join)

Join Criteria - the join predicates

Execution Plan - the nested execution plan

Into Target - the insertion target

Sort Columns - the columns for sorting

Sort Mode - if the sort performs another function as well, such as distinct removal

Rollup - if the group by has the rollup option

Statistics - the processing statistics

Cost Estimates - the cost/cardinality estimates including dependent join cost estimates

Row Offset - the row offset expression

Row Limit - the row limit expression

With - the with clause

Window Functions - the window functions being computed

Table Function - the table function (XMLTABLE, OBJECTTABLE, TEXTTABLE, etc.)

XML

Message

Tag

Namespace

Data Column

Namespace Declarations

Optional Flag

Default Value

Recursion Direction

Bindings

CHAPTER 13. FEDERATED PLANNING

283

Is Staging Flag

Source In Memory Flag

Condition

Default Program

Encoding

Formatted Flag

Procedure

Expression

Result Set

Program

Variable

Then

Else

XML document model queries and procedure execution (including instead of triggers) use intermediate
and final plan forms that include relational plans. Generally the structure of the xml/procedure plans will
closely match their logical forms. It is the nested relational plans that will be of interest when analyzing
performance issues.

13.8.7. Statistics Gathering and Single Partitions

The statistics-gathering feature in the Red Hat JBoss Data Virtualization engine does not take partition
statistics into account. For most queries, using the global statistics will not provide accurate results for a
single partition.

Currently, there is a manual approach that will require modeling each partition as a table. Here is an
example:

CREATE FOREIGN TABLE q1 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q1, CARDINALITY '20000')');

CREATE FOREIGN TABLE q2 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q2, CARDINALITY '10000')');

CREATE FOREIGN TABLE q3 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q3, CARDINALITY '1000')');

CREATE FOREIGN TABLE q4 (id integer primary key, company varchar(10),
order_date timestamp) OPTIONS (NAMEINSOURCE 'dvqe_order_partitioned
partition(dvqe_order_partitioned_q4, CARDINALITY '3000000')');

Development Guide Volume 3: Reference Material

284

The statistics can be updated using Teiid Designer, by setting the cardinality on the table or, alternatively
you can use the System procedure:

13.9. QUERY PLANNER

13.9.1. Query Planner

For each sub-command in the user command one of the following sub-planners is used:

Relational Planner

Procedure Planner

XML Planner

Each planner has three primary phases:

1. Generate canonical plan

2. Optimization

3. Plan to process converter - converts plan data structure into a processing form

13.9.2. Relational Planner

A relational processing plan is created by the optimizer after the logical plan is manipulated by a series
of rules. The application of rules is determined both by the query structure and by the rules themselves.
The node structure of the debug plan resembles that of the processing plan, but the node types more
logically represent SQL operations.

User SQL statements after rewrite are converted into a canonical plan form. The canonical plan form
most closely resembles the initial SQL structure. A SQL select query has the following possible clauses
(all but SELECT are optional): WITH, SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY,
LIMIT. These clauses are logically executed in the following order:

WITH (create common table expressions) - handled by a specialized PROJECT NODE

FROM (read and join all data from tables) - SOURCE node for each from clause item, Join node
(if >1 table)

WHERE (filter rows) - SELECT node

GROUP BY (group rows into collapsed rows) - GROUP node

HAVING (filter grouped rows) - SELECT node

SELECT (evaluate expressions and return only requested rows) - PROJECT node and
DUP_REMOVE node (for SELECT DISTINCT)

CREATE VIEW orders (id integer primary key, company varchar(10),
order_date timestamp) AS SELECT * FROM q1 UNION SELECT * FROM q2 UNION
SELECT * FROM q3 UNION SELECT * FROM q4;

SYSADMIN.setTableStats(IN tableName string NOT NULL, IN cardinality long
NOT NULL)

CHAPTER 13. FEDERATED PLANNING

285

INTO - specialized PROJECT with a SOURCE child

ORDER BY (sort rows) - SORT node

LIMIT (limit result set to a certain range of results) - LIMIT node

For example, a SQL statement such as SELECT max(pm1.g1.e1) FROM pm1.g1 WHERE e2 = 1
creates a logical plan:

Here the Source corresponds to the FROM clause, the Select corresponds to the WHERE clause, the
Group corresponds to the implied grouping to create the max aggregate, and the Project corresponds to
the SELECT clause.

Note that the effect of grouping generates what is effectively an inline view, anon_grp0, to handle the
projection of values created by the grouping.

ACCESS - a source access or plan execution.

DUP_REMOVE - removes duplicate rows

JOIN - a join (LEFT OUTER, FULL OUTER, INNER, CROSS, SEMI, etc.)

PROJECT - a projection of tuple values

SELECT - a filtering of tuples

SORT - an ordering operation, which may be inserted to process other operations such as joins

SOURCE - any logical source of tuples including an inline view, a source access, XMLTABLE,
etc.

GROUP - a grouping operation

SET_OP - a set operation (UNION/INTERSECT/EXCEPT)

NULL - a source of no tuples

TUPLE_LIMIT - row offset / limit

Each node has a set of applicable properties that are typically shown on the node.

ATOMIC_REQUEST - The final form of a source request

MODEL_ID - The metadata object for the target model/schema

PROCEDURE_CRITERIA/PROCEDURE_INPUTS/PROCEDURE_DEFAULTS - Used in
planning procedureal relational queries

IS_MULTI_SOURCE - set to true when the node represents a multi-source access

Project(groups=[anon_grp0], props={PROJECT_COLS=[anon_grp0.agg0 AS
expr1]})
 Group(groups=[anon_grp0], props={SYMBOL_MAP=
{anon_grp0.agg0=MAX(pm1.g1.e1)}})
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e2 = 1})
 Source(groups=[pm1.g1])

Development Guide Volume 3: Reference Material

286

SOURCE_NAME - used to track the multi-source source name

CONFORMED_SOURCES - tracks the set of conformed sources when the conformed extension
metadata is used

SUB_PLAN/SUB_PLANS - used in multi-source planning

SET_OPERATION/USE_ALL - defines the set operation (UNION/INTERSECT/EXCEPT) and if
all rows or distinct rows are used.

Join Properties

JOIN_CRITERIA - all join predicates

JOIN_TYPE - type of join (INNER, LEFT OUTER, etc.)

JOIN_STRATEGY - the algorithm to use (nested loop, merge, etc.)

LEFT_EXPRESSIONS - the expressions in equi-join predicates that originate from the left side
of the join

RIGHT_EXPRESSIONS - the expressions in equi-join predicates that originate from the right
side of the join

DEPENDENT_VALUE_SOURCE - set if a dependent join is used

NON_EQUI_JOIN_CRITERIA - non-equi join predicates

SORT_LEFT - if the left side needs sorted for join processing

SORT_RIGHT - if the right side needs sorted for join processing

IS_OPTIONAL - if the join is optional

IS_LEFT_DISTINCT - if the left side is distinct with respect to the equi join predicates

IS_RIGHT_DISTINCT - if the right side is distinct with respect to the equi join predicates

IS_SEMI_DEP - if the dependent join represents a semi-join

PRESERVE - if the preserve hint is preserving the join order

Project Properties

PROJECT_COLS - the expressions projected

INTO_GROUP - the group targeted if this is a select into or insert with a query expression

HAS_WINDOW_FUNCTIONS - true if window functions are used

CONSTRAINT - the constraint that must be met if the values are being projected into a group

Select Properties

SELECT_CRITERIA - the filter

IS_HAVING - if the filter is applied after grouping

CHAPTER 13. FEDERATED PLANNING

287

IS_PHANTOM - true if the node is marked for removal, but temporarily left in the plan.

IS_TEMPORARY - inferred criteria that may not be used in the final plan

IS_COPIED - if the criteria has already been processed by rule copy criteria

IS_PUSHED - if the criteria is pushed as far as possible

IS_DEPENDENT_SET - if the criteria is the filter of a dependent join

Sort Properties

SORT_ORDER - the order by that defines the sort

UNRELATED_SORT - if the ordering includes a value that is not being projected

IS_DUP_REMOVAL - if the sort should also perform duplicate removal over the entire projection

Source Properties - many source properties also become present on associated access nodes

SYMBOL_MAP - the mapping from the columns above the source to the projected expressions.
Also present on Group nodes

PARTITION_INFO - the partitioning of the union branches

VIRTUAL_COMMAND - if the source represents an view or inline view, the query that defined
the view

MAKE_DEP - hint information

PROCESSOR_PLAN - the processor plan of a non-relational source (typically from the
NESTED_COMMAND)

NESTED_COMMAND - the non-relational command

TABLE_FUNCTION - the table function (XMLTABLE, OBJECTTABLE, etc.) defining the source

CORRELATED_REFERENCES - the correlated references for the nodes below the source

MAKE_NOT_DEP - if make not dep is set

INLINE_VIEW - If the source node represents an inline view

NO_UNNEST - if the no_unnest hint is set

MAKE_IND - if the make ind hint is set

SOURCE_HINT - the source hint. See Federated Optimizations.

ACCESS_PATTERNS - access patterns yet to be satisfied

ACCESS_PATTERN_USED - satisfied access patterns

REQUIRED_ACCESS_PATTERN_GROUPS - groups needed to satisfy the access patterns.
Used in join planning.

Group Properties

Development Guide Volume 3: Reference Material

288

GROUP_COLS - the grouping columns

ROLLUP - if the grouping includes a rollup

Tuple Limit Properties

MAX_TUPLE_LIMIT - expression that evaluates to the max number of tuples generated

OFFSET_TUPLE_COUNT - Expression that evaluates to the tuple offset of the starting tuple

IS_IMPLICIT_LIMIT - if the limit is created by the rewriter as part of a subquery

IS_NON_STRICT - if the unordered limit should not be enforced strictly optimization

General and Costing Properties

OUTPUT_COLS - the output columns for the node. Is typically set after rule assign output
elements.

EST_SET_SIZE - represents the estimated set size this node would produce for a sibling node
as the independent node in a dependent join scenario

EST_DEP_CARDINALITY - value that represents the estimated cardinality (amount of rows)
produced by this node as the dependent node in a dependent join scenario

EST_DEP_JOIN_COST - value that represents the estimated cost of a dependent join (the join
strategy for this could be Nested Loop or Merge)

EST_JOIN_COST - value that represents the estimated cost of a merge join (the join strategy for
this could be Nested Loop or Merge)

EST_CARDINALITY - represents the estimated cardinality (amount of rows) produced by this
node

EST_COL_STATS - column statistics including number of null values, distinct value count,

EST_SELECTIVITY - represents the selectivity of a criteria node

Relational optimization is based upon rule execution that evolves the initial plan into the execution plan.
There are a set of pre-defined rules that are dynamically assembled into a rule stack for every query.
The rule stack is assembled based on the contents of the user’s query and the views/procedures
accessed. For example, if there are no view layers, then rule Merge Virtual, which merges view layers
together, is not needed and will not be added to the stack. This allows the rule stack to reflect the
complexity of the query.

Logically the plan node data structure represents a tree of nodes where the source data comes up from
the leaf nodes (typically Access nodes in the final plan), flows up through the tree and produces the
user’s results out the top. The nodes in the plan structure can have bidirectional links, dynamic
properties, and allow any number of child nodes. Processing plans in contrast typically have fixed
properties.

Plan rule manipulate the plan tree, fire other rules, and drive the optimization process. Each rule is
designed to perform a narrow set of tasks. Some rules can be run multiple times. Some rules require a
specific set of precursors to run properly.

Access Pattern Validation - ensures that all access patterns have been satisfied

Apply Security - applies row and column level security

CHAPTER 13. FEDERATED PLANNING

289

Assign Output Symbol - this rule walks top down through every node and calculates the output
columns for each node. Columns that are not needed are dropped at every node, which is
known as projection minimization. This is done by keeping track of both the columns needed to
feed the parent node and also keeping track of columns that are “created” at a certain node.

Calculate Cost - adds costing information to the plan

Choose Dependent - this rule looks at each join node and determines whether the join should be
made dependent and in which direction. Cardinality, the number of distinct values, and primary
key information are used in several formulas to determine whether a dependent join is likely to
be worthwhile. The dependent join differs in performance ideally because a fewer number of
values will be returned from the dependent side. Also, we must consider the number of values
passed from independent to dependent side. If that set is larger than the max number of values
in an IN criteria on the dependent side, then we must break the query into a set of queries and
combine their results. Executing each query in the connector has some overhead and that is
taken into account. Without costing information a lot of common cases where the only criteria
specified is on a non-unique (but strongly limiting) field are missed. A join is eligible to be
dependent if:

there is at least one equi-join criterion, i.e. tablea.col = tableb.col

the join is not a full outer join and the dependent side of the join is on the inner side of the join

The join will be made dependent if one of the following conditions, listed in precedence order,
holds:

There is an unsatisfied access pattern that can be satisfied with the dependent join criteria

The potential dependent side of the join is marked with an option makedep if costing was
enabled, the estimated cost for the dependent join (possibly in each direction in the case of inner
joins) is computed and compared to not performing the dependent join. If the costs were all
determined (which requires all relevant table cardinality, column ndv, and possibly nnv values to
be populated) the lowest is chosen.

If key metadata information indicates that the potential dependent side is not “small” and the
other side is “not small” or the potential dependent side is the inner side of a left outer join.

Dependent join is the key optimization we use to efficiently process multi-source joins.

Instead of reading all of source A and all of source B and joining them on A.x = B.x, we read all of
A then build a set of A.x that are passed as a criteria when querying B. In cases where A is small
and B is large, this can drastically reduce the data retrieved from B, thus greatly speeding the
overall query.

Choose Join Strategy - choose the join strategy based upon the cost and attributes of the join.

Clean Criteria - removes phantom criteria

Collapse Source - takes all of the nodes below an access node and creates a SQL query
representation

Copy Criteria - this rule copies criteria over an equality criteria that is present in the criteria of a
join. Since the equality defines an equivalence, this is a valid way to create a new criteria that
may limit results on the other side of the join (especially in the case of a multi-source join).

Decompose Join - this rule performs a partition-wise join optimization on joins of Federated
Optimizations Partitioned Union. The decision to decompose is based upon detecting that each

Development Guide Volume 3: Reference Material

290

side of the join is a partitioned union (note that non-ansi joins of more than 2 tables may cause
the optimization to not detect the appropriate join). The rule currently only looks for situations
where at most 1 partition matches from each side.

Implement Join Strategy - adds necessary sort and other nodes to process the chosen join
strategy

Merge Criteria - combines select nodes and can convert subqueries to semi-joins

Merge Virtual - removes view and inline view layers

Place Access - places access nodes under source nodes. An access node represents the point
at which everything below the access node gets pushed to the source or is a plan invocation.
Later rules focus on either pushing under the access or pulling the access node up the tree to
move more work down to the sources. This rule is also responsible for placing Federated
Optimizations Access Patterns.

Plan Joins - this rule attempts to find an optimal ordering of the joins performed in the plan, while
ensuring that Federated Optimizations Access Patterns dependencies are met. This rule has
three main steps. First it must determine an ordering of joins that satisfy the access patterns
present. Second it will heuristically create joins that can be pushed to the source (if a set of joins
are pushed to the source, we will not attempt to create an optimal ordering within that set. More
than likely it will be sent to the source in the non-ANSI multi-join syntax and will be optimized by
the database). Third it will use costing information to determine the best left-linear ordering of
joins performed in the processing engine. This third step will do an exhaustive search for 6 or
less join sources and is heuristically driven by join selectivity for 7 or more sources.

Plan Procedures - plans procedures that appear in procedural relational queries

Plan Sorts - optimizations around sorting, such as combining sort operations or moving
projection

Plan Unions - reorders union children for more pushdown

Plan Aggregates - performs aggregate decomposition over a join or union

Push Limit - pushes the effect of a limit node further into the plan

Push Non-Join Criteria - this rule will push predicates from the On Clause if it is not necessary
for the correctness of the join.

Push Select Criteria - pushed select nodes as far as possible through unions, joins, and views
layers toward the access nodes. In most cases movement down the tree is good as this will filter
rows earlier in the plan. We currently do not undo the decisions made by Push Select Criteria.
However in situations where criteria cannot be evaluated by the source, this can lead to sub
optimal plans.

One of the most important optimization related to pushing criteria is how the criteria will be pushed
trough join. Consider the following plan tree that represents a subtree of the plan for the query "select ...
from A inner join b on (A.x = B.x) where A.y = 3":

SELECT (B.y = 3)
 |
 JOIN - Inner Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

CHAPTER 13. FEDERATED PLANNING

291

SELECT nodes represent criteria, and SRC stands for SOURCE.

It is always valid for inner join and cross joins to push (single source) criteria that are above the join,
below the join. This allows for criteria originating in the user query to eventually be present in source
queries below the joins. This result can be represented visually as:

The same optimization is valid for criteria specified against the outer side of an outer join.

This becomes:

However criteria specified against the inner side of an outer join needs special consideration. The above
scenario with a left or full outer join is not the same.

It becomes this

Since the criterion is not dependent upon the null values that may be populated from the inner side of the
join, the criterion is eligible to be pushed below the join – but only if the join type is also changed to an
inner join.

JOIN - Inner Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

SELECT (B.y = 3)
 |
 JOIN - Right Outer Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

 JOIN - Right Outer Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
SRC (A) SRC (B)

SELECT (B.y = 3)
 |
 JOIN - Left Outer Join on (A.x = B.x)
 / \
SRC (A) SRC (B)

JOIN - Inner Join on (A.x = B.x)
 / \
 / SELECT (B.y = 3)
 | |
 SRC (A) SRC (B)

SELECT (B.y is null)
 |
 JOIN - Left Outer Join on (A.x = B.x)
 / \
 SRC (A) SRC (B)

Development Guide Volume 3: Reference Material

292

This plan tree must have the criteria remain above the join, since the outer join may be introducing null
values itself.

Raise Access - this rule attempts to raise the Access nodes as far up the plan as possible. This
is mostly done by looking at the source’s capabilities and determining whether the operations
can be achieved in the source or not.

Raise Null - raises null nodes. Raising a null node removes the need to consider any part of the
old plan that was below the null node.

Remove Optional Joins - removes joins that are marked as or determined to be optional

Substitute Expressions - used only when a function based index is present

Validate Where All - ensures criteria is used when required by the source

As each relational sub plan is optimized, the plan will show what is being optimized and its canonical
form:

With more complicated user queries, such as a procedure invocation or one containing subqueries, the
sub plans may be nested within the overall plan. Each plan ends by showing the final processing plan:

The effect of rules can be seen by the state of the plan tree before and after the rule fires. For example,
the debug log below shows the application of rule merge virtual, which will remove the "x" inline view
layer:

OPTIMIZE:
SELECT e1 FROM (SELECT e1 FROM pm1.g1) AS x

--

GENERATE CANONICAL:
SELECT e1 FROM (SELECT e1 FROM pm1.g1) AS x

CANONICAL PLAN:
Project(groups=[x], props={PROJECT_COLS=[e1]})
 Source(groups=[x], props={NESTED_COMMAND=SELECT e1 FROM pm1.g1,
SYMBOL_MAP={x.e1=e1}})
 Project(groups=[pm1.g1], props={PROJECT_COLS=[e1]})
 Source(groups=[pm1.g1])
--

OPTIMIZATION COMPLETE:
PROCESSOR PLAN:
AccessNode(0) output=[e1] SELECT g_0.e1 FROM pm1.g1 AS g_0

EXECUTING AssignOutputElements

AFTER:
Project(groups=[x], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Source(groups=[x], props={NESTED_COMMAND=SELECT e1 FROM pm1.g1,
SYMBOL_MAP={x.e1=e1}, OUTPUT_COLS=[e1]})
 Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3335, OUTPUT_COLS=[e1]})

CHAPTER 13. FEDERATED PLANNING

293

Some important planning decisions are shown in the plan as they occur as an annotation. For example
the snippet below shows that the access node could not be raised as the parent select node contained an
unsupported subquery.

Procedure Planner

The procedure planner is fairly simple. It converts the statements in the procedure into instructions in a
program that will be run during processing. This is mostly a 1-to-1 mapping and very little optimization is
performed.

The XML Planner creates an XML plan that is relatively close to the end result of the Procedure Planner
– a program with instructions. Many of the instructions are even similar (while loop, execute SQL, etc).
Additional instructions deal with producing the output result document (adding elements and attributes).

The XML planner does several types of planning (not necessarily in this order):

Document selection - determine which tags of the virtual document should be excluded from the
output document. This is done based on a combination of the model (which marks parts of the
document excluded) and the query (which may specify a subset of columns to include in the
SELECT clause).

 Source(groups=[pm1.g1], props={OUTPUT_COLS=[e1]})

==
==
EXECUTING MergeVirtual

AFTER:
Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=[e1]})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3335, OUTPUT_COLS=[e1]})
 Source(groups=[pm1.g1])

Project(groups=[pm1.g1], props={PROJECT_COLS=[e1], OUTPUT_COLS=null})
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e1 IN /*+ NO_UNNEST */
(SELECT e1 FROM pm2.g1), OUTPUT_COLS=null})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3341, OUTPUT_COLS=null})
 Source(groups=[pm1.g1], props={OUTPUT_COLS=null})

==
==
EXECUTING RaiseAccess
LOW Relational Planner SubqueryIn is not supported by source pm1 - e1 IN
/*+ NO_UNNEST */ (SELECT e1 FROM pm2.g1) was not pushed

AFTER:
Project(groups=[pm1.g1])
 Select(groups=[pm1.g1], props={SELECT_CRITERIA=e1 IN /*+ NO_UNNEST */
(SELECT e1 FROM pm2.g1), OUTPUT_COLS=null})
 Access(groups=[pm1.g1], props={SOURCE_HINT=null, MODEL_ID=Schema
name=pm1, nameInSource=null, uuid=3341, OUTPUT_COLS=null})
 Source(groups=[pm1.g1])

Development Guide Volume 3: Reference Material

294

Criteria evaluation - breaks apart the user’s criteria, determine which result set the criteria should
be applied to, and add that criteria to that result set query.

Result set ordering - the query’s ORDER BY clause is broken up and the ORDER BY is applied
to each result set as necessary

Result set planning - ultimately, each result set is planned using the relational planner and taking
into account all the impacts from the user's query. The planner will also look to automatically
create staging tables and dependent joins based upon the mapping class hierarchy.

Program generation - a set of instructions to produce the desired output document is produced,
taking into account the final result set queries and the excluded parts of the document.
Generally, this involves walking through the virtual document in document order, executing
queries as necessary and emitting elements and attributes.

XML programs can also be recursive, which involves using the same document fragment for both the
initial fragment and a set of repeated fragments (each a new query) until some termination criteria or limit
is met.

XQuery is eligible for specific optimizations. Document projection is the most common optimization. It will
be shown in the debug plan as an annotation. For example with the user query containing
"xmltable('/a/b' passing doc columns x string path '@x', val string path '/.')", the debug plan would show a
tree of the document that will effectively be used by the context and path XQuerys:

MEDIUM XQuery Planning Projection conditions met for /a/b - Document
projection will be used
childelement(Q{}a)
 childelement(Q{}b)
 attributeattribute(Q{}x)
 childtext()
 childtext()

CHAPTER 13. FEDERATED PLANNING

295

APPENDIX A. BNF FOR SQL GRAMMAR

A.1. MAIN ENTRY POINTS

callable statement

ddl statement

procedure body definition

directly executable statement

A.2. RESERVED KEYWORDS

Keyword Usage

ADD add set option

ALL standard aggregate function , function , query
expression body , query term select clause ,
quantified comparison predicate

ALTER alter , alter column options , alter options

AND between predicate , boolean term

ANY standard aggregate function , quantified comparison
predicate

ARRAY_AGG ordered aggregate function

AS alter , array table , create procedure , option
namespace , create table , create trigger , derived
column , dynamic data statement , function , loop
statement , xml namespace element , object table ,
select derived column , table subquery , text table ,
table name , with list element , xml serialize , xml
table

ASC sort specification

ATOMIC compound statement , for each row trigger action

BEGIN compound statement , for each row trigger action

BETWEEN between predicate

BIGDECIMAL data type

BIGINT data type

Development Guide Volume 3: Reference Material

296

BIGINTEGER data type

BLOB data type , xml serialize

BOOLEAN data type

BOTH function

BREAK branching statement

BY group by clause , order by clause , window
specification

BYTE data type

CALL callable statement , call statement

CASE case expression , searched case expression

CAST function

CHAR function , data type

CLOB data type , xml serialize

COLUMN alter column options

CONSTRAINT create table body

CONTINUE branching statement

CONVERT function

CREATE create procedure , create foreign temp table , create
table , create temporary table , create trigger ,
procedure body definition

CROSS cross join

DATE data type

DAY function

DECIMAL data type

DECLARE declare statement

Keyword Usage

APPENDIX A. BNF FOR SQL GRAMMAR

297

DEFAULT table element , xml namespace element , object table
column , procedure parameter , xml table column

DELETE alter , create trigger , delete statement

DESC sort specification

DISTINCT standard aggregate function , function , query
expression body , query term , select clause

DOUBLE data type

DROP drop option , drop table

EACH for each row trigger action

ELSE case expression , if statement , searched case
expression

END case expression , compound statement , for each row
trigger action , searched case expression

ERROR raise error statement

ESCAPE match predicate , text table

EXCEPT query expression body

EXEC dynamic data statement , call statement

EXECUTE dynamic data statement , call statement

EXISTS exists predicate

FALSE non numeric literal

FETCH fetch clause

FILTER filter clause

FLOAT data type

FOR for each row trigger action , function , text aggregate
function , xml table column

FOREIGN alter options , create procedure , create foreign temp
table , create table , foreign key

Keyword Usage

Development Guide Volume 3: Reference Material

298

FROM delete statement , from clause , function

FULL qualified table

FUNCTION create procedure

GROUP group by clause

HAVING having clause

HOUR function

IF if statement

IMMEDIATE dynamic data statement

IN procedure parameter , in predicate

INNER qualified table

INOUT procedure parameter

INSERT alter , create trigger , function , insert statement

INTEGER data type

INTERSECT query term

INTO dynamic data statement , insert statement , into
clause

IS is null predicate

JOIN cross join , qualified table

LANGUAGE object table

LATERAL table subquery

LEADING function

LEAVE branching statement

LEFT function , qualified table

LIKE match predicate

Keyword Usage

APPENDIX A. BNF FOR SQL GRAMMAR

299

LIKE_REGEX like regex predicate

LIMIT limit clause

LOCAL create temporary table

LONG data type

LOOP loop statement

MAKEDEP option clause , table primary

MAKENOTDEP option clause , table primary

MERGE insert statement

MINUTE function

MONTH function

NO xml namespace element , text table column , text
table

NOCACHE option clause

NOT between predicate , compound statement , table
element , is null predicate , match predicate ,
boolean factor , procedure parameter , procedure
result column , like regex predicate , in predicate ,
temporary table element

NULL table element , is null predicate , non numeric literal ,
procedure parameter , procedure result column ,
temporary table element , xml query

OBJECT data type

OF alter , create trigger

OFFSET limit clause

ON alter , create foreign temp table , create trigger , loop
statement , qualified table , xml query

ONLY fetch clause

OPTION option clause

OPTIONS alter options list , options clause

Keyword Usage

Development Guide Volume 3: Reference Material

300

OR boolean value expression

ORDER order by clause

OUT procedure parameter

OUTER qualified table

OVER window specification

PARAMETER alter column options

PARTITION window specification

PRIMARY table element , create temporary table , primary key

PROCEDURE alter , alter options , create procedure , procedure
body definition

REAL data type

REFERENCES foreign key

RETURN assignment statement , return statement , data
statement

RETURNS create procedure

RIGHT function , qualified table

ROW fetch clause , for each row trigger action , limit clause
, text table

ROWS fetch clause , limit clause

SECOND function

SELECT select clause

SET add set option , option namespace , update
statement

SHORT data type

SIMILAR match predicate

SMALLINT data type

Keyword Usage

APPENDIX A. BNF FOR SQL GRAMMAR

301

SOME standard aggregate function , quantified comparison
predicate

SQLEXCEPTION sql exception

SQLSTATE sql exception

SQLWARNING raise statement

STRING dynamic data statement , data type , xml serialize

TABLE alter options , create procedure , create foreign temp
table , create table , create temporary table , drop
table , query primary , table subquery

TEMPORARY create foreign temp table , create temporary table

THEN case expression , searched case expression

TIME data type

TIMESTAMP data type

TINYINT data type

TO match predicate

TRAILING function

TRANSLATE function

TRIGGER alter , create trigger

TRUE non numeric literal

UNION cross join , query expression body

UNIQUE other constraints , table element

UNKNOWN non numeric literal

UPDATE alter , create trigger , dynamic data statement ,
update statement

USER function

USING dynamic data statement

Keyword Usage

Development Guide Volume 3: Reference Material

302

VALUES insert statement

VARBINARY data type , xml serialize

VARCHAR data type , xml serialize

VIRTUAL alter options , create procedure , create table ,
procedure body definition

WHEN case expression , searched case expression

WHERE filter clause , where clause

WHILE while statement

WITH assignment statement , query expression , data
statement

WITHOUT assignment statement , data statement

XML data type

XMLAGG ordered aggregate function

XMLATTRIBUTES xml attributes

XMLCOMMENT function

XMLCONCAT function

XMLELEMENT xml element

XMLFOREST xml forest

XMLNAMESPACES xml namespaces

XMLPARSE xml parse

XMLPI function

XMLQUERY xml query

XMLSERIALIZE xml serialize

XMLTABLE xml table

YEAR function

Keyword Usage

APPENDIX A. BNF FOR SQL GRAMMAR

303

A.3. NON-RESERVED KEYWORDS

Keyword Usage

ACCESSPATTERN other constraints , non-reserved identifier

ARRAYTABLE array table , non-reserved identifier

AUTO_INCREMENT table element , non-reserved identifier

AVG standard aggregate function , non-reserved identifier

CHAIN sql exception , non-reserved identifier

COLUMNS array table , non-reserved identifier , object table ,
text table , xml table

CONTENT non-reserved identifier , xml parse , xml serialize

COUNT standard aggregate function , non-reserved identifier

DELIMITER non-reserved identifier , text aggregate function , text
table

DENSE_RANK analytic aggregate function , non-reserved identifier

DISABLED alter , non-reserved identifier

DOCUMENT non-reserved identifier , xml parse , xml serialize

EMPTY non-reserved identifier , xml query

ENABLED alter , non-reserved identifier

ENCODING non-reserved identifier , text aggregate function , xml
serialize

EVERY standard aggregate function , non-reserved identifier

EXCEPTION compound statement , declare statement , non-
reserved identifier

EXCLUDING non-reserved identifier , xml serialize

EXTRACT function , non-reserved identifier

FIRST fetch clause , non-reserved identifier , sort
specification

Development Guide Volume 3: Reference Material

304

HEADER non-reserved identifier , text aggregate function , text
table

INCLUDING non-reserved identifier , xml serialize

INDEX other constraints , table element , non-reserved
identifier

INSTEAD alter , create trigger , non-reserved identifier

JSONARRAY_AGG non-reserved identifier , ordered aggregate function

JSONOBJECT json object , non-reserved identifier

KEY table element , create temporary table , foreign key ,
non-reserved identifier , primary key

LAST non-reserved identifier , sort specification

MAX standard aggregate function , non-reserved identifier

MIN standard aggregate function , non-reserved identifier

NAME function , non-reserved identifier , xml element

NAMESPACE option namespace , non-reserved identifier

NEXT fetch clause , non-reserved identifier

NULLS non-reserved identifier , sort specification

OBJECTTABLE non-reserved identifier , object table

ORDINALITY non-reserved identifier , xml table column

PASSING non-reserved identifier , object table , xml query , xml
table

PATH non-reserved identifier , xml table column

QUERYSTRING non-reserved identifier , querystring function

QUOTE non-reserved identifier , text aggregate function , text
table

RAISE non-reserved identifier , raise statement

RANK analytic aggregate function , non-reserved identifier

Keyword Usage

APPENDIX A. BNF FOR SQL GRAMMAR

305

RESULT non-reserved identifier , procedure parameter

ROW_NUMBER analytic aggregate function , non-reserved identifier

SELECTOR non-reserved identifier , text table column , text table

SERIAL non-reserved identifier , temporary table element

SKIP non-reserved identifier , text table

SQL_TSI_DAY time interval , non-reserved identifier

SQL_TSI_FRAC_SECOND time interval , non-reserved identifier

SQL_TSI_HOUR time interval , non-reserved identifier

SQL_TSI_MINUTE time interval , non-reserved identifier

SQL_TSI_MONTH time interval , non-reserved identifier

SQL_TSI_QUARTER time interval , non-reserved identifier

SQL_TSI_SECOND time interval , non-reserved identifier

SQL_TSI_WEEK time interval , non-reserved identifier

SQL_TSI_YEAR time interval , non-reserved identifier

STDDEV_POP standard aggregate function , non-reserved identifier

STDDEV_SAMP standard aggregate function , non-reserved identifier

SUBSTRING function , non-reserved identifier

SUM standard aggregate function , non-reserved identifier

TEXTAGG non-reserved identifier , text aggregate function

TEXTTABLE non-reserved identifier , text table

TIMESTAMPADD function , non-reserved identifier

TIMESTAMPDIFF function , non-reserved identifier

TO_BYTES function , non-reserved identifier

TO_CHARS function , non-reserved identifier

Keyword Usage

Development Guide Volume 3: Reference Material

306

TRIM function , non-reserved identifier , text table column

VARIADIC non-reserved identifier , procedure parameter

VAR_POP standard aggregate function , non-reserved identifier

VAR_SAMP standard aggregate function , non-reserved identifier

VERSION non-reserved identifier , xml serialize

VIEW alter , alter options , create table , non-reserved
identifier

WELLFORMED non-reserved identifier , xml parse

WIDTH non-reserved identifier , text table column

XMLDECLARATION non-reserved identifier , xml serialize

Keyword Usage

A.4. RESERVED KEYWORDS FOR FUTURE USE

ALLOCAT
E

ARE ARRAY ASENSITI
VE

ASYMET
RIC

AUTHORI
ZATION

BINARY CALLED

CASCAD
ED

CHARAC
TER

CHECK CLOSE COLLATE COMMIT CONNEC
T

CORRES
PONDING

CRITERI
A

CURREN
T_DATE

CURREN
T_TIME

CURREN
T_TIMES
TAMP

CURREN
T_USER

CURSOR CYCLE DATALIN
K

DEALLO
CATE

DEC DEREF DESCRIB
E

DETERMI
NISTIC

DISCONN
ECT

DLNEWC
OPY

DLPREVI
OUSCOP
Y

DLURLC
OMPLET
E

DLURLC
OMPLET
EONLY

DLURLC
OMPLET
EWRITE

DLURLPA
TH

DLURLPA
THONLY

DLURLPA
THWRITE

DLURLSC
HEME

DLURLSE
RVER

DLVALUE DYNAMIC ELEMEN
T

EXTERN
AL

FREE GET GLOBAL GRANT

HAS HOLD IDENTITY IMPORT INDICAT
OR

INPUT INSENSIT
IVE

INT

INTERVA
L

ISOLATIO
N

LARGE LOCALTI
ME

LOCALTI
MESTAM
P

MATCH MEMBER METHOD

APPENDIX A. BNF FOR SQL GRAMMAR

307

MODIFIE
S

MODULE MULTISE
T

NATIONA
L

NATURAL NCHAR NCLOB NEW

NONE NUMERIC OLD OPEN OUTPUT OVERLAP
S

PRECISI
ON

PREPAR
E

RANGE READS RECURSI
VE

REFERE
NCING

RELEASE REVOKE ROLLBAC
K

ROLLUP

SAVEPOI
NT

SCROLL SEARCH SENSITIV
E

SESSION
_USER

SPECIFIC SPECIFIC
TYPE

SQL

START STATIC SUBMUL
TILIST

SYMETRI
C

SYSTEM SYSTEM_
USER

TIMEZON
E_HOUR

TIMEZON
E_MINUT
E

TRANSLA
TION

TREAT VALUE VARYING WHENEV
ER

WINDOW WITHIN XMLBINA
RY

XMLCAS
T

XMLDOC
UMENT

XMLEXIS
TS

XMLITER
ATE

XMLTEXT XMLVALI
DATE

A.5. TOKENS

Name Definition Usage

all in group identifier < identifier > < period > < star > all in group

binary string literal "X" | "x" "\'" (< hexit > < hexit >)+
"\'"

non numeric literal

colon ":" statement

comma "," alter options list , column list ,
create procedure , typed element
list , create table body , create
temporary table , derived column
list , sql exception named
parameter list , expression list ,
from clause , function limit clause
, object table , option clause ,
options clause , order by clause ,
data type , query expression ,
querystring function select clause
, set clause list , in predicate , text
aggreate function , text table , xml
attributes , xml element , xml
forest , xml namespaces , xml
query , xml table

concat_op "||" common value expression

Development Guide Volume 3: Reference Material

308

decimal numeric literal (< digit >)* < period > < unsigned
integer literal >

unsigned numeric literal

digit ["0"-"9"]

dollar "$" unsigned value expression
primary

eq "=" assignment statement , callable
statement , declare statement ,
named parameter list ,
comparison operator , set clause
list

escaped function "{" "fn" unsigned value expression
primary

escaped join "{" "oj" table reference

escaped type "{" ("d" | "t" | "ts" | "b") non numeric literal

approximate numeric literal < digit > < period > < unsigned
integer literal > ["e","E"] (< plus > |
< minus >)? < unsigned integer
literal >

unsigned numeric literal

ge ">=" comparison operator

gt ">" named parameter list ,
comparison operator

hexit ["a"-"f","A"-"F"] | < digit >

identifier < quoted_id > (< period > <
quoted_id >)*

identifier , unsigned value
expression primary

id_part ("@" | "#" | < letter >) (< letter > |
"_" | < digit >)*

lbrace "{" callable statement , match
predicate

le "<=" comparison operator

letter ["a"-"z","A"-"Z"] | ["\u0153"-"\ufffd"]

Name Definition Usage

APPENDIX A. BNF FOR SQL GRAMMAR

309

lparen "(" standard aggregate function , alter
options list , analytic aggregate
function , array table , callable
statement , column list , other
constraints , create procedure ,
create table body , create
temporary table , filter clause ,
function , if statement , insert
statement , json object , loop
statement , object table , options
clause , ordered aggreate function
, data type , query primary ,
querystring function , in predicate
, call statement , subquery , table
subquery , table primary , text
aggregate function , text table ,
unsigned value expression
primary , while statement ,
window specification , with list
element , xml attributes , xml
element , xml forest , xml
namespaces , xml parse , xml
query , xml serialize , xml table

lsbrace "[" unsigned value expression
primary

lt "<" comparison operator

minus "-" plus or minus

ne "<>" comparison operator

ne2 "!=" comparison operator

period "."

plus "+" plus or minus

qmark "?" callable statement , integer
parameter , unsigned value
expression primary

quoted_id < id_part > | "\"" ("\"\"" | ~["\""])+
"\""

rbrace "}" callable statement , match
predicate , non numeric literal ,
table reference , unsigned value
expression primary

Name Definition Usage

Development Guide Volume 3: Reference Material

310

rparen ")" standard aggregate function , alter
options list , analytic aggregate
function , array table , callable
statement , column list , other
constraints , create procedure ,
create table body , create
temporary table , filter clause ,
function , if statement , insert
statement , json object , loop
statement , object table , options
clause , ordered aggregate
function , data type , query
primary , querystring function , in
predicate , call statement ,
subquery , table subquery , table
primary , text aggregate function ,
text table , unsigned value
expression primary , while
statement , window specification ,
with list element , xml attributes ,
xml element , xml forest , xml
namespaces , xml parse , xml
query , xml serialize , xml table

rsbrace "]" unsigned value expression
primary

semicolon ";" ddl statement , delimited
statement

slash "/" star or slash

star "*" standard aggregate function ,
dynamic data statement , select
clause , star or slash

string literal ("N" | "E")? "\'" ("\'\'" | ~["\'"])* "\'" string

unsigned integer literal (< digit >)+ unsigned integer , unsigned
numeric literal

Name Definition Usage

A.6. PRODUCTION CROSS-REFERENCE

Name Usage

add set option alter options list

standard aggregate function unsigned value expression primary

APPENDIX A. BNF FOR SQL GRAMMAR

311

all in group select sublist

alter directly executable statement

alter column options alter options

alter options list alter column options , alter options

alter options ddl statement

analytic aggregate function unsigned value expression primary

array table table primary

assignment statement delimited statement

assignment statement operand assignment statement , declare statement

between predicate boolean primary

boolean primary filter clause , boolean factor

branching statement delimited statement

case expression unsigned value expression primary

character match predicate , text aggregate function , text table

column list other constraints , create temporary table , foreign
key , insert statement primary key , with list element

common value expression between predicate , boolean primary , comparison
predicate , sql exception , match predicate , like
regex predicate , in predicate , text table , unsigned
value expression primary

comparison predicate boolean primary

boolean term boolean value expression

boolean value expression condition

compound statement statement

other constraints create table body

table element create table body

Name Usage

Development Guide Volume 3: Reference Material

312

create procedure ddl statement

typed element list array table , dynamic data statement

create foreign temp table directly executable statement

option namespace ddl statement

create table ddl statement

create table body create foreign temp table , create table

create temporary table directly executable statement

create trigger ddl statement , directly executable statement

condition expression , having clause , if statement , qualified
table , searched case expression , where clause ,
while statement

cross join joined table

declare statement delimited statement

delete statement assignment statement operand , directly executable
statement

delimited statement statement

derived column derived column list , object table , querystring
function , text aggregate function , xml attributes ,
xml query , xml table

derived column list json object , xml forest

drop option alter options list

drop table directly executable statement

dynamic data statement data statement

raise error statement delimited statement

sql exception assignment statement operand , exception reference

exception reference sql exception , raise statement

named parameter list call statement

Name Usage

APPENDIX A. BNF FOR SQL GRAMMAR

313

exists predicate boolean primary

expression standard aggregate function , assignment statement
operand , case expression , derived column ,
dynamic data statement , raise error statement ,
named parameter list , expression list , function ,
object table column , ordered aggregate function ,
querystring function , return statement , searched
case expression , select derived column , set clause
list , sort key , unsigned value expression primary ,
xml table column , xml element , xml parse , xml
serialize

expression list callable statement , other constraints , function ,
group by clause , insert statement , call statement ,
window specification

fetch clause limit clause

filter clause function , unsigned value expression primary

for each row trigger action alter , create trigger

foreign key create table body

from clause query

function unsigned value expression primary

group by clause query

having clause query

Name Usage

Development Guide Volume 3: Reference Material

314

identifier alter , alter column options , alter options , array table
, assignment statement , branching statement ,
callable statement , column list , compound
statement , table element , create procedure , typed
element list , create foreign temp table , option
namespace , create table , create table body , create
temporary table , create trigger , declare statement ,
delete statement , derived column , drop option ,
drop table , dynamic data statement , exception
reference , named parameter list , foreign key ,
function , insert statement , into clause , loop
statement , xml namespace element , object table
column , object table , option clause , option pair ,
procedure parameter , procedure result column ,
query primary , select derived column , set clause list
, statement , call statement , table subquery ,
temporary table element , text aggregate function ,
text table column , text table , table name , update
statement , with list element , xml table column , xml
element , xml serialize , xml table

if statement statement

insert statement assignment statement operand , directly executable
statement

integer parameter fetch clause , limit clause

unsigned integer dynamic data statement , integer parameter , data
type , text table column , text table , unsigned value
expression primary

time interval function

into clause query

is null predicate boolean primary

joined table table primary , table reference

json object function

limit clause query expression body

loop statement statement

match predicate boolean primary

xml namespace element xml namespaces

non numeric literal option pair , value expression primary

Name Usage

APPENDIX A. BNF FOR SQL GRAMMAR

315

non-reserved identifier identifier , unsigned value expression primary

boolean factor boolean term

object table column object table

object table table primary

comparison operator comparison predicate , quantified comparison
predicate

option clause callable statement , delete statement , insert
statement , query expression body , call statement ,
update statement

option pair add set option , options clause

options clause table element , create procedure , create table ,
create table body , procedure parameter , procedure
result column

order by clause function , ordered aggregate function , query
expression body , text aggregate function , window
specification

ordered aggregate function unsigned value expression primary

data type table element , create procedure , typed element list ,
declare statement , function , object table column ,
procedure parameter , procedure result column ,
temporary table element , text table column , xml
table column

numeric value expression common value expression

plus or minus option pair , numeric value expression , value
expression primary

primary key create table body

procedure parameter create procedure

procedure result column create procedure

qualified table joined table

query query primary

Name Usage

Development Guide Volume 3: Reference Material

316

query expression alter , assignment statement operand , create table ,
insert statement , loop statement , subquery , table
subquery , directly executable statement , with list
element

query expression body query expression , query primary

query primary query term

querystring function function

query term query expression body

raise statement delimited statement

like regex predicate boolean primary

return statement delimited statement

searched case expression unsigned value expression primary

select clause query

select derived column select sublist

select sublist select clause

set clause list dynamic data statement , update statement

in predicate boolean primary

sort key sort specification

sort specification order by clause

data statement delimited statement

statement alter , compound statement , create procedure , for
each row trigger action , if statement , loop statement
, procedure body definition , while statement

call statement assignment statement , subquery , table subquery ,
directly executable statement

string character , table element , option namespace ,
function , xml namespace element , non numeric
literal , object table column , object table , procedure
parameter , text table column , text table , xml table
column , xml query , xml serialize , xml table

Name Usage

APPENDIX A. BNF FOR SQL GRAMMAR

317

subquery exists predicate , in predicate , quantified comparison
predicate , unsigned value expression primary

quantified comparison predicate boolean primary

table subquery table primary

temporary table element create temporary table

table primary cross join , joined table

table reference from clause , qualified table

text aggregate function unsigned value expression primary

text table column text table

text table table primary

term numeric value expression

star or slash term

table name table primary

unsigned numeric literal option pair , value expression primary

unsigned value expression primary value expression primary

update statement assignment statement operand , directly executable
statement

directly executable statement data statement

value expression primary array table , term

where clause delete statement , query , update statement

while statement statement

window specification unsigned value expression primary

with list element query expression

xml attributes xml element

xml table column xml table

Name Usage

Development Guide Volume 3: Reference Material

318

xml element function

xml forest function

xml namespaces xml element , xml forest , xml query , xml table

xml parse function

xml query function

xml serialize function

xml table table primary

Name Usage

A.7. PRODUCTIONS

string ::=

< string literal >

A string literal value. Use '' to escape ' in the string.

Example:

reserved identifier ::=

INSTEAD

VIEW

ENABLED

'a string'

'it''s a string'

APPENDIX A. BNF FOR SQL GRAMMAR

319

DISABLED

KEY

SERIAL

TEXTAGG

COUNT

ROW_NUMBER

RANK

DENSE_RANK

SUM

AVG

MIN

MAX

EVERY

Development Guide Volume 3: Reference Material

320

STDDEV_POP

STDDEV_SAMP

VAR_SAMP

VAR_POP

DOCUMENT

CONTENT

TRIM

EMPTY

ORDINALITY

PATH

FIRST

LAST

APPENDIX A. BNF FOR SQL GRAMMAR

321

NEXT

SUBSTRING

EXTRACT

TO_CHARS

TO_BYTES

TIMESTAMPADD

TIMESTAMPDIFF

QUERYSTRING

NAMESPACE

RESULT

INDEX

ACCESSPATTERN

AUTO_INCREMENT

Development Guide Volume 3: Reference Material

322

WELLFORMED

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

TEXTTABLE

ARRAYTABLE

APPENDIX A. BNF FOR SQL GRAMMAR

323

SELECTOR

SKIP

WIDTH

PASSING

NAME

ENCODING

COLUMNS

DELIMITER

QUOTE

HEADER

NULLS

OBJECTTABLE

VERSION

Development Guide Volume 3: Reference Material

324

INCLUDING

EXCLUDING

XMLDECLARATION

VARIADIC

RAISE

EXCEPTION

CHAIN

JSONARRAY_AGG

JSONOBJECT

Allows non-reserved keywords to be parsed as identifiers

Example: SELECT COUNT FROM ...

identifier ::=

< identifier >

< non-reserved identifier >

Partial or full name of a single entity.

APPENDIX A. BNF FOR SQL GRAMMAR

325

Example:

create trigger ::=

CREATE TRIGGER ON < identifier > INSTEAD OF (INSERT | UPDATE | DELETE) AS < for each
row trigger action >

Creates a trigger action on the given target.

Example:

alter ::=

ALTER ((VIEW < identifier > AS < query expression >) | (PROCEDURE < identifier > AS <
statement >) | (TRIGGER ON < identifier > INSTEAD OF (INSERT | UPDATE | DELETE) ((AS <
for each row trigger action >) | ENABLED | DISABLED)))

Alter the given target.

Example:

for each row trigger action ::=

FOR EACH ROW ((BEGIN (ATOMIC)? (< statement >)* END) | < statement >)

Defines an action to perform on each row.

Example:

directly executable statement ::=

< query expression >

tbl.col

"tbl"."col"

CREATE TRIGGER ON vw INSTEAD OF INSERT AS FOR EACH ROW BEGIN ATOMIC ...
END

ALTER VIEW vw AS SELECT col FROM tbl

FOR EACH ROW BEGIN ATOMIC ... END

Development Guide Volume 3: Reference Material

326

< call statement >

< insert statement >

< update statement >

< delete statement >

< drop table >

< create temporary table >

< create foreign temp table >

< alter >

< create trigger >

A statement that can be executed at runtime.

Example:

drop table ::=

DROP TABLE < identifier >

Creates a trigger action on the given target.

SELECT * FROM tbl

APPENDIX A. BNF FOR SQL GRAMMAR

327

Example:

create temporary table ::=

CREATE LOCAL TEMPORARY TABLE < identifier > < lparen > < temporary table element > (<
comma > < temporary table element >)* (< comma > PRIMARY KEY < column list >)? < rparen >

Creates a temporary table.

Example:

temporary table element ::=

< identifier > (< data type > | SERIAL) (NOT NULL)?

Defines a temporary table column.

Example:

raise error statement ::=

ERROR < expression >

Raises an error with the given message.

Example:

raise statement ::=

RAISE (SQLWARNING)? < exception reference >

Raises an error or warning with the given message.

Example:

CREATE TRIGGER ON vw INSTEAD OF INSERT AS FOR EACH ROW BEGIN ATOMIC ...
END

CREATE LOCAL TEMPORARY TABLE tmp (col integer)

col string NOT NULL

ERROR 'something went wrong'

Development Guide Volume 3: Reference Material

328

exception reference ::=

< identifier >

< sql exception >

a reference to an exception

Example:

sql exception ::=

SQLEXCEPTION < common value expression > (SQLSTATE < common value expression > (<
comma > < common value expression >)?)? (CHAIN < exception reference >)?

creates a sql exception or warning with the specified message, state, and code

Example:

statement ::=

((< identifier > < colon >)? (< loop statement > | < while statement > | < compound statement >))

< if statement > | < delimited statement >

A procedure statement.

Example:

delimited statement ::=

RAISE SQLEXCEPTION 'something went wrong'

SQLEXCEPTION 'something went wrong' SQLSTATE '00X', 2

SQLEXCEPTION 'something went wrong' SQLSTATE '00X', 2

IF (x = 5) BEGIN ... END

APPENDIX A. BNF FOR SQL GRAMMAR

329

(< assignment statement > | < data statement > | < raise error statement > | < raise statement > | <
declare statement > | < branching statement > | < return statement >) < semicolon >

A procedure statement terminated by ;.

Example:

compound statement ::=

BEGIN ((NOT)? ATOMIC)? (< statement >)* (EXCEPTION < identifier > (< statement >)*)?
END

A procedure statement block contained in BEGIN END.

Example:

branching statement ::=

((BREAK | CONTINUE) (< identifier >)?)

(LEAVE < identifier >)

A procedure branching control statement, which typically specifies a label to return control to.

Example:

return statement ::=

RETURN (< expression >)?

A return statement.

Example:

SELECT * FROM tbl;

BEGIN NOT ATOMIC ... END

BREAK x

RETURN 1

Development Guide Volume 3: Reference Material

330

while statement ::=

WHILE < lparen > < condition > < rparen > < statement >

A procedure while statement that executes until its condition is false.

Example:

loop statement ::=

LOOP ON < lparen > < query expression > < rparen > AS < identifier > < statement >

A procedure loop statement that executes over the given cursor.

Example:

if statement ::=

IF < lparen > < condition > < rparen > < statement > (ELSE < statement >)?

A procedure loop statement that executes over the given cursor.

Example:

declare statement ::=

DECLARE (< data type > | EXCEPTION) < identifier > (< eq > < assignment statement operand >
)?

A procedure declaration statement that creates a variable and optionally assigns a value.

Example:

assignment statement ::=

WHILE (var) BEGIN ... END

IF (boolVal) BEGIN variables.x = 1 END ELSE BEGIN variables.x = 2 END

LOOP ON (SELECT * FROM tbl) AS x BEGIN ... END

DECLARE STRING x = 'a'

APPENDIX A. BNF FOR SQL GRAMMAR

331

< identifier > < eq > (< assignment statement operand > | (< call statement > ((WITH | WITHOUT)
RETURN)?))

Assigns a variable a value in a procedure.

Example:

assignment statement operand ::=

< insert statement >

< update statement >

< delete statement >

< expression >

< query expression >

< sql exception >

A value or command that can be used in an assignment.

NOTE

All assignments except for expression are deprecated.

data statement ::=

(< directly executable statement > | < dynamic data statement >) ((WITH | WITHOUT) RETURN)?

A procedure statement that executes a SQL statement. An update statement can have its update count
accessed via the ROWCOUNT variable.

x = 'b'

Development Guide Volume 3: Reference Material

332

procedure body definition ::=

(CREATE (VIRTUAL)? PROCEDURE)? < statement >

Defines a procedure body on a Procedure metadata object.

Example:

dynamic data statement ::=

(EXECUTE | EXEC) (STRING | IMMEDIATE)? < expression > (AS < typed element list > (INTO <
identifier >)?)? (USING < set clause list >)? (UPDATE (< unsigned integer > | < star >))?

A procedure statement that can execute arbitrary sql.

Example:

set clause list ::=

< identifier > < eq > < expression > (< comma > < identifier > < eq > < expression >)*

A list of value assignments.

Example:

typed element list ::=

< identifier > < data type > (< comma > < identifier > < data type >)*

A list of typed elements.

Example:

callable statement ::=

CREATE VIRTUAL PROCEDURE BEGIN ... END

EXECUTE IMMEDIATE 'SELECT * FROM tbl' AS x STRING INTO #temp

col1 = 'x', col2 = 'y' ...

col1 string, col2 integer ...

APPENDIX A. BNF FOR SQL GRAMMAR

333

< lbrace > (< qmark > < eq >)? CALL < identifier > (< lparen > (< expression list >)? < rparen >)?
< rbrace > (< option clause >)?

A callable statement defined using JDBC escape syntax.

Example:

call statement ::=

((EXEC | EXECUTE | CALL) < identifier > < lparen > (< named parameter list > | (< expression list
>)?) < rparen >) (< option clause >)?

Executes the procedure with the given parameters.

Example:

named parameter list ::=

(< identifier > < eq > (< gt >)? < expression > (< comma > < identifier > < eq > (< gt >)? <
expression >)*)

A list of named parameters.

Example:

insert statement ::=

(INSERT | MERGE) INTO < identifier > (< column list >)? ((VALUES < lparen > < expression list >
< rparen >) | < query expression >) (< option clause >)?

Inserts values into the given target.

Example:

expression list ::=

{? = CALL proc}

CALL proc('a', 1)

param1 => 'x', param2 => 1

INSERT INTO tbl (col1, col2) VALUES ('a', 1)

Development Guide Volume 3: Reference Material

334

< expression > (< comma > < expression >)*

A list of expressions.

Example:

update statement ::=

UPDATE < identifier > SET < set clause list > (< where clause >)? (< option clause >)?

Update values in the given target.

Example:

delete statement ::=

DELETE FROM < identifier > (< where clause >)? (< option clause >)?

Delete rows from the given target.

Example:

query expression ::=

(WITH < with list element > (< comma > < with list element >)*)? < query expression body >

A declarative query for data.

Example:

with list element ::=

< identifier > (< column list >)? AS < lparen > < query expression > < rparen >

col1, 'a', ...

UPDATE tbl SET (col1 = 'a') WHERE col2 = 1

DELETE FROM tbl WHERE col2 = 1

SELECT * FROM tbl WHERE col2 = 1

APPENDIX A. BNF FOR SQL GRAMMAR

335

A query expression for use in the enclosing query.

Example:

query expression body ::=

< query term > ((UNION | EXCEPT) (ALL | DISTINCT)? < query term >)* (< order by clause >)?
(< limit clause >)? (< option clause >)?

The body of a query expression, which can optionally be ordered and limited.

Example:

query term ::=

< query primary > (INTERSECT (ALL | DISTINCT)? < query primary >)*

Used to establish INTERSECT precedence.

Example:

query primary ::=

< query >

(TABLE < identifier >)

(< lparen > < query expression body > < rparen >)

A declarative source of rows.

Example:

X (Y, Z) AS (SELECT 1, 2)

SELECT * FROM tbl ORDER BY col1 LIMIT 1

SELECT * FROM tbl

SELECT * FROM tbl1 INTERSECT SELECT * FROM tbl2

Development Guide Volume 3: Reference Material

336

query ::=

< select clause > (< into clause >)? (< from clause > (< where clause >)? (< group by clause >)?
(< having clause >)?)?

A SELECT query.

Example:

into clause ::=

INTO < identifier >

Used to direct the query into a table.

NOTE

This is deprecated. Use INSERT INTO with a query expression instead.

Example:

select clause ::=

SELECT (ALL | DISTINCT)? (< star > | (< select sublist > (< comma > < select sublist >)*))

The columns returned by a query. Can optionally be distinct.

Example:

select sublist ::=

TABLE tbl

SELECT * FROM tbl1

SELECT col1, max(col2) FROM tbl GROUP BY col1

INTO tbl

SELECT *

SELECT DISTINCT a, b, c

APPENDIX A. BNF FOR SQL GRAMMAR

337

< select derived column >

< all in group >

An element in the select clause

Example:

select derived column ::=

(< expression > ((AS)? < identifier >)?)

A select clause item that selects a single column.

NOTE

This is slightly different than a derived column in that the AS keyword is optional.

Example:

derived column ::=

(< expression > (AS < identifier >)?)

An optionally named expression.

Example:

all in group ::=

< all in group identifier >

tbl.*

tbl.col AS x

tbl.col AS x

tbl.col AS x

Development Guide Volume 3: Reference Material

338

A select sublist that can select all columns from the given group.

Example:

ordered aggreate function ::=

(XMLAGG | ARRAY_AGG | JSONARRAY_AGG) < lparen > < expression > (< order by clause >)?
< rparen >

An aggregate function that can optionally be ordered.

Example:

text aggreate function ::=

TEXTAGG < lparen > (FOR)? < derived column > (< comma > < derived column >)* (DELIMITER
< character >)? (QUOTE < character >)? (HEADER)? (ENCODING < identifier >)? (< order by
clause >)? < rparen >

An aggregate function for creating separated value clobs.

Example:

standard aggregate function ::=

(COUNT < lparen > < star > < rparen >)

((COUNT | SUM | AVG | MIN | MAX | EVERY | STDDEV_POP | STDDEV_SAMP | VAR_SAMP |
VAR_POP | SOME | ANY) < lparen > (DISTINCT | ALL)? < expression > < rparen >)

A standard aggregate function.

Example:

tbl.*

XMLAGG(col1) ORDER BY col2

ARRAY_AGG(col1)

TEXTAGG (col1 as t1, col2 as t2 DELIMITER ',' HEADER)

COUNT(*)

APPENDIX A. BNF FOR SQL GRAMMAR

339

analytic aggregate function ::=

(ROW_NUMBER | RANK | DENSE_RANK) < lparen > < rparen >

An analytic aggregate function.

Example:

filter clause ::=

FILTER < lparen > WHERE < boolean primary > < rparen >

An aggregate filter clause applied prior to accumulating the value.

Example:

from clause ::=

FROM (< table reference > (< comma > < table reference >)*)

A query from clause containing a list of table references.

Example:

table reference ::=

(< escaped join > < joined table > < rbrace >)

< joined table >

An optionally escaped joined table.

Example:

ROW_NUMBER()

FILTER (WHERE col1='a')

FROM a, b

FROM a right outer join b, c, d join e".</p>

Development Guide Volume 3: Reference Material

340

joined table ::=

< table primary > (< cross join > | < qualified table >)*

A table or join.

Example:

cross join ::=

((CROSS | UNION) JOIN < table primary >)

A cross join.

Example:

qualified table ::=

(((RIGHT (OUTER)?) | (LEFT (OUTER)?) | (FULL (OUTER)?) | INNER)? JOIN < table
reference > ON < condition >)

An INNER or OUTER join.

Example:

table primary ::=

(< text table > | < array table > | < xml table > | < object table > | < table name > | < table subquery > |
(< lparen > < joined table > < rparen >)) (MAKEDEP | MAKENOTDEP)?

a

a inner join b

a

a inner join b

a CROSS JOIN b

a inner join b

APPENDIX A. BNF FOR SQL GRAMMAR

341

A single source of rows.

Example:

xml serialize ::=

XMLSERIALIZE < lparen > (DOCUMENT | CONTENT)? < expression > (AS (STRING | VARCHAR
| CLOB | VARBINARY | BLOB))? (ENCODING < identifier >)? (VERSION < string >)? ((
INCLUDING | EXCLUDING) XMLDECLARATION)? < rparen >

Serializes an XML value.

Example:

array table ::=

ARRAYTABLE < lparen > < value expression primary > COLUMNS < typed element list > < rparen >
(AS)? < identifier >

The ARRAYTABLE table function creates tabular results from arrays. It can be used as a nested table
reference.

Example:

text table ::=

TEXTTABLE < lparen > < common value expression > (SELECTOR < string >)? COLUMNS < text
table column > (< comma > < text table column >)* (NO ROW DELIMITER)? (DELIMITER <
character >)? ((ESCAPE < character >) | (QUOTE < character >))? (HEADER (< unsigned
integer >)?)? (SKIP < unsigned integer >)? < rparen > (AS)? < identifier >

The TEXTTABLE table function creates tabular results from text. It can be used as a nested table
reference.

Example:

text table column ::=

a

XMLSERIALIZE(col1 AS CLOB)

ARRAYTABLE (col1 COLUMNS x STRING) AS y

TEXTTABLE (file COLUMNS x STRING) AS y

Development Guide Volume 3: Reference Material

342

< identifier > < data type > (WIDTH < unsigned integer > (NO TRIM)?)? (SELECTOR < string > <
unsigned integer >)?

A text table column.

Example:

xml query ::=

XMLQUERY < lparen > (< xml namespaces > < comma >)? < string > (PASSING < derived column
> (< comma > < derived column >)*)? ((NULL | EMPTY) ON EMPTY)? < rparen >

Executes an XQuery to return an XML result.

Example:

object table ::=

OBJECTTABLE < lparen > (LANGUAGE < string >)? < string > (PASSING < derived column > (<
comma > < derived column >)*)? COLUMNS < object table column > (< comma > < object table
column >)* < rparen > (AS)? < identifier >

Returns table results by processing a script.

Example:

object table column ::=

< identifier > < data type > < string > (DEFAULT < expression >)?

object table column.

Example:

xml table ::=

x INTEGER WIDTH 6

XMLQUERY('<a>...' PASSING doc)

OBJECTTABLE('z' PASSING val AS z COLUMNS col OBJECT 'teiid_row') AS X

y integer 'teiid_row_number'

APPENDIX A. BNF FOR SQL GRAMMAR

343

XMLTABLE < lparen > (< xml namespaces > < comma >)? < string > (PASSING < derived column
> (< comma > < derived column >)*)? (COLUMNS < xml table column > (< comma > < xml table
column >)*)? < rparen > (AS)? < identifier >

Returns table results by processing an XQuery.

Example:

xml table column ::=

< identifier > ((FOR ORDINALITY) | (< data type > (DEFAULT < expression >)? (PATH < string >
)?))

XML table column.

Example:

unsigned integer ::=

< unsigned integer literal >

An unsigned interger value.

Example:

table subquery ::=

(TABLE | LATERAL)? < lparen > (< query expression > | < call statement >) < rparen > (AS)? <
identifier >

A table defined by a subquery.

Example:

table name ::=

XMLTABLE('/a/b' PASSING doc COLUMNS col XML PATH '.') AS X

y FOR ORDINALITY

12345

(SELECT * FROM tbl) AS x

Development Guide Volume 3: Reference Material

344

(< identifier > ((AS)? < identifier >)?)

A table named in the FROM clause.

Example:

where clause ::=

WHERE < condition >

Specifies a search condition

Example:

condition ::=

< boolean value expression >

A boolean expression.

boolean value expression ::=

< boolean term > (OR < boolean term >)*

An optionally ORed boolean expression.

boolean term ::=

< boolean factor > (AND < boolean factor >)*

An optional ANDed boolean factor.

boolean factor ::=

(NOT)? < boolean primary >

tbl AS x

WHERE x = 'a'

APPENDIX A. BNF FOR SQL GRAMMAR

345

A boolean factor.

Example:

boolean primary ::=

(< common value expression > (< between predicate > | < match predicate > | < like regex predicate
> | < in predicate > | < is null predicate > | < quantified comparison predicate > | < comparison
predicate >)?)

< exists predicate >

A boolean predicate or simple expression.

Example:

comparison operator ::=

< eq >

< ne >

< ne2 >

< lt >

< le >

< gt >

NOT x = 'a'

col LIKE 'a%'

Development Guide Volume 3: Reference Material

346

< ge >

A comparison operator.

Example:

comparison predicate ::=

< comparison operator > < common value expression >

A value comparison.

Example:

subquery ::=

< lparen > (< query expression > | < call statement >) < rparen >

A subquery.

Example:

quantified comparison predicate ::=

< comparison operator > (ANY | SOME | ALL) < subquery >

A subquery comparison.

Example:

match predicate ::=

(NOT)? (LIKE | (SIMILAR TO)) < common value expression > (ESCAPE < character > | (< lbrace
> ESCAPE < character > < rbrace >))?

=

= 'a'

(SELECT * FROM tbl)

= ANY (SELECT col FROM tbl)

APPENDIX A. BNF FOR SQL GRAMMAR

347

Matches based upon a pattern.

Example:

like regex predicate ::=

(NOT)? LIKE_REGEX < common value expression >

A regular expression match.

Example:

character ::=

< string >

A single character.

Example:

between predicate ::=

(NOT)? BETWEEN < common value expression > AND < common value expression >

A comparison between two values.

Example:

is null predicate ::=

IS (NOT)? NULL

A null test.

Example:

LIKE 'a_'

LIKE_REGEX 'a.*b'

'a'

BETWEEN 1 AND 5

Development Guide Volume 3: Reference Material

348

in predicate ::=

(NOT)? IN (< subquery > | (< lparen > < common value expression > (< comma > < common
value expression >)* < rparen >))

A comparison with multiple values.

Example:

exists predicate ::=

EXISTS < subquery >

A test if rows exist.

Example:

group by clause ::=

GROUP BY < expression list >

Defines the grouping columns

Example:

having clause ::=

HAVING < condition >

Search condition applied after grouping.

Example:

IS NOT NULL

IN (1, 5)

EXISTS (SELECT col FROM tbl)

GROUP BY col1, col2

HAVING max(col1) = 5

APPENDIX A. BNF FOR SQL GRAMMAR

349

order by clause ::=

ORDER BY < sort specification > (< comma > < sort specification >)*

Specifies row ordering.

Example:

sort specification ::=

< sort key > (ASC | DESC)? (NULLS (FIRST | LAST))?

Defines how to sort on a particular expression

Example:

sort key ::=

< expression >

A sort expression.

Example:

integer parameter ::=

< unsigned integer >

< qmark >

A literal integer or parameter reference to an integer.

Example:

ORDER BY x, y DESC

col1 NULLS FIRST

col1

?

Development Guide Volume 3: Reference Material

350

limit clause ::=

(LIMIT < integer parameter > (< comma > < integer parameter >)?)

(OFFSET < integer parameter > (ROW | ROWS) (< fetch clause >)?)

< fetch clause >

Limits and/or offsets the resultant rows.

Example:

fetch clause ::=

FETCH (FIRST | NEXT) (< integer parameter >)? (ROW | ROWS) ONLY

ANSI limit.

Example:

option clause ::=

OPTION (MAKEDEP < identifier > (< comma > < identifier >)* | MAKENOTDEP < identifier > (<
comma > < identifier >)* | NOCACHE (< identifier > (< comma > < identifier >)*)?)*

Specifies query options.

Example:

expression ::=

< condition >

LIMIT 2

FETCH FIRST 1 ROWS ONLY

OPTION MAKEDEP tbl

APPENDIX A. BNF FOR SQL GRAMMAR

351

A value.

Example:

common value expression ::=

(< numeric value expression > (< concat_op > < numeric value expression >)*)

Establishes the precedence of concat.

Example:

numeric value expression ::=

(< term > (< plus or minus > < term >)*)

Example:

plus or minus ::=

< plus >

< minus >

The + or - operator.

Example:

term ::=

(< value expression primary > (< star or slash > < value expression primary >)*)

col1

'a' || 'b'

1 + 2

+

Development Guide Volume 3: Reference Material

352

A numeric term

Example:

star or slash ::=

< star >

< slash >

The * or / operator.

Example:

value expression primary ::=

< non numeric literal >

(< plus or minus >)? (< unsigned numeric literal > | < unsigned value expression primary >)

A simple value expression.

Example:

unsigned value expression primary ::=

< qmark >

(< dollar > < unsigned integer >)

(< escaped function > < function > < rbrace >)

1 * 2

/

+col1

APPENDIX A. BNF FOR SQL GRAMMAR

353

((< text aggreate function > | < standard aggregate function > | < ordered aggreate function >) (<
filter clause >)? (< window specification >)?)

(< analytic aggregate function > (< filter clause >)? < window specification >)

(< function > (< window specification >)?)

((< identifier > | < non-reserved identifier >) (< lsbrace > < common value expression > < rsbrace >
)?)

< subquery >

(< lparen > < expression > < rparen > (< lsbrace > < common value expression > < rsbrace >)?)

< searched case expression >

< case expression >

An unsigned simple value expression.

Example:

window specification ::=

OVER < lparen > (PARTITION BY < expression list >)? (< order by clause >)? < rparen >

The window specification for an analytical or windowed aggregate function.

Example:

col1

OVER (PARTION BY col1)

Development Guide Volume 3: Reference Material

354

case expression ::=

CASE < expression > (WHEN < expression > THEN < expression >)+ (ELSE < expression >)?
END

If/then/else chain using a common search predicand.

Example:

searched case expression ::=

CASE (WHEN < condition > THEN < expression >)+ (ELSE < expression >)? END

If/then/else chain using multiple search conditions.

Example:

function ::=

(CONVERT < lparen > < expression > < comma > < data type > < rparen >)

(CAST < lparen > < expression > AS < data type > < rparen >)

(SUBSTRING < lparen > < expression > ((FROM < expression > (FOR < expression >)?) | (<
comma > < expression list >)) < rparen >)

(EXTRACT < lparen > (YEAR | MONTH | DAY | HOUR | MINUTE | SECOND) FROM < expression >
< rparen >)

(TRIM < lparen > ((((LEADING | TRAILING | BOTH) (< expression >)?) | < expression >) FROM
)? < expression > < rparen >)

CASE col1 WHEN 'a' THEN 1 ELSE 2

CASE WHEN x = 'a' THEN 1 WHEN y = 'b' THEN 2

APPENDIX A. BNF FOR SQL GRAMMAR

355

((TO_CHARS | TO_BYTES) < lparen > < expression > < comma > < string > < rparen >)

((TIMESTAMPADD | TIMESTAMPDIFF) < lparen > < time interval > < comma > < expression > <
comma > < expression > < rparen >)

< querystring function >

((LEFT | RIGHT | CHAR | USER | YEAR | MONTH | HOUR | MINUTE | SECOND | XMLCONCAT |
XMLCOMMENT) < lparen > (< expression list >)? < rparen >)

((TRANSLATE | INSERT) < lparen > (< expression list >)? < rparen >)

< xml parse >

< xml element >

(XMLPI < lparen > ((NAME)? < identifier >) (< comma > < expression >)? < rparen >)

< xml forest >

< json object >

< xml serialize >

< xml query >

Development Guide Volume 3: Reference Material

356

(< identifier > < lparen > (ALL | DISTINCT)? (< expression list >)? (< order by clause >)? <
rparen > (< filter clause >)?)

Calls a scalar function.

Example:

xml parse ::=

XMLPARSE < lparen > (DOCUMENT | CONTENT) < expression > (WELLFORMED)? < rparen >

Parses the given value as XML.

Example:

querystring function ::=

QUERYSTRING < lparen > < expression > (< comma > < derived column >)* < rparen >

Produces a URL query string from the given arguments.

Example:

xml element ::=

XMLELEMENT < lparen > ((NAME)? < identifier >) (< comma > < xml namespaces >)? (<
comma > < xml attributes >)? (< comma > < expression >)* < rparen >

Creates an XML element.

Example:

xml attributes ::=

func('1', col1)

XMLPARSE(DOCUMENT doc WELLFORMED)

QUERYSTRING(col1 AS opt, col2 AS val)

XMLELEMENT(NAME "root", child)

APPENDIX A. BNF FOR SQL GRAMMAR

357

XMLATTRIBUTES < lparen > < derived column > (< comma > < derived column >)* < rparen >

Creates attributes for the containing element.

Example:

json object ::=

JSONOBJECT < lparen > < derived column list > < rparen >

Produces a JSON object containing name value pairs.

Example:

derived column list ::=

< derived column > (< comma > < derived column >)*

a list of name value pairs

Example:

xml forest ::=

XMLFOREST < lparen > (< xml namespaces > < comma >)? < derived column list > < rparen >

Produces an element for each derived column.

Example:

xml namespaces ::=

XMLNAMESPACES < lparen > < xml namespace element > (< comma > < xml namespace element
>)* < rparen >

XMLATTRIBUTES(col1 AS attr1, col2 AS attr2)

JSONOBJECT(col1 AS val1, col2 AS val2)

col1 AS val1, col2 AS val2

XMLFOREST(col1 AS ELEM1, col2 AS ELEM2)

Development Guide Volume 3: Reference Material

358

Defines XML namespace URI/prefix combinations

Example:

xml namespace element ::=

(< string > AS < identifier >)

(NO DEFAULT)

(DEFAULT < string >)

An xml namespace

Example:

data type ::=

(STRING (< lparen > < unsigned integer > < rparen >)?)

(VARCHAR (< lparen > < unsigned integer > < rparen >)?)

BOOLEAN

BYTE

TINYINT

XMLNAMESPACES('http://foo' AS foo)

NO DEFAULT

APPENDIX A. BNF FOR SQL GRAMMAR

359

SHORT

SMALLINT

(CHAR (< lparen > < unsigned integer > < rparen >)?)

INTEGER

LONG

BIGINT

(BIGINTEGER (< lparen > < unsigned integer > < rparen >)?)

FLOAT

REAL

DOUBLE

(BIGDECIMAL (< lparen > < unsigned integer > (< comma > < unsigned integer >)? < rparen >)?)

(DECIMAL (< lparen > < unsigned integer > (< comma > < unsigned integer >)? < rparen >)?)

DATE

Development Guide Volume 3: Reference Material

360

TIME

TIMESTAMP

OBJECT

(BLOB (< lparen > < unsigned integer > < rparen >)?)

(CLOB (< lparen > < unsigned integer > < rparen >)?)

(VARBINARY (< lparen > < unsigned integer > < rparen >)?)

XML

A data type.

Example:

time interval ::=

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

STRING

APPENDIX A. BNF FOR SQL GRAMMAR

361

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

A time interval keyword.

Example:

non numeric literal ::=

< string >

< binary string literal >

FALSE

TRUE

UNKNOWN

SQL_TSI_HOUR

Development Guide Volume 3: Reference Material

362

NULL

(< escaped type > < string > < rbrace >)

An escaped or simple non numeric literal.

Example:

unsigned numeric literal ::=

< unsigned integer literal >

< approximate numeric literal >

< decimal numeric literal >

An unsigned numeric literal value.

Example:

ddl statement ::=

(< create table > | < create procedure > | < option namespace > | < alter options > | < create trigger >
) (< semicolon >)?

A data definition statement.

Example:

option namespace ::=

'a'

1.234

CREATE FOREIGN TABLE X (Y STRING)

APPENDIX A. BNF FOR SQL GRAMMAR

363

SET NAMESPACE < string > AS < identifier >

A namespace used to shorten the full name of an option key.

Example:

create procedure ::=

CREATE (VIRTUAL | FOREIGN)? (PROCEDURE | FUNCTION) (< identifier > < lparen > (<
procedure parameter > (< comma > < procedure parameter >)*)? < rparen > (RETURNS (((
TABLE)? < lparen > < procedure result column > (< comma > < procedure result column >)* <
rparen >) | < data type >))? (< options clause >)? (AS < statement >)?)

Defines a procedure or function invocation.

Example:

procedure parameter ::=

(IN | OUT | INOUT | VARIADIC)? < identifier > < data type > (NOT NULL)? (RESULT)? (
DEFAULT < string >)? (< options clause >)?

A procedure or function parameter

Example:

procedure result column ::=

< identifier > < data type > (NOT NULL)? (< options clause >)?

A procedure result column.

Example:

create table ::=

SET NAMESPACE 'http://foo' AS foo

CREATE FOREIGN PROCEDURE proc (param STRING) RETURNS STRING

OUT x INTEGER

x INTEGER

Development Guide Volume 3: Reference Material

364

CREATE (FOREIGN TABLE | (VIRTUAL)? VIEW) < identifier > (< create table body > | (< options
clause >)?) (AS < query expression >)?

Defines a table or view.

Example:

create foreign temp table ::=

CREATE FOREIGN TEMPORARY TABLE < identifier > < create table body > ON < identifier >

Defines a foreign temp table

Example:

create table body ::=

(< lparen > < table element > (< comma > < table element >)* (< comma > (CONSTRAINT <
identifier >)? (< primary key > | < other constraints > | < foreign key >) (< options clause >)?)* <
rparen >)? (< options clause >)?

Defines a table.

Example:

foreign key ::=

FOREIGN KEY < column list > REFERENCES < identifier > (< column list >)?

Defines the foreign key referential constraint.

Example:

primary key ::=

CREATE VIEW vw AS SELECT 1

CREATE FOREIGN TEMPORARY TABLE t (x string) ON z

(x string) OPTIONS (CARDINALITY 100)

FOREIGN KEY (a, b) REFERENCES tbl (x, y)

APPENDIX A. BNF FOR SQL GRAMMAR

365

PRIMARY KEY < column list >

Defines the primary key.

Example:

other constraints ::=

((UNIQUE | ACCESSPATTERN) < column list >)

(INDEX < lparen > < expression list > < rparen >)

Defines ACCESSPATTERN and UNIQUE constraints and INDEXes.

Example:

column list ::=

< lparen > < identifier > (< comma > < identifier >)* < rparen >

A list of column names.

Example:

table element ::=

< identifier > < data type > (NOT NULL)? (AUTO_INCREMENT)? ((PRIMARY KEY) | ((UNIQUE
)? (INDEX)?)) (DEFAULT < string >)? (< options clause >)?

Defines a table column.

Example:

PRIMARY KEY (a, b)

UNIQUE (a)

(a, b)

x INTEGER NOT NULL

Development Guide Volume 3: Reference Material

366

options clause ::=

OPTIONS < lparen > < option pair > (< comma > < option pair >)* < rparen >

A list of statement options.

Example:

option pair ::=

< identifier > (< non numeric literal > | (< plus or minus >)? < unsigned numeric literal >)

An option key/value pair.

Example:

alter options ::=

ALTER (VIRTUAL | FOREIGN)? (TABLE | VIEW | PROCEDURE) < identifier > (< alter options list
> | < alter column options >)

alters options of tables/procedure

Example:

alter options list ::=

OPTIONS < lparen > (< add set option > | < drop option >) (< comma > (< add set option > | < drop
option >))* < rparen >

a list of alterations to options

Example:

drop option ::=

OPTIONS ('x' 'y', 'a' 'b')

'key' 'value'

ALTER FOREIGN TABLE foo OPTIONS (ADD cardinality 100)

OPTIONS (ADD updatable true)

APPENDIX A. BNF FOR SQL GRAMMAR

367

DROP < identifier >

drop option

Example:

add set option ::=

(ADD | SET) < option pair >

add or set an option pair

Example:

alter column options ::=

ALTER (COLUMN | PARAMETER)? < identifier > < alter options list >

alters a set of column options

Example:

DROP updatable

ADD updatable true

ALTER COLUMN bar OPTIONS (ADD updatable true)

Development Guide Volume 3: Reference Material

368

APPENDIX B. DASHBOARD BUILDER

B.1. JBOSS DASHBOARD BUILDER

JBoss Dashboard Builder is an open source dashboard and reporting tool that allows:

Visual configuration and personalization of dashboards.

Graphical representation of KPIs (Key Performance Indicators).

Definition of interactive report tables.

Filtering and search, both in-memory or database based.

Process execution metrics dashboards.

Data extraction from external systems, through different protocols.

Access control for different user profiles to different levels of information.

B.2. LOG IN TO JBOSS DASHBOARD BUILDER

Prerequisites

Red Hat JBoss Data Virtualization must be installed and running.

You must have a JBoss Dashboard Builder user account.

Procedure B.1. Log in to the JBoss Dashboard Builder

1. Navigate to JBoss Dashboard Builder
Navigate to JBoss Dashboard Builder in your web browser. The default location is
http://localhost:8080/dashboard.

2. Log in to JBoss Dashboard Builder
Enter the Username and Password of a valid JBoss Dashboard Builder user.

B.3. ADDING A JBOSS DASHBOARD BUILDER USER

A JBoss Dashboard Builder user is added in the same way as a JBoss Data Virtualization user.

Two roles are provided for setting JBoss Dashboard Builder permissions:

user - a user has permission to view the dashboard

admin - a user has permission to modify the dashboard

APPENDIX B. DASHBOARD BUILDER

369

http://localhost:8080/dashboard

IMPORTANT

If a JBoss Dashboard Builder user wants their JBoss Data Virtualization permissions
applied to the data they are accessing, then the external datasource defined in JBoss
Dashboard Builder must use local connection and set PassthroughAuthentication to true
on the URL; otherwise, the default username and password defined for the datasource are
used.

Example B.1. The PassthroughAuthentication property set on the connection
URL

jdbc:teiid:VDBName;PassthroughAuthentication="true"

Development Guide Volume 3: Reference Material

370

APPENDIX C. SUPPORTED DATA SOURCES AND
TRANSLATORS

C.1. RECOMMENDED TRANSLATORS FOR DATA SOURCES

For a list of supported data sources and translators for this version of JDV, see the Red Hat JBoss Data
Virtualization 6.x Supported Configurations article on the Red Hat Customer Portal.

NOTE

MS Excel is supported in so much as there is a write procedure.

NOTE

The MySQL InnoDB storage engine is not suitable for use as an external materialization
target.

APPENDIX C. SUPPORTED DATA SOURCES AND TRANSLATORS

371

https://access.redhat.com/articles/703663

APPENDIX D. REVISION HISTORY

Revision 6.4.0-59 Fri 25 May 2018 David Le Sage
Updates for 6.4

Development Guide Volume 3: Reference Material

372

	Table of Contents
	CHAPTER 1. ARCHITECTURE
	1.1. TERMINOLOGY
	1.2. DATA MANAGEMENT
	1.2.1. Cursoring and Batching
	1.2.2. Buffer Management
	1.2.3. Cleanup

	1.3. QUERY TERMINATION
	1.3.1. Canceling Queries
	1.3.2. User Query Timeouts

	1.4. PROCESSING
	1.4.1. Join Algorithms
	1.4.2. Sort-Based Algorithms

	1.5. LOAD BALANCING
	1.5.1. Configure Load Balancing

	CHAPTER 2. SQL SUPPORT
	2.1. SQL SUPPORT
	2.2. IDENTIFIERS
	2.2.1. Identifiers
	2.2.2. Reserved Words

	2.3. EXPRESSIONS
	2.3.1. Expressions
	2.3.2. Column Identifiers
	2.3.3. Literals
	2.3.4. Aggregate Functions
	2.3.5. Window Functions
	2.3.6. Window Functions: Analytical Function Definitions
	2.3.7. Window Functions: Processing
	2.3.8. Case and Searched Case
	2.3.9. Scalar Subqueries
	2.3.10. Parameter References
	2.3.11. Criteria
	2.3.12. Operator Precedence
	2.3.13. Criteria Precedence

	2.4. SCALAR FUNCTIONS
	2.4.1. Scalar Functions
	2.4.2. Numeric Functions
	2.4.3. Parsing Numeric Data Types from Strings
	2.4.4. Formatting Numeric Data Types as Strings
	2.4.5. String Functions
	2.4.5.1. Replacement Functions

	2.4.6. Date/Time Functions
	2.4.7. Parsing Date Data Types from Strings
	2.4.8. Specifying Time Zones
	2.4.9. Type Conversion Functions
	2.4.10. Choice Functions
	2.4.11. Decode Functions
	2.4.12. Lookup Function
	2.4.13. System Functions
	2.4.14. XML Functions
	2.4.15. JSON Functions
	2.4.16. Conversion to JSON
	2.4.17. Spatial Functions
	2.4.18. Security Functions
	2.4.19. Miscellaneous Functions
	2.4.20. Nondeterministic Function Handling

	2.5. DML COMMANDS
	2.5.1. DML Commands
	2.5.2. SELECT Command
	2.5.3. INSERT Command
	2.5.4. UPDATE Command
	2.5.5. DELETE Command
	2.5.6. MERGE Command
	2.5.7. EXECUTE Command
	2.5.8. Procedural Relational Command
	2.5.9. Set Operations
	2.5.10. Subqueries
	2.5.11. Inline Views
	2.5.12. Alternative Subquery Usage

	2.6. DML CLAUSES
	2.6.1. DML Clauses
	2.6.2. WITH Clause
	2.6.3. Recursive Common Table Expressions
	2.6.4. SELECT Clause
	2.6.5. FROM Clause
	2.6.6. FROM Clause Hints
	2.6.7. Nested Tables
	2.6.8. Nested Tables: TEXTTABLE
	2.6.9. Nested Tables: XMLTABLE
	2.6.10. Nested Tables: ARRAYTABLE
	2.6.11. Nested Tables: OBJECTTABLE
	2.6.12. WHERE Clause
	2.6.13. GROUP BY Clause
	2.6.14. HAVING Clause
	2.6.15. ORDER BY Clause
	2.6.16. LIMIT Clause
	2.6.17. INTO Clause
	2.6.18. OPTION Clause

	2.7. DDL COMMANDS
	2.7.1. DDL Commands
	2.7.2. Local and Global Temporary Tables
	2.7.2.1. Local Temporary Tables
	2.7.2.2. Global Temporary Tables
	2.7.2.3. Common Features

	2.7.3. Foreign Temporary Tables
	2.7.4. Alter View
	2.7.5. Alter Procedure
	2.7.6. Create Trigger
	2.7.7. Alter Trigger

	2.8. XML DOCUMENT GENERATION
	2.8.1. XML Document Generation
	2.8.2. XML SELECT Command
	2.8.3. XML SELECT: FROM Clause
	2.8.4. XML SELECT: SELECT Clause
	2.8.5. XML SELECT: WHERE Clause
	2.8.6. XML SELECT: ORDER BY Clause
	2.8.7. XML SELECT Command Specific Functions
	2.8.8. CONTEXT Function
	2.8.9. ROWLIMIT Function
	2.8.10. ROWLIMITEXCEPTION Function
	2.8.11. Document Generation
	2.8.12. Document Validation

	2.9. PROCEDURAL LANGUAGE
	2.9.1. Procedural Language
	2.9.2. Command Statement
	2.9.3. Dynamic SQL
	2.9.4. Dynamic SQL Limitations
	2.9.5. Declaration Statement
	2.9.6. Assignment Statement
	2.9.7. Special Variables
	2.9.8. Compound Statement
	2.9.9. Exception Handling
	2.9.10. If Statement
	2.9.11. Loop Statement
	2.9.12. While Statement
	2.9.13. Continue Statement
	2.9.14. Break Statement
	2.9.15. Leave Statement
	2.9.16. Return Statement
	2.9.17. Error Statement
	2.9.18. Raise Statement
	2.9.19. Exception Expression

	2.10. PROCEDURES
	2.10.1. Virtual Procedures
	2.10.2. Virtual Procedure Parameters
	2.10.3. Example Virtual Procedures
	2.10.4. Executing Virtual Procedures
	2.10.5. Virtual Procedure Limitations
	2.10.6. Update Procedures
	2.10.7. Update Procedure Processing
	2.10.8. The FOR EACH ROW Procedure
	2.10.9. Special Variables for Update Procedures
	2.10.10. Example Update Procedures
	2.10.11. Comments

	CHAPTER 3. DATA TYPES
	3.1. SUPPORTED TYPES
	3.2. TYPE CONVERSIONS
	3.3. CONVERSION OF STRING LITERALS
	3.4. CONVERTING TO BOOLEAN
	3.5. DATE AND TIME CONVERSIONS
	3.6. ESCAPED LITERAL SYNTAX

	CHAPTER 4. UPDATABLE VIEWS
	4.1. UPDATABLE VIEWS
	4.2. KEY-PRESERVED TABLE

	CHAPTER 5. TRANSACTION SUPPORT
	5.1. TRANSACTION SUPPORT
	5.2. AUTOCOMMITTXN EXECUTION PROPERTY
	5.3. UPDATING MODEL COUNT
	5.4. JDBC API FUNCTIONALITY
	5.5. J2EE USAGE MODELS
	5.6. TRANSACTIONAL BEHAVIOR WITH JBOSS DATA SOURCE TYPES
	5.7. LIMITATIONS

	CHAPTER 6. VIRTUAL DATABASES
	6.1. VDB DEFINITION
	6.2. VDB DEFINITION: THE VDB ELEMENT
	6.3. VDB DEFINITION: THE IMPORT-VDB ELEMENT
	6.4. VDB DEFINITION: THE MODEL ELEMENT
	6.5. VDB DEFINITION: THE TRANSLATOR ELEMENT
	6.6. DYNAMIC VDBS
	6.7. DYNAMIC VDB XML DEPLOYMENT
	6.8. DYNAMIC VDB ZIP DEPLOYMENT
	6.9. VDB REUSE
	6.10. METADATA REPOSITORIES

	CHAPTER 7. DATA ROLES
	7.1. DATA ROLES
	7.2. ROLE MAPPING
	7.3. PERMISSIONS
	7.3.1. User Query Permissions
	7.3.2. Assigning Permissions
	7.3.3. Row and Column-Based Security Conditions
	7.3.4. Row-Based Security Conditions
	7.3.5. Applying Row-Based Security Conditions
	7.3.6. Considerations When Using Conditions
	7.3.7. Limitations to Using Conditions
	7.3.8. Column Masking
	7.3.9. Applying Column Masking
	7.3.10. Column Masking Considerations
	7.3.11. Column Masking Limitations

	7.4. DATA ROLE DEFINITION
	7.4.1. Data Role Definition
	7.4.2. Data Role Definition Example
	7.4.3. Data Role Definition Example: Additional Attributes
	7.4.4. Data Role Definition Example: Language Access
	7.4.5. Data Role Definition Example: Row-Based Security
	7.4.6. Data Role Definition Example: Column Masking

	CHAPTER 8. SYSTEM SCHEMAS AND PROCEDURES
	8.1. SYSTEM SCHEMAS
	8.2. VDB METADATA
	8.3. REFERENCE KEY COLUMNS
	8.4. TABLE METADATA
	8.5. PROCEDURE METADATA
	8.6. FUNCTION METADATA
	8.7. DATA TYPE METADATA
	8.8. SYSTEM PROCEDURES
	8.9. METADATA PROCEDURES

	CHAPTER 9. GENERATED REST SERVICES
	9.1. GENERATED REST SERVICES
	9.2. REST PROPERTIES
	9.3. EXAMPLE VDB WITH REST PROPERTIES
	9.4. CONSIDERATIONS FOR GENERATED REST SERVICES
	9.5. SECURITY FOR GENERATED REST SERVICES
	9.6. AD-HOC REST SERVICES

	CHAPTER 10. MULTI-SOURCE MODELS
	10.1. MULTI-SOURCE MODELS
	10.2. MULTI-SOURCE MODEL CONFIGURATION
	10.3. THE MULTI-SOURCE COLUMN
	10.4. THE MULTI-SOURCE COLUMN IN SYSTEM METADATA
	10.5. MULTI-SOURCE MODELS: PLANNING AND EXECUTION
	10.6. MULTI-SOURCE MODELS: SELECT, UPDATE AND DELETE
	10.7. MULTI-SOURCE MODELS: INSERT
	10.8. MULTI-SOURCE MODELS: STORED PROCEDURES

	CHAPTER 11. DDL METADATA
	11.1. DDL METADATA
	11.2. FOREIGN TABLE
	11.3. VIEW
	11.4. TABLE OPTIONS
	11.5. COLUMN OPTIONS
	11.6. TABLE CONSTRAINTS
	11.7. INSTEAD OF TRIGGERS
	11.8. PROCEDURES AND FUNCTIONS
	11.9. VARIABLE ARGUMENT SUPPORT
	11.10. FUNCTION OPTIONS
	11.11. AGGREGATE FUNCTION OPTIONS
	11.12. PROCEDURE OPTIONS
	11.13. OPTIONS
	11.14. ALTER STATEMENT
	11.15. NAMESPACES FOR EXTENSION METADATA
	11.16. EXAMPLE DDL METADATA

	CHAPTER 12. TRANSLATORS
	12.1. JBOSS DATA VIRTUALIZATION CONNECTOR ARCHITECTURE
	12.2. TRANSLATORS
	12.3. TRANSLATOR PROPERTIES
	12.4. TRANSLATORS IN RED HAT JBOSS DATA VIRTUALIZATION
	12.5. BASE EXECUTION PROPERTIES
	12.6. OVERRIDE EXECUTION PROPERTIES
	12.7. PARAMETERIZABLE NATIVE QUERIES
	12.8. DELEGATING TRANSLATORS
	12.9. AMAZON S3 TRANSLATOR
	12.10. AMAZON SIMPLEDB TRANSLATOR
	12.11. APACHE ACCUMULO TRANSLATOR
	12.12. APACHE SOLR TRANSLATOR
	12.13. CASSANDRA TRANSLATOR
	12.14. COUCHBASE TRANSLATOR
	12.14.1. Couchbase Data Model

	12.15. FILE TRANSLATOR
	12.15.1. File Translator
	12.15.2. File Translator: Execution Properties
	12.15.3. File Translator: Usage

	12.16. GOOGLE SPREADSHEET TRANSLATOR
	12.16.1. Google Spreadsheet Translator
	12.16.2. Google Spreadsheet Translator: Native Queries
	12.16.3. Google Spreadsheet Translator: Native Procedure

	12.17. RED HAT JBOSS DATA GRID TRANSLATOR
	12.18. JDBC TRANSLATOR
	12.18.1. JDBC Translator
	12.18.2. JDBC Translator: Execution Properties
	12.18.3. JDBC Translator: Importer Properties
	12.18.4. JDBC Translator: Translator Types
	12.18.5. JDBC Translator: Usage
	12.18.6. JDBC Translator: Native Queries
	12.18.7. JDBC Translator: Native Procedure

	12.19. JPA TRANSLATOR
	12.20. LDAP TRANSLATOR
	12.20.1. LDAP Translator
	12.20.2. LDAP Translator: Execution Properties
	12.20.3. LDAP Translator: Native Queries
	12.20.4. LDAP Translator: Native Procedure
	12.20.5. LDAP Translator Example: Search
	12.20.6. LDAP Translator Example: Delete
	12.20.7. LDAP Translator Example: Create and Update
	12.20.8. LDAP Connector Capabilities Support
	12.20.9. LDAP Connector Capabilities Support List
	12.20.10. LDAP Attribute Datatype Support
	12.20.11. LDAP: Testing Your Connector
	12.20.12. LDAP: Console Deployment Issues

	12.21. LOOPBACK TRANSLATOR
	12.22. MICROSOFT EXCEL TRANSLATOR
	12.23. MONGODB TRANSLATOR
	12.23.1. MongoDB
	12.23.2. MongoDB Translator
	12.23.3. MongoDB Translator: Example DDL
	12.23.4. MongoDB Translator: Metadata Extensions

	12.24. OBJECT TRANSLATOR
	12.24.1. Object Translator
	12.24.2. Object Translator: Execution Properties
	12.24.3. Object Translator: Supported Capabilities
	12.24.4. Object Translator: Usage

	12.25. ODATA TRANSLATOR
	12.25.1. OData Translator
	12.25.2. OData Translator: Execution Properties
	12.25.3. OData Translator: Importer Properties
	12.25.4. OData Translator: Usage

	12.26. ODATA VERSION 4 TRANSLATOR
	12.26.1. OData Version 4 Translator
	12.26.1.1. Translator Configuration Options

	12.27. OLAP TRANSLATOR
	12.27.1. OLAP Translator
	12.27.2. OLAP Translator: Usage
	12.27.3. OLAP Translator: Native Queries
	12.27.4. OLAP Translator: Native Procedure

	12.28. SALESFORCE TRANSLATOR
	12.28.1. Properties
	12.28.2. Salesforce Translator: Execution Properties
	12.28.3. Salesforce Translator: SQL Processing
	12.28.4. Salesforce Translator: Multi-Select Picklists
	12.28.5. Salesforce Translator: Selecting All Objects
	12.28.6. Salesforce Translator: Selecting Updated Objects
	12.28.7. Salesforce Translator: Selecting Deleted Objects
	12.28.8. Salesforce Translator: Relationship Queries
	12.28.9. Salesforce Translator: Bulk Insert Queries
	12.28.10. Salesforce Translator: Supported Capabilities
	12.28.11. Salesforce Translator: Native Queries
	12.28.12. Salesforce Translator: Native Procedure
	12.28.13. Salesforce Translator Example: Select
	12.28.14. Salesforce Translator Example: Delete
	12.28.15. Salesforce Translator Example: Create and Update

	12.29. SAP GATEWAY TRANSLATOR
	12.30. WEB SERVICES TRANSLATOR
	12.30.1. Web Services Translator
	12.30.2. Web Services Translator: Execution Properties
	12.30.3. Web Services Translator: Usage
	12.30.4. Web Services Translator: Invoke Procedure
	12.30.5. Web Services Translator: InvokeHTTP Procedure

	CHAPTER 13. FEDERATED PLANNING
	13.1. FEDERATED PLANNING
	13.2. PLANNING OVERVIEW
	13.3. EXAMPLE QUERY
	13.4. SUBQUERY OPTIMIZATION
	13.5. XQUERY OPTIMIZATION
	13.6. PARTIAL RESULTS
	13.7. FEDERATED OPTIMIZATIONS
	13.7.1. Access Patterns
	13.7.2. Pushdown
	13.7.3. Dependent Joins
	13.7.4. Copy Criteria
	13.7.5. Projection Minimization
	13.7.6. Partial Aggregate Pushdown
	13.7.7. Optional Join
	13.7.8. Partitioned Union
	13.7.9. Standard Relational Techniques

	13.8. QUERY PLANS
	13.8.1. Query Plans
	13.8.2. Getting a Query Plan
	13.8.3. Analyzing a Query Plan
	13.8.4. Relational Plans
	13.8.5. Relational Plans: Node Statistics
	13.8.6. Source Hints
	13.8.7. Statistics Gathering and Single Partitions

	13.9. QUERY PLANNER
	13.9.1. Query Planner
	13.9.2. Relational Planner

	APPENDIX A. BNF FOR SQL GRAMMAR
	A.1. MAIN ENTRY POINTS
	A.2. RESERVED KEYWORDS
	A.3. NON-RESERVED KEYWORDS
	A.4. RESERVED KEYWORDS FOR FUTURE USE
	A.5. TOKENS
	A.6. PRODUCTION CROSS-REFERENCE
	A.7. PRODUCTIONS

	APPENDIX B. DASHBOARD BUILDER
	B.1. JBOSS DASHBOARD BUILDER
	B.2. LOG IN TO JBOSS DASHBOARD BUILDER
	B.3. ADDING A JBOSS DASHBOARD BUILDER USER

	APPENDIX C. SUPPORTED DATA SOURCES AND TRANSLATORS
	C.1. RECOMMENDED TRANSLATORS FOR DATA SOURCES

	APPENDIX D. REVISION HISTORY

