
Red Hat Fuse 7.11

Fuse on OpenShift Guide

Install and manage Red Hat Fuse on OpenShift, develop and deploy Fuse applications
on OpenShift

Last Updated: 2023-07-24

Red Hat Fuse 7.11 Fuse on OpenShift Guide

Install and manage Red Hat Fuse on OpenShift, develop and deploy Fuse applications on OpenShift

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Fuse on OpenShift

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. BEFORE YOU BEGIN
1.1. COMPARISON: FUSE STANDALONE AND FUSE ON OPENSHIFT

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS
2.1. AUTHENTICATING WITH REGISTRY.REDHAT.IO FOR CONTAINER IMAGES
2.2. INSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE OPENSHIFT 4.X SERVER
2.3. INSTALLING API DESIGNER ON OPENSHIFT 4.X

2.3.1. Adding API Designer as a service to an OpenShift 4.x project
2.3.2. Upgrading the API Designer on OpenShift 4.x
2.3.3. Metering labels for API Designer
2.3.4. Considerations for installing API Designer in a restricted environment

2.4. SETTING UP THE FUSE CONSOLE ON OPENSHIFT 4.X
2.4.1. Installing and deploying the Fuse Console on OpenShift 4.x by using the OperatorHub
2.4.2. Installing and deploying the Fuse Console on OpenShift 4.x by using the command line

2.4.2.1. Generating a certificate to secure the Fuse Console on OpenShift 4.x
2.4.3. Role-based access control for the Fuse Console on OpenShift 4.x

2.4.3.1. Determining access roles for the Fuse Console on OpenShift 4.x
2.4.3.2. Customizing role-based access to the Fuse Console on OpenShift 4.x
2.4.3.3. Disabling role-based access control for the Fuse Console on OpenShift 4.x

2.4.4. Upgrading the Fuse Console on OpenShift 4.x
2.4.5. Upgrading Fuse imagestreams and templates on the OpenShift 4.x server
2.4.6. Tuning the performance of the Fuse Console on OpenShift 4.x

2.4.6.1. Performance tuning for Fuse Console Operator installation
2.4.6.2. Performance tuning for Fuse Console template installation
2.4.6.3. Performance tuning for viewing applications on Fuse Console

2.5. CONFIGURING PROMETHEUS TO MONITOR FUSE APPLICATIONS ON OPENSHIFT
2.5.1. About Prometheus

2.5.1.1. Prometheus queries
2.5.1.2. Options for displaying Prometheus data

2.5.2. Setting up Prometheus for 4.13
2.5.3. OpenShift environment variables
2.5.4. Controlling the metrics that Prometheus monitors and collects

2.6. USING METERING FOR FUSE ON OPENSHIFT
2.6.1. Metering resources
2.6.2. Metering labels for Fuse on OpenShift

2.7. MONITORING FUSE ON OPENSHIFT WITH CUSTOM GRAFANA DASHBOARDS
2.8. INSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE OPENSHIFT 3.X SERVER

2.8.1. Setting up the Fuse Console on OpenShift 3.11
2.8.1.1. Deploying the Fuse Console on OpenShift 3.11
2.8.1.2. Monitoring a single Fuse pod from the Fuse Console on OpenShift 3.11

CHAPTER 3. INSTALLING FUSE ON OPENSHIFT IN A RESTRICTED ENVIRONMENT
3.1. SETTING UP INTERNAL DOCKER REGISTRY
3.2. CONFIGURING INTERNAL REGISTRY SECRETS
3.3. INSTALLING FUSE ON OPENSHIFT IMAGES IN A RESTRICTED ENVIRONMENT
3.4. USING AN INTERNAL MAVEN REPOSITORY

3.4.1. Running a Spring Boot application with MAVEN_MIRROR_URL
3.4.2. Running a Spring Boot application with OpenShift Maven plugin

CHAPTER 4. INSTALLING FUSE ON OPENSHIFT AS A NON-ADMIN USER

7

8
8

10
10
11

14
15
16
16
17
18
18

20
22
24
25
26
27
27
28
31
31
32
34
35
35
35
36
36
37
38
39
39
39
40
44
45
46
48

50
50
51
52
53
53
54

55

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

4.1. INSTALLING FUSE ON OPENSHIFT IMAGES AND TEMPLATES AS A NON-ADMIN USER

CHAPTER 5. GETTING STARTED FOR DEVELOPERS
5.1. PREPARING DEVELOPMENT ENVIRONMENT

5.1.1. Installing Container Development Kit (CDK) on your local machine
5.1.2. Getting remote access to an existing OpenShift server
5.1.3. Installing Client-Side tools
5.1.4. Configuring Maven repositories

5.2. CREATING AND DEPLOYING APPLICATIONS ON FUSE ON OPENSHIFT
5.2.1. Creating and deploying an application using the S2I binary workflow
5.2.2. Undeploying and redeploying the project
5.2.3. Creating and deploying an application using the S2I source workflow

CHAPTER 6. DEVELOPING AN APPLICATION FOR THE SPRING BOOT IMAGE
6.1. CREATING A SPRING BOOT 2 PROJECT USING MAVEN ARCHETYPE
6.2. STRUCTURE OF THE CAMEL SPRING BOOT APPLICATION
6.3. SPRING BOOT 2 ARCHETYPE CATALOG
6.4. BOM FILE FOR SPRING BOOT
6.5. INCORPORATE THE BOM FILE
6.6. SPRING BOOT MAVEN PLUGIN

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT
7.1. INTRODUCTION TO THE CAMEL SPRING BOOT COMPONENT
7.2. INTRODUCTION TO THE CAMEL SPRING BOOT STARTER MODULE
7.3. LIST OF THE CAMEL COMPONENTS THAT DO NOT HAVE STARTER MODULES
7.4. USING CAMEL SPRING BOOT STARTER
7.5. ABOUT CAMEL CONTEXT AUTO-CONFIGURATION FOR SPRING BOOT
7.6. AUTO-DETECTING CAMEL ROUTES IN SPRING BOOT APPLICATIONS
7.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT AUTO-CONFIGURATION
7.8. CONFIGURING CUSTOM CAMEL CONTEXT
7.9. DISABLING JMX IN THE AUTO-CONFIGURED CAMELCONTEXT
7.10. INJECTING AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES INTO SPRING-MANAGED
BEANS
7.11. ABOUT THE AUTO-CONFIGURED TYPECONVERTER IN THE SPRING CONTEXT
7.12. SPRING TYPE CONVERSION API BRIDGE
7.13. DISABLING TYPE CONVERSIONS FEATURES
7.14. ADDING XML ROUTES TO THE CLASSPATH FOR AUTO-CONFIGURATION
7.15. ADDING XML REST-DSL ROUTES FOR AUTO-CONFIGURATION
7.16. TESTING WITH CAMEL SPRING BOOT

CHAPTER 8. RUNNING SOAP TO REST BRIDGE QUICKSTART FOR SPRING BOOT 2 ON FUSE ON
OPENSHIFT

CHAPTER 9. RUNNING A CAMEL SERVICE ON SPRING BOOT WITH XA TRANSACTIONS
9.1. STATEFULSET RESOURCES
9.2. SPRING BOOT NARAYANA RECOVERY CONTROLLER
9.3. CONFIGURING SPRING BOOT NARAYANA RECOVERY CONTROLLER
9.4. RUNNING CAMEL SPRING BOOT XA QUICKSTART ON OPENSHIFT
9.5. TESTING SUCCESSFUL XA TRANSACTIONS
9.6. TESTING FAILED XA TRANSACTIONS

CHAPTER 10. INTEGRATING A CAMEL APPLICATION WITH THE A-MQ BROKER
10.1. BUILDING AND DEPLOYING A SPRING BOOT CAMEL A-MQ QUICKSTART

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

55

58
58
58
59
59
60
60
60
64
64

68
68
69
71
72
73
74

75
75
75
76
76
77
78
79
79
80

80
80
81
81

82
82
83

85

91
91
91
91

92
94
94

95
95

97

Red Hat Fuse 7.11 Fuse on OpenShift Guide

2

. .

. .

. .

11.1. SPRING BOOT EXTERNALIZED CONFIGURATION
11.1.1. Kubernetes ConfigMap
11.1.2. Kubernetes Secrets
11.1.3. Spring Cloud Kubernetes plugin
11.1.4. Enabling Spring Boot with Kubernetes integration

11.2. RUNNING TUTORIAL FOR CONFIGMAP PROPERTY SOURCE
11.2.1. Running Spring Boot Camel Config quickstart
11.2.2. Configuration properties bean
11.2.3. Setting up Secret
11.2.4. Setting up ConfigMap

11.3. USING CONFIGMAP PROPERTYSOURCE
11.3.1. Applying individual properties
11.3.2. Applying application.yaml ConfigMap property
11.3.3. Applying application.properties ConfigMap property
11.3.4. Deploying a ConfigMap

11.4. USING SECRETS PROPERTYSOURCE
11.4.1. Example of setting Secrets
11.4.2. Consuming the Secrets
11.4.3. Configuration properties for Secrets PropertySource

11.5. USING PROPERTYSOURCE RELOAD
11.5.1. Enabling PropertySource Reload
11.5.2. Levels of PropertySource Reload
11.5.3. Example of PropertySource Reload
11.5.4. PropertySource Reload operating modes
11.5.5. PropertySource Reload configuration properties

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE
12.1. CREATING A KARAF PROJECT USING MAVEN ARCHETYPE
12.2. STRUCTURE OF THE CAMEL KARAF APPLICATION
12.3. KARAF ARCHETYPE CATALOG
12.4. USING FABRIC8 KARAF FEATURES

12.4.1. Adding Fabric8 Karaf features
12.4.2. Adding Fabric8 Karaf Core bundle functionality
12.4.3. Setting the Property Placeholder service options
12.4.4. Adding a custom property placeholder resolver
12.4.5. List of resolution strategies
12.4.6. List of Property Placeholder service options

12.5. ADDING FABRIC8 KARAF CONFIG ADMIN SUPPORT
12.5.1. Adding Fabric8 Karaf Config admin support
12.5.2. Adding ConfigMap injection
12.5.3. Configuration plugin
12.5.4. Config Property Placeholders
12.5.5. Fabric8 Karaf Config Admin options

12.6. ADDING FABRIC8 KARAF BLUEPRINT SUPPORT
12.7. ENABLING FABRIC8 KARAF HEALTH CHECKS

12.7.1. Configuring health checks
12.8. ADDING CUSTOM HEALTH CHECKS

CHAPTER 13. DEVELOPING AN APPLICATION FOR THE JBOSS EAP IMAGE
13.1. CREATING A JBOSS EAP PROJECT USING THE S2I SOURCE WORKFLOW
13.2. STRUCTURE OF THE JBOSS EAP APPLICATION
13.3. JBOSS EAP QUICKSTART TEMPLATES

CHAPTER 14. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT

97
97
97
97
97
98
98

100
102
104
106
106
106
106
107
107
107
108
109
109
109
109
110
111
111

112
112
113
114
114
114
115
115
117
118
118
119
119
119

120
120
120
121
122
123
124

126
126
129
129

131

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

14.1. ABOUT VOLUMES AND VOLUME TYPES
14.2. ABOUT PERSISTENTVOLUMES
14.3. CONFIGURING PERSISTENT VOLUME
14.4. CREATING PERSISTENTVOLUMECLAIMS
14.5. USING PERSISTENT VOLUMES IN PODS

CHAPTER 15. PATCHING FUSE ON OPENSHIFT
15.1. IMPORTANT NOTE ON BOMS AND MAVEN DEPENDENCIES
15.2. PATCHING THE FUSE ON OPENSHIFT IMAGES
15.3. PATCHING THE FUSE ON OPENSHIFT TEMPLATES
15.4. PATCH APPLICATION DEPENDENCIES USING BOM

15.4.1. Updating dependencies in a Spring Boot application
15.4.2. Updating dependencies in a Karaf application
15.4.3. Updating dependencies in a JBoss EAP application

15.5. AVAILABLE BOM VERSIONS

CHAPTER 16. UNINSTALLING FUSE ON OPENSHIFT
16.1. UNINSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE OPENSHIFT 4.X SERVER

APPENDIX A. SPRING BOOT MAVEN PLUGIN
A.1. SPRING BOOT MAVEN PLUGIN GOALS
A.2. USING SPRING BOOT MAVEN PLUGIN

A.2.1. Using Spring Boot Maven plugin for Spring Boot 2

APPENDIX B. USING KARAF MAVEN PLUGIN
B.1. MAVEN DEPENDENCIES
B.2. KARAF MAVEN PLUGIN CONFIGURATION
B.3. CUSTOMIZED KARAF ASSEMBLY

B.3.1. karaf:assembly goal

APPENDIX C. OPENSHIFT MAVEN PLUGIN
C.1. ABOUT OPENSHIFT MAVEN PLUGIN
C.2. BUILDING IMAGES
C.3. KUBERNETES AND OPENSHIFT RESOURCES
C.4. INSTALLING OPENSHIFT MAVEN PLUGIN
C.5. UNDERSTANDING OPENSHIFT MAVEN PLUGIN BUILD GOALS
C.6. UNDERSTANDING OPENSHIFT MAVEN PLUGIN DEVELOPMENT GOALS

APPENDIX D. CAMEL MAVEN PLUGIN
D.1. CAMEL MAVEN PLUGIN GOALS
D.2. ADDING THE CAMEL-MAVEN PLUGIN TO YOUR PROJECT
D.3. RUNNING THE GOAL ON ANY MAVEN PROJECT
D.4. OPTIONS
D.5. VALIDATING INCLUDE TEST

APPENDIX E. CUSTOMIZING JVM ENVIRONMENT VARIABLES
E.1. USING S2I JAVA BUILDER IMAGE WITH OPENJDK 8
E.2. USING S2I KARAF BUILDER IMAGE WITH OPENJDK 8

E.2.1. Configuring the Karaf4 assembly
E.2.2. Customizing the Maven build

E.3. BUILD TIME ENVIRONMENT VARIABLES
E.4. RUN TIME ENVIRONMENT VARIABLES
E.5. JOLOKIA CONFIGURATION

APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS

131
131
131
132
132

134
134
134
136
136
137
138
139
139

141
141

143
143
143
143

146
146
146
147
147

149
149
149
149
150
151
151

153
153
153
154
155
156

158
158
158
158
158
158
159
159

161

Red Hat Fuse 7.11 Fuse on OpenShift Guide

4

F.1. TUNING THE JVM
F.2. DEFAULT BEHAVIOUR OF FUSE ON OPENSHIFT IMAGES
F.3. CUSTOM TUNING OF FUSE ON OPENSHIFT IMAGES
F.4. TUNING THIRD-PARTY LIBRARIES

161
161
161

162

Table of Contents

5

Red Hat Fuse 7.11 Fuse on OpenShift Guide

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Fuse on OpenShift enables you to deploy Fuse applications on OpenShift Container Platform.

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. BEFORE YOU BEGIN

Release Notes

See the Release Notes for important information about this release.

Version Compatibility and Support

See the Red Hat JBoss Fuse Supported Configurations page for details of version compatibility and
support.

Support for Windows O/S

The developer tooling (oc client and Container Development Kit) for Fuse on OpenShift is fully
supported on the Windows O/S. The examples shown in Linux command-line syntax can also work on
the Windows O/S, provided they are modified appropriately to obey Windows command-line syntax.

1.1. COMPARISON: FUSE STANDALONE AND FUSE ON OPENSHIFT

There are several major functionality differences:

An application deployment with Fuse on OpenShift consists of an application and all required
runtime components packaged inside a container image. Applications are not deployed to a
runtime as with Fuse Standalone, the application image itself is a complete runtime environment
deployed and managed through OpenShift.

Patching in an OpenShift environment is different from Fuse Standalone, as each application
image is a complete runtime environment. To apply a patch, the application image is rebuilt and
redeployed within OpenShift. Core OpenShift management capabilities allow for rolling
upgrades and side-by-side deployment to maintain availability of your application during
upgrade.

Provisioning and clustering capabilities provided by Fabric in Fuse have been replaced with
equivalent functionality in Kubernetes and OpenShift. There is no need to create or configure
individual child containers as OpenShift automatically does this for you as part of deploying and
scaling your application.

Fabric endpoints are not used within an OpenShift environment. Kubernetes services must be
used instead.

Messaging services are created and managed using the A-MQ for OpenShift image and not
included directly within a Karaf container. Fuse on OpenShift provides an enhanced version of
the camel-amq component to allow for seamless connectivity to messaging services in
OpenShift through Kubernetes.

Live updates to running Karaf instances using the Karaf shell is strongly discouraged as updates
will not be preserved if an application container is restarted or scaled up. This is a fundamental
tenet of immutable architecture and essential to achieving scalability and flexibility within
OpenShift.

Maven dependencies directly linked to Red Hat Fuse components are supported by Red Hat.
Third-party Maven dependencies introduced by users are not supported.

The SSH Agent is not included in the Apache Karaf micro-container, so you cannot connect to it
using the bin/client console client.

Protocol compatibility and Camel components within a Fuse on OpenShift application: non-

Red Hat Fuse 7.11 Fuse on OpenShift Guide

8

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/release_notes_for_red_hat_fuse_7.11/index#FISDistrib
https://access.redhat.com/articles/310603

Protocol compatibility and Camel components within a Fuse on OpenShift application: non-
HTTP based communications must use TLS and SNI to be routable from outside OpenShift into
a Fuse service (Camel consumer endpoint).

CHAPTER 1. BEFORE YOU BEGIN

9

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS
If you are an OpenShift administrator, you can prepare an OpenShift cluster for Fuse on OpenShift
deployments by:

1. Configuring authentication with registry.redhat.io.

2. Installing the Fuse on OpenShift images and templates.

2.1. AUTHENTICATING WITH REGISTRY.REDHAT.IO FOR CONTAINER
IMAGES

Configure authentication with registry.redhat.io before you can deploy Fuse container images on
OpenShift.

Prerequisites

Cluster administrator access to an OpenShift Container Platform cluster.

OpenShift oc client tool is installed. For more details, see the OpenShift CLI documentation.

Procedure

1. Log into your OpenShift cluster as administrator:

2. Open the project in which you want to deploy Fuse:

3. Create a docker-registry secret using your Red Hat Customer Portal account, replacing
PULL_SECRET_NAME with psi-internal-registry to create:

You should see the following output:

IMPORTANT

You must create this docker-registry secret in every OpenShift project
namespace that will authenticate to registry.redhat.io.

4. Link the secret to your service account to use the secret for pulling images. The following

oc login --user system:admin --token=my-token --server=https://my-
cluster.example.com:6443

oc project myproject

oc create secret docker-registry psi-internal-registry \
 --docker-server=docker-registry.redhat.io \
 --docker-username=CUSTOMER_PORTAL_USERNAME \
 --docker-password=CUSTOMER_PORTAL_PASSWORD \
 --docker-email=EMAIL_ADDRESS

secret/psi-internal-registry created

Red Hat Fuse 7.11 Fuse on OpenShift Guide

10

https://docs.openshift.com/container-platform/4.13/cli_reference/openshift_cli/getting-started-cli.html

4. Link the secret to your service account to use the secret for pulling images. The following
example uses the default service account, builder service account, and deployer service
account:

The service account name must match the name that the OpenShift pod uses.

NOTE

If you do not want to use your Red Hat username and password to create the pull
secret, you can create an authentication token using a registry service account.

Additional resources

For more details on authenticating with Red Hat for container images:

Red Hat container image authentication

Red Hat registry service accounts

2.2. INSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE
OPENSHIFT 4.X SERVER

NOTE

In Fuse 7.11, installing the Fuse on OpenShift imagestreams and templates on IBM Power
Systems, IBM Z, and LinuxONE is not supported.

Only components that can be installed with Fuse on OpenShift Operators are supported
on IBM Power Systems, IBM Z, and LinuxONE.

Openshift Container Platform 4.x uses the Samples Operator, which operates in the OpenShift
namespace, installs and updates the Red Hat Enterprise Linux (RHEL)-based OpenShift Container
Platform imagestreams and templates. To install the Fuse on OpenShift imagestreams and templates:

Reconfigure the Samples Operator

Add Fuse imagestreams and templates to Skipped Imagestreams and Skipped Templates
fields.

Skipped Imagestreams: Imagestreams that are in the Samples Operator’s inventory, but that
the cluster administrator wants the Operator to ignore or not manage.

Skipped Templates: Templates that are in the Samples Operator’s inventory, but that the
cluster administrator wants the Operator to ignore or not manage.

Prerequisites

oc secrets link default psi-internal-registry
oc secrets link default psi-internal-registry --for=pull
oc secrets link builder psi-internal-registry
oc secrets link builder psi-internal-registry --for=pull
oc secrets link deployer psi-internal-registry
oc secrets link deployer psi-internal-registry --for=pull

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

11

https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/terms-based-registry/#/

You have access to OpenShift Server.

You have configured authentication to registry.redhat.io.

Procedure

1. Start the OpenShift 4 Server.

2. Log in to the OpenShift Server as an administrator.

oc login --user system:admin --token=my-token --server=https://my-
cluster.example.com:6443

3. Verify that you are using the project for which you created a docker-registry secret.

oc project openshift

4. View the current configuration of Samples operator.

oc get configs.samples.operator.openshift.io -n openshift-cluster-samples-operator -o yaml

5. Configure Samples operator to ignore the fuse templates and image streams that are added.

oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

6. Add the Fuse imagestreams Skipped Imagestreams section and add Fuse and Spring Boot 2
templates to Skipped Templates section.

[...]
spec:
 architectures:
 - x86_64
 managementState: Managed
 skippedImagestreams:
 - fuse-console-rhel8
 - fuse-eap-openshift-jdk8-rhel7
 - fuse-eap-openshift-jdk11-rhel8
 - fuse-java-openshift-rhel8
 - fuse-java-openshift-jdk11-rhel8
 - fuse-karaf-openshift-rhel8
 - fuse-karaf-openshift-jdk11-rhel8
 - fuse-apicurito-generator-rhel8
 - fuse-apicurito-rhel8
 skippedTemplates:
 - s2i-fuse711-eap-camel-amq
 - s2i-fuse711-eap-camel-cdi
 - s2i-fuse711-eap-camel-cxf-jaxrs
 - s2i-fuse711-eap-camel-cxf-jaxws
 - s2i-fuse711-karaf-camel-amq
 - s2i-fuse711-karaf-camel-log
 - s2i-fuse711-karaf-camel-rest-sql
 - s2i-fuse711-karaf-cxf-rest
 - s2i-fuse711-spring-boot-2-camel-amq
 - s2i-fuse711-spring-boot-2-camel-config

Red Hat Fuse 7.11 Fuse on OpenShift Guide

12

 - s2i-fuse711-spring-boot-2-camel-drools
 - s2i-fuse711-spring-boot-2-camel-infinispan
 - s2i-fuse711-spring-boot-2-camel-rest-3scale
 - s2i-fuse711-spring-boot-2-camel-rest-sql
 - s2i-fuse711-spring-boot-2-camel
 - s2i-fuse711-spring-boot-2-camel-xa
 - s2i-fuse711-spring-boot-2-camel-xml
 - s2i-fuse711-spring-boot-2-cxf-jaxrs
 - s2i-fuse711-spring-boot-2-cxf-jaxws
 - s2i-fuse711-spring-boot-2-cxf-jaxrs-xml
 - s2i-fuse711-spring-boot-2-cxf-jaxws-xml

7. Install Fuse on OpenShift image streams.

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

oc create -n openshift -f ${BASEURL}/fis-image-streams.json

8. Install Fuse on OpenShift quickstart templates:

for template in eap-camel-amq-template.json \
 eap-camel-cdi-template.json \
 eap-camel-cxf-jaxrs-template.json \
 eap-camel-cxf-jaxws-template.json \
 karaf-camel-amq-template.json \
 karaf-camel-log-template.json \
 karaf-camel-rest-sql-template.json \
 karaf-cxf-rest-template.json ;
 do oc create -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

9. Install Spring Boot 2 quickstart templates:

for template in spring-boot-2-camel-amq-template.json \
 spring-boot-2-camel-config-template.json \
 spring-boot-2-camel-drools-template.json \
 spring-boot-2-camel-infinispan-template.json \
 spring-boot-2-camel-rest-3scale-template.json \
 spring-boot-2-camel-rest-sql-template.json \
 spring-boot-2-camel-template.json \
 spring-boot-2-camel-xa-template.json \
 spring-boot-2-camel-xml-template.json \
 spring-boot-2-cxf-jaxrs-template.json \
 spring-boot-2-cxf-jaxws-template.json \
 spring-boot-2-cxf-jaxrs-xml-template.json \
 spring-boot-2-cxf-jaxws-xml-template.json ;
 do oc create -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

10. (Optional) View the installed Fuse on OpenShift templates:

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

13

oc get template -n openshift

2.3. INSTALLING API DESIGNER ON OPENSHIFT 4.X

Red Hat Fuse on OpenShift provides API Designer, a web-based API designer tool that you can use to
design REST APIs. The API Designer Operator simplifies the installation and upgrading of API Designer
on OpenShift Container Platform 4.x.

As an OpenShift administrator, you install the API Designer Operator to an OpenShift project
(namespace). When the Operator is installed, the Operator is running in the selected namespace.
However, to make the API Designer available as a service, either you, as the OpenShift administrator, or
a developer must create an instance of the API Designer. The API Designer service provides the URL to
access the API Designer web console.

Prerequisites

You have administrator access to the OpenShift cluster.

You have configured authentication to registry.redhat.io.

Procedure

1. Start the OpenShift 4.x Server.

2. In a web browser, navigate to the OpenShift console in your browser. Log in to the console with
your credentials.

3. Click Operators and then click OperatorHub.

4. In the search field, type API Designer.

5. Click the Red Hat Integration - API Designer card. The Red Hat Integration - API Designer
Operator install page opens.

6. Click Install. The Install Operator page opens.

a. For Update Channel, select fuse-console-7.11.x.

b. For Installation mode, select a namespace (project) from the list of namespaces on the
cluster.

c. For the Approval Strategy, select Automatic or Manual to configure how OpenShift
handles updates to the API Designer Operator.

If you select Automatic updates, when a new version of the API Designer Operator is
available, the OpenShift Operator Lifecycle Manager (OLM) automatically upgrades
the running instance of the API Designer without human intervention.

If you select Manual updates, when a newer version of an Operator is available, the
OLM creates an update request. As a cluster administrator, you must then manually
approve that update request to have the API Designer Operator updated to the new
version.

7. Click Install to make the API Designer Operator available to the specified namespace (project).

8. To verify that the API Designer is installed in the project, click Operators and then click

Red Hat Fuse 7.11 Fuse on OpenShift Guide

14

8. To verify that the API Designer is installed in the project, click Operators and then click
Installed Operators to see the Red Hat Integration - API Designer in the list.

Next Steps

After the API Designer Operator is installed, the API Designer must be added as a service to the
OpenShift project by creating an instance of the API Designer. This task can be accomplished in two
ways:

An OpenShift administrator can follow the steps in Section 2.3.1, “Adding API Designer as a
service to an OpenShift 4.x project”.

An OpenShift developer can follow the steps described in Designing APIs.
The API Designer service provides the URL to access the API Designer web console.

2.3.1. Adding API Designer as a service to an OpenShift 4.x project

After the API Designer operator is installed in an OpenShift 4.x project, you (or an OpenShift developer)
can add it as a service to the OpenShift project. The API Designer service provides the URL that a
developer uses to access the API Designer web console.

NOTE

See Designing APIs for the steps that an OpenShift developer follows to add API
Designer as a service to an OpenShift 4.x project.

Prerequisites

You have administrator access to the OpenShift cluster.

The API Designer operator is installed into the current OpenShift project.

Procedure

1. In the OpenShift web console, click Operators and then click Installed Operators.

2. In the Name column, click Red Hat Integration - API Designer.

3. Under Provided APIs, click Create instance.
A default form with a minimal starting template for the API Designer instance opens. Accept the
default values or, optionally, edit them.

4. Click Create to create a new apicurito-service. OpenShift starts up the pods, services, and
other components for the new API Designer service.

5. To verify that the API Designer service is available:

a. Click Operators and then click Installed Operators.

b. In the Provided APIs column, click Apicurito CRD.
On the Operator Details page, the apicurito-service is listed.

6. To open the API Designer:

a. Select Networking > Routes.

b. Make sure that the correct project is selected.

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

15

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/designing_apis/index
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/designing_apis/index

c. In the apicurito-service-ui row’s Location column, click the URL.
The API Designer web console opens in a new browser tab.

2.3.2. Upgrading the API Designer on OpenShift 4.x

Red Hat OpenShift 4.x handles updates to operators, including the Red Hat Fuse operators. For more
information see the Operators OpenShift documentation.

In turn, operator updates can trigger application upgrades. How an application upgrade occur differs
according to how the application is configured.

For API Designer applications, when you upgrade the API Designer operator, OpenShift automatically
also upgrades any API designer applications on the cluster.

NOTE

The normal operator upgrade process does not work when upgrading from API Designer
7.8 to API Designer 7.9. To upgrade the API Designer from Fuse 7.8 to Fuse 7.9, you must
delete the 7.8 API Designer operator and then install the 7.9 API Designer operator.

2.3.3. Metering labels for API Designer

You can use the OpenShift Metering operator to analyze your installed API Designer operator, UI
component, and code generator to determine whether you are in compliance with your Red Hat
subscription. For more information on Metering, see the OpenShift documentation.

The following table lists the metering labels for the API Designer.

Table 2.1. API Designer Metering Labels

Label Possible values

com.company Red_Hat

rht.prod_name Red_Hat_Integration

rht.prod_ver 7.11

rht.comp Fuse

rht.comp_ver 7.11

rht.subcomp fuse-apicurito

apicurito-service-ui

apicurito-service-generator

rht.subcomp_t infrastructure

Examples

Red Hat Fuse 7.11 Fuse on OpenShift Guide

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/metering/index

Example for the API Designer operator:

apicurito-operator
com.company: Red_Hat
rht.prod_name: Red_Hat_Integration
rht.prod_ver: 7.11
rht.comp: Fuse
rht.comp_ver: 7.11
rht.subcomp: fuse-apicurito
rht.subcomp_t: infrastructure

Example for the API Designer UI component:

com.company: Red_Hat
rht.prod_name: Red_Hat_Integration
rht.prod_ver: 7.11
rht.comp: Fuse
rht.comp_ver: 7.11
rht.subcomp: apicurito-service-ui
rht.subcomp_t: infrastructure

Example for the API Designer Generator component:

com.company: Red_Hat
rht.prod_name: Red_Hat_Integration
rht.prod_ver: 7.11
rht.comp: Fuse
rht.comp_ver: 7.11
rht.subcomp: apicurito-service-generator
rht.subcomp_t: infrastructure

2.3.4. Considerations for installing API Designer in a restricted environment

The OpenShift clusters that are installed in a restricted environment, by default cannot access the Red
Hat-provided OperatorHub sources because those remote sources require full Internet connectivity. In
such environment, to install API designer operator, you must complete following prerequisites:

Disable the default remote OperatorHub sources for Operator Lifecycle Manager (OLM).

Use a workstation with full Internet access to create local mirrors of the OperatorHub content.

Configure OLM to install and manage Operators from the local sources instead of the default
remote sources.

For more information refer Using Operator Lifecycle Manager on restricted networks section in the
OpenShift documentation. Once you have created local mirrors of the OperatorHub, you can perform
next steps.

Install API Designer using mirrored OperatorHub as per instructions described in the Installing
API Designer on OpenShift 4.x.

Add API Designer as a service as per instructions described in the Adding API Designer as a
service to an OpenShift 4.x project

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/operators/administrator-tasks#olm-restricted-networks
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide/index#install-apidesigner-operator-openshift4
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html-single/fuse_on_openshift_guide/index#add-apidesigner-service-openshift4

2.4. SETTING UP THE FUSE CONSOLE ON OPENSHIFT 4.X

On OpenShift 4.x, setting up the Fuse Console involves installing and deploying it. You have these
options for installing and deploying the Fuse Console:

Section 2.4.1, “Installing and deploying the Fuse Console on OpenShift 4.x by using the
OperatorHub”
You can use the Fuse Console Operator to install and deploy the Fuse Console so that it has
access to Fuse applications in a specific namespace. The Operator handles securing the Fuse
Console for you.

Section 2.4.2, “Installing and deploying the Fuse Console on OpenShift 4.x by using the
command line”
You can use the command line and one of the Fuse Console templates to install and deploy the
Fuse Console so that it has access to Fuse applications in multiple namespaces on the
OpenShift cluster or in a specific namespace. You must secure the Fuse Console by generating
a client certificate before you deploy it.

Optionally, you can customize role-based access control (RBAC) for the Fuse Console as described in
Section 2.4.3, “Role-based access control for the Fuse Console on OpenShift 4.x” .

2.4.1. Installing and deploying the Fuse Console on OpenShift 4.x by using the
OperatorHub

To install the Fuse Console on OpenShift 4.x, you can use the Fuse Console Operator provided in the
OpenShift OperatorHub. To deploy the Fuse Console, you create an instance of the installed operator.

Prerequisites

You have configured authentication with registry.redhat.io as described in Authenticating with
registry.redhat.io for container images.

If you want to customize role-based access control (RBAC) for the Fuse Console, you must have
a RBAC configuration map file in the same OpenShift namespace to which you install the Fuse
Console Operator. If you want to use the default RBAC behavior, as described in Role-based
access control for the Fuse Console on OpenShift 4.x, you do not need to provide a
configuration map file.

Procedure

To install and deploy the Fuse Console:

1. Log in to the OpenShift console in your web browser as a user with cluster admin access.

2. Click Operators and then click OperatorHub.

3. In the search field window, type Fuse Console to filter the list of operators.

4. Click Fuse Console Operator.

5. In the Fuse Console Operator install window, click Install.
The Create Operator Subscription form opens.

For Update Channel, select 7.11.x.

For Installation Mode, accept the default (a specific namespace on the cluster).

Note that after you install the operator, when you deploy the Fuse Console, you can choose

Red Hat Fuse 7.11 Fuse on OpenShift Guide

18

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#configuring-container-registry-authn_fuse-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac

Note that after you install the operator, when you deploy the Fuse Console, you can choose
to monitor applications in all namespaces on the cluster or to monitor applications only in
the namespace in which the Fuse Console operator is installed.

For Installed Namespace, select the namespace in which you want to install the Fuse
Console Operator.

For the Update Approval, you can select Automatic or Manual to configure how
OpenShift handles updates to the Fuse Console Operator.

If you select Automatic updates, when a new version of the Fuse Console Operator is
available, the OpenShift Operator Lifecycle Manager (OLM) automatically upgrades
the running instance of the Fuse Console without human intervention.

If you select Manual updates, when a newer version of an Operator is available, the
OLM creates an update request. As a cluster administrator, you must then manually
approve that update request to have the Fuse Console Operator updated to the new
version.

6. Click Install.
OpenShift installs the Fuse Console Operator in the current namespace.

7. To verify the installation, click Operators and then click Installed Operators. You can see the
Fuse Console in the list of operators.

8. To deploy the Fuse Console by using the OpenShift web console:

a. In the list of Installed Operators, under the Name column, click Fuse Console.

b. On the Operator Details page under Provided APIs, click Create Instance.
Accept the configuration default values or optionally edit them.

For Replicas, if you want to increase the Fuse Console performance (for example, in a high
availability environment), you can increase the number of pods allocated to the Fuse
Console.

For Rbac (role-based access control), only specify a value in the config Map field if you
want to customize the default RBAC behavior and if the ConfigMap file already exists in the
namespace in which you installed the Fuse Console Operator. For more information about
RBAC, see Role-based access control for the Fuse Console on OpenShift 4.x .

For Nginx, see Performance tuning for Fuse Console Operator installation.

c. Click Create.
The Fuse Console Operator Details page opens and shows the status of the deployment.

9. To open the Fuse Console:

a. For a namespace deployment: In the OpenShift web console, open the project in which you
installed the Fuse Console operator, and then select Overview. In the Project Overview
page, scroll down to the Launcher section and click the Fuse Console link.

For a cluster deployment, in the OpenShift web console’s title bar, click the grid icon (
). In the popup menu, under Red Hat applications, click the Fuse Console URL link.

b. Log into the Fuse Console.
An Authorize Access page opens in the browser listing the required permissions.

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

19

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#p_fuse-console-tuning-performance-openshift-operator

c. Click Allow selected permissions.
The Fuse Console opens in the browser and shows the Fuse application pods that you have
authorization to access.

10. Click Connect for the application that you want to view.
A new browser window opens showing the application in the Fuse Console.

2.4.2. Installing and deploying the Fuse Console on OpenShift 4.x by using the
command line

On OpenShift 4.x, you can choose one of these deployment options to install and deploy the Fuse
Console from the command line:

cluster - The Fuse Console can discover and connect to Fuse applications deployed across
multiple namespaces (projects) on the OpenShift cluster. To deploy this template, you must
have the administrator role for the OpenShift cluster.

cluster with role-based access control - The cluster template with configurable role-based
access control (RBAC). For more information, see Role-based access control for the Fuse
Console on OpenShift 4.x.

namespace - The Fuse Console has access to a specific OpenShift project (namespace). To
deploy this template, you must have the administrator role for the OpenShift project.

namespace with role-based access control - The namespace template with configurable
RBAC. For more information, see Role-based access control for the Fuse Console on OpenShift
4.x.

To view a list of the parameters for the Fuse Console templates, run the following OpenShift command:

oc process --parameters -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fuse-console-
namespace-os4.json

Prerequisites

Before you install and deploy the Fuse Console, you must generate a client certificate that is
signed with the service signing certificate authority as described in Generating a certificate to
secure the Fuse Console on OpenShift 4.x.

You have the cluster admin role for the OpenShift cluster.

You have configured authentication with registry.redhat.io as described in Authenticating with
registry.redhat.io for container images.

The Fuse Console image stream (along with the other Fuse image streams) are installed, as
described in Installing Fuse imagestreams and templates on the OpenShift 4.x server .

Procedure

1. Verify that the Fuse Console image stream is installed by using the following command to
retrieve a list of all templates:

oc get template -n openshift

2. Optionally, if you want to update the already installed image stream with new release tags, use

Red Hat Fuse 7.11 Fuse on OpenShift Guide

20

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-generate-certificate-openshift4
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#configuring-container-registry-authn_fuse-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#install-fuse-on-openshift4

2. Optionally, if you want to update the already installed image stream with new release tags, use
the following command to import the Fuse Console image to the openshift namespace:

oc import-image fuse7/fuse-console-rhel8:1.10 --from=registry.redhat.io/fuse7/fuse-console-
rhel8:1.10 --confirm -n openshift

3. Obtain the Fuse Console APP_NAME value by running the following command:

oc process --parameters -f TEMPLATE-FILENAME

where TEMPLATE-FILENAME is one of the following templates:

Cluster template:

`https://github.com/jboss-fuse/application-templates/blob/application-templates-
2.1.0.fuse-sb2-7_11_1-00016-redhat-00002//fuse-console-cluster-os4.json`

Cluster template with configurable RBAC:

`https://github.com/jboss-fuse/application-templates/blob/application-templates-
2.1.0.fuse-sb2-7_11_1-00016-redhat-00002//fuse-console-cluster-rbac.yml`

Namespace template:

`https://github.com/jboss-fuse/application-templates/blob/application-templates-
2.1.0.fuse-sb2-7_11_1-00016-redhat-00002//fuse-console-namespace-os4.json`

Namespace template with configurable RBAC:

`https://github.com/jboss-fuse/application-templates/blob/application-templates-
2.1.0.fuse-sb2-7_11_1-00016-redhat-00002//fuse-console-namespace-rbac.yml`

For example, for the cluster template with configurable RBAC, run this command:

oc process --parameters -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fuse-
console-cluster-rbac.yml

4. From the certificate that you generated in Securing the Fuse Console on OpenShift 4.x , create
the secret and mount it in the Fuse Console by using the following command (where
APP_NAME is the name of the Fuse Console application).

oc create secret tls APP_NAME-tls-proxying --cert server.crt --key server.key

5. Create a new application based on your local copy of the Fuse Console template by running the
following command (where myproject is the name of your OpenShift project, mytemp is the
path to the local directory that contains the Fuse Console template, and myhost is the
hostname to access the Fuse Console:

For the cluster template:

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

21

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-generate-certificate-openshift4

oc new-app -n myproject -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fuse-
console-cluster-os4.json -p ROUTE_HOSTNAME=myhost

For the cluster with RBAC template:

oc new-app -n myproject -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fuse-
console-cluster-rbac.yml -p ROUTE_HOSTNAME=myhost

For the namespace template:

oc new-app -n myproject -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fuse-
console-namespace-os4.json

For the namespace with RBAC template:

oc new-app -n myproject -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fuse-
console-namespace-rbac.yml

6. To configure the Fuse Console so that it can open the OpenShift Web console, set the
OPENSHIFT_WEB_CONSOLE_URL environment variable by running the following command:

oc set env dc/${APP_NAME} OPENSHIFT_WEB_CONSOLE_URL=`oc get -n openshift-
config-managed cm console-public -o jsonpath={.data.consoleURL}`

7. Obtain the status and the URL of your Fuse Console deployment by running this command:

oc status

8. To access the Fuse Console from a browser, use the URL that is returned in Step 7 (for example,
https://fuse-console.192.168.64.12.nip.io).

2.4.2.1. Generating a certificate to secure the Fuse Console on OpenShift 4.x

On OpenShift 4.x, to keep the connection between the Fuse Console proxy and the Jolokia agent
secure, a client certificate must be generated before the Fuse Console is deployed. The service signing
certificate authority private key must be used to sign the client certificate.

You must follow this procedure only if you are installing and deploying the Fuse Console by using the
command line. If you are using the Fuse Console Operator, it handles this task for you.

IMPORTANT

You must generate and sign a separate client certificate for each OpenShift cluster. Do
not use the same certificate for more than one cluster.

Prerequisites

You have cluster admin access to the OpenShift cluster.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

22

https://fuse-console.192.168.64.12.nip.io

If you are generating certificates for more than one OpenShift cluster and you previously
generated a certificate for a different cluster in the current directory, do one of the following to
ensure that you generate a different certificate for the current cluster:

Delete the existing certificate files (for example, ca.crt, ca.key, and ca.srl) from the current
directory.

Change to a different working directory. For example, if your current working directory is
named cluster1, create a new cluster2 directory and change your working directory to it:
mkdir ../cluster2

cd ../cluster2

Procedure

1. Login to OpenShift as a user with cluster admin access:

oc login -u <user_with_cluster_admin_role>

2. Retrieve the service signing certificate authority keys, by executing the following commands:

To retrieve the certificate:

oc get secrets/signing-key -n openshift-service-ca -o "jsonpath={.data['tls\.crt']}" | base64
--decode > ca.crt

To retrieve the private key:

oc get secrets/signing-key -n openshift-service-ca -o "jsonpath={.data['tls\.key']}" |
base64 --decode > ca.key

3. Generate the client certificate, as documented in Kubernetes certificates administration, using
either easyrsa, openssl, or cfssl.
Here are the example commands using openssl:

a. Generate the private key:

openssl genrsa -out server.key 2048

b. Write the CSR config file.

cat <<EOT >> csr.conf
 [req]
 default_bits = 2048
 prompt = no
 default_md = sha256
 distinguished_name = dn

 [dn]
 CN = fuse-console.fuse.svc

 [v3_ext]
 authorityKeyIdentifier=keyid,issuer:always

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

23

https://kubernetes.io/docs/concepts/cluster-administration/certificates/

 keyUsage=keyEncipherment,dataEncipherment,digitalSignature
 extendedKeyUsage=serverAuth,clientAuth
EOT

Here, the values in the CN parameter refers to the application name and the namespace
that the application uses.

c. Generate the CSR:

openssl req -new -key server.key -out server.csr -config csr.conf

d. Issue the signed certificate:

openssl x509 -req -in server.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out server.crt
-days 10000 -extensions v3_ext -extfile csr.conf

Next steps

You need this certificate to create the secret for the Fuse Console as described in Installing and
deploying the Fuse Console on OpenShift 4.x by using the command line.

2.4.3. Role-based access control for the Fuse Console on OpenShift 4.x

The Fuse Console offers role-based access control (RBAC) that infers access according to the user
authorization provided by OpenShift. In the Fuse Console, RBAC determines a user’s ability to perform
MBean operations on a pod.

For information on OpenShift authorization see the Using RBAC to define and apply permissions section
of the OpenShift documentation.

Role-based access is enabled by default when you use the Operator to install the Fuse Console on
OpenShift.

If you want to implement role-based access for the Fuse Console by installing it with a template, you
must use one of the templates that are configurable with RBAC (fuse-console-cluster-rbac.yml or
fuse-console-namespace-rbac.yml) to install the Fuse Console as described in Installing and
deploying the Fuse Console on OpenShift 4.x by using the command line.

Fuse Console RBAC leverages the user’s verb access on a pod resource in OpenShift to determine the
user’s access to a pod’s MBean operations in the Fuse Console. By default, there are two user roles for
the Fuse Console:

admin
If a user can update a pod in OpenShift, then the user is conferred the admin role for the Fuse
Console. The user can perform write MBean operations in the Fuse Console for the pod.

viewer
If a user can get a pod in OpenShift, then the user is conferred the viewer role for the Fuse
Console. The user can perform read-only MBean operations in the Fuse Console for the pod.

NOTE

Red Hat Fuse 7.11 Fuse on OpenShift Guide

24

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-install-openshift4-commandline
https://access.redhat.com/documentation/en-us/openshift_container_platform/{open-shift-version}/html/authentication/using-rbac
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-install-openshift4-commandline

NOTE

If you used a non-RBAC template to install the Fuse Console, only OpenShift users that
are granted the update verb on the pod resource are authorized to perform the Fuse
Console MBeans operations. Users that are granted the get verb on the pod resource
can view the pod but they cannot perform any Fuse Console operations.

Additional resources

Determining access roles for the Fuse Console on OpenShift 4.x

Customizing role-based access to the Fuse Console on OpenShift 4.x

Disabling role-based access control for the Fuse Console on OpenShift 4.x

2.4.3.1. Determining access roles for the Fuse Console on OpenShift 4.x

The Fuse Console role-based access control is inferred from a user’s OpenShift permissions for a pod.
To determine the Fuse Console access role granted to a particular user, obtain the OpenShift
permissions granted to the user for a pod.

Prerequisites

You know the user’s name.

You know the pod’s name.

Procedure

To determine whether a user has the Fuse Console admin role for the pod, run the following
command to see whether the user can update the pod on OpenShift:

oc auth can-i update pods/<pod> --as <user>

If the response is yes, the user has the Fuse Console admin role for the pod. The user can
perform write MBean operations in the Fuse Console for the pod.

To determine whether a user has the Fuse Console viewer role for the pod, run the following
command to see whether the user can get a pod on OpenShift:

oc auth can-i get pods/<pod> --as <user>

If the response is yes, the user has the Fuse Console viewer role for the pod. The user can
perform read-only MBean operations in the Fuse Console for the pod. Depending on the
context, the Fuse Console prevents the user with the viewer role from performing a write
MBean operation, by disabling an option or by displaying an "operation not allowed for this user"
message when the user attempts a write MBean operation.

If the response is no, the user is not bound to any Fuse Console roles and the user cannot view
the pod in the Fuse Console.

Additional resources

Role-based access control for the Fuse Console on OpenShift 4.x

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

25

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-determining-roles
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-customizing
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-disabling
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac

Customizing role-based access to the Fuse Console on OpenShift 4.x

Disabling role-based access control for the Fuse Console on OpenShift 4.x

2.4.3.2. Customizing role-based access to the Fuse Console on OpenShift 4.x

If you use the OperatorHub to install the Fuse Console, role-based access control (RBAC) is enabled by
default as described in Role-based access control for the Fuse Console on OpenShift 4.x . If you want to
customize the Fuse Console RBAC behavior, before you deploy the Fuse Console, you must provide a
ConfigMap file (that defines the custom RBAC behavior). You must place the custom ConfigMap file in
the same namespace in which you installed the Fuse Console Operator.

If you use the command line templates to install the Fuse Console, the deployment-cluster-rbac.yml
and deployment-namespace-rbac.yml templates create a ConfigMap that contains the configuration
file (ACL.yml). The configuration file defines the roles allowed for MBean operations.

Prerequisite

You installed the Fuse Console by using the OperatorHub or by using one of the Fuse Console
RBAC templates (deployment-cluster-rbac.yml or deployment-namespace-rbac.yml)

Procedure

To customize the Fuse Console RBAC roles:

1. If you installed the Fuse Console by using the command line, the installation templates include a
default ConfigMap file and so you can skip to the next step.
If you installed the Fuse Console by using the OperatorHub, before you deploy the Fuse
Console create a RBAC ConfigMap:

a. Make sure the current OpenShift project is the project to which you want to install the Fuse
Console. For example, if you want to install the Fuse Console in the fusetest project, run
this command:

oc project fusetest

b. To create a Fuse Console RBAC ConfigMap file from a template, run this command:

oc process -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/2.1.x.sb2.redhat-7-8-x/fuse-console-operator-rbac.yml -p APP_NAME=fuse-
console | oc create -f -

2. Open the ConfigMap in an editor by running the following command:

oc edit cm $APP_NAME-rbac

For example:

oc edit cm fuse-console-rbac

3. Edit the file.

4. Save the file to apply the changes. OpenShift automatically restarts the Fuse Console pod.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

26

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-customizing
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-disablingg
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac

Additional resources

Role-based access control for the Fuse Console on OpenShift 4.x

Determining access roles for the Fuse Console on OpenShift 4.x

Disabling role-based access control for the Fuse Console on OpenShift 4.x

2.4.3.3. Disabling role-based access control for the Fuse Console on OpenShift 4.x

If you installed the Fuse Console by using the command line and you specified one of the Fuse Console
RBAC templates, the Fuse Console’s HAWTIO_ONLINE_RBAC_ACL environment variable passes the
role-based access control (RBAC) ConfigMap configuration file path to the OpenShift server. If the
HAWTIO_ONLINE_RBAC_ACL environment variable is not specified, RBAC support is disabled and
only users that are granted the update verb on the pod resource (in OpenShift) are authorized to call
MBeans operations on the pod in the Fuse Console.

Note that when you use the OperatorHub to install the Fuse Console. role-based access is enabled by
default and the HAWTIO_ONLINE_RBAC_ACL environment variable does not apply.

Prerequisite

You installed the Fuse Console by using the command line and you specified one of the Fuse Console
RBAC templates (deployment-cluster-rbac.yml or deployment-namespace-rbac.yml).

Procedure

To disable role-based access for the Fuse Console:

1. In OpenShift, edit the Deployment Config resource for the Fuse Console.

2. Delete the entire HAWTIO_ONLINE_RBAC_ACL environment variable definition.
(Note that only clearing its value is not sufficient).

3. Save the file to apply the changes. OpenShift automatically restarts the Fuse Console pod.

Additional resources

Role-based access control for the Fuse Console on OpenShift 4.x

Determining access roles for the Fuse Console on OpenShift 4.x

Customizing role-based access to the Fuse Console on OpenShift 4.x

2.4.4. Upgrading the Fuse Console on OpenShift 4.x

Red Hat OpenShift 4.x handles updates to operators, including the Red Hat Fuse operators. For more
information see the Operators OpenShift documentation.

In turn, operator updates can trigger application upgrades, depending on how the application is
configured.

For Fuse Console applications, you can also trigger an upgrade to an application by editing the
.spec.version field of the application custom resource definition.

Prerequisite

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

27

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-determining-roles
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-disabling
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-determining-roles
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-openshift4-rbac-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/

You have OpenShift cluster admin permissions.

Procedure

To upgrade a Fuse Console application:

1. In a terminal window, use the following command to change the .spec.version field of the
application custom resource definition:

oc patch -n <project-name> <custom-resource-name> --type='merge' -p '{"spec":
{"version":"1.7.1"}}'

For example:

oc patch -n myproject hawtio/example-fuseconsole --type='merge' -p '{"spec":
{"version":"1.7.1"}}'

2. Check that the application’s status has updated:

 oc get -n myproject hawtio/example-fuseconsole

The response shows information about the application, including the version number:

NAME AGE URL IMAGE
example-fuseconsole 1m https://fuseconsole.192.168.64.38.nip.io
docker.io/fuseconsole/online:1.7.1

When you change the value of the .spec.version field, OpenShift automatically redeploys the
application.

3. To check the status of the redeployment that is triggered by the version change:

oc rollout status deployment.v1.apps/example-fuseconsole

A successful deployment shows this response:

deployment "example-fuseconsole" successfully rolled out

2.4.5. Upgrading Fuse imagestreams and templates on the OpenShift 4.x server

Openshift Container Platform 4.x uses the Samples Operator, which operates in the OpenShift
namespace, upgrades and updates the Red Hat Enterprise Linux (RHEL)-based OpenShift Container
Platform imagestreams and templates.

To upgrade the Fuse on OpenShift imagestreams and templates:

Reconfigure the Samples Operator

Add Fuse imagestreams and templates to Skipped Imagestreams and Skipped Templates
fields.

Skipped Imagestreams: Imagestreams that are in the Samples Operator’s inventory, but that
the cluster administrator wants the Operator to ignore or not manage.

Skipped Templates: Templates that are in the Samples Operator’s inventory, but that the

Red Hat Fuse 7.11 Fuse on OpenShift Guide

28

Skipped Templates: Templates that are in the Samples Operator’s inventory, but that the
cluster administrator wants the Operator to ignore or not manage.

Prerequisites

You have access to OpenShift Server.

You have configured authentication to registry.redhat.io.

Procedure

1. Start the OpenShift 4 Server.

2. Log in to the OpenShift Server as an administrator.

oc login --user system:admin --token=my-token --server=https://my-
cluster.example.com:6443

3. Verify that you are using the project for which you created a docker-registry secret.

oc project openshift

4. View the current configuration of Samples operator.

oc get configs.samples.operator.openshift.io -n openshift-cluster-samples-operator -o yaml

5. Configure Samples operator to ignore the fuse templates and image streams that are added.

oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

6. Add the Fuse imagestreams Skipped Imagestreams section and add Fuse and Spring Boot 2
templates to Skipped Templates section.

[...]
spec:
 architectures:
 - x86_64
 managementState: Managed
 skippedImagestreams:
 - fuse-console-rhel8
 - fuse-eap-openshift-jdk8-rhel7
 - fuse-eap-openshift-jdk11-rhel8
 - fuse-java-openshift-rhel8
 - fuse-java-openshift-jdk11-rhel8
 - fuse-karaf-openshift-rhel8
 - fuse-karaf-openshift-jdk11-rhel8
 - fuse-apicurito-generator-rhel8
 - fuse-apicurito-rhel8
 skippedTemplates:
 - s2i-fuse711-eap-camel-amq
 - s2i-fuse711-eap-camel-cdi
 - s2i-fuse711-eap-camel-cxf-jaxrs
 - s2i-fuse711-eap-camel-cxf-jaxws
 - s2i-fuse711-karaf-camel-amq

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

29

 - s2i-fuse711-karaf-camel-log
 - s2i-fuse711-karaf-camel-rest-sql
 - s2i-fuse711-karaf-cxf-rest
 - s2i-fuse711-spring-boot-2-camel-amq
 - s2i-fuse711-spring-boot-2-camel-config
 - s2i-fuse711-spring-boot-2-camel-drools
 - s2i-fuse711-spring-boot-2-camel-infinispan
 - s2i-fuse711-spring-boot-2-camel-rest-3scale
 - s2i-fuse711-spring-boot-2-camel-rest-sql
 - s2i-fuse711-spring-boot-2-camel
 - s2i-fuse711-spring-boot-2-camel-xa
 - s2i-fuse711-spring-boot-2-camel-xml
 - s2i-fuse711-spring-boot-2-cxf-jaxrs
 - s2i-fuse711-spring-boot-2-cxf-jaxws
 - s2i-fuse711-spring-boot-2-cxf-jaxrs-xml
 - s2i-fuse711-spring-boot-2-cxf-jaxws-xml

7. Upgrade Fuse on OpenShift image streams.

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

oc replace -n openshift -f ${BASEURL}/fis-image-streams.json

8. Upgrade Fuse on OpenShift quickstart templates:

for template in eap-camel-amq-template.json \
 eap-camel-cdi-template.json \
 eap-camel-cxf-jaxrs-template.json \
 eap-camel-cxf-jaxws-template.json \
 karaf-camel-amq-template.json \
 karaf-camel-log-template.json \
 karaf-camel-rest-sql-template.json \
 karaf-cxf-rest-template.json ;
 do
 oc replace -n openshift \
 ${BASEURL}/quickstarts/${template}
 done

9. Upgrade Spring Boot 2 quickstart templates:

for template in spring-boot-2-camel-amq-template.json \
 spring-boot-2-camel-config-template.json \
 spring-boot-2-camel-drools-template.json \
 spring-boot-2-camel-infinispan-template.json \
 spring-boot-2-camel-rest-3scale-template.json \
 spring-boot-2-camel-rest-sql-template.json \
 spring-boot-2-camel-template.json \
 spring-boot-2-camel-xa-template.json \
 spring-boot-2-camel-xml-template.json \
 spring-boot-2-cxf-jaxrs-template.json \
 spring-boot-2-cxf-jaxws-template.json \
 spring-boot-2-cxf-jaxrs-xml-template.json \
 spring-boot-2-cxf-jaxws-xml-template.json ;

Red Hat Fuse 7.11 Fuse on OpenShift Guide

30

 do oc replace -n openshift \
 ${BASEURL}/quickstarts/${template}
 done

10. (Optional) View the upgradeed Fuse on OpenShift templates:

oc get template -n openshift

2.4.6. Tuning the performance of the Fuse Console on OpenShift 4.x

By default, the Fuse Console uses the following Nginx settings:

clientBodyBufferSize: 256k

proxyBuffers: 16 128k

subrequestOutputBufferSize: 10m

Note: For descriptions of these settings, see the Nginx documentation:
http://nginx.org/en/docs/dirindex.html

To tune performance of the Fuse Console, you can set any of the clientBodyBufferSize, proxyBuffers,
and subrequestOutputBufferSize environment variables. For example, if you are using the Fuse
Console to monitor numerous pods and routes (for instance, 100 routes in total), you can resolve a
loading timeout issue by setting the Fuse Console’s subrequestOutputBufferSize environment variable
to between 60m to 100m.

How you set these environment variables depends on how you installed the Fuse Console on Openshift
4.x:

By using the Fuse Console Operator

By using a Fuse Console template

2.4.6.1. Performance tuning for Fuse Console Operator installation

On Openshift 4.x, you can set the Nginx performance tuning environment variables before or after you
deploy the Fuse Console. If you do so afterwards, OpenShift redeploys the Fuse Console.

Prerequisites

You have cluster admin access to the OpenShift cluster.

You have installed the Fuse Console Operator as described in Installing and deploying the Fuse
Console on OpenShift 4.x by using the OperatorHub.

Procedure

You can set the environment variables before or after you deploy the Fuse Console.

To set the environment variables before you deploy the Fuse Console:

1. In the OpenShift web console, in a project that has the Fuse Console Operator installed,
select Operators> Installed Operators> Red Hat Integration - Fuse Console.

2. Click the Hawtio tab, and then click Create Hawtio.

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

31

http://nginx.org/en/docs/dirindex.html
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-install-openshift4-operatorhub

3. On the Create Hawtio page, in the Form view, scroll down to the Config> Nginx section.

4. Expand the Nginx section and then set the environment variables. For example:

clientBodyBufferSize: 256k

proxyBuffers: 16 128k

subrequestOutputBufferSize: 100m

5. Save the configuration.

6. Click Create to deploy the Fuse Console.

7. After the deployment completes, open the Deployments> fuse-console page, and then
click Environment to verify that the environment variables are in the list.

To set the environment variables after you deploy the Fuse Console:

1. In the OpenShift web console, open the project in which the Fuse Console is deployed.

2. Select Operators> Installed Operators> Red Hat Integration - Fuse Console.

3. Click the Hawtio tab, and then click fuse-console .

4. Select Actions> Edit Hawtio.

5. In the Editor window, scroll down to the spec section.

6. Under the spec section, add a new nginx section and specify one or more environment
variables, for example:

apiVersion: hawt.io/v1alpha1
kind: Hawtio
metadata:
 name: fuse-console
spec:
 type: Namespace
 nginx:
 clientBodyBufferSize: 256k
 proxyBuffers: 16 128k
 subrequestOutputBufferSize: 100m
.
.
.

7. Click Save.
OpenShift redeploys the Fuse Console.

8. After the redeployment completes, open the Workloads> Deployments> fuse-console
page, and then click Environment to see the environment variables in the list.

2.4.6.2. Performance tuning for Fuse Console template installation

On Openshift 4.x, you can set the Nginx performance tuning environment variables before or after you
deploy the Fuse Console. If you do so afterwards, OpenShift redeploys the Fuse Console.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

32

Prerequisites

You have cluster admin access to the OpenShift cluster.

You have installed the Fuse Console templates on your OpenShift as described in Installing
Fuse imagestreams and templates on the OpenShift 4.x server.

Procedure

You can set the environment variables before or after you deploy the Fuse Console.

To set the environment variables before you deploy the Fuse Console:

1. Determine which Fuse Console template that you want to use:

Cluster template (fuse-console-cluster-os4.json)

Cluster template with configurable RBAC (fuse-console-cluster-rbac.yml)

Namespace template (fuse-console-namespace-os4.json)

Namespace template with configurable RBAC (fuse-console-namespace-rbac.yml)

2. Edit the local copy of the Fuse Console template that you want to use for the Fuse Console
to include the NGINX_CLIENT_BODY_BUFFER_SIZE, NGINX_PROXY_BUFFERS,
and/or NGINX_SUBREQUEST_OUTPUT_BUFFER_SIZE environment variables as shown
in the following example:

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: fuse-console
spec:
 template:
 spec:
 containers:
 - env:
 - name: NGINX_CLIENT_BODY_BUFFER_SIZE
 value: 256k
 - name: NGINX_PROXY_BUFFERS
 value: 16 128k
 - name: NGINX_SUBREQUEST_OUTPUT_BUFFER_SIZE
 value: 100m

3. Save your changes.

4. Follow the steps for installing and deploying the Fuse Console as as described in Setting up
the Fuse Console on OpenShift 4.x.

To set the environment variables after you deploy the Fuse Console:

1. In a Terminal window, login to the OpenShift cluster.

2. Open the project in which the Fuse Console is deployed. For example, if the Fuse Console is
deployed in the myfuse project, use the following command:
oc project myfuse

3. Obtain the name for the Fuse Console deployment:

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

33

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#install-fuse-on-openshift4
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#fuse-console-setup-openshift4

oc get deployments

This command returns a list of the deployments running in the current project. For example:

NAME READY UP-TO-DATE AVAILABLE AGE
fuse-console 1/1 1 1 114m

4. Run one or more of the following commands to set the environment variables for the Fuse
Console deployment:

oc set env dc/fuse-console NGINX_CLIENT_BODY_BUFFER_SIZE="256k"

oc set env dc/fuse-console NGINX_PROXY_BUFFERS="16 128k"

oc set env dc/fuse-console NGINX_SUBREQUEST_OUTPUT_BUFFER_SIZE="10m"

OpenShift redeploys the Fuse Console.

5. After the redeployment completes, verify the environment variables settings:

a. Obtain the Fuse Console pod name:

oc get pods

b. Run the following command to view the environment settings

oc exec <fuse-console-podname> -- cat /opt/app-root/etc/nginx.d/nginx-
gateway.conf | grep "Performance tuning" -A 3

For example, if the pod name is fuse-console-6646cbbd4c-9rplg, run this command:

oc exec fuse-console-6646cbbd4c-9rplg -- cat /opt/app-root/etc/nginx.d/nginx-
gateway.conf | grep "Performance tuning" -A 3

2.4.6.3. Performance tuning for viewing applications on Fuse Console

Enhanced performance tuning capability of Fuse console allows you to view the applications with a large
number of MBeans. To use this capability perform following steps.

Prerequisites

You have cluster admin access to the OpenShift cluster.

You have installed the Fuse Console Operator as described in Installing and deploying the Fuse
Console on OpenShift 4.x by using the OperatorHub.

Procedure

1. Increase the memory limit for the applications.
It is necessary to increase the memory limit, for example from 256Mi to 512 Mi, so that
applications do no crash with OOM error before reaching the Fuse console. For Fuse quickstart,
edit your application’s src/main/jkube/deployment.yml file.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

34

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-install-openshift4-operatorhub

spec:
 template:
 spec:
 containers:
 -
 resources:
 [...]
 limits:
 cpu: "1.0"
 memory: 512Mi

2. Ensure that the Fuse Console Deployment or DeploymentConfig has an enough memory
limit. If it’s not enough, increase the limit, for example, from 200Mi to 512Mi.

3. If you see the "too big subrequest response while sending to client" error in nginx log, apply the
solution mentioned in the Section 2.4.6.1, “Performance tuning for Fuse Console Operator
installation” section.

2.5. CONFIGURING PROMETHEUS TO MONITOR FUSE APPLICATIONS
ON OPENSHIFT

2.5.1. About Prometheus

Prometheus is an open-source systems and service monitoring and alerting toolkit that you can use to
monitor services deployed in your Red Hat OpenShift environment. Prometheus collects and stores
metrics from configured services at given intervals, evaluates rule expressions, displays the results, and
can trigger alerts if a specified condition becomes true.

IMPORTANT

Red Hat support for Prometheus is limited to the setup and configuration
recommendations provided in Red Hat product documentation.

To monitor OpenShift services, you must configure each service to expose an endpoint to Prometheus
format. This endpoint is an HTTP interface that provides a list of metrics and the current values of the
metrics. Prometheus periodically scrapes each target-defined endpoint and writes the collected data to
its database. Prometheus gathers data over an extended time, rather than just for the currently running
session. Prometheus stores the data so that you can graphically visualize and run queries on the data.

2.5.1.1. Prometheus queries

In the Prometheus web interface, you can write queries in Prometheus Query Language (PromQL) to
select and aggregate the collected data.

For example, you can use the following query to select all of the values that Prometheus has recorded
within the last five minutes for all time-series data that has http_requests_total as the metric name:

http_requests_total[5m]

To further define or filter the results of the query, specify a label (a key:value pair) for the metric. For
example, you can use the following query to select all the values that Prometheus has recorded within
the last five minutes for all time-series data that has the metric name http_requests_total and a job
label set to integration:

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

35

https://prometheus.io
https://prometheus.io/docs/prometheus/latest/querying/basics/

http_requests_total{job="integration"}[5m]

2.5.1.2. Options for displaying Prometheus data

You can specify how Prometheus handles the result of a query:

View Prometheus data as tabular data in Prometheus’s expression browser.

Consume Prometheus data by external systems through the Prometheus HTTP API.

Display Prometheus data in a graph.
Prometheus provides a default graphical view of the data that it collects. If you prefer a more
robust graphical dashboard to view Prometheus data, Grafana is a popular choice.

NOTE

Grafana is a community-supported feature. Deploying Grafana to monitor Red
Hat products is not supported with Red Hat production service level agreements
(SLAs).

You can also use the PromQL language to configure alerts in Prometheus’s Alertmanager tool.

2.5.2. Setting up Prometheus for 4.13

To set up Prometheus, install the Prometheus operator custom resource definition on the cluster and
then add Prometheus to an OpenShift project that includes a Fuse application.

Prerequisites

You have cluster admin access to the OpenShift cluster.

You have prepared the OpenShift cluster by installing the Fuse on OpenShift images and
templates as described in the Fuse on OpenShift Guide.

You have created an OpenShift project on the cluster and added a Fuse application to it.

Procedure

1. Login to OpenShift with administrator permissions:

oc login --user system:admin --token=my-token --server=https://my-
cluster.example.com:6443

2. Create a file named cluster-monitoring-config.yml:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 enableUserWorkload: true

Red Hat Fuse 7.11 Fuse on OpenShift Guide

36

https://prometheus.io/docs/prometheus/latest/querying/api/
https://prometheus.io/docs/alerting/alertmanager/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide

3. Apply the cluster monitoring configuration to the "openshift-monitoring" namespace:

oc create -f cluster-monitoring-config.yml -n openshift-monitoring

A service monitor contains instructions for Prometheus to collect metrics for a given service and
project (namespace) on the OpenShift Container Platform.

1. To install a service monitor:+

oc process -f https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/monitors/fuse-servicemonitor.yml -p
NAMESPACE=<your-fuse-namespace> -p FUSE_SERVICE_NAME=<fuse-app-name> | oc apply -f -

+ For example, with an OpenShift project (namespace) named myproject that includes a Fuse
application named myfuseapp:

+

Example

oc process -f https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/monitors/fuse-servicemonitor.yml -p
NAMESPACE=myproject -p FUSE_SERVICE_NAME=myfuseapp | oc apply -f -

1. To open the Prometheus dashboard:

a. Login to the OpenShift console.

b. Open the project to which you added Prometheus.

c. In the left pane, select the Administrator view and open Observe -> Metrics

d. Click the Prometheus Hostname URL to open the Prometheus dashboard.

For more information about Prometheus, see the Prometheus documentation.

2.5.3. OpenShift environment variables

To configure your application’s Prometheus instance, you can set the OpenShift environment variables
listed in Table 2.2, “Prometheus Environment Variables” .

Table 2.2. Prometheus Environment Variables

Environment Variable Description Default

AB_PROMETHEUS_HOST The host address to bind. 0.0.0.0

AB_PROMETHEUS_OFF If set, disables the activation of
Prometheus (echoes an empty
value).

Prometheus is enabled.

AB_PROMETHEUS_PORT The Port to use. 9779

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

37

https://prometheus.io/docs/prometheus/latest/getting_started/

AB_JMX_EXPORTER_CONFI
G

Uses the file (including path) as
the Prometheus configuration file.

The
/opt/prometheus/prometheus-
config.yml file with Camel metrics.

AB_JMX_EXPORTER_OPTS Additional options to append to
the JMX exporter configuration.

Not applicable.

Environment Variable Description Default

Additional resources

For information on setting environment variables for a pod, see the OpenShift Developer Guide
(https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.11/html/developer_guide/).

2.5.4. Controlling the metrics that Prometheus monitors and collects

By default, Prometheus uses a configuration file (https://raw.githubusercontent.com/jboss-
fuse/application-templates/master/prometheus/prometheus-config.yml) that includes all possible
metrics exposed by Camel.

If you have custom metrics within your application that you want Prometheus to monitor and collect (for
example, the number of orders that your application processes), you can use your own configuration file.
Note that the metrics that you can identify are limited to those supplied in JMX.

Procedure

To use a custom configuration file to expose JMX beans that are not covered by the default
Prometheus configuration, follow these steps:

1. Create a custom Prometheus configuration file. You can use the contents of the default file
(prometheus-config.yml https://raw.githubusercontent.com/jboss-fuse/application-
templates/master/prometheus/prometheus-config.yml) as a guide for the format.
You can use any name for the custom configuration file, for example: my-prometheus-
config.yml.

2. Add your prometheus configuration file (for example, my-prometheus-config.yml) to your
application’s src/main/jkube-includes directory.

3. Create a src/main/jkube/deployment.xml file within your application and add an entry for the
AB_JMX_EXPORTER_CONFIG environment variable with its value set to your configuration
file. For example:

spec:
 template:
 spec:
 containers:
 -
 resources:
 requests:
 cpu: "0.2"
 limits:
 cpu: "1.0"

Red Hat Fuse 7.11 Fuse on OpenShift Guide

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/
https://raw.githubusercontent.com/jboss-fuse/application-templates/master/prometheus/prometheus-config.yml
https://raw.githubusercontent.com/jboss-fuse/application-templates/master/prometheus/prometheus-config.yml

 env:
 - name: SPRING_APPLICATION_JSON
 value: '{"server":{"tomcat":{"max-threads":1}}}'
 - name: AB_JMX_EXPORTER_CONFIG
 value: "my-prometheus-config.yml"

This environment variable applies to your application at the pod level.

4. Rebuild and deploy your application.

2.6. USING METERING FOR FUSE ON OPENSHIFT

You can use the Metering tool that is available on OCP 4 to generate metering reports from different
data sources. As a cluster administrator, you can use metering to analyze what is happening in your
cluster. You can either write your own, or use predefined SQL queries to define how you want to process
data from the different data sources you have available. Using Prometheus as a default data source, you
can generate reports on pods, namespaces, and most other Kubernetes resources. You must install and
configure the Metering operator on OpenShift Container Platform 4.x first to use the Metering tool. For
more information on Metering, see Metering.

NOTE

Metering for Fuse on OpenShift is not supported for IBM Power Systems and IBM Z.

2.6.1. Metering resources

Metering has many resources which can be used to manage the deployment and installation of metering,
as well as the reporting functionality metering provides. Metering is managed using the following
CustomResourceDefinitions (CRDs):

Table 2.3. Metering resources

Name Description

MeteringConfig Configures the metering stack for deployment. Contains
customizations and configuration options to control each
component that makes up the metering stack.

Reports Controls what query to use, when, and how often the query
should be run, and where to store the results.

ReportQueries Contains the SQL queries used to perform analysis on the data
contained within ReportDataSources.

ReportDataSources Controls the data available to ReportQueries and Reports.
Allows configuring access to different databases for use within
metering.

2.6.2. Metering labels for Fuse on OpenShift

Table 2.4. Metering Labels

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/metering/index

Label Possible values

com.company Red_Hat

rht.prod_name Red_Hat_Integration

rht.prod_ver 7.11

rht.comp Fuse

rht.comp_ver 7.11

rht.subcomp fuse7-java-openshift

fuse7-eap-openshift

fuse7-karaf-openshift

rht.subcomp_t infrastructure

2.7. MONITORING FUSE ON OPENSHIFT WITH CUSTOM GRAFANA
DASHBOARDS

OpenShift Container Platform 4.6 provides monitoring dashboards that help you understand the state
of cluster components and user-defined workloads.

Prerquisites

You must have installed and deployed Prometheus on your cluster. Refer
https://github.com/jboss-fuse/application-
templates/blob/master/monitoring/prometheus.md for more information on how to install
Grafana on OpenShift 4.

You must have installed and configured Grafana.

Custom Dashboards for Fuse on OpenShift

There are two custom dashboards that you can use for Fuse on OpenShift. To use these dashboards,
you must have installed and configured Grafana and Prometheus on your cluster. There are two kinds of
example dashboards provided for Fuse on OpenShift. You can import these dashboards from Fuse
Grafana dashboards.

Fuse Pod / Instance Metrics Dashboard:
This dashboard collects metrics from a single Fuse application pod / instance. You can import
the dashboard using fuse-grafana-dashboard.yml. The table of panels for the Fuse Pod
metrics dashboard on OpenShift includes:

Table 2.5. Fuse Pod metrics dashboard

Red Hat Fuse 7.11 Fuse on OpenShift Guide

40

https://github.com/jboss-fuse/application-templates/blob/master/monitoring/prometheus.md
https://github.com/jboss-fuse/application-templates/tree/master/monitoring

Title Legend Query Description

Process Start Time - process_start_time_se
conds{pod="$pod"}*1
000

Time when the
process started

Current Memory
HEAP

- sum(jvm_memory_byt
es_used{pod="$pod",
area="heap"})*100/su
m(jvm_memory_bytes
_max{pod="$pod",
area="heap"})

Memory currently
being used by Fuse

Memory Usage committed sum(jvm_memory_byt
es_committed{pod="$
pod"})

Memory committed

 used sum(jvm_memory_byt
es_used{pod="$pod"}
)

Memory used

 max sum(jvm_memory_byt
es_max{pod="$pod"})

Maximum memory

Threads current jvm_threads_current{
pod="$pod"}

Number of current
threads

 daemon jvm_threads_daemon{
pod="$pod"}

Number of daemon
threads

 peak jvm_threads_peak{po
d="$pod"}

Number of peak
threads

Camel Exchanges /
1m

Exchanges
Completed / 1m

sum(increase(org_apa
che_camel_Exchanges
Completed{pod="$po
d"}[1m]))

Completed Camel
exchanges per minute

 Exchanges Failed / 1m sum(increase(org_apa
che_camel_Exchanges
Failed{pod="$pod"}
[1m]))

Failed Camel
exchanges per minute

 Exchanges Total / 1m sum(increase(org_apa
che_camel_Exchanges
Total{pod="$pod"}
[1m]))

Total Camel
exchanges per minute

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

41

 Exchanges Inflight sum(org_apache_cam
el_ExchangesInflight{
pod="$pod"})

Camel exchanges
currently being
processed

Camel Processing
Time

Delta Processing Time sum(org_apache_cam
el_DeltaProcessingTi
me{pod="$pod"})

Delta of Camel
processing time

 Last Processing Time sum(org_apache_cam
el_LastProcessingTim
e{pod="$pod"})

Last Camel
processing time

 Max Processing Time sum(org_apache_cam
el_MaxProcessingTim
e{pod="$pod"})

Maximum Camel
processing time

 Min Processing Time sum(org_apache_cam
el_MinProcessingTime
{pod="$pod"})

Minimum Camel
processing time

 Mean Processing
Time

sum(org_apache_cam
el_MeanProcessingTi
me{pod="$pod"})

Mean Camel
processing time

Camel Service
Durations

Maximum Duration sum(org_apache_cam
el_MaxDuration{pod="
$pod"})

Maximum Camel
service durations

 Minimum Duration sum(org_apache_cam
el_MinDuration{pod="
$pod"})

Minimum Camel
service durations

 Mean Duration sum(org_apache_cam
el_MeanDuration{pod
="$pod"})

Mean Camel service
durations

Camel Failures &
Redeliveries

Redeliveries sum(org_apache_cam
el_Redeliveries{pod="
$pod"})

Number of
redeliveries

 Last Processing Time sum(org_apache_cam
el_LastProcessingTim
e{pod="$pod"})

Last Camel
processing time

 External Redeliveries sum(org_apache_cam
el_ExternalRedeliverie
s{pod="$pod"})

Number of external
redeliveries

Title Legend Query Description

Red Hat Fuse 7.11 Fuse on OpenShift Guide

42

Fuse Camel Route Metrics Dashboard:
This dashboard collects metrics from a single Camel route in a Fuse application. You can import
the dashboard using fuse-grafana-dashboard-routes.yml. The table of panels for the Fuse
Camel Route metrics dashboard on OpenShift includes:

Table 2.6. Fuse Camel Route metrics dashboard

Title Legend Query Description

Exchanges per second - rate(org_apache_cam
el_ExchangesTotal{ro
ute="\"$route\""}
[5m])

Total Camel
exchanges per second

Exchanges inflight - max(org_apache_cam
el_ExchangesInflight{r
oute="\"$route\""})

Number of Camel
exchanges currently
being processed

Exchanges failure rate - sum(org_apache_cam
el_ExchangesFailed{r
oute="\"$route\""}) /
sum(org_apache_cam
el_ExchangesTotal{ro
ute="\"$route\""})

Percentage of failed
Camel exchanges

Mean processing time - org_apache_camel_M
eanProcessingTime{r
oute="\"$route\""}

Mean Camel
processing time

Exchanges per second Failed rate(org_apache_cam
el_ExchangesFailed{r
oute="\"$route\""}
[5m])

Failed exchanges per
second

 Completed rate(org_apache_cam
el_ExchangesComplet
ed{route="\"$route\""
}[5m])

Completed exchanges
per second

Exchanges inflight Exchanges inflight org_apache_camel_Ex
changesInflight{route
="\"$route\""}

Camel exchanges
currently being
processed

Processing time Max org_apache_camel_M
axProcessingTime{rou
te="\"$route\""}

Maximum Camel
processing time

 Mean org_apache_camel_M
eanProcessingTime{r
oute="\"$route\""}

Mean Camel
processing time

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

43

 Min org_apache_camel_Mi
nProcessingTime{rout
e="\"$route\""}

Minimum Camel
processing time

External Redeliveries
per second

- rate(org_apache_cam
el_ExternalRedeliverie
s{route="\"$route\""}
[5m])

External redeliveries
per second

Redeliveries per
second

- rate(org_apache_cam
el_Redeliveries{route=
"\"$route\""}[5m])

Redeliveries per
second

Failures handled per
second

- rate(org_apache_cam
el_FailuresHandled{ro
ute="\"$route\""}
[5m])

Failures handled per
second

Title Legend Query Description

2.8. INSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE
OPENSHIFT 3.X SERVER

After you configure authentication to registry.redhat.io, import and use the Red Hat Fuse on
OpenShift image streams and templates.

Procedure

1. Start the OpenShift Server.

2. Log in to the OpenShift Server as an administrator.

oc login -u system:admin

3. Verify that you are using the project for which you created a docker-registry secret.

oc project openshift

4. Install the Fuse on OpenShift image streams.

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

oc create -n openshift -f ${BASEURL}/fis-image-streams.json

5. Install the quickstart templates:

for template in eap-camel-amq-template.json \

Red Hat Fuse 7.11 Fuse on OpenShift Guide

44

 eap-camel-cdi-template.json \
 eap-camel-cxf-jaxrs-template.json \
 eap-camel-cxf-jaxws-template.json \
 karaf-camel-amq-template.json \
 karaf-camel-log-template.json \
 karaf-camel-rest-sql-template.json \
 karaf-cxf-rest-template.json ;
 do
 oc create -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

6. Install Spring Boot 2 quickstart templates:

for template in spring-boot-2-camel-amq-template.json \
 spring-boot-2-camel-config-template.json \
 spring-boot-2-camel-drools-template.json \
 spring-boot-2-camel-infinispan-template.json \
 spring-boot-2-camel-rest-3scale-template.json \
 spring-boot-2-camel-rest-sql-template.json \
 spring-boot-2-camel-template.json \
 spring-boot-2-camel-xa-template.json \
 spring-boot-2-camel-xml-template.json \
 spring-boot-2-cxf-jaxrs-template.json \
 spring-boot-2-cxf-jaxws-template.json \
 spring-boot-2-cxf-jaxrs-xml-template.json \
 spring-boot-2-cxf-jaxws-xml-template.json ;
 do oc create -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

7. Install the templates for the Fuse Console.

oc create -n openshift -f ${BASEURL}/fis-console-cluster-template.json
oc create -n openshift -f ${BASEURL}/fis-console-namespace-template.json

NOTE

For information on deploying the Fuse Console, see Set up Fuse Console on
OpenShift.

8. Install the Apicurito template:

oc create -n openshift -f ${BASEURL}/fuse-apicurito.yml

9. (Optional) View the installed Fuse on OpenShift images and templates:

oc get template -n openshift

2.8.1. Setting up the Fuse Console on OpenShift 3.11

On OpenShift 3.11, you can access the Fuse Console:

By adding the Fuse Console to an OpenShift project so that you can monitor all the running

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

45

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-setup-openshift

By adding the Fuse Console to an OpenShift project so that you can monitor all the running
Fuse containers in the project.

By adding the Fuse Console to an OpenShift cluster so that you can monitor all the running
Fuse containers in all projects on the cluster.

By opening it from a specific Fuse pod so that you can monitor that single running Fuse
container.

You deploy the Fuse Console templates from the command line.

NOTE

To install Fuse Console on Minishift or CDK based enviroments, follow the steps
explained in the KCS article below.

To install Fuse Console on Minishift or CDK based enviroments, see KCS
4998441.

If it is necessary to disable Jolokia authentication see the workaround described
in KCS 3988671.

Prerequisite

Install the Fuse on OpenShift image streams and the templates for the Fuse Console as
described in Fuse on OpenShift Guide.

NOTE

User management for the Fuse Console is handled by OpenShift.

Role-based access control (for users accessing the Fuse Console after it is
deployed) is not yet available for Fuse on OpenShift 3.11.

Section 2.8.1.1, “Deploying the Fuse Console on OpenShift 3.11”

Section 2.8.1.2, “Monitoring a single Fuse pod from the Fuse Console on OpenShift 3.11”

2.8.1.1. Deploying the Fuse Console on OpenShift 3.11

Table 2.7, “Fuse Console templates” describes the OpenShift 3.11 templates that you can use to deploy
the Fuse Console from the command line, depending on the type of Fuse application deployment.

Table 2.7. Fuse Console templates

Type Description

fis-console-cluster-template.json The Fuse Console can discover and connect to Fuse
applications deployed across multiple namespaces or
projects. To deploy this template, you must have the
OpenShift cluster-admin role.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

46

https://access.redhat.com/solutions/4998441
https://access.redhat.com/solutions/3988671
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide

fis-console-namespace-template.json This template restricts the Fuse Console access to
the current OpenShift project (namespace), and as
such acts as a single tenant deployment. To deploy
this template, you must have the admin role for the
current OpenShift project.

Type Description

Optionally, you can view a list of the parameters for all of the templates by running this command:

oc process --parameters -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fis-console-namespace-
template.json

NOTE

The Fuse Console templates configure end-to-end encryption by default so that your
Fuse Console requests are secured end-to-end, from the browser to the in-cluster
services.

Prerequisite

For cluster mode on OpenShift 3.11, you need the cluster admin role and the cluster mode
template. Run the following command:

oc adm policy add-cluster-role-to-user cluster-admin system:serviceaccount:openshift-
infra:template-instance-controller

Procedure

To deploy the Fuse Console from the command line:

1. Create a new application based on a Fuse Console template by running one of the following
commands (where myproject is the name of your project):

For the Fuse Console cluster template, where myhost is the hostname to access the Fuse
Console:

oc new-app -n myproject -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fis-console-
cluster-template.json -p ROUTE_HOSTNAME=myhost

For the Fuse Console namespace template:

oc new-app -n myproject -f https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fis-console-
namespace-template.json

NOTE

You can omit the route_hostname parameter for the namespace template
because OpenShift automatically generates one.

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

47

2. Obtain the status and the URL of your Fuse Console deployment by running this command:

oc status

3. To access the Fuse Console from a browser, use the provided URL.

Example:

+https://fuse-console.192.168.64.12.nip.io.

2.8.1.2. Monitoring a single Fuse pod from the Fuse Console on OpenShift 3.11

You can open the Fuse Console for a Fuse pod running on OpenShift 3.11.

Prerequisite

In order to configure OpenShift to display a link to Fuse Console in the pod view, the pod
running a Fuse on OpenShift image must declare a TCP port within a name attribute set to
jolokia:

{
 "kind": "Pod",
 [...]
 "spec": {
 "containers": [
 {
 [...]
 "ports": [
 {
 "name": "jolokia",
 "containerPort": 8778,
 "protocol": "TCP"
 }

Procedure

1. From the Applications → Pods view in your OpenShift project, click on the pod name to view
the details of the running Fuse pod. On the right-hand side of this page, you see a summary of
the container template:

Red Hat Fuse 7.11 Fuse on OpenShift Guide

48

https://fuse-console.192.168.64.12.nip.io

2. From this view, click on the Open Java Console link to open the Fuse Console.

CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS

49

CHAPTER 3. INSTALLING FUSE ON OPENSHIFT IN A
RESTRICTED ENVIRONMENT

To install Fuse on OpenShift in a non-restricted environment, you pull imagestreams and templates
from registry.redhat.io. In a production environment which has no or limited internet access, that is not
possible. This section explains how to install Fuse on OpenShift in a restricted environment.

NOTE

Installing in a restricted environment is currently not supported on IBM Power Systems,
IBM Z, and LinuxONE.

Prerequisites

You have installed and configured OpenShift server so that it can run in a restricted
environment.

3.1. SETTING UP INTERNAL DOCKER REGISTRY

This section explains how to set up internal docker registry which can be used to push or pull images. You
must configure an internal docker registry where you can pull or push images.

Procedure

1. Install internal ROOT CA.

cd /etc/pki/ca-trust/source/anchors
sudo curl -O https://password.corp.redhat.com/RH-IT-Root-CA.crt
sudo update-ca-trust extract
sudo update-ca-trust update

This certificate allows the system to authenticate itself to the registry.

2. Login to registry.redhat.io.

docker login -u USERNAME -p PASSWORD registry.redhat.io

3. Pull the Fuse on OpenShift images from registry.redhat.io.

docker pull registry.redhat.io/fuse7/fuse-java-openshift-rhel8:1.11
docker pull registry.redhat.io/fuse7/fuse-java-openshift-jdk11-rhel8:1.11
docker pull registry.redhat.io/fuse7/fuse-karaf-openshift-rhel8:1.11
docker pull registry.redhat.io/fuse7/fuse-console-rhel8:1.11
docker pull registry.redhat.io/fuse7/fuse-apicurito-rhel8:1.11
docker pull registry.redhat.io/fuse7/fuse-apicurito-generator-rhel8:1.11

4. Tag the pulled imagestreams.

docker tag registry.redhat.io/fuse7/fuse-java-openshift-rhel8:1.11 docker-
registry.upshift.redhat.com/fuse7/fuse-java-openshift-rhel8:1.11
docker tag registry.redhat.io/fuse7/fuse-java-openshift-jdk11-rhel8:1.11 docker-
registry.upshift.redhat.com/fuse7/fuse-java-openshift-jdk11-rhel8:1.11
docker tag registry.redhat.io/fuse7/fuse-karaf-openshift-rhel8:1.11 docker-

Red Hat Fuse 7.11 Fuse on OpenShift Guide

50

registry.upshift.redhat.com/fuse-karaf-openshift-rhel8:1.11
docker tag registry.redhat.io/fuse7/fuse-console-rhel8:1.11 docker-
registry.upshift.redhat.com/fuse7-fuse-console-rhel8:1.11
docker tag registry.redhat.io/fuse7/fuse-apicurito-rhel8:1.11 docker-
registry.upshift.redhat.com/fuse7-fuse-apicurito-rhel8:1.11
docker tag registry.redhat.io/fuse7/fuse-apicurito-generator-rhel8:1.11 docker-
registry.upshift.redhat.com/fuse7-fuse-apicurito-generator-rhel8:1.11

5. Push the tagged imagestreams to the internal docker registry.

docker push docker-registry.upshift.redhat.com/fuse7/fuse-java-openshift-rhel8:1.11
docker push docker-registry.upshift.redhat.com/fuse7/fuse-java-openshift-jdk11-rhel8:1.11
docker push docker-registry.upshift.redhat.com/fuse-karaf-openshift-rhel8:1.11
docker push docker-registry.upshift.redhat.com/fuse7-fuse-console-rhel8:1.11
docker push docker-registry.upshift.redhat.com/fuse7-fuse-apicurito-rhel8:1.11
docker push docker-registry.upshift.redhat.com/fuse7-fuse-apicurito-generator-rhel8:1.11

3.2. CONFIGURING INTERNAL REGISTRY SECRETS

After setting up the restricted docker registry and pushing all the images, it is necessary to configure the
restricted OpenShift server so that it can communicate with the internal registry.

Procedure

1. Log into your OpenShift cluster as administrator:

2. Open the project in which you want to deploy Fuse:

3. Create a docker-registry secret using your Red Hat Customer Portal account, replacing
PULL_SECRET_NAME with psi-internal-registry to create:

You should see the following output:

IMPORTANT

You must create this docker-registry secret in every OpenShift project
namespace that will authenticate to registry.redhat.io.

4. Link the secret to your service account to use the secret for pulling images. The following

oc login --user system:admin --token=my-token --server=https://my-
cluster.example.com:6443

oc project myproject

oc create secret docker-registry psi-internal-registry \
 --docker-server=docker-registry.redhat.io \
 --docker-username=CUSTOMER_PORTAL_USERNAME \
 --docker-password=CUSTOMER_PORTAL_PASSWORD \
 --docker-email=EMAIL_ADDRESS

secret/psi-internal-registry created

CHAPTER 3. INSTALLING FUSE ON OPENSHIFT IN A RESTRICTED ENVIRONMENT

51

4. Link the secret to your service account to use the secret for pulling images. The following
example uses the default service account, builder service account, and deployer service
account:

The service account name must match the name that the OpenShift pod uses.

NOTE

If you do not want to use your Red Hat username and password to create the pull
secret, you can create an authentication token using a registry service account.

3.3. INSTALLING FUSE ON OPENSHIFT IMAGES IN A RESTRICTED
ENVIRONMENT

The fis-image-streams.json file contains the imageStream definitions for Red Hat Fuse on OpenShift.
But, all the imagestreams refer to registry.redhat.io. You must change all the registry.redhat.io
references to the psi-internal-registry URL.

Procedure

1. Download Red Hat Fuse on OpenShift imagestream json file.

curl -o fis-image-streams.json https://raw.githubusercontent.com/jboss-fuse/application-
templates/application-templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002/fis-image-
streams.json

2. Open the fis-image-streams.json file and locate all the references to registry.redhat.io. For
example:

{
"name": "1.9",
"annotations": {
"description": "Red Hat Fuse 7.11 Karaf S2I images.",
"openshift.io/display-name": "Red Hat Fuse 7.11 Karaf",
"iconClass": "icon-rh-integration",
"tags": "builder,jboss-fuse,java,karaf,xpaas,hidden",
"supports":"jboss-fuse:7.11.0,java:8,xpaas:1.2",
"version": "1.9"
},
"referencePolicy": {
"type": "Local"
},
"from": {
"kind": "DockerImage",
"name": "registry.redhat.io/fuse7/fuse-karaf-openshift-rhel8:1.11"
}
},

oc secrets link default psi-internal-registry
oc secrets link default psi-internal-registry --for=pull
oc secrets link builder psi-internal-registry
oc secrets link builder psi-internal-registry --for=pull
oc secrets link deployer psi-internal-registry
oc secrets link deployer psi-internal-registry --for=pull

Red Hat Fuse 7.11 Fuse on OpenShift Guide

52

3. Replace all the registry.redhat.io references in the file with psi-internal-registry name. For
example:

{
"name": "1.9",
"annotations": {
"description": "Red Hat Fuse 7.11 Karaf S2I images.",
"openshift.io/display-name": "Red Hat Fuse 7.11 Karaf",
"iconClass": "icon-rh-integration",
"tags": "builder,jboss-fuse,java,karaf,xpaas,hidden",
"supports":"jboss-fuse:7.11.0,java:8,xpaas:1.2",
"version": "1.9"
},
"referencePolicy": {
"type": "Local"
},
"from": {
"kind": "DockerImage",
"name": "docker-registry.upshift.redhat.com/fuse7/fuse-karaf-openshift-rhel8:1.11"
}
},

4. After all the references are replaced, run the following command to install Fuse on OpenShift
imagestreams:

oc create -f fis-image-streams.json -n {namespace}

3.4. USING AN INTERNAL MAVEN REPOSITORY

In a restricted environment, you need to use a different Maven Repository. You can specify it using a
template parameter named MAVEN_MIRROR_URL. You can use this MAVEN_MIRROR_URL
parameter to create a new application from command line.

3.4.1. Running a Spring Boot application with MAVEN_MIRROR_URL

This example explains how to deploy and run a Spring Boot Application using MAVEN_MIRROR_URL.

Procedure

1. Download the Spring Boot Camel XML quickstart.

oc create -f ./spring-boot-2-camel-xml-template.json -n openshift

2. Enter the following command to create the resources required for running the Spring Boot
quickstart template using the MAVEN_MIRROR_URL parameter.
In a restricted environment, you also need to specify the GIT_REPO and GIT_REF parameters
for your local repository.

oc new-app s2i-fuse711-spring-boot-2-camel-xml -n {namespace} -p
IMAGE_STREAM_NAMESPACE={namespace} -p MAVEN_MIRROR_URL={Maven mirror
URL} -p GIT_REPO={Git Repo URL} -p GIT_REF={Git branch/tag name}

This will create a deployment config and build config for the quickstart. The information about

CHAPTER 3. INSTALLING FUSE ON OPENSHIFT IN A RESTRICTED ENVIRONMENT

53

This will create a deployment config and build config for the quickstart. The information about
the default parameters of the quickstart and the resources created is displayed on the terminal.

3.4.2. Running a Spring Boot application with OpenShift Maven plugin

This example explains how to deploy and run a Spring Boot application with OpenShift Maven plugin
using internal Maven repository.

Procedure

1. To run the quickstart with OpenShift Maven plugin, download the Spring Boot 2 camel
archetype from local repository and then deploy the quickstart. Replace {Maven Mirror URL}
with the Maven mirror repository URL.

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -DarchetypeCatalog={Maven Mirror URL}/archetypes/archetypes-catalog/2.2.0.fuse-sb2-
7_11_1-00018-redhat-00002/archetypes-catalog-2.2.0.fuse-sb2-7_11_1-00018-redhat-
00002-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-xml-archetype
 -DarchetypeVersion=2.2.0.fuse-sb2-7_11_1-00018-redhat-00002

2. The archetype plug-in switches to interactive mode to prompt you for the remaining fields.

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse711-spring-boot2
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse711-spring-boot
version: 1.0-SNAPSHOT
package: org.example.fis
 Y: : Y

3. If the above command exited with the BUILD SUCCESS status, you should now have a new Fuse
on OpenShift project under the fuse711-spring-boot2 subdirectory.

4. You are now ready to build and deploy the fuse711-spring-boot2 project. Assuming you are still
logged into OpenShift, change to the directory of the fuse711-spring-boot2 project, and then
build and deploy the project, as follows.

cd fuse711-spring-boot2
mvn oc:deploy -Popenshift

Red Hat Fuse 7.11 Fuse on OpenShift Guide

54

CHAPTER 4. INSTALLING FUSE ON OPENSHIFT AS A NON-
ADMIN USER

You can start using Fuse on OpenShift by creating an application and deploying it to OpenShift. First
you need to install Fuse on OpenShift images and templates.

4.1. INSTALLING FUSE ON OPENSHIFT IMAGES AND TEMPLATES AS A
NON-ADMIN USER

Prerequisites

You have access to OpenShift server. It can be either virtual OpenShift server by CDK or
remote OpenShift server.

You have configured authentication with registry.redhat.io.

For more information see:

Authenticating with registry.redhat.io for container images

Red Hat CDK 3.17 Getting Started Guide

Procedure

1. In preparation for building and deploying the Fuse on OpenShift project, log in to the OpenShift
Server as follows.

oc login -u developer -p developer https://OPENSHIFT_IP_ADDR:8443

Where, OPENSHIFT_IP_ADDR is a placeholder for the OpenShift server’s IP address as this IP
address is not always the same.

NOTE

The developer user (with developer password) is a standard account that is
automatically created on the virtual OpenShift Server by CDK. If you are
accessing a remote server, use the URL and credentials provided by your
OpenShift administrator.

2. Create a new project namespace called test (assuming it does not already exist).

oc new-project test

If the test project namespace already exists, switch to it.

oc project test

3. Install the Fuse on OpenShift image streams:

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

CHAPTER 4. INSTALLING FUSE ON OPENSHIFT AS A NON-ADMIN USER

55

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#configuring-container-registry-authn
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.17/html-single/getting_started_guide/

oc create -n test -f ${BASEURL}/fis-image-streams.json

The command output displays the Fuse image streams that are now available in your Fuse on
OpenShift project.

4. Install the quickstart templates.

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

for template in eap-camel-amq-template.json \
 eap-camel-cdi-template.json \
 eap-camel-cxf-jaxrs-template.json \
 eap-camel-cxf-jaxws-template.json \
 karaf-camel-amq-template.json \
 karaf-camel-log-template.json \
 karaf-camel-rest-sql-template.json \
 karaf-cxf-rest-template.json ;
 do
 oc create -n test -f \
 ${BASEURL}/quickstarts/${template}
 done

5. Install Spring Boot 2 quickstart templates:

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

for template in spring-boot-2-camel-amq-template.json \
 spring-boot-2-camel-config-template.json \
 spring-boot-2-camel-drools-template.json \
 spring-boot-2-camel-infinispan-template.json \
 spring-boot-2-camel-rest-3scale-template.json \
 spring-boot-2-camel-rest-sql-template.json \
 spring-boot-2-camel-template.json \
 spring-boot-2-camel-xa-template.json \
 spring-boot-2-camel-xml-template.json \
 spring-boot-2-cxf-jaxrs-template.json \
 spring-boot-2-cxf-jaxws-template.json \
 spring-boot-2-cxf-jaxrs-xml-template.json \
 spring-boot-2-cxf-jaxws-xml-template.json ;
 do oc create -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

6. Install the templates for the Fuse Console.

oc create -n test -f ${BASEURL}/fis-console-cluster-template.json
oc create -n test -f ${BASEURL}/fis-console-namespace-template.json

NOTE

For information on deploying the Fuse Console, see Set up Fuse Console on
OpenShift.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

56

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/managing_fuse_on_openshift#fuse-console-setup-openshift

7. (Optional) View the installed Fuse on OpenShift images and templates.

oc get template -n test

8. In your browser, navigate to the OpenShift console:

a. Use https://OPENSHIFT_IP_ADDR:8443 and replace OPENSHIFT_IP_ADDR with your
OpenShift server’s IP address.

b. Log in to the OpenShift console with your credentials (for example, with username
developer and password developer).

CHAPTER 4. INSTALLING FUSE ON OPENSHIFT AS A NON-ADMIN USER

57

https://openshift_ip_addr:8443

CHAPTER 5. GETTING STARTED FOR DEVELOPERS

5.1. PREPARING DEVELOPMENT ENVIRONMENT

The fundamental requirement for developing and testing Fuse on OpenShift projects is having access
to an OpenShift Server. You have the following basic alternatives:

Install Red Hat CDK

Getting Remote Access to an Existing OpenShift Server

5.1.1. Installing Container Development Kit (CDK) on your local machine

As a developer, if you want to get started quickly, the most practical alternative is to install Red Hat CDK
on your local machine. Using CDK, you can boot a virtual machine (VM) instance that runs an image of
OpenShift on Red Hat Enterprise Linux (RHEL) 7. An installation of CDK consists of the following key
components:

A virtual machine (libvirt, VirtualBox, or Hyper-V)

Minishift to start and manage the Container Development Environment

IMPORTANT

Red Hat CDK is intended for development purposes only . It is not intended for other
purposes, such as production environments, and may not address known security
vulnerabilities. For full support of running mission-critical applications inside of docker-
formatted containers, you need an active RHEL 7 or RHEL Atomic subscription. For more
details, see Support for Red Hat Container Development Kit (CDK) .

Prerequisites

Java Version
On your developer machine, make sure you have installed a Java version that is supported by
Fuse 7.11. For details of the supported Java versions, see Supported Configurations.

Procedure

To install the CDK on your local machine:

1. For Fuse on OpenShift, we recommend that you install version 3.17 of CDK. Detailed
instructions for installing and using CDK 3.17 are provided in the Red Hat CDK 3.17 Getting
Started Guide.

2. Configure your OpenShift credentials to gain access to the Red Hat Ecosystem Catalog by
following the instructions in Authenticating with registry.redhat.io for container images.

3. Install the Fuse on OpenShift images and templates manually as described in Chapter 2, Getting
Started for administrators.

NOTE

Your version of CDK might have Fuse on OpenShift images and templates pre-
installed. However, you must install (or update) the Fuse on OpenShift images
and templates after you configure your OpenShift credentials.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

58

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#install-cdk
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#get-access-existing-openshift-server
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/
https://access.redhat.com/articles/2387591
https://access.redhat.com/articles/310603
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.17/html-single/getting_started_guide/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#configuring-container-registry-authn_fuse-on-openshift

4. Before you proceed with the examples in this chapter, you should read and thoroughly
understand the contents of the Red Hat CDK 3.17 Getting Started Guide .

5.1.2. Getting remote access to an existing OpenShift server

Your IT department might already have set up an OpenShift cluster on some server machines. In this
case, the following requirements must be satisfied for getting started with Fuse on OpenShift:

The server machines must be running a supported version of OpenShift Container Platform (as
documented in the Supported Configurations page). The examples in this guide have been
tested against version 3.11.

Ask the OpenShift administrator to install the latest Fuse on OpenShift container base images
and the Fuse on OpenShift templates on the OpenShift servers.

Ask the OpenShift administrator to create a user account for you, having the usual developer
permissions (enabling you to create, deploy, and run OpenShift projects).

Ask the administrator for the URL of the OpenShift Server (which you can use either to browse
to the OpenShift console or connect to OpenShift using the oc command-line client) and the
login credentials for your account.

5.1.3. Installing Client-Side tools

We recommend that you have the following tools installed on your developer machine:

Apache Maven 3.6.x: Required for local builds of OpenShift projects. Download the appropriate
package from the Apache Maven download page. Make sure that you have at least version 3.6.x
(or later) installed, otherwise Maven might have problems resolving dependencies when you
build your project.

Git: Required for the OpenShift S2I source workflow and generally recommended for source
control of your Fuse on OpenShift projects. Download the appropriate package from the Git
Downloads page.

OpenShift client: If you are using CDK, you can add the oc binary to your PATH using minishift
oc-env which displays the command you need to type into your shell (the output of oc-env will
differ depending on OS and shell type):

$ minishift oc-env
export PATH="/Users/john/.minishift/cache/oc/v1.5.0:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

For more details, see Using the OpenShift Client Binary in CDK 3.17 Getting Started Guide .

If you are not using CDK, follow the instructions in the CLI Reference to install the oc client tool.

(Optional) Docker client: Advanced users might find it convenient to have the Docker client tool
installed (to communicate with the docker daemon running on an OpenShift server). For
information about specific binary installations for your operating system, see the Docker
installation site.
For more details, see Reusing the docker Daemon in CDK 3.17 Getting Started Guide .

IMPORTANT

CHAPTER 5. GETTING STARTED FOR DEVELOPERS

59

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.17/html-single/getting_started_guide/
https://access.redhat.com/articles/310603
https://maven.apache.org/download.cgi
https://git-scm.com/downloads
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.17/html-single/getting_started_guide/#using_the_openshift_client_binary_oc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html-single/cli_reference/
https://docs.docker.com/engine/installation/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.17/html-single/getting_started_guide/#reusing-docker-daemon

IMPORTANT

Make sure that you install versions of the oc tool and the docker tool that are
compatible with the version of OpenShift running on the OpenShift Server.

5.1.4. Configuring Maven repositories

Configure the Maven repositories, which hold the archetypes and artifacts that you will need for building
an Fuse on OpenShift project on your local machine.

Procedure

1. Open your Maven settings.xml file, which is usually located in ~/.m2/settings.xml (on Linux or
macOS) or Documents and Settings\<USER_NAME>\.m2\settings.xml (on Windows).

2. Add the following Maven repositories.

Maven central: https://repo1.maven.org/maven2

Red Hat GA repository: https://maven.repository.redhat.com/ga

Red Hat EA repository: https://maven.repository.redhat.com/earlyaccess/all
You must add the preceding repositories both to the dependency repositories section as
well as the plug-in repositories section of your settings.xml file.

5.2. CREATING AND DEPLOYING APPLICATIONS ON FUSE ON
OPENSHIFT

You can start using Fuse on OpenShift by creating an application and deploying it to OpenShift using
one of the following OpenShift Source-to-Image (S2I) application development workflows:

S2I binary workflow

S2I with build input from a binary source. This workflow is characterized by the fact that the build is
partly executed on the developer’s own machine. After building a binary package locally, this
workflow hands off the binary package to OpenShift. For more details, see Binary Source from the
Builds OpenShift Container Platform guide .

S2I source workflow

S2I with build input from a Git source. This workflow is characterized by the fact that the build is
executed entirely on the OpenShift server. For more details, see Git Source from the Builds
OpenShift Container Platform guide.

5.2.1. Creating and deploying an application using the S2I binary workflow

In this section, you will use the OpenShift S2I binary workflow to create, build, and deploy an Fuse on
OpenShift project.

NOTE

Running quickstarts with JDK11

Use the correct JDK11 profile during the compile time if you want to use JDK11 based
image at runtime. When building and deploying the quickstarts using JDK11, ensure
that you have installed JDK11 on your build machine and then build your quickstarts
using the correct JDK11 profile.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

60

https://repo1.maven.org/maven2
https://maven.repository.redhat.com/ga
https://maven.repository.redhat.com/earlyaccess/all
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/builds/index#builds-binary-source_creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/builds/index#builds-source-code_creating-build-inputs

Procedure

1. Create a new Fuse on OpenShift project using a Maven archetype. For this example, we use an
archetype that creates a sample Spring Boot Camel project. Open a new shell prompt and enter
one of the following Maven commands:

To access all of the S2I quickstarts:

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/archetypes/archetyp
es-catalog/2.2.0.fuse-sb2-7_11_1-00018-redhat-00002/archetypes-catalog-2.2.0.fuse-
sb2-7_11_1-00018-redhat-00002-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeVersion=2.2.0.fuse-sb2-7_11_1-00018-redhat-00002

To access just the spring-boot-2-camel-xml quickstart:

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/archetypes/archetyp
es-catalog/2.2.0.fuse-sb2-7_11_1-00018-redhat-00002/archetypes-catalog-2.2.0.fuse-
sb2-7_11_1-00018-redhat-00002-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-xml-archetype \
 -DarchetypeVersion=2.2.0.fuse-sb2-7_11_1-00018-redhat-00002

The archetype plug-in switches to interactive mode to prompt you for the remaining fields.

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse711-spring-boot
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse711-spring-boot
version: 1.0-SNAPSHOT
package: org.example.fis
 Y: : Y

When prompted, enter org.example.fis for the groupId value and fuse711-spring-boot
for the artifactId value. Accept the defaults for the remaining fields.

2. If the previous command exited with the BUILD SUCCESS status, you should now have a new
Fuse on OpenShift project under the fuse711-spring-boot subdirectory. You can inspect the
XML DSL code in the fuse711-spring-boot/src/main/resources/spring/camel-context.xml
file. The demonstration code defines a simple Camel route that continuously sends message
containing a random number to the log.

3. In preparation for building and deploying the Fuse on OpenShift project, log in to the OpenShift
Server as follows.

oc login -u developer -p developer https://OPENSHIFT_IP_ADDR:8443

Where, OPENSHIFT_IP_ADDR is a placeholder for the OpenShift server’s IP address as this IP

CHAPTER 5. GETTING STARTED FOR DEVELOPERS

61

Where, OPENSHIFT_IP_ADDR is a placeholder for the OpenShift server’s IP address as this IP
address is not always the same.

NOTE

The developer user (with developer password) is a standard account that is
automatically created on the virtual OpenShift Server by CDK. If you are
accessing a remote server, use the URL and credentials provided by your
OpenShift administrator.

4. Switch to openshift project (if not already in the openshift project) as follows.

oc project openshift

5. Run the following command to ensure that Fuse on OpenShift images and templates are
already installed and you can access them.

oc get template -n openshift

If the images and templates are not pre-installed, or if the provided versions are out of date,
install (or update) the Fuse on OpenShift images and templates manually. For more information
on how to install Fuse on OpenShift images see Chapter 2, Getting Started for administrators .

6. You are now ready to build and deploy the fuse711-spring-boot project. Assuming you are still
logged into OpenShift, change to the directory of the fuse711-spring-boot project, and then
build and deploy the project, as follows.

cd fuse711-spring-boot
mvn oc:deploy -Popenshift

At the end of a successful build, you should see some output like the following.

...
[INFO] OpenShift platform detected
[INFO] Using project: openshift
[INFO] Creating a Service from openshift.yml namespace openshift name fuse711-spring-
boot
[INFO] Created Service: target/jkube/applyJson/openshift/service-fuse711-spring-boot.json
[INFO] Using project: openshift
[INFO] Creating a DeploymentConfig from openshift.yml namespace openshift name
fuse711-spring-boot
[INFO] Created DeploymentConfig: target/jkube/applyJson/openshift/deploymentconfig-
fuse711-spring-boot.json
[INFO] Creating Route openshift:fuse711-spring-boot host: null
[INFO] F8: HINT: Use the command `oc get pods -w` to watch your pods start up
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 05:38 min
[INFO] Finished at: 2020-12-04T12:15:06+05:30
[INFO] Final Memory: 63M/688M
[INFO] --

NOTE

Red Hat Fuse 7.11 Fuse on OpenShift Guide

62

NOTE

The first time you run this command, Maven has to download a lot of
dependencies, which takes several minutes. Subsequent builds will be faster.

7. Navigate to the OpenShift console in your browser and log in to the console with your
credentials (for example, with username developer and password, developer).

8. In the left hand side panel, expand Home and then click Status to view the Project Status page
for the openshift project.

9. Click fuse711-spring-boot to view the Overview information page for the fuse711-spring-boot
application.

10. In the left hand side panel, expand Workloads.

11. Click Pods. All the running pods in the openshift project are displayed.

12. Click on the pod Name (in this example, fuse711-spring-boot-xxxxx) to view the details of the
running pod.

13. Click on the Logs tab to view the application log and scroll down the log to find the random
number log messages generated by the Camel application.

CHAPTER 5. GETTING STARTED FOR DEVELOPERS

63

...
06:45:54.311 [Camel (MyCamel) thread #1 - timer://foo] INFO simple-route - >>> 130
06:45:56.265 [Camel (MyCamel) thread #1 - timer://foo] INFO simple-route - >>> 898
06:45:58.265 [Camel (MyCamel) thread #1 - timer://foo] INFO simple-route - >>> 414
06:46:00.265 [Camel (MyCamel) thread #1 - timer://foo] INFO simple-route - >>> 486
06:46:02.265 [Camel (MyCamel) thread #1 - timer://foo] INFO simple-route - >>> 093
06:46:04.265 [Camel (MyCamel) thread #1 - timer://foo] INFO simple-route - >>> 080

14. To shut down the running pod,

a. On the Project Status page for the openshift project, click fuse711-spring-boot
application.

b. Click the Overview tab to view to the overview information page of the application.

c. Click the icon next to Desired Count. The Edit Count window is displayed.

d. Use the down arrow to scale down to zero to stop the pod.

5.2.2. Undeploying and redeploying the project

You can undeploy or redeploy your projects, as follows:

Procedure

To undeploy the project, enter the command:

mvn oc:undeploy

To redeploy the project, enter the commands:

mvn oc:undeploy
mvn oc:deploy -Popenshift

5.2.3. Creating and deploying an application using the S2I source workflow

In this section, you will use the OpenShift S2I source workflow to build and deploy a Fuse on OpenShift
application based on a template. The starting point for this demonstration is a quickstart project stored
in a remote Git repository. Using the OpenShift console, you will download, build, and deploy this
quickstart project in the OpenShift server.

Procedure

1. Log in to the OpenShift Server as follows.

oc login -u developer -p developer https://OPENSHIFT_IP_ADDR:8443

Where, OPENSHIFT_IP_ADDR is a placeholder for the OpenShift server’s IP address as this IP
address is not always the same.

NOTE

Red Hat Fuse 7.11 Fuse on OpenShift Guide

64

NOTE

The developer user (with developer password) is a standard account that is
automatically created on the virtual OpenShift Server by CDK. If you are
accessing a remote server, use the URL and credentials provided by your
OpenShift administrator.

2. Switch to openshift project (if not already in the openshift project) as follows.

oc project openshift

3. Run the following command to ensure that Fuse on OpenShift templates are already installed
and you can access them.

oc get template -n openshift

If the images and templates are not pre-installed, or if the provided versions are out of date,
install (or update) the Fuse on OpenShift images and templates manually. For more information
on how to install Fuse on OpenShift images see Chapter 2, Getting Started for administrators .

4. Enter the following command to create the resources required for running the Red Hat Fuse
7.11 Camel XML DSL with Spring Boot quickstart template. This will create a deployment config
and build config for the quickstart. The information about the default parameters of the
quickstart and the resources created is displayed on the terminal.

oc new-app s2i-fuse7-spring-boot-camel-xml

--> Deploying template "openshift/s2i-fuse7-spring-boot-camel-xml" to project openshift
...
--> Creating resources ...
 imagestream.image.openshift.io "s2i-fuse7-spring-boot-camel-xml" created
 buildconfig.build.openshift.io "s2i-fuse7-spring-boot-camel-xml" created
 deploymentconfig.apps.openshift.io "s2i-fuse7-spring-boot-camel-xml" created
--> Success
 Build scheduled, use 'oc logs -f bc/s2i-fuse7-spring-boot-camel-xml' to track its progress.
 Run 'oc status' to view your app.

5. Navigate to the OpenShift web console in your browser (https://OPENSHIFT_IP_ADDR,
replace OPENSHIFT_IP_ADDR with the IP address of the cluster) and log in to the console with
your credentials (for example, with username developer and password, developer).

6. In the left hand side panel, expand Home. Click Status to view the Project Status page. All the
existing applications in the selected namespace (for example, openshift) are displayed.

7. Click s2i-fuse7-spring-boot-camel-xml to view the Overview information page for the
quickstart.

CHAPTER 5. GETTING STARTED FOR DEVELOPERS

65

https://openshift_ip_addr

8. Click the Resources tab and then click View logs to view the build log for the application.

9. In the left hand side panel, expand Workloads.

10. Click Pods and then click s2i-fuse7-spring-boot-camel-xml-xxxx. The pod details for the
application are displayed.

11. To shut down the running pod,

Red Hat Fuse 7.11 Fuse on OpenShift Guide

66

a. On the Project Status page for the openshift project, click s2i-fuse7-spring-boot-camel-
xml-xxxx application.

b. Click the Overview tab to view to the overview information page of the application.

c. Click the icon next to Desired Count. The Edit Count window is displayed.

d. Use the down arrow to scale down to zero to stop the pod.

CHAPTER 5. GETTING STARTED FOR DEVELOPERS

67

CHAPTER 6. DEVELOPING AN APPLICATION FOR THE
SPRING BOOT IMAGE

This chapter explains how to develop applications for the Spring Boot image.

6.1. CREATING A SPRING BOOT 2 PROJECT USING MAVEN
ARCHETYPE

This quickstart demonstrates how to create a Spring Boot 2 project using Maven archetypes.

Procedure

1. Go to the appropriate directory on your system.

2. In a shell prompt, enter the following the mvn command to create a Spring Boot 2 project.

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/archetypes/archetypes-
catalog/2.2.0.fuse-sb2-7_11_1-00018-redhat-00002/archetypes-catalog-2.2.0.fuse-sb2-
7_11_1-00018-redhat-00002-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-xml-archetype \
 -DarchetypeVersion=2.2.0.fuse-sb2-7_11_1-00018-redhat-00002

The archetype plug-in switches to interactive mode to prompt you for the remaining fields.

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse711-spring-boot
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse711-spring-boot
version: 1.0-SNAPSHOT
package: org.example.fis
 Y: : Y

When prompted, enter org.example.fis for the groupId value and fuse711-spring-boot for the
artifactId value. Accept the defaults for the remaining fields.

3. If the above command exited with the BUILD SUCCESS status, you should now have a new Fuse
on OpenShift project under the fuse711-spring-boot subdirectory.

4. You are now ready to build and deploy the fuse711-spring-boot project. Assuming you are still
logged into OpenShift, change to the directory of the fuse711-spring-boot project, and then
build and deploy the project, as follows.

cd fuse711-spring-boot
mvn oc:deploy -Popenshift

NOTE

Red Hat Fuse 7.11 Fuse on OpenShift Guide

68

NOTE

For the full list of available Spring Boot 2 archetypes, see Spring Boot 2 Archetype
Catalog.

6.2. STRUCTURE OF THE CAMEL SPRING BOOT APPLICATION

The directory structure of a Camel Spring Boot application is as follows:

 ├── LICENSE.md
 ├── pom.xml
 ├── README.md
 ├── configuration
 │ └── settings.xml
 └── src
 ├── main
 │ ├── jkube
 │ │ └── deployment.yml
 │ ├── java
 │ │ └── org
 │ │ └── example
 │ │ └── fis
 │ │ ├── Application.java
 │ │ └── MyTransformer.java
 │ └── resources
 │ ├── application.properties
 │ ├── logback.xml
 │ └── spring
 │ └── camel-context.xml
 └── test
 └── java
 └── org
 └── example
 └── fis

Where the following files are important for developing an application:

pom.xml

Includes additional dependencies. Camel components that are compatible with Spring Boot are
available in the starter version, for example camel-jdbc-starter or camel-infinispan-starter. Once
the starters are included in the pom.xml they are automatically configured and registered with the
Camel content at boot time. Users can configure the properties of the components using the
application.properties file.

application.properties

Allows you to externalize your configuration and work with the same application code in different
environments. For details, see Externalized Configuration
For example, in this Camel application you can configure certain properties such as name of the
application or the IP addresses, and so on.

application.properties

#spring.main.sources=org.example.fos

logging.config=classpath:logback.xml

CHAPTER 6. DEVELOPING AN APPLICATION FOR THE SPRING BOOT IMAGE

69

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#spring-boot-2-archetype-catalog
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

the options from org.apache.camel.spring.boot.CamelConfigurationProperties can be configured
here
camel.springboot.name=MyCamel

lets listen on all ports to ensure we can be invoked from the pod IP
server.address=0.0.0.0
management.address=0.0.0.0

lets use a different management port in case you need to listen to HTTP requests on 8080
management.server.port=8081

disable all management endpoints except health
endpoints.enabled = false
endpoints.health.enabled = true

Application.java

It is an important file to run your application. As a user you will import here a file camel-context.xml
to configure routes using the Spring DSL.
The Application.java file specifies the @SpringBootApplication annotation, which is equivalent to
@Configuration, @EnableAutoConfiguration and @ComponentScan with their default attributes.

Application.java

It must have a main method to run the Spring Boot application.

Application.java

camel-context.xml

The src/main/resources/spring/camel-context.xml is an important file for developing application
as it contains the Camel routes.

NOTE

You can find more information on developing Spring-Boot applications at Developing
your first Spring Boot Application

src/main/jkube/deployment.yml

Provides additional configuration that is merged with the default OpenShift configuration file

@SpringBootApplication
// load regular Spring XML file from the classpath that contains the Camel XML DSL
@ImportResource({"classpath:spring/camel-context.xml"})

public class Application {
 /**
 * A main method to start this application.
 */
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Red Hat Fuse 7.11 Fuse on OpenShift Guide

70

http://docs.spring.io/spring-boot/docs/1.4.1.RELEASE/reference/html/getting-started-first-application.html

Provides additional configuration that is merged with the default OpenShift configuration file
generated by the openshift-maven-plugin.

NOTE

This file is not used part of Spring Boot application but it is used in all quickstarts to
limit the resources such as CPU and memory usage.

6.3. SPRING BOOT 2 ARCHETYPE CATALOG

The Spring Boot 2 Archetype catalog includes the following examples.

Table 6.1. Spring Boot 2 Maven Archetypes

Name Description

spring-boot-camel-archetype Demonstrates how to use Apache Camel with Spring Boot based
on a fabric8 Java base image.

spring-boot-camel-amq-archetype Demonstrates how to connect a Spring Boot application to an
ActiveMQ broker and use JMS messaging between two Camel
routes using Kubernetes or OpenShift.

spring-boot-camel-drools-
archetype

Demonstrates how to use Apache Camel to integrate a Spring
Boot application running on Kubernetes or OpenShift with a
remote Kie Server.

spring-boot-camel-infinispan-
archetype

Demonstrates how to connect a Spring Boot application to a
JBoss Data Grid or Infinispan server using the Hot Rod protocol.

spring-boot-camel-rest-3scale-
archetype

Demonstrates how to use Camel’s REST DSL to expose a
RESTful API and expose it to 3scale.

spring-boot-camel-rest-sql-
archetype

Demonstrates how to use SQL via JDBC along with Camel’s
REST DSL to expose a RESTful API.

spring-boot-camel-xml-archetype Demonstrates how to configure Camel routes in Spring Boot via
a Spring XML configuration file.

spring-boot-cxf-jaxrs-archetype Demonstrates how to use Apache CXF with Spring Boot based
on a fabric8 Java base image. The quickstart uses Spring Boot
to configure an application that includes a CXF JAXRS endpoint
with Swagger enabled.

spring-boot-cxf-jaxws-archetype Demonstrates how to use Apache CXF with Spring Boot based
on a fabric8 Java base image. The quickstart uses Spring Boot
to configure an application that includes a CXF JAXWS
endpoint.

CHAPTER 6. DEVELOPING AN APPLICATION FOR THE SPRING BOOT IMAGE

71

spring-boot-cxf-jaxrs-xml-
archetype

Demonstrates how to use Apache CXF JAX-RS with Spring Boot
2 on OpenShift. This quickstart uses Spring Boot2 to launch a
Spring configuration file based CXF application that includes a
CXF JAXRS endpoint with Swagger enabled.

spring-boot-cxf-jaxws-xml-
archetype

Demonstrates how to use Apache CXF JAX-WS with Spring
Boot 2 on OpenShift. The quickstart uses Spring Boot2 to
launch a Spring configuration file based CXF application that
includes a CXF JAXWS endpoint.

Name Description

NOTE

The following Spring Boot 2 Maven archetypes fail to build and deploy on to the
OpenShift. See the Release Notes for more information.

spring-boot-camel-archetype

spring-boot-camel-infinspan-archetype

spring-boot-cxf-jaxrs-archetype

spring-boot-cxf-jaxws-archetype

To work around this issue, after generating a Maven project for one of these quickstarts,
edit the project’s Maven pom.xml file to add the following dependency:

<dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>2.4.1</version>
 <scope>test</scope>
</dependency>

6.4. BOM FILE FOR SPRING BOOT

The purpose of a Maven Bill of Materials (BOM) file is to provide a curated set of Maven dependency
versions that work well together, preventing you from having to define versions individually for every
Maven artifact.

IMPORTANT

Ensure you are using the correct Fuse BOM based on the version of Spring Boot you are
using.

The Fuse BOM for Spring Boot offers the following advantages:

Defines versions for Maven dependencies, so that you do not need to specify the version when
you add a dependency to your POM.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

72

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/release_notes_for_red_hat_fuse_7.11/index#known-issues-fuse-openshift
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Defines a set of curated dependencies that are fully tested and supported for a specific version
of Fuse.

Simplifies upgrades of Fuse.

IMPORTANT

Only the set of dependencies defined by a Fuse BOM are supported by Red Hat.

6.5. INCORPORATE THE BOM FILE

To incorporate a BOM file into your Maven project, specify a dependencyManagement element in your
project’s pom.xml file (or, possibly, in a parent POM file), as shown in the examples for both Spring Boot
2:

Spring Boot 2 BOM

Spring Boot 2 BOM

After specifying the BOM using the dependency management mechanism, it is possible to add Maven
dependencies to your POM without specifying the version of the artifact. For example, to add a
dependency for the camel-hystrix component, you would add the following XML fragment to the
dependencies element in your POM:

Note how the Camel artifact ID is specified with the -starter suffix — that is, you specify the Camel

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.11.1.fuse-sb2-7_11_1-00022-redhat-00002</fuse.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-hystrix-starter</artifactId>
</dependency>

CHAPTER 6. DEVELOPING AN APPLICATION FOR THE SPRING BOOT IMAGE

73

Note how the Camel artifact ID is specified with the -starter suffix — that is, you specify the Camel
Hystrix component as camel-hystrix-starter, not as camel-hystrix. The Camel starter components are
packaged in a way that is optimized for the Spring Boot environment.

6.6. SPRING BOOT MAVEN PLUGIN

The Spring Boot Maven plugin is provided by Spring Boot and it is a developer utility for building and
running a Spring Boot project:

Building — create an executable Jar package for your Spring Boot application by entering the
command mvn package in the project directory. The output of the build is placed in the target/
subdirectory of your Maven project.

Running — for convenience, you can run the newly-built application with the command, mvn
spring-boot:start.

To incorporate the Spring Boot Maven plugin into your project POM file, add the plugin configuration to
the project/build/plugins section of your pom.xml file, as shown in the following example.

Example

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <!-- configure the versions you want to use here -->
 <fuse.version>7.11.1.fuse-sb2-7_11_1-00022-redhat-00002</fuse.version>

 </properties>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

74

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN
SPRING BOOT

The Apache Camel Spring Boot component automatically configures Camel context for Spring Boot.
Auto-configuration of the Camel context automatically detects the Camel routes available in the Spring
context and registers the key Camel utilities such as producer template, consumer template, and the
type converter as beans. The Apache Camel component includes a Spring Boot starter module that
allows you to develop Spring Boot applications by using starters.

7.1. INTRODUCTION TO THE CAMEL SPRING BOOT COMPONENT

Every Camel Spring Boot application must use the dependencyManagement element in the project’s
pom.xml to specify the productized versions of the dependencies. These dependencies are defined in
the Red Hat Fuse BOM and are supported for the specific version of Red Hat Fuse. You can omit the
version number attribute for the additional starters so as not to override the versions from BOM. See
quickstart pom for more information.

Example

NOTE

The camel-spring-boot jar contains with the spring.factories file which allows you to add
that dependency to your classpath so Spring Boot will automatically configure Camel
context.

7.2. INTRODUCTION TO THE CAMEL SPRING BOOT STARTER
MODULE

Starters are the Apache Camel modules that are intended to be used in Spring Boot applications. There
is a camel-xxx-starter module for each Camel component (with a few exceptions listed in the
Section 7.3, “List of the Camel components that do not have starter modules” section).

Starters meet the following requirements:

Allow auto-configuration of the component by using the native Spring Boot configuration
system which is compatible with IDE tooling.

Allow auto-configuration of data formats and languages.

Manage transitive logging dependencies to integrate with the Spring Boot logging system.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

75

https://github.com/fabric8-quickstarts/spring-boot-camel-amq/blob/fuse-7.2.x.redhat/pom.xml#L26-L36

Include additional dependencies and align transitive dependencies to minimize the effort of
creating a working Spring Boot application.

Each starter has its own integration test in tests/camel-itest-spring-boot, that verifies the compatibility
with the current release of Spring Boot.

NOTE

For more details, see link: Apache Camel Spring-Boot examples.

7.3. LIST OF THE CAMEL COMPONENTS THAT DO NOT HAVE
STARTER MODULES

The following components do not have starter modules because of compatibility issues:

camel-blueprint (intended for OSGi only)

camel-cdi (intended for CDI only)

camel-core-osgi (intended for OSGi only)

camel-ejb (intended for JEE only)

camel-eventadmin (intended for OSGi only)

camel-ibatis (camel-mybatis-starter is included)

camel-jclouds

camel-mina (camel-mina2-starter is included)

camel-paxlogging (intended for OSGi only)

camel-quartz (camel-quartz2-starter is included)

camel-spark-rest

camel-openapi-java (camel-openapi-java-starter is included)

7.4. USING CAMEL SPRING BOOT STARTER

Apache Camel provides a starter module that allows you to quickly get started developing Spring Boot
applications.

Procedure

1. Add the following dependency to your Spring Boot pom.xml file:

2. Add the classes with your Camel routes as shown in the snippet below. Once these routes are
added to the class path the routes are started automatically.

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-spring-boot-starter</artifactId>
</dependency>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

76

https://github.com/apache/camel-spring-boot-examples

3. Optional. To keep the main thread blocked so that Camel stays up, do one of the following.

a. Include the spring-boot-starter-web dependency,

b. Or add camel.springboot.main-run-controller=true to your application.properties or
application.yml file.
You can customize the Camel application in the application.properties or application.yml
file with camel.springboot.* properties.

4. Optional. To refer to a custom bean by using the bean’s ID name, configure the options in the
src/main/resources/application.properties (or the application.yml) file. The following
example shows how the xslt component refers to a custom bean by using the bean ID.

a. Refer to a custom bean by the id myExtensionFactory.

b. Then create the custom bean using Spring Boot @Bean annotation.

Or, for a Jackson ObjectMapper, in the camel-jackson data-format:

7.5. ABOUT CAMEL CONTEXT AUTO-CONFIGURATION FOR SPRING
BOOT

Camel Spring Boot auto-configuration provides a CamelContext instance and creates
a SpringCamelContext. It also initializes and performs shutdown of that context. This Camel context is
registered in the Spring application context under camelContext bean name and you can access it like
other Spring bean. You can access the camelContext as shown below.

Example

package com.example;

import org.apache.camel.builder.RouteBuilder;
import org.springframework.stereotype.Component;

@Component
public class MyRoute extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("timer:foo")
 .to("log:bar");
 }
}

camel.component.xslt.saxon-extension-functions=myExtensionFactory

@Bean(name = "myExtensionFactory")
public ExtensionFunctionDefinition myExtensionFactory() {
 }

camel.dataformat.json-jackson.object-mapper=myJacksonMapper

@Configuration

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

77

7.6. AUTO-DETECTING CAMEL ROUTES IN SPRING BOOT
APPLICATIONS

Camel auto-configuration collects all the RouteBuilder instances from the Spring context and
automatically injects them into the CamelContext. This simplifies the process of creating a new Camel
route with the Spring Boot starter. You can create the routes as follows:

Example

Add the @Component annotated class to your classpath.

Or create a new route RouteBuilder bean in your @Configuration class.

7.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT

public class MyAppConfig {

 @Autowired
 CamelContext camelContext;

 @Bean
 MyService myService() {
 return new DefaultMyService(camelContext);
 }

}

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

}

@Configuration
public class MyRouterConfiguration {

 @Bean
 RoutesBuilder myRouter() {
 return new RouteBuilder() {

 @Override
 public void configure() throws Exception {
 from("jms:invoices").to("file:/invoices");
 }

 };
 }

}

Red Hat Fuse 7.11 Fuse on OpenShift Guide

78

7.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT
AUTO-CONFIGURATION

Spring Boot auto-configuration connects to the Spring Boot external configuration such as properties
placeholders, OS environment variables, or system properties with Camel properties support.

Procedure

1. Define the properties either in the application.properties file:

Or set the Camel properies as the system properties, for example:

2. Use the configured properties as placeholders in Camel route as follows.

7.8. CONFIGURING CUSTOM CAMEL CONTEXT

To perform operations on the CamelContext bean created by Camel Spring Boot auto-configuration,
register a CamelContextConfiguration instance in your Spring context.

Procedure

Register an instance of CamelContextConfiguration in the Spring context as shown below.

route.from = jms:invoices

java -Droute.to=jms:processed.invoices -jar mySpringApp.jar

@Component
public class MyRouter extends RouteBuilder {

 @Override
 public void configure() throws Exception {
 from("{{route.from}}").to("{{route.to}}");
 }

}

@Configuration
public class MyAppConfig {

 ...

 @Bean
 CamelContextConfiguration contextConfiguration() {
 return new CamelContextConfiguration() {
 @Override
 void beforeApplicationStart(CamelContext context) {
 // your custom configuration goes here
 }
 };
 }

}

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

79

The CamelContextConfiguration and beforeApplicationStart(CamelContext) methods are called
before the Spring context is started, so the CamelContext instance that is passed to this callback is
fully auto-configured. You can add many instances of CamelContextConfiguration into your Spring
context and all of them will be executed.

7.9. DISABLING JMX IN THE AUTO-CONFIGURED CAMELCONTEXT

To disable JMX in the auto-configured CamelContext, you can use the camel.springboot.jmxEnabled
property as JMX is enabled by default.

Procedure

Add the following property to your application.properties file and set it to false:

7.10. INJECTING AUTO-CONFIGURED CONSUMER AND PRODUCER
TEMPLATES INTO SPRING-MANAGED BEANS

Camel auto-configuration provides pre-configured ConsumerTemplate and ProducerTemplate
instances. You can inject them into your Spring-managed beans.

Example

By default consumer templates and producer templates come with the endpoint cache sizes set to
1000. You can change these values by setting the following Spring properties to the desired cache size,
for example:

7.11. ABOUT THE AUTO-CONFIGURED TYPECONVERTER IN THE
SPRING CONTEXT

Camel auto-configuration registers a TypeConverter instance named typeConverter in the Spring
context.

camel.springboot.jmxEnabled = false

@Component
public class InvoiceProcessor {

 @Autowired
 private ProducerTemplate producerTemplate;

 @Autowired
 private ConsumerTemplate consumerTemplate;
 public void processNextInvoice() {
 Invoice invoice = consumerTemplate.receiveBody("jms:invoices", Invoice.class);
 ...
 producerTemplate.sendBody("netty-http:http://invoicing.com/received/" + invoice.id());
 }

}

camel.springboot.consumerTemplateCacheSize = 100
camel.springboot.producerTemplateCacheSize = 200

Red Hat Fuse 7.11 Fuse on OpenShift Guide

80

Example

7.12. SPRING TYPE CONVERSION API BRIDGE

Spring consist of a powerful type conversion API. Spring API is similar to the Camel type converter API.
Due to the similarities between the two APIs Camel Spring Boot automatically registers a bridge
converter (SpringTypeConverter) that delegates to the Spring conversion API. This means that out-
of-the-box Camel will treat Spring Converters similar to Camel.

This allows you to access both Camel and Spring converters using the Camel TypeConverter API, as
shown below:

Example

Here, Spring Boot delegates conversion to the Spring’s ConversionService instances available in the
application context. If no ConversionService instance is available, Camel Spring Boot auto-
configuration creates an instance of ConversionService.

7.13. DISABLING TYPE CONVERSIONS FEATURES

To disable the Camel Spring Boot type conversion features, set the
camel.springboot.typeConversion property to false. When this property is set to false, the auto-
configuration does not register a type converter instance and does not enable the delegation of type
conversion to the Spring Boot type conversion API.

Procedure

To disable the type conversion features of Camel Spring Boot component, set the

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public long parseInvoiceValue(Invoice invoice) {
 String invoiceValue = invoice.grossValue();
 return typeConverter.convertTo(Long.class, invoiceValue);
 }

}

@Component
public class InvoiceProcessor {

 @Autowired
 private TypeConverter typeConverter;

 public UUID parseInvoiceId(Invoice invoice) {
 // Using Spring's StringToUUIDConverter
 UUID id = invoice.typeConverter.convertTo(UUID.class, invoice.getId());
 }

}

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

81

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert
http://camel.apache.org/type-converter.html

To disable the type conversion features of Camel Spring Boot component, set the
camel.springboot.typeConversion property to false as shown below:

7.14. ADDING XML ROUTES TO THE CLASSPATH FOR AUTO-
CONFIGURATION

By default, the Camel Spring Boot component auto-detects and includes the Camel XML routes that
are in the classpath in the camel directory. You can configure the directory name or disable this feature
using the configuration option.

Procedure

Configure the Camel Spring Boot XML routes in the classpath as follows.

NOTE

The XML files should define the Camel XML route elements and not
CamelContext elements, for example:

Using Spring XML files

To use Spring XML files with the <camelContext>, you can configure a Camel context in the Spring XML
file or in the application.properties file. To set the name of the Camel context and turn on the stream
caching, add the following in the application.properties file:

7.15. ADDING XML REST-DSL ROUTES FOR AUTO-CONFIGURATION

The Camel Spring Boot component auto-detects and embeds the Camel Rest-DSL XML routes that
are added in the classpath under the camel-rest directory. You can configure the directory name or
disable this feature using the configuration option.

camel.springboot.typeConversion = false

// turn off
camel.springboot.xmlRoutes = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRoutes = classpath:com/foo/routes/*.xml

 <routes xmlns="http://camel.apache.org/schema/spring">
 <route id="test">
 <from uri="timer://trigger"/>
 <transform>
 <simple>ref:myBean</simple>
 </transform>
 <to uri="log:out"/>
 </route>
 </routes>

camel.springboot.name = MyCamel
camel.springboot.stream-caching-enabled=true

Red Hat Fuse 7.11 Fuse on OpenShift Guide

82

Procedure

Configure the Camel Spring Boot Rest-DSL XML routes in the classpath as follows.

NOTE

The Rest-DSL XML files should define the Camel XML REST elements and not
CamelContext elements, for example:

7.16. TESTING WITH CAMEL SPRING BOOT

When Camel runs on the Spring Boot, Spring Boot automatically embeds Camel and all its routes, which
are annotated with @Component. When testing with Spring Boot use @SpringBootTest instead of
@ContextConfiguration to specify which configuration class to use.

When you have multiple Camel routes in different RouteBuilder classes, the Camel Spring Boot
component automatically embeds all these routes when running the application. Hence, when you wish
to test routes from only one RouteBuilder class you can use the following patterns to include or exclude
which RouteBuilders to enable:

java-routes-include-pattern: Used for including RouteBuilder classes that match the pattern.

java-routes-exclude-pattern: Used for excluding RouteBuilder classes that match the pattern.
Exclude takes precedence over include.

Procedure

1. Specify the include or exclude patterns in your unit test classes as properties to
@SpringBootTest annotation, as shown below:

// turn off
camel.springboot.xmlRests = false
// scan in the com/foo/routes classpath
camel.springboot.xmlRests = classpath:com/foo/rests/*.xml

 <rests xmlns="http://camel.apache.org/schema/spring">
 <rest>
 <post uri="/persons">
 <to uri="direct:postPersons"/>
 </post>
 <get uri="/persons">
 <to uri="direct:getPersons"/>
 </get>
 <get uri="/persons/{personId}">
 <to uri="direct:getPersionId"/>
 </get>
 <put uri="/persons/{personId}">
 <to uri="direct:putPersionId"/>
 </put>
 <delete uri="/persons/{personId}">
 <to uri="direct:deletePersionId"/>
 </delete>
 </rest>
 </rests>

CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT

83

@RunWith(CamelSpringBootRunner.class)
@SpringBootTest(classes = {MyApplication.class);
 properties = {"camel.springboot.java-routes-include-pattern=**/Foo*"})
public class FooTest {

In the FooTest class, the include pattern is **/Foo*, which represents an Ant style pattern. Here,
the pattern starts with a double asterisk, which matches with any leading package name. /Foo*
means the class name must start with Foo, for example, FooRoute.

2. Run the test using the following maven command:

mvn test -Dtest=FooTest

Additional Resources

Writing Components

Component

Endpoint

Getting Started

Red Hat Fuse 7.11 Fuse on OpenShift Guide

84

https://camel.apache.org/manual/writing-components.html
https://camel.apache.org/components.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/getting-started.html

CHAPTER 8. RUNNING SOAP TO REST BRIDGE QUICKSTART
FOR SPRING BOOT 2 ON FUSE ON OPENSHIFT

This quickstart demonstrates how to use Camel’s REST DSL to expose a backend SOAP API. A simple
camel route can bridge REST invocation to legacy SOAP service. Security is involved for both REST
endpoint and SOAP endpoint, both backed by RH SSO. Frontend REST API protected via OAuth and
OpenID Connect, and the client will fetch JWT access token from RH SSO using Resource Owner
Password Credentials OAuth2 mode and using this token to access the REST endpoint.

Prerequsites

You have installed and configured OCP 4.1 or later version.

You have installed RH SSO 7.4 or later version.

You have installed 3Scale 2.8 or later version.

You have configured authentication to registry.redhat.io. For more information see
Configuring Red Hat Container Registry authentication .

Procedure

Following section explains how to run and deploy SOAP to REST bridge quickstart on Fuse on
OpenShift.

1. Start OpenShift server. Since we need to install RH SSO image (2 pods) and 3Scale image (15
pods) as prerequisites for this quickstart, we need to start the OpenShift server on a powerful
machine, with options --memory 8GB --cpus 4. We also need to issue a security token with the
expiration time, hence we need to add the timezone option as well. Ensure the Openshift cluster
uses the same time zone as your local machine (by default it will use UTC timezone).

2. Add cluster-admin role to the user developer.

$ oc login -u system:admin
$ oc adm policy add-cluster-role-to-user cluster-admin developer
$ oc login -u developer
$ oc project openshift

This quickstart is deployed in the openshift namespace (this is the requirement of default
configurations of the templates involved), as well as the RH SSO image, so we need to add the
cluster-admin role to user developer.

3. Create a secret and link it to the serviceaccounts.

$ oc create secret docker-registry camel-bridge --docker-server=registry.redhat.io \
 --docker-username=USERNAME \
 --docker-password=PASSWORD \
 --docker-email=EMAIL_ADDRESS
$ oc secrets link default camel-bridge --for=pull
$ oc secrets link builder camel-bridge

4. Add the RH SSO image stream and install RH SSO with template sso74-x509-postgresql-
persistent.

$ for resource in sso74-image-stream.json \

CHAPTER 8. RUNNING SOAP TO REST BRIDGE QUICKSTART FOR SPRING BOOT 2 ON FUSE ON OPENSHIFT

85

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html-single/fuse_on_openshift_guide/index#configure-container-registry

 sso74-https.json \
 sso74-postgresql.json \
 sso74-postgresql-persistent.json \
 sso74-x509-https.json \
 sso74-x509-postgresql-persistent.json
 do
 oc create -f \
 https://raw.githubusercontent.com/jboss-container-images/redhat-sso-7-openshift-
image/sso74-dev/templates/${resource}
 done

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

$ oc new-app --template=sso74-x509-postgresql-persistent

Verify that the RH SSO images are available from openshift namespace, and then install RH
SSO with template sso74-x509-postgresql-persistent. This template can save the RH SSO
configuration permenantly, so the configuration is retained after the Openshift server restart.

5. Once the RH SSO image is installed successfully on the server, you can see the output on the
console as follows.

A new persistent RH-SSO service (using PostgreSQL) has been created in your project. The
admin username/password for accessing the master realm via the RH-SSO console is
tprYtXP1/nEjf7fojv11FmhJ5eaqadoh0SI2gvlls. The username/password for accessing the
PostgreSQL database "root" is userqxe/XNYRjL74CrJEWW7HiSYEdH5FMKVSDytx. The
HTTPS keystore used for serving secure content, the JGroups keystore used for securing
JGroups communications, and server truststore used for securing RH-SSO requests were
automatically created via OpenShift's service serving x509 certificate secrets.

 * With parameters:
 * Application Name=sso
 * Custom RH-SSO Server Hostname=
 * JGroups Cluster Password=1whGRnsAWu162u0e4P6jNpLn5ysJLWjg # generated
 * Database JNDI Name=java:jboss/datasources/KeycloakDS
 * Database Name=root
 * Datasource Minimum Pool Size=
 * Datasource Maximum Pool Size=
 * Datasource Transaction Isolation=
 * PostgreSQL Maximum number of connections=
 * PostgreSQL Shared Buffers=
 * Database Username=userqxe # generated
 * Database Password=XNYRjL74CrJEWW7HiSYEdH5FMKVSDytx # generated
 * Database Volume Capacity=1Gi
 * ImageStream Namespace=openshift
 * RH-SSO Administrator Username=tprYtXP1 # generated
 * RH-SSO Administrator Password=nEjf7fojv11FmhJ5eaqadoh0SI2gvlls # generated
 * RH-SSO Realm=
 * RH-SSO Service Username=
 * RH-SSO Service Password=
 * PostgreSQL Image Stream Tag=10
 * Container Memory Limit=1Gi

6. Note down the Username/Password which is used to access the RH SSO admin console. For
example,

Red Hat Fuse 7.11 Fuse on OpenShift Guide

86

 * RH-SSO Administrator Username=tprYtXP1 # generated
 * RH-SSO Administrator Password=nEjf7fojv11FmhJ5eaqadoh0SI2gvlls # generated

7. Install 3scale template in the 3scale project.

$ oc new-project 3scale
$ oc create secret docker-registry threescale-registry-auth --docker-server=registry.redhat.io
--docker-server=registry.redhat.io \
 --docker-username=USERNAME \
 --docker-password=PASSWORD \
 --docker-email=EMAIL_ADDRESS
$ oc secrets link default threescale-registry-auth --for=pull
$ oc secrets link builder threescale-registry-auth
$ oc new-app --param WILDCARD_DOMAIN="OPENSHIFT_IP_ADDR.nip.io" -f
https://raw.githubusercontent.com/3scale/3scale-amp-openshift-
templates/2.8.0.GA/amp/amp-eval-tech-preview.yml

3scale installation on openshift will start 15 pods, so it is necessary to create a new specific
project for 3scale. You also need a new threescale-registry-auth (use this name to create the
secret as it is written in 3scale templates) secret for 3scale. You can reuse the
USERNAME/PASSWORD from camel-bridge secret. We intentionally use amp-eval-tech-
preview.yml template here because it doesn’t explicitly specify hardware resources so can be
easily run on a local machine/laptop.

8. After the 3scale template is installed successfully on the Openshift, you can see the output on
the console as follows.

3scale API Management

 3scale API Management main system (Evaluation)

 Login on https://3scale-admin.192.168.64.33.nip.io as admin/b6t784nt

 * With parameters:
 * AMP_RELEASE=2.8
 * APP_LABEL=3scale-api-management
 * TENANT_NAME=3scale
 * RWX_STORAGE_CLASS=null
 * AMP_BACKEND_IMAGE=registry.redhat.io/3scale-amp2/backend-rhel7:3scale2.8
 * AMP_ZYNC_IMAGE=registry.redhat.io/3scale-amp2/zync-rhel7:3scale2.8
 * AMP_APICAST_IMAGE=registry.redhat.io/3scale-amp2/apicast-gateway-
rhel8:3scale2.8
 * AMP_SYSTEM_IMAGE=registry.redhat.io/3scale-amp2/system-rhel7:3scale2.8
 * ZYNC_DATABASE_IMAGE=registry.redhat.io/rhscl/postgresql-10-rhel7
 * MEMCACHED_IMAGE=registry.redhat.io/3scale-amp2/memcached-rhel7:3scale2.8
 * IMAGESTREAM_TAG_IMPORT_INSECURE=false
 * SYSTEM_DATABASE_IMAGE=registry.redhat.io/rhscl/mysql-57-rhel7:5.7
 * REDIS_IMAGE=registry.redhat.io/rhscl/redis-32-rhel7:3.2
 * System MySQL User=mysql
 * System MySQL Password=mrscfh4h # generated
 * System MySQL Database Name=system
 * System MySQL Root password.=xbi0ch3i # generated
 * WILDCARD_DOMAIN=192.168.64.33.nip.io
 * SYSTEM_BACKEND_USERNAME=3scale_api_user
 * SYSTEM_BACKEND_PASSWORD=kraji167 # generated

CHAPTER 8. RUNNING SOAP TO REST BRIDGE QUICKSTART FOR SPRING BOOT 2 ON FUSE ON OPENSHIFT

87

 * SYSTEM_BACKEND_SHARED_SECRET=8af5m6gb # generated
 *
SYSTEM_APP_SECRET_KEY_BASE=726e63427173e58cbb68a63bdc60c7315565d6acd037c
aedeeb0050ecc0e6e41c3c7ec4aba01c17d8d8b7b7e3a28d6166d351a6238608bb84aa5d5b2d
c02ae60 # generated
 * ADMIN_PASSWORD=b6t784nt # generated
 * ADMIN_USERNAME=admin
 * ADMIN_EMAIL=
 * ADMIN_ACCESS_TOKEN=k055jof4itblvwwn # generated
 * MASTER_NAME=master
 * MASTER_USER=master
 * MASTER_PASSWORD=buikudum # generated
 * MASTER_ACCESS_TOKEN=xa7wkt16 # generated
 * RECAPTCHA_PUBLIC_KEY=
 * RECAPTCHA_PRIVATE_KEY=
 * SYSTEM_REDIS_URL=redis://system-redis:6379/1
 * SYSTEM_MESSAGE_BUS_REDIS_URL=
 * SYSTEM_REDIS_NAMESPACE=
 * SYSTEM_MESSAGE_BUS_REDIS_NAMESPACE=
 * Zync Database PostgreSQL Connection Password=efyJdRccBbYcWtWl # generated
 * ZYNC_SECRET_KEY_BASE=dcmNGWtrjCReuJlQ # generated
 * ZYNC_AUTHENTICATION_TOKEN=3FKMAije3V3RWQQ8 # generated
 * APICAST_ACCESS_TOKEN=2ql8txu4 # generated
 * APICAST_MANAGEMENT_API=status
 * APICAST_OPENSSL_VERIFY=false
 * APICAST_RESPONSE_CODES=true
 * APICAST_REGISTRY_URL=http://apicast-staging:8090/policies

9. Note down the Username/Password which can access the 3scale admin console.

 * ADMIN_PASSWORD=b6t784nt # generated
 * ADMIN_USERNAME=admin

10. Configure RH SSO.

a. Login to RH SSO Admin Console from https://sso-
openshift.OPENSHIFT_IP_ADDR.nip.io/auth with username/password displayed on
console after the RH SSO installation.

b. Click the Add Realm button on the upper left corner of the page.

c. On the Add Realm page, select Import Select file button.

d. Select ./src/main/resources/keycloak-config/realm-export-new.json from the directory
which will import pre-defined necessary realm/client/user/role for this example.

11. Configure 3Scale API Gateway.

a. Login to 3Scale Admin Console from https://3scale-
admin.OPENSHIFT_IP_ADDR.nip.io/p/admin/dashboard with username/password
displayed on console after the 3Scale installation.

b. When creating a new product, select Define manually and use camel-security-bridge for
both Name and System name.

c. When creating a new backend, use camel-security-bridge for both Name and System

Red Hat Fuse 7.11 Fuse on OpenShift Guide

88

https://sso-openshift.openshift_ip_addr.nip.io/auth
https://3scale-admin.openshift_ip_addr.nip.io/p/admin/dashboard

c. When creating a new backend, use camel-security-bridge for both Name and System
name and the Private Base URL should be http://spring-boot-camel-soap-rest-bridge-
openshift.OPENSHIFT_IP_ADDR.nip.io/.

d. Add the newly created backend to the newly created product.

e. Add the Mapping Rule Verb:POST Pattern:/.

f. When creating application plans, use camel-security-bridge for both Name and System
name.

g. When creating applications, choose the new created camel-security-bridge application
plan. After creating the application, note down the API Credentials. Use these credentials to
access the 3scale gateway. For eample,

 User Key bdfb53fe9b426fbf21428fd116035798

h. Edit the newly created camel-security-bridge project and publish it from camel-security-
bridge in the Dashboard.

i. Go to Integration > Settings. Select As HTTP Headers as the Credentials location.

j. From the camel-security-bridge in the Dashboard, go to Integration > Configuration and
promote both the Staging APIcast and Production APIcast.

12. Navigate to the directory that contains the extracted quickstart application (for example,
my_openshift/spring-boot-camel-soap-rest-bridge).

$ cd my_openshift/spring-boot-camel-soap-rest-bridge

13. Build and deploy the project to the OpenShift cluster.

$ mvn clean oc:deploy -Popenshift -DJAVA_OPTIONS="-Dsso.server=https://sso-
openshift.OPENSHIFT_IP_ADDR.nip.io -Dweather.service.host=${your local ip}"

We need to pass in two properties to camel-soap-rest-bridge image on openshift. One is the
RH SSO server address on openshift, and this is https://sso-
openshift.OPENSHIFT_IP_ADDR.nip.io. Another one is the backend soap server. In this
quickstart, we run the backend soap server on the local machine, so pass the local ip address of
your machine as -Dweather.service.host. (This must be an ip address other than localhost or
127.0.0.1).

14. In your browser, navigate to the openshift project in the OpenShift console. Wait until you can
see that the pod for the spring-boot-camel-soap-rest-bridge has started up.

15. On the project’s Overview page, navigate to the details page deployment of the spring-boot-
camel-soap-rest-bridge application:
https://OPENSHIFT_IP_ADDR:8443/console/project/openshift/browse/pods/spring-boot-
camel-soap-rest-bridge-NUMBER_OF_DEPLOYMENT?tab=details.

16. Switch to Logs tab to view the log from Camel.

17. Access OpenApi API.

This example provides API documentation of the service using openapi using the context-path
camelcxf/openapi. You can access the API documentation from your Web browser at http://spring-

CHAPTER 8. RUNNING SOAP TO REST BRIDGE QUICKSTART FOR SPRING BOOT 2 ON FUSE ON OPENSHIFT

89

http://spring-boot-camel-soap-rest-bridge-openshift.openshift_ip_addr.nip.io/
https://sso-openshift.openshift_ip_addr.nip.io
https://openshift_ip_addr:8443/console/project/openshift/browse/pods/spring-boot-camel-soap-rest-bridge-NUMBER_OF_DEPLOYMENT?tab=details

boot-camel-soap-rest-bridge-
openshift.OPENSHIFT_IP_ADDR.nip.io/camelcxf/openapi/openapi.jsonn.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

90

http://spring-boot-camel-soap-rest-bridge-openshift.openshift_ip_addr.nip.io/camelcxf/openapi/openapi.jsonn

CHAPTER 9. RUNNING A CAMEL SERVICE ON SPRING BOOT
WITH XA TRANSACTIONS

The Spring Boot Camel XA transactions quickstart demonstrates how to run a Camel Service on Spring-
Boot that supports XA transactions on two external transactional resources, a JMS resource (A-MQ)
and a database (PostgreSQL). These external resources are provided by OpenShift which must be
started before running this quickstart.

9.1. STATEFULSET RESOURCES

This quickstart uses OpenShift StatefulSet resources to guarantee uniqueness of transaction managers
and require a PersistentVolume to store transaction logs. The application supports scaling on the
StatefulSet resource. Each instance will have its own in-process recovery manager. A special controller
guarantees that when the application is scaled down, all instances, that are terminated, complete all their
work correctly without leaving pending transactions. The scale-down operation is rolled back by the
controller if the recovery manager is not been able to flush all pending work before terminating. This
quickstart uses Spring Boot Narayana recovery controller.

9.2. SPRING BOOT NARAYANA RECOVERY CONTROLLER

The Spring Boot Narayana recovery controller allows to gracefully handle the scaling down phase of a
StatefulSet by cleaning pending transactions before termination. If a scaling down operation is executed
and the pod is not clean after termination, the previous number of replicas is restored, hence effectively
canceling the scaling down operation.

All pods of the StatefulSet require access to a shared volume that is used to store the termination status
of each pod belonging to the StatefulSet. The pod-0 of the StatefulSet periodically checks the status
and scale the StatefulSet to the right size if there’s a mismatch.

In order for the recovery controller to work, edit permissions on the current namespace are required
(role binding is included in the set of resources published to OpenShift). The recovery controller can be
disabled using the CLUSTER_RECOVERY_ENABLED environment variable. In this case, no special
permissions are required on the service account but any scale down operation may leave pending
transactions on the terminated pod without notice.

9.3. CONFIGURING SPRING BOOT NARAYANA RECOVERY
CONTROLLER

Following example shows how to configure Narayana to work on OpenShift with the recovery controller.

Procedure

1. This is a sample application.properties file. Replace the following options in the Kubernetes
yaml descriptor.

Cluster
cluster.nodename=1
cluster.base-dir=./target/tx

Transaction Data
spring.jta.transaction-manager-id=${cluster.nodename}
spring.jta.log-dir=${cluster.base-dir}/store/${cluster.nodename}

CHAPTER 9. RUNNING A CAMEL SERVICE ON SPRING BOOT WITH XA TRANSACTIONS

91

Narayana recovery settings
snowdrop.narayana.openshift.recovery.enabled=true
snowdrop.narayana.openshift.recovery.current-pod-name=${cluster.nodename}
You must enable resource filtering in order to inject the Maven artifactId
snowdrop.narayana.openshift.recovery.statefulset=${project.artifactId}
snowdrop.narayana.openshift.recovery.status-dir=${cluster.base-dir}/status

2. You need a shared volume to store both transactions and information related to termination. It
can be mounted in the StatefulSet yaml descriptor as follows.

apiVersion: apps/v1
kind: StatefulSet
#...
spec:
#...
 template:
#...
 spec:
 containers:
 - env:
 - name: CLUSTER_BASE_DIR
 value: /var/transaction/data
 # Override CLUSTER_NODENAME with Kubernetes Downward API (to use `pod-0`,
`pod-1` etc. as tx manager id)
 - name: CLUSTER_NODENAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.name
#...
 volumeMounts:
 - mountPath: /var/transaction/data
 name: the-name-of-the-shared-volume
#...

Camel Extension for Spring Boot Narayana Recovery Controller

If Camel is found in the Spring Boot application context, the Camel context is automatically stopped
before flushing all pending transactions.

9.4. RUNNING CAMEL SPRING BOOT XA QUICKSTART ON
OPENSHIFT

This procedure shows how to run the quickstart on a running single node OpenShift cluster.

Procedure

1. Download Camel Spring Boot XA project.

git clone --branch spring-boot-camel-xa-7.11.1.fuse-sb2-7_11_1-00022-redhat-00002
https://github.com/jboss-fuse/spring-boot-camel-xa

2. Navigate to spring-boot-camel-xa directory and run following command.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

92

mvn clean install

3. Log in to the OpenShift Server.

oc login -u developer -p developer

4. Create a new project namespace called test (assuming it does not already exist).

oc new-project test

If the test project namespace already exists, switch to it.

oc project test

5. Install dependencies.

Install postgresql using username as theuser and password as Thepassword1!.

oc new-app --param=POSTGRESQL_USER=theuser --
param=POSTGRESQL_PASSWORD='Thepassword1!' --
env=POSTGRESQL_MAX_PREPARED_TRANSACTIONS=100 --template=postgresql-
persistent

Install the A-MQ broker using username as theuser and password as Thepassword1!.

oc new-app --param=MQ_USERNAME=theuser --
param=MQ_PASSWORD='Thepassword1!' --template=amq63-persistent

6. Create a persistent volume claim for the transaction log.

oc create -f persistent-volume-claim.yml

7. Build and deploy your quickstart.

mvn oc:deploy -Popenshift

8. Scale it up to the desired number of replicas.

oc scale statefulset spring-boot-camel-xa --replicas 3

Note: The pod name is used as transaction manager id (spring.jta.transaction-manager-id
property). The current implementation also limits the length of transaction manager ids. So
please note that:

The name of the StatefulSet is an identifier for the transaction system, so it must not be
changed.

You should name the StatefulSet so that all of its pod names have length lower than or
equal to 23 characters. Pod names are created by OpenShift using the convention:
<statefulset-name>-0, <statefulset-name>-1 and so on. Narayana does its best to avoid
having multiple recovery managers with the same id, so when the pod name is longer than
the limit, the last 23 bytes are taken as transaction manager id (after stripping some
characters like -).

CHAPTER 9. RUNNING A CAMEL SERVICE ON SPRING BOOT WITH XA TRANSACTIONS

93

9. Once the quickstart is running, get the base service URL using the following command.

NARAYANA_HOST=$(oc get route spring-boot-camel-xa -o jsonpath={.spec.host})

9.5. TESTING SUCCESSFUL XA TRANSACTIONS

Following workflow shows how to test the successful XA transactions.

Procedure

1. Get the list of messages in the audit_log table.

curl -w "\n" http://$NARAYANA_HOST/api/

2. The list is empty at the beginning. Now you can put the first element.

curl -w "\n" -X POST http://$NARAYANA_HOST/api/?entry=hello

After waiting for some time get the new list.

curl -w "\n" http://$NARAYANA_HOST/api/

3. The new list contains two messages, hello and hello-ok. The hello-ok confirms that the
message has been sent to a outgoing queue and then logged. You can add multiple messages
and see the logs.

9.6. TESTING FAILED XA TRANSACTIONS

Following workflow shows how to test the failed XA transactions.

Procedure

1. Send a message named fail.

curl -w "\n" -X POST http://$NARAYANA_HOST/api/?entry=fail

2. After waiting for some time get the new list.

curl -w "\n" http://$NARAYANA_HOST/api/

3. This message produces an exception at the end of the route, so that the transaction is always
rolled back. You should not find any trace of the message in the audit_log table.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

94

CHAPTER 10. INTEGRATING A CAMEL APPLICATION WITH
THE A-MQ BROKER

This tutorial shows how to deploy a quickstart using the A-MQ image.

10.1. BUILDING AND DEPLOYING A SPRING BOOT CAMEL A-MQ
QUICKSTART

This quickstart demonstrates how to connect a Spring Boot application to AMQ Broker and use JMS
messaging between two Camel routes using Fuse on OpenShift.

Prerequisites

Ensure that AMQ Broker is installed and running as described in Deploying AMQ Broker on
OpenShift.

Ensure that OpenShift is running correctly and the Fuse image streams are already installed in
OpenShift. See Getting Started for Administrators.

Ensure that Maven Repositories are configured for fuse, see Configuring Maven Repositories.

Procedure

1. Log in to the OpenShift server as a developer.

oc login -u developer -p developer

2. Create a new project for quickstart, for example:.

oc new-project quickstart

3. Retrieve the quickstart project by using the Maven archetype:

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/archetypes/archetypes-
catalog/2.2.0.fuse-sb2-790047-redhat-00004/archetypes-catalog-2.2.0.fuse-sb2-790047-
redhat-00004-archetype-catalog.xml -DarchetypeGroupId=org.jboss.fuse.fis.archetypes -
DarchetypeArtifactId=spring-boot-camel-amq-archetype -DarchetypeVersion=2.2.0.fuse-sb2-
790047-redhat-00004

4. Navigate to the quickstart directory fuse711-spring-boot-camel-amq.

cd fuse711-spring-boot-camel-amq

5. Run the following commands to apply configuration files to AMQ Broker. These configuration
files create the AMQ Broker user and the queue, both with the admin privileges.

oc login -u admin -p admin

oc apply -f src/main/resources/k8s

6. Create the ConfigMap for the application, for example:

CHAPTER 10. INTEGRATING A CAMEL APPLICATION WITH THE A-MQ BROKER

95

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html/deploying_amq_broker_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#get-started-admin
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#configure-maven-repositories

kind: ConfigMap
apiVersion: v1
metadata:
 name: spring-boot-camel-amq-config
 namespace: quickstarts
data:
 service.host: 'fuse-broker-amqps-0-svc'
 service.port.amqp: '5672'
 service.port.amqps: '5671'

7. Run the mvn command to deploy the quickstart to the OpenShift server, by using the
ImageStream from Step 3:

mvn oc:deploy -Popenshift -Djkube.generator.fromMode=istag -
Djkube.generator.from=openshift/fuse-java-openshift:1.9

8. To verify that the quickstart is running successfully:

a. Navigate to the OpenShift web console in your browser (https://OPENSHIFT_IP_ADDR,
replace OPENSHIFT_IP_ADDR with the IP address of the cluster) and log in to the console
with your credentials (for example, with username developer and password, developer).

b. In the left hand side panel, expand Home and then click Status to view the Project Status
page for openshift project.

c. Click fuse711-spring-boot-camel-amq to view the Overview information page for the
quickstart.

d. In the left hand side panel, expand Workloads.

e. Click Pods and then click fuse711-spring-boot-camel-amq-xxxxx. The pod details for the
quickstart are displayed.

f. Click Logs to view the logs for the application.
The output shows the messages are sent successfully.

10:17:59.825 [Camel (camel) thread #10 - timer://order] INFO generate-order-route -
Generating order order1379.xml
10:17:59.829 [Camel (camel) thread #8 - JmsConsumer[incomingOrders]] INFO jms-
cbr-route - Sending order order1379.xml to the UK
10:17:59.829 [Camel (camel) thread #8 - JmsConsumer[incomingOrders]] INFO jms-
cbr-route - Done processing order1379.xml
10:18:02.825 [Camel (camel) thread #10 - timer://order] INFO generate-order-route -
Generating order order1380.xml
10:18:02.829 [Camel (camel) thread #7 - JmsConsumer[incomingOrders]] INFO jms-
cbr-route - Sending order order1380.xml to another country
10:18:02.829 [Camel (camel) thread #7 - JmsConsumer[incomingOrders]] INFO jms-cbr-
route - Done processing order1380.xml

9. To view the routes on the web interface, click Open Java Console and check the messages in
the AMQ queue.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

96

https://openshift_ip_addr

CHAPTER 11. INTEGRATING SPRING BOOT WITH
KUBERNETES

The Spring Cloud Kubernetes plugin currently enables you to integrate the following features of Spring
Boot and Kubernetes:

Spring Boot Externalized Configuration

Kubernetes ConfigMap

Kubernetes Secrets

11.1. SPRING BOOT EXTERNALIZED CONFIGURATION

In Spring Boot, externalized configuration is the mechanism that enables you to inject configuration
values from external sources into Java code. In your Java code, injection is typically enabled by
annotating with the @Value annotation (to inject into a single field) or the @ConfigurationProperties
annotation (to inject into multiple properties on a Java bean class).

The configuration data can come from a wide variety of different sources (or property sources). In
particular, configuration properties are often set in a project’s application.properties file (or
application.yaml file, if you prefer).

11.1.1. Kubernetes ConfigMap

A Kubernetes ConfigMap is a mechanism that can provide configuration data to a deployed application.
A ConfigMap object is typically defined in a YAML file, which is then uploaded to the Kubernetes cluster,
making the configuration data available to deployed applications.

11.1.2. Kubernetes Secrets

A Kubernetes Secrets is a mechanism for providing sensitive data (such as passwords, certificates, and
so on) to deployed applications.

11.1.3. Spring Cloud Kubernetes plugin

The Spring Cloud Kubernetes plug-in implements the integration between Kubernetes and Spring Boot.
In principle, you could access the configuration data from a ConfigMap using the Kubernetes API. It is
much more convenient, however, to integrate Kubernetes ConfigMap directly with the Spring Boot
externalized configuration mechanism, so that Kubernetes ConfigMaps behave as an alternative
property source for Spring Boot configuration. This is essentially what the Spring Cloud Kubernetes
plug-in provides.

11.1.4. Enabling Spring Boot with Kubernetes integration

You can enable Kubernetes integration by adding it as a Maven dependency to pom.xml file.

Procedure

1. Enable the Kubernetes integration by adding the following Maven dependency to the pom.xml
file of your Spring Boot Maven project.

<project ...>

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

97

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#spring-boot-externalized-configuration
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#kubernetes-configmap
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#kubernetes-secrets
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://github.com/fabric8io/spring-cloud-kubernetes/

2. To complete the integration,

Add some annotations to your Java source code

Create a Kubernetes ConfigMap object

Modify the OpenShift service account permissions to allow your application to read the
ConfigMap object.

Additional resources

For more details see Running Tutorial for ConfigMap Property Source .

11.2. RUNNING TUTORIAL FOR CONFIGMAP PROPERTY SOURCE

The following tutorial allows you to experiment with setting Kubernetes Secrets and ConfigMaps. Enable
the Spring Cloud Kubernetes plug-in as explained in the Enabling Spring Boot with Kubernetes
Integration to integrate Kubernetes configuration objects with Spring Boot Externalized Configuration.

11.2.1. Running Spring Boot Camel Config quickstart

The following tutorial is based on the spring-boot-camel-config-archetype Maven archetype, which
enables you to set up Kubernetes Secrets and ConfigMaps.

Procedure

1. Open a new shell prompt and enter the following Maven command to create a simple Camel
Spring Boot project.

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/archetypes/archetypes-
catalog/2.2.0.fuse-sb2-7_11_1-00018-redhat-00002/archetypes-catalog-2.2.0.fuse-sb2-
7_11_1-00018-redhat-00002-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=spring-boot-camel-config-archetype \
 -DarchetypeVersion=2.2.0.fuse-sb2-7_11_1-00018-redhat-00002

The archetype plug-in switches to interactive mode to prompt you for the remaining fields:

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse711-configmap

 ...
 <dependencies>
 ...
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-config</artifactId>
 </dependency>
 ...
 </dependencies>
 ...
</project>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

98

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#build-spring-boot-camel-config-quickstart
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#enable-spring-boot-with-kubernetes

Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse711-configmap
version: 1.0-SNAPSHOT
package: org.example.fis
Y: : Y

When prompted, enter org.example.fis for the groupId value and fuse711-configmap for the
artifactId value. Accept the defaults for the remaining fields.

2. Log in to OpenShift and switch to the OpenShift project where you will deploy your application.
For example, to log in as the developer user and deploy to the openshift project, enter the
following commands:

oc login -u developer -p developer
oc project openshift

3. At the command line, change to the directory of the new fuse711-configmap project and
create the Secret object for this application.

cd fuse711-configmap
oc create -f sample-secret.yml

NOTE

It is necessary to create the Secret object before you deploy the application,
otherwise the deployed container enters a wait state until the Secret becomes
available. If you subsequently create the Secret, the container will come out of
the wait state. For more information on how to set up Secret Object, see Setting
up Secret.

4. Build and deploy the quickstart application. From the top level of the fuse711-configmap
project, enter:

mvn oc:deploy -Popenshift

5. View the application log as follows.

a. Navigate to the OpenShift web console in your browser (https://OPENSHIFT_IP_ADDR,
replace OPENSHIFT_IP_ADDR with the IP address of the cluster) and log in to the console
with your credentials (for example, with username developer and password, developer).

b. In the left hand side panel, expand Home. Click Status to view the Project Status page. All
the existing applications in the selected namespace (for example, openshift) are displayed.

c. Click fuse711-configmap to view the Overview information page for the quickstart.

d. In the left hand side panel, expand Workloads.

e. Click Pods and then click fuse711-configmap-xxxx. The pod details for the application are
displayed.

f. Click on the Logs tab to view the application logs.
6. The default recipient list, which is configured in src/main/resources/application.properties,

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

99

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#setting-up-secret
https://openshift_ip_addr

6. The default recipient list, which is configured in src/main/resources/application.properties,
sends the generated messages to two dummy endpoints: direct:async-queue and direct:file.
This causes messages like the following to be written to the application log:

5:44:57.377 [Camel (camel) thread #0 - timer://order] INFO generate-order-route -
Generating message message-44, sending to the recipient list
15:44:57.378 [Camel (camel) thread #0 - timer://order] INFO target-route-queue - ---->
message-44 pushed to an async queue (simulation)
15:44:57.379 [Camel (camel) thread #0 - timer://order] INFO target-route-queue - ----> Using
username 'myuser' for the async queue
15:44:57.380 [Camel (camel) thread #0 - timer://order] INFO target-route--file - ---->
message-44 written to a file

7. Before you can update the configuration of the fuse711-configmap application using a
ConfigMap object, you must give the fuse711-configmap application permission to view data
from the OpenShift ApiServer. Enter the following command to give the view permission to the
fuse711-configmap application’s service account:

oc policy add-role-to-user view system:serviceaccount:openshift:qs-camel-config

NOTE

A service account is specified using the syntax
system:serviceaccount:PROJECT_NAME:SERVICE_ACCOUNT_NAME. The
fis-config deployment descriptor defines the SERVICE_ACCOUNT_NAME to
be qs-camel-config.

8. To see the live reload feature in action, create a ConfigMap object as follows:

oc create -f sample-configmap.yml

The new ConfigMap overrides the recipient list of the Camel route in the running application,
configuring it to send the generated messages to three dummy endpoints: direct:async-queue,
direct:file, and direct:mail. For more information about ConfigMap object, see Setting up
ConfigMap. This causes messages like the following to be written to the application log:

16:25:24.121 [Camel (camel) thread #0 - timer://order] INFO generate-order-route -
Generating message message-9, sending to the recipient list
16:25:24.124 [Camel (camel) thread #0 - timer://order] INFO target-route-queue - ---->
message-9 pushed to an async queue (simulation)
16:25:24.125 [Camel (camel) thread #0 - timer://order] INFO target-route-queue - ----> Using
username 'myuser' for the async queue
16:25:24.125 [Camel (camel) thread #0 - timer://order] INFO target-route--file - ---->
message-9 written to a file (simulation)
16:25:24.126 [Camel (camel) thread #0 - timer://order] INFO target-route--mail - ---->
message-9 sent via mail

11.2.2. Configuration properties bean

A configuration properties bean is a regular Java bean that can receive configuration settings by
injection. It provides the basic interface between your Java code and the external configuration
mechanisms.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

100

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#setting-up-configmap

Externalized Configuration and Bean Registry

Following image shows how Spring Boot Externalized Configuration works in the spring-boot-camel-
config quickstart.

The configuration mechanism has the following main parts:

Property Sources

Provides property settings for injection into configuration. The default property source is the
application.properties file for the application, and this can optionally be overridden by a ConfigMap
object or a Secret object.

Configuration Properties bean

Receives configuraton updates from the property sources. A configuration properties bean is a Java
bean decorated by the @Configuration and @ConfigurationProperties annotations.

Spring bean registry

With the requisite annotations, a configuration properties bean is registered in the Spring bean
registry.

Integration with Camel bean registry

The Camel bean registry is automatically integrated with the Spring bean registry, so that registered
Spring beans can be referenced in your Camel routes.

QuickstartConfiguration class

The configuration properties bean for the fuse711-configmap project is defined as the
QuickstartConfiguration Java class (under the src/main/java/org/example/fis/ directory), as follows:

package org.example.fis;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Configuration;

@Configuration 1
@ConfigurationProperties(prefix = "quickstart") 2
public class QuickstartConfiguration {

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

101

1

2

3

4

5

The @Configuration annotation causes the QuickstartConfiguration class to be instantiated and
registered in Spring as the bean with ID, quickstartConfiguration. This automatically makes the
bean accessible from Camel. For example, the target-route-queue route is able to access the
queueUserName property using the Camel syntax ${bean:quickstartConfiguration?
method=getQueueUsername}.

The @ConfigurationProperties annotation defines a prefix, quickstart, that must be used when
defining property values in a property source. For example, a properties file would reference the
recipients property as quickstart.recipients.

The recipient property is injectable from property sources.

The queueUsername property is injectable from property sources.

The queuePassword property is injectable from property sources.

11.2.3. Setting up Secret

The Kubernetes Secret in this quickstart is set up in the standard way, apart from one additional required
step: the Spring Cloud Kubernetes plug-in must be configured with the mount paths of the Secrets, so
that it can read the Secrets at run time. To set up the Secret:

1. Create a Sample Secret Object

2. Configure volume mount for the Secret

3. Configure spring-cloud-kubernetes to read Secret properties

Sample Secret object

The quickstart project provides a sample Secret, sample-secret.yml, as follows. Property values in
Secret objects are always base64 encoded (use the base64 command-line utility). When the Secret is
mounted in a pod’s filesystem, the values are automatically decoded back into plain text.

 /**
 * A comma-separated list of routes to use as recipients for messages.
 */
 private String recipients; 3

 /**
 * The username to use when connecting to the async queue (simulation)
 */
 private String queueUsername; 4

 /**
 * The password to use when connecting to the async queue (simulation)
 */
 private String queuePassword; 5

 // Setters and Getters for Bean properties
 // NOT SHOWN
 ...
}

Red Hat Fuse 7.11 Fuse on OpenShift Guide

102

1

2

3

sample-secret.yml file

metadata.name: Identifies the Secret. Other parts of the OpenShift system use this identifier to
reference the Secret.

quickstart.queue-username: Is meant to be injected into the queueUsername property of the
quickstartConfiguration bean. The value must be base64 encoded.

quickstart.queue-password: Is meant to be injected into the queuePassword property of the
quickstartConfiguration bean. The value must be base64 encoded.

NOTE

Kubernetes does not allow you to define property names in CamelCase (it requires
property names to be all lowercase). To work around this limitation, use the hyphenated
form queue-username, which Spring Boot matches with queueUsername. This takes
advantage of Spring Boot’s relaxed binding rules for externalized configuration.

Configure volume mount for the Secret

The application must be configured to load the Secret at run time, by configuring the Secret as a volume
mount. After the application starts, the Secret properties then become available at the specified
location in the filesystem. The deployment.yml file for the application is located under src/main/jkube/
directory, which defines the volume mount for the Secret.

deployment.yml file

apiVersion: v1
kind: Secret
metadata: 1
 name: camel-config
type: Opaque
data:
 # The username is 'myuser'
 quickstart.queue-username: bXl1c2VyCg== 2
 quickstart.queue-password: MWYyZDFlMmU2N2Rm 3

spec:
 template:
 spec:
 serviceAccountName: "qs-camel-config"
 volumes: 1
 - name: "camel-config"
 secret:
 # The secret must be created before deploying this application
 secretName: "camel-config"
 containers:
 -
 volumeMounts: 2
 - name: "camel-config"
 readOnly: true
 # Mount the secret where spring-cloud-kubernetes is configured to read it
 # see src/main/resources/bootstrap.yml

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

103

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding

1

2

In the volumes section, the deployment declares a new volume named camel-config, which
references the Secret named camel-config.

In the volumeMounts section, the deployment declares a new volume mount, which references the
camel-config volume and specifies that the Secret volume should be mounted to the path
/etc/secrets/camel-config in the pod’s filesystem.

Configuring spring-cloud-kubernetes to read Secret properties

To integrate secrets with Spring Boot externalized configuration, the Spring Cloud Kubernetes plug-in
must be configured with the secret’s mount path. Spring Cloud Kubernetes reads the secrets from the
specified location and makes them available to Spring Boot as property sources. The Spring Cloud
Kubernetes plug-in is configured by settings in the bootstrap.yml file, located under
src/main/resources in the quickstart project.

bootstrap.yml file

The spring.cloud.kubernetes.secrets.paths property specifies the list of paths of secrets volume
mounts in the pod.

NOTE

A bootstrap.properties file (or bootstrap.yml file) behaves similarly to an
application.properties file, but it is loaded at an earlier phase of application start-up. It is
more reliable to set the properties relating to the Spring Cloud Kubernetes plug-in in the
bootstrap.properties file.

11.2.4. Setting up ConfigMap

In addition to creating a ConfigMap object and setting the view permission appropriately, the

 mountPath: "/etc/secrets/camel-config"
 resources:
requests:
cpu: "0.2"
memory: 256Mi
limits:
cpu: "1.0"
memory: 256Mi
 env:
 - name: SPRING_APPLICATION_JSON
 value: '{"server":{"undertow":{"io-threads":1, "worker-threads":2 }}}'

Startup configuration of Spring-cloud-kubernetes
spring:
 application:
 name: camel-config
 cloud:
 kubernetes:
 reload:
 # Enable live reload on ConfigMap change (disabled for Secrets by default)
 enabled: true
 secrets:
 paths: /etc/secrets/camel-config

Red Hat Fuse 7.11 Fuse on OpenShift Guide

104

1

2

3

integration with Spring Cloud Kubernetes requires you to match the ConfigMap’s metadata.name with
the value of the spring.application.name property configured in the project’s bootstrap.yml file. To
set up the ConfigMap:

Create Sample ConfigMap Object

Set up the view permission

Configure the Spring Cloud Kubernetes plug-in

Sample ConfigMap object

The quickstart project provides a sample ConfigMap, sample-configmap.yml.

metadata.name: Identifies the ConfigMap. Other parts of the OpenShift system use this identifier
to reference the ConfigMap.

data.application.properties: This section lists property settings that can override settings from the
original application.properties file that was deployed with the application.

quickstart.recipients: Is meant to be injected into the recipients property of the
quickstartConfiguration bean.

Setting the view permission

As shown in the deployment.yml file for the Secret, the serviceAccountName is set to qs-camel-
config in the project’s deployment.yml file. Hence, you need to enter the following command to enable
the view permission on the quickstart application (assuming that it deploys into the test project
namespace):

oc policy add-role-to-user view system:serviceaccount:test:qs-camel-config

Configuring the Spring Cloud Kubernetes plug-in

The Spring Cloud Kubernetes plug-in is configured by the following settings in the bootstrap.yml file.

spring.application.name

This value must match the metadata.name of the ConfigMap object (for example, as defined in
sample-configmap.yml in the quickstart project). It defaults to application.

spring.cloud.kubernetes.reload.enabled

Setting this to true enables dynamic reloading of ConfigMap objects.

For more details about the supported properties, see PropertySource Reload Configuration Properties .

kind: ConfigMap
apiVersion: v1
metadata: 1
 # Must match the 'spring.application.name' property of the application
 name: camel-config
data:
 application.properties: | 2
 # Override the configuration properties here
 quickstart.recipients=direct:async-queue,direct:file,direct:mail 3

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

105

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#propertysource-reload-configuration-properties

11.3. USING CONFIGMAP PROPERTYSOURCE

Kubernetes has the notion of ConfigMap for passing configuration to the application. The Spring cloud
Kubernetes plug-in provides integration with ConfigMap to make config maps accessible by Spring
Boot.

The ConfigMap PropertySource when enabled will look up Kubernetes for a ConfigMap named after
the application (see spring.application.name). If the map is found it will read its data and do the
following:

Apply Individual Properties

Apply Property Named application.yaml

Apply Property Named application.properties

11.3.1. Applying individual properties

Let’s assume that we have a Spring Boot application named demo that uses properties to read its
thread pool configuration.

pool.size.core

pool.size.max

This can be externalized to config map in YAML format:

11.3.2. Applying application.yaml ConfigMap property

Individual properties work fine for most cases but sometimes we find YAML is more convenient. In this
case we use a single property named application.yaml and embed our YAML inside it:

11.3.3. Applying application.properties ConfigMap property

You can also define the ConfigMap properties in the style of a Spring Boot application.properties file.

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 pool.size.core: 1
 pool.size.max: 16

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yaml: |-
 pool:
 size:
 core: 1
 max:16

Red Hat Fuse 7.11 Fuse on OpenShift Guide

106

https://kubernetes.io/docs/concepts/configuration/configmap/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#apply-individual-properties
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#apply-property-named-application-yaml
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#apply-property-named-application-properties

You can also define the ConfigMap properties in the style of a Spring Boot application.properties file.
In this case we use a single property named application.properties and list the property settings inside
it:

11.3.4. Deploying a ConfigMap

To deploy a ConfigMap and make it accessible to a Spring Boot application, perform the following
steps.

Procedure

1. In your Spring Boot application, use the externalized configuration mechanism to access the
ConfigMap property source. For example, by annotating a Java bean with the @Configuration
annotation, it becomes possible for the bean’s property values to be injected by a ConfigMap.

2. In your project’s bootstrap.properties file (or bootstrap.yaml file), set the
spring.application.name property to match the name of the ConfigMap.

3. Enable the view permission on the service account that is associated with your application (by
default, this would be the service account called default). For example, to add the view
permission to the default service account:

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc project
-q)

11.4. USING SECRETS PROPERTYSOURCE

Kubernetes has the notion of Secrets for storing sensitive data such as password, OAuth tokens, etc.
The Spring cloud Kubernetes plug-in provides integration with Secrets to make secrets accessible by
Spring Boot.

The Secrets property source when enabled will look up Kubernetes for Secrets from the following
sources. If the secrets are found, their data is made available to the application.

1. Reading recursively from secrets mounts

2. Named after the application (see spring.application.name)

3. Matching some labels

Please note that, by default, consuming Secrets via API (points 2 and 3 above) is not enabled.

11.4.1. Example of setting Secrets

Let’s assume that we have a Spring Boot application named demo that uses properties to read its

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.properties: |-
 pool.size.core: 1
 pool.size.max: 16

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

107

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://kubernetes.io/docs/concepts/configuration/secret/

Let’s assume that we have a Spring Boot application named demo that uses properties to read its
ActiveMQ and PostreSQL configuration.

amq.username
amq.password
pg.username
pg.password

These secrets can be externalized to Secrets in YAML format:

ActiveMQ Secrets

PostreSQL Secrets

11.4.2. Consuming the Secrets

You can select the Secrets to consume in a number of ways:

By listing the directories where the secrets are mapped:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets/activemq,etc/secrets/postgres

If you have all the secrets mapped to a common root, you can set them like this:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets

By setting a named secret:

-Dspring.cloud.kubernetes.secrets.name=postgres-secrets

By defining a list of labels:

apiVersion: v1
kind: Secret
metadata:
 name: activemq-secrets
 labels:
 broker: activemq
type: Opaque
data:
 amq.username: bXl1c2VyCg==
 amq.password: MWYyZDFlMmU2N2Rm

apiVersion: v1
kind: Secret
metadata:
 name: postgres-secrets
 labels:
 db: postgres
type: Opaque
data:
 pg.username: dXNlcgo=
 pg.password: cGdhZG1pbgo=

Red Hat Fuse 7.11 Fuse on OpenShift Guide

108

-Dspring.cloud.kubernetes.secrets.labels.broker=activemq
-Dspring.cloud.kubernetes.secrets.labels.db=postgres

11.4.3. Configuration properties for Secrets PropertySource

You can use the following properties to configure the Secrets property source:

spring.cloud.kubernetes.secrets.enabled

Enable the Secrets property source. Type is Boolean and default is true.

spring.cloud.kubernetes.secrets.name

Sets the name of the secret to look up. Type is String and default is ${spring.application.name}.

spring.cloud.kubernetes.secrets.labels

Sets the labels used to lookup secrets. This property behaves as defined by Map-based binding.
Type is java.util.Map and default is null.

spring.cloud.kubernetes.secrets.paths

Sets the paths where secrets are mounted. This property behaves as defined by Collection-based
binding. Type is java.util.List and default is null.

spring.cloud.kubernetes.secrets.enableApi

Enable/disable consuming secrets via APIs. Type is Boolean and default is false.

NOTE

Access to secrets via API may be restricted for security reasons — the preferred way is to
mount a secret to the POD.

11.5. USING PROPERTYSOURCE RELOAD

Some applications may need to detect changes on external property sources and update their internal
status to reflect the new configuration. The reload feature of Spring Cloud Kubernetes is able to trigger
an application reload when a related ConfigMap or Secret change.

11.5.1. Enabling PropertySource Reload

The PropertySource reload feature of Spring Cloud Kubernetes is disabled by default.

Procedure

1. Navigate to src/main/resources directory of the quickstart project and open the
bootstrap.yml file.

2. Change the configuration property spring.cloud.kubernetes.reload.enabled=true.

11.5.2. Levels of PropertySource Reload

The following levels of reload are supported for property spring.cloud.kubernetes.reload.strategy:

refresh

(default) only configuration beans annotated with @ConfigurationProperties or @RefreshScope
are reloaded. This reload level leverages the refresh feature of Spring Cloud Context.

NOTE

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

109

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding

NOTE

The PropertySource reload feature can only be used for simple properties (that is, not
collections) when the reload strategy is set to refresh. Properties backed by
collections must not be changed at runtime.

restart_context

the whole Spring ApplicationContext is gracefully restarted. Beans are recreated with the new
configuration.

shutdown

the Spring ApplicationContext is shut down to activate a restart of the container. When using this
level, make sure that the lifecycle of all non-daemon threads is bound to the ApplicationContext and
that a replication controller or replica set is configured to restart the pod.

11.5.3. Example of PropertySource Reload

The following example explains what happens when the reload feature is enabled.

Procedure

1. Assume that the reload feature is enabled with default settings (refresh mode). The following
bean will be refreshed when the config map changes:

2. To see the changes that are happening, create another bean that prints the message
periodically as shown below.

3. You can change the message printed by the application by using a ConfigMap as shown below.

@Configuration
@ConfigurationProperties(prefix = "bean")
public class MyConfig {

 private String message = "a message that can be changed live";

 // getter and setters

}

@Component
public class MyBean {

 @Autowired
 private MyConfig config;

 @Scheduled(fixedDelay = 5000)
 public void hello() {
 System.out.println("The message is: " + config.getMessage());
 }
}

apiVersion: v1
kind: ConfigMap
metadata:

Red Hat Fuse 7.11 Fuse on OpenShift Guide

110

Any change to the property named bean.message in the Config Map associated with the pod
will be reflected in the output of the program.

11.5.4. PropertySource Reload operating modes

The reload feature supports two operating modes:

event

(default) watches for changes in ConfigMaps or secrets using the Kubernetes API (web socket). Any
event will produce a re-check on the configuration and a reload in case of changes. The view role on
the service account is required in order to listen for config map changes. A higher level role (eg. edit)
is required for secrets (secrets are not monitored by default).

polling

re-creates the configuration periodically from config maps and secrets to see if it has changed. The
polling period can be configured using the property spring.cloud.kubernetes.reload.period and
defaults to 15 seconds. It requires the same role as the monitored property source. This means, for
example, that using polling on file mounted secret sources does not require particular privileges.

11.5.5. PropertySource Reload configuration properties

The following properties can be used to configure the reloading feature:

spring.cloud.kubernetes.reload.enabled

Enables monitoring of property sources and configuration reload. Type is Boolean and default is
false.

spring.cloud.kubernetes.reload.monitoring-config-maps

Allow monitoring changes in config maps. Type is Boolean and default is true.

spring.cloud.kubernetes.reload.monitoring-secrets

Allow monitoring changes in secrets. Type is Boolean and default is false.

spring.cloud.kubernetes.reload.strategy

The strategy to use when firing a reload (refresh, restart_context, shutdown). Type is Enum and
default is refresh.

spring.cloud.kubernetes.reload.mode

Specifies how to listen for changes in property sources (event, polling). Type is Enum and default is
event.

spring.cloud.kubernetes.reload.period

The period in milliseconds for verifying changes when using the polling strategy. Type is Long and
default is 15000.

Note the following points:

The spring.cloud.kubernetes.reload.* properties should not be used in ConfigMaps or
Secrets. Changing such properties at run time may lead to unexpected results;

Deleting a property or the whole config map does not restore the original state of the beans
when using the refresh level.

 name: reload-example
data:
 application.properties: |-
 bean.message=Hello World!

CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES

111

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE
KARAF IMAGE

This tutorial shows how to create and deploy an application for the Karaf image.

12.1. CREATING A KARAF PROJECT USING MAVEN ARCHETYPE

To create a Karaf project using a Maven archetype, follow these steps.

Procedure

1. Go to the appropriate directory on your system.

2. Launch the Maven command to create a Karaf project

mvn org.apache.maven.plugins:maven-archetype-plugin:2.4:generate \
 -
DarchetypeCatalog=https://maven.repository.redhat.com/ga/io/fabric8/archetypes/archetypes-
catalog/2.2.0.fuse-sb2-7_11_1-00018-redhat-00002/archetypes-catalog-2.2.0.fuse-sb2-
7_11_1-00018-redhat-00002-archetype-catalog.xml \
 -DarchetypeGroupId=org.jboss.fuse.fis.archetypes \
 -DarchetypeArtifactId=karaf-camel-log-archetype \
 -DarchetypeVersion=2.2.0.fuse-sb2-7_11_1-00018-redhat-00002

3. The archetype plug-in switches to interactive mode to prompt you for the remaining fields

Define value for property 'groupId': : org.example.fis
Define value for property 'artifactId': : fuse711-karaf-camel-log
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': org.example.fis: :
Confirm properties configuration:
groupId: org.example.fis
artifactId: fuse711-karaf-camel-log
version: 1.0-SNAPSHOT
package: org.example.fis
 Y: : Y

When prompted, enter org.example.fis for the groupId value and fuse711-karaf-camel-log
for the artifactId value. Accept the defaults for the remaining fields.

4. If the above command exited with the BUILD SUCCESS status, you should now have a new Fuse
on OpenShift project under the fuse711-karaf-camel-log subdirectory.

5. You are now ready to build and deploy the fuse711-karaf-camel-log project. Assuming you are
still logged into OpenShift, change to the directory of the fuse711-karaf-camel-log project,
and then build and deploy the project, as follows.

cd fuse711-karaf-camel-log
mvn oc:deploy -Popenshift

NOTE

For the full list of available Karaf archetypes, see Karaf Archetype Catalog.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

112

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#karaf-archetype-catalog

1

2

3

4

12.2. STRUCTURE OF THE CAMEL KARAF APPLICATION

The directory structure of a Camel Karaf application is as follows:

 ├── pom.xml 1
 ├── README.md
 ├── configuration
 │ └── settings.xml
 └── src
 ├── main
 │ ├── jkube
 │ │ └── deployment.yml 2
 │ ├── java
 │ │ └── org
 │ │ └── example
 │ │ └── fis
 │ └── resources
 │ ├── assembly
 │ │ └── etc
 │ │ └── org.ops4j.pax.logging.cfg 3
 │ └── OSGI-INF
 │ └── blueprint
 │ └── camel-log.xml 4
 └── test
 └── java
 └── org
 └── example
 └── fis

Where the following files are important for developing a Karaf application:

pom.xml: Includes additional dependencies. You can add dependencies in the pom.xml file, for
example for logging you can use SLF4J.

src/main/jkube/deployment.yml: Provides additional configuration that is merged with the default
OpenShift configuration file generated by the openshift-maven-plugin.

NOTE

This file is not used as part of the Karaf application, but it is used in all quickstarts to
limit the resources such as CPU and memory usage.

org.ops4j.pax.logging.cfg: Demonstrates how to customize log levels, sets logging level to DEBUG
instead of the default INFO.

camel-log.xml: Contains the source code of the application.

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 </dependency>

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

113

12.3. KARAF ARCHETYPE CATALOG

The Karaf archetype catalog includes the following examples.

Table 12.1. Karaf Maven Archetypes

Name Description

karaf-camel-amq-archetype Demonstrates how to send and receive messages to an Apache
ActiveMQ message broker, using the Camel amq component.

karaf-camel-log-archetype Demonstrates a simple Apache Camel application that logs a
message to the server log every 5th second.

karaf-camel-rest-sql-archetype Demonstrates how to use SQL via JDBC along with Camel’s
REST DSL to expose a RESTful API.

karaf-cxf-rest-archetype Demonstrates how to create a RESTful(JAX-RS) web service
using CXF and expose it through the OSGi HTTP Service.

12.4. USING FABRIC8 KARAF FEATURES

Fabric8 provides support for Apache Karaf making it easier to develop OSGi apps for Kubernetes.

The important features of Fabric8 are as listed below:

Different strategies to resolve placeholders in Blueprint XML files.

Environment variables

System properties

Services

Kubernetes ConfigMap

Kubernetes Secrets

Using Kubernetes configuration maps to dynamically update the OSGi configuration
administration.

Provides Kubernetes heath checks for OSGi services.

12.4.1. Adding Fabric8 Karaf features

To use the features, add fabric8-karaf-features dependency to the project POM file.

Procedure

1. Open your project’s pom.xml file and add fabric8-karaf-features dependency.

<dependency>
 <groupId>io.fabric8</groupId>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

114

The fabric8 karaf features will be installed into the Karaf server.

12.4.2. Adding Fabric8 Karaf Core bundle functionality

The bundle fabric8-karaf-core provides the functionalities used by Blueprint and ConfigAdmin
extensions.

Procedure

1. Open your project’s pom.xml and add fabric8-karaf-core to startupFeatures section.

This will add the fabric8-karaf-core feature in a custom Karaf distribution.

12.4.3. Setting the Property Placeholder service options

The bundle fabric8-karaf-core exports a service PlaceholderResolver with the following interface:

 <artifactId>fabric8-karaf-features</artifactId>
 <version>${fabric8.version}</version>
 <classifier>features</classifier>
 <type>xml</type>
</dependency>

<startupFeatures>
 ...
 <feature>fabric8-karaf-core</feature>
 ...
</startupFeatures>

public interface PlaceholderResolver {
 /**
 * Resolve a placeholder using the strategy indicated by the prefix
 *
 * @param value the placeholder to resolve
 * @return the resolved value or null if not resolved
 */
 String resolve(String value);

 /**
 * Replaces all the occurrences of variables with their matching values from the resolver using the
given source string as a template.
 *
 * @param source the string to replace in
 * @return the result of the replace operation
 */
 String replace(String value);

 /**
 * Replaces all the occurrences of variables within the given source builder with their matching
values from the resolver.
 *
 * @param value the builder to replace in
 * @rerurn true if altered
 */
 boolean replaceIn(StringBuilder value);

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

115

The PlaceholderResolver service acts as a collector for different property placeholder resolution
strategies. The resolution strategies it provides by default are listed in the table Resolution Strategies.
To set the property placeholder service options you can use system properties or environment variables
or both.

Procedure

1. To access ConfigMaps on OpenShift the service account needs view permissions. Add view
permissions to the service account.

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc project
-q)

2. Mount the secret to the Pod as access to secrets through API might be restricted.

3. Secrets, available on the Pod as volume mounts, are mapped to a directory named as the secret,
as shown below

 /**
 * Replaces all the occurrences of variables within the given dictionary
 *
 * @param dictionary the dictionary to replace in
 * @rerurn true if altered
 */
 boolean replaceAll(Dictionary<String, Object> dictionary);

 /**
 * Replaces all the occurrences of variables within the given dictionary
 *
 * @param dictionary the dictionary to replace in
 * @rerurn true if altered
 */
 boolean replaceAll(Map<String, Object> dictionary);
}

containers:
 -
 env:
 - name: FABRIC8_K8S_SECRETS_PATH
 value: /etc/secrets
 volumeMounts:
 - name: activemq-secret-volume
 mountPath: /etc/secrets/activemq
 readOnly: true
 - name: postgres-secret-volume
 mountPath: /etc/secrets/postgres
 readOnly: true

volumes:
 - name: activemq-secret-volume
 secret:
 secretName: activemq

Red Hat Fuse 7.11 Fuse on OpenShift Guide

116

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#resolution-strategies

12.4.4. Adding a custom property placeholder resolver

You can add a custom placeholder resolver to support a specific need, such as custom encryption. You
can also use the PlaceholderResolver service to make the resolvers available to Blueprint and
ConfigAdmin.

Procedure

1. Add the following mvn dependency to the project pom.xml.

pom.xml

2. Implement the PropertiesFunction interface and register it as OSGi service using SCR.

3. You can reference the resolver in Configuration management as follows.

properties

my.property = $[myResolver:value-to-resolve]

 - name: postgres-secret-volume
 secret:
 secretName: postgres

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-karaf-core</artifactId>
</dependency>

import io.fabric8.karaf.core.properties.function.PropertiesFunction;
import org.apache.felix.scr.annotations.Component;
import org.apache.felix.scr.annotations.ConfigurationPolicy;
import org.apache.felix.scr.annotations.Service;

@Component(
 immediate = true,
 policy = ConfigurationPolicy.IGNORE,
 createPid = false
)
@Service(PropertiesFunction.class)
public class MyPropertiesFunction implements PropertiesFunction {
 @Override
 public String getName() {
 return "myResolver";
 }

 @Override
 public String apply(String remainder) {
 // Parse and resolve remainder
 return remainder;
 }
}

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

117

https://github.com/jboss-fuse/fabric8/blob/3.0.11.redhat-7.x/components/fabric8-karaf/fabric8-karaf-core/src/main/java/io/fabric8/karaf/core/properties/function/PropertiesFunction.java

12.4.5. List of resolution strategies

The PlaceholderResolver service acts as a collector for different property placeholder resolution
strategies. The resolution strategies it provides by default are listed in the table.

1. List of resolution strategies

Prefix Example Description

env env:JAVA_HOME look up the property from OS
environment variables.

`sys sys:java.version look up the property from Java
JVM system properties.

`service service:amq look up the property from OS
environment variables using the
service naming convention.

service.host service.host:amq look up the property from OS
environment variables using the
service naming convention
returning the hostname part only.

service.port service.port:amq look up the property from OS
environment variables using the
service naming convention
returning the port part only.

k8s:map k8s:map:myMap/myKey look up the property from a
Kubernetes ConfigMap (via API)

k8s:secret k8s:secret:amq/password look up the property from a
Kubernetes Secrets (via API or
volume mounts)

12.4.6. List of Property Placeholder service options

The property placeholder service supports the following options:

1. List of property placeholder service options

Name Default Description

fabric8.placeholder.prefix $[The prefix for the placeholder

fabric8.placeholder.suffix] The suffix for the placeholder

fabric8.k8s.secrets.path null A comma delimited list of paths
where secrets are mapped

Red Hat Fuse 7.11 Fuse on OpenShift Guide

118

fabric8.k8s.secrets.api.enabl
ed

false Enable/Disable consuming
secrets via APIs

Name Default Description

12.5. ADDING FABRIC8 KARAF CONFIG ADMIN SUPPORT

12.5.1. Adding Fabric8 Karaf Config admin support

You can add Fabric8 Karaf Config admin support to your custom Karaf distribution.

Procedure

Open your project’s pom.xml and add fabric8-karaf-cm to startupFeatures section.

pom.xml

12.5.2. Adding ConfigMap injection

The fabric8-karaf-cm provides a ConfigAdmin bridge that inject ConfigMap values in Karaf’s
ConfigAdmin.

Procedure

1. To be added by the ConfigAdmin bridge, a ConfigMap has to be labeled with karaf.pid. The
karaf.pid value corresponds to the pid of your component. For example,

2. To define your configuration, you can use single property names. Individual properties work for
most cases. It is same as the pid file in karaf/etc. For example,

<startupFeatures>
 ...
 <feature>fabric8-karaf-cm</feature>
 ...
</startupFeatures>

kind: ConfigMap
apiVersion: v1
metadata:
 name: myconfig
 labels:
 karaf.pid: com.mycompany.bundle
data:
 example.property.1: my property one
 example.property.2: my property two

kind: ConfigMap
apiVersion: v1
metadata:
 name: myconfig
 labels:

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

119

12.5.3. Configuration plugin

The fabric8-karaf-cm provides a ConfigurationPlugin which resolves configuration property
placeholders.

To enable property substitution with the fabric8-karaf-cm plug-in, you must set the Java property,
fabric8.config.plugin.enabled to true. For example, you can set this property using the
JAVA_OPTIONS environment variable in the Karaf image, as follows:

JAVA_OPTIONS=-Dfabric8.config.plugin.enabled=true

12.5.4. Config Property Placeholders

An example of configuration property placeholders is shown below.

my.service.cfg

my-service.xml

12.5.5. Fabric8 Karaf Config Admin options

Fabric8 Karaf Config Admin supports the following options.

 karaf.pid: com.mycompany.bundle
data:
 com.mycompany.bundle.cfg: |
 example.property.1: my property one
 example.property.2: my property two

 amq.usr = $[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/username]
 amq.pwd = $[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/password]
 amq.url = tcp://$[env+service:ACTIVEMQ_SERVICE_NAME]

 <?xml version="1.0" encoding="UTF-8"?>

 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <cm:property-placeholder persistent-id="my.service" id="my.service" update-strategy="reload"/>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="userName" value="${amq.usr}"/>
 <property name="password" value="${amq.pwd}"/>
 <property name="brokerURL" value="${amq.url}"/>
 </bean>
 </blueprint>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

120

Name Default Description

fabric8.config.plugin.enabled false Enable ConfigurationPlugin

fabric8.cm.bridge.enabled true Enable ConfigAdmin bridge

fabric8.config.watch true Enable watching for ConfigMap
changes

fabric8.config.merge false Enable merge ConfigMap values
in ConfigAdmin

fabric8.config.meta true Enable injecting ConfigMap meta
in ConfigAdmin bridge

fabric8.pid.label karaf.pid Define the label the ConfigAdmin
bridge looks for (that is, a
ConfigMap that needs to be
selected must have that label; the
value of which determines to
what PID it gets associated)

fabric8.pid.filters empty Define additional conditions for
the ConfigAdmin bridge to select
a ConfigMap. The supported
syntax is:

Conditions on different
labels are separated by
"," and are intended in
AND between each
other.

Inside a label, semicolons
(;) are considered as OR
and can be used as
separators for conditions
on the label value.

For example, a filter like -
Dfabric8.pid.filters=appName=A
;B,database.name=my.oracle.dat
asource translates to "give me all
the ConfigMaps that have a label
appName with values A or B and a
label database.name equals to
my.oracle.datasource".

IMPORTANT

ConfigurationPlugin requires Aries Blueprint CM 1.0.9 or above.

12.6. ADDING FABRIC8 KARAF BLUEPRINT SUPPORT

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

121

The fabric8-karaf-blueprint uses Aries PropertyEvaluator and property placeholders resolvers from
fabric8-karaf-core to resolve placeholders in your Blueprint XML file.

Procedure

To include the feature for Blueprint support in your custom Karaf distribution, add fabric8-
karaf-blueprint to startupFeatures section in your project pom.xml.

Example

The fabric8 evaluator supports chained evaluators, such as ${env+service:MY_ENV_VAR}. You need to
resolve MY_ENV_VAR variable against environment variables. The result is then resolved using service
function. For example,

IMPORTANT

Nested property placeholder substitution requires Aries Blueprint Core 1.7.0 or above.

12.7. ENABLING FABRIC8 KARAF HEALTH CHECKS

It is recommended to install the fabric8-karaf-checks as a startup feature. Once enable, your Karaf
server can expose http://0.0.0.0:8181/readiness-check and http://0.0.0.0:8181/health-check URLs
which can be used by Kubernetes for readiness and liveness probes.

NOTE

<startupFeatures>
 ...
 <feature>fabric8-karaf-blueprint</feature>
 ...
</startupFeatures>

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.2.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd
 http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.3.0
 http://aries.apache.org/schemas/blueprint-ext/blueprint-ext-1.3.xsd">

 <ext:property-placeholder evaluator="fabric8" placeholder-prefix="$[" placeholder-suffix="]"/>

 <bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="userName"
value="$[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/username]"/>
 <property name="password"
value="$[k8s:secret:$[env:ACTIVEMQ_SERVICE_NAME]/password]"/>
 <property name="brokerURL" value="tcp://$[env+service:ACTIVEMQ_SERVICE_NAME]"/>
 </bean>
</blueprint>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

122

https://github.com/apache/aries/blob/trunk/blueprint/blueprint-core/src/main/java/org/apache/aries/blueprint/ext/evaluator/PropertyEvaluator.java
http://0.0.0.0:8181/readiness-check
http://0.0.0.0:8181/health-check

NOTE

These URLs will only respond with a HTTP 200 status code when the following is true:

OSGi Framework is started.

All OSGi bundles are started.

All boot features are installed.

All deployed BluePrint bundles are in the created state.

All deployed SCR bundles are in the active, registered or factory state.

All web bundles are deployed to the web server.

All created Camel contexts are in the started state.

Procedure

1. Open you project’s pom.xml and add fabric8-karaf-checks feature in the startupFeatures
section.

pom.xml

The oc:resources goal will detect if your using the fabric8-karaf-checks feature and
automatically add the Kubernetes for readiness and liveness probes to your container’s
configuration.

12.7.1. Configuring health checks

By default, the fabric8-karaf-checks endpoints are registered into the built-in HTTP server engine
(Undertow) running on port 8181. To avoid the health and readiness check requests being blocked by
other long running HTTP processes in the container, the endpoints can be registered into a separate
Undertow container.

These checks can be configured in the etc/io.fabric8.checks.cfg file by setting the following properties:

httpPort: If this property is specified and is a valid port number, the readiness-check and
health-check endpoints will be registered into a separate instance of Undertow server

readinessCheckPath and healthCheckPath properties allow you to configure the actual URIs
that can be used for readiness and health checks. By default these are the same as previous
values.

NOTE

<startupFeatures>
 ...
 <feature>fabric8-karaf-checks</feature>
 ...
</startupFeatures>

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

123

NOTE

These properties may be changed after starting Fuse-Karaf, but may also be specified in
etc/io.fabric8.checks.cfg file being part of custom Karaf distro, which is used by
customers who want to have fabric8-karaf-checks feature running out of the box.

The following example illustrates the configuration of the health and readiness properties in the
etc/io.fabric8.checks.cfg file:

Example

httpPort = 8182
readinessCheckPath = /readiness-check
healthCheckPath = /health-check

12.8. ADDING CUSTOM HEALTH CHECKS

You can provide additional custom heath checks to prevent the Karaf server from receiving user traffic
before it is ready to process the requests. To enable custom health checks you need to implement the
io.fabric8.karaf.checks.HealthChecker or io.fabric8.karaf.checks.ReadinessChecker interfaces and
register those objects in the OSGi registry.

Procedure

Add the following mvn dependency to the project pom.xml file.

pom.xml

NOTE

The simplest way to create and registered an object in the OSGi registry is to use
SCR.

Example

An example that performs a health check to make sure you have some free disk space, is shown below:

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-karaf-checks</artifactId>
</dependency>

import io.fabric8.karaf.checks.*;
import org.apache.felix.scr.annotations.*;
import org.apache.commons.io.FileSystemUtils;
import java.util.Collections;
import java.util.List;

@Component(
 name = "example.DiskChecker",
 immediate = true,
 enabled = true,
 policy = ConfigurationPolicy.IGNORE,

Red Hat Fuse 7.11 Fuse on OpenShift Guide

124

 createPid = false
)
@Service({HealthChecker.class, ReadinessChecker.class})
public class DiskChecker implements HealthChecker, ReadinessChecker {

 public List<Check> getFailingReadinessChecks() {
 // lets just use the same checks for both readiness and health
 return getFailingHeathChecks();
 }

 public List<Check> getFailingHealthChecks() {
 long free = FileSystemUtils.freeSpaceKb("/");
 if (free < 1024 * 500) {
 return Collections.singletonList(new Check("disk-space-low", "Only " + free + "kb of disk space
left."));
 }
 return Collections.emptyList();
 }
}

CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE

125

CHAPTER 13. DEVELOPING AN APPLICATION FOR THE
JBOSS EAP IMAGE

To develop Fuse applications on JBoss EAP, an alternative is to use the S2I source workflow to create an
OpenShift project for Red Hat Camel CDI with EAP.

Prerequisites

Ensure that OpenShift is running correctly and the Fuse image streams are already installed in
OpenShift. See Getting Started for Administrators.

Ensure that Maven Repositories are configured for fuse, see Configuring Maven Repositories.

13.1. CREATING A JBOSS EAP PROJECT USING THE S2I SOURCE
WORKFLOW

To develop Fuse applications on JBoss EAP, an alternative is to use the S2I source workflow to create an
OpenShift project for Red Hat Camel CDI with EAP.

Procedure

1. Add the view role to the default service account to enable clustering. This grants the user the
view access to the default service account. Service accounts are required in each project to run
builds, deployments, and other pods. Enter the following oc client commands in a shell prompt:

oc login -u developer -p developer
oc policy add-role-to-user view -z default

2. View the installed Fuse on OpenShift templates.

oc get template -n openshift

3. Enter the following command to create the resources required for running the Red Hat Fuse
7.11 Camel CDI with EAP quickstart. It creates a deployment config and build config for the
quickstart. The information about the quickstart and the resources created is displayed on the
terminal.

oc new-app s2i-fuse7-eap-camel-cdi

--> Creating resources ...
 service "s2i-fuse7-eap-camel-cdi" created
 service "s2i-fuse7-eap-camel-cdi-ping" created
 route.route.openshift.io "s2i-fuse7-eap-camel-cdi" created
 imagestream.image.openshift.io "s2i-fuse7-eap-camel-cdi" created
 buildconfig.build.openshift.io "s2i-fuse7-eap-camel-cdi" created
 deploymentconfig.apps.openshift.io "s2i-fuse7-eap-camel-cdi" created
--> Success
 Access your application via route 's2i-fuse7-eap-camel-cdi-OPENSHIFT_IP_ADDR'
 Build scheduled, use 'oc logs -f bc/s2i-fuse7-eap-camel-cdi' to track its progress.
 Run 'oc status' to view your app.

4. Navigate to the OpenShift web console in your browser (https://OPENSHIFT_IP_ADDR,

Red Hat Fuse 7.11 Fuse on OpenShift Guide

126

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#get-started-admin
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#configure-maven-repositories

4. Navigate to the OpenShift web console in your browser (https://OPENSHIFT_IP_ADDR,
replace OPENSHIFT_IP_ADDR with the IP address of the cluster) and log in to the console
with your credentials (for example, with username developer and password, developer).

5. In the left hand side panel, expand Home. Click Status to view the Project Status page. All the
existing applications in the selected namespace (for example, openshift) are displayed.

6. Click s2i-fuse7-eap-camel-cdi to view the Overview information page for the quickstart.

7. Click the Resources tab and then click the link displayed in the Routes section to access the
application.

CHAPTER 13. DEVELOPING AN APPLICATION FOR THE JBOSS EAP IMAGE

127

https://openshift_ip_addr

The link has the form http://s2i-fuse7-eap-camel-cdi-OPENSHIFT_IP_ADDR. This shows a
message like the following in your browser:

Hello world from 172.17.0.3

8. You can also specify a name using the name parameter in the URL. For example, if you enter the
URL, http://s2i-fuse7-eap-camel-cdi-openshift.apps.cluster-name.openshift.com/?name=jdoe,
in your browser you see the response:

Hello jdoe from 172.17.0.3

9. Click View Logs to view the logs for the application.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

128

http://s2i-fuse7-eap-camel-cdi-openshift_ip_addr
http://s2i-fuse7-eap-camel-cdi-openshift.apps.cluster-name.openshift.com/?name=jdoe

10. To shut down the running pod,

a. Click the Overview tab to return to the overview information page of the application.

b. Click the icon next to Desired Count. The Edit Count window is displayed.

c. Use the down arrow to scale down to zero to stop the pod.

13.2. STRUCTURE OF THE JBOSS EAP APPLICATION

You can find the source code for the Red Hat Fuse 7.11 Camel CDI with EAP example at the following
location:

https://github.com/wildfly-extras/wildfly-camel-examples/tree/wildfly-camel-examples-5.2.0.fuse-
720021/camel-cdi

The directory structure of the Camel on EAP application is as follows:

 ├── pom.xml
 ├── README.md
 ├── configuration
 │ └── settings.xml
 └── src
 └── main
 ├── java
 │ └── org
 │ └── wildfly
 │ └── camel
 │ └── examples
 │ └── cdi
 │ └── camel
 │ ├── MyRouteBuilder.java
 │ ├── SimpleServlet.java
 │ └── SomeBean.java
 └── webapp
 └── WEB-INF
 └── beans.xml

Where the following files are important for developing a JBoss EAP application:

pom.xml

Includes additional dependencies.

13.3. JBOSS EAP QUICKSTART TEMPLATES

The following S2I templates are provided for Fuse on JBoss EAP:

Table 13.1. JBoss EAP S2I templates

CHAPTER 13. DEVELOPING AN APPLICATION FOR THE JBOSS EAP IMAGE

129

Name Description

JBoss Fuse 7.11 Camel A-MQ with EAP
(eap-camel-amq-template)

Demonstrates using the camel-activemq component to connect
to an AMQ message broker running in OpenShift. It is assumed
that the broker is already deployed.

Red Hat Fuse 7.11 Camel CDI with EAP
(eap-camel-cdi-template)

Demonstrates using the camel-cdi component to integrate CDI
beans with Camel routes.

Red Hat Fuse 7.11 CXF JAX-RS with EAP
(eap-camel-cxf-jaxrs-template)

Demonstrates using the camel-cxf component to produce and
consume JAX-RS REST services.

Red Hat Fuse 7.11 CXF JAX-WS with EAP
(eap-camel-cxf-jaxws-template)

Demonstrates using the camel-cxf component to produce and
consume JAX-WS web services.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

130

CHAPTER 14. USING PERSISTENT STORAGE IN FUSE ON
OPENSHIFT

Fuse on OpenShift applications are based on OpenShift containers, which do not have a persistent
filesystem. Every time you start an application, it is started in a new container with an immutable Docker-
formatted image. Hence any persisted data in the file systems is lost when the container stops. But
applications need to store some state as data in a persistent store and sometimes applications share
access to a common data store. OpenShift platform supports provisioning of external stores as
Persistent Storage.

14.1. ABOUT VOLUMES AND VOLUME TYPES

OpenShift allows pods and containers to mount Volumes as file systems which are backed by multiple
local or network attached storage endpoints.

Volume types include:

emptydir (empty directory): This is a default volume type. It is a directory which gets allocated
when the pod is created on a local host. It is not copied across the servers and when you delete
the pod the directory is removed.

configmap: It is a directory with contents populated with key-value pairs from a named
configmap.

hostPath (host directory): It is a directory with specific path on any host and it requires elevated
privileges.

secret (mounted secret): Secret volumes mount a named secret to the provided directory.

persistentvolumeclaim or pvc (persistent volume claim): This links the volume directory in the
container to a persistent volume claim you have allocated by name. A persistent volume claim is
a request to allocate storage. Note that if your claim is not bound, your pods will not start.

Volumes are configured at the Pod level and can only directly access an external storage using
hostPath. Hence it is harder to mange the access to shared resources for multiple Pods as hostPath
volumes.

14.2. ABOUT PERSISTENTVOLUMES

PersistentVolumes allow cluster administrators to provision cluster wide storage which is backed by
various types of network storage like NFS, Ceph RBD, AWS Elastic Block Store (EBS), etc.
PersistentVolumes also specify capacity, access modes, and recycling policies. This allows pods from
multiple Projects to access persistent storage without worrying about the nature of the underlying
resource.

See Configuring Persistent Storage for creating various types of PersistentVolumes.

14.3. CONFIGURING PERSISTENT VOLUME

You can provision a persistent volume by creating a configuration file. This storage then can be accessed
by creating a PersistentVolume Claim.

Procedure

1. Create a configuration file named pv.yaml using the sample configuration below. This

CHAPTER 14. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT

131

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/index#configuring-persistent-storage

1. Create a configuration file named pv.yaml using the sample configuration below. This
provisions a path on the host machine as a PersistentVolume named pv001.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 2Mi
 hostPath:
 path: /data/pv0001/

Here the host path is /data/pv0001 and storage capacity is limited to 2MB. For example, when
using OpenShift CDK it will provision the directory /data/pv0001 from the virtual machine
hosting the OpenShift Cluster.

2. Create the PersistentVolume.

oc create -f pv.yaml

3. Verify the creation of PersistentVolume. This will list all the PersistentVolumes configured in
your OpenShift cluster:

oc get pv

14.4. CREATING PERSISTENTVOLUMECLAIMS

A PersistentVolume exposes a storage endpoint as a named entity in an OpenShift cluster. To access
this storage from Projects, PersistentVolumeClaims must be created that can access the
PersistentVolume. PersistentVolumeClaims are created for each Project with customized claims for a
certain amount of storage with certain access modes.

Procedure

The sample configuration below creates a claim named pvc0001 for 1MB of storage with read-
write-once access against a PersistentVolume named pv0001.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc0001
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Mi

14.5. USING PERSISTENT VOLUMES IN PODS

Pods use volume mounts to define the filesystem mount location and volumes to define reference

Red Hat Fuse 7.11 Fuse on OpenShift Guide

132

Pods use volume mounts to define the filesystem mount location and volumes to define reference
PersistentVolumeClaims.

Procedure

1. Create a sample container configuration as shown below which mounts
PersistentVolumeClaim pvc0001 at /usr/share/data in its filesystem.

spec:
 template:
 spec:
 containers:
 - volumeMounts:
 - name: vol0001
 mountPath: /usr/share/data
 volumes:
 - name: vol0001
 persistentVolumeClaim:
 claimName: pvc0001

Any data written by the application to the directory /usr/share/data is now persisted across
container restarts.

2. Add this configuration in the file src/main/jkube/deployment.yml in a Fuse on OpenShift
application and create OpenShift resources using command:

mvn oc:resource-apply

3. Verify that the created DeploymentConfiguration has the volume mount and the volume.

oc describe deploymentconfig <application-dc-name>

For Fuse on OpenShift quickstarts, replace the <application-dc-name> with the Maven project
name, for example spring-boot-camel.

CHAPTER 14. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT

133

CHAPTER 15. PATCHING FUSE ON OPENSHIFT
You might need to perform one or more of the following tasks to bring the Fuse on OpenShift product
up to the latest patch level:

Patch the Fuse on OpenShift Images

Update the Fuse on OpenShift images on your OpenShift server, so that new application builds are
based on patched versions of the Fuse base images.

Patch Application Dependencies using BOM

Update the dependencies in your project POM file, so that your application uses patched versions of
the Maven artifacts.

Patch the Fuse on OpenShift Templates

Update the Fuse on OpenShift templates on your OpenShift server, so that new projects created
with the Fuse on OpenShift templates use patched versions of the Maven artifacts.

15.1. IMPORTANT NOTE ON BOMS AND MAVEN DEPENDENCIES

In the context of Fuse on OpenShift, applications are built entirely using Maven artifacts downloaded
from the Red Hat Maven repositories. Hence, to patch your application code, all that you need to do is to
edit your project’s POM file, changing the Maven dependencies to use the appropriate Fuse on
OpenShift patch version.

It is important to upgrade all of the Maven dependencies for Fuse on OpenShift together, so that your
project uses dependencies that are all from the same patch version. The Fuse on OpenShift project
consists of a carefully curated set of Maven artifacts that are built and tested together. If you try to mix
and match Maven artifacts from different Fuse on OpenShift patch levels, you could end up with a
configuration that is untested and unsupported by Red Hat. The easiest way to avoid this scenario is to
use a Bill of Materials (BOM) file in Maven, which defines the versions of all the Maven artifacts
supported by Fuse on OpenShift. When you update the version of a BOM file, you automatically update
the versions for all the Fuse on OpenShift Maven artifacts in your project’s POM.

The POM file that is generated by a Fuse on OpenShift Maven archetype or by a Fuse on OpenShift
template has a standard layout that uses a BOM file and defines the versions of certain required plugins.
It is recommended that you stick to this standard layout in your own applications, because this makes it
much easier to patch and upgrade your application’s dependencies.

15.2. PATCHING THE FUSE ON OPENSHIFT IMAGES

The Fuse on OpenShift images are updated independently of the main Fuse product. If any patches are
required for the Fuse on OpenShift images, updated images will be made available on the standard Fuse
on OpenShift image streams and you can download the updated images from registry.redhat.io. Fuse
on OpenShift provides the following image streams (identified by their OpenShift image stream name):

fuse-java-openshift-rhel8

fuse-java-openshift-jdk11-rhel8

fuse-karaf-openshift-rhel8

fuse-eap-openshift-jdk8-rhel7

fuse-eap-openshift-jdk11-rhel8

Red Hat Fuse 7.11 Fuse on OpenShift Guide

134

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#patch-fuse-on-openshift-images
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#patch-applications-new-style-bom
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.11/html-single/fuse_on_openshift_guide#patch-fuse-on-openshift-templates

fuse-console-rhel8

fuse-apicurito-generator-rhel8

fuse-apicurito-rhel8

Procedure

1. Fuse on OpenShift image streams are normally installed on the openshift project on the
OpenShift server. To check the status of the Fuse on OpenShift images on OpenShift, login to
OpenShift as an administrator and enter the following command:

$ oc get is -n openshift
NAME DOCKER REPO TAGS
UPDATED
fuse-console-rhel8 172.30.1.1:5000/openshift/fuse7/fuse-console-rhel8
1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
fuse7-eap-openshift-jdk8-rhel7 172.30.1.1:5000/openshift/fuse7/fuse-eap-openshift-jdk8-
rhel7 1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
fuse7-eap-openshift-jdk11-rhel8 172.30.1.1:5000/openshift/fuse7/fuse-eap-openshift-jdk11-
rhel8 1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
fuse7-java-openshift-rhel8 172.30.1.1:5000/openshift/fuse7/fuse-java-openshift-rhel8
1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
fuse7-java-openshift-jdk11-rhel8 172.30.1.1:5000/openshift/fuse7/fuse-java-openshift-jdk11-
rhel8 1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
fuse7-karaf-openshift-rhel8 172.30.1.1:5000/openshift/fuse7/fuse-karaf-openshift-rhel8
1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
fuse-apicurito-generator-rhel8 172.30.1.1:5000/openshift/fuse7/fuse-apicurito-generator-
rhel8 1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago
apicurito-ui-rhel8 172.30.1.1:5000/openshift/fuse7/apicurito-ui-rhel8
1.5,1.6,1.7,1.8,1.9,1.10,1.11 About an hour ago

2. You can now update each image stream one at a time:

oc import-image -n openshift fuse7/fuse7-java-openshift-rhel8:1.11
oc import-image -n openshift fuse7/fuse7-java-openshift-jdk11-rhel8:1.11
oc import-image -n openshift fuse7/fuse7-karaf-openshift-rhel8:1.11
oc import-image -n openshift fuse7/fuse7-eap-openshift-jdk8-rhel7:1.11
oc import-image -n openshift fuse7/fuse7-eap-openshift--jdk11-rhel8:1.11
oc import-image -n openshift fuse7/fuse7-console-rhel8:1.11
oc import-image -n openshift fuse7/apicurito-ui-rhel8:1.11
oc import-image -n openshift fuse7/fuse-apicurito-generator-rhel8:1.11

NOTE

The version tags in the image stream have the form 1.9-<BUILDNUMBER>. When you
specify the tag as 1.9, you will get the latest build in the 1.9 stream.

NOTE

You can also configure your Fuse applications so that a rebuild is automatically triggered
whenever a new Fuse on OpenShift image becomes available. For details, see the section
Triggering and modifying builds in the Builds OpenShift Container Platform
documentation_.

CHAPTER 15. PATCHING FUSE ON OPENSHIFT

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.4/html-single/builds/index#triggering-builds-build-hooks

15.3. PATCHING THE FUSE ON OPENSHIFT TEMPLATES

You must update the Fuse on OpenShift templates to the latest patch level, to ensure that new
template-based projects are built using the correct patched dependencies.

Procedure

1. You need administrator privileges to update the Fuse on OpenShift templates. Log in to the
OpenShift Server as an administrator, as follows:

oc login URL -u ADMIN_USER -p ADMIN_PASS

Where URL is the URL of the OpenShift server and ADMIN_USER, ADMIN_PASS are the
credentials of an administrator account on the OpenShift server.

2. Install the patched Fuse on OpenShift templates. Enter the following commands at a command
prompt:

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-
templates-2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-amq-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-cdi-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-cxf-jaxrs-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/eap-camel-cxf-jaxws-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-camel-amq-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-camel-log-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-camel-rest-sql-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/karaf-cxf-rest-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-camel-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-camel-amq-
template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-camel-config-
template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-camel-drools-
template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-camel-infinispan-
template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-camel-xml-
template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-cxf-jaxrs-template.json
oc replace --force -n openshift -f ${BASEURL}/quickstarts/spring-boot-cxf-jaxws-
template.json

NOTE

The BASEURL points at the GA branch of the Git repository that stores the
quickstart templates. It will always have the latest templates at HEAD. Therfore,
any time you run the preceding commands, you will get the latest version of the
templates.

15.4. PATCH APPLICATION DEPENDENCIES USING BOM

If your application pom.xml file is configured to use the new-style BOM, follow the instructions in this

Red Hat Fuse 7.11 Fuse on OpenShift Guide

136

If your application pom.xml file is configured to use the new-style BOM, follow the instructions in this
section to upgrade the Maven dependencies.

15.4.1. Updating dependencies in a Spring Boot application

The following code fragment shows the standard layout of a POM file for a Spring Boot application in
Fuse on OpenShift, highlighting some important property settings:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

 <fuse.version>7.11.1.fuse-sb2-7_11_1-00022-redhat-00002</fuse.version>
 ...
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-springboot-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
 <build>
 ...
 <plugins>
 <!-- Core plugins -->
 ...
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 ...
 <version>${fuse.version}</version>
 </plugin>
 </plugins>
 </build>

 <profiles>
 <profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>openshift-maven-plugin</artifactId>
 ...
 <version>${fuse.version}</version>
 </plugin>

CHAPTER 15. PATCHING FUSE ON OPENSHIFT

137

When it comes to patching or upgrading the application, the following version settings are important:

fuse.version

Defines the version of the new-style fuse-springboot-bom BOM, as well as the versions of the
openshift-maven-plugin plugin and the spring-boot-maven-plugin plugin.

15.4.2. Updating dependencies in a Karaf application

The following code fragment shows the standard layout of a POM file for a Karaf application in Fuse on
OpenShift, highlighting some important property settings:

 </plugins>
 </build>
 </profile>
 </profiles>
</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <fuse.version>7.11.1.fuse-sb2-7_11_1-00022-redhat-00002</fuse.version>
 ...
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-karaf-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>karaf-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 ...
 </plugin>
 ...
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>openshift-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 ...

Red Hat Fuse 7.11 Fuse on OpenShift Guide

138

When it comes to patching or upgrading the application, the following version settings are important:

fuse.version

Defines the version of the new-style fuse-karaf-bom BOM, as well as the versions of the openshift-
maven-plugin plugin and the karaf-maven-plugin plugin.

15.4.3. Updating dependencies in a JBoss EAP application

The following code fragment shows the standard layout of a POM file for a JBoss EAP application in
Fuse on OpenShift, highlighting some important property settings:

When it comes to patching or upgrading the application, the following version settings are important:

fuse.version

Defines the version of the fuse-eap-bom BOM file (which replaces the old-style wildfly-camel-bom
BOM file). By updating the BOM version to a particular patch version, you are effectively updating all
of the Fuse on JBoss EAP Maven dependencies as well.

15.5. AVAILABLE BOM VERSIONS

The following table shows the new-style BOM versions corresponding to different patch releases of Red
Hat Fuse.

 </plugin>
 </plugins>
 </build>

</project>

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<project ...>
 ...
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <fuse.version>7.11.1.fuse-sb2-7_11_1-00022-redhat-00002</fuse.version>
 ...
 </properties>

 <!-- Dependency Management -->
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fuse-eap-bom</artifactId>
 <version>${fuse.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 ...
</project>

CHAPTER 15. PATCHING FUSE ON OPENSHIFT

139

Table 15.1. Red Hat Fuse Releases and Corresponding New-Style BOM Version

Red Hat Fuse Release org.jboss.redhat-fuse BOM Version

Red Hat Fuse 7.11 GA 7.11.1.fuse-sb2-7_11_1-00022-redhat-00002

Red Hat Fuse 7.0.1 patch 7.0.1.fuse-000008-redhat-4

To upgrade your application POM to a specific Red Hat Fuse patch release, set the fuse.version
property to the corresponding BOM version.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

140

CHAPTER 16. UNINSTALLING FUSE ON OPENSHIFT
To uninstall Fuse on OpenShift, remove the imagestreams and templates from registry.redhat.io, with
the oc delete command.

16.1. UNINSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE
OPENSHIFT 4.X SERVER

Procedure

+ Find the BASEURL for your version and define it as a variable for use in commands below.

+

BASEURL=https://raw.githubusercontent.com/jboss-fuse/application-templates/application-templates-
2.1.0.fuse-sb2-7_11_1-00016-redhat-00002

1. Delete the Spring Boot 2 quickstart templates.

for template in spring-boot-2-camel-amq-template.json \
 spring-boot-2-camel-config-template.json \
 spring-boot-2-camel-drools-template.json \
 spring-boot-2-camel-infinispan-template.json \
 spring-boot-2-camel-rest-3scale-template.json \
 spring-boot-2-camel-rest-sql-template.json \
 spring-boot-2-camel-template.json \
 spring-boot-2-camel-xa-template.json \
 spring-boot-2-camel-xml-template.json \
 spring-boot-2-cxf-jaxrs-template.json \
 spring-boot-2-cxf-jaxws-template.json \
 spring-boot-2-cxf-jaxrs-xml-template.json \
 spring-boot-2-cxf-jaxws-xml-template.json ;
 do oc delete -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

2. Delete Fuse on OpenShift quickstart templates.

for template in eap-camel-amq-template.json \
 eap-camel-cdi-template.json \
 eap-camel-cxf-jaxrs-template.json \
 eap-camel-cxf-jaxws-template.json \
 karaf-camel-amq-template.json \
 karaf-camel-log-template.json \
 karaf-camel-rest-sql-template.json \
 karaf-cxf-rest-template.json ;
 do
 oc delete -n openshift -f \
 ${BASEURL}/quickstarts/${template}
 done

3. Delete the imagestreams.

oc delete -n openshift -f ${BASEURL}/fis-image-streams.json

CHAPTER 16. UNINSTALLING FUSE ON OPENSHIFT

141

4. Remove items in the Samples Operator.
Edit the configuration of Samples Operator:

oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

5. Remove the Fuse and Spring Boot 2 templates from the skippedImagestreams and
skippedTemplates section.

BUILT-IN IMAGESTREAMS

Some imagestreams and templates are built-in for common use cases. These are
managed by the Sample Operator, so you cannot remove them manually. You can ignore
them while uninstalling.

Built-in imagestreams are configured with the
samples.operator.openshift.io/managed: "true" label in the manifest, so you can verify
if it is managed with the oc get and grep commands.

Example

]$ oc get is fuse7-eap-openshift -n openshift -o yaml | grep
'samples.operator.openshift.io/managed'
 samples.operator.openshift.io/managed: "true"
]$

Red Hat Fuse 7.11 Fuse on OpenShift Guide

142

APPENDIX A. SPRING BOOT MAVEN PLUGIN
Spring Boot Maven plugin provides the Spring Boot support in Maven and allows you to package the
executable jar or war archives and run an application in-place.

A.1. SPRING BOOT MAVEN PLUGIN GOALS

The Spring Boot Maven plugin includes the following goals:

spring-boot:run runs your Spring Boot application.

spring-boot:repackage repackages your .jar and .war files to be executable.

spring-boot:start and spring-boot:stop both are used to manage the lifecycle of your Spring
Boot application.

spring-boot:build-info generates build information that can be used by the Actuator.

A.2. USING SPRING BOOT MAVEN PLUGIN

You can find general instructions on how to use the Spring Boot Plugin at:
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/#using. The
following examples illustrates the usage of the spring-boot-maven-plugin for Spring Boot.

Spring Boot 2 Example

NOTE

For more information on Spring Boot Maven Plugin, refer the
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/
link.

A.2.1. Using Spring Boot Maven plugin for Spring Boot 2

The following example illustrates the usage of the spring-boot-maven-plugin for Spring Boot 2.

Example

<project>
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.redhat.fuse</groupId>
 <artifactId>spring-boot-camel</artifactId>
 <version>1.0-SNAPSHOT</version>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

 <!-- configure the Fuse version you want to use here -->
 <fuse.bom.version>7.11.1.fuse-sb2-7_11_1-00022-redhat-00002</fuse.bom.version>

 <!-- maven plugin versions -->
 <maven-compiler-plugin.version>3.7.0</maven-compiler-plugin.version>

APPENDIX A. SPRING BOOT MAVEN PLUGIN

143

https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/#using
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/htmlsingle/

 <maven-surefire-plugin.version>2.19.1</maven-surefire-plugin.version>
 </properties>

 <build>
 <defaultGoal>spring-boot:run</defaultGoal>

 <plugins>
 <plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${fuse.bom.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>repackage</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <id>redhat-ga-repository</id>
 <url>https://maven.repository.redhat.com/ga</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

144

 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</project>

APPENDIX A. SPRING BOOT MAVEN PLUGIN

145

APPENDIX B. USING KARAF MAVEN PLUGIN
The karaf-maven-plugin enables you to create a Karaf server assembly, which is a microservices style
packaging of a Karaf container. The finished assembly contains all of the essential components of a
Karaf installation (including the contents of the etc/, data/, lib, and system directories), but stripped
down to the bare minimum required to run your application.

B.1. MAVEN DEPENDENCIES

Maven dependencies in a karaf-assembly project are either feature repositories (classifier features) or
kar archives.

Feature repositories are installed in the maven structured system/internal repository.

Kar archives have their content unpacked on top of the server as well as have the contained
feature repositories installed.

Maven dependency scopes

The Maven scope of a dependency determines if its feature repository is listed in the features service
configuration file etc/org.apache.karaf.features.cfg (under the featuresRepositories property). These
scopes are:

compile (default): All the features in the repository (or for a kar archive) will be installed into the
startup.properties. The feature repository is not listed in the features service configuration file.

runtime: As boot stage in karaf-maven-plugin.

Provided: As install stage in karaf-maven-plugin.

B.2. KARAF MAVEN PLUGIN CONFIGURATION

The karaf-maven-plugin defines three stages related with Maven scopes. The plugin configuration
controls how features are installed using these elements by referring to features from installed feature
repositories:

Startup stage: etc/startup.properties
In this stage, startup features, startup profiles, and startup bundles are used to prepare a list of
bundles to be included in etc/startup.properties. This will result in the feature bundles being
listed in etc/startup.properties at the appropriate start level and the bundles being copied into
the system internal repository. You can use feature_name or feature_name/feature_version
formats, for example, <startupFeature>foo</startupFeature>.

Boot stage: etc/org.apache.karaf.features.cfg
This stage manages features available in featuresBoot property and repositories in
featuresRepositories property. This will result in the feature name added to boot-features in
the features service configuration file and all the bundles in the feature copied into the system
internal repository. You can use feature_name or feature_name/feature_version formats, for
example, <bootFeature>bar</bootFeature>.

Install stage:
This stage installs the artifacts in ${karaf.home}/${karaf.default.repository}. This will result in
all the bundles in the feature being installed in the system internal repository. Therefore at
runtime the feature may be installed without access to external repositories. You can use

Red Hat Fuse 7.11 Fuse on OpenShift Guide

146

feature_name or feature_name/feature_version formats, for example,
<installedFeature>baz</installedFeature>.

Libraries
The plugin accepts the libraries element, which can have one or more library child elements that
specify a library URL.

Example

B.3. CUSTOMIZED KARAF ASSEMBLY

The recommended way to create a Karaf server assembly is to use the karaf:assembly goal provided by
the karaf-maven-plugin. This assembles a server from the Maven dependencies in the project’s
pom.xml file. Both the bundles (or features) that are specified in karaf-maven-plugin configuration and
the dependencies specified in the <dependencies> section in the pom.xml can go into the customized
karaf assembly.

for kar
Dependencies with kar type will be added as startup (scope=compile), boot (scope=runtime) or
installed (scope=provided) kars in karaf-maven-plugin. The kars are unzipped to working
directory (target/assembly) and feature XMLs are searched for and used as additional feature
repositories (with stage equal to the stage of given kar).

for features.xml
Dependencies with features classifier will be used as startup (scope=compile), boot
(scope=runtime) or installed (scope=provided) repositories in karaf-maven-plugin. There’s no
need to explicitly add feature repositories that are found in kar.

for jar and bundle
Dependencies with bundle or jar type will be used as startup (scope=compile), boot
(scope=runtime) or installed (scope=provided) bundles in karaf-maven-plugin.

B.3.1. karaf:assembly goal

You can create a Karaf server assembly using the karaf:assembly goal provided by the karaf-maven-
plugin. This goal assembles a microservices style server assembly from the Maven dependencies in the
project POM. In a Fuse on OpenShift project, it is recommended that you bind the karaf:assembly goal
to the Maven install phase. The project uses bundle packaging and the project itself gets installed into
the Karaf container by listing it inside the bootBundles element.

NOTE

Include only the necessary elements like karaf framework feature in startup stage as it will
go into etc/startup.properties and at this stage karaf features service is not fully started.
Defer other elements to boot stage.

Example

The following example displays the typical Maven configuration in a quickstart:

<libraries>
 <library>mvn:org.postgresql/postgresql/9.3-1102-jdbc41;type:=endorsed</library>
</libraries>

APPENDIX B. USING KARAF MAVEN PLUGIN

147

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>karaf-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 <extensions>true</extensions>
 <executions>
 <execution>
 <id>karaf-assembly</id>
 <goals>
 <goal>assembly</goal>
 </goals>
 <phase>install</phase>
 </execution>
 </executions>
 <configuration>

 <karafVersion>{karafMavenPluginVersion}</karafVersion>
 <useReferenceUrls>true</useReferenceUrls>
 <archiveTarGz>false</archiveTarGz>
 <includeBuildOutputDirectory>false</includeBuildOutputDirectory>
 <startupFeatures>
 <feature>karaf-framework</feature>
 </startupFeatures>
 <bootFeatures>
 <feature>shell</feature>
 <feature>jaas</feature>
 <feature>aries-blueprint</feature>
 <feature>camel-blueprint</feature>
 <feature>fabric8-karaf-blueprint</feature>
 <feature>fabric8-karaf-checks</feature>
 </bootFeatures>
 <bootBundles>
 <bundle>mvn:${project.groupId}/${project.artifactId}/${project.version}</bundle>
 </bootBundles>
 </configuration>
</plugin>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

148

APPENDIX C. OPENSHIFT MAVEN PLUGIN
The OpenShift Maven plugin is used for building and deploying Java applications for OpenShift. It brings
your Java applications on to OpenShift. It provides a tight integration into maven and benefits from the
build configuration already provided. It focuses on three tasks:

Building S2I images

Creating OpenShift resources

Deploy application on OpenShift

C.1. ABOUT OPENSHIFT MAVEN PLUGIN

OpenShift Maven plugin has following features:

Dealing with S2I images and hence inherits its flexible and powerful configuration.

Supports both OpenShift descriptors

OpenShift Docker builds with a binary source (as an alternative to a direct image build against a
Docker daemon)

Mulitple configuration styles:

Zero Configuration for a quick ramp-up where opinionated defaults will be pre-selected.

Inline Configuration within the plugin configuration in an XML syntax.

External Configuration templates of the real deployment descriptors which are enriched by
the plugin.

Flexible customization:

Generators analyze the Maven build and generated automatic Docker image configurations
for certain systems (spring-boot, plain java, karaf)

Enrichers extend the OpenShift resource descriptors by extra information like SCM labels
and can add default objects like Services.

Generators and Enrichers can be individually configured and combined into profiles.

C.2. BUILDING IMAGES

The oc:build goal is used for creating Docker-formatted images containing an application. These then
can be deployed later on Kubernetes or OpenShift. This plugin uses the assembly descriptor format
from the maven-assembly-plugin to specify the content which will be added to the image. These
images can then be pushed to public or private Docker registries with oc:push. The oc:watch goal
allows for you to react to the code changes to automatically recreate images or copy new artifacts into
running containers.

C.3. KUBERNETES AND OPENSHIFT RESOURCES

Kubernetes and OpenShift resource descriptors can be created with oc:resource. These files are

APPENDIX C. OPENSHIFT MAVEN PLUGIN

149

Kubernetes and OpenShift resource descriptors can be created with oc:resource. These files are
packaged within the Maven artifacts and can be deployed to a running orchestration platform with
oc:apply.

Configuration

There are four levels of configuration:

Zero-Config mode helps to make some very useful decisions based on what is present in the
pom.xml file like, what base image to use or which ports to expose. It is used for starting up
things and for keeping quickstart applications small and tidy.

XML plugin configuration mode is similar to what docker-maven-plugin provides. It allows for
type safe configuration with IDE support, but only a subset of possible resource descriptor
features is provided.

Kubernetes and OpenShift resource fragments are user provided YAML files that can be
enriched by the plugin. This allows expert users to use plain configuration file with all their
capabilities, but also to add project specific build information and avoid boilerplate code.

Docker Compose is used to bring up docker compose deployments on a OpenShift cluster. This
requires minimum to no knowledge of OpenShift deployment process.

C.4. INSTALLING OPENSHIFT MAVEN PLUGIN

This plugin is available under the Maven central repository and can be connected to pre- and post-
integration phases as shown below. By default, Maven will only search for plugins in the
org.apache.maven.plugins and org.codehaus.mojo packages. In order to resolve the provider for the
JKube plugin goals, edit the ~/.m2/settings.xml file and add the org.eclipse.jkube namespace so the
<pluginGroups> configuration.

Procedure

To connect the OpenShift Maven plugin to pre- and post-integration phases, add the following
to ~/.m2/settings.xml file.

<settings>
 ...

 <pluginGroups>
 <pluginGroup>org.jboss.redhat-fuse</pluginGroup>
 </pluginGroups>

 ...
</settings>

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>openshift-maven-plugin</artifactId>
 <version>${fuse.version}</version>

 <configuration>

 <images>
 <!-- A single's image configuration -->
 

 </images>
 </configuration>

 <!-- Connect oc:resource, oc:build and oc:helm to lifecycle phases -->
 <executions>
 <execution>
 <id>jkube</id>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 <goal>helm</goal>
 </goals>
 </execution>
 </executions>
</plugin>

APPENDIX C. OPENSHIFT MAVEN PLUGIN

151

Goal Description

oc:deploy Deploy resources descriptors to a cluster after creating them and
building the app. Same as oc:apply except that it runs in the background.

oc:undeploy Undeploy and remove resources descriptors from a cluster.

oc:log Show the logs of the running application.

oc:debug Enable remote debugging.

oc:watch Watch for file changes and perform rebuilds and redeployments.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

152

APPENDIX D. CAMEL MAVEN PLUGIN
You can use the camel-maven plugin to validate all your Camel endpoints from the source code. This
allows you to ensure that the endpoints are valid before you run your Camel applications or unit tests.

D.1. CAMEL MAVEN PLUGIN GOALS

For validating Camel endpoints in the source code use

camel:validate: This goal validates the Maven project source code to identify invalid camel
endpoint URIs.

D.2. ADDING THE CAMEL-MAVEN PLUGIN TO YOUR PROJECT

You can add the camel-maven plug-in to your project by adding it to your project’s pom.xml file.

Procedure

1. To enable the Plugin, add the following to the pom.xml file.

2. Run the validate goal from the command line or from your Java editor.

mvn camel:validate

Running the plugin automatically

You can enable the plugin to run automatically as a part of the build to catch any errors. The phase
determines when the plugin runs.

In the following example, the plugin runs in the phase process-classes , which runs after the
compilation of the main source code.

Example

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>camel-maven-plugin</artifactId>
 <version>${fuse.bom.version}</version>
</plugin>

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>camel-maven-plugin</artifactId>
 <version>7.11.0.fuse-sb2-7_11_0-00028-redhat-00001</version>
 <executions>
 <execution>
 <phase>process-classes</phase>
 <goals>
 <goal>validate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

APPENDIX D. CAMEL MAVEN PLUGIN

153

Validating the test source code

You can configure the maven plugin to validate the test source code, by changing the phase to
process-test-classes:

Example

D.3. RUNNING THE GOAL ON ANY MAVEN PROJECT

You can also run the validate goal on any Maven project, without adding the Plugin to the pom.xml file.
You need to specify the Plugin, using its fully qualified name.

Procedure

To run the goal on the camel-example-cdi plugin from Apache Camel, run the following
commands:

 $cd camel-example-cdi
 $mvn org.apache.camel:camel-maven-plugin:7.11.0.fuse-sb2-7_11_0-00028-redhat-
00001:validate

This displays the following output:

[INFO] --
[INFO] Building Camel :: Example :: CDI 2.16.2
[INFO] --
[INFO]
[INFO] --- fabric8-camel-maven-plugin:2.3.80:validate (default-cli) @ camel-example-cdi ---
[INFO] Endpoint validation success: (4 = passed, 0 = invalid, 0 = incapable, 0 = unknown
components)
[INFO] Simple validation success: (0 = passed, 0 = invalid)
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

After passing the validation successfully, you can validate the four endpoints. The following example
shows how to validate and if required, correct the camel endpoints.

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>camel-maven-plugin</artifactId>
 <version>7.11.0.fuse-sb2-7_11_0-00028-redhat-00001</version>
 <executions>
 <execution>
 <configuration>
 <includeTest>true</includeTest>
 </configuration>
 <phase>process-test-classes</phase>
 <goals>
 <goal>validate</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Red Hat Fuse 7.11 Fuse on OpenShift Guide

154

Example

Let us assume that you made a typo in one of the Camel endpoint URIs in the source code, such as:

1. The correct Camel endpoint URI is as follows.

 @Uri("timer:foo?period=5000")

2. You can make changes to include a typo error in the period option, such as:

 @Uri("timer:foo?perid=5000")

3. Run the validate goal again.

[INFO] --
[INFO] Building Camel :: Example :: CDI 2.16.2
[INFO] --
[INFO]
[INFO] --- org.apache.camel:camel-maven-plugin:7.11.0.fuse-sb2-7_11_0-00028-redhat-
00001:validate (default-cli) @ camel-example-cdi ---
[WARNING] Endpoint validation error at:
org.apache.camel.example.cdi.MyRoutes(MyRoutes.java:32)

 timer:foo?perid=5000

 perid Unknown option. Did you mean: [period]

[WARNING] Endpoint validation error: (3 = passed, 1 = invalid, 0 = incapable, 0 = unknown
components)
[INFO] Simple validation success: (0 = passed, 0 = invalid)
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

As shown above, the error in the camel endpoint URI is displayed.

D.4. OPTIONS

The maven plugin supports the following options, which you can configure from the command line (use -
D syntax), or defined in the pom.xml file in the <configuration> tag.

Table D.1. Camel Maven plugin options

Parameter Defaul
t

Description Comment

downloadVersio
n

true Allow downloading Camel catalog
version from the internet.

Use if the project uses a different
Camel version than the plugin default.

failOnError false Fail if invalid Camel endpoints was
found.

By default the plug-in logs the errors
at WARN level.

APPENDIX D. CAMEL MAVEN PLUGIN

155

logUnparseable false Log endpoint URIs which could not
be parsed and therefore cannot be
validated.

includeJava true Include Java files in the validation of
Camel endpoints.

Also see includes and excludes.

includeXML true Include XML files in the validation of
Camel endpoints.

Also see includes and excludes.

includeTest false Include test source code in validation.

includes - Wildcard and regular expression
patterns to filter java and xml file
names to include in validation.

Multiple values can be separated by a
comma.

excludes - Wildcard and regular expression
patterns to filter java and xml files to
exclude from validation.

Multiple values can be separated by a
comma.

ignoreUnknown
Component

true Ignore unknown components.

ignoreIncapable true Ignore incapable of parsing the
endpoint URI.

ignoreLenientPr
operties

true Ignore components that use lenient
properties so they can have custom
parameters.

By default, URI validation fails on
properties that are not part of the
component. (For example HTTP
components used to provide query
parameters in the endpoint URI.)

showAll false Show all endpoints and simple
expressions.

Both invalid and valid are shown.

Parameter Defaul
t

Description Comment

D.5. VALIDATING INCLUDE TEST

If you have a Maven project, then you can run the plugin to validate the endpoints in the unit test source
code as well.

Procedure

Pass in the options using -D:

$cd myproject

Red Hat Fuse 7.11 Fuse on OpenShift Guide

156

$mvn org.apache.camel:camel-maven-plugin:7.11.0.fuse-sb2-7_11_0-00028-redhat-00001:validate -
DincludeTest=true

APPENDIX D. CAMEL MAVEN PLUGIN

157

APPENDIX E. CUSTOMIZING JVM ENVIRONMENT VARIABLES
You can use JVM environment variables to set all the options for the Fuse on OpenShift images.

E.1. USING S2I JAVA BUILDER IMAGE WITH OPENJDK 8

Using the S2I Java builder image you can run results directly without using any other application server.
This S2I image is suitable for microservices with a flat classpath (including fat jars).

You can configure Java options when using the Fuse on OpenShift images. For the JVM options, you
can use the environment variable JAVA_OPTIONS. Also, provide JAVA_ARGS for the arguments which
are given through to the application.

E.2. USING S2I KARAF BUILDER IMAGE WITH OPENJDK 8

The S2I Karaf builder image can be used with OpenShift’s Source To Image workflow to build Karaf4
custom assembly based maven projects.

Procedure

Use following command to use S2I workflow.

s2i build <git repo url> registry.redhat.io/fuse7/fuse-karaf-openshift:1.6 <target image name>
docker run <target image name>

E.2.1. Configuring the Karaf4 assembly

The location of the Karaf4 assembly built by the maven project can be provided in multiple ways.

Default assembly file *.tar.gz in output directory

By using the -e flag in sti or oc command

By setting FUSE_ASSEMBLY property in .sti/environment under the project source

E.2.2. Customizing the Maven build

It is possible to customize the maven build. The MAVEN_ARGS environment variable can be set to
change the behaviour. By default, the MAVEN_ARGS is set as follows:

`Karaf4: install karaf:assembly karaf:archive -DskipTests -e`

E.3. BUILD TIME ENVIRONMENT VARIABLES

Following are the environment variables that are used to influence the behaviour of S2I Java and Karaf
builder images during the build time.

MAVEN_ARGS: Arguments to use when calling maven, replacing the default package.

MAVEN_ARGS_APPEND: Additional Maven arguments, useful for adding temporary
arguments like -X or -am -pl.

ARTIFACT_DIR: Path to target/ where the jar files are created for multi-module builds. These

Red Hat Fuse 7.11 Fuse on OpenShift Guide

158

ARTIFACT_DIR: Path to target/ where the jar files are created for multi-module builds. These
are added to ${MAVEN_ARGS}.

ARTIFACT_COPY_ARGS: Arguments to use when copying artifacts from the output directory
to the application directory. Useful to specify which artifacts will be part of the image.

MAVEN_CLEAR_REPO: If set, removes the Maven repository after you build the artifact. This
is useful for keeping the application image small, however, It prevents the incremental builds.
The default value is false.

E.4. RUN TIME ENVIRONMENT VARIABLES

You can use the following environment variables to influence the run script.

JAVA_APP_DIR: the directory where the application resides. All paths in your application are
relative to the directory.

JAVA_LIB_DIR: this directory contains the Java jar files as well an optional classpath file, which
holds the classpath. Either as a single line classpath (colon separated) or with jar files listed line-
by-line. However, If not set, then JAVA_LIB_DIR is the same as JAVA_APP_DIR directory.

JAVA_OPTIONS: options to add when calling java.

JAVA_MAX_MEM_RATIO: It is used when no -Xmx option is given in JAVA_OPTIONS. This is
used to calculate a default maximal heap Memory based on a containers restriction. If used in a
Docker container without any memory constraints for the container, then this option has no
effect.

JAVA_MAX_CORE: It manually restricts the number of cores available, which is used for
calculating certain defaults like the number of garbage collector threads. If set to 0, you cannot
perform the base JVM tuning based on the number of cores.

JAVA_DIAGNOSTICS: Set this to fetch some diagnostics information, to standard out when
things are happening.

JAVA_MAIN_CLASS: A main class to use as an argument for java. When you use this
environment variable, all jar files in $JAVA_APP_DIR directory are added to the classpath and
in the $JAVA_LIB_DIR directory.

JAVA_APP_JAR: A jar file with an appropriate manifest, so that you can start with java -jar.
However, if it is not provided, then $JAVA_MAIN_CLASS is set. In all cases, this jar file is added
to the classpath.

JAVA_APP_NAME: Name to use for the process.

JAVA_CLASSPATH: the classpath to use. If not given, the startup script checks for a file
${JAVA_APP_DIR}/classpath and use its content as classpath. If this file doesn’t exists, then all
jars in the application directory are added under (classes:${JAVA_APP_DIR}/*).

JAVA_DEBUG: If set, remote debugging will be switched on.

JAVA_DEBUG_PORT: Port used for remote debugging. The default value is 5005.

E.5. JOLOKIA CONFIGURATION

You can use the following environment variables in Jolokia:

APPENDIX E. CUSTOMIZING JVM ENVIRONMENT VARIABLES

159

AB_JOLOKIA_OFF: If set, disables the activation of Jolokia (echos an empty value). By default,
Jolokia is enabled.

AB_JOLOKIA_CONFIG: If set, uses the file (including path) as Jolokia JVM agent properties.
However, If not set, the /opt/jolokia/etc/jolokia.properties will be created using the settings.

AB_JOLOKIA_HOST: Host address to bind (Default value is 0.0.0.0)

AB_JOLOKIA_PORT: Port to use (Default value is 8778)

AB_JOLOKIA_USER: User for basic authentication. By default, it is jolokia.

AB_JOLOKIA_PASSWORD: Password for basic authentication. By default, authentication is
switched off.

AB_JOLOKIA_PASSWORD_RANDOM: Generates a value and is written in
/opt/jolokia/etc/jolokia.pw file.

AB_JOLOKIA_HTTPS: Switch on secure communication with HTTPS. By default, self-signed
server certificates are generated, if no serverCert configuration is given in
AB_JOLOKIA_OPTS.

AB_JOLOKIA_ID: Agent ID to use

AB_JOLOKIA_DISCOVERY_ENABLED: Enables the Jolokia discovery. The default value is
false.

AB_JOLOKIA_OPTS: Additional options to be appended to the agent configuration. Options
are given in the format key=value.

Here is an option for integration with various environments:

AB_JOLOKIA_AUTH_OPENSHIFT: Switch on client authentication for OpenShift TSL
communication. Ensure that the value of this parameter must be present in a client certificate. If
you enable this parameter, it will automatically switch Jolokia into HTTPS communication mode.
The default CA cert is set to /var/run/secrets/kubernetes.io/serviceaccount/ca.crt.

Application arguments can be provided by setting the variable JAVA_ARGS to the corresponding value.

Red Hat Fuse 7.11 Fuse on OpenShift Guide

160

APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS
Java processes running inside the Linux container do not behave as expected when you allow JVM
ergonomics to set the default values for the garbage collector, heap size, and runtime compiler. When
you execute a Java application without any tuning parameters — for example, java -jar mypplication-
fat.jar — the JVM automatically sets several parameters based on the host limits, not the container
limits.

This section provides information about the packaging of Java applications inside a Linux container so
that the container’s limits are taken into consideration for calculating default values.

F.1. TUNING THE JVM

The current generation of Java JVMs are not container-aware, so they allocate resources based on the
size of the physical host, not on the size of the container. For example, a JVM normally sets the
maximum heap size to be 1/4 of the physical memory on a host. On a large host machine, this value can
easily exceed the memory limit defined for a container and, if the container limit is exceeded at run time,
OpenShift will kill the application.

To solve this issue, you can use the Fuse on OpenShift base image that is capable of understanding that
a Java JVM runs inside a restricted container and automatically adjusts the maximum heap size, if not
done manually. It provides a solution of setting the maximum memory limit and the core limit on the JVM
that runs your application. For Fuse on OpenShift images, it can:

Set CICompilerCount based on the container cores

Disable C2 JIT compiler when container memory limit is below 300MB

Use one-fourth of the container memory limit for the default heap size when below 300MB

F.2. DEFAULT BEHAVIOUR OF FUSE ON OPENSHIFT IMAGES

In Fuse on OpenShift, the base image for an application build can either be a Java image (for Spring
Boot applications) or a Karaf image (for Karaf applications). Fuse on OpenShift images execute a script
that reads the container limits and uses these limits as the basis for allocating resources. By default, the
script allocates the following resources to the JVM:

50% of the container memory limit,

50% of the container core limit.

There are some exceptions to this. For Karaf and Java images, when the physical memory is below
300MB threshold, heap size is restored to one-fourth of the default heap size instead of the one-half.

F.3. CUSTOM TUNING OF FUSE ON OPENSHIFT IMAGES

The script sets the CONTAINER_MAX_MEMORY and CONTAINER_CORE_LIMIT environment
variables, which are read by a custom application to tune its internal resources. Additionally, you can
specify the following runtime environment variables that enable you to customize the settings on the
JVM that runs your application:

JAVA_OPTIONS

JAVA_MAX_MEM_RATIO

APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS

161

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/ergonomics.html

To customize the limits explicitly, you can set the JAVA_MAX_MEM_RATIO environment variable by
editing the deployment.yml file, in your Maven project.

Example

spec:
 template:
 spec:
 containers:
 -
 resources:
 requests:
 cpu: "0.2"
 memory: 256Mi
 limits:
 cpu: "1.0"
 memory: 256Mi
 env:
 - name: JAVA_MAX_MEM_RATIO
 value: 60

F.4. TUNING THIRD-PARTY LIBRARIES

Red Hat recommends you to customize limits for any third-party Java libraries such as Jetty. These
libraries would use the given default limits, if you fail to customize limits manually. The startup script
exposes some environment variables describing container limits which can be used by applications:

CONTAINER_CORE_LIMIT

A calculated core limit

CONTAINER_MAX_MEMORY

Memory limit given to the container

Red Hat Fuse 7.11 Fuse on OpenShift Guide

162

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. BEFORE YOU BEGIN
	1.1. COMPARISON: FUSE STANDALONE AND FUSE ON OPENSHIFT

	CHAPTER 2. GETTING STARTED FOR ADMINISTRATORS
	2.1. AUTHENTICATING WITH REGISTRY.REDHAT.IO FOR CONTAINER IMAGES
	2.2. INSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE OPENSHIFT 4.X SERVER
	2.3. INSTALLING API DESIGNER ON OPENSHIFT 4.X
	2.3.1. Adding API Designer as a service to an OpenShift 4.x project
	2.3.2. Upgrading the API Designer on OpenShift 4.x
	2.3.3. Metering labels for API Designer
	2.3.4. Considerations for installing API Designer in a restricted environment

	2.4. SETTING UP THE FUSE CONSOLE ON OPENSHIFT 4.X
	2.4.1. Installing and deploying the Fuse Console on OpenShift 4.x by using the OperatorHub
	2.4.2. Installing and deploying the Fuse Console on OpenShift 4.x by using the command line
	2.4.2.1. Generating a certificate to secure the Fuse Console on OpenShift 4.x

	2.4.3. Role-based access control for the Fuse Console on OpenShift 4.x
	2.4.3.1. Determining access roles for the Fuse Console on OpenShift 4.x
	2.4.3.2. Customizing role-based access to the Fuse Console on OpenShift 4.x
	2.4.3.3. Disabling role-based access control for the Fuse Console on OpenShift 4.x

	2.4.4. Upgrading the Fuse Console on OpenShift 4.x
	2.4.5. Upgrading Fuse imagestreams and templates on the OpenShift 4.x server
	2.4.6. Tuning the performance of the Fuse Console on OpenShift 4.x
	2.4.6.1. Performance tuning for Fuse Console Operator installation
	2.4.6.2. Performance tuning for Fuse Console template installation
	2.4.6.3. Performance tuning for viewing applications on Fuse Console

	2.5. CONFIGURING PROMETHEUS TO MONITOR FUSE APPLICATIONS ON OPENSHIFT
	2.5.1. About Prometheus
	2.5.1.1. Prometheus queries
	2.5.1.2. Options for displaying Prometheus data

	2.5.2. Setting up Prometheus for 4.13
	2.5.3. OpenShift environment variables
	2.5.4. Controlling the metrics that Prometheus monitors and collects

	2.6. USING METERING FOR FUSE ON OPENSHIFT
	2.6.1. Metering resources
	2.6.2. Metering labels for Fuse on OpenShift

	2.7. MONITORING FUSE ON OPENSHIFT WITH CUSTOM GRAFANA DASHBOARDS
	2.8. INSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE OPENSHIFT 3.X SERVER
	2.8.1. Setting up the Fuse Console on OpenShift 3.11
	2.8.1.1. Deploying the Fuse Console on OpenShift 3.11
	2.8.1.2. Monitoring a single Fuse pod from the Fuse Console on OpenShift 3.11

	CHAPTER 3. INSTALLING FUSE ON OPENSHIFT IN A RESTRICTED ENVIRONMENT
	3.1. SETTING UP INTERNAL DOCKER REGISTRY
	3.2. CONFIGURING INTERNAL REGISTRY SECRETS
	3.3. INSTALLING FUSE ON OPENSHIFT IMAGES IN A RESTRICTED ENVIRONMENT
	3.4. USING AN INTERNAL MAVEN REPOSITORY
	3.4.1. Running a Spring Boot application with MAVEN_MIRROR_URL
	3.4.2. Running a Spring Boot application with OpenShift Maven plugin

	CHAPTER 4. INSTALLING FUSE ON OPENSHIFT AS A NON-ADMIN USER
	4.1. INSTALLING FUSE ON OPENSHIFT IMAGES AND TEMPLATES AS A NON-ADMIN USER

	CHAPTER 5. GETTING STARTED FOR DEVELOPERS
	5.1. PREPARING DEVELOPMENT ENVIRONMENT
	5.1.1. Installing Container Development Kit (CDK) on your local machine
	5.1.2. Getting remote access to an existing OpenShift server
	5.1.3. Installing Client-Side tools
	5.1.4. Configuring Maven repositories

	5.2. CREATING AND DEPLOYING APPLICATIONS ON FUSE ON OPENSHIFT
	5.2.1. Creating and deploying an application using the S2I binary workflow
	5.2.2. Undeploying and redeploying the project
	5.2.3. Creating and deploying an application using the S2I source workflow

	CHAPTER 6. DEVELOPING AN APPLICATION FOR THE SPRING BOOT IMAGE
	6.1. CREATING A SPRING BOOT 2 PROJECT USING MAVEN ARCHETYPE
	6.2. STRUCTURE OF THE CAMEL SPRING BOOT APPLICATION
	6.3. SPRING BOOT 2 ARCHETYPE CATALOG
	6.4. BOM FILE FOR SPRING BOOT
	6.5. INCORPORATE THE BOM FILE
	6.6. SPRING BOOT MAVEN PLUGIN

	CHAPTER 7. RUNNING APACHE CAMEL APPLICATION IN SPRING BOOT
	7.1. INTRODUCTION TO THE CAMEL SPRING BOOT COMPONENT
	7.2. INTRODUCTION TO THE CAMEL SPRING BOOT STARTER MODULE
	7.3. LIST OF THE CAMEL COMPONENTS THAT DO NOT HAVE STARTER MODULES
	7.4. USING CAMEL SPRING BOOT STARTER
	7.5. ABOUT CAMEL CONTEXT AUTO-CONFIGURATION FOR SPRING BOOT
	7.6. AUTO-DETECTING CAMEL ROUTES IN SPRING BOOT APPLICATIONS
	7.7. CONFIGURING CAMEL PROPERTIES FOR CAMEL SPRING BOOT AUTO-CONFIGURATION
	7.8. CONFIGURING CUSTOM CAMEL CONTEXT
	7.9. DISABLING JMX IN THE AUTO-CONFIGURED CAMELCONTEXT
	7.10. INJECTING AUTO-CONFIGURED CONSUMER AND PRODUCER TEMPLATES INTO SPRING-MANAGED BEANS
	7.11. ABOUT THE AUTO-CONFIGURED TYPECONVERTER IN THE SPRING CONTEXT
	7.12. SPRING TYPE CONVERSION API BRIDGE
	7.13. DISABLING TYPE CONVERSIONS FEATURES
	7.14. ADDING XML ROUTES TO THE CLASSPATH FOR AUTO-CONFIGURATION
	7.15. ADDING XML REST-DSL ROUTES FOR AUTO-CONFIGURATION
	7.16. TESTING WITH CAMEL SPRING BOOT

	CHAPTER 8. RUNNING SOAP TO REST BRIDGE QUICKSTART FOR SPRING BOOT 2 ON FUSE ON OPENSHIFT
	CHAPTER 9. RUNNING A CAMEL SERVICE ON SPRING BOOT WITH XA TRANSACTIONS
	9.1. STATEFULSET RESOURCES
	9.2. SPRING BOOT NARAYANA RECOVERY CONTROLLER
	9.3. CONFIGURING SPRING BOOT NARAYANA RECOVERY CONTROLLER
	9.4. RUNNING CAMEL SPRING BOOT XA QUICKSTART ON OPENSHIFT
	9.5. TESTING SUCCESSFUL XA TRANSACTIONS
	9.6. TESTING FAILED XA TRANSACTIONS

	CHAPTER 10. INTEGRATING A CAMEL APPLICATION WITH THE A-MQ BROKER
	10.1. BUILDING AND DEPLOYING A SPRING BOOT CAMEL A-MQ QUICKSTART

	CHAPTER 11. INTEGRATING SPRING BOOT WITH KUBERNETES
	11.1. SPRING BOOT EXTERNALIZED CONFIGURATION
	11.1.1. Kubernetes ConfigMap
	11.1.2. Kubernetes Secrets
	11.1.3. Spring Cloud Kubernetes plugin
	11.1.4. Enabling Spring Boot with Kubernetes integration

	11.2. RUNNING TUTORIAL FOR CONFIGMAP PROPERTY SOURCE
	11.2.1. Running Spring Boot Camel Config quickstart
	11.2.2. Configuration properties bean
	11.2.3. Setting up Secret
	11.2.4. Setting up ConfigMap

	11.3. USING CONFIGMAP PROPERTYSOURCE
	11.3.1. Applying individual properties
	11.3.2. Applying application.yaml ConfigMap property
	11.3.3. Applying application.properties ConfigMap property
	11.3.4. Deploying a ConfigMap

	11.4. USING SECRETS PROPERTYSOURCE
	11.4.1. Example of setting Secrets
	11.4.2. Consuming the Secrets
	11.4.3. Configuration properties for Secrets PropertySource

	11.5. USING PROPERTYSOURCE RELOAD
	11.5.1. Enabling PropertySource Reload
	11.5.2. Levels of PropertySource Reload
	11.5.3. Example of PropertySource Reload
	11.5.4. PropertySource Reload operating modes
	11.5.5. PropertySource Reload configuration properties

	CHAPTER 12. DEVELOPING AN APPLICATION FOR THE KARAF IMAGE
	12.1. CREATING A KARAF PROJECT USING MAVEN ARCHETYPE
	12.2. STRUCTURE OF THE CAMEL KARAF APPLICATION
	12.3. KARAF ARCHETYPE CATALOG
	12.4. USING FABRIC8 KARAF FEATURES
	12.4.1. Adding Fabric8 Karaf features
	12.4.2. Adding Fabric8 Karaf Core bundle functionality
	12.4.3. Setting the Property Placeholder service options
	12.4.4. Adding a custom property placeholder resolver
	12.4.5. List of resolution strategies
	12.4.6. List of Property Placeholder service options

	12.5. ADDING FABRIC8 KARAF CONFIG ADMIN SUPPORT
	12.5.1. Adding Fabric8 Karaf Config admin support
	12.5.2. Adding ConfigMap injection
	12.5.3. Configuration plugin
	12.5.4. Config Property Placeholders
	12.5.5. Fabric8 Karaf Config Admin options

	12.6. ADDING FABRIC8 KARAF BLUEPRINT SUPPORT
	12.7. ENABLING FABRIC8 KARAF HEALTH CHECKS
	12.7.1. Configuring health checks

	12.8. ADDING CUSTOM HEALTH CHECKS

	CHAPTER 13. DEVELOPING AN APPLICATION FOR THE JBOSS EAP IMAGE
	13.1. CREATING A JBOSS EAP PROJECT USING THE S2I SOURCE WORKFLOW
	13.2. STRUCTURE OF THE JBOSS EAP APPLICATION
	13.3. JBOSS EAP QUICKSTART TEMPLATES

	CHAPTER 14. USING PERSISTENT STORAGE IN FUSE ON OPENSHIFT
	14.1. ABOUT VOLUMES AND VOLUME TYPES
	14.2. ABOUT PERSISTENTVOLUMES
	14.3. CONFIGURING PERSISTENT VOLUME
	14.4. CREATING PERSISTENTVOLUMECLAIMS
	14.5. USING PERSISTENT VOLUMES IN PODS

	CHAPTER 15. PATCHING FUSE ON OPENSHIFT
	15.1. IMPORTANT NOTE ON BOMS AND MAVEN DEPENDENCIES
	15.2. PATCHING THE FUSE ON OPENSHIFT IMAGES
	15.3. PATCHING THE FUSE ON OPENSHIFT TEMPLATES
	15.4. PATCH APPLICATION DEPENDENCIES USING BOM
	15.4.1. Updating dependencies in a Spring Boot application
	15.4.2. Updating dependencies in a Karaf application
	15.4.3. Updating dependencies in a JBoss EAP application

	15.5. AVAILABLE BOM VERSIONS

	CHAPTER 16. UNINSTALLING FUSE ON OPENSHIFT
	16.1. UNINSTALLING FUSE IMAGESTREAMS AND TEMPLATES ON THE OPENSHIFT 4.X SERVER

	APPENDIX A. SPRING BOOT MAVEN PLUGIN
	A.1. SPRING BOOT MAVEN PLUGIN GOALS
	A.2. USING SPRING BOOT MAVEN PLUGIN
	A.2.1. Using Spring Boot Maven plugin for Spring Boot 2

	APPENDIX B. USING KARAF MAVEN PLUGIN
	B.1. MAVEN DEPENDENCIES
	B.2. KARAF MAVEN PLUGIN CONFIGURATION
	B.3. CUSTOMIZED KARAF ASSEMBLY
	B.3.1. karaf:assembly goal

	APPENDIX C. OPENSHIFT MAVEN PLUGIN
	C.1. ABOUT OPENSHIFT MAVEN PLUGIN
	C.2. BUILDING IMAGES
	C.3. KUBERNETES AND OPENSHIFT RESOURCES
	C.4. INSTALLING OPENSHIFT MAVEN PLUGIN
	C.5. UNDERSTANDING OPENSHIFT MAVEN PLUGIN BUILD GOALS
	C.6. UNDERSTANDING OPENSHIFT MAVEN PLUGIN DEVELOPMENT GOALS

	APPENDIX D. CAMEL MAVEN PLUGIN
	D.1. CAMEL MAVEN PLUGIN GOALS
	D.2. ADDING THE CAMEL-MAVEN PLUGIN TO YOUR PROJECT
	D.3. RUNNING THE GOAL ON ANY MAVEN PROJECT
	D.4. OPTIONS
	D.5. VALIDATING INCLUDE TEST

	APPENDIX E. CUSTOMIZING JVM ENVIRONMENT VARIABLES
	E.1. USING S2I JAVA BUILDER IMAGE WITH OPENJDK 8
	E.2. USING S2I KARAF BUILDER IMAGE WITH OPENJDK 8
	E.2.1. Configuring the Karaf4 assembly
	E.2.2. Customizing the Maven build

	E.3. BUILD TIME ENVIRONMENT VARIABLES
	E.4. RUN TIME ENVIRONMENT VARIABLES
	E.5. JOLOKIA CONFIGURATION

	APPENDIX F. TUNING JVMS TO RUN IN LINUX CONTAINERS
	F.1. TUNING THE JVM
	F.2. DEFAULT BEHAVIOUR OF FUSE ON OPENSHIFT IMAGES
	F.3. CUSTOM TUNING OF FUSE ON OPENSHIFT IMAGES
	F.4. TUNING THIRD-PARTY LIBRARIES

