& RedHat

Red Hat Fuse 7.11

Apache Karaf Transaction Guide

Write transactional applications for the Apache Karaf container

Last Updated: 2023-07-24

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Write transactional applications for the Apache Karaf container

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Developing transaction-aware applications for Fuse

Table of Contents

Table of Contents

[3 Y O AP 5
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it et eeaeeanneeaneeeaneennneeaneens 6
CHAPTER 1. INTRODUCTION TO TRANSACTIONS ...ttt et eeeenneeaneeraneennneenns 7
1.1. WHAT IS A TRANSACTION? 7
1.2. ACID PROPERTIES OF A TRANSACTION 7
1.3. ABOUT TRANSACTION CLIENTS 7
1.4. DESCRIPTIONS OF TRANSACTION TERMS 8
1.5. MANAGING TRANSACTIONS THAT MODIFY MULTIPLE RESOURCES 9
1.6. RELATIONSHIP BETWEEN TRANSACTIONS AND THREADS 9
1.7. ABOUT TRANSACTION SERVICE QUALITIES 10
1.7.1. Qualities of service provided by resources 10
1.7.1.1. Transaction isolation levels 10

1.7.1.2. Support for the XA standard 10

1.7.2. Qualities of service provided by transaction managers 1
1.7.2.1. Support for suspend/resume and attach/detach 1
1.7.2.2. Support for multiple resources 1
1.7.2.3. Distributed transactions 1
1.7.2.4. Transaction monitoring n
1.7.2.5. Recovery from failure 12
CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON KARAF (OSGI)iiiiiiiiiiiiiiiiieenn 13
2.1. PREREQUISITES 13
2.2. BUILDING THE CAMEL-JMS PROJECT 14
2.3. EXPLANATION OF THE CAMEL-JMS PROJECT 16
CHAPTER 3. INTERFACES FOR CONFIGURING AND REFERENCING TRANSACTION MANAGERS 20
3.1. WHAT TRANSACTION MANAGERS DO 20
3.2. ABOUT LOCAL, GLOBAL, AND DISTRIBUTED TRANSACTION MANAGERS 20
3.2.1. About local transaction managers 20
3.2.2. About global transaction managers 21
3.2.3. About distributed transaction managers 21

3.3. USING A JAVAEE TRANSACTION CLIENT 22
3.4. USING A SPRING BOOT TRANSACTION CLIENT 23
3.4.1. Using the Spring PlatformTransactionManager interface 24
3.4.1.1. Definition of the PlatformTransactionManager interface 24
3.4.1.2. About the TransactionDefinition interface 25
3.4.1.3. Definition of the TransactionStatus interface 25
3.4.1.4. Methods defined by the PlatformTransactionManager interface 25

3.4.2. Steps for using the transaction manager 25
3.4.3. About Spring PlatformTransactionManager implementations 26
3.4.3.1. Local PlatformTransactionManager implementations 26
3.4.3.2. Global PlatformTransactionManager implementation 26

3.5. OSGI INTERFACES BETWEEN TRANSACTION CLIENTS AND THE TRANSACTION MANAGER 27
CHAPTER 4. CONFIGURING THE NARAYANA TRANSACTIONMANAGER , 29
4.1. ABOUT NARAYANA INSTALLATION 29
4.2. TRANSACTION PROTOCOLS SUPPORTED 31
4.3. ABOUT NARAYANA CONFIGURATION 31
4.4, CONFIGURING LOG STORAGE 32
CHAPTER 5. USING THE NARAYANA TRANSACTION MANAGER ittt ieieeeaeens 34

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

5.1. USING USERTRANSACTION OBJECTS
5.1.1. Definition of the UserTransaction interface
5.1.2. Description of UserTransaction methods
5.2. USING TRANSACTIONMANAGER OBJECTS
5.2.1. Definition of the TransactionManager interface
5.2.2. Description of TransactionManager methods
5.3. USING TRANSACTION OBJECTS
5.3.1. Definition of the Transaction interface
5.3.2. Description of Transaction methods
5.4. RESOLVING THE XA ENLISTMENT PROBLEM
5.4.1. How to enlist an XA resource
5.4.2. About auto-enlistment

CHAPTER 6. USING JDBC DATASOURCES i

6.1. ABOUT THE CONNECTION INTERFACE
6.2. OVERVIEW OF JDBC DATA SOURCES
6.2.1. Database specific and generic data sources
6.2.2. Some generic data sources
6.2.3. Pattern to use
6.3. CONFIGURING JDBC DATA SOURCES
6.4. USING THE OSGI JDBC SERVICE
6.4.1. PAX-JDBC configuration service
6.4.2. Summary of handled properties
6.4.3. How the pax-jdb-config bundle handles properties
6.5. USING JDBC CONSOLE COMMANDS
6.6. USING ENCRYPTED CONFIGURATION VALUES
6.7. USING JDBC CONNECTION POOLS
6.7.1. Introduction to using JDBC connection pools
6.7.2. Using the dbcp2 connection pool module
6.7.2.1. Configuration properties for BasicDataSource
6.7.2.2. Example of how to configure DBCP2 pool
6.7.3. Using the narayana connection pool module
6.7.4. Using the transx connection pool module
6.8. DEPLOYING DATA SOURCES AS ARTIFACTS
6.8.1. Manual deployment of data sources
6.8.2. Factory deployment of data sources
6.8.3. Mixed deployment of data sources
6.9. USING DATA SOURCES WITH THE JAVA™ PERSISTENCE API
6.9.1. About data source references
6.9.2. Referring to JNDI names

CHAPTER 7. USING JMS CONNECTION FACTORIES cciiiiiiiiiiiiiiiin

7.1. ABOUT THE OSGI JMS SERVICE
7.2. ABOUT THE PAX-JMS CONFIGURATION SERVICE
7.2.1. Creating a connection factory for AMQ 7.1
7.2.2. Creating a connection factory for IBM MQ 8 or IBM MQ 9
7.2.3. Using JBoss A-MQ 6.3 Client in Fuse on Apache Karaf
7.2.3.1. Prerequisites
7.2.3.2. Procedure
7.2.4. Summary of handled properties
7.3. USING JMS CONSOLE COMMANDS
7.4. USING ENCRYPTED CONFIGURATION VALUES
7.5. USING JMS CONNECTION POOLS

34
34
34
35
36
36
37
37
37
38
38
38

40
40

41
42
43
44
45
46
49
52
54
56
57
58
58
60
60
62
66
66
66
67
69

71
75
75
75

77
77
78
79
82
84
84
84
86
86
88
88

Table of Contents

7.5.1. Introduction to using JMS connection pools 88
7.5.2. Using the pax-jms-pool-pooledjms connection pool module 89
7.5.3. Using the pax-jms-pool-narayana connection pool module 93
7.5.4. Using the pax-jms-pool-transx connection pool module 93
7.6. DEPLOYING CONNECTION FACTORIES AS ARTIFACTS 93
7.6.1. Manual deployment of connection factories 94
7.6.2. Factory deployment of connection factories 95
7.6.3. Mixed deployment of connection factories 97
CHAPTER 8. ABOUT JAVA CONNECTOR ARCHITECTURE ...ttt ieiiieieraneennnens 101
8.1. SIMPLE JDBC ANALOGY 101
8.2. OVERVIEW OF USING JCA 101
8.3. ABOUT THE PAX-TRANSX PROJECT 103
CHAPTER 9. WRITING A CAMEL APPLICATION THATUSES TRANSACTIONScciiiiiiieinnns, 107
9.1. TRANSACTION DEMARCATION BY MARKING THE ROUTE 107
9.1.1. Sample route with JDBC resource 108
9.1.2. Route definition in Java DSL 108
9.1.3. Route definition in Blueprint XML 109
9.1.4. Default transaction manager and transacted policy 109
9.1.5. Transaction scope 109
9.1.6. No thread pools in a transactional route 110
9.1.7. Breaking a route into fragments 10
9.1.8. Resource endpoints m
9.1.9. Sample route with resource endpoints 12
9.2. DEMARCATION BY TRANSACTIONAL ENDPOINTS 12
9.2.1. Sample route with a JMS endpoint 13
9.2.2. Route definition in Java DSL 13
9.2.3. Route definition in Blueprint XML 13
9.2.4. DSL transacted() command not required 14
9.2.5. Transactional endpoints at start of route 14
9.3. DEMARCATION BY DECLARATIVE TRANSACTIONS 14
9.3.1. Bean-level declaration 15
9.3.2. Top-level declaration 15
9.3.3. Description of tx:transaction attributes 16
9.4. TRANSACTION PROPAGATION POLICIES n7
9.4.1. About Spring transaction policies n7
9.4.2. Descriptions of propagation behaviors nz
9.4.3. Defining policy beans in Blueprint XML n8
9.4.4. Sample route with PROPAGATION_NEVER policy in Java DSL 19
9.4.5. Sample route with PROPAGATION_NEVER policy in Blueprint XML 120
9.5. ERROR HANDLING AND ROLLBACKS 120
9.5.1. How to roll back a transaction 120
9.5.1.1. Using runtime exceptions to trigger rollbacks 120
9.5.1.2. Using the rollback() DSL command 121
9.5.1.3. Using the markRollbackOnly() DSL command 122
9.5.2. How to define a dead letter queue 122
9.5.3. Catching exceptions around a transaction 123

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

PREFACE

PREFACE

This guide provides information and instructions for implementing Fuse transactional applications. The
information is organized as follows:

Chapter 1, Introduction to transactions

Chapter 2, Getting started with transactions on Karaf (OSGi)

Chapter 3, Interfaces for configuring and referencing transaction managers
Chapter 4, Configuring the Narayana transaction manager

Chapter 5, Using the Narayana transaction manager

Chapter 6, Using JDBC data sources

Chapter 7, Using JMS connection factories

Chapter 8, About Java connector architecture

Chapter 9, Writing a Camel application that uses transactions

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

This chapter introduces transactions by discussing some basic transaction concepts as well as the
service qualities that are important in a transaction manager. The information is organized as follows:

® Section 1.1, "What is a transaction?”

® Section 1.2, "ACID properties of a transaction”

® Section 1.3, "About transaction clients”

® Section 1.4, “Descriptions of transaction terms”

® Section 1.5, “Managing transactions that modify multiple resources”
® Section 1.6, “Relationship between transactions and threads”

® Section 1.7, “About transaction service qualities”

1.1. WHAT IS A TRANSACTION?

The prototype of a transaction is an operation that conceptually consists of a single step (for example,
transfer money from account A to account B), but must be implemented as a series of steps. Such
operations are vulnerable to system failures because a failure is likely to leave some of the steps
unfinished, which leaves the system in an inconsistent state. For example, consider the operation of
transferring money from account A to account B. Suppose that the system fails after debiting account
A, but before crediting account B. The result is that some money disappears.

To ensure that an operation like this is reliable, implement it as a transaction. A transaction guarantees

reliable execution because it is atomic, consistent, isolated, and durable. These properties are referred
to as a transaction’s ACID properties.

1.2. ACID PROPERTIES OF A TRANSACTION

The ACID properties of a transaction are defined as follows:

® Atomic—a transaction is an all or nothing procedure. Individual updates are assembled and
either committed or aborted (rolled back) simultaneously when the transaction completes.

® Consistent—a transaction is a unit of work that takes a system from one consistent state to
another consistent state.

® |solated—while a transaction is executing, its partial results are hidden from other entities.

® Durable—the results of a transaction are persistent even if the system fails immediately after a
transaction has been committed.

1.3. ABOUT TRANSACTION CLIENTS

A transaction client is an APl or object that enables you to initiate and end transactions. Typically, a
transaction client exposes operations that begin, commit, or roll back a transaction.

In a standard JavaEE application, the javax.transaction.UserTransaction interface exposes the
transaction client API. In the context of the Spring Framework, Spring Boot, the
org.springframework.transaction.PlatformTransactionManager interface exposes a transaction

Red Hat Fuse 7.11 Apache Karaf Transaction Guide
client API.

1.4. DESCRIPTIONS OF TRANSACTION TERMS

The following table defines some important transaction terms:

Term Description

Demarcation Transaction demarcation refers to starting and ending transactions.
Ending transactions means that the work done in the transaction is either
committed or rolled back. Demarcation can be explicit, for example, by
calling a transaction client API, or implicit, for example, whenever a
message is polled from a transactional endpoint. For details, see
Chapter 9, Writing a Camel application that uses transactions

Resources A resource is any component of a computer system that can undergo a
persistent or permanent change. In practice, a resource is almost always
a database or a service layered over a database, for example, a message
service with persistence. Other kinds of resource are conceivable,
however. For example, an Automated Teller Machine (ATM) is a kind of
resource. After a customer has physically accepted cash from the
machine, the transaction cannot be reversed.

Transaction manager A transaction manager is responsible for coordinating transactions across
one or more resources. In many cases, a transaction manager is built into
aresource. For example, enterprise-level databases typically include a
transaction manager that is capable of managing transactions that
change content in that database. Transactions that involve more than
one resource usually require an external transaction manager.

Transaction context A transaction context is an object that encapsulates the information
needed to keep track of a transaction. The format of a transaction
context depends entirely on the relevant transaction manager
implementation. At a minimum, the transaction context contains a
unique transaction identifier.

Distributed transactions A distributed transaction refers to a transaction in a distributed system,
where the transaction scope spans multiple network nodes. A basic
prerequisite for supporting distributed transactions is a network protocol
that supports transmission of transaction contexts in a canonical format.
Distributed transactions are outside the scope of Apache Camel
transactions. See also:Section 3.2.3, "About distributed transaction
managers”.

X/Open XA standard The X/Open XA standard describes an interface for integrating
resources with a transaction manager. To manage a transaction that
includes more than one resource, participating resources must support
the XA standard. Resources that support the XA standard expose a
special object, the XA switch, which enables transaction managers (or
transaction processing monitors) to take control of the resource’s
transactions. The XA standard supports both the 1-phase commit
protocol and the 2-phase commit protocol.

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

1.5. MANAGING TRANSACTIONS THAT MODIFY MULTIPLE
RESOURCES

For transactions that involve a single resource, the transaction manager built into the resource can
usually be used. For transactions that involve multiple resources, it is necessary to use an external
transaction manager or a transaction processing (TP) monitor. In this case, the resources must be
integrated with the transaction manager by registering their XA switches.

There is an important difference between the protocol that is used to commit a transaction that
operates on a single-resource system and the protocol that is used to commit a transaction that
operates on a multiple-resource systems:

® 1-phase commit—is for single-resource systems. This protocol commits a transaction in a single
step.

® 2-phase commit—is for multiple-resource systems. This protocol commits a transaction in two
steps.

Including multiple resources in a transaction adds the risk that a system failure might occur after
committing the transaction on some, but not all, of the resources. This would leave the system in an
inconsistent state. The 2-phase commit protocol is designed to eliminate this risk. It ensures that the
system can always be restored to a consistent state after it is restarted.

1.6. RELATIONSHIP BETWEEN TRANSACTIONS AND THREADS

To understand transaction processing, it is crucial to appreciate the basic relationship between
transactions and threads: transactions are thread-specific. That is, when a transaction is started, it is
attached to a specific thread. (Technically, a transaction context object is created and associated with
the current thread). From this point until the transaction ends, all of the activity in the thread occurs
within this transaction scope. Activity in any other thread does not fall within this transaction’s scope.
However, activity in any other thread can fall within the scope of some other transaction.

This relationship between transactions and thread means:

® An application can process multiple transactions simultaneouslyas long as each transaction
is created in a separate thread.

® Beware of creating subthreads within a transaction If you are in the middle of a transaction
and you create a new pool of threads, for example, by calling the threads() Camel DSL
command, the new threads are not in the scope of the original transaction.

® Beware of processing steps that implicitly create new threadsfor the same reason given in
the preceding point.

® Transaction scopes do not usually extend across route segments That is, if one route
segment ends with to(JoinEndpoint) and another route segment starts with
from(JoinEndpoint), these route segments typically do not belong to the same transaction.
There are exceptions, however.

NOTE

Some advanced transaction manager implementations give you the freedom to detach
and attach transaction contexts to and from threads at will. For example, this makes it
possible to move a transaction context from one thread to another thread. In some cases,
it is also possible to attach a single transaction context to multiple threads.

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

1.7. ABOUT TRANSACTION SERVICE QUALITIES

When it comes to choosing the products that implement your transaction system, there is a great variety
of database products and transaction managers available, some free of charge and some commercial.
All of them have nominal support for transaction processing, but there are considerable variations in the
qualities of service supported by these products. This section provides a brief guide to the kind of
features that you need to consider when comparing the reliability and sophistication of different
transaction products.

1.7.1. Qualities of service provided by resources

The following features determine the quality of service of a resource:
® Section 1.7.1.1, “Transaction isolation levels”

® Section 1.7.1.2, “Support for the XA standard”

1.7.1.1. Transaction isolation levels

ANSI SQL defines four transaction isolation levels, as follows:

SERIALIZABLE

Transactions are perfectly isolated from each other. That is, nothing that one transaction does can
affect any other transaction until the transaction is committed. This isolation level is described as
serializable, because the effect is as if all transactions were executed one after the other (although
in practice, the resource can often optimize the algorithm, so that some transactions are allowed to
proceed simultaneously).

REPEATABLE_READ

Every time a transaction reads or updates the database, a read or write lock is obtained and held until
the end of the transaction. This provides almost perfect isolation. But there is one case where
isolation is not perfect. Consider a SQL SELECT statement that reads a range of rows by using a
WHERE clause. If another transaction adds a row to this range while the first transaction is running,
the first transaction can see this new row, if it repeats the SELECT call (a phantom read).

READ_COMMITTED

Write locks are held until the end of a transaction. Read locks are not held until the end of a
transaction. Consequently, repeated reads can give different results because updates committed by
other transactions become visible to an ongoing transaction.

READ_UNCOMMITTED

Neither read locks nor write locks are held until the end of a transaction. Hence, dirty reads are
possible. A dirty ready is when uncommitted changes made by other transactions are visible to an
ongoing transaction.

Databases generally do not support all of the different transaction isolation levels. For example, some
free databases support only READ_UNCOMMITTED. Also, some databases implement transaction
isolation levels in ways that are subtly different from the ANSI standard. Isolation is a complicated issue
that involves trade offs with database performance (for example, see Isolation in Wikipedia).

1.7.1.2. Support for the XA standard

For a resource to participate in a transaction that involves multiple resources, it needs to support the
X/Open XA standard. Be sure to check whether the resource’s implementation of the XA standard is
subject to any special restrictions. For example, some implementations of the XA standard are restricted

10

https://en.wikipedia.org/wiki/Isolation_(database_systems)

CHAPTER 1. INTRODUCTION TO TRANSACTIONS

to a single database connection, which implies that only one thread at a time can process a transaction
that involves that resource.

1.7.2. Qualities of service provided by transaction managers
The following features determine the quality of service of a transaction manager:
® Section 1.7.2.1, “Support for suspend/resume and attach/detach”.
® Section 1.7.2.2, "Support for multiple resources”.
® Section 1.7.2.3, "Distributed transactions”.
® Section 1.7.2.4, “Transaction monitoring”.

® Section 1.7.2.5, “Recovery from failure”.

1.7.2.1. Support for suspend/resume and attach/detach

Some transaction managers support advanced capabilities for manipulating the associations between a
transaction context and application threads, as follows:

® Suspend/resume current transaction—enables you to suspend temporarily the current
transaction context, while the application does some non-transactional work in the current
thread.

e Attach/detach transaction context—enables you to move a transaction context from one
thread to another or to extend a transaction scope to include multiple threads.

1.7.2.2. Support for multiple resources

A key differentiator for transaction managers is the ability to support multiple resources. This normally
entails support for the XA standard, where the transaction manager provides a way for resources to
register their XA switches.

NOTE

Strictly speaking, the XA standard is not the only approach you can use to support
multiple resources, but it is the most practical one. The alternative typically involves
writing tedious (and critical) custom code to implement the algorithms normally provided
by an XA switch.

1.7.2.3. Distributed transactions

Some transaction managers have the capability to manage transactions whose scope includes multiple
nodes in a distributed system. The transaction context is propagated from node to node by using special
protocols such as WS-AtomicTransactions or CORBA OTS.

1.7.2.4. Transaction monitoring

Advanced transaction managers typically provide visual tools to monitor the status of pending
transactions. This kind of tool is particularly useful after a system failure, where it can help to identify
and resolve transactions that were left in an uncertain state (heuristic exceptions).

1

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

12

1.7.2.5. Recovery from failure

There are significant differences among transaction managers with respect to their robustness in the
event of a system failure (crash). The key strategy that transaction managers use is to write data to a
persistent log before performing each step of a transaction. In the event of a failure, the data in the log
can be used to recover the transaction. Some transaction managers implement this strategy more
carefully than others. For example, a high-end transaction manager would typically duplicate the
persistent transaction log and allow each of the logs to be stored on separate host machines.

CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON KARAF (OSGl)

CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON
KARAF (OSGI)

This section describes a Camel application that uses transactions to access an Artemis JMS broker. The
information is organized as follows:

® Section 2.1, "Prerequisites”
® Section 2.2, "Building the camel-jms project”

® Section 2.3, "Explanation of the camel-jms project”

2.1. PREREQUISITES
Implementation of this Camel application has the following prerequisites:
® An external AMQ 7 JMS message broker must be running.

The following sample code runs a standalone (non-Docker) version of amg-broker-7.1.0-
bin.zip. Execution creates and runs an amq7 instance:

$ pwd
/data/servers/amqg-broker-7.1.0

$ bin/artemis create --user admin --password admin --require-login amq7
Creating ActiveMQ Artemis instance at: /data/servers/amqg-broker-7.1.0/amq7

Auto tuning journal ...

done! Your system can make 27.78 writes per millisecond, your journal-buffer-timeout will be

36000

You can now start the broker by executing:
"/data/servers/amq-broker-7.1.0/amq7/bin/artemis" run

Or you can run the broker in the background using:

"/data/servers/amqg-broker-7.1.0/amq7/bin/artemis-service" start

$ amq7/bin/artemis run

ANV IV A |
NN e
[ANTIVITE T </ NV
N TTTO T <

AV R A\ N]

Red Hat JBoss AMQ 7.1.0.GA

018-05-02 16:37:19,294 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server

13

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Client libraries are required. Artemis libraries are available in Maven Central or a Red Hat
repository. For example, you can use:

© mvn:org.apache.activemq/artemis-core-client/2.4.0.amq-710008-redhat-1

o mvn:org.apache.activemqg/artemis-jms-client/2.4.0.amq-710008-redhat-1
Alternatively, Artemis/AMQ 7 client libraries can be installed as Karaf features, for example:

o karaf@root()> feature:install artemis-jms-client artemis-core-client

Some supporting features that provide Karaf shell commands or dedicated Artemis support are
required:

I karaf@root()> feature:install jms pax-jms-artemis pax-jms-config
Required Camel features are:

I karaf@root()> feature:install camel-jms camel-blueprint

2.2. BUILDING THE CAMEL-JMS PROJECT

You can download the quickstarts from the Fuse Software Downloads page.

Extract the contents of the zip file to a local folder, for example a new folder named quickstarts.

You can then build and install the /camel/camel-jms example as an OSGi bundle. This bundle contains a
Blueprint XML definition of a Camel route that sends messages to an AMQ 7 JMS queue.

In the following example, $FUSE_HOME is the location of the unzipped Fuse distribution. To build this

project:

14

1. Invoke Maven to build the project:

$ cd quickstarts

$ mvn clean install -f camel/camel-jms/

2. Create a JMS connection factory configuration so that the javax.jms.ConnectionFactory

service is published in the OSGi runtime. To do this, copy quickstarts/camel/camel-
jms/src/main/resources/etc/org.ops4j.connectionfactory-amq7.cfg into the
$FUSE_HOME/etc directory. This configuration will be processed to create a working
connection factory. For example:

I $ cp camel/camel-jms/src/main/resources/etc/org.ops4j.connectionfactory-amq7.cfg ../etc/

3. Verify the published connection factory:

karaf@root()> service:list javax.jms.ConnectionFactory
[lavax.jms.ConnectionFactory]

felix.fileinstall.filename = file:$FUSE_HOME/etc/org.ops4j.connectionfactory-amq?7.cfg
name = artemis

osgi.jndi.service.name = artemis

password = admin

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=distributions

4.

CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON KARAF (OSGl)

pax.jms.managed = true

service.bundleid = 251

service.factoryPid = org.ops4j.connectionfactory
service.id = 436

service.pid = org.ops4j.connectionfactory.d6207fcc-3fe6-4dc1-a0d8-0e76ba3b89bf
service.scope = singleton

type = artemis

url = tcp://localhost:61616

user = admin

Provided by :

OPS4J Pax JMS Config (251)

karaf@root()> jms:info -u admin -p admin artemis
Property | Value
|

|
product | ActiveMQ
version | 2.4.0.amqg-711002-redhat-1

karaf@root()> jms:queues -u admin -p admin artemis
JMS Queues

df2501d1-aa52-4439-b9e4-c0840c568df1
DLQ
ExpiryQueue

Install the bundle:

karaf@root()> install -s mvn:org.jboss.fuse.quickstarts/camel-jms/7.0.0.redhat-SNAPSHOT
Bundle ID: 256

5. Confirm that it is working:

karaf@root()> camel:context-list

Context Status Total # Failed # Inflight# Uptime
jms-example-context Started 0 0 0 2 minutes

karaf@root()> camel:route-list

Context Route Status Total # Failed # Inflight# Uptime
jms-example-context file-to-jms-route Started 0 0 0 2 minutes
jms-example-context jms-cbr-route Started 0 0 0 2 minutes

6. Assoon as the Camel routes have started, you can see a directory, work/jms/input, in your Fuse

installation. Copy the files you find in this quickstart’s src/main/data directory to the newly
created work/jms/input directory.

7. Wait a few moments and you will find the same files organized by country under the

work/jms/output directory:

e orderi.xml, order2.xml and order4.xml in work/jms/output/others
e order3.xml and order5.xml in work/jms/output/us

e order6.xml in work/jms/output/fr

8. See the logs to check out the business logging:

15

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

2018-05-02 17:20:47,952 | INFO | ile://work/jms/input | file-to-jms-route | 58 -
org.apache.camel.camel-core - 2.21.0.fuse-000077 | Receiving order order1.xml
2018-05-02 17:20:48,052 | INFO | umer[incomingQOrders] | jms-cbr-route | 58 -
org.apache.camel.camel-core - 2.21.0.fuse-000077 | Sending order order1.xml to another
country

2018-05-02 17:20:48,053 | INFO | umer[incomingOrders] | jms-cbr-route | 58 -

org.apache.camel.camel-core - 2.21.0.fuse-000077 | Done processing order1.xml

9. See that the queue was dynamically created:

karaf@root()> jms:queues -u admin -p admin artemis
JMS Queues

DLQ
17767323-937f-4bad-a403-07cd63311f4e
ExpiryQueue

incomingOrders

10. Check Camel route statistics:

karaf@root()> camel:route-info jms-example-context file-to-jms-route
Camel Route file-to-jms-route

Camel Context: jms-example-context

State: Started

State: Started

Statistics

Exchanges Total: 1

Exchanges Completed: 1

Exchanges Failed: 0

Exchanges Inflight: 0

Min Processing Time: 67 ms

Max Processing Time: 67 ms

Mean Processing Time: 67 ms

Total Processing Time: 67 ms

Last Processing Time: 67 ms

Delta Processing Time: 67 ms

Start Statistics Date: 2018-05-02 17:14:17

Reset Statistics Date: 2018-05-02 17:14:17
First Exchange Date: 2018-05-02 17:20:48
Last Exchange Date: 2018-05-02 17:20:48

2.3. EXPLANATION OF THE CAMEL-JMS PROJECT
Camel routes are using the following endpoint URIs:
<route id="file-to-jms-route">

<to uri="jms:queue:incomingOrders?transacted=true" />
</route>

<route id="jms-cbr-route">

16

CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON KARAF (OSGl)

<from uri="jms:queue:incomingOrders?transacted=true" />

</route>

The jms component is configured by using this snippet:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">
<reference interface="javax.jms.ConnectionFactory" />
</property>
<property name="transactionManager" ref="transactionManager"/>
</bean>

While the transactionManager reference is:

<reference id="transactionManager"
interface="org.springframework.transaction.PlatformTransactionManager" />

As you can see, both the JMS connection factory and the Spring interface of
PlatformTransactionManager are only references. There is no need to define them in Blueprint XML.
These services are exposed by Fuse itself.

You have already seen that javax.jms.ConnectionFactory was created by using
etc/org.opsdj.connectionfactory-amq7.cfg.

The transaction manager is:

karaf@root()> service:list org.springframework.transaction.PlatformTransactionManager
[org.springframework.transaction.PlatformTransactionManager]

service.bundleid = 21

service.id = 527

service.scope = singleton

Provided by :

Red Hat Fuse :: Fuse Modules :: Transaction (21)
Used by:

Red Hat Fuse :: Quickstarts :: camel-jms (256)

Check for other interfaces under which the actual transaction manager is registered:

karaf@root()> headers 21

Red Hat Fuse :: Fuse Modules :: Transaction (21)

Bundle-Name = Red Hat Fuse :: Fuse Modules :: Transaction
Bundle-SymbolicName = fuse-pax-transx-tm-narayana
Bundle-Vendor = Red Hat

karaf@root()> bundle:services -p 21

Red Hat Fuse :: Fuse Modules :: Transaction (21) provides:

objectClass = [org.osgi.service.cm.ManagedService]

17

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

service.bundleid = 21

service.id = 519

service.pid = org.ops4j.pax.transx.tm.narayana
service.scope = singleton

objectClass = [javax.transaction.TransactionManager]
provider = narayana

service.bundleid = 21

service.id = 520

service.scope = singleton

objectClass = [javax.transaction.TransactionSynchronizationRegistry]
provider = narayana

service.bundleid = 21

service.id = 523

service.scope = singleton

objectClass = [javax.transaction.UserTransaction]

provider = narayana

service.bundleid = 21

service.id = 524

service.scope = singleton

objectClass = [org.jboss.narayana.osgi.jta.ObjStoreBrowserService]
provider = narayana

service.bundleid = 21

service.id = 525

service.scope = singleton

objectClass = [org.ops4j.pax.transx.tm.TransactionManager]
provider = narayana

service.bundleid = 21

service.id = 526

service.scope = singleton

objectClass = [org.springframework.transaction.PlatformTransactionManager]
service.bundleid = 21

service.id = 527

service.scope = singleton

The transaction manager is available from these interfaces:
e javax.transaction.TransactionManager
e javax.transaction.TransactionSynchronizationRegistry
® javax.transaction.UserTransaction
® org.jboss.narayana.osgi.jta.ObjStoreBrowserService
® org.opsdj.pax.transx.tm.TransactionManager

e org.springframework.transaction.PlatformTransactionManager

18

CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON KARAF (OSGl)

You can use any of them in any context that you need. For example camel-jms requires that the
org.apache.camel.component.jms.JmsConfiguration.transactionManager field be initialized. This is
why the example uses:

<reference id="transactionManager"
interface="org.springframework.transaction.PlatformTransactionManager" />

instead of, for example:

I <reference id="transactionManager" interface="javax.transaction.TransactionManager" />

19

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

CHAPTER 3. INTERFACES FOR CONFIGURING AND
REFERENCING TRANSACTION MANAGERS

JavaEE and Spring Boot each provide a transaction client interface for configuring the transaction
manager in Fuse and for using the transaction manager in deployed applications. There is a clear
distinction between configuration, which is an administrative task, and referencing, which is a
development task. The application developer is responsible for pointing the application to a previously
configured transaction manager.

® Section 3.1, “What transaction managers do”

® Section 3.2, "About local, global, and distributed transaction managers”
® Section 3.3, “Using a JavaEE transaction client”

® Section 3.4, “"Using a Spring Boot transaction client”

® Section 3.5, “OSGi interfaces between transaction clients and the transaction manager”

3.1. WHAT TRANSACTION MANAGERS DO

A transaction manager is the part of an application that is responsible for coordinating transactions
across one or more resources. The responsibilities of the transaction manager are as follows:

® Demarcation - starting and ending transactions by using begin, commit, and rollback methods.

® Managing the transaction context - a transaction context contains the information that a
transaction manager needs to keep track of a transaction. The transaction manager is
responsible for creating transaction contexts and attaching them to the current thread.

® Coordinating the transaction across multiple resources - enterprise-level transaction managers
typically have the capability to coordinate a transaction across multiple resources. This feature
requires the 2-phase commit protocol and resources must be registered and managed using the
XA protocol. See Section 1.7.1.2, “Support for the XA standard”.

This is an advanced feature that is not supported by all transaction managers.

® Recovery from failure - transaction managers are responsible for ensuring that resources are
not left in an inconsistent state if there is a system failure and the application fails. In some
cases, manual intervention might be required to restore the system to a consistent state.

3.2. ABOUT LOCAL, GLOBAL, AND DISTRIBUTED TRANSACTION
MANAGERS

A transaction manager can be local, global, or distributed.

3.2.1. About local transaction managers

A local transaction manager is a transaction manager that can coordinate transactions for only a single
resource. The implementation of a local transaction manager is typically embedded in the resource itself
and the transaction manager used by application is a thin wrapper around this built-in transaction
manager.

For example, the Oracle database has a built-in transaction manager that supports demarcation
operations (by using SQL BEGIN, COMMIT, or ROLLBACK statements or by using a native Oracle API)

20

CHAPTER 3. INTERFACES FOR CONFIGURING AND REFERENCING TRANSACTION MANAGERS

and various levels of transaction isolation. Control over the Oracle transaction manager can be exported
through JDBC, and this JDBC APl is used by applications to demarcate transactions.

Itis important to understand what constitutes a resource, in this context. For example, if you are using a
JMS product, the JMS resource is the single running instance of the JMS product, not the individual
queues and topics. Moreover, sometimes, what appears to be multiple resources might actually be a
single resource, if the same underlying resource is accessed in different ways. For example, your
application might access a relational database both directly (through JDBC) and indirectly (through an
object-relational mapping tool like Hibernate). In this case, the same underlying transaction manager is
involved, so it should be possible to enroll both of these code fragments in the same transaction.

NOTE

It cannot be guaranteed that this will work in every case. Although it is possible in
principle, some detail in the design of the Spring Framework or other wrapper layers
might prevent it from working in practice.

It is possible for an application to have many different local transaction managers working independently
of each other. For example, you could have one Camel route that manipulates JMS queues and topics,
where the JMS endpoints reference a JMS transaction manager. Another route could access a relational
database through JDBC. But you could not combine JDBC and JMS access in the same route and have
them both participate in the same transaction.

3.2.2. About global transaction managers

A global transaction manager is a transaction manager that can coordinate transactions over multiple
resources. This is required when you cannot rely on the transaction manager built into the resource
itself. An external system, sometimes called a transaction processing monitor (TP monitor), is capable of
coordinating transactions across different resources.

The following are the prerequisites for transactions that operate on multiple resources:

® Global transaction manager or TP monitor — an external transaction system that implements
the 2-phase commit protocol for coordinating multiple XA resources.

® Resources that support the XA standard - to participate in a 2-phase commit, resources must
support the XA standard. See Section 1.7.1.2, “Support for the XA standard”. In practice, this
means that the resource is capable of exporting an XA switch object, which gives complete
control of transactions to the external TP monitor.

TIP

The Spring Framework does not by itself provide a TP monitor to manage global transactions. It does,
however, provide support for integrating with an OSGi-provided TP monitor or with a JavaEE-provided
TP monitor (where the integration is implemented by the JtaTransactionManager class). Hence, if you
deploy your application into an OSGi container with full transaction support, you can use multiple
transactional resources in Spring.

3.2.3. About distributed transaction managers

Usually, a server connects directly to the resources involved in a transaction. In a distributed system,
however, it is occasionally necessary to connect to resources that are exposed only indirectly, through a
Web service. In this case, you require a TP monitor that is capable of supporting distributed transactions.
Several standards are available that describe how to support transactions for various distributed
protocols, for example, the WS-AtomicTransactions specification for Web services.

21

https://docs.spring.io/spring/docs/4.3.x/javadoc-api/org/springframework/transaction/jta/JtaTransactionManager.html

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

3.3. USING A JAVAEE TRANSACTION CLIENT
When using JavaEE, the most fundamantal and standard method to interact with a transaction manager

is the Java Transaction API (JTA) interface, javax.transaction.UserTransaction. The canonical usage
is:

InitialContext context = new InitialContext();
UserTransaction ut = (UserTransaction) context.lookup("java:comp/UserTransaction");
ut.begin();

// Access transactional, JTA-aware resources such as database and/or message broker

ut.commit(); // or ut.rollback()

Obtaining a UserTransaction instance from JNDI (Java Naming and Directory Interface) is one way of
getting a transaction client. In a JavaEE environment, you can access a transaction client, for example,
with CDI (context and dependency injection).

The following figure shows a typica JavaEE Camel application.

JAVAEE APPLICATION

Camel Component Application Code
JMS (Connection Factory) javax.transaction.UserTransaction JDBC (Data Source)
JMS Broker Database

The figure shows that both Camel code and application code may access:

e A javax.transaction.UserTransaction instance to demarcate transactions either directly from
an application or internally through transaction-aware Camel components by using the Spring
TransactionTemplate class.

® Databases through JDBC APIs either directly or, for example, by using Spring’s JdbcTemplate,
or by using the camel-jdbc component.

® Message brokers through a JMS API either directly, by using Spring’s JmsTemplate class or by
using the camel-jms component.

When using a javax.transaction.UserTransaction object, you do not need to be aware of the actual
transaction manager that is being used because you are working directly with only the transaction client.
(See Section 1.3, “About transaction clients”.) A different approach is taken by Spring and Camel, as it
uses Spring’s transaction facilities internally.

JavaEE Application

In typical JavaEE scenario, the application is deployed to a JavaEE application server, usually as a WAR
or EAR archive. By means of JNDI or CDI, the application may access an instance of the

22

CHAPTER 3. INTERFACES FOR CONFIGURING AND REFERENCING TRANSACTION MANAGERS

javax.transaction.UserTransaction service. The aplication then uses this transaction client instance to
demarcate transactions. Within a transaction, the application performs JDBC and/or JMS access.

Camel component and application code

These represent the code that performs JMS/JDBC operations. Camel has its own advanced methods
to access JMS/JDBC resources. The application code may use a given API directly.

JMS Connection Factory

This is the javax.jms.ConnectionFactory interface that is used to obtain instances of
javax.jms.Connection and then javax.jms.Session (or javax.jms.JmsContextin JMS 2.0). This may
be used directly by the application or indirectly in Camel components, which may use
org.springframework.jms.core.JmsTemplate internally. Neither application code nor a Camel
component require the details of this connection factory. The connection factory is configured at the
application server. You can see this configuration in a JavaEE server. An OSGi server such as Fuse is
similar. A system administrator configures the connection factory independently of the application.
Typically, the connection factory implements pooling capabilities.

JDBC Data Source

This is the javax.sql.DataSource interface that is used to obtain instances of java.sql.Connection. As
with JMS, this data source may be used directly or indirectly. For example, the camel-sql component
uses the org.springframework.jdbc.core.JdbcTemplate class internally. As with JMS, neither
application code nor Camel require the details of this data source. The configuration is done inside the
application server or inside the OSGi server by using methods that are described in Chapter 4,
Configuring the Narayana transaction manager .

3.4. USING A SPRING BOOT TRANSACTION CLIENT

One of the main goals of the Spring Framework (and Spring Boot) is to make JavaEE APlIs easier to use.
All major JavaEE vanilla APls have their part in the Spring Framework (Spring Boot). These are not
alternatives or replacements of given APIs, but rather wrappers that add more configuration options or
more consistent usage, for example, with respect to exception handling.

The following table matches a given JavaEE APl with its Spring-related interface:

JavaEE API Spring Utility Configured With

JDBC org.springframework.jdbc.core.ddb javax.sql.DataSource
cTemplate

JMS org.springframework.jms.core.Jms javax.jms.ConnectionFactory
Template

JTA org.springframework.transaction.s org.springframework.transaction.PI
upport.TransactionTemplate atformTransactionManager

JdbcTemplate and JmsTemplate directly use javax.sql.DataSource and
javax.jms.ConnectionFactory respectively. But TransactionTemplate uses the Spring interface of
PlatformTransactionManager. This is where Spring does not simply improve JavaEE, but replaces the
JavaEE client APl with its own.

Spring treats javax.transaction.UserTransaction as an interface that is too simple for real-world

23

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

scenarios. Also, because javax.transaction.UserTransaction does not distinguish between local, single
resource transactions and global, multi-resource transactions, implementations of
org.springframework.transaction.PlatformTransactionManager give developers more freedom.

Following is the canonical API usage of Spring Boot:

// Create or get from ApplicationContext or injected with @Inject/@Autowired.
JmsTemplate jms = new JmsTemplate(...);

JdbcTemplate jdbc = new JdbcTemplate(...);

TransactionTemplate tx = new TransactionTemplate(...);

tx.execute((status) -> {
// Perform JMS operations within transaction.
jms.execute((SessionCallback<Object>)(session) -> {
// Perform operations on JMS session
return ...;
};
// Perform JDBC operations within transaction.
jdbc.execute((ConnectionCallback<Object>)(connection) -> {
// Perform operations on JDBC connection.
return ...;

Ik

return ...;

hE

In the above example, all three kinds of templates are simply instantiated, but they may also be obtained
from Spring’s ApplicationContext, or injected by using @Autowired annotations.

3.4.1. Using the Spring PlatformTransactionManager interface

As mentioned earlier, javax.transaction.UserTransaction is usually obtained from JNDI in a JavaEE
application. But Spring provides explicit implementations of this interface for many scenarios. You do
not always need full JTA scenarios and sometimes an application requires access to just a single
resource, for example, JDBC.

Usually, org.springframework.transaction.PlatformTransactionManager is the Spring transaction

client API that provides the classic transaction client operations: begin, commit and rollback. In other
words, this interface provides the essential methods for controlling transactions at runtime.

NOTE

The other key aspect of any transaction system is the API for implementing transactional
resources. But transactional resources are usually implemented by the underlying
database, so this aspect of transactional programming is rarely a concern for the
application programmer.

3.4.1.1. Definition of the PlatformTransactionManager interface

public interface PlatformTransactionManager {
TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException;

void commit(TransactionStatus status) throws TransactionException;

24

CHAPTER 3. INTERFACES FOR CONFIGURING AND REFERENCING TRANSACTION MANAGERS

void rollback(TransactionStatus status) throws TransactionException;

}

3.4.1.2. About the TransactionDefinition interface

You use the TransactionDefinition interface to specify the characteristics of a newly created
transaction. You can specify the isolation level and the propagation policy of the new transaction. For
details, see Section 9.4, “Transaction propagation policies”.

3.4.1.3. Definition of the TransactionStatus interface

You can use the TransactionStatus interface to check the status of the current transaction, that is, the
transaction that is associated with the current thread, and to mark the current transaction for rollback.
This is the interface definition:

public interface TransactionStatus extends SavepointManager, Flushable {
boolean isNewTransaction();
boolean hasSavepoint();
void setRollbackOnly();
boolean isRollbackOnly();
void flush();

boolean isCompleted();

3.4.1.4. Methods defined by the PlatformTransactionManager interface

The PlatformTransactionManager interface defines the following methods:

getTransaction()

Creates a new transaction and associates it with the current thread by passing in a
TransactionDefinition object that defines the characteristics of the new transaction. This is
analogous to the begin() method of many other transaction client APIs.

commit()

Commits the current transaction, which makes all of the pending changes to the registered resources
permanent.

rollback()

Rolls back the current transaction, which undoes all pending changes to the registered resources.

3.4.2. Steps for using the transaction manager

Usually, you do not use the PlatformTransactionManager interface directly. In Apache Camel, you
typically use a transaction manager as follows:

1. Create an instance of a transaction manager. There are several different implementations
available in Spring, see Section 3.4, “Using a Spring Boot transaction client”).

25

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

2. Pass the transaction manager instance to either an Apache Camel component or to the
transacted() DSL command in a route. The transactional component or the transacted()
command is then responsible for demarcating transactions. For details, see Chapter 9, Writing a
Camel application that uses transactions).

3.4.3. About Spring PlatformTransactionManager implementations

This section provides a brief overview of the transaction manager implementations that are provided by
the Spring Framework. The implementations fall into two categories: local transaction managers and
global transaction managers.

Starting from Camel:

® The org.apache.camel.component.jms.JmsConfiguration object that is used by the camel-
jms component requires an instance of the
org.springframework.transaction.PlatformTransactionManager interface.

® The org.apache.camel.component.sql.SqlComponent uses the
org.springframework.jdbc.core.ddbcTemplate class internally and this JDBC template also
integrates with org.springframework.transaction.PlatformTransactionManager.

As you can see, you must have some implementation of this interface. Depending on the scenario, you
can configure the required platform transaction manager.

3.4.3.1. Local PlatformTransactionManager implementations

The list below summarizes the local transaction manager implementations that are provided by the
Spring Framework. These transaction managers support only a single resource.

org.springframework.jms.connection.JmsTransactionManager

This transaction manager implementation is capable of managing a single JMS resource. You can
connect to any number of queues or topics, but only if they belong to the same underlying JMS
messaging product instance. Moreover, you cannot enlist any other type of resource in a transaction.

org.springframework.jdbc.datasource.DataSourceTransactionManager

This transaction manager implementation is capable of managing a single JDBC database resource.
You can update any number of different database tables, but only if they belong to the same
underlying database instance.

org.springframework.orm.jpa.JpaTransactionManager

This transaction manager implementation is capable of managing a Java Persistence API (JPA)
resource. It is not possible, however, to simultaneously enlist any other kind of resource in a
transaction.

org.springframework.orm.hibernate5.HibernateTransactionManager

This transaction manager implementation is capable of managing a Hibernate resource. It is not
possible, however, to simultaneously enlist any other kind of resource in a transaction. Moreover, the
JPA APl is preferred over the native Hibernate API.

There are also other, less frequently used, implementations of PlatformTransactionManager.

3.4.3.2. Global PlatformTransactionManager implementation

The Spring Framework provides one global transaction manager implementation for use in the OSGi
runtime. The org.springframework.transaction.jta.JtaTransactionManager supports operations on
multiple resources in a transaction. This transaction manager supports the XA transaction APl and can

26

CHAPTER 3. INTERFACES FOR CONFIGURING AND REFERENCING TRANSACTION MANAGERS

enlist more than one resource in a transaction. To use this transaction manager, you must deploy your
application inside either an OSGi container or a JavaEE server.

While single-resource implementations of PlatformTransactionManager are actual implementations,
JtaTransactionManager is more of a wrapper for an actual implementation of the standard
javax.transaction.TransactionManager.

This is why it is better to use the JtaTransactionManager implementation of
PlatformTransactionManager in an environment where you can access (by means of JNDI or CDI) an
already configured instance of javax.transaction.TransactionManager and usually also
javax.transaction.UserTransaction. Usually, both these JTA interfaces are implemented by a single
object/service.

Here is an example of configuring/using JtaTransactionManager:

InitialContext context = new InitialContext();
UserTransaction ut = (UserTransaction) context.lookup("java:comp/UserTransaction");
TransactionManager tm = (TransactionManager) context.lookup("java:/TransactionManager");

JtaTransactionManager jta = new JtaTransactionManager();
jta.setUserTransaction(ut);
jta.setTransactionManager(tm);

TransactionTemplate jtaTx = new TransactionTemplate(jta);

jtaTx.execute((status) -> {
// Perform resource access in the context of global transaction.
return ...;

hE

In the above example, the actual instances of JTA objects (UserTransaction and
TransactionManager) are taken from JNDI. In OSGi, they may as well be obtained from the OSGi
service registry.

3.5. OSGI INTERFACES BETWEEN TRANSACTION CLIENTS AND THE
TRANSACTION MANAGER

After a description of the JavaEE transaction client APl and the Spring Boot transaction client API, it is
helpful to see the relationships within an OSGi server, such as Fuse. One of the features of OSGi is the
global service registry, which may be used to:

® | ook up services by filter or interface(s).

® Register services with given interface(s) and properties.
In the same way that applications that are deployed in a JavaEE application server obtain references to
javax.transaction.UserTransaction by using JNDI (service locator method) or get them injected by CDI
(dependency injection method), in OSGi you can obtain the same references (directly or indirectly) in

any of the following ways:

® |nvoking the org.osgi.framework.BundleContext.getServiceReference() method (service
locator).

® Get them injected in a Blueprint container.

27

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® Use Service Component Runtime (SCR) annotations (dependency injection).

The following figure shows a Fuse application that is deployed in the OSGi runtime. Application code
and/or Camel components use their APIs to obtain references to the transaction manager, data
sources, and connection factories.

0SGi BUNDLE
Blueprint Camel SCR
i
——————————————— A, ———————— P et A | [R e e e T
1 1 1 1]] 1
H i R 2 / i i
NARAYANA (JTATM)
RESOURCE X RESOURCE Y
ObjectStore
i
1
]
1
: Configure
: one of these
1
R eatntneetetete
i i
H Journal File System JDBC H Database Broker
1 1
1 1
] 1

Applications (bundles) interact with services that are registered in the OSGi registry. The access is
performed through interfaces and this is all that should be relevant to applications.

In Fuse, the fundamental object that implements (directly or through a tiny wrapper) transactional client
interfaces is org.jboss.narayana.osgi.jta.internal.OsgiTransactionManager. You can use the
following interfaces to access the transaction manager:

e javax.transaction.TransactionManager

® javax.transaction.UserTransaction

e org.springframework.transaction.PlatformTransactionManager

e org.opsdj.pax.transx.tm.TransactionManager

You can use any of these interfaces directly or you can use them implicitly by choosing a framework or
library, such as Camel.

For information about the ways to configure
org.jboss.narayana.osgi.jta.internal.OsgiTransactionManager in Fuse, see Chapter 4, Configuring
the Narayana transaction manager. Later chapters in this guide build on the information in that chapter
and describe how to configure and use other services, such as JDBC data sources and JMS connection
factories.

28

CHAPTER 4. CONFIGURING THE NARAYANA TRANSACTION MANAGER

CHAPTER 4. CONFIGURING THE NARAYANA TRANSACTION
MANAGER

In Fuse, the built-in, global transaction manager is JBoss Narayana Transaction Manager, which is the
same transaction manager that is used by Enterprise Application Platform (EAP) 7.

In the OSGi runtime, as in Fuse for Karaf, the additional integration layer is provided by the PAX
TRANSX project.

The following topics discuss Narayana configuration:
® Section 4.1, “About Narayana installation”
® Section 4.2, “Transaction protocols supported”
® Section 4.3, “About Narayana configuration”

® Section 4.4, "Configuring log storage”

4.1. ABOUT NARAYANA INSTALLATION

The Narayana transaction manager is exposed for use in OSGi bundles under the following interfaces, as
well as a few additional support interfaces:

e javax.transaction.TransactionManager

® javax.transaction.UserTransaction

e org.springframework.transaction.PlatformTransactionManager
® org.opsdj.pax.transx.tm.TransactionManager

The 7.11.1.fuse-7_11_1-00013-redhat-00003 distribution makes these interfaces available from the
start.

The pax-transx-tm-narayana feature contains an overridden bundle that embeds Narayana:

karaf@root()> feature:info pax-transx-tm-narayana

Feature pax-transx-tm-narayana 0.3.0

Feature has no configuration

Feature has no configuration files

Feature depends on:
pax-transx-tm-api 0.0.0

Feature contains followed bundles:
mvn:org.jboss.fuse.modules/fuse-pax-transx-tm-narayana/7.0.0.fuse-000191-redhat-1 (overriden

from mvn:org.ops4j.pax.transx/pax-transx-tm-narayana/0.3.0)

Feature has no conditionals.

The services provided by the fuse-pax-transx-tm-narayana bundle are:

karaf@root()> bundle:services fuse-pax-transx-tm-narayana

Red Hat Fuse :: Fuse Modules :: Transaction (21) provides:

[org.osgi.service.cm.ManagedService]

29

http://narayana.io/
https://github.com/ops4j/org.ops4j.pax.transx

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

[lavax.transaction.TransactionManager]
[[avax.transaction.TransactionSynchronizationRegistry]
[lavax.transaction.UserTransaction]
[org.jboss.narayana.osgi.jta.ObjStoreBrowserService]
[org.ops4j.pax.transx.tm.TransactionManager]
[org.springframework.transaction.PlatformTransactionManager]

Because this bundle registers org.osgi.service.cm.ManagedService, it tracks and reacts to the
changes in CM configurations:

karaf@root()> bundle:services -p fuse-pax-transx-tm-narayana

Red Hat Fuse :: Fuse Modules :: Transaction (21) provides:

objectClass = [org.osgi.service.cm.ManagedService]
service.bundleid = 21

service.id = 232

service.pid = org.ops4j.pax.transx.tm.narayana
service.scope = singleton

The default org.ops4j.pax.transx.tm.narayana PID is:

karaf@root()> config:list '(service.pid=org.opsdj.pax.transx.tm.narayana)’

Pid: org.opséj.pax.transx.tm.narayana

BundleLocation: ?

Properties:
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.localOSRoot =

communicationStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.objectStoreDir =

/data/servers/7.11.1.fuse-7_11_1-00013-redhat-00003/data/narayana

com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.objectStore Type
= com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.localOSRoot = defaultStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.objectStoreDir =
/data/servers/7.11.1.fuse-7_11_1-00013-redhat-00003/data/narayana
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.objectStore Type =
com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.stateStore.localOSRoot = stateStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.stateStore.objectStoreDir =
/data/servers/7.11.1.fuse-7_11_1-00013-redhat-00003/data/narayana
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.stateStore.objectStore Type =
com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore
com.arjuna.ats.arjuna.common.RecoveryEnvironmentBean.recoveryBackoffPeriod = 10
felix.fileinstall.filename = file:/data/servers/7.11.1.fuse-7_11_1-00013-redhat-
00003/etc/org.ops4j.pax.transx.tm.narayana.cfg
service.pid = org.ops4j.pax.transx.tm.narayana

In summary:

30

e Fuse for Karaf includes the fully-featured, global, Narayana transaction manager.

CHAPTER 4. CONFIGURING THE NARAYANA TRANSACTION MANAGER

® The transaction manager is correctly exposed under various client interfaces (JTA, Spring-tx,
PAX UMS).

® You can configure Narayana by using the standard OSGi method, Configuration Admin, which is
available in org.ops4j.pax.transx.tm.narayana.

® The default configuration is provided in
$FUSE_HOME/etc/org.opsdj.pax.transx.tm.narayana.cfg.

4.2. TRANSACTION PROTOCOLS SUPPORTED

The Narayana transaction manager is the JBoss/Red Hat product that is used in EAP. Narayanais a
transactions toolkit that provides support for applications that are developed using a broad range of
standards-based transaction protocols:

o JTA

e JTS

® Web-Service Transactions
® REST Transactions

e STM

o XATMI/TX

4.3. ABOUT NARAYANA CONFIGURATION

The pax-transx-tm-narayana bundle includes the jbossts-properties.xml file, which provides the
default configuration of different aspects of the transaction manager. All of these properties may be
overriden in the $FUSE_HOME/etc/org.opsdj.pax.transx.tm.narayana.cfg file directly or by using the
Configuration Admin API.

The basic configuration of Narayana is done through various EnvironmentBean objects. Every such
bean may be configured by using properties with different prefixes. The following table provides a
summary of configuration objects and prefixes used:

Configuration Bean Property Prefix

com.arjuna.ats.arjuna.common.CoordinatorEnvironmentBean = com.arjuna.ats.arjuna.coordi
nator

com.arjuna.ats.arjuna.common.CoreEnvironmentBean com.arjuna.ats.arjuna

com.arjuna.ats.internal.arjuna.objectstore.hornetq.HornetqJdo com.arjuna.ats.arjuna.horne
urnalEnvironmentBean tgjournal

com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean = com.arjuna.ats.arjuna.object
store

com.arjuna.ats.arjuna.common.RecoveryEnvironmentBean com.arjuna.ats.arjuna.recov
ery

31

http://narayana.io/

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Configuration Bean Property Prefix

com.arjuna.ats.jdbc.common.JDBCEnvironmentBean com.arjuna.ats.jdbc

com.arjuna.ats.jta.common.JTAEnvironmentBean com.arjuna.ats.jta

com.arjuna.ats.txoj.common.TxojEnvironmentBean com.arjuna.ats.txoj.lockstor
e

The prefix can simplify the configuration. However, you should typically use either of the following
formats:

NameEnvironmentBean.propertyName (the preferred format), or
fully-qualified-class-name.field-name

For example, consider the
com.arjuna.ats.arjuna.common.CoordinatorEnvironmentBean.commitOnePhase field. It may be
configured by using the
com.arjuna.ats.arjuna.common.CoordinatorEnvironmentBean.commitOnePhase property or it can
be configured by using the simpler (preferred) form
CoordinatorEnvironmentBean.commitOnePhase. Full details of how to set properties and which
beans can be configured can be found in the Narayana Product Documentation.

Some beans, such as the ObjectStoreEnvironmentBean, may be configured multiple times with each
named instance providing configuration for a different purposes. In this case, the name of the instance is
used between the prefix (any of the above) and field-name. For example, a type of object store for an
ObjectStoreEnvironmentBean instance that is named communicationStore may be configured by
using properties that are named:

e com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.object
StoreType

e ObjectStoreEnvironmentBean.communicationStore.objectStoreType

4.4. CONFIGURING LOG STORAGE

The most important configuration is the type and location of object log storage. There are typically
three implementations of the com.arjuna.ats.arjuna.objectstore.ObjectStoreAPl interface:

com.arjuna.ats.internal.arjuna.objectstore.hornetq.HornetqObjectStoreAdaptor
Uses org.apache.activemgq.artemis.core.journal.Journal storage from AMQ 7 internally.
com.arjuna.ats.internal.arjuna.objectstore.jdbc.JDBCStore
Uses JDBC to keep TX log files.
com.arjuna.ats.internal.arjuna.objectstore.FileSystemStore (and specialized implementations)
Uses custom file-based log storage.

By default, Fuse uses com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore, which is a
specialized implementation of FileSystemStore.

There are three stores that are used by Narayana for which transaction/object logs are kept:

32

http://narayana.io/docs/product/index.html

CHAPTER 4. CONFIGURING THE NARAYANA TRANSACTION MANAGER

e defaultStore
e communicationStore
e stateStore
See State management in Narayana documentation for more details.

The default configuration of these three stores is:

default store

com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.objectStore Type =
com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.objectStoreDir =
${karaf.data}/narayana

com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.localOSRoot = defaultStore

communication store
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.objectStore Type
= com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.objectStoreDir =
${karaf.data}/narayana
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.communicationStore.localOSRoot =
communicationStore

state store
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.stateStore.objectStore Type =
com.arjuna.ats.internal.arjuna.objectstore.ShadowNoFileLockStore
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.stateStore.objectStoreDir =
${karaf.data}/narayana
com.arjuna.ats.arjuna.common.ObjectStoreEnvironmentBean.stateStore.localOSRoot = stateStore

ShadowNoFileLockStore is configured with the base directory (objectStoreDir) and the particular
store's directory (localOSRoot).

The many configuration options are contained in the Narayana documentation guide. However, the

Narayana documentation states that the canonical reference for configuration options is the Javadoc
for the various EnvironmentBean classes.

33

http://narayana.io//docs/project/index.html#d0e1050
http://narayana.io/docs/product/index.html

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

CHAPTER 5. USING THE NARAYANA TRANSACTION
MANAGER

This section provides details for using the Narayana transaction manager by implementing the
javax.transaction.UserTransaction interface, the
org.springframework.transaction.PlatformTransactionManager interface, or the
javax.transaction.Transaction interface. Which interface you choose to use depends on the needs of
your application. At the end of this chapter, there is a discussion of the resolution of the problem of
enlisting XA resources. The information is organized as follows:

® Section 5.1, “Using UserTransaction objects”

® Section 5.2, “Using TransactionManager objects”

® Section 5.3, “Using Transaction objects”

® Section 5.4, “Resolving the XA enlistment problem”

For Java transaction API details, see the Java Transaction API (JTA) 1.2 specification and the Javadoc.

5.1. USING USERTRANSACTION OBJECTS

Implement the javax.transaction.UserTransaction interface for transaction demarcation. That is, for
beginning, committing, or rolling back transactions. This is the JTA interface that you are most likely to
use directly in your application code. However, the UserTransaction interface is just one of the ways to
demarcate transactions. For a discussion of different ways that you can demarcate transactions, see
Chapter 9, Writing a Camel application that uses transactions .

5.1.1. Definition of the UserTransaction interface
The JTA UserTransaction interface is defined as follows:
public interface javax.transaction.UserTransaction {
public void begin();
public void commit();
public void rollback();
public void setRollbackOnly();
public int getStatus();

public void setTransactionTimeout(int seconds);

5.1.2. Description of UserTransaction methods

The UserTransaction interface defines the following methods:

begin()

34

https://docs.oracle.com/javaee/7/api/javax/transaction/UserTransaction.html

CHAPTER 5. USING THE NARAYANA TRANSACTION MANAGER

Starts a new transaction and associates it with the current thread. If any XA resources get associated
with this transaction, the transaction implicitly becomes an XA transaction.

commit()

Completes the current transaction normally, so that all pending changes become permanent. After
the commit, there is no longer a transaction associated with the current thread.

X

NOTE

If the current transaction is marked as rollback only, however, the transaction would
actually be rolled back when commit() is called.

rollback()

Aborts the transaction immediately, so that all pending changes are discarded. After the rollback,
there is no longer a transaction associated with the current thread.

setRollbackOnly()

Modifies the state of the current transaction, so that a rollback is the only possible outcome, but
does not perform the rollback yet.

getStatus()

Returns the status of the current transaction, which can be one of the following integer values, as
defined in the javax.transaction.Status interface:

e STATUS_ACTIVE

STATUS_COMMITTED

e STATUS_COMMITTING

e STATUS_MARKED_ROLLBACK
e STATUS_NO_TRANSACTION

e STATUS_PREPARED

e STATUS_PREPARING

e STATUS_ROLLEDBACK

e STATUS_ROLLING_BACK

e STATUS_UNKNOWN

setTransactionTimeout()

Customizes the timeout of the current transaction, specified in units of seconds. If the transaction is
not resolved within the specified timeout, the transaction manager automatically rolls it back.

5.2. USING TRANSACTIONMANAGER OBJECTS

The most common way to use a javax.transaction.TransactionManager object is to passit to a
framework API, for example, to the Camel JMS component. This enables the framework to look after
transaction demarcation for you. Occasionally, you might want to use a TransactionManager object
directly. This is useful when you need to access advanced transaction APIs such as the suspend() and
resume() methods.

35

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

5.2.1. Definition of the TransactionManager interface
The JTA TransactionManager interface has the following definition:
interface javax.transaction.TransactionManager {

// Same as UserTransaction methods

public void begin();

public void commit();

public void rollback();

public void setRollbackOnly();

public int getStatus();

public void setTransactionTimeout(int seconds);

// Extra TransactionManager methods

public Transaction getTransaction();

public Transaction suspend() ;

public void resume(Transaction tobj);

5.2.2. Description of TransactionManager methods

The TransactionManager interface supports all of the methods found in the UserTransaction
interface. You can use a TransactionManager object for transaction demarcation. In addition, a
TransactionManager object supports these methods:

getTransaction()

Gets areference to the current transaction, which is the transaction that is associated with the
current thread. If there is no current transaction, this method returns null.

suspend()

Detaches the current transaction from the current thread and returns a reference to the transaction.
After calling this method, the current thread no longer has a transaction context. Any work that you
do after this point is no longer done in the context of a transaction.

; NOTE
Not all transaction managers support suspending transactions. This feature is
? supported by Narayana, however.
resume()

Re-attaches a suspended transaction to the current thread context. After calling this method, the
transaction context is restored and any work that you do after this point is done in the context of a
transaction.

36

CHAPTER 5. USING THE NARAYANA TRANSACTION MANAGER

5.3. USING TRANSACTION OBJECTS

You might need to use a javax.transaction.Transaction object directly if you are suspending/resuming
transactions or if you need to enlist a resource explicitly. As discussed in Section 5.4, “Resolving the XA
enlistment problem”, a framework or container usually takes care of enlisting resources automatically.

5.3.1. Definition of the Transaction interface
The JTA Transaction interface has the following definition:
interface javax.transaction.Transaction {
public void commit();
public void rollback();
public void setRollbackOnly();
public int getStatus();
public boolean enlistResource(XAResource xaRes);
public boolean delistResource(XAResource xaRes, int flag);

public void registerSynchronization(Synchronization sync);

——

5.3.2. Description of Transaction methods

The commit(), rollback(), setRollbackOnly(), and getStatus() methods have the same behavior as the
corresponding methods from the UserTransaction interface. In fact, a UserTransaction objectis a
convenient wrapper that retrieves the current transaction and then invokes the corresponding methods
on the Transaction object.

Additionally, the Transaction interface defines the following methods, which have no counterparts in
the UserTransaction interface:

enlistResource()

Associates an XA resource with the current transaction.

NOTE

This method is of key importance in the context of XA transactions. It is precisely the
capability to enlist multiple XA resources with the current transaction that

y characterizes XA transactions. On the other hand, enlisting resources explicitly is a
nuisance and you would normally expect your framework or container to do this for
you. For example, see Section 5.4, “Resolving the XA enlistment problem”.

delistResource()

Disassociates the specified resource from the transaction. The flag argument can take one of the
following integer values as defined in the javax.transaction.Transaction interface:

e TMSUCCESS

37

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

e TMFAIL

e TMSUSPEND

registerSynchronization()

Registers a javax.transaction.Synchronization object with the current transaction. The
Synchronization object receives a callback just before the prepare phase of a commit and receives a
callback just after the transaction completes.

5.4. RESOLVING THE XA ENLISTMENT PROBLEM

The standard JTA approach to enlisting XA resources is to add the XA resource explicitly to the current
javax.transaction.Transaction object, which represents the current transaction. In other words, you
must explicitly enlist an XA resource each time a new transaction starts.

5.4.1. How to enlist an XA resource

Enlisting an XA resource with a transaction involves invoking the enlistResource() method on the
Transaction interface. For example, given a TransactionManager object and an XAResource object,
you could enlist the XAResource object as follows:

// Java

import javax.transaction.Transaction;

import javax.transaction.TransactionManager;
import javax.transaction.xa.XAResource;

// Given:
// 'tm'" of type TransactionManager
// 'xaResource' of type XAResource

// Start the transaction
tm.begin();

Transaction transaction = tm.getTransaction();
transaction.enlistResource(xaResource);

// Do some work...

// End the transaction
tm.commit();

The tricky aspect of enlisting resources is that the resource must be enlisted on each new transaction
and the resource must be enlisted before you start to use the resource. If you enlist resources explicitly,
you could end up with error-prone code that is littered with enlistResource() calls. Moreover,
sometimes it can be difficult to call enlistResource() in the right place, for example, this is the case if
you are using a framework that hides some of the transaction details.

5.4.2. About auto-enlistment

Instead of explicitly enlisting XA resources, it is easier and safer to use features that support auto-
enlistment of XA resources. For example, in the context of using JMS and JDBC resources, the standard
technique is to use wrapper classes that support auto-enlistment.

38

CHAPTER 5. USING THE NARAYANA TRANSACTION MANAGER

The common pattern, both for JDBC and JMS access is:

1. The application code expects javax.sql.DataSource for JDBC access and
javax.jms.ConnectionFactory for JMS to get JDBC or JMS connections.

2. Within an application/OSGi server, database or broker specific implementations of these
interfaces are registered.

3. An application/OSGi server wraps the database/broker-specific factories into generic, pooling,
enlisting factories.

In this way, application code still uses javax.sql.DataSource and javax.jms.ConnectionFactory, but
internally when these are accessed, there is additional functionality, which usually concerns:

® Connection pooling - instead of creating new connections to a database/message broker every
time, a pool of pre-initialized connections is used. Another aspect of pooling may be, for
example, periodical validation of connections.

® JTA enlistment - before returning an instance of java.sql.Connection (JDBC) or
javax.jms.Connection (JMS), the real connection objects are registered if they are true XA
resources. Registration happens within the JTA transaction if it is available.

With auto-enlistment, application code does not have to change.

For more information about pooling and enlisting wrappers for JDBC data sources and JMS connection
factories, see Chapter 6, Using JDBC data sources and Chapter 7, Using JMS connection factories.

39

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

CHAPTER 6. USING JDBC DATA SOURCES

The following topics discuss the use of JDBC data sources in the Fuse OSGi runtime:
® Section 6.1, “About the Connection interface”
® Section 6.2, "Overview of JDBC data sources”
® Section 6.3, “Configuring JDBC data sources”
® Section 6.4, "Using the OSGi JDBC service”
® Section 6.5, "Using JDBC console commands”
® Section 6.6, "Using encrypted configuration values”
® Section 6.7, "Using JDBC connection pools”
® Section 6.8, "Deploying data sources as artifacts”

® Section 6.9, "Using data sources with the Java™ persistence AP!”

6.1. ABOUT THE CONNECTION INTERFACE
The most important object used to perform data manipulation is an implementation of the
java.sql.Connection interface. From the perspective of Fuse configuration, it is important to learn how
to obtain a Connection object.
The libraries that contain the relevant objects are:

® PostgreSQL: mvn:org.postgresql/postgresql/42.2.5

e MySQL: mvn:mysql/mysql-connector-java/5.1.34
The existing implementations (contained in driver JARs) provide:

® PostgreSQL: org.postgresql.jdbc.PgConnection

e MySQL:com.mysql.jdbc.JDBC4Connection (see also the various connect*() methods of
com.mysql.jdbc.Driver)

These implementations contain database-specific logic to perform DML, DDL, and simple transaction
management.

In theory, it is possible to manually create these connection objects, but there are two JDBC methods
that hide the details to provide a cleaner API:

® java.sql.Driver.connect() - This method was used in standalone applications a long time ago.

e javax.sql.DataSource.getConnection() - This is the preferred method for using the factory
pattern. A similar method is used to obtain JMS connections from a JMS connection factory.

The driver manager approach is not discussed here. It is enough to state that this method is just a tiny
layer above a plain constructor for a given connection object.

In addition to java.sql.Connection, which effectively implements database-specific communication
protocols, there are two other specialized connection interfaces:

40

CHAPTER 6. USING JDBC DATA SOURCES

® javax.sql.PooledConnection represents a physical connection. Your code does not interact
with this pooled connection directly. Instead, the connection obtained from the
getConnection() method is used. This indirection enables management of connection pools at
the level of an application server. The connection obtained by using getConnection() is usually a
proxy. When such a proxy connection is closed, the physical connection is not closed and instead
it becomes available again in the managed connection pool.

e javax.sql.XAConnection allows obtaining a javax.transaction.xa.XAResource object that is
associated with XA-aware connection for use with javax.transaction.TransactionManager.
Because javax.sql.XAConnection extends javax.sql.PooledConnection, it also provides the
‘getConnection() method, which provides access to a JDBC connection object with typical
DML/DQL methods.

6.2. OVERVIEW OF JDBC DATA SOURCES

The JDBC 1.4 standard introduced the javax.sql.DataSource interface, which acted as a factory for
java.sgl.Connection objects. Usually such data sources were bound to a JNDI registry and were located
inside or injected into Java EE components such as servlets or EJBs. The key aspect is that these data
sources were configured inside the application server and referenced in deployed applications by name.

The following connection objects have their own data sources:

Data Source Connection

javax.sqgl.DataSource java.sql.Connection
javax.sql.ConnectionPoolDataSource javax.sql.PooledConnection
javax.sqgl.XADataSource javax.sqgl.XAConnection

The most important differences between each of the above data sources is as follows:

e javax.sql.DataSource is most importantly a factory-like object for obtaining
java.sql.Connection instances. The fact that most javax.sql.DataSource implementations
usually perform connection pooling should not change the picture. This is the only interface that
should be used by application code. It does not matter which of the following you are
implementing:

o Direct JDBC access
o JPA persistence unit configuration (either <jta-data-source> or <non-jta-data-source>)
o Popular library such as Apache Camel or Spring Framework

e javax.sgl.ConnectionPoolDataSource is most importantly a bridge between a generic (non
database-specific) connection pool/data source and a database-specific data source. It may be
treated as an SPIl interface. Application code usually deals with a generic javax.sql.DataSource
object that was obtained from JNDI and implemented by an application server (probably using a
library such as commons-dbcp2). On the other end, application code does not interface with
javax.sqgl.ConnectionPoolDataSource directly. It is used between an application server and a
database-specific driver. The following sequence diagram shows this:

41

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Application

| javax sql.DataSource getConnection()

App Server

|

|

|
=

_ javax.sgl.PooledConnection.getConnection()

| javax.sql.ConnectionPoolDataSource.getPooledConnection()

Database Driver

| javax.sql.PocledConnection

o
>

&
|

Application

e javax.sqgl.XADataSource is a way to obtain javax.sql.XAConnection and

App Server

Database Driver

javax.transaction.xa.XAResource. Same as javax.sql.ConnectionPoolDataSource, it's used
between application server and database-specific driver. Here's slightly modified diagram with
different actors, this time including JTA Transaction Manager:

Application

i UserTransaction.begin()

App Server

-

| DataSource.getConnection()

| Transaction Manager |

| TransactionManager.getTransaction() _ |

! javax.transaction.Transaction
<

>
I

1 new

Transaction

' ¥AConnection.getConnection(

| javax.sql ¥ADataSource .getXAConnection()

Database Driver

i javax.sql.XAConnection
<

| javax.sql XAConnection.getXAResource()

__ iavax.transaction.xa XAResource
-
|

Application

)
App Server

! Transaction.enlistResource(XAResource]
|

| Transaction Manager | ‘ Transaction | ‘ Database Driver | |XAConnection

As shown in two previous diagrams, you interact with the App Server, which is a generalized entity in
which you can configure javax.sql.DataSource and javax.transaction.UserTransaction instances.
Such instances may be accessed either by means of JNDI or by injection using CDI or another

dependency mechanism.

6.2.1. Database specific and generic data sources

The JDBC data source implementations fall into two categories:

IMPORTANT

o Apache Commons DBCP(2)

o Apache Tomcat JDBC (based on DBCP)

javax.sql.ConnectionPoolDataSource

® Generic javax.sql.DataSource implementations such as:

The important point is that even if the application uses XA transactions and/or
connection pooling, the application interacts with javax.sql.DataSource and not the two
other JDBC data source interfaces.

e Database specificimplementations of javax.sql.DataSource, javax.sql.XADataSource, and

It might be confusing that a generic javax.sql.DataSource implementation cannot create database-

42

http://commons.apache.org/proper/commons-dbcp/

CHAPTER 6. USING JDBC DATA SOURCES

specific connections on its own. Even if a generic data source could use java.sql.Driver.connect() or
java.sql.DriverManager.getConnection(), it is usually better/cleaner to configure this generic data
source with a database-specific javax.sql.DataSource implementation.

When a generic data source is going to interact with JTA, it must be configured with a database-
specific implementation of javax.sql.XADataSource.

To close the picture, a generic data source usually does not need a database-specific implementation
of javax.sql.ConnectionPoolDataSource to perform connection pooling. Existing pools usually handle

pooling without standard JDBC interfaces (javax.sql.ConnectionPoolDataSource and
javax.sql.PooledConnection) and instead use their own custom implementation.

6.2.2. Some generic data sources

Consider a sample, well-known, generic data source, Apache Commons DBCP(2).

javax.sql.XADataSource implementations

DBCP2 does not include any implementation of javax.sql.XADataSource, which is expected.

javax.sql.ConnectionPoolDataSource implementations
DBCP2 does include an implementation of javax.sql.ConnectionPoolDataSource:
org.apache.commons.dbcp2.cpdsadapter.DriverAdapterCPDS. It creates
javax.sql.PooledConnection objects by calling java.sql.DriverManager.getConnection(). This pool
should not be used directly and it should be treated as an adapter for drivers that:

® Do not provide their own javax.sql.ConnectionPoolDataSource implementation

® You want to use according to JDBC recommendations for connection pools
As shown in the sequence diagram above, the driver provides javax.sql.ConnectionPoolDataSource
directly or with the help of an org.apache.commons.dbcp2.cpdsadapter.DriverAdapterCPDS
adapter, while DBCP2 implements the application server contract with one of:

e org.apache.commons.dbcp2.datasources.PerUserPoolDataSource

e org.apache.commons.dbcp2.datasources.SharedPoolDataSource
Both these pools take an instance of javax.sql.ConnectionPoolDataSource at the configuration stage.

This is the most important and interesting part of DBCP2:

javax.sql.DataSource implementations

To implement the connection pooling feature, you do not have to follow JDBC recommendations to use
javax.sql.ConnectionPoolDataSource — javax.sql.PooledConnection SPI.

Here is a list of normal data sources of DBCP2:
e org.apache.commons.dbcp2.BasicDataSource
e org.apache.commons.dbcp2.managed.BasicManagedDataSource
e org.apache.commons.dbcp2.PoolingDataSource

e org.apache.commons.dbcp2.managed.ManagedDataSource

43

http://commons.apache.org/proper/commons-dbcp/

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

There are two axes here:

basic vs pooling

This axis determines the pooling configuration aspect.

Both kinds of data sources perform pooling of java.sqgl.Connection objects. The only difference is that:

A basic data source is configured by using bean properties such as maxTotal or minldle used to
configure an internal instance of org.apache.commons.pool2.impl.GenericObjectPool.

A pooling data source is configured with an externally created/configured
org.apache.commons.pool2.0bjectPool.

managed vs non-managed

This axis determines the connection creation aspect and the JTA behavior:

A non-managed basic data source creates java.sql.Connection instances by using
java.sql.Driver.connect() internally.

A non-managed pooling data source creates java.sql.Connection instances using the passed
org.apache.commons.pool2.0bjectPool object.

A managed pooling data source wraps java.sqgl.Connection instances inside
org.apache.commons.dbcp2.managed.ManagedConnection objects that ensure that
javax.transaction.Transaction.enlistResource() is called if needed in the JTA context. But still
the actual connection that is wrapped is obtained from any
org.apache.commons.pool2.0bjectPool object that the pool is configured with.

A managed basic data source frees you from configuring a dedicated
org.apache.commons.pool2.0bjectPool. Instead, it is enough to configure existing, real,
database-specific javax.sql.XADataSource objects. Bean properties are used to create an
internal instance of org.apache.commons.pool2.impl.GenericObjectPool, which is then
passed to an internal instance of a managed pooling data source
(org.apache.commons.dbcp2.managed.ManagedDataSource).

NOTE

The only thing that DBCP2 cannot do is XA transaction recovery. DBCP2 correctly enlists
XAResources in active JTA transactions, but it is not performing the recovery. This should
be done separately and the configuration is usually specific to the chosen transaction
manager implementation (such as Narayana).

6.2.3. Pattern to use

The recommended patternis:

44

Create or obtain a database-specific javax.sql.DataSource or javax.sql.XADataSource
instance with database-specific configuration (URL, credentials, and so on) that can create
connections/XA connections.

Create or obtain a non database-specific javax.sql.DataSource instance (internally
configured with the above, database-specific data source) with non database-specific
configuration (connection pooling, transaction manager, and so on).

Use javax.sql.DataSource to get an instance of java.sql.Connection and perform JDBC
operations.

http://narayana.io/

CHAPTER 6. USING JDBC DATA SOURCES

Here is a canonical example:

// Database-specific, non-pooling, non-enlisting javax.sql. XADataSource
PGXADataSource postgresql = new org.postgresql.xa.PGXADataSource();
// Database-specific configuration
postgresql.setUrl("jdbc:postgresql://localhost:5432/reportdb™);
postgresql.setUser("fuse");

postgresql.setPassword("fuse");

postgresql.setCurrentSchema("report");

postgresql.setConnectTimeout(5);

7.

// Non database-specific, pooling, enlisting javax.sql.DataSource
BasicManagedDataSource pool = new
org.apache.commons.dbcp2.managed.BasicManagedDataSource();
// Delegate to database-specific XADatasource
pool.setXaDataSourcelnstance(postgresql);

// Delegate to JTA transaction manager
pool.setTransactionManager(transactionManager);

// Non database-specific configuration

pool.setMinldle(3);

pool.setMaxTotal(10);

pool.setValidationQuery("select schema_name, schema_owner from
information_schema.schemata");

/...

// JDBC code:
javax.sql.DataSource applicationDataSource = pool;

try (Connection ¢ = applicationDataSource.getConnection()) {
try (Statement st = c.createStatement()) {
try (ResultSet rs = st.executeQuery("select ...")) {
/s

In a Fuse environment, there are many configuration options and there is no requirement to use DBCP2.

6.3. CONFIGURING JDBC DATA SOURCES

As discussed in OSGi transaction architecture, some services must be registered in the OSGi service
registry. Just as you can find (lookup) a transaction manager instance by using, for example, the
javax.transaction.UserTransaction interface, you can do the same with JDBC data sources by using
the javax.sql.DataSource interface. The requirements are:

® Database-specific data source that can communicate with the target database

® Generic data source where you can configure pooling and possibly transaction management
(XA)

In an OSGi environment, such as Fuse, data sources become accessible from applications if they are
registered as OSGi services. Fundamentally, it is done as follows:

org.osgi.framework.BundleContext.registerService(javax.sql.DataSource.class,
dataSourceObiject,
properties);

45

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

org.osgi.framework.BundleContext.registerService(javax.sql.XADataSource.class,
xaDataSourceObject,
properties);

There are two methods for registering such services:

® Publishing data sources by using the jdbc:ds-create Karaf console command. This is the
configuration method.

® Publishing data sources by using methods such as Blueprint, OSGi Declarative Services (SCR)
or just a BundleContext.registerService() API call. This method requires a dedicated OSGi
bundle that contains the code and/or metadata. This is the_deployment method_.

6.4. USING THE OSGI JDBC SERVICE

Chapter 125 of the OSGi Enterprise R6 specification defines a single interface in the
org.osgi.service.jdbc package. This is how OSGi handles data sources:

public interface DataSourceFactory {
java.sql.Driver createDriver(Properties props);
javax.sql.DataSource createDataSource(Properties props);
javax.sgl.ConnectionPoolDataSource createConnectionPoolDataSource(Properties props);

javax.sqgl.XADataSource createXADataSource(Properties props);

}

As mentioned before, plain java.sql.Connection connections may be obtained directly from
java.sql.Driver.

Generic org.osgi.service.jdbc.DataSourceFactory

The simplest implementation of org.osgi.service.jdbc.DataSourceFactory is
org.opsdj.pax.jdbc.impl.DriverDataSourceFactory provided by mvn:org.ops4j.pax.jdbc/pax-
jdbc/1.3.0 bundle. All it does is track bundles that may include the /META-INF/services/java.sql.Driver
descriptor for the standard Java™ Servicel oader utility. If you install any standard JDBC driver, the pax-
jdbc bundle registers a DataSourceFactory that can be used (not directly) to obtain connections by
means of a java.sql.Driver.connect() call.

karaf@root()> install -s mvn:org.osgi/org.osgi.service.jdbc/1.0.0
Bundle ID: 223

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc/1.3.0
Bundle ID: 224

karaf@root()> install -s mvn:org.postgresql/postgresql/42.2.5
Bundle ID: 225

karaf@root()> install -s mvn:mysql/mysql-connector-java/5.1.34
Bundle ID: 226

karaf@root()> bundle:services -p org.postgresql.jdbc42

PostgreSQL JDBC Driver JDBC42 (225) provides:

objectClass = [org.osgi.service.jdbc.DataSourceFactory]

46

CHAPTER 6. USING JDBC DATA SOURCES

osgi.jdbc.driver.class = org.postgresql.Driver
osgi.jdbc.driver.name = PostgreSQL JDBC Driver
osgi.jdbc.driver.version = 42.2.5

service.bundleid = 225

service.id = 242

service.scope = singleton

karaf@root()> bundle:services -p com.mysql.jdbc

Oracle Corporation's JDBC Driver for MySQL (226) provides:

objectClass = [org.osgi.service.jdbc.DataSourceFactory]
osgi.jdbc.driver.class = com.mysq|l.jdbc.Driver
osgi.jdbc.driver.name = com.mysq|.jdbc
osgi.jdbc.driver.version = 5.1.34

service.bundleid = 226

service.id = 243

service.scope = singleton

objectClass = [org.osgi.service.jdbc.DataSourceFactory]
osgi.jdbc.driver.class = com.mysq|l.fabric.jdbc.FabricMySQLDriver
osgi.jdbc.driver.name = com.mysq|.jdbc
osgi.jdbc.driver.version = 5.1.34

service.bundleid = 226

service.id = 244

service.scope = singleton

karaf@root()> service:list org.osgi.service.jdbc.DataSourceFactory
[org.osgi.service.jdbc.DataSourceFactory]

osgi.jdbc.driver.class = org.postgresql.Driver
osgi.jdbc.driver.name = PostgreSQL JDBC Driver
osgi.jdbc.driver.version = 42.2.5

service.bundleid = 225

service.id = 242

service.scope = singleton

Provided by :

PostgreSQL JDBC Driver JDBC42 (225)

[org.osgi.service.jdbc.DataSourceFactory]

osgi.jdbc.driver.class = com.mysql.jdbc.Driver
osgi.jdbc.driver.name = com.mysq|.jdbc
osgi.jdbc.driver.version = 5.1.34

service.bundleid = 226

service.id = 243

service.scope = singleton

Provided by :

Oracle Corporation's JDBC Driver for MySQL (226)

[org.osgi.service.jdbc.DataSourceFactory]

osgi.jdbc.driver.class = com.mysq|l.fabric.jdbc.FabricMySQLDriver
osgi.jdbc.driver.name = com.mysq|.jdbc

osgi.jdbc.driver.version = 5.1.34

service.bundleid = 226

47

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

service.id = 244

service.scope = singleton

Provided by :

Oracle Corporation's JDBC Driver for MySQL (226)

With the above commands, the javax.sql.DataSource service is still not registered, but you are one step
closer. The above intermediary org.osgi.service.jdbc.DataSourceFactory services can be used to
obtain:

® java.sql.Driver

e javax.sql.DataSource by passing properties: url, user and password to the
createDataSource() method.

You cannot obtain javax.sql.ConnectionPoolDataSource or javax.sql.XADataSource from the
generic org.osgi.service.jdbc.DataSourceFactory created by a non database-specific pax-jdbec
bundle.

NOTE

The mvn:org.postgresql/postgresql/42.2.5 bundle correctly implements the OSGi
JDBC specification and registers an org.osgi.service.jdbc.DataSourceFactory instance
with all methods that are implemented, including the ones that create XA and
ConnectionPool data sources.

Dedicated, database-specific org.osgi.service.jdbc.DataSourceFactory implementations

There are additional bundles such as the following:
® mvn:org.opséj.pax.jdbc/pax-jdbc-mysql/1.3.0
® mvn:org.opséj.pax.jdbc/pax-jdbc-db2/1.3.0
[]

These bundles register database-specific org.osgi.service.jdbc.DataSourceFactory services that can
return all kinds of factories, including javax.sql.ConnectionPoolDataSource and
javax.sql.XADataSource. For example:

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-mysql/1.3.0
Bundle ID: 227

karaf@root()> bundle:services -p org.ops4j.pax.jdbc.mysql

OPS4J Pax JDBC MySQL Driver Adapter (227) provides:

objectClass = [org.osgi.service.jdbc.DataSourceFactory]
osgi.jdbc.driver.class = com.mysq|l.jdbc.Driver
osgi.jdbc.driver.name = mysq|

service.bundleid = 227

service.id = 245

service.scope = singleton

karaf@root()> service:list org.osgi.service.jdbc.DataSourceFactory

[org.osgi.service.jdbc.DataSourceFactory]

48

CHAPTER 6. USING JDBC DATA SOURCES

osgi.jdbc.driver.class = com.mysql.jdbc.Driver
osgi.jdbc.driver.name = mysq|l

service.bundleid = 227

service.id = 245

service.scope = singleton

Provided by :

OPS4J Pax JDBC MySQL Driver Adapter (227)

6.4.1. PAX-JDBC configuration service

With pax-jdbc (or pax-jdbc-mysql, pax-jdbc-oracle, ...) bundles, you can have
org.osgi.service.jdbc.DataSourceFactory services registered that can be used to obtain data sources
for a given database (see Section 6.2.1, “Database specific and generic data sources”). But you do not
have actual data sources yet.

The mvn:org.opséj.pax.jdbc/pax-jdbc-config/1.3.0 bundle provides a managed service factory that
does two things:

® Tracks org.osgi.service.jdbc.DataSourceFactory OSGi services in order to invoke its
methods:

public DataSource createDataSource(Properties props);
public XADataSource createXADataSource(Properties props);
public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props);

® Tracks org.opsdj.datasource factory PIDs to collect properties that are required by the above
methods. If you create a factory configuration by using any method available to the
Configuration Admin service, for example, by creating a ${karaf.etc}/org.ops4j.datasource-
mysgql.cfg file, you can perform the final step to expose an actual database-specific data
source.

Here is a detailed, canonical step-by-step guide for starting from a fresh installation of Fuse.

NOTE
You explicitly install bundles instead of features, to show exactly which bundles are

needed. For convenience, the PAX JDBC project provides features for several database
- products and configuration approaches.

1. Install a JDBC driver with /META-INF/services/java.sql.Driver:

karaf@root()> install -s mvn:mysql/mysql-connector-java/5.1.34
Bundle ID: 223

2. Install the OSGi JDBC service bundle and pax-jdbc-mysql bundle that registers
intermediaryorg.osgi.service.jdbc.DataSourceFactory:

karaf@root()> install -s mvn:org.osgi/org.osgi.service.jdbc/1.0.0
Bundle ID: 224

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-mysql/1.3.0
Bundle ID: 225

karaf@root()> service:list org.osgi.service.jdbc.DataSourceFactory

49

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

[org.osgi.service.jdbc.DataSourceFactory]

osgi.jdbc.driver.class = com.mysql.jdbc.Driver
osgi.jdbc.driver.name = mysq|l

service.bundleid = 225

service.id = 242

service.scope = singleton

Provided by :

OPS4J Pax JDBC MySQL Driver Adapter (225)

3. Install the pax-jdbc bundle and the pax-jdbc-config bundle that tracks
org.osgi.service.jdbc.DataSourceFactory services andorg.opséj.datasource factory PIDs:

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc/1.3.0

Bundle ID: 226

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-pool-common/1.3.0
Bundle ID: 227

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-config/1.3.0

Bundle ID: 228

karaf@root()> bundle:services -p org.ops4j.pax.jdbc.config

OPS4J Pax JDBC Config (228) provides:

objectClass = [org.osgi.service.cm.ManagedServiceFactory]
service.bundleid = 228

service.id = 245

service.pid = org.ops4j.datasource

service.scope = singleton

4. Create the factory configuration (assume a MySQL server is running):

karaf@root()> config:edit --factory --alias mysql org.ops4j.datasource
karaf@root()> config:property-set osgi.jdbc.driver.name mysq|
karaf@root()> config:property-set dataSourceName mysqlds
karaf@root()> config:property-set url jdbc:mysql://localhost:3306/reportdb
karaf@root()> config:property-set user fuse

karaf@root()> config:property-set password fuse

karaf@root()> config:update

karaf@root()> config:list '(service.factoryPid=org.ops4j.datasource)’'

Pid: org.ops4j.datasource.a7941498-9b62-4ed7-9413-8¢c7ac9365313
FactoryPid: org.ops4j.datasource
BundleLocation: ?
Properties:
dataSourceName = mysqlds
felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.datasource-mysql.cfg
osgi.jdbc.driver.name = mysq|l
password = fuse
service.factoryPid = org.ops4j.datasource
service.pid = org.ops4j.datasource.a7941498-9b62-4ed7-9413-8¢c7ac9365313
url = jdbc:mysql://localhost:3306/reportdb
user = fuse

50

CHAPTER 6. USING JDBC DATA SOURCES

5. Check if pax-jdbc-config processed the configuration into the javax.sql.DataSource service:

karaf@root()> service:list javax.sqgl.DataSource
[[avax.sql.DataSource]

dataSourceName = mysqlds

felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.datasource-mysql.cfg
osgi.jdbc.driver.name = mysq|l

osgi.jndi.service.name = mysqlds

password = fuse

pax.jdbc.managed = true

service.bundleid = 228

service.factoryPid = org.ops4j.datasource

service.id = 246

service.pid = org.ops4j.datasource.a7941498-9b62-4ed7-9413-8c7ac9365313
service.scope = singleton

url = jdbc:mysql://localhost:3306/reportdb

user = fuse

Provided by :

OPS4J Pax JDBC Config (228)

You now have an actual database-specific (no pooling yet) data source. You can already inject it where it
is needed. For example, you can use Karaf commands to query the database:

karaf@root()> feature:install -v jdbc
Adding features: jdbc/[4.2.0.fuse-000237-redhat-1,4.2.0.fuse-000237-redhat-1]

karaf@root()> jdbc:ds-list

Mon May 14 08:46:22 CEST 2018 WARN: Establishing SSL connection without server's identity
verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL
connection must be established by default if explicit option isn't set. For compliance with existing
applications not using SSL the verifyServerCertificate property is set to 'false’. You need either to
explicitly disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server
certificate verification.

Name | Product | Version | URL | Status
| |

|
1
mysqlds | MySQL | 5.7.21 | jdbc:mysql:/localhost:3306/reportdo | OK

karaf@root()> jdbc:query mysqlds 'select * from incident’

Mon May 14 08:46:46 CEST 2018 WARN: Establishing SSL connection without server's identity
verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL
connection must be established by default if explicit option isn't set. For compliance with existing
applications not using SSL the verifyServerCertificate property is set to 'false’. You need either to
explicitly disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server
certificate verification.

date | summary | name | details | id | email
| | |
| | |

[|
2018-02-20 08:00:00.0 | Incident 1 | User 1 | This is a report incident 001 | 1 |
useri@redhat.com
2018-02-20 08:10:00.0 | Incident 2 | User 2 | This is a report incident 002 | 2 |
user2@redhat.com
2018-02-20 08:20:00.0 | Incident 3 | User 3 | This is a report incident 003 | 3 |

51

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

user3@redhat.com
2018-02-20 08:30:00.0 | Incident 4 | User 4 | This is a report incident 004 | 4 |
user4@redhat.com

In the above example, you can see a MySQL warning. This is not a problem. Any property (not only OSGi
JDBC specific ones) may be provided:

karaf@root()> config:property-set --pid org.ops4j.datasource.a7941498-9b62-4ed7-94f3-
8c7ac9365313 useSSL false

karaf@root()> jdbc:ds-list

Name | Product | Version | URL | Status
| |

|
1
mysqlds | MySQL | 5.7.21 | jdbc:mysql:/localhost:3306/reportdo | OK

6.4.2. Summary of handled properties

Properties from the configuration of the admin factory PID are passed to the relevant
org.osgi.service.jdbc.DataSourceFactory implementation.

Generic

org.opsdj.pax.jdbc.impl.DriverDataSourceFactory properties:
e url
® user
e password

DB2

org.opsdj.pax.jdbc.db2.impl.DB2DataSourceFactory properties include all bean properties of these
implementation classes:

e com.ibm.db2.jcc.DB2SimpleDataSource
e com.ibm.db2.jcc.DB2ConnectionPoolDataSource
e com.ibm.db2.jcc.DB2XADataSource

PostgreSQL

Nnative org.postgresql.osgi.PGDataSourceFactory properties include all properties that are specified
in org.postgresql.PGProperty.

HSQLDB
org.opsdj.pax.jdbc.hsqldb.impl.HsqldbDataSourceFactory properties:

e url
® user

e password

52

CHAPTER 6. USING JDBC DATA SOURCES

e databaseName

® All bean properties of

o org.hsqldb.jdbc.JDBCDataSource
o org.hsqldb.jdbc.pool.JDBCPooledDataSource
o org.hsqldb.jdbc.pool.JDBCXADataSource

SQL Server and Sybase

org.opsdj.pax.jdbc.jtds.impl.JTDSDataSourceFactory properties include all bean properties of
net.sourceforge.jtds.jdbcx.JtdsDataSource.

SQL Server
org.opsédj.pax.jdbc.mssql.impl.MSSQLDataSourceFactory properties:

e url

® user

e password

o databaseName
® serverName
e portNumber

® All bean properties of

o com.microsoft.sqlserver.jdbc.SQLServerDataSource
o com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource

o com.microsoft.sqlserver.jdbc.SQLServerXADataSource

MySQL
org.opsédj.pax.jdbc.mysql.impl.MysqlDataSourceFactory properties:

e url

® user

e password

o databaseName
® serverName
o portNumber

® All bean properties of

o com.mysql.jdbc.jdbc2.optional.MysqlDataSource

53

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

o com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource
o com.mysql.jdbc.jdbc2.optional.MysqlXADataSource

Oracle

org.opsédj.pax.jdbc.oracle.impl.OracleDataSourceFactory properties:
e url
e databaseName
e serverName
e user
e password

® All bean properties of

o oracle.jdbc.pool.OracleDataSource
o oracle.jdbc.pool.OracleConnectionPoolDataSource
o oracle.jdbc.xa.client.OracleXADataSource

SQLite

org.opsdj.pax.jdbc.sqlite.impl.SqliteDataSourceFactory properties:
e url
o databaseName

e All bean properties of org.sqlite.SQLiteDataSource

6.4.3. How the pax-jdb-config bundle handles properties

The pax-jdbc-config bundle handles properties that prefixed with jdbe.. All of these properties will have
this prefix removed and the remaining names will be passed over.

Here is the example, again, starting with a fresh installation of Fuse:

karaf@root()> install -s mvn:mysql/mysql-connector-java/5.1.34
Bundle ID: 223

karaf@root()> install -s mvn:org.osgi/org.osgi.service.jdbc/1.0.0
Bundle ID: 224

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-mysql/1.3.0
Bundle ID: 225

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc/1.3.0
Bundle ID: 226

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-pool-common/1.3.0
Bundle ID: 227

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-config/1.3.0
Bundle ID: 228

karaf@root()> config:edit --factory --alias mysql org.ops4j.datasource

54

CHAPTER 6. USING JDBC DATA SOURCES

karaf@root()> config:property-set osgi.jdbc.driver.name mysq|

karaf@root()> config:property-set dataSourceName mysqlds

karaf@root()> config:property-set dataSourceType DataSource

karaf@root()> config:property-set jdbc.url jdbc:mysql://localhost:3306/reportdb
karaf@root()> config:property-set jdbc.user fuse

karaf@root()> config:property-set jdbc.password fuse

karaf@root()> config:property-set jdbc.useSSL false

karaf@root()> config:update

karaf@root()> config:list '(service.factoryPid=org.ops4j.datasource)’'

Pid: org.ops4j.datasource.7c3ee718-7309-46a0-ae3a-64b38b17a0a3
FactoryPid: org.ops4j.datasource
BundleLocation: ?
Properties:

dataSourceName = mysqlds

dataSourceType = DataSource

felix.fileinstall.filename = file:/data/servers/7.11.1.fuse-7_11_1-00013-redhat-
00003/etc/org.ops4j.datasource-mysql.cfg

jdbc.password = fuse

jdbc.url = jdbc:mysql://localhost:3306/reportdb

jdbc.useSSL = false

jdbc.user = fuse

osgi.jdbc.driver.name = mysq|l

service.factoryPid = org.ops4j.datasource

service.pid = org.ops4j.datasource.7c3ee718-7309-46a0-ae3a-64b38b17a0a3

karaf@root()> service:list javax.sqgl.DataSource
[[avax.sql.DataSource]

dataSourceName = mysqlds

dataSourceType = DataSource

felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.datasource-mysql.cfg
jdbc.password = fuse

jdbc.url = jdbc:mysql://localhost:3306/reportdb

jdbc.user = fuse

jdbc.useSSL = false

osgi.jdbc.driver.name = mysq|l

osgi.jndi.service.name = mysqlds

pax.jdbc.managed = true

service.bundleid = 228

service.factoryPid = org.ops4j.datasource

service.id = 246

service.pid = org.ops4j.datasource.7c3ee718-7309-46a0-ae3a-64b38b17a0a3
service.scope = singleton

Provided by :

OPS4J Pax JDBC Config (228)

The pax-jdbc-config bundle requires these properties:

e osgi.jdbc.driver.name
o dataSourceName

e dataSourceType

55

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

to locate and invoke relevant org.osgi.service.jdbc.DataSourceFactory methods. Properties that are
prefixed with jdbe. are passed (after removing the prefix) to, for example,
org.osgi.service.jdbc.DataSourceFactory.createDataSource(properties). However, these properties
are added, without the prefix removed, as properties of, for example, the javax.sql.DataSource OSGi
service.

6.5. USING JDBC CONSOLE COMMANDS

Fuse provides the jdbec feature, which includes shell commands in the jdbe:* scope. A previous example
showed the use of jdbc:query. There are also commands that hide the need to create Configuration
Admin configurations.

Starting with a fresh instance of Fuse, you can register a database-specific data source with a generic
DataSourceFactory service as follows:

karaf@root()> feature:install jdbc

karaf@root()> jdbc:ds-factories

Name | Class | Version
|

karaf@root()> install -s mvn:mysql/mysql-connector-java/5.1.34
Bundle ID: 228

karaf@root()> jdbc:ds-factories

Name | Class | Version
| |

com.mysgl.jdbc | com.mysq|.jdbc.Driver | 5.1.34
com.mysql.jdbc | com.mysq|.fabric.jdbc.FabricMySQLDriver | 5.1.34

Here is an example of registering a MySQL-specific DataSourceFactory service:

karaf@root()> feature:repo-add mvn:org.ops4j.pax.jdbc/pax-jdbc-features/1.3.0/xml/features-gpl
Adding feature url mvn:org.ops4j.pax.jdbc/pax-jdbc-features/1.3.0/xml/features-gpl

karaf@root()> feature:install pax-jdbc-mysq|

karaf@root()> la -l|grep mysq|l

232 | Active | 80| 5.1.34 | mvn:mysql/mysql-connector-java/5.1.34
233 | Active | 80| 1.3.0 | mvn:org.ops4j.pax.jdoc/pax-jdbc-mysql/1.3.0
karaf@root()> jdbc:ds-factories
Name | Class | Version

| I
com.mysgl.jdbc | com.mysq|.jdbc.Driver | 5.1.34
mysql | com.mysql.jdbc.Driver

com.mysql.jdbc | com.mysq|.fabric.jdbc.FabricMySQLDriver | 5.1.34

The above table may be confusing, but as mentioned above, only one of the pax-jdbc-database
bundles may register org.osgi.service.jdbc.DataSourceFactory instances that can create
standard/XA/connection pool data sources that do not simply delegate to java.sql.Driver.connect().

56

CHAPTER 6. USING JDBC DATA SOURCES

The following example creates and checks a MySQL data source:

karaf@root()> jdbc:ds-create -dt DataSource -dn mysq|l -url 'jJdbc:mysql://localhost:3306/reportdb?
useSSL=false' -u fuse -p fuse mysqlds

karaf@root()> jdbc:ds-list

Name | Product | Version | URL | Status
| |

1
mysqlds | MySQL | 5.7.21 | jdbc:mysql:/localhost:3306/reportdo?useSSL=false | OK

karaf@root()> jdbc:query mysqlds 'select * from incident'

date | summary | name | details | id | email
| |

[|
2018-02-20 08:00:00.0 | Incident 1 | User 1 | This is a report incident 001 | 1 |
useri@redhat.com
2018-02-20 08:10:00.0 | Incident 2 | User 2 | This is a report incident 002 | 2 |
user2@redhat.com
2018-02-20 08:20:00.0 | Incident 3 | User 3 | This is a report incident 003 | 3 |
user3@redhat.com
2018-02-20 08:30:00.0 | Incident 4 | User 4 | This is a report incident 004 | 4 |
user4@redhat.com

karaf@root()> config:list '(service.factoryPid=org.ops4j.datasource)’'

Pid: org.ops4j.datasource.55b18993-de4e-4e0b-abb2-a4c13da7{78b
FactoryPid: org.ops4j.datasource
BundleLocation: mvn:org.ops4j.pax.jdbc/pax-jdbec-config/1.3.0
Properties:
dataSourceName = mysqlds
dataSourceType = DataSource
osgi.jdbc.driver.name = mysq|l
password = fuse
service.factoryPid = org.ops4j.datasource
service.pid = org.ops4j.datasource.55b18993-de4e-4e0b-abb2-a4c13da7f78b
url = jdbc:mysql://localhost:3306/reportdb?useSSL=false
user = fuse

As can see, the org.opsdj.datasource factory PID is created for you. However it is not automatically
stored in ${karaf.etc}, which is possible with config:update.

6.6. USING ENCRYPTED CONFIGURATION VALUES

The pax-jdbc-config feature is able to process Configuration Admin configurations in which values are
encrypted. A popular solution is to use Jasypt encryption services, which are also used by Blueprint.

If there are any org.jasypt.encryption.StringEncryptor services registered in OSGi with any alias
service property, you can refrence it in a data source factory PID and use encrypted passwords. Here is
an example:

felix.fileinstall.flename = */etc/org.ops4j.datasource-mysql.cfg
dataSourceName = mysqlds

dataSourceType = DataSource

decryptor = my-jasypt-decryptor

57

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

osgi.jdbc.driver.name = mysq|

url = jdbc:mysql://localhost:3306/reportdb?useSSL=false
user = fuse

password = ENC(<encrypted-password>)

The service filter used to find the decryptor service is (&
(objectClass=org.jasypt.encryption.StringEncryptor)(alias=<alias>)), where <alias> is the value of
the decryptor property from the data source configuration factory PID.

6.7. USING JDBC CONNECTION POOLS

This section provides an introduction to using JDBC connection pools and then shows how to use these
connection pool modules:

® pax-jdbc-pool-dbcp2
® pax-jdbc-pool-narayana

® pax-jdbc-pool-transx

IMPORTANT

This chapter presents exhaustive information about the internals of data source
management. While information about the DBCP2 connection pool feature is provided,
keep in mind that this connection pool provides proper JTA enlisting capabilities, but not
XA Recovery.

To ensure that XA recoveryis in place, use the pax-jdbc-pool-transx or pax-jdbc-pool-
narayana connection pool module.

6.7.1. Introduction to using JDBC connection pools

Previous examples showed how to register a database-specific data source factory. Because data
source itself is a factory for connections, org.osgi.service.jdbc.DataSourceFactory may be treated as
a meta factory that should be able to produce three kinds of data sources, plus, as a bonus, a
java.sql.Driver):

e javax.sql.DataSource

e javax.sql.ConnectionPoolDataSource

e javax.sql.XADataSource

For example, pax-jdbc-mysql registers an org.opsdj.pax.jdbc.mysql.impl.MysqlDataSourceFactory
that produces:

e javax.sql.DataSource - com.mysql.jdbc.jdbc2.optional.MysqlDataSource

e javax.sql.ConnectionPoolDataSource —
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

e javax.sql.XADataSource —» com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
® java.sql.Driver - com.mysql.jdbc.Driver

The PostgreSQL driver itself implements the OSGi JDBC service and produces:

58

CHAPTER 6. USING JDBC DATA SOURCES

javax.sql.DataSource — org.postgresql.jdbc2.optional.PoolingDataSource (if there are
pool-related properties specified) or org.postgresql.jdbc2.optional.SimpleDataSource

javax.sql.ConnectionPoolDataSource — org.postgresql.jdbc2.optional.ConnectionPool

javax.sql.XADataSource — org.postgresql.xa.PGXADataSource
® java.sql.Driver — org.postgresql.Driver

As shown in the canonical DataSource example, any pooling, generic data source, if it is going to work in
a JTA environment, needs a database specific data source to actually obtain (XA) connections.

We already have the latter, and we need actual, generic, reliable connection pool.

The canonical DataSource example shows how to configure a generic pool with a database-specific
data source. The pax-jdbc-pool-* bundles work smoothly with the above described
org.osgi.service.jdbc.DataSourceFactory services.

Just as the OSGI Enterprise R6 JDBC specification provides the

org.osgi.service.jdbc.DataSourceFactory standard interface, pax-jdbc-pool-common provides
proprietary org.opséj.pax.jdbc.pool.common.PooledDataSourceFactory interface:

public interface PooledDataSourceFactory {

javax.sql.DataSource create(org.osgi.service.jdbc.DataSourceFactory dsf, Properties config)

This interface is perfectly conformant with what this important note that was presented previously and is
worth repeating:

IMPORTANT

Even if the application uses XA transactions and/or connection pooling, the application
interacts with javax.sql.DataSource and not the two other JDBC data source interfaces.

This interface simply creates a pooling data source out of a database-specific, non-pooling datas ource.
Or more precisely, it is a data source factory (meta factory) that turns a factory of database-specific
data sources into a factory of pooling data sources.

NOTE

There is nothing that prevents an application from configuring pooling for a
javax.sql.DataSource object by using an org.osgi.service.jdbc.DataSourceFactory
service that already returns pooling for javax.sql.DataSource objects.

The following table shows which bundles register pooled data source factories. In the table, instances of
0.0.p.j.p represent org.opsédj.pax.jdbc.pool.

Bundle PooledDataSourceFactory Pool Key

pax-jdbc-pool-narayana 0.0.p.j.p-narayana.impl.Dbcp(XA)Po narayana
oledDataSourceFactory

59

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Bundle PooledDataSourceFactory Pool Key

pax-jdbc-pool-dbcp2 0.0.p.j.p-dbcp2.impl.Dbcp(XA)Poole dbcp2
dDataSourceFactory

pax-jdbc-pool-transx 0.0.p.j.p-transx.impl.Transx(Xa)Poo transx
ledDataSourceFactory

The above bundles install only data source factories and not the data sources themselves. The
application needs something that calls the javax.sql.DataSource
create(org.osgi.service.jdbc.DataSourceFactory dsf, Properties config) method.

6.7.2. Using the dbcp2 connection pool module

The section about generic data sources provides an example of how to use and configure the Apache
Commons DBCP module. This section shows how to do this in the Fuse OSGi environment.

Consider the Section 6.4.1, "PAX-JDBC configuration service” bundle. In addition to tracking the
following:

® org.osgi.service.jdbc.DataSourceFactory services
e org.opsdj.datasource factory PIDs

The bundle also tracks instances of org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory
that are registered by one of the pax-jdbc-pool-* bundles.

If the factory configuration contains the pool property, then the ultimate data source registered by the
pax-jdbc-config bundle is the database-specific datas ource, but wrapped inside one of the following if
pool=dbcp2):

e org.apache.commons.dbcp2.PoolingDataSource

e org.apache.commons.dbcp2.managed.ManagedDataSource
This is consistent with the generic data source example . In addition to the pool property, and the
boolean xa property, which selects a non-xa or an xa data source, the org.ops4j.datasource factory
PID may contain prefixed properties:

® pool.*

e factory.”

Where each property is used depends on which pax-jdbc-pool-* bundle isused. For DBCP2, it is:

® pool.*: bean properties of org.apache.commons.pool2.impl.GenericObjectPoolConfig (both
xa and non-xa scenario)

e factory.*: bean properties of
org.apache.commons.dbcp2.managed.PoolableManagedConnectionFactory (xa) or
org.apache.commons.dbcp2.PoolableConnectionFactory (non-xa)

6.7.2.1. Configuration properties for BasicDataSource

60

http://commons.apache.org/proper/commons-dbcp/

CHAPTER 6. USING JDBC DATA SOURCES

The following table lists the generic configuration properties for BasicDataSource.

Parameter

username

password

url

driverClassName

initialSize

maxTotal

maxlidle

minldle

maxWaitMillis

validationQuery

Default

indefinitely

Description

The connection user name to be passed
to our JDBC driver to establish a
connection.

The connection password to be passed to
our JDBC driver to establish a
connection.

The connection URL to be passed to our
JDBC driver to establish a connection.

The fully qualified Java class name of the
JDBC driver to be used.

The initial number of connections that
are created when the pool is started.

The maximum number of active
connections that can be allocated from
this pool at the same time, or negative for
no limit.

The maximum number of connections
that can remain idle in the pool, without
extra ones being released, or negative for
no limit.

The minimum number of connections
that can remain idle in the pool, without
extra ones being created, or zero to
create none.

The maximum number of milliseconds
that the pool will wait (when there are no
available connections) for a connection
to be returned before throwing an
exception, or -1to wait indefinitely.

The SQL query that will be used to
validate connections from this pool
before returning them to the caller. If
specified, this query MUST be an SQL
SELECT statement that returns at least
one row. If not specified, connections will
be validation by calling the isValid()
method.

61

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Parameter Default
validationQueryTimeout no timeout
testOnCreate false
testOnBorrow true
testOnReturn false
testWhileldle false
timeBetweenEvictionRunsMillis -1
numTestsPerEvictionRun 3
minEvictableldleTimeMillis 1000 *60 * 30

6.7.2.2. Example of how to configure DBCP2 pool

Description

The timeout in seconds before
connection validation queries fail. If set to
a positive value, this value is passed to the
driver via the setQueryTimeout method
of the Statement used to execute the
validation query.

The indication of whether objects will be
validated after creation. If the object fails
to validate, the borrow attempt that
triggered the object creation will fail.

The indication of whether objects will be
validated before being borrowed from the
pool. If the object fails to validate, it will
be dropped from the pool, and we will
attempt to borrow another.

The indication of whether objects will be
validated before being returned to the
pool.

The indication of whether objects will be
validated by the idle object evictor (if
any). If an object fails to validate, it will be
dropped from the pool.

The number of milliseconds to sleep
between runs of the idle object evictor
thread. When non-positive, no idle object
evictor thread will be run.

The number of objects to examine during
each run of the idle object evictor thread

(if any).

The minimum amount of time an object
may sit idle in the pool before it is eligible
for eviction by the idle object evictor (if

any).

The following is a realistic example (except useSSL=false) of a configuration of a DBCP2 pool
(org.opsdj.datasource-mysql factory PID) that uses convenient syntax with jdbe.-prefixed properties:

Configuration for pax-jdbc-config to choose and configure specific

org.osgi.service.jdbc.DataSourceFactory
dataSourceName = mysqlds

62

CHAPTER 6. USING JDBC DATA SOURCES

dataSourceType = DataSource
osgi.jdbc.driver.name = mysq|

jdbc.url = jdbc:mysql://localhost:3306/reportdb
jdbc.user = fuse

jdbc.password = fuse

jdbc.useSSL = false

Hints for pax-jdbc-config to use org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory
pool = dbcp2
xa = false

dbcp2 specific configuration of org.apache.commons.pool2.impl.GenericObjectPoolConfig
pool.minidle = 10

pool.maxTotal = 100

pool.initialSize = 8

pool.blockWhenExhausted = true

pool.maxWaitMillis = 2000

pool.testOnBorrow = true

pool.testWhileldle = false

pool.timeBetweenEvictionRunsMillis = 120000

pool.evictionPolicyClassName = org.apache.commons.pool2.impl.DefaultEvictionPolicy

dbcp2 specific configuration of org.apache.commons.dbcp2.PoolableConnectionFactory
factory.maxConnLifetimeMillis = 30000

factory.validationQuery = select schema_name from information_schema.schemata
factory.validationQueryTimeout = 2

In the above configuration, pool and xa keys are hints (service filter properties) to choose one of the
registered org.opséj.pax.jdbc.pool.common.PooledDataSourceFactory services. In the case of
DBCP2, thisis:

karaf@root()> feature:install pax-jdbc-pool-dbcp2
karaf@root()> bundle:services -p org.ops4j.pax.jdbc.pool.dbcp2

OPS4J Pax JDBC Pooling DBCP2 (230) provides:

objectClass = [org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory]
pool = dbcp2

service.bundleid = 230

service.id = 337

service.scope = singleton

xa = false

objectClass = [org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory]
pool = dbcp2

service.bundleid = 230

service.id = 338

service.scope = singleton

xa = true

For completeness, here is a full example with connection pool configuration added to the previous
example. Again, this assumes that you are starting with a fresh Fuse installation.

1. Install a JDBC driver:

63

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

64

karaf@root()> install -s mvn:mysql/mysql-connector-java/5.1.34
Bundle ID: 223

2. Install the jdbe, pax-jdbc-mysql and pax-jdbc-pool-dbcp2 features:

karaf@root()> feature:repo-add mvn:org.ops4j.pax.jdbc/pax-jdbc-features/1.3.0/xml/features-
gpl

Adding feature url mvn:org.ops4j.pax.jdbc/pax-jdbc-features/1.3.0/xml/features-gpl
karaf@root()> feature:install jdbc pax-jdbc-mysql pax-jdbc-pool-dbcp2

karaf@root()> service:list org.osgi.service.jdbc.DataSourceFactory

[org.osgi.service.jdbc.DataSourceFactory]

osgi.jdbc.driver.class = com.mysql.jdbc.Driver
osgi.jdbc.driver.name = mysq|l

service.bundleid = 232

service.id = 328

service.scope = singleton

Provided by :

OPS4J Pax JDBC MySQL Driver Adapter (232)

karaf@root()> service:list org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory
[org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory]

pool = dbcp2

service.bundleid = 233

service.id = 324

service.scope = singleton

xa = false

Provided by :

OPS4J Pax JDBC Pooling DBCP2 (233)

[org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory]

pool = dbcp2

service.bundleid = 233

service.id = 332

service.scope = singleton

xa = true

Provided by :

OPS4J Pax JDBC Pooling DBCP2 (233)

3. Create the factory configuration:

karaf@root()> config:edit --factory --alias mysql org.ops4j.datasource
karaf@root()> config:property-set osgi.jdbc.driver.name mysq|

karaf@root()> config:property-set dataSourceName mysqlds

karaf@root()> config:property-set dataSourceType DataSource

karaf@root()> config:property-set jdbc.url jdbc:mysql://localhost:3306/reportdb
karaf@root()> config:property-set jdbc.user fuse

karaf@root()> config:property-set jdbc.password fuse

karaf@root()> config:property-set jdbc.useSSL false

karaf@root()> config:property-set pool dbcp2

CHAPTER 6. USING JDBC DATA SOURCES

karaf@root()> config:property-set xa false

karaf@root()> config:property-set pool.minldle 2

karaf@root()> config:property-set pool.maxTotal 10

karaf@root()> config:property-set pool.blockWhenExhausted true
karaf@root()> config:property-set pool.maxWaitMillis 2000

karaf@root()> config:property-set pool.testOnBorrow true

karaf@root()> config:property-set pool.testWhileldle alse

karaf@root()> config:property-set pool.timeBetweenEvictionRunsMillis 120000
0

karaf@root()> config:property-set factory.validationQuery 'select schema_name from

information_schema.schemata'
karaf@root()> config:property-set factory.validationQueryTimeout 2
karaf@root()> config:update

4. Check if pax-jdbc-config processed the configuration into the javax.sql.DataSource service:

karaf@root()> service:list javax.sqgl.DataSource
[[avax.sql.DataSource]

dataSourceName = mysqlds

dataSourceType = DataSource

factory.validationQuery = select schema_name from information_schema.schemata
factory.validationQueryTimeout = 2

felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.datasource-mysql.cfg
jdbc.password = fuse

jdbc.url = jdbc:mysql://localhost:3306/reportdb

jdbc.user = fuse

jdbc.useSSL = false

osgi.jdbc.driver.name = mysq|l

osgi.jndi.service.name = mysqlds

pax.jdbc.managed = true

pool.blockWhenExhausted = true

pool.maxTotal = 10

pool.maxWaitMillis = 2000

pool.minldle = 2

pool.testOnBorrow = true

pool.testWhileldle = alse

pool.timeBetweenEvictionRunsMillis = 120000

service.bundleid = 225

service.factoryPid = org.ops4j.datasource

service.id = 338

service.pid = org.ops4j.datasource.fd7aa3ai1-695b-4342-b0d6-23d018a46fbb
service.scope = singleton

Provided by :

OPS4J Pax JDBC Config (225)

5. Use the data source:

karaf@root()> jdbc:query mysqlds 'select * from incident’

date | summary | name | details | id | email
| | |

| [
2018-02-20 08:00:00.0 | Incident 1 | User 1 | This is a report incident 001 | 1 |
useri@redhat.com
2018-02-20 08:10:00.0 | Incident 2 | User 2 | This is a report incident 002 | 2 |
user2@redhat.com

65

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

2018-02-20 08:20:00.0 | Incident 3 | User 3 | This is a report incident 003 | 3 |
user3@redhat.com
2018-02-20 08:30:00.0 | Incident 4 | User 4 | This is a report incident 004 | 4 |
user4@redhat.com

6.7.3. Using the narayana connection pool module

The pax-jdbc-pool-narayna module does almost everything as pax-jdbc-pool-dbcp2. It installs the
DBCP2-specific org.opséj.pax.jdbc.pool.common.PooledDataSourceFactory, for both XA and non-
XA scenarios. The only difference is that in XA scenarios there is an additional integration point. The
org.jboss.tm.XAResourceRecovery OSGi service is registered to be picked up by
com.arjuna.ats.arjuna.recovery.RecoveryManager, which is part of the Narayana transaction
manager.

6.7.4. Using the transx connection pool module

The pax-jdbc-pool-transx bundle bases its implementation of
org.opséj.pax.jdbc.pool.common.PooledDataSourceFactory services on the pax-transx-jdbc
bundle. The pax-transx-jdbc bundle creates javax.sql.DataSource pools by using the
org.opsdj.pax.transx.jdbc.ManagedDataSourceBuilder facility. This is a JCA (Java™ Connector
Architecture) solution and it is described in later.

6.8. DEPLOYING DATA SOURCES AS ARTIFACTS

This chapter introduced OSGi JDBC services, showed how pax-jdbc bundles help with registration of
database-specific and generic data sources, and how it all looks from the perspective of OSGi services
and Configuration Admin configurations. While configuration of both categories of data sources may be
done by using Configuration Admin factory PIDs (with help from the pax-jdbc-config bundle), it is
usually preferred to use the deployment method.

In the deployment method, javax.sql.DataSource services are registered directly by application code,
usually inside a Blueprint container. Blueprint XML may be part of an ordinary OSGi bundle, installable by
using a mvn: URI and stored in a Maven repository (local or remote). It is much easier to version-control
such bundles by comparing them to Configuration Admin configurations.
The pax-jdbc-config bundle version 1.3.0 adds a deployment method for data source configuration. An
application developer registers the javax.sql.(XA)DataSource service (usually by using Bluerpint XML)
and specifies service properties. The pax-jdbc-config bundle detects such registered database-specific
data sources and (using service properties) wraps the service inside a generic, non database-specific,
connection pool.
For completeness, following are three deployment methods that use Blueprint XML. Fuse provides a
quickstarts download with various examples of different aspects of Fuse. You can download the
quickstarts zip file from the Fuse Software Downloads page.
Extract the contents of the quickstarts zip file to a local folder.
In the following examples, the quickstarts/persistence directory is referred to as $PQ_HOME.

® Section 6.8.1, "Manual deployment of data sources”

® Section 6.8.2, "Factory deployment of data sources”

® Section 6.8.3, "Mixed deployment of data sources”

66

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=distributions

CHAPTER 6. USING JDBC DATA SOURCES

6.8.1. Manual deployment of data sources

This example of manual deployment of data sources uses a docker-based PostgreSQL installation. In
this method, the pax-jdbc-config is not needed. Application code is responsible for registration of both
database-specific and generic data sources.

These three bundles are needed:
e mvn:org.postgresql/postgresql/42.2.5
® mvn:org.apache.commons/commons-pool2/2.5.0

® mvn:org.apache.commons/commons-dbcp2/2.1.1

<l--
Database-specific, non-pooling, non-enlisting javax.sql. XADataSource
-—>
<bean id="postgresql" class="org.postgresql.xa.PGXADataSource">
<property name="url" value="jdbc:postgresql://localhost:5432/reportdb” />
<property name="user" value="fuse" />
<property name="password" value="fuse" />
<property name="currentSchema" value="report" />
<property name="connectTimeout" value="5" />
</bean>

<!l--

Fuse/Karaf exports this service from fuse-pax-transx-tm-narayana bundle
-->
<reference id="tm" interface="javax.transaction.TransactionManager" />

<l--
Non database-specific, generic, pooling, enlisting javax.sql.DataSource
-=>
<bean id="pool" class="org.apache.commons.dbcp2.managed.BasicManagedDataSource">
<property name="xaDataSourcelnstance" ref="postgresql" />
<property name="transactionManager" ref="tm" />
<property name="minldle" value="3" />
<property name="maxTotal" value="10" />
<property name="validationQuery" value="select schema_name, schema_owner from
information_schema.schemata" />
</bean>

<l--
Expose datasource to use by application code (like Camel, Spring, ...)
>
<service interface="javax.sqgl.DataSource" ref="pool">
<service-properties>
<entry key="osgi.jndi.service.name" value="jdbc/postgresql" />
</service-properties>
</service>

The above Blueprint XML fragment matches the canonical DataSource example . Here are the shell

commands that show how it should be used:

karaf@root()> install -s mvn:org.postgresql/postgresql/42.2.5
Bundle ID: 233

67

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

68

karaf@root()> install -s mvn:org.apache.commons/commons-pool2/2.5.0

Bundle ID: 224

karaf@root()> install -s mvn:org.apache.commons/commons-dbcp2/2.1.1

Bundle ID: 225

karaf@root()> install -s blueprint:file://$PQ_HOME/databases/blueprints/postgresql-manual.xml
Bundle ID: 226

karaf@root()> bundle:services -p 226

Bundle 226 provides:

objectClass = [javax.sqgl.DataSource]

osgi.jndi.service.name = jdbc/postgresq|
osgi.service.blueprint.compname = pool

service.bundleid = 226

service.id = 242

service.scope = bundle

objectClass = [org.osgi.service.blueprint.container.BlueprintContainer]
osgi.blueprint.container.symbolicname = postgresqgl-manual.xml
osgi.blueprint.container.version = 0.0.0

service.bundleid = 226

service.id = 243

service.scope = singleton

karaf@root()> feature:install jdbc

karaf@root()> jdbc:ds-list
Name | Product | Version | URL

| Status

jdbc/postgresql | PostgreSQL | 10.3 (Debian 10.3-1.pgdg90+1) |
jdbc:postgresql://localhost:5432/reportdb?
prepareThreshold=5&preparedStatementCacheQueries=256&preparedStatementCacheSizeMiB=5&da
tabaseMetadataCacheFields=65536&databaseMetadataCacheFieldsMiB=5&defaultRowFetchSize=0&b
naryTransfer=true&readOnly=false&binaryTransferEnable=&binaryTransferDisable=&unknownLength=
2147483647&logUnclosedConnections=false&disableColumnSanitiser=false&tcpKeepAlive=false&login
meout=0&connectTimeout=5&socketTimeout=0&cancelSignalTimeout=10&receiveBufferSize=-
1&sendBufferSize=-1&ApplicationName=PostgreSQL JDBC
Driver&jaaslLogin=true&useSpnego=false&gsslib=auto&sspiServiceClass=POSTGRES&allowEncoding(
hanges=false¤tSchema=report&targetServerType=any&loadBalanceHosts=false&hostRecheckS:
conds=10&preferQueryMode=extended&autosave=never&reWriteBatchedInserts=false | OK

CHAPTER 6. USING JDBC DATA SOURCES

karaf@root()> jdbc:query jdbc/postgresql 'select * from incident';
date | summary | name | details | id | email
| | |

[I
2018-02-20 08:00:00 | Incident 1 | User 1 | This is a report incident 001
2018-02-20 08:10:00 | Incident 2 | User 2 | This is a report incident 002
|l | |
|l | |

| 1 | useri@redhat.com
| 2 | user2@redhat.com
This is a report incident 003 | 3 | user3@redhat.com
This is a report incident 004 | 4 | user4@redhat.com

2018-02-20 08:20:00 | Incident 3 | User 3
2018-02-20 08:30:00 | Incident 4 | User 4

As shown in the above listing, the Blueprint bundle exports the javax.sql.DataSource service, which is a
generic, non database-specific, connection pool. The database-specific javax.sql.XADataSource
bundle is not registered as an OSGi service, because Blueprint XML does not have an explicit <service
ref="postgresql"> declaration.

6.8.2. Factory deployment of data sources

Factory deployment of data sources uses the pax-jdbc-config bundle in a canonical way. This is a bit
different from the method that was recommended in Fuse 6.x, which required specification of the
pooling configuration as service properties.

Here is the Blueprint XML example:

<l--
A database-specific org.osgi.service.jdbc.DataSourceFactory that can create
DataSource/XADataSource/
/ConnectionPoolDataSource/Driver using properties. It is registered by pax-jdbc-* or for example
mvn.org.postgresql/postgresql/42.2.5 bundle natively.
->
<reference id="dataSourceFactory"
interface="org.osgi.service.jdbc.DataSourceFactory"
filter="(osgi.jdbc.driver.class=org.postgresql.Driver)" />

<l--
Non database-specific org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory that can create
pooled data sources using some org.osgi.service.jdbc.DataSourceFactory. dbcp2 pool is registered
by pax-jdbc-pool-dbcp2 bundle.
-->
<reference id="pooledDataSourceFactory"
interface="org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory"
filter="(&(pool=dbcp2)(xa=true))" />

<l--
Finally, use both factories to expose pooled, xa-aware data source.
->
<bean id="pool" factory-ref="pooledDataSourceFactory" factory-method="create">
<argument ref="dataSourceFactory" />
<argument>
<props>
<l--
Properties needed by postgresql-specific org.osgi.service.jdbc.DataSourceFactory.
Cannot prepend them with 'jdbc.’ prefix as the DataSourceFactory is implemented directly
by PostgreSQL driver, not by pax-jdbc-* bundle.
-->
<prop key="url" value="jdbc:postgresql://localhost:5432/reportdb” />
<prop key="user" value="fuse" />

69

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

<prop key="password" value="fuse" />
<prop key="currentSchema" value="report" />
<prop key="connectTimeout" value="5" />
<!-- Properties needed by dbcp2-specific
org.ops4j.pax.jdbc.pool.common.PooledDataSourceFactory -->
<prop key="pool.minldle" value="2" />
<prop key="pool.maxTotal" value="10" />
<prop key="pool.blockWhenExhausted" value="true" />
<prop key="pool.maxWaitMillis" value="2000" />
<prop key="pool.testOnBorrow" value="true" />
<prop key="pool.testWhileldle" value="false" />
<prop key="factory.validationQuery" value="select schema_name from
information_schema.schemata" />
<prop key="factory.validationQueryTimeout" value="2" />
</props>
</argument>
</bean>

<l--
Expose data source for use by application code (such as Camel, Spring, ...).
->
<service interface="javax.sqgl.DataSource" ref="pool">
<service-properties>
<entry key="0sgi.jndi.service.name" value="jdbc/postgresql" />
</service-properties>
</service>

This example uses factory beans that create data sources by using data source factories. You do not
need to explicitly reference the javax.transaction.TransactionManager service, as this is tracked
internally by the XA-aware PooledDataSourceFactory.

The following is the same example but in a Fuse/Karaf shell.

70

NOTE

To have the native org.osgi.service.jdbc.DataSourcFactory bundle registered, install
mvn:org.osgi/org.osgi.service.jdbc/1.0.0 and then install a PostgreSQL driver.

karaf@root()> feature:install jdbc pax-jdbc-config pax-jdbc-pool-dbcp2

karaf@root()> install -s mvn:org.postgresql/postgresql/42.2.5

Bundle ID: 232

karaf@root()> install -s blueprint:file://$PQ_HOME/databases/blueprints/postgresql-pax-jdbc-factory-
dbcp2.xml

Bundle ID: 233

karaf@root()> bundle:services -p 233

Bundle 233 provides:

objectClass = [javax.sqgl.DataSource]
osgi.jndi.service.name = jdbc/postgresq|
osgi.service.blueprint.compname = pool
service.bundleid = 233

service.id = 336

service.scope = bundle

CHAPTER 6. USING JDBC DATA SOURCES

objectClass = [org.osgi.service.blueprint.container.BlueprintContainer]
osgi.blueprint.container.symbolicname = postgresql-pax-jdbc-factory-dbcp2.xml
osgi.blueprint.container.version = 0.0.0

service.bundleid = 233

service.id = 337

service.scope = singleton

karaf@root()> jdbc:ds-list
Name | Product | Version | URL

| Status

jdbc/postgresql | PostgreSQL | 10.3 (Debian 10.3-1.pgdg90+1) |
jdbc:postgresql://localhost:5432/reportdb?
prepareThreshold=5&preparedStatementCacheQueries=256&preparedStatementCacheSizeMiB=5&da
tabaseMetadataCacheFields=65536&databaseMetadataCacheFieldsMiB=5&defaultRowFetchSize=0&b
naryTransfer=true&readOnly=false&binaryTransferEnable=&binaryTransferDisable=&unknownLength=
2147483647&logUnclosedConnections=false&disableColumnSanitiser=false&tcpKeepAlive=false&login
meout=0&connectTimeout=5&socketTimeout=0&cancelSignalTimeout=10&receiveBufferSize=-
1&sendBufferSize=-1&ApplicationName=PostgreSQL JDBC
Driver&jaaslLogin=true&useSpnego=false&gsslib=auto&sspiServiceClass=POSTGRES&allowEncoding(
hanges=false¤tSchema=report&targetServerType=any&loadBalanceHosts=false&hostRecheckS:
conds=10&preferQueryMode=extended&autosave=never&reWriteBatchedInserts=false | OK

karaf@root()> jdbc:query jdbc/postgresql 'select * from incident';

date | summary | name | details | id | email
| | |
| | |

| |

[I
2018-02-20 08:00:00 | Incident 1 | User 1 | This is a report incident 001 | 1
2018-02-20 08:10:00 | Incident 2 | User 2 | This is a report incident 002 | 2
2018-02-20 08:20:00 | Incident 3 | User 3 | This is a report incident 003 | 3
|l | | | 4

| useri@redhat.com
| user2@redhat.com
| user3@redhat.com

2018-02-20 08:30:00 | Incident 4 | User 4 | This is a report incident 004 userd@redhat.com

As shown in the above listing, the Blueprint bundle exports the javax.sql.DataSource service, which is a
generic, non database-specific, connection pool. The database-specific javax.sql.XADataSource is
not registered as an OSGi service, because Blueprint XML does not have an explicit <service
ref="postgresql"> declaration.

6.8.3. Mixed deployment of data sources

In a mixed deployment of data sources, the pax-jdbc-config 1.3.0 bundle adds another way of wrapping
database-specific data sources within pooling data sources by using service properties. This method
matches the way it worked in Fuse 6.x.

71

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

The following is the Blueprint XML example:

<l--
Database-specific, non-pooling, non-enlisting javax.sql. XADataSource
->
<bean id="postgresql" class="org.postgresql.xa.PGXADataSource">
<property name="url" value="jdbc:postgresql://localhost:5432/reportdb” />
<property name="user" value="fuse" />
<property name="password" value="fuse" />
<property name="currentSchema" value="report" />
<property name="connectTimeout" value="5" />
</bean>

<l--
Expose database-specific data source with service properties.
No need to expose pooling, enlisting, non database-specific javax.sql.DataSource. It is registered
automatically by pax-jdbc-config with the same properties as this <service>, but with higher
service.ranking.
-->
<service id="pool" ref="postgresql" interface="javax.sql. XADataSource">
<service-properties>
<!-- "pool" key is needed for pax-jdbc-config to wrap database-specific data source inside
connection pool -->
<entry key="pool" value="dbcp2" />
<entry key="osgi.jndi.service.name" value="jdbc/postgresql" />
<!I-- Other properties that configure given connection pool, as indicated by pool=dbcp2 -->
<entry key="pool.minldle" value="2" />
<entry key="pool.maxTotal" value="10" />
<entry key="pool.blockWhenExhausted" value="true" />
<entry key="pool.maxWaitMillis" value="2000" />
<entry key="pool.testOnBorrow" value="true" />
<entry key="pool.testWhileldle" value="false" />
<entry key="factory.validationQuery" value="select schema_name from
information_schema.schemata" />
<entry key="factory.validationQueryTimeout" value="2" />
</service-properties>
</service>

In the above example, only a database-specific data source is manually registered. The pool=dbcp2
service property is a hint for the data source tracker that is managed by the pax-jdbc-config bundle.
Data source services with this service property are wrapped within a pooling data source, in this example,
pax-jdbc-pool-dbcp2.

The following is the same example in a Fuse/Karaf shell:

karaf@root()> feature:install jdbc pax-jdbc-config pax-jdbc-pool-dbcp2

karaf@root()> install -s mvn:org.postgresql/postgresql/42.2.5

Bundle ID: 232

karaf@root()> install -s blueprint:file://$PQ_HOME/databases/blueprints/postgresql-pax-jdbc-
discovery.xml

Bundle ID: 233

karaf@root()> bundle:services -p 233

Bundle 233 provides:

72

CHAPTER 6. USING JDBC DATA SOURCES

factory.validationQuery = select schema_name from information_schema.schemata
factory.validationQueryTimeout = 2

objectClass = [javax.sql.XADataSource]

osgi.jndi.service.name = jdbc/postgresq|
osgi.service.blueprint.compname = postgresq|

pool = dbcp2

pool.blockWhenExhausted = true

pool.maxTotal = 10

pool.maxWaitMillis = 2000

pool.minldle = 2

pool.testOnBorrow = true

pool.testWhileldle = false

service.bundleid = 233

service.id = 336

service.scope = bundle

objectClass = [org.osgi.service.blueprint.container.BlueprintContainer]
osgi.blueprint.container.symbolicname = postgresql-pax-jdbc-discovery.xml
osgi.blueprint.container.version = 0.0.0

service.bundleid = 233

service.id = 338

service.scope = singleton

karaf@root()> service:list javax.sgl. XADataSource
[[avax.sql.XADataSource]

factory.validationQuery = select schema_name from information_schema.schemata
factory.validationQueryTimeout = 2
osgi.jndi.service.name = jdbc/postgresq|
osgi.service.blueprint.compname = postgresq|
pool = dbcp2

pool.blockWhenExhausted = true
pool.maxTotal = 10

pool.maxWaitMillis = 2000

pool.minldle = 2

pool.testOnBorrow = true

pool.testWhileldle = false

service.bundleid = 233

service.id = 336

service.scope = bundle

Provided by :

Bundle 233

Used by:

OPS4J Pax JDBC Config (224)

karaf@root()> service:list javax.sqgl.DataSource
[[avax.sql.DataSource]

factory.validationQuery = select schema_name from information_schema.schemata
factory.validationQueryTimeout = 2

osgi.jndi.service.name = jdbc/postgresq|

osgi.service.blueprint.compname = postgresq|

pax.jdbc.managed = true

pax.jdbc.service.id.ref = 336

pool.blockWhenExhausted = true

pool.maxTotal = 10

73

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

74

pool.maxWaitMillis = 2000
pool.minldle = 2
pool.testOnBorrow = true
pool.testWhileldle = false
service.bundleid = 224
service.id = 337
service.ranking = 1000
service.scope = singleton
Provided by :

OPS4J Pax JDBC Config (224)

karaf@root()> jdbc:ds-list
Name | Product | Version | URL

| Status

jdbc/postgresql | PostgreSQL | 10.3 (Debian 10.3-1.pgdg90+1) |
jdbc:postgresql://localhost:5432/reportdb?
prepareThreshold=5&preparedStatementCacheQueries=256&preparedStatementCacheSizeMiB=5&da
tabaseMetadataCacheFields=65536&databaseMetadataCacheFieldsMiB=5&defaultRowFetchSize=0&b
naryTransfer=true&readOnly=false&binaryTransferEnable=&binaryTransferDisable=&unknownLength=
2147483647&logUnclosedConnections=false&disableColumnSanitiser=false&tcpKeepAlive=false&login
meout=0&connectTimeout=5&socketTimeout=0&cancelSignalTimeout=10&receiveBufferSize=-
1&sendBufferSize=-1&ApplicationName=PostgreSQL JDBC
Driver&jaaslLogin=true&useSpnego=false&gsslib=auto&sspiServiceClass=POSTGRES&allowEncoding(
hanges=false¤tSchema=report&targetServerType=any&loadBalanceHosts=false&hostRecheckS:
conds=10&preferQueryMode=extended&autosave=never&reWriteBatchedInserts=false | OK
jdbc/postgresql | PostgreSQL | 10.3 (Debian 10.3-1.pgdg90+1) |
jdbc:postgresql://localhost:5432/reportdb?
prepareThreshold=5&preparedStatementCacheQueries=256&preparedStatementCacheSizeMiB=5&da
tabaseMetadataCacheFields=65536&databaseMetadataCacheFieldsMiB=5&defaultRowFetchSize=0&b
naryTransfer=true&readOnly=false&binaryTransferEnable=&binaryTransferDisable=&unknownLength=
2147483647&logUnclosedConnections=false&disableColumnSanitiser=false&tcpKeepAlive=false&login
meout=0&connectTimeout=5&socketTimeout=0&cancelSignalTimeout=10&receiveBufferSize=-
1&sendBufferSize=-1&ApplicationName=PostgreSQL JDBC
Driver&jaaslLogin=true&useSpnego=false&gsslib=auto&sspiServiceClass=POSTGRES&allowEncoding(
hanges=false¤tSchema=report&targetServerType=any&loadBalanceHosts=false&hostRecheckS:
conds=10&preferQueryMode=extended&autosave=never&reWriteBatchedInserts=false | OK

karaf@root()> jdbc:query jdbc/postgresql 'select * from incident’

date | summary | name | details | id | email
| |

| |
[I
2018-02-20 08:00:00 | Incident 1 | User 1 | This is a report incident 001 | 1 | useri@redhat.com

CHAPTER 6. USING JDBC DATA SOURCES

2018-02-20 08:10:00 | Incident 2 | User 2 | This is a report incident 002 | 2 | user2@redhat.com
2018-02-20 08:20:00 | Incident 3 | User 3 | This is a report incident 003 | 3 | user3@redhat.com
2018-02-20 08:30:00 | Incident 4 | User 4 | This is a report incident 004 | 4 | user4@redhat.com

In this listing, as you can see in the jdbc:ds-list output, there are two data sources, the original data
source and the wrapper data source.

javax.sqgl.XADataSource is registered from the Blueprint bundle and has the pool = dbcp2 property
declared.

javax.sql.DataSource is registered from the pax-jdbc-config bundle and:

® Does not have the pool = dbcp2 property (it was removed when registering the wrapper data
source).

® Has the service.ranking = 1000 property, so it is always the preferred version when, for
example, looking for data source by name.

® Has the pax.jdbc.managed = true property, so it is not tried to be wrapped again.

® Has the pax.jdbc.service.id.ref = 336 property, to indicate the original data source service that
is wrapped inside the connection pool.

6.9. USING DATA SOURCES WITH THE JAVA™ PERSISTENCE API

From the perspective of transaction management, it is important to understand how data sources are
used with the Java™ Persistence API (JPA). This section does not describe the details of the JPA
specification itself, nor the details about Hibernate, which is the most known JPA implementation.
Instead, this section shows how to point JPA persistent units to data sources.

6.9.1. About data source references

The META-INF/persistence.xml descriptor (see the JPA 2.1 specification, 8.2.1.5 jta-data-source, non-
jta-data-source) defines two kinds of data source references:

® <jta-data-source> - This is a JNDI reference to JTA-enabled data source to use with JTA
transactions.

® <non-jta-data-sources - This is a JNDI reference to JTA-enabled data source to use outside of
JTA transactions. This data source is usually also used in the initialization phase, for example,
with the hibernate.hbm2ddl.auto property that configures Hibernate to auto-create database
schema.

These two data sources are not related to javax.sql.DataSource or javax.sql.XADataSource! This is
common misconception when developing JPA applications. Both JNDI names must refer to JNDI-
bound javax.sql.DataSource services.

6.9.2. Referring to JNDI names

When you register an OSGi service with the osgi.jndi.service.name property, it is bound in the OSGi
JNDI service. In an OSGi runtime (such as Fuse/Karaf), JNDI is not a simple dictionary of name — value
pairs. Referring to objects by means of JNDI names in OSGi involves service lookups and other, more
complex OSGi mechanisms, such as service hooks.

In a fresh Fuse installation, the following listing shows how data sources are registered in JNDI:

75

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

karaf@root()> install -s mvn:mysql/mysqgl-connector-java/5.1.34
Bundle ID: 223

karaf@root()> install -s mvn:org.osgi/org.osgi.service.jdbc/1.0.0
Bundle ID: 224

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-mysql/1.3.0
Bundle ID: 225

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc/1.3.0
Bundle ID: 226

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-pool-common/1.3.0
Bundle ID: 227

karaf@root()> install -s mvn:org.ops4j.pax.jdbc/pax-jdbc-config/1.3.0
Bundle ID: 228

karaf@root()> config:edit --factory --alias mysql org.ops4j.datasource
karaf@root()> config:property-set osgi.jdbc.driver.name mysq|

karaf@root()> config:property-set dataSourceName mysqlds

karaf@root()> config:property-set osgi.jndi.service.name jdbc/mysqlds
karaf@root()> config:property-set dataSourceType DataSource

karaf@root()> config:property-set jdbc.url jdbc:mysql://localhost:3306/reportdb
karaf@root()> config:property-set jdbc.user fuse

karaf@root()> config:property-set jdbc.password fuse

karaf@root()> config:property-set jdbc.useSSL false

karaf@root()> config:update

karaf@root()> feature:install jndi

karaf@root()> jndi:names

JNDI Name | Class Name
|

osgi:service/jndi | org.apache.karaf.jndi.internal.dndiServicelmpl
osgi:service/jdbc/mysqlds | com.mysql.jdbc.jdbc2.optional.MysglDataSource

As you can see, the data source is available under the osgi:service/jdbc/mysqlds JNDI name.

But in case of JPA in OSGi, you must use full JNDI names. The following is the sample META-
INF/persistence.xml fragment that specifies data source references:

<jta-data-source>
osgi:service/javax.sql.DataSource/(osgi.jndi.service.name=jdbc/mysqglds)

</jta-data-source>

<non-jta-data-source>
osgi:service/javax.sql.DataSource/(osgi.jndi.service.name=jdbc/mysqlds)

</non-jta-data-source>

Without the above configuration, you might get this error:

I Persistence unit "pu-name" refers to a non OSGi service DataSource

76

CHAPTER 7. USING JMS CONNECTION FACTORIES

CHAPTER 7. USING JMS CONNECTION FACTORIES

This chapter describes how to use JMS connection factories in OSGi. Fundamentally, you do it by using:

org.osgi.framework.BundleContext.registerService(javax.jms.ConnectionFactory.class,
connectionFactoryObject,
properties);
org.osgi.framework.BundleContext.registerService(javax.jms.XAConnectionFactory.class,
xaConnectionFactoryObject,
properties);
There are two different methods to register such services:

® Publishing connection factories by using the jms:create Karaf console command. This is the
configuration method.

® Publishing connection factories by using methods such as Blueprint, OSGi Declarative Services
(SCR) or just a BundleContext.registerService() API call. This method requires a dedicated
OSGi bundle that contains the code and/or metadata. This is the deployment method.

Details are in the following topics:

® Section 7.1, “About the OSGi JMS service”

® Section 7.2, "About the PAX-JMS configuration service”

® Section 7.3, “Using JMS console commands”

® Section 7.4, "Using encrypted configuration values”

® Section 7.5, "Using JMS connection pools”

® Section 7.6, "Deploying connection factories as artifacts”

7.1. ABOUT THE OSGI JMS SERVICE
The OSGi way of handling JDBC data sources is related to two interfaces:

® standard org.osgi.service.jdbc.DataSourceFactory

® proprietary org.opsédj.pax.jdbc.pool.common.PooledDataSourceFactory
For JMS, consider these analogies:

® proprietary org.opsdj.pax.jms.service.ConnectionFactoryFactory with the same purpose as
standard OSGi JDBC org.osgi.service.jdbc.DataSourceFactory

® proprietary org.opsdj.pax.jms.service.PooledConnectionFactoryFactory with the same
purpose as proprietary pax-jdbc

org.opséj.pax.jdbc.pool.common.PooledDataSourceFactory

For the dedicated, broker-specific, org.ops4j.pax.jms.service.ConnectionFactoryFactory
implementations, there are bundles such as:

® mvn:org.opséj.pax.jms/pax-jms-artemis/1.0.0

77

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® mvn:org.opsdj.pax.jms/pax-jms-ibmmq/1.0.0

® mvn:org.opséj.pax.jms/pax-jms-activemq/1.0.0

These bundles register broker-specific org.ops4j.pax.jms.service.ConnectionFactoryFactory
services that can return JMS factories such as javax.jms.ConnectionFactory and
javax.jms.XAConnectionFactory. For example:

karaf@root()> feature:install pax-jms-artemis
karaf@root()> bundle:services -p org.opsdj.pax.jms.pax-jms-config

OPS4J Pax JMS Config (248) provides:

objectClass = [org.osgi.service.cm.ManagedServiceFactory]
service.bundleid = 248

service.id = 328

service.pid = org.ops4j.connectionfactory

service.scope = singleton

karaf@root()> bundle:services -p org.opsdj.pax.jms.pax-jms-artemis

OPS4J Pax JMS Artemis Support (247) provides:

objectClass = [org.ops4j.pax.jms.service.ConnectionFactoryFactory]
service.bundleid = 247

service.id = 327

service.scope = singleton

type = artemis

7.2. ABOUT THE PAX-JMS CONFIGURATION SERVICE

The mvn:org.ops4j.pax.jms/pax-jms-config/1.0.0 bundle provides a Managed Service Factory that
does three things:

® Tracks org.opsdj.pax.jms.service.ConnectionFactoryFactory OSGi services to invoke its
methods:

public ConnectionFactory createConnectionFactory(Map<String, Object> properties);

public XAConnectionFactory create XAConnectionFactory(Map<String, Object> properties);

® Tracks org.opsdj.connectionfactory factory PIDs to collect properties that are required by the
above methods. If you create a factory configuration by using any method available for
Configuration Admin service, for example, by creating a
${karaf.etc}/org.ops4j.connectionfactory-artemis.cfg file, you can perform the final step to
expose a broker-specific connection factory.

® Tracks javax.jms.ConnectionFactory and javax.jms.XAConnectionFactory services to wrap
them inside pooling JMS connection factories.

Details are in the following topics:

78

® Section 7.2.1, “Creating a connection factory for AMQ 7.1"

CHAPTER 7. USING JMS CONNECTION FACTORIES

® Section 7.2.2, "Creating a connection factory for IBM MQ 8 or IBM MQ 9"

® Section 7.2.4, "Summary of handled properties”

7.2.1. Creating a connection factory for AMQ 7.1

Following is the detailed, canonical, step-by-step guide for creating a connection factor for an Artemis
broker.

1. Install the Artemis driver by using the pax-jms-artemis feature and the pax-jms-config
feature:

karaf@root()> feature:install pax-jms-artemis
karaf@root()> bundle:services -p org.opsdj.pax.jms.pax-jms-config

OPS4J Pax JMS Config (248) provides:

objectClass = [org.osgi.service.cm.ManagedServiceFactory]
service.bundleid = 248

service.id = 328

service.pid = org.ops4j.connectionfactory

service.scope = singleton

karaf@root()> bundle:services -p org.opsdj.pax.jms.pax-jms-artemis

OPS4J Pax JMS Artemis Support (247) provides:

objectClass = [org.ops4j.pax.jms.service.ConnectionFactoryFactory]
service.bundleid = 247

service.id = 327

service.scope = singleton

type = artemis

2. Create a factory configuration:

karaf@root()> config:edit --factory --alias artemis org.ops4j.connectionfactory
karaf@root()> config:property-set type artemis

karaf@root()> config:property-set osgi.jndi.service.name jms/artemis # "name" property may
be used too

karaf@root()> config:property-set connectionFactoryType ConnectionFactory # or
XAConnectionFactory

karaf@root()> config:property-set jms.url tcp://localhost:61616

karaf@root()> config:property-set jms.user admin

karaf@root()> config:property-set jms.password admin

karaf@root()> config:property-set jms.consumerMaxRate 1234

karaf@root()> config:update

karaf@root()> config:list '(service.factoryPid=org.ops4j.connectionfactory)’

Pid: org.ops4j.connectionfactory.965d4eac-f5a7-4f65-bala-15caa4c72703
FactoryPid: org.ops4j.connectionfactory
BundleLocation: ?
Properties:
connectionFactoryType = ConnectionFactory

79

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

felix.fileinstall.filename = file:${karar.etc}/org.ops4j.connectionfactory-artemis.cfg
jms.consumerMaxRate = 1234

jms.password = admin

jms.url = tcp://localhost:61616

jms.user = admin

osgi.jndi.service.name = jms/artemis

service.factoryPid = org.ops4j.connectionfactory

service.pid = org.ops4j.connectionfactory.965d4eac-f5a7-4f65-bala-15caa4c72703
type = artemis

3. Check if pax-jms-config processed the configuration into the javax.jms.ConnectionFactory
service:

karaf@root()> service:list javax.jms.ConnectionFactory
[[avax.jms.ConnectionFactory]

connectionFactoryType = ConnectionFactory

felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.connectionfactory-artemis.cfg
jms.consumerMaxRate = 1234

jms.password = admin

jms.url = tcp://localhost:61616

jms.user = admin

osgi.jndi.service.name = jms/artemis

pax.jms.managed = true

service.bundleid = 248

service.factoryPid = org.ops4j.connectionfactory

service.id = 342

service.pid = org.ops4j.connectionfactory.965d4eac-f5a7-4f65-bala-15caa4c72703
service.scope = singleton

type = artemis

Provided by :

OPS4J Pax JMS Config (248)

NOTE
If you specify additional Artemis configuration, specifically protocol=amqp, the

QPID JMS library would be used instead of the Artemis JMS client. The amqp://
protocol has to be used then for jms.url property.

-

4. Test the connection.

You now have a broker-specific (no pooling yet) connection factory that you can inject where needed.
For example, you can use Karaf commands from the jms feature:

80

karaf@root()> feature:install -v jms
Adding features: jms/[4.2.0.fuse-000237-redhat-1,4.2.0.fuse-000237-redhat-1]

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/artemis

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value

CHAPTER 7. USING JMS CONNECTION FACTORIES

|
product | ActiveMQ
version | 2.4.0.amqg-711002-redhat-1

karaf@root()> jms:send -u admin -p admin jms/artemis DEV.QUEUE.1 "Hello Artemis"

karaf@root()> jms:browse -u admin -p admin jms/artemis DEV.QUEUE.1

Message ID | Content | Charset | Type | Correlation ID | Delivery Mode |
Destination | Expiration | Priority | Redelivered | ReplyTo | Timestamp
| |
ID:2b6ea56d-574d-11e8-971a-7ee9ecc029d4	Hello Artemis	UTF-8	
ActiveMQQueue[DEV.QUEUE.1]	Never	4	false
CEST 2018

The following listing shows what happens when you switch the protocol:

karaf@root()> config:list '(service.factoryPid=org.ops4j.connectionfactory)’

Pid: org.ops4j.connectionfactory.965d4eac-f5a7-4f65-bala-15caa4c72703
FactoryPid: org.ops4j.connectionfactory
BundleLocation: ?
Properties:
connectionFactoryType = ConnectionFactory
felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.connectionfactory-artemis.cfg
jms.consumerMaxRate = 1234
jms.password = fuse
jms.url = tcp://localhost:61616
jms.user = fuse
osgi.jndi.service.name = jms/artemis
service.factoryPid = org.ops4j.connectionfactory
service.pid = org.ops4j.connectionfactory.965d4eac-f5a7-4f65-bala-15caadc72703
type = artemis

karaf@root()> config:edit org.ops4j.connectionfactory.312eb09a-d686-4229-b7e1-2ea38a77bb0f
karaf@root()> config:property-set protocol amqgp

karaf@root()> config:property-delete user

karaf@root()> config:property-set username admin # mind the difference between artemis-jms-client
and gpid-jms-client

karaf@root()> config:property-set jms.url amqp://localhost:61616

karaf@root()> config:update

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value
|

|
product | QpidJMS
version | 0.30.0.redhat-1

karaf@root()> jms:browse -u admin -p admin jms/artemis DEV.QUEUE.1

Message ID | Content | Charset | Type | Correlation ID | Delivery Mode | Destination

Expiration | Priority | Redelivered | ReplyTo | Timestamp
| | | | |

| | 1 | 1

81

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

[[
| Hello Artemis | UTF-8 | | | Persistent | DEV.QUEUE.1 | Never | 4

| false | | Mon May 14 10:02:38 CEST 2018

7.2.2. Creating a connection factory for IBM MQ 8 or IBM MQ 9

This section shows how to connect to IBM MQ 8 and IBM MQ 9. Even though pax-jms-ibmmgq installs
the relevant pax-jms bundles, the IBM MQ driver is not installed due to licensing reasons.

1.

2.

82

Go to https://developer.ibm.com/messaging/mq-downloads/
Login.

Click the version that you want to install, for example, click IBM MQ 8.0 Clientor IBM MQ 9.0
Client.

In the page that appears, at the bottom, in the table of download versions, click the version that
you want.

In the next page, select the latest version that has the suffix IBM-MQ-Install-Java-All. For
example, download 8.0.0.10-WS-MQ-Install-Java-All or 9.0.0.4-IBM-MQ-Install-Java-All.

Extract the content of the downloaded JAR file.

Execute the bundle:install command. For example, if you extracted the content into your
/home/Downloads directory, you would enter a command such as the following:

“bundle:install -s wrap:file:////home/Downloads/9.0.0.4-IBM-MQ-Install-Java-
All/ibmmqg9/wmg/JavaSE/com.ibom.mg.allclient.jar.

Create the connection factory as follows:
a. Install pax-jms-ibmmaq:
karaf@root()> feature:install pax-jms-ibmmq
karaf@root()> bundle:services -p org.ops4j.pax.jms.pax-jms-ibmmq

OPS4J Pax JMS IBM MQ Support (239) provides:

objectClass = [org.ops4j.pax.jms.service.ConnectionFactoryFactory]
service.bundleid = 239

service.id = 346

service.scope = singleton

type = ibmmq

b. Create factory configuration:

karaf@root()> config:edit --factory --alias ibmmq org.ops4j.connectionfactory
karaf@root()> config:property-set type ibmmq

karaf@root()> config:property-set osgi.jndi.service.name jms/mq9 # "name" property may
be used too

karaf@root()> config:property-set connectionFactoryType ConnectionFactory # or
XAConnectionFactory

karaf@root()> config:property-set jms.queueManager FUSEQM

https://developer.ibm.com/messaging/mq-downloads/

CHAPTER 7. USING JMS CONNECTION FACTORIES

karaf@root()> config:property-set jms.hostName localhost
karaf@root()> config:property-set jms.port 1414

karaf@root()> config:property-set jms.transportType 1 #
com.ibm.msg.client.wmq.WMQConstants. WMQ_CM_CLIENT
karaf@root()> config:property-set jms.channel DEV.APP.SVRCONN
karaf@root()> config:property-set jms.CCSID 1208 #
com.ibm.msg.client.jms.dJmsConstants.CCSID_UTF8

karaf@root()> config:update

karaf@root()> config:list '(service.factoryPid=org.ops4j.connectionfactory)'

Pid: org.ops4j.connectionfactory.eee4a757-a95d-46b8-b8b6-19aa3977d863
FactoryPid: org.ops4j.connectionfactory
BundleLocation: ?
Properties:
connectionFactoryType = ConnectionFactory
felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.connectionfactory-ibmmagq.cfg
jms.CCSID = 1208
jms.channel = DEV.APP.SVRCONN
jms.hostName = localhost
jms.port = 1414
jms.queueManager = FUSEQM
jms.transportType = 1
0sgi.jndi.service.name = jms/mq9
service.factoryPid = org.ops4j.connectionfactory
service.pid = org.ops4j.connectionfactory.eee4a757-a95d-46b8-b8b6-19aa3977d863
type = ibmmq

c. Check if pax-jms-config processed the configuration into javax.jms.ConnectionFactory
service:

karaf@root()> service:list javax.jms.ConnectionFactory
[lavax.jms.ConnectionFactory]

connectionFactoryType = ConnectionFactory

felix.fileinstall.filename = file:/data/servers/7.11.1.fuse-7_11_1-00013-redhat-
00003/etc/org.ops4j.connectionfactory-ibommag.cfg

jms.CCSID = 1208

jms.channel = DEV.APP.SVRCONN

jms.hostName = localhost

jms.port = 1414

jms.queueManager = FUSEQM

jms.transportType = 1

osgi.jndi.service.name = jms/mq9

pax.jms.managed = true

service.bundleid = 237

service.factoryPid = org.ops4j.connectionfactory

service.id = 347

service.pid = org.ops4j.connectionfactory.eee4a757-a95d-46b8-b8b6-19aa3977d863
service.scope = singleton

type = ibmmq

Provided by :

OPS4J Pax JMS Config (237)

d. Test the connection:

83

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

karaf@root()> feature:install -v jms
Adding features: jms/[4.2.0.fuse-000237-redhat-1,4.2.0.fuse-000237-redhat-1]

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/mq9

karaf@root()> jms:info -u app -p fuse jms/mq9
Property | Value
|

|
product | IBM MQ JMS Provider
version | 8.0.0.0

karaf@root()> jms:send -u app -p fuse jms/mq9 DEV.QUEUE.1 "Hello IBM MQ 9"

karaf@root()> jms:browse -u app -p fuse jms/mq9 DEV.QUEUE.1

Message ID | Content | Charset | Type |
Correlation ID | Delivery Mode | Destination | Expiration | Priority | Redelivered
| ReplyTo | Timestamp

ID:414d512046555345514d202020202020¢940f95203803220 | Hello IBM MQ 9
| UTF-8 | | | Persistent | queue:///DEV.QUEUE.1 | Never | 4
| false | | Mon May 14 10:17:01 CEST 2018

You can also check if the message was sent from IBM MQ Explorer or from the web console.

7.2.3. Using JBoss A-MQ 6.3 Client in Fuse on Apache Karaf

You can download Fuse quickstarts from the Fuse Software Downloads page.

Extract the contents of the quickstarts zip file to a local folder, for example a folder named quickstarts.

You can build and install the quickstarts/camel/camel-jms example as an OSGi bundle. This bundle
contains a Blueprint XML definition of a Camel route that sends messages to an JBoss A-MQ 6.3 JMS
queue. The procedure for creating a connection factory for JBoss A-MQ 6.3 broker is as follows.

7.2.3.1.

Prerequisites

You have installed Maven 3.3.1 or higher.
You have Red Hat Fuse installed on your machine.
You have JBoss A-MQ Broker 6.3 installed on your machine.

You have downloaded and extracted the Fuse on Karaf quickstarts zip file from the customer

7.2.3.2. Procedure

1. Navigate to quickstarts/camel/camel-jms/src/main/resources/OSGI-INF/blueprint/ directory.

84

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=distributions

CHAPTER 7. USING JMS CONNECTION FACTORIES

2. Replace the following bean with id="jms" from the camel-context.xml file:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory">
<reference interface="javax.jms.ConnectionFactory" />
</property>
<property name="transactionManager" ref="transactionManager"/>
</bean>

With the following section to instantiate the JBoss A-MQ 6.3 connection factory:

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">
<property name="connectionFactory" ref="activemgConnectionFactory"/>
<property name="transactionManager" ref="transactionManager"/>
</bean>
<bean id="activemqgConnectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616"/>
<property name="userName" value="admin"/>
<property name="password" value="admin"/>
</bean>

The JBoss A-MQ 6.3 connection factory is configured to connect to a broker listening at
tcp://localhost:61616. By default JBoss A-MQ uses the IP port value 61616. The connection
factory is also configured to use the userName/password credentials, admin/admin. Make sure
that this user is enable in your broker cofiguration (or you can customize these settings here to
match your broker configuration).

3. Save the camel-context.xml file.

4. Build the camel-jms quickstart:

$ cd quickstarts/camel/camel-jms
$ mvn install

5. After the quickstart is successfully installed, navigate to $FUSE_HOME/ directory and run the
following command to start the Fuse on Apache Karaf server:

I $./bin/fuse
6. On the Fuse on Apache Karaf instance install activemq-client feature and camel-jms feature:

karaf@root()> feature:install activemq-client
karaf@root()> feature:install camel-jms

7. Install the camel-jms quickstart bundle:
I karaf@root()> install -s mvn:org.jboss.fuse.quickstarts/camel-jms/{$fuseversion}

Where replace {$fuseversion} with the actual version of the Maven artifact that you just built
(consult the camel-jms quickstart README file).

8. Start the JBoss A-MQ 6.3 broker (you need an installation of JBoss A-MQ 6.3 for this). Open
another terminal window and navigate to JBOSS_AMQ_63_INSTALLDIR directory:

85

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

1.

$ cd JBOSS_AMQ_63_INSTALLDIR
$./bin/amq

As soon as the Camel routes have started, you can see a directory work/jms/input in your Fuse
installation. Copy the files you find in this quickstart’s src/main/data directory to the newly
created work/jms/input directory.

. Wait a few moments and you will find the same files organized by country under the

work/jms/output directory:

order1.xml, order2.xml and order4.xml in work/jms/output/others
order3.xml and order5.xml in work/jms/output/us
order6.xml in work/jms/output/fr

Use log:display to check out the business logging:
Receiving order order1.xml
Sending order order1.xml to another country

Done processing order1.xml

7.2.4. Summary of handled properties

Properties from the Configuration Admin factory PID are passed to the relevant
org.opsédj.pax.jms.service.ConnectionFactoryFactory implementation.

ActiveMQ
org.opsdj.pax.jms.activemq.ActiveMQConnectionFactoryFactory (JMS 1.1 only)

Properties that are passed to the
org.apache.activemq.ActiveMQConnectionFactory.buildFromMap() method

Artemis
org.opsédj.pax.jms.artemis.ArtemisConnectionFactoryFactory

If protocol=amqp, properties are passed to the
org.apache.qpid.jms.util.PropertyUtil.setProperties() method to configure the
org.apache.qpid.jms.JmsConnectionFactory instance.

Otherwise, org.apache.activemgq.artemis.utils.uri.BeanSupport.setData() is called for the
org.apache.activemq.artemis.jms.client.ActiveMQConnectionFactory instance.

IBM MQ
org.opsédj.pax.jms.ibmmq.MQConnectionFactoryFactory

Bean properties of com.ibm.mq.jms.MQConnectionFactory or
com.ibm.mq.jms.MQXAConnectionFactory are handled.

7.3. USING JMS CONSOLE COMMANDS

Apache Karaf provides the jms feature, which includes shell commands in the jms:* scope. You already
saw some examples of using these commands to check the manually configured connection factories.
There are also commands that hide the need to create Configuration Admin configurations.

86

CHAPTER 7. USING JMS CONNECTION FACTORIES

Starting with a fresh instance of Fuse, you can register a broker-specific connection factory. The
following listing shows install of the jms feature from Karaf and installation of pax-jms-artemis from
pax-jms:

karaf@root()> feature:install jms pax-jms-artemis

karaf@root()> jms:connectionfactories
JMS Connection Factory

karaf@root()> service:list javax.jms.ConnectionFactory # should be empty

karaf@root()> service:list org.ops4j.pax.jms.service.ConnectionFactoryFactory
[org.opséj.pax.jms.service.ConnectionFactoryFactory]

service.bundleid = 250

service.id = 326

service.scope = singleton

type = artemis

Provided by :

OPS4J Pax JMS Artemis Support (250)

The following listing shows how to create and check an Artemis connection factory:

karaf@root()> jms:create -t artemis -u admin -p admin --url tcp://localhost:61616 artemis

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/artemis

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value
|

|
product | ActiveMQ
version | 2.4.0.amqg-711002-redhat-1

karaf@root()> jms:send -u admin -p admin jms/artemis DEV.QUEUE.1 "Hello Artemis"

karaf@root()> jms:browse -u admin -p admin jms/artemis DEV.QUEUE.1

Message ID | Content | Charset | Type | Correlation ID | Delivery Mode |
Destination | Expiration | Priority | Redelivered | ReplyTo | Timestamp
| |
| | | |
! | ! !
| | | | |
1 | 1 | 1
ID:7a944470-574f-11e8-918e-7ee9ecc029d4 | Hello Artemis | UTF-8 | | | Persistent
| ActiveMQQueue[DEV.QUEUE.1] | Never | 4 | false | | Mon May 14 10:19:10
CEST 2018

karaf@root()> config:list '(service.factoryPid=org.ops4j.connectionfactory)’

Pid: org.ops4j.connectionfactory.9184db6f-cb5f-4fd7-b5d7-a217090473ad
FactoryPid: org.ops4j.connectionfactory

BundleLocation: mvn:org.ops4j.pax.jms/pax-jms-config/1.0.0

Properties:

87

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

name = artemis

osgi.jndi.service.name = jms/artemis

password = admin

service.factoryPid = org.ops4j.connectionfactory

service.pid = org.ops4j.connectionfactory.9184db6f-cb5f-4fd7-b5d7-a217090473ad
type = artemis

url = tcp://localhost:61616

user = admin

As you can see, the org.ops4j.connectionfactory factory PID is created for you. However it is not
automatically stored in ${karaf.etc}, which is possible with config:update. It is not possible to specify
other properties, but you can add them later.

7.4. USING ENCRYPTED CONFIGURATION VALUES
As with the pax-jdbc-config bundle, you can use Jasypt to encrypt properties.
If there is any org.jasypt.encryption.StringEncryptor service that is registered in OSGi with any alias

service property, you can reference it in a connection factory factory PID and use encrypted passwords.
Following is an example:

felix.fileinstall.filename = */etc/org.ops4j.connectionfactory-artemis.cfg
name = artemis

type = artemis

decryptor = my-jasypt-decryptor

url = tcp://localhost:61616

user = fuse

password = ENC(<encrypted-password>)

The service filter used to find the decryptor service is (&
(objectClass=org.jasypt.encryption.StringEncryptor)(alias=<alias>)), where <alias> is the value of
the decryptor property from the connection factory configuration factory PID.

7.5. USING JMS CONNECTION POOLS

This section discusses JMS connection/session pooling options. There are fewer choices than there are
for JDBC. The information is organized into the following topics:

® Section 7.5.1, “Introduction to using JMS connection pools”
® Section 7.5.2, “"Using the pax-jms-pool-pooledjms connection pool module”
® Section 7.5.3, “Using the pax-jms-pool-narayana connection pool module”

® Section 7.5.4, "Using the pax-jms-pool-transx connection pool module”

IMPORTANT

To use XA recovery, you should use the pax-jms-pool-transx or pax-jms-pool-
narayana connection pool module.

7.5.1. Introduction to using JMS connection pools

88

CHAPTER 7. USING JMS CONNECTION FACTORIES

So far, you have registered a broker-specific connection factory. Because a connection factory itself is a
factory for connection factories, the org.ops4j.pax.jms.service.ConnectionFactoryFactory service
may be treated as a meta factory. It should be able to produce two kinds of connection factories:

® javax.jms.ConnectionFactory

e javax.jms.XAConnectionFactory
The pax-jms-pool-* bundles work smoothly with the
org.opsédj.pax.jms.service.ConnectionFactoryFactory service. These bundles provide
implementations of org.ops4j.pax.jms.service.PooledConnectionFactoryFactory that can be used to

create pooled connection factories by using a set of properties and the original
org.opsdj.pax.jms.service.ConnectionFactoryFactory in a kind of wrapper way. For example:

public interface PooledConnectionFactoryFactory {

ConnectionFactory create(ConnectionFactoryFactory cff, Map<String, Object> props);

The following table shows which bundles register pooled connection factory factories. In the table,
0.0.p.j.p represents org.opsdj.pax.jms.pool.

Bundle PooledConnectionFactoryFactory Pool Key

pax-jms-pool-pooledjms 0.0.p.j.p-pooledjms.Pooleddms(XA) pooledjms
PooledConnectionFactoryFactory

pax-jms-pool-narayana 0.0.p.j.p-narayana.Pooleddms(XA)P narayana
ooledConnectionFactoryFactory

pax-jms-pool-transx 0.0.p.j.p-transx.Transx(XA)PooledC transx
onnectionFactoryFactory

NOTE

The pax-jms-pool-narayana factory is called
Pooleddms(XA)PooledConnectionFactoryFactory because it is based on the pooled-
jms library. It adds integration with the Narayana transaction manager for XA recovery.

The above bundles install only connection factory factories. The bundles to not install the connection
factories themselves. Consequently, something is needed that calls the javax.jms.ConnectionFactory
org.opsédj.pax.jms.service.PooledConnectionFactoryFactory.create() method.

7.5.2. Using the pax-jms-pool-pooledjms connection pool module

An understanding of how to use the pax-jms-pool-pooledjms bundle helps you use not only the pax-
jms-pool-pooledjms bundle, but also the pax-jms-pool-narayna bundle, which does almost everything
as pax-jms-pool-pooledjms.

The pax-jms-config bundle tracks the following:

e org.opsdj.pax.jms.service.ConnectionFactoryFactory services

89

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

e org.opsdj.connectionfactory factory PIDs

® |nstances of org.ops4j.pax.jms.service.PooledConnectionFactoryFactory that are
registered by one of pax-jms-pool-* bundles.

If a factory configuration contains a pool property, the ultimate connection factory registered by the
pax-jms-config bundle is the broker-specific connection factory. If pool=pooledjms then the
connection factory is wrapped inside one of the following:

e org.messaginghub.pooled.jms.dmsPoolConnectionFactory (xa=false)
e org.messaginghub.pooled.jms.dmsPoolXAConnectionFactory (xa=true)

Besides the pool property (and the Boolean xa property, which selects one of non-xa/xa connection
factories), the org.ops4j.connectionfactory factory PID may contain properties that are prefixed with
pool..

For the pooled-jms library, these prefixed properties are used (after removing the prefix) to configure
an instance of:

e org.messaginghub.pooled.jms.dJmsPoolConnectionFactory, or
e org.messaginghub.pooled.jms.JmsPoolXAConnectionFactory

The following listing is a realistic configuration of a pooled-jms pool (org.ops4j.connectionfactory-
artemis factory PID) that is using a convenient syntax with jms.-prefixed properties:

configuration for pax-jms-config to choose and configure specific
org.ops4j.pax.jms.service.ConnectionFactoryFactory

name = jms/artemis

connectionFactoryType = ConnectionFactory

jms.url = tcp://localhost:61616

jms.user = fuse

jms.password = fuse

org.apache.activemg.artemis.jms.client. ActiveMQConnectionFactory specific coniguration
jms.callTimeout = 12000

#...

hints for pax-jms-config to use selected org.ops4j.pax.jms.service.PooledConnectionFactoryFactory
pool = pooledjms
xa = false

pooled-jms specific configuration of org.messaginghub.pooled.jms.JmsPoolConnectionFactory
pool.idleTimeout = 10

pool.maxConnections = 100

pool.blocklfSessionPoollsFull = true

#...

In the above configuration, pool and xa keys are hints (service filter properties) to choose one of the
registered org.ops4j.pax.jms.service.PooledConnectionFactoryFactory services. In the case of the
pooled-jms library it is:

karaf@root()> feature:install pax-jms-pool-pooledjms

karaf@root()> bundle:services -p org.ops4j.pax.jms.pax-jms-pool-pooledjms

90

CHAPTER 7. USING JMS CONNECTION FACTORIES

OPS4J Pax JMS MessagingHub JMS Pool implementation (252) provides:

objectClass = [org.ops4j.pax.jms.service.PooledConnectionFactoryFactory]
pool = pooledjms

service.bundleid = 252

service.id = 331

service.scope = singleton

xa = false

objectClass = [org.ops4j.pax.jms.service.PooledConnectionFactoryFactory]
pool = pooledjms

service.bundleid = 252

service.id = 335

service.scope = singleton

xa = true

Following is a complete example of the steps for creating and configuring a connection pool:
1. Install the required features:

karaf@root()> feature:install -v pax-jms-pool-pooledjms pax-jms-artemis
Adding features: pax-jms-pool-pooledjms/[1.0.0,1.0.0]

2. Install the jms feature:

karaf@root()> feature:install jms

karaf@root()> service:list org.ops4j.pax.jms.service.ConnectionFactoryFactory
[org.opséj.pax.jms.service.ConnectionFactoryFactory]

service.bundleid = 249

service.id = 327

service.scope = singleton

type = artemis

Provided by :

OPS4J Pax JMS Artemis Support (249)

karaf@root()> service:list org.ops4j.pax.jms.service.PooledConnectionFactoryFactory
[org.ops4j.pax.jms.service.PooledConnectionFactoryFactory]

pool = pooledjms

service.bundleid = 251

service.id = 328

service.scope = singleton

xa = false

Provided by :

OPS4J Pax JMS MessagingHub JMS Pool implementation (251)

[org.ops4j.pax.jms.service.PooledConnectionFactoryFactory]

pool = pooledjms
service.bundleid = 251
service.id = 333
service.scope = singleton

o1

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

xa = true
Provided by :
OPS4J Pax JMS MessagingHub JMS Pool implementation (251)

3. Create a factory configuration:

karaf@root()> config:edit --factory --alias artemis org.ops4j.connectionfactory
karaf@root()> config:property-set connectionFactoryType ConnectionFactory
karaf@root()> config:property-set osgi.jndi.service.name jms/artemis
karaf@root()> config:property-set type artemis

karaf@root()> config:property-set protocol amqgp # so we switch to
org.apache.gpid.jms.JmsConnectionFactory

karaf@root()> config:property-set jms.url amqp://localhost:61616
karaf@root()> config:property-set jms.username admin

karaf@root()> config:property-set jms.password admin

karaf@root()> config:property-set pool pooledjms

karaf@root()> config:property-set xa false

karaf@root()> config:property-set pool.idleTimeout 10

karaf@root()> config:property-set pool.maxConnections 123

karaf@root()> config:property-set pool.blocklfSessionPoollsFull true
karaf@root()> config:update

4. Check if pax-jms-config processed the configuration into javax.jms.ConnectionFactory
service:

karaf@root()> service:list javax.jms.ConnectionFactory
[lavax.jms.ConnectionFactory]

connectionFactoryType = ConnectionFactory

felix.fileinstall.filename = file:${karaf.etc}/org.ops4j.connectionfactory-artemis.cfg
jms.password = admin

jms.url = amqgp://localhost:61616

jms.username = admin

osgi.jndi.service.name = jms/artemis

pax.jms.managed = true

pool.blocklfSessionPoollsFull = true

pool.idleTimeout = 10

pool.maxConnections = 123

protocol = amqp

service.bundleid = 250

service.factoryPid = org.ops4j.connectionfactory

service.id = 347

service.pid = org.ops4j.connectionfactory.fc1b9e85-91b4-421b-aa16-1151b0f836f9
service.scope = singleton

type = artemis

Provided by :

OPS4J Pax JMS Config (250)

5. Use the connection factory:

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/artemis

92

CHAPTER 7. USING JMS CONNECTION FACTORIES

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value
|

|
product | QpidJMS
version | 0.30.0.redhat-1

karaf@root()> jms:send -u admin -p admin jms/artemis DEV.QUEUE.1 "Hello Artemis"

karaf@root()> jms:browse -u admin -p admin jms/artemis DEV.QUEUE.1

Message 1D | Content | Charset | Type | Correlation ID |

Delivery Mode | Destination | Expiration | Priority | Redelivered | ReplyTo | Timestamp
|

|
ID:6484299-5cb2-4850-9e88-150506d49020:1:1:1-1 | Hello Artemis | UTF-8 | |
| Persistent | DEV.QUEUE.1 | Never | 4 | false | | Mon May 14
12:47:13 CEST 2018

7.5.3. Using the pax-jms-pool-narayana connection pool module

The pax-jms-pool-narayna module does almost everything as pax-jms-pool-pooledjms. It installs the
pooled-jms-specific org.ops4j.pax.jms.service.PooledConnectionFactoryFactory, both for XA and
non-XA scenarios. The only difference is that in an XA scenario, there is an additional integration point.
The org.jboss.tm.XAResourceRecovery OSGi service is registered to be picked up by
com.arjuna.ats.arjuna.recovery.RecoveryManager.

7.5.4. Using the pax-jms-pool-transx connection pool module

The pax-jms-pool-transx module provides an implementation of
org.opsdj.pax.jms.service.PooledConnectionFactoryFactory services that is based on the pax-
transx-jms bundle. The pax-transx-jms bundle creates javax.jms.ConnectionFactory pools by using
the org.opsdj.pax.transx.jms.ManagedConnectionFactoryBuilder facility. This is a JCA (Java™
Connector Architecture) solution that is discussed in Section 8.3, “About the pax-transx project”.

7.6. DEPLOYING CONNECTION FACTORIES AS ARTIFACTS

This topic discusses real-world recommendations.

In the deployment method, javax.jms.ConnectionFactory services are registered directly by application
code. Usually, this code is inside a Blueprint container. Blueprint XML may be part of an ordinary OSGi
bundle, installable by using mvn: URI, and stored in a Maven repository (local or remote). It is easier to
version-control such bundles as compared to Configuration Admin configurations.

The pax-jms-config version 1.0.0 bundle adds a deployment method for connection factory
configuration. An application developer registers the javax.jms.(XA)ConnectionFactory service
(usually by using Bluerpint XML) and specifies service properties. Then pax-jms-config detects the
registered, broker-specific connection factory and (using service properties) wraps the service inside a
generic, non broker-specific, connection pool.

Following are three deployment methods that use Blueprint XML.

® Section 7.6.1, "“Manual deployment of connection factories”

® Section 7.6.2, "Factory deployment of connection factories”

93

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® Section 7.6.3, “Mixed deployment of connection factories”

7.6.1. Manual deployment of connection factories

In this method, the pax-jms-config bundle is not needed. Application code is responsible for
registration of both broker-specific and generic connection pools.

<l--
Broker-specific, non-pooling, non-enlisting javax.jms.XAConnectionFactory
->
<bean id="artemis" class="org.apache.activemq.artemis.jms.client.ActiveMQXAConnectionFactory">
<argument value="tcp://localhost:61616" />
<property name="callTimeout" value="2000" />
<property name="initialConnectAttempts" value="3" />
</bean>

<!l--

Fuse exports this service from fuse-pax-transx-tm-narayana bundle.
-->
<reference id="tm" interface="javax.transaction.TransactionManager" />

<l--
Non broker-specific, generic, pooling, enlisting javax.jms.ConnectionFactory
->
<bean id="pool" class="org.messaginghub.pooled.jms.JmsPoolXAConnectionFactory">
<property name="connectionFactory" ref="artemis" />
<property name="transactionManager" ref="tm" />
<property name="maxConnections" value="10" />
<property name="idleTimeout" value="10000" />
</bean>

<l--
Expose connection factory for use by application code (such as Camel, Spring, ...)
->
<service interface="javax.jms.ConnectionFactory" ref="pool">
<service-properties>
<!I-- Giving connection factory a name using one of these properties makes identification easier
in jms:connectionfactories: -->
<entry key="0sgi.jndi.service.name" value="jms/artemis" />
<l--<entry key="name" value="jms/artemis" />-->
<!I-- Without any of the above, name will fall back to "service.id" -->
</service-properties>
</service>

Here are the shell commands that show how it should be used:

94

karaf@root()> feature:install artemis-core-client artemis-jms-client

karaf@root()> install -s mvn:org.apache.commons/commons-pool2/2.5.0

Bundle ID: 244

karaf@root()> install -s mvn:org.messaginghub/pooled-jms/0.3.0

Bundle ID: 245

karaf@root()> install -s blueprint:file://$PQ_HOME/message-brokers/blueprints/artemis-manual.xml
Bundle ID: 246

karaf@root()> bundle:services -p 246

CHAPTER 7. USING JMS CONNECTION FACTORIES

Bundle 246 provides:

objectClass = [javax.jms.ConnectionFactory]
osgi.jndi.service.name = jms/artemis
osgi.service.blueprint.compname = pool

service.bundleid = 246

service.id = 340

service.scope = bundle

objectClass = [org.osgi.service.blueprint.container.BlueprintContainer]
osgi.blueprint.container.symbolicname = artemis-manual.xml
osgi.blueprint.container.version = 0.0.0

service.bundleid = 246

service.id = 341

service.scope = singleton

karaf@root()> feature:install jms

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/artemis

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value
|

|
product | ActiveMQ
version | 2.4.0.amqg-711002-redhat-1

As shown in the above listing, the Blueprint bundle exports the javax.jms.ConnectionFactory service,
which is a generic, non broker-specific, connection pool. The broker-specific
javax.jms.XAConnectionFactory is not registered as an OSGi service, because Blueprint XML does
not have an explicit <service ref="artemis"> declaration.

7.6.2. Factory deployment of connection factories

This method shows the use of pax-jms-config in a canonical way. This is a bit different than the method
that was recommended for Fuse 6.x, where the requirement was to specify pooling configuration as
service properties.

Here is the Blueprint XML example:

<l--
A broker-specific org.opsdj.pax.jms.service.ConnectionFactoryFactory that can create
(XA)ConnectionFactory
using properties. It is registered by pax-jms-* bundles
-—>
<reference id="connectionFactoryFactory"
interface="org.ops4j.pax.jms.service.ConnectionFactoryFactory"
filter="(type=artemis)" />

<!l--

Non broker-specific org.ops4j.pax.jms.service.PooledConnectionFactoryFactory that can create
pooled connection factories with the help of org.ops4j.pax.jms.service.ConnectionFactoryFactory

95

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

For example, pax-jms-pool-pooledjms bundle registers
org.ops4j.pax.jms.service.PooledConnectionFactoryFactory
with these properties:
- pool = pooledjms
- xa = truelfalse (both are registered)
-->
<reference id="pooledConnectionFactoryFactory"
interface="org.ops4j.pax.jms.service.PooledConnectionFactoryFactory"
filter="(&(pool=pooledjms)(xa=true))" />

<!l--
When using XA connection factories, javax.transaction. TransactionManager service is not needed
here.
It is used internally by xa-aware pooledConnectionFactoryFactory.
-->
<l--<reference id="tm" interface="javax.transaction. TransactionManager" />-->

<l--
Finally, use both factories to expose the pooled, xa-aware, connection factory.
->
<bean id="pool" factory-ref="pooledConnectionFactoryFactory" factory-method="create">
<argument ref="connectionFactoryFactory" />
<argument>
<props>
<l--
Properties needed by artemis-specific org.ops4j.pax.jms.service.ConnectionFactoryFactory
->
<prop key="jms.url" value="tcp://localhost:61616" />
<prop key="jms.callTimeout" value="2000" />
<prop key="jms.initialConnectAttempts" value="3" />
<!-- Properties needed by pooled-jms-specific
org.ops4j.pax.jms.service.PooledConnectionFactoryFactory -->
<prop key="pool.maxConnections" value="10" />
<prop key="pool.idleTimeout" value="10000" />
</props>
</argument>
</bean>

<l--
Expose connection factory for use by application code (such as Camel, Spring, ...)
-->
<service interface="javax.jms.ConnectionFactory" ref="pool">
<service-properties>
<!I-- Giving connection factory a name using one of these properties makes identification easier
in jms:connectionfactories: -->
<entry key="0sgi.jndi.service.name" value="jms/artemis" />
<l--<entry key="name" value="jms/artemis" />-->
<!I-- Without any of the above, name will fall back to "service.id" -->
</service-properties>
</service>

The previous example uses factory beans that create connection factories by using connection factory
factories (...). There is no need for an explicit reference to the javax.transaction.TransactionManager
service, as this is tracked internally by the XA-aware PooledConnectionFactoryFactory.

96

CHAPTER 7. USING JMS CONNECTION FACTORIES

Here is how it looks in a Fuse/Karaf shell:

karaf@root()> feature:install jms pax-jms-artemis pax-jms-pool-pooledjms

karaf@root()> install -s blueprint:file://$PQ_HOME/message-brokers/blueprints/artemis-pax-jms-
factory-pooledjms.xml

Bundle ID: 253

karaf@root()> bundle:services -p 253

Bundle 253 provides:

objectClass = [javax.jms.ConnectionFactory]

osgi.jndi.service.name = jms/artemis
osgi.service.blueprint.compname = pool

service.bundleid = 253

service.id = 347

service.scope = bundle

objectClass = [org.osgi.service.blueprint.container.BlueprintContainer]
osgi.blueprint.container.symbolicname = artemis-pax-jms-factory-pooledjms.xmi
osgi.blueprint.container.version = 0.0.0

service.bundleid = 253

service.id = 348

service.scope = singleton

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/artemis

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value
|

|
product | ActiveMQ
version | 2.4.0.amqg-711002-redhat-1

As shown in the above listing, the Blueprint bundle exports the javax.jms.ConnectionFactory service,
which is a generic, non broker-specific, connection pool. The broker-specific
javax.jms.XAConnectionFactory is not registered as an OSGi service because Blueprint XML does not
have an explicit <service ref="artemis"> declaration.

7.6.3. Mixed deployment of connection factories

The pax-jms-config 1.0.0 bundle adds another way of wrapping broker-specific connection factories
within pooling connection factories by using service properties. This method matches the way it used to
work in Fuse 6.x.

Here is the Blueprint XML example:

</--
Broker-specific, non-pooling, non-enlisting javax.jms.XAConnectionFactory

-—>

<bean id="artemis" class="org.apache.activemq.artemis.jms.client.ActiveMQXAConnectionFactory">
<argument value="tcp://localhost:61616" />
<property name="callTimeout" value="2000" />

97

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

<property name="initialConnectAttempts" value="3" />
</bean>

<l--
Expose broker-specific connection factory with service properties.
No need to expose pooling, enlisting, non broker-specific javax.jms.XAConnectionFactory. It will be
registered
automatically by pax-jms-config with the same properties as this <service>, but with a higher
service.ranking
->
<service id="pool" ref="artemis" interface="javax.jms.XAConnectionFactory">
<service-properties>
<!I-- "pool" key is needed for pax-jms-config to wrap broker-specific connection factory inside
connection pool -->
<entry key="pool" value="pooledjms" />
<I-- <service>/@id attribute does not propagate, but name of the connection factory is required
using one of: -->
<entry key="osgi.jndi.service.name" value="jms/artemis" />
<l--or:-->
<l--<entry key="name" value="jms/artemis" />-->
<!I-- Other properties, that normally by e.g., pax-jms-pool-pooledjms -->
<entry key="pool.maxConnections" value="10" />
<entry key="pool.idleTimeout" value="10000" />
</service-properties>
</service>

In the above example, you can see the manual register of only the broker-specific connection factory.
The pool=pooledjms service property is a hint for the connection factory tracker that is managed by
the pax-jms-config bundle. Connection factory services with this service property are wrapped within a
pooling connection factory, in this example, pax-jms-pool-pooledjms.

Here is how it looks in a Fuse/Karaf shell:

karaf@root()> feature:install jms pax-jms-config pax-jms-artemis pax-jms-pool-pooledjms

karaf@root()> install -s blueprint:file://$PQ_HOME/message-brokers/blueprints/artemis-pax-jms-
discovery.xml
Bundle ID: 254

karaf@root()> bundle:services -p 254

Bundle 254 provides:

objectClass = [javax.jms.XAConnectionFactory]
osgi.jndi.service.name = jms/artemis
osgi.service.blueprint.compname = artemis

pool = pooledjms

pool.idleTimeout = 10000

pool.maxConnections = 10

service.bundleid = 254

service.id = 349

service.scope = bundle

objectClass = [org.osgi.service.blueprint.container.BlueprintContainer]
osgi.blueprint.container.symbolicname = artemis-pax-jms-discovery.xmi
osgi.blueprint.container.version = 0.0.0

98

CHAPTER 7. USING JMS CONNECTION FACTORIES

service.bundleid = 254
service.id = 351
service.scope = singleton

karaf@root()> service:list javax.jms.XAConnectionFactory
[lavax.jms.XAConnectionFactory]

osgi.jndi.service.name = jms/artemis
osgi.service.blueprint.compname = artemis
pool = pooledjms

pool.idleTimeout = 10000
pool.maxConnections = 10
service.bundleid = 254

service.id = 349

service.scope = bundle

Provided by :

Bundle 254

Used by:

OPS4J Pax JMS Config (251)

karaf@root()> service:list javax.jms.ConnectionFactory
[lavax.jms.ConnectionFactory]

osgi.jndi.service.name = jms/artemis
osgi.service.blueprint.compname = artemis
pax.jms.managed = true
pax.jms.service.id.ref = 349
pool.idleTimeout = 10000
pool.maxConnections = 10
service.bundleid = 251

service.id = 350

service.ranking = 1000
service.scope = singleton

Provided by :

OPS4J Pax JMS Config (251)

karaf@root()> jms:connectionfactories
JMS Connection Factory

jms/artemis

karaf@root()> jms:info -u admin -p admin jms/artemis
Property | Value
|

|
product | ActiveMQ
version | 2.4.0.amqg-711002-redhat-1

In the previous example, jms:connectionfactories shows only one service, because this command
removes duplicate names. Two services were presented by jdbe:ds-list in the mixed deployment of data
sources.

javax.jms.XAConnectionFactory is registered from the Blueprint bundle and it has the pool =
pooledjms property declared.

javax.jms.ConnectionFactory is registered from the pax-jms-config bundle and:

99

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® [t does not have the pool = pooledjms property. It was removed when registering the wrapper
connection factory.

® |t has the service.ranking = 1000 property, so it is always the preferred version when, for
example, looking for a connection factory by name.

® |t has the pax.jms.managed = true property, so it is not tried to be wrapped again.

® |t has the pax.jms.service.id.ref = 349 property, which indicates the original connection factory
service that is wrapped inside the connection pool.

100

CHAPTER 8. ABOUT JAVA CONNECTOR ARCHITECTURE

CHAPTER 8. ABOUT JAVA CONNECTOR ARCHITECTURE

The JCA specification was created to (among other things) generalize the scenarios that have these
three participants:

® An external system such as a database or generally an EIS system
® A JavaEE application server

® A deployed application

8.1. SIMPLE JDBC ANALOGY

In the simplest scenario, where there is only an application and database, you have:

Application Database (driver)

|
| java.sql.Driver.connect()

java.sgl.Connection

Application Database (driver)

Adding an application server that exposes javax.sql.DataSource, you have the following (without
recalling different aspects of data sources like XA):

Application App Server Database (driver)

| javax.sql.DataSource.getConnection() | |

i
v]

i
>

| javax.sgl.ConnectionPoolDataSource.getPooledConnection()
r

| :_, javax.sgl.PooledConnection |

javax.sql PocledConnection.getConnection() |

.{]

Application App Server Database (driver)

8.2. OVERVIEW OF USING JCA
JCA generalizes the concept of a database driver by adding two-way communication between the driver
and the application server. The driver becomes a resource adapter that is represented by
javax.resource.spi.ResourceAdapter.
There are two important interfaces:

® javax.resource.spi.ManagedConnectionFactory implemented by a resource adapter.

® javax.resource.spi.-ConnectionManager implemented by an application server.

The ManagedConnectionFactory interface serves two purposes:

101

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® The Object createConnectionFactory(ConnectionManager cxManager) method may be
used to produce a connection factory for a given EIS (or database or message broker) that can
be used by application code. The returned Object may be:

o A generic javax.resource.cci.ConnectionFactory (not described here further, see JCA 1.6,
chapter 17: Common Client Interface)

o EIS specific connection factory like the well-known javax.sql.DataSource or
javax.jms.ConnectionFactory. That is the type of connection factory that is used by the
pax-transx-jdbc and pax-transx-jms bundles.

® The javax.resource.spi.ManagedConnection
ManagedConnectionFactory.createManagedConnection() method used by an application
server, creates actual physical connections to the EIS/database/broker.

ConnectionManager is implemented by an application server and used by a resource adapter. It is the
application server that first performs QoS operations (pooling, security, transaction management) and
finally delegates to the ManagedConnectionFactory of the resource adapter to create
ManagedConnection instances. The flow looks like this:

1. Application code uses connection factory created and exposed by application server using
object returned from ManagedConnectionFactory.createConnectionFactory(). It may be
generic CClinterface or e.g., javax.sql.DataSource.

2. this connection factory doesn't create connections on its own, instead it delegates to
ConnectionManager.allocateConnection() passing resource adapter-specific
ManagedConnectionFactory

3. ConnectionManager implemented by application server creates supporting objects, manages
transactions, pooling, etc. and eventually obtains physical (managed) connection from passed
ManagedConnectionFactory.

4. Application code gets connection which is usually a wrapper/proxy created by application server
which eventually delegates to resource adapter's specific physical connection.

Following is the diagram, where application server created non-CCl connection factory which is EIS-
specific. Simply - access to EIS (here: database) is done using javax.sql.DataSource interface, the
driver’s task is to provide physical connection, while application server will wrapp it inside (typically) a
proxy that does pooling/enlisting/security.

Application | ‘ App Server | Resource Adapter
T T
| new 5| Connection Manager I

|
|

A ManagedConnectionFactory.crpateConnectionFactory(connection manager) X
| |

|
>

_new Connection Factory I
| javax.sql.DataSource.getConnection() | | L
" : ; . >
:_' ConnectionManager.allocateConnection()

:, configure pooling/tx/security |

€ i |
\ \ A ManagedConnectionFactcry.createManagedConnection()_:
X X | _ javax.resource spi.ManagedConnection X
| | . |
\ \ ! pooledjenlisted/secured connection A o
! pooledjenlistéd/secured connection ! X
I-\ i |

‘ Application | ‘ App Server | ‘ Connection Manager Resource Adapter | ‘ Connection Factory

102

CHAPTER 8. ABOUT JAVA CONNECTOR ARCHITECTURE

8.3. ABOUT THE PAX-TRANSX PROJECT

The pax-transx project provides support for JTA/JTS transaction management in OSGi, as well as
resource pooling for JDBC and JMS. It closes the gap between pax-jdbc and pax-jms.

e pax-jdbc adds configuration options and discovery for javax.sql.(XA)ConnectionFactory
services and ships some JDBC pooling implementations

® pax-jms does the same for javax.jms.(XA)ConnectionFactory services and ships some JMS

pooling implementations

® pax-transx adds configuration options and discovery for
javax.transaction.TransactionManager implementations and (finally) provides JCA-based
JDBC/JMS connection management with pooling and tranasction support.

The sections about JDBC connection pools and about JMS connection pools are still valid. The only
change needed to use JCA-based pools is to use pool=transx properties when registering JDBC data
sources and JMS connection factories.

e pax-jdbc-pool-transx uses org.opséj.pax.transx.jdbc.ManagedDataSourceBuilder from

pax-transx-jdbc

® pax-jms-pool-transx uses org.opsdj.pax.transx.jms.ManagedConnectionFactoryBuilder

from pax-transx-jms

While the pooled data sources/connection factories are created in builder style (no Java™ bean
properties), these properties are supported for JDBC:

These properties are supported for JMS:

name
userName

password
commitBeforeAutocommit
preparedStatementCacheSize
transactionlsolationLevel
minidle

maxPoolSize
aliveBypassWindow
houseKeepingPeriod
connectionTimeout
idleTimeout

maxLifetime

name

103

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

e userName

e password

e clientiD

e minldle

e maxPoolSize

e aliveBypassWindow
® houseKeepingPeriod
e connectionTimeout
e jdleTimeout

o maxLifetime

userName and password properties are needed for XA recovery to work (just like it was with
aries.xa.username and aries.xa.password properties in Fuse 6.x).

With this JDBC configuration in Blueprint (mind pool=transx):

104

<l--
Database-specific, non-pooling, non-enlisting javax.sql. XADataSource
->
<bean id="postgresql" class="org.postgresql.xa.PGXADataSource">
<property name="url" value="jdbc:postgresql://localhost:5432/reportdb” />
<property name="user" value="fuse" />
<property name="password" value="fuse" />
<property name="currentSchema" value="report" />
<property name="connectTimeout" value="5" />
</bean>

<l--
Expose database-specific data source with service properties
No need to expose pooling, enlisting, non database-specific javax.sql.DataSource - it'll be
registered
automatically by pax-jdbc-config with the same properties as this <service>, but with higher
service.ranking
-->
<service id="pool" ref="postgresql" interface="javax.sql. XADataSource">
<service-properties>
<!-- "pool" key is needed for pax-jdbc-config to wrap database-specific data source inside
connection pool -->
<entry key="pool" value="transx" />
<l-- <service>/@id attribute doesn't propagate, but name of the datasource is required using one
of: -->
<entry key="osgi.jndi.service.name" value="jdbc/postgresql" />
<l--or: -->
<l--<entry key="dataSourceName" value="jdbc/postgresql" />-->
<!I-- Other properties, that normally are needed by e.g., pax-jdbc-pool-transx -->
<entry key="pool.maxPoolSize" value="13" />
<entry key="pool.userName" value="fuse" />

CHAPTER 8. ABOUT JAVA CONNECTOR ARCHITECTURE

<entry key="pool.password" value="fuse" />
</service-properties>
</service>

And with this JMS configuration in Blueprint (mind pool=transx):

<l--
Broker-specific, non-pooling, non-enlisting javax.jms.XAConnectionFactory
-—>
<bean id="artemis" class="org.apache.activemq.artemis.jms.client.ActiveMQXAConnectionFactory">
<argument index="0" value="tcp://localhost:61616" />
<!I-- credentials needed for JCA-based XA-recovery -->
<argument index="1" value="admin" />
<argument index="2" value="admin" />
<property name="callTimeout" value="2000" />
<property name="initialConnectAttempts" value="3" />
</bean>

<l--
Expose broker-specific connection factory with service properties
No need to expose pooling, enlisting, non broker-specific javax.jms.XAConnectionFactory - it'll be
registered
automatically by pax-jms-config with the same properties as this <service>, but with higher
service.ranking
->
<service id="pool" ref="artemis" interface="javax.jms.XAConnectionFactory">
<service-properties>
<!I-- "pool" key is needed for pax-jms-config to wrap broker-specific connection factory inside
connection pool -->
<entry key="pool" value="transx" />
<I-- <service>/@id attribute doesn't propagate, but name of the connection factory is required
using one of: -->
<entry key="0sgi.jndi.service.name" value="jms/artemis" />
<l--or:-->
<l--<entry key="name" value="jms/artemis" />-->
<!I-- Other properties, that normally are needed e.g., pax-jms-pool-transx -->
<entry key="pool.maxPoolSize" value="13" />
<entry key="pool.userName" value="admin" />
<entry key="pool.password" value="admin" />
</service-properties>
</service>

You have a JDBC data source and a JMS connection factory registered that leverage JCA-based
resource management. transx-based pools will properly integrate with pax-transx-tm-narayana with
respect to XA recovery.
The features that are needed are:

e pax-jdbc-pool-tranx

® pax-jms-pool-tranx

e pax-transx-jdbc

® pax-transx-jms

105

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® pax-jms-artemis (when using A-MQ 7)

106

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES

TRANSACTIONS

After you configure three, available-to-be-referenced, types of services, you are ready to write an
application. The three types of services are:

® One transaction manager that is an implementation of one of the following interfaces:

o javax.transaction.UserTransaction
o javax.transaction.TransactionManager
o org.springframework.transaction.PlatformTransactionManager

At least one JDBC data source that implements the javax.sql.DataSource. interface. Often,
there is more than one data source.

At least one JMS connection factory that implements the javax.jms.ConnectionFactory
interface. Often, there is more than one.

This section describes a Camel-specific configuration related to management of transactions, data
sources, and connection factories.

NOTE

This section describes several Spring-related concepts such as
SpringTransactionPolicy. There is a clear distinction between Spring XML DSL and
Blueprint XML DSL, which are both XML languages that define Camel contexts. Spring
XML DSL is now deprecated in Fuse. However, the Camel transaction mechanisms still
uses the Spring library internally.

Most of the information here is not dependent on the kind of PlatformTransactionManager that is
used. If the PlatformTransactionManager is the Narayana transaction manager, then full JTA
transactions are used. If PlatformTransactionManager is defined as a local Blueprint <beans, for
example, org.springframework.jms.connection.dmsTransactionManager, then local transactions are

used.

Transaction demarcation refers to the procedures for starting, committing, and rolling back
transactions. This section describes the mechanisms that are available for controlling transaction
demarcation, both by programming and by configuration.

Section 9.1, “Transaction demarcation by marking the route”
Section 9.2, “Demarcation by transactional endpoints”
Section 9.3, “Demarcation by declarative transactions”
Section 9.4, "Transaction propagation policies”

Section 9.5, “Error handling and rollbacks”

9.1. TRANSACTION DEMARCATION BY MARKING THE ROUTE

Apache Camel provides a simple mechanism for initiating a transaction in a route. Insert the
transacted() command in the Java DSL or insert the <transacted/> tagin the XML DSL.

107

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

Figure 9.1. Demarcation by Marking the Route

Transaction Scope

from{"...") p transacted/() B beanRef () ——» beanRef ()

Resource

The transacted processor demarcates transactions as follows:

1. When an exchange enters the transacted processor, the transacted processor invokes the
default transaction manager to begin a transaction and attaches the transaction to the current
thread.

2. When the exchange reaches the end of the remaining route, the transacted processor invokes
the transaction manager to commit the current transaction.

9.1.1. Sample route with JDBC resource

Figure 9.1, "Demarcation by Marking the Route” shows an example of a route that is made transactional
by adding the transacted() DSL command to the route. All of the route nodes that follow the
transacted() node are included in the transaction scope. In this example, the two following nodes access
a JDBC resource.

9.1.2. Route definition in Java DSL

The following Java DSL example shows how to define a transactional route by marking the route with
the transacted() DSL command:

import org.apache.camel.builder.RouteBuilder;

class MyRouteBuilder extends RouteBuilder {
public void configure() {
from("file:src/data?noop=true")
fransacted()
.bean("accountService","credit")
.bean("accountService","debit");

In this example, the file endpoint reads some XML format files that describe a transfer of funds from one
account to another. The first bean() invocation credits the specified sum of money to the beneficiary’s
account and then the second bean() invocation subtracts the specified sum of money from the sender’s
account. Both of the bean() invocations cause updates to be made to a database resource. It is assumed
that the database resource is bound to the transaction through the transaction manager, for example,
see Chapter 6, Using JDBC data sources.

108

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

9.1.3. Route definition in Blueprint XML

The preceding route can also be expressed in Blueprint XML. The <transacted /> tag marks the route as
transactional, as shown in the following XML.:

<blueprint xmIns="http://www.osgi.org/xmlIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance" ...>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="file:src/data?noop=true" />
<transacted />
<bean ref="accountService" method="credit" />
<bean ref="accountService" method="debit" />
</route>
</camelContext>

</blueprint>

9.1.4. Default transaction manager and transacted policy

To demarcate transactions, the transacted processor must be associated with a particular transaction
manager instance. To save you having to specify the transaction manager every time you invoke
transacted(), the transacted processor automatically picks a sensible default. For example, if there is
only one instance of a transaction manager in your configuration, the transacted processor implicitly
picks this transaction manager and uses it to demarcate transactions.

A transacted processor can also be configured with a transacted policy, of TransactedPolicy type,
which encapsulates a propagation policy and a transaction manager (see Section 9.4, “Transaction
propagation policies” for details). The following rules are used to pick the default transaction manager
or transaction policy:

1. If there is only one bean of org.apache.camel.spi.TransactedPolicy type, use this bean.

NOTE

The TransactedPolicy type is a base type of the SpringTransactionPolicy type
that is described in Section 9.4, “Transaction propagation policies”. Hence, the
bean referred to here could be a SpringTransactionPolicy bean.

ol

2. If there is a bean of type, org.apache.camel.spi.TransactedPolicy, which has the ID,
PROPAGATION_REQUIRED, use this bean.

3. If there is only one bean of org.springframework.transaction.PlatformTransactionManager
type, use this bean.

You also have the option of specifying a bean explicitly by providing the bean ID as an argument to
transacted(). See Section 9.4.4, "Sample route with PROPAGATION_NEVER policy in Java DSL" .

9.1.5. Transaction scope

If you insert a transacted processor into a route, the transaction manager creates a new transaction each
time an exchange passes through this node. The transaction’s scope is defined as follows:

109

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

® The transaction is associated with only the current thread.
® The transaction scope encompasses all of the route nodes that follow the transacted processor.

Any route nodes that precede the transacted processor are not in the transaction. However, if the route
begins with a transactional endpoint then all nodes in the route are in the transaction. See Section 9.2.5,
“Transactional endpoints at start of route”.

Consider the following route. It is incorrect because the transacted() DSL command mistakenly appears
after the first bean() call, which accesses the database resource:

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
from("file:src/data?noop=true")
.bean("accountService", "credit")
transacted() // <-- WARNING: Transaction started in the wrong place!
.bean("accountService", "debit");

9.1.6. No thread pools in a transactional route

It is crucial to understand that a given transaction is associated with only the current thread. You must
not create a thread pool in the middle of a transactional route because the processing in the new
threads will not participate in the current transaction. For example, the following route is bound to cause
problems:

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
from("file:src/data?noop=true")
fransacted()
.threads(3) /7 WARNING: Subthreads are not in transaction scope!
.bean("accountService", "credit")
.bean("accountService", "debit");

A route such as the preceding one is certain to corrupt your database because the threads() DSL
command is incompatible with transacted routes. Even if the threads() call precedes the transacted()
call, the route will not behave as expected.

9.1.7. Breaking a route into fragments

If you want to break a route into fragments and have each route fragment participate in the current
transaction, you can use direct: endpoints. For example, to send exchanges to separate route
fragments, depending on whether the transfer amount is big (greater than 100) or small (less than or
equal to 100), you can use the choice() DSL command and direct endpoints, as follows:

110

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
from("file:src/data?noop=true")

fransacted()
.bean("accountService", "credit")
.choice().when(xpath("/transaction/transfer[amount > 100]"))
to("direct:txbig")
.otherwise()
to("direct:txsmall");

from("direct:txbig")
.bean("accountService", "debit")
.bean("accountService", "dumpTable")
to("file:target/messages/big");

from("direct:txsmall")
.bean("accountService", "debit")
.bean("accountService", "dumpTable")
to("file:target/messages/small");

Both the fragment beginning with direct:txbig and the fragment beginning with direct:txsmall
participate in the current transaction because the direct endpoints are synchronous. This means that
the fragments execute in the same thread as the first route fragment and, therefore, they are included in
the same transaction scope.

NOTE

You must not use seda endpoints to join the route fragments. seda consumer endpoints
create a new thread (or threads) to execute the route fragment (asynchronous
processing). Hence, the fragments would not participate in the original transaction.

9.1.8. Resource endpoints

The following Apache Camel components act as resource endpoints when they appear as the
destination of a route, for example, if they appear in the to() DSL command. That is, these endpoints can
access a transactional resource, such as a database or a persistent queue. The resource endpoints can
participate in the current transaction, as long as they are associated with the same transaction manager
as the transacted processor that initiated the current transaction.

o ActiveMQ

e AMQP

® Hibernate

® [Batis

® JavaSpace

m

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

e JUBI

e JCR
e JDBC
e JMS

e JPA

LDAP

9.1.9. Sample route with resource endpoints

The following example shows a route with resource endpoints. This sends the order for a money transfer
to two different JMS queues. The credits queue processes the order to credit the receiver’'s account.
The debits queue processes the order to debit the sender’s account. There should be a credit only if
there is a corresponding debit. Consequently, you want to enclose the enqueueing operations in a single
transaction. If the transaction succeeds, both the credit order and the debit order will be enqueued. If an
error occurs, neither order will be enqueued.

from("file:src/data?noop=true")
transacted()
to("jmstx:queue:credits")
to("jmstx:queue:debits");

9.2. DEMARCATION BY TRANSACTIONAL ENDPOINTS

If a consumer endpoint at the start of a route accesses a resource, the transacted() command is of no
use, because it initiates the transaction after an exchange is polled. In other words, the transaction starts
too late to include the consumer endpoint within the transaction scope. In this case, the correct
approach is to make the endpoint itself responsible for initiating the transaction. An endpoint that is
capable of managing transactions is known as a transactional endpoint.

Transaction Scope

from("jmstx:...") —® to("jmstx:...") —® to("jmstx:...")

JMS Resource

There are two different models of demarcation by transactional endpoint, as follows:

® General case — normally, a transactional endpoint demarcates transactions as follows:

12

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

1. When an exchange arrives at the endpoint, or when the endpoint successfully polls for an
exchange, the endpoint invokes its associated transaction manager to begin a transaction.

2. The endpoint attaches the new transaction to the current thread.

3. When the exchange reaches the end of the route, the transactional endpoint invokes the
transaction manager to commit the current transaction.

® JMS endpoint with an /nOut exchange — when a JMS consumer endpoint receives an InOut
exchange and this exchange is routed to another JMS endpoint, this must be treated as a
special case. The problem is that the route can deadlock, if you try to enclose the entire
request/reply exchange in a single transaction.

9.2.1. Sample route with a JMS endpoint

Section 9.2, “Demarcation by transactional endpoints” shows an example of a route that is made
transactional by the presence of a transactional endpoint at the start of the route (in the from()
command). All of the route nodes are included in the transaction scope. In this example, all of the
endpoints in the route access a JMS resource.

9.2.2. Route definition in Java DSL

The following Java DSL example shows how to define a transactional route by starting the route with a
transactional endpoint:

from("jmstx:queue:giro")
to("jmstx:queue:credits”)
to("jmstx:queue:debits");

In the previous example, the transaction scope encompasses the endpoints, jmstx:queue:giro,
jmstx:queue:credits, and jmstx:queue:debits. If the transaction succeeds, the exchange is
permanently removed from the giro queue and pushed on to the credits queue and the debits queue. If
the transaction fails, the exchange does not get put on to the credits and debits queues and the
exchange is pushed back on to the giro queue. By default, JMS automatically attempts to redeliver the
message. The JMS component bean, jmstx, must be explicitly configured to use transactions, as follows:

<blueprint ...>
<bean id="jmstx" class="org.apache.camel.component.jms.JmsComponent">
<property name="configuration" ref="jmsConfig" />
</bean>

<bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
<property name="connectionFactory" ref="jmsConnectionFactory" />
<property name="transactionManager" ref="jmsTransactionManager" />
<property name="transacted" value="true" />

</bean>

</blueprint>

In the previous example, the transaction manager instance, jmsTransactionManager, is associated with
the JMS component and the transacted property is set to true to enable transaction demarcation for
InOnly exchanges.

9.2.3. Route definition in Blueprint XML

13

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

The preceding route can equivalently be expressed in Blueprint XML, as follows:

<blueprint xmins="http://www.osgi.org/xmlIns/blueprint/v1.0.0">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="jmstx:queue:giro" />
<to uri="jmstx:queue:credits" />
<to uri="jmstx:queue:debits" />
</route>
</camelContext>

</blueprint>

9.2.4. DSL transacted() command not required

The transacted() DSL command is not required in a route that starts with a transactional endpoint.
Nevertheless, assuming that the default transaction policy is PROPAGATION_REQUIRED (see
Section 9.4, "Transaction propagation policies”), it is usually harmless to include the transacted()
command, as in this example:

from("jmstx:queue:giro")
transacted()
to("jmstx:queue:credits")
to("jmstx:queue:debits");

However, it is possible for this route to behave in unexpected ways, for example, if a single
TransactedPolicy bean having a non-default propagation policy is created in Blueprint XML. See
Section 9.1.4, "Default transaction manager and transacted policy”. Consequently, it is usually better not
to include the transacted() DSL command in routes that start with a transactional endpoint.

9.2.5. Transactional endpoints at start of route

The following Apache Camel components act as transactional endpoints when they appear at the start
of a route (for example, if they appear in the from() DSL command). That is, these endpoints can be
configured to behave as a transactional client and they can also access a transactional resource.

® ActiveMQ

e AMQP

JavaSpace
e JMS

e JPA

9.3. DEMARCATION BY DECLARATIVE TRANSACTIONS

When using Blueprint XML, you can also demarcate transactions by declaring transaction policies in your
Blueprint XML file. By applying the appropriate transaction policy to a bean or bean method, for
example, the Required policy, you can ensure that a transaction is started whenever that particular
bean or bean method is invoked. At the end of the bean method, the transaction is committed. This
approach is analogous to the way that transactions are dealt with in Enterprise Java Beans.

14

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

OSGi declarative transactions enable you to define transaction policies at the following scopes in your
Blueprint file:

® Section 9.3.1, “Bean-level declaration”
® Section 9.3.2, “Top-level declaration”

See also: Section 9.3.3, “Description of tx:transaction attributes”.

9.3.1. Bean-level declaration

To declare transaction policies at the bean level, insert a tx:transaction element as a child of the bean
element, as follows:

<blueprint xmIns="http://www.osgi.org/xmlIns/blueprint/v1.0.0"
xmins:tx="http://aries.apache.org/xmins/transactions/v1.1.0">

<bean id="accountFoo" class="org.jboss.fuse.example.Account">
<tx:transaction method=""" value="Required" />
<property name="accountName" value="Foo" />

</bean>

<bean id="accountBar" class="org.jboss.fuse.example.Account">
<tx:transaction method=""" value="Required" />
<property name="accountName" value="Bar" />

</bean>

</blueprint>

In the preceding example, the required transaction policy is applied to all methods of the accountFoo
bean and the accountBar bean, where the method attribute specifies the wildcard, * to match all bean
methods.

9.3.2. Top-level declaration

To declare transaction policies at the top level, insert a tx:transaction element as a child of the
blueprint element, as follows:

<blueprint xmIns="http://www.osgi.org/xmlIns/blueprint/v1.0.0"
xmins:tx="http://aries.apache.org/xmins/transactions/v1.1.0">

*N

<tx:transaction bean="account*" value="Required" />

<bean id="accountFoo" class="org.jboss.fuse.example.Account">
<property name="accountName" value="Foo" />

</bean>

<bean id="accountBar" class="org.jboss.fuse.example.Account">
<property name="accountName" value="Bar" />

</bean>

</blueprint>

In the preceding example, the Required transaction policy is applied to all methods of every bean
whose ID matches the pattern, account*.

115

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

9.3.3. Description of tx:transaction attributes
The tx:transaction element supports the following attributes:

bean

(Top-level only) Specifies a list of bean IDs (comma or space separated) to which the transaction
policy applies. For example:

<blueprint ...>
<tx:transaction bean="accountFoo,accountBar" value="..." />
</blueprint>

You can also use the wildcard character, *, which may appear at most once in each list entry. For
example:

<blueprint ...>
<tx:transaction bean="account*,jms
</blueprint>

*n

value="..." />

If the bean attribute is omitted, it defaults to * (matching all non-synthetic beans in the blueprint
file).

method

(Top-level and bean-level) Specifies a list of method names (comma or space separated) to which
the transaction policy applies. For example:

<bean id="accountFoo" class="org.jboss.fuse.example.Account">
<tx:transaction method="debit,credit,transfer" value="Required" />
<property name="accountName" value="Foo" />

</bean>

You can also use the wildcard character, *, which may appear at most once in each list entry.

If the method attribute is omitted, it defaults to * (matching all methods in the applicable beans).

value

(Top-level and bean-level) Specifies the transaction policy. The policy values have the same
semantics as the policies defined in the EJB 3.0 specification, as follows:

® Required — support a current transaction; create a new one if none exists.

e Mandatory — support a current transaction; throw an exception if no current transaction
exists.

® RequiresNew — create a new transaction, suspending the current transaction if one exists.
® Supports — support a current transaction; execute non-transactionally if none exists.

® NotSupported — do not support a current transaction; rather always execute non-
transactionally.

e Never — do not support a current transaction; throw an exception if a current transaction
exists.

16

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

9.4. TRANSACTION PROPAGATION POLICIES

If you want to influence the way a transactional client creates new transactions, you can use
JmsTransactionManager and specify a transaction policy for it. In particular, Spring transaction policies
enable you to specify a propagation behavior for your transaction. For example, if a transactional client is
about to create a new transaction and it detects that a transaction is already associated with the current
thread, should it go ahead and create a new transaction, suspending the old one? Or should it let the
existing transaction take over? These kinds of behavior are regulated by specifying the propagation
behavior on a transaction policy.

Transaction policies are instantiated as beans in Blueprint XML. You can then reference a transaction
policy by providing its bean ID as an argument to the transacted() DSL command. For example, if you
want to initiate transactions subject to the behavior, PROPAGATION_REQUIRES_NEW, you could use
the following route:

from("file:src/data?noop=true")
transacted("PROPAGATION_REQUIRES_NEW")
.bean("accountService","credit")
.bean("accountService","debit")
to("file:target/messages");

Where the PROPAGATION_REQUIRES_NEW argument specifies the bean ID of a transaction policy
bean that is configured with the PROPAGATION_REQUIRES_NEW behavior. See Section 9.4.3,
“Defining policy beans in Blueprint XML".

9.4.1. About Spring transaction policies

Apache Camel lets you define Spring transaction policies using the
org.apache.camel.spring.spi.SpringTransactionPolicy class, which is essentially a wrapper around a
native Spring class. The SpringTransactionPolicy class encapsulates two pieces of data:

e Areference to a transaction manager of PlatformTransactionManager type
® A propagation behavior

For example, you could instantiate a Spring transaction policy bean with
PROPAGATION_MANDATORY behavior, as follows:

<blueprint ...>
<bean id="PROPAGATION_MANDATORY
"class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_MANDATORY" />
</bean>

</blueprint>

9.4.2. Descriptions of propagation behaviors

The following propagation behaviors are supported by Spring. These values were originally modeled on
the propagation behaviors supported by JavaeEE:

PROPAGATION_MANDATORY

Support a current transaction. Throw an exception if no current transaction exists.

17

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

PROPAGATION_NESTED

Execute within a nested transaction if a current transaction exists, else behave like
PROPAGATION_REQUIRED.

NOTE

b Nested transactions are not supported by all transaction managers.

PROPAGATION_NEVER
Do not support a current transaction. Throw an exception if a current transaction exists.
PROPAGATION_NOT_SUPPORTED

Do not support a current transaction. Always execute non-transactionally.

NOTE

This policy requires the current transaction to be suspended, a feature which is not
supported by all transaction managers.

L

#

PROPAGATION_REQUIRED
(Default) Support a current transaction. Create a new one if none exists.
PROPAGATION_REQUIRES_NEW

Create a new transaction, suspending the current transaction if one exists.

NOTE

L

Suspending transactions is not supported by all transaction managers.

e

PROPAGATION_SUPPORTS

Support a current transaction. Execute non-transactionally if none exists.

9.4.3. Defining policy beans in Blueprint XML

The following example shows how to define transaction policy beans for all of the supported
propagation behaviors. For convenience, each of the bean IDs matches the specified value of the
propagation behavior value, but in practice you can use whatever value you like for the bean IDs.

<blueprint xmIns="http://www.osgi.org/xmlIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<bean id="PROPAGATION_MANDATORY "
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_MANDATORY" />
</bean>

<bean id="PROPAGATION_NESTED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_NESTED" />

18

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

</bean>

<bean id="PROPAGATION_NEVER"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_NEVER" />
</bean>

<bean id="PROPAGATION_NOT_SUPPORTED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_NOT_SUPPORTED" />
</bean>

<!I-- This is the default behavior. -->
<bean id="PROPAGATION_REQUIRED"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
</bean>

<bean id="PROPAGATION_REQUIRES_NEW"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_REQUIRES_NEW" />
</bean>

<bean id="PROPAGATION_SUPPORTS"
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
<property name="transactionManager" ref="txManager" />
<property name="propagationBehaviorName" value="PROPAGATION_SUPPORTS" />
</bean>

</blueprint>

NOTE

If you want to paste any of these bean definitions into your own Blueprint XML
configuration, remember to customize the references to the transaction manager. That s,
replace references to txManager with the actual ID of your transaction manager bean.

9.4.4. Sample route with PROPAGATION_NEVER policy in Java DSL

A simple way of demonstrating that transaction policies have some effect on a transaction is to insert a
PROPAGATION_NEVER policy into the middle of an existing transaction, as shown in the following
route:

from("file:src/data?noop=true")
transacted()
.bean("accountService","credit")
transacted("PROPAGATION_NEVER")
.bean("accountService","debit");

Used in this way, the PROPAGATION_NEVER policy inevitably aborts every transaction, leading to a
transaction rollback. You should easily be able to see the effect of this on your application.

19

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

NOTE

Remember that the string value passed to transacted() is a bean ID, not a propagation
behavior name. In this example, the bean ID is chosen to be the same as a propagation
behavior name, but this need not always be the case. For example, if your application uses
more than one transaction manager, you might end up with more than one policy bean
having a particular propagation behavior. In this case, you could not simply name the
beans after the propagation behavior.

9.4.5. Sample route with PROPAGATION_NEVER policy in Blueprint XML

The preceding route can be defined in Blueprint XML, as follows:

<blueprint xmIns="http://www.osgi.org/xmlIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<camelContext xmlns="http://camel.apache.org/schema/blueprint">

<route>
<from uri="file:src/data?noop=true" />
<transacted />

<bean ref="accountService" method="credit" />
<transacted ref="PROPAGATION_NEVER" />
<bean ref="accountService" method="debit" />
</route>
</camelContext>

</blueprint>

9.5. ERROR HANDLING AND ROLLBACKS

While you can use standard Apache Camel error handling techniques in a transactional route, it is

important to understand the interaction between exceptions and transaction demarcation. In particular,

you need to consider that thrown exceptions usually cause transaction rollback. See the following topics:
® Section 9.5.1, "How to roll back a transaction”

® Section 9.5.2, “How to define a dead letter queue”

® Section 9.5.3, “Catching exceptions around a transaction”

9.5.1. How to roll back a transaction

You can use one of the following approaches to roll back a transaction:
® Section 9.5.11, “"Using runtime exceptions to trigger rollbacks”
® Section 9.5.1.2, "Using the rollback() DSL command”

® Section 9.5.1.3, “Using the markRollbackOnly() DSL command”

9.5.1.1. Using runtime exceptions to trigger rollbacks

The most common way to roll back a Spring transaction is to throw a runtime (unchecked) exception. In
other words, the exception is an instance or subclass of java.lang.RuntimeException. Java errors, of

120

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

java.lang.Error type, also trigger transaction rollback. Checked exceptions, on the other hand, do not
trigger rollback.

The following figure summarizes how Java errors and exceptions affect transactions, where the classes
that trigger roll back are shaded gray.

java.lang.Throwable

Java.lang.kExcepbiaon java.lang.Error

TT

checked exceptions RuntimeException
Fi)

= Triggers rollback

unchecked exceptions

NOTE

The Spring framework also provides a system of XML annotations that enable you to
specify which exceptions should or should not trigger roll backs. For details, see "Rolling
back" in the Spring Reference Guide.

WARNING
AA If a runtime exception is handled within the transaction, that is, before the exception

has the chance to percolate up to the code that does the transaction demarcation,
the transaction will not be rolled back. For details, see Section 9.5.2, “How to define
a dead letter queue”.

9.5.1.2. Using the rollback() DSL command

If you want to trigger a rollback in the middle of a transacted route, you can do this by calling the
rollback() DSL command, which throws an org.apache.camel.RollbackExchangeException
exception. In other words, the rollback() command uses the standard approach of throwing a runtime
exception to trigger the rollback.

For example, suppose that you decide that there should be an absolute limit on the size of money
transfers in the account services application. You could trigger a rollback when the amount exceeds 100
by using the code in the following example:

from("file:src/data?noop=true")
fransacted()
.bean("accountService","credit")
.choice().when(xpath("/transaction/transfer[amount > 100]"))
.rollback()
.otherwise()

121

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

to("direct:txsmall");

from("direct:txsmall")
.bean("accountService","debit")
.bean("accountService","dumpTable")
to("file:target/messages/small™);

NOTE

If you trigger a rollback in the preceding route, it will get trapped in an infinite loop. The
reason for this is that the RollbackExchangeException exception thrown by rollback()
propagates back to the file endpoint at the start of the route. The File component has a
built-in reliability feature that causes it to resend any exchange for which an exception
has been thrown. Upon resending, of course, the exchange just triggers another rollback,
leading to an infinite loop. The next example shows how to avoid this infinite loop.

9.5.1.3. Using the markRollbackOnly() DSL command

The markRollbackOnly() DSL command enables you to force the current transaction to roll back,
without throwing an exception. This can be useful when throwing an exception has unwanted side
effects, such as the example in Section 9.5.1.2, “"Using the rollback() DSL command”.

The following example shows how to modify the example in Section 9.5.1.2, “Using the rollback() DSL
command” by replacing the rollback() command with the markRollbackOnly() command. This version
of the route solves the problem of the infinite loop. In this case, when the amount of the money transfer
exceeds 100, the current transaction is rolled back, but no exception is thrown. Because the file
endpoint does not receive an exception, it does not retry the exchange, and the failed transactions is
quietly discarded.

The following code rolls back an exception with the markRollbackOnly() command:

from("file:src/data?noop=true")
.fransacted()
.bean("accountService","credit")
.choice().when(xpath("/transaction/transfer[amount > 100]"))
.markRollbackOnly()
.otherwise()
to("direct:txsmall");

The preceding route implementation is not ideal, however. Although the route cleanly rolls back the
transaction (leaving the database in a consistent state) and avoids the pitfall of infinite looping, it does
not keep any record of the failed transaction. In a real-world application, you would typically want to
keep track of any failed transaction. For example, you might want to write a letter to the relevant
customer in order to explain why the transaction did not succeed. A convenient way of tracking failed
transactions is to add a dead-letter queue to the route.

9.5.2. How to define a dead letter queue

To keep track of failed transactions, you can define an onException() clause, which enables you to divert
the relevant exchange object to a dead-letter queue. When used in the context of transactions,
however, you need to be careful about how you define the onException() clause, because of potential

122

CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS

interactions between exception handling and transaction handling. The following example shows the
correct way to define an onException() clause, assuming that you need to suppress the rethrown
exception.

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
onException(lllegalArgumentException.class)
.maximumRedeliveries(1)
.handled(true)
to("file:target/messages?fileName=deadLetters.xml&fileExist=Append")
.markRollbackOnly(); // NB: Must come *after* the dead letter endpoint.

from("file:src/data?noop=true")
fransacted()
.bean("accountService","credit")
.bean("accountService","debit")
.bean("accountService","dumpTable")
to("file:target/messages");

In the preceding example, onException() is configured to catch the lllegalArgumentException
exception and send the offending exchange to a dead letter file, deadLetters.xml. Of course, you can
change this definition to catch whatever kind of exception arises in your application. The exception
rethrow behavior and the transaction rollback behavior are controlled by the following special settings in
the onException() clause:

o handled(true) — suppress the rethrown exception. In this particular example, the rethrown
exception is undesirable because it triggers an infinite loop when it propagates back to the file
endpoint. See Section 9.5.1.3, “Using the markRollbackOnly() DSL command”. In some cases,
however, it might be acceptable to rethrow the exception (for example, if the endpoint at the
start of the route does not implement a retry feature).

e markRollbackOnly() — marks the current transaction for rollback without throwing an
exception. Note that it is essential to insert this DSL command after the to() command that
routes the exchange to the dead letter queue. Otherwise, the exchange would never reach the
dead letter queue, because markRollbackOnly() interrupts the chain of processing.

9.5.3. Catching exceptions around a transaction

Instead of using onException(), a simple approach to handling exceptions in a transactional route is to
use the doTry() and doCatch() clauses around the route. For example, the following code shows how
you can catch and handle the lllegalArgumentException in a transactional route, without the risk of
getting trapped in an infinite loop.

// Java
import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {

123

Red Hat Fuse 7.11 Apache Karaf Transaction Guide

from("file:src/data?noop=true")
.doTry()
to("direct:split")
.doCatch(lllegalArgumentException.class)
to("file:target/messages?fileName=deadLetters.xml&fileExist=Append")
.end();

from("direct:split")
ransacted()
.bean("accountService","credit")
.bean("accountService","debit")
.bean("accountService","dumpTable")
to("file:target/messages");
}
}

In this example, the route is split into two segments. The first segment (from the file:src/data endpoint)
receives the incoming exchanges and performs the exception handling using doTry() and doCatch().
The second segment (from the direct:split endpoint) does all of the transactional work. If an exception
occurs within this transactional segment, it propagates first of all to the transacted() command, causing
the current transaction to be rolled back, and it is then caught by the doCatch() clause in the first route
segment. The doCatch() clause does not rethrow the exception, so the file endpoint does not do any
retries and infinite looping is avoided.

124

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO TRANSACTIONS
	1.1. WHAT IS A TRANSACTION?
	1.2. ACID PROPERTIES OF A TRANSACTION
	1.3. ABOUT TRANSACTION CLIENTS
	1.4. DESCRIPTIONS OF TRANSACTION TERMS
	1.5. MANAGING TRANSACTIONS THAT MODIFY MULTIPLE RESOURCES
	1.6. RELATIONSHIP BETWEEN TRANSACTIONS AND THREADS
	1.7. ABOUT TRANSACTION SERVICE QUALITIES
	1.7.1. Qualities of service provided by resources
	1.7.1.1. Transaction isolation levels
	1.7.1.2. Support for the XA standard

	1.7.2. Qualities of service provided by transaction managers
	1.7.2.1. Support for suspend/resume and attach/detach
	1.7.2.2. Support for multiple resources
	1.7.2.3. Distributed transactions
	1.7.2.4. Transaction monitoring
	1.7.2.5. Recovery from failure

	CHAPTER 2. GETTING STARTED WITH TRANSACTIONS ON KARAF (OSGI)
	2.1. PREREQUISITES
	2.2. BUILDING THE CAMEL-JMS PROJECT
	2.3. EXPLANATION OF THE CAMEL-JMS PROJECT

	CHAPTER 3. INTERFACES FOR CONFIGURING AND REFERENCING TRANSACTION MANAGERS
	3.1. WHAT TRANSACTION MANAGERS DO
	3.2. ABOUT LOCAL, GLOBAL, AND DISTRIBUTED TRANSACTION MANAGERS
	3.2.1. About local transaction managers
	3.2.2. About global transaction managers
	3.2.3. About distributed transaction managers

	3.3. USING A JAVAEE TRANSACTION CLIENT
	3.4. USING A SPRING BOOT TRANSACTION CLIENT
	3.4.1. Using the Spring PlatformTransactionManager interface
	3.4.1.1. Definition of the PlatformTransactionManager interface
	3.4.1.2. About the TransactionDefinition interface
	3.4.1.3. Definition of the TransactionStatus interface
	3.4.1.4. Methods defined by the PlatformTransactionManager interface

	3.4.2. Steps for using the transaction manager
	3.4.3. About Spring PlatformTransactionManager implementations
	3.4.3.1. Local PlatformTransactionManager implementations
	3.4.3.2. Global PlatformTransactionManager implementation

	3.5. OSGI INTERFACES BETWEEN TRANSACTION CLIENTS AND THE TRANSACTION MANAGER

	CHAPTER 4. CONFIGURING THE NARAYANA TRANSACTION MANAGER
	4.1. ABOUT NARAYANA INSTALLATION
	4.2. TRANSACTION PROTOCOLS SUPPORTED
	4.3. ABOUT NARAYANA CONFIGURATION
	4.4. CONFIGURING LOG STORAGE

	CHAPTER 5. USING THE NARAYANA TRANSACTION MANAGER
	5.1. USING USERTRANSACTION OBJECTS
	5.1.1. Definition of the UserTransaction interface
	5.1.2. Description of UserTransaction methods

	5.2. USING TRANSACTIONMANAGER OBJECTS
	5.2.1. Definition of the TransactionManager interface
	5.2.2. Description of TransactionManager methods

	5.3. USING TRANSACTION OBJECTS
	5.3.1. Definition of the Transaction interface
	5.3.2. Description of Transaction methods

	5.4. RESOLVING THE XA ENLISTMENT PROBLEM
	5.4.1. How to enlist an XA resource
	5.4.2. About auto-enlistment

	CHAPTER 6. USING JDBC DATA SOURCES
	6.1. ABOUT THE CONNECTION INTERFACE
	6.2. OVERVIEW OF JDBC DATA SOURCES
	6.2.1. Database specific and generic data sources
	6.2.2. Some generic data sources
	6.2.3. Pattern to use

	6.3. CONFIGURING JDBC DATA SOURCES
	6.4. USING THE OSGI JDBC SERVICE
	6.4.1. PAX-JDBC configuration service
	6.4.2. Summary of handled properties
	6.4.3. How the pax-jdb-config bundle handles properties

	6.5. USING JDBC CONSOLE COMMANDS
	6.6. USING ENCRYPTED CONFIGURATION VALUES
	6.7. USING JDBC CONNECTION POOLS
	6.7.1. Introduction to using JDBC connection pools
	6.7.2. Using the dbcp2 connection pool module
	6.7.2.1. Configuration properties for BasicDataSource
	6.7.2.2. Example of how to configure DBCP2 pool

	6.7.3. Using the narayana connection pool module
	6.7.4. Using the transx connection pool module

	6.8. DEPLOYING DATA SOURCES AS ARTIFACTS
	6.8.1. Manual deployment of data sources
	6.8.2. Factory deployment of data sources
	6.8.3. Mixed deployment of data sources

	6.9. USING DATA SOURCES WITH THE JAVA™ PERSISTENCE API
	6.9.1. About data source references
	6.9.2. Referring to JNDI names

	CHAPTER 7. USING JMS CONNECTION FACTORIES
	7.1. ABOUT THE OSGI JMS SERVICE
	7.2. ABOUT THE PAX-JMS CONFIGURATION SERVICE
	7.2.1. Creating a connection factory for AMQ 7.1
	7.2.2. Creating a connection factory for IBM MQ 8 or IBM MQ 9
	7.2.3. Using JBoss A-MQ 6.3 Client in Fuse on Apache Karaf
	7.2.3.1. Prerequisites
	7.2.3.2. Procedure

	7.2.4. Summary of handled properties

	7.3. USING JMS CONSOLE COMMANDS
	7.4. USING ENCRYPTED CONFIGURATION VALUES
	7.5. USING JMS CONNECTION POOLS
	7.5.1. Introduction to using JMS connection pools
	7.5.2. Using the pax-jms-pool-pooledjms connection pool module
	7.5.3. Using the pax-jms-pool-narayana connection pool module
	7.5.4. Using the pax-jms-pool-transx connection pool module

	7.6. DEPLOYING CONNECTION FACTORIES AS ARTIFACTS
	7.6.1. Manual deployment of connection factories
	7.6.2. Factory deployment of connection factories
	7.6.3. Mixed deployment of connection factories

	CHAPTER 8. ABOUT JAVA CONNECTOR ARCHITECTURE
	8.1. SIMPLE JDBC ANALOGY
	8.2. OVERVIEW OF USING JCA
	8.3. ABOUT THE PAX-TRANSX PROJECT

	CHAPTER 9. WRITING A CAMEL APPLICATION THAT USES TRANSACTIONS
	9.1. TRANSACTION DEMARCATION BY MARKING THE ROUTE
	9.1.1. Sample route with JDBC resource
	9.1.2. Route definition in Java DSL
	9.1.3. Route definition in Blueprint XML
	9.1.4. Default transaction manager and transacted policy
	9.1.5. Transaction scope
	9.1.6. No thread pools in a transactional route
	9.1.7. Breaking a route into fragments
	9.1.8. Resource endpoints
	9.1.9. Sample route with resource endpoints

	9.2. DEMARCATION BY TRANSACTIONAL ENDPOINTS
	9.2.1. Sample route with a JMS endpoint
	9.2.2. Route definition in Java DSL
	9.2.3. Route definition in Blueprint XML
	9.2.4. DSL transacted() command not required
	9.2.5. Transactional endpoints at start of route

	9.3. DEMARCATION BY DECLARATIVE TRANSACTIONS
	9.3.1. Bean-level declaration
	9.3.2. Top-level declaration
	9.3.3. Description of tx:transaction attributes

	9.4. TRANSACTION PROPAGATION POLICIES
	9.4.1. About Spring transaction policies
	9.4.2. Descriptions of propagation behaviors
	9.4.3. Defining policy beans in Blueprint XML
	9.4.4. Sample route with PROPAGATION_NEVER policy in Java DSL
	9.4.5. Sample route with PROPAGATION_NEVER policy in Blueprint XML

	9.5. ERROR HANDLING AND ROLLBACKS
	9.5.1. How to roll back a transaction
	9.5.1.1. Using runtime exceptions to trigger rollbacks
	9.5.1.2. Using the rollback() DSL command
	9.5.1.3. Using the markRollbackOnly() DSL command

	9.5.2. How to define a dead letter queue
	9.5.3. Catching exceptions around a transaction

