& RedHat

Red Hat Enterprise Linux 9.4

Using image mode for RHEL to build, deploy,
and manage operating systems

Using RHEL bootable container images on Red Hat Enterprise Linux 9

Last Updated: 2024-05-17

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy,
and manage operating systems

Using RHEL bootable container images on Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

RHEL bootable container images enable you to build, deploy, and manage the operating system as
if it is any other container. You can converge on a single container-native workflow to manage
everything from your applications to the underlying OS.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it et eeaeeanneeaneeeaneennneeaneens 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt iee i eieeeeneennnes, 4
CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL ...ttt it it ieieieienneennneanns 5
1.1. PREREQUISITES 7
1.2. ADDITIONAL RESOURCES 7
CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINERIMAGESc.iiiiiiiiiinnn. 8
2.1. BUILDING A CONTAINER IMAGE 9
2.2. RUNNING A CONTAINER IMAGE 10
2.3. PUSHING A CONTAINER IMAGE TO THE REGISTRY 10
CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER 12
3.1. INTRODUCING IMAGE MODE FOR RHEL FOR BOOTC-IMAGE-BUILDER 12
3.2. INSTALLING BOOTC-IMAGE-BUILDER 13
3.3. CREATING QCOW?2 IMAGES BY USING BOOTC-IMAGE-BUILDER 13
3.4. CREATING AMI IMAGES BY USING BOOTC-IMAGE-BUILDER AND UPLOADING IT TO AWS 14
3.5. CREATING RAW DISK IMAGES BY USING BOOTC-IMAGE-BUILDER 16
3.6. CREATING ISO IMAGES BY USING BOOTC-IMAGE-BUILDER 17
3.7. VERIFICATION AND TROUBLESHOOTING 18
CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES ...ttt et ieieeainnennneenns 19
4.1. DEPLOYING A CONTAINER IMAGE BY USING KVM WITH A QCOW?2 DISK IMAGE 20
4.2. DEPLOYING A CONTAINER IMAGE TO AWS WITH AN AMI DISK IMAGE 21
4.3. DEPLOYING A CONTAINER IMAGE BY USING ANACONDA AND KICKSTART 22
4.4, DEPLOYING A CUSTOM ISO CONTAINER IMAGE 23
4.5. DEPLOYING AN ISO BOOTABLE CONTAINER OVER PXE BOOT 24
4.6. BUILDING, CONFIGURING, AND LAUNCHING DISK IMAGES WITH BOOTC-IMAGE-BUILDER 24
4.7. DEPLOYING A CONTAINER IMAGE BY USING BOOTC 26
4.8. ADVANCED INSTALLATION WITH TO-FILESYSTEM 26
4.8.1. Using bootc install to-existing-root 26
CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES ...ttt et et eeaeanneeaneenn, 28
5.1. SWITCHING THE CONTAINER IMAGE REFERENCE 28
5.2. PERFORMING MANUAL UPDATES FROM AN INSTALLED OPERATING SYSTEM 29
5.3. TURNING OFF AUTOMATIC UPDATES 29
5.4. MANUALLY UPDATING AN INSTALLED OPERATING SYSTEM 30
5.5. PERFORMING ROLLBACKS FROM A UPDATED OPERATING SYSTEM 30
5.6. DEPLOYING UPDATES TO SYSTEM GROUPS 31
5.7. CHECKING INVENTORY HEALTH 32
5.8. AUTOMATION AND GITOPS 32
CHAPTER 6. MANAGING FILE SYSTEMSINIMAGEMODE FORRHELciiiiiiiiiiiiiiiiiinnnenn, 33
6.1. PHYSICAL AND LOGICAL ROOT WITH /SYSROOT 33
6.2. VERSION SELECTION AND BOOTUP 34

CHAPTER 7. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR
3 1 36

7.1. USERS AND GROUPS CONFIGURATION 36
7.2. INJECTING SECRETS IN IMAGE MODE FOR RHEL 38

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL

Use image mode for RHEL to build, test, and deploy operating systems by using the same tools and
techniques as application containers. Image mode for RHEL is available by using the
registry.redhat.io/rhel9/rhel-bootc bootable container image. The RHEL bootable container images
differ from the existing application Universal Base Images (UBI) in that they contain additional
components necessary to boot that were traditionally excluded, such as, kernel, initrd, boot loader,
firmware, among others.

IMPORTANT

Red Hat provides the rhel9/rhel-bootc container image as a Technology Preview.
Technology Preview features provide early access to upcoming product innovations,
enabling customers to test functionality and provide feedback during the development
process. However, these features are not fully supported. Documentation for a
Technology Preview feature might be incomplete or include only basic installation and
configuration information. See Technology Preview Features Support Scope on the Red
Hat Customer Portal for information about the support scope for Technology Preview
features.

Figure 1.1. Building, deploying, and managing operating system by using image mode for RHEL

— Build — Deploy — Manage
Install / setup Convert to image (VM, disc) Update image(s)
Container file Test / iterate Deploy updates to groups
Create container image(s) Deploy image View inventory health
Automate / GitOps

The benefits of image mode for RHEL occur across the lifecycle of a system. The following list contains
some of the most important advantages:

Container images are easier to understand and use than other image formats and are fast to build

Containerfiles, also known as Dockerfiles, provide a straightforward approach to defining the content
and build instructions for an image. Container images are often significantly faster to build and
iterate on compared to other image creation tools.

Consolidate process, infrastructure, and release artifacts

As you distribute applications as containers, you can use the same infrastructure and processes to
manage the underlying operating system.

Immutable updates

Just as containerized applications are updated in an immutable way, with image mode for RHEL, the
operating system is also. You can boot into updates and roll back when needed in the same way that
you use rpm-ostree systems.

https://access.redhat.com/support/offerings/techpreview

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

' WARNING
A The use of rpm-ostree to make changes, or install content, is not supported.

Portability across hybrid cloud environments

You can use bootable container images across physical, virtualized, cloud, and edge environments.

Although containers provide the foundation to build, transport, and run images, it is important to
understand that after you deploy these bootable container images, either by using an installation
mechanism, or you convert them to a disk image, the system does not run as a container.

The supported image types are the following:
e Container image formats: OCI

® Disk image formats:

o [SO
o QEMU copy-on-write (QCOW?2), Raw
o Amazon Machine Image (AMI)
o Virtual Machine Image (VMI)
o Virtual Machine Disk (VMDK)
Containers help streamline the lifecycle of a RHEL system by offering the following possibilities:

Building container images

You can configure your operating system at a build time by modifying the Containerfile. Image mode
for RHEL is available by using the registry.redhat.io/rhel9/rhel-bootc container image. You can use
Podman, OpenShift Container Platform, or other standard container build tools to manage your
containers and container images. You can automate the build process by using Cl/CD pipelines.

Versioning, mirroring, and testing container images

You can version, mirror, introspect, and sign your derived bootable container image by using any
container tools such as Podman or OpenShift Container Platform.

Deploying container images to the target environment
You have several options on how to deploy your image:

® Anaconda: is the installation program used by RHEL. You can deploy all image types to the
target environment by using Anaconda and Kickstart to automate the installation process.

® bootc-image-builder: is a containerized tool that converts the container image to different
types of disk images, and optionally uploads them to an image registry or object storage.

® bootc:is a tool responsible for fetching container images from a container registry and
installing them to a system, updating the operating system, or switching from an existing
ostree-based system. The RHEL bootable container image contains the bootc utility by

CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL

default and works with all image types. However, remember that the rpm-ostree is not
supported and must not be used to make changes.

Updating your operating system

The system supports in-place transactional updates with rollback after deployment. Automatic
updates are on by default. A systemd service unit and systemd timer unit files check the container
registry for updates and apply them to the system. As the updates are transactional, a reboot is
required. For environments that require more sophisticated or scheduled rollouts, disable auto
updates and use the bootc utility to update your operating system.

RHEL has two deployment modes. Both provide the same stability, reliability, and performance during
deployment.

1. Package mode: the operating system uses RPM packages and is updated by using the dnf

package manager. The root filesystem is mutable.

Image mode: a container-native approach to build, deploy, and manage RHEL. The same RPM
packages are delivered as a base image and updates are deployed as a container image. The
root filesystem is immutable by default, except for /etc and /var, with most content coming
from the container image.

You can use both deployment modes to build, test, share, deploy, and manage your operating system in
the same way as any other containerized application.

1.1. PREREQUISITES

® You have a subscribed RHEL 9 system. For more information, see Getting Started with RHEL
System Registration documentation.

® You have a container registry. You can create your registry locally or create a free account on
the Quay.io service. To create the Quay.io account, see Red Hat Quay.io page.

® You have a Red Hat account with either production or developer subscriptions. No cost
developer subscriptions are available on the Red Hat Enterprise Linux Overview page.

® You have authenticated to registry.redhat.io. For more information, see Red Hat Container
Registry Authentication article.

1.2. ADDITIONAL RESOURCES

® Introducing image mode for RHEL and bootable containers in Podman Desktop quick start
guide

® |mage mode for Red Hat Enterprise Linux quick start: Al inference quick start guide

® Getting Started with Podman Al Lab blog article

® Customizing Anaconda product documentation

® Performing an advanced RHEL 9 installation product documentation (Kickstart)

® Composing a customized RHEL system image product documentation

® Composing, installing, and managing RHEL for Edge images product documentation

https://access.redhat.com/documentation/en-us/subscription_central/1-latest/html-single/getting_started_with_rhel_system_registration/index
https://quay.io/signin
https://developers.redhat.com/products/rhel/overview
https://access.redhat.com/RegistryAuthentication
https://developers.redhat.com/articles/2024/05/07/image-mode-rhel-bootable-containers
https://developers.redhat.com/articles/2024/05/07/image-mode-rhel-quick-start-ai-inference
https://developers.redhat.com/articles/2024/04/24/getting-started-podman-ai-lab
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/customizing_anaconda
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_an_advanced_rhel_9_installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_a_customized_rhel_system_image
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE
CONTAINER IMAGES

The following procedures use Podman to build and test your container image. You can also use other
tools, for example, OpenShift Container Platform. For more examples of configuring RHEL systems by
using containers, see the rhel-bootc-examplesrepository.

IMPORTANT

Red Hat provides the rhel9/rhel-bootc container image as a Technology Preview.
Technology Preview features provide early access to upcoming product innovations,
enabling customers to test functionality and provide feedback during the development
process. However, these features are not fully supported. Documentation for a
Technology Preview feature might be incomplete or include only basic installation and
configuration information. See Technology Preview Features Support Scope on the Red
Hat Customer Portal for information about the support scope for Technology Preview
features.

Figure 2.1. Building an image by using instructions from a Containerfile, testing the container,
pushing an image to a registry, and sharing it with others

Build
o Bootable o
g Container . o Container
Dockerfile ~ ----------ooooo- | 2 engine T Build ----p cr?:::ér;er —————— Push ----p registry

A general Containerfile structure is the following:

FROM regqistry.redhat.io/rhel9/rhel-bootc:latest
RUN dnf -y install [software] [dependencies] && dnf clean all

ADD [application]
ADD [configuration files]

RUN [config scripts]

The rhel-9-bootc container image reuses the OCl image format.

e The rhel-9-bootc container image ignores the container config section (Config) when it is
installed to a system.

® The rhel-9-bootc container image does not ignore the container config section (Config) when
you run this image by using container runtimes such as podman or docker.

For example, the following commands in a Containerfile are ignored when the rhel-9-bootc image is
installed to a system:

e ENTRYPOINT and CMD (OCI: Entrypoint/Cmd): you can set CMD /sbin/init instead.

https://github.com/redhat-cop/rhel-bootc-examples
https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINER IMAGES

e ENV (OCI: Env): change the systemd configuration to configure the global system
environment.

e EXPOSE (OCI: exposedPorts): it is independent of how the system firewall and network
function at runtime.

e USER (OCI: User): configure individual services inside the RHEL bootable container to run as
unprivileged users instead.

The available commands that are usable inside a Containerfile and a Dockerfile are equivalent.

NOTE

Building custom rhel-bootc base images is not supported in this release.

2.1. BUILDING A CONTAINER IMAGE

Use the podman build command to build an image using instructions from a Containerfile.

Prerequisites

® The container-tools meta-package is installed.

Procedure

1. Create a Containerfile:

$ cat Containerfile

FROM registry.redhat.io/rhel9/rhel-bootc:latest

RUN dnf -y install cloud-init &&\
In -s ../cloud-init.target /usr/lib/systemd/system/default.target.wants && \
dnf clean all

This Containerfile example adds the cloud-init tool, so it automatically fetches SSH keys and
can run scripts from the infrastructure and also gather configuration and secrets from the
instance metadata. For example, you can use this container image for pre-generated AWS or
KVM guest systems.

2. Build the <image> image by using Containerfile in the current directory:

I $ podman build -t quay.io/<namespace>/<images:<tag>

Verification

® Listallimages:

$ podman images
REPOSITORY TAG IMAGEID CREATED SIZE
localhost/<image> latest b28cd00741b3 About a minute ago 2.1 GB

Additional resources

® Working with container registries

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#working-with-container-registries_building-running-and-managing-containers

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

® Building an image from a Containerfile with Buildah

2.2. RUNNING A CONTAINER IMAGE

Use the podman run command to run and test your container.

Prerequisites

® The container-tools meta-package is installed.

Procedure

® Run the container named mybootc based on the quay.io/<namespaces/<image>:<tag>
container image:

I $ podman run -it --rm --name mybootc quay.io/<namespace>/<image>:<tag> /bin/bash

o The -i option creates an interactive session. Without the -t option, the shell stays open, but
you cannot type anything to the shell.

o The -t option opens a terminal session. Without the -i option, the shell opens and then exits.

o The --rm option removes the quay.io/<namespaces/<images:<tag> container image
after the container exits.

Verification

® List all running containers:

$ podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

7ccd6001166e quay.io/<namespaces/<image>:<tag> /sbin/init 6 seconds ago Up 5
seconds ago mybootc

Additional resources

® Podman run command

2.3. PUSHING A CONTAINER IMAGE TO THE REGISTRY

Use the podman push command to push animage to your own, or a third party, registry and share it
with others. The following procedure uses the Red Hat Quay registry.

Prerequisites

® The container-tools meta-package is installed.
® Animage is built and available on the local system.

® You have created the Red Hat Quay registry. For more information see Proof of Concept -
Deploying Red Hat Quay.

Numnmnadiiva

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_building-an-image-from-a-containerfile-with-buildah_assembly_building-container-images-with-buildah
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#con_podman-run-command_assembly_working-with-containers
https://access.redhat.com/documentation/en-us/red_hat_quay/3.10/html-single/proof_of_concept_-_deploying_red_hat_quay/index

CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINER IMAGES

rioccuui e

® Push the quay.io/<namespaces/<images:<tag> container image from your local storage to
the registry:

I $ podman push quay.io/<namespace>/<image>:<tag>

Additional resources

® Redistributing UBI images

1

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#proc_redistributing-ubi-images_assembly_working-with-container-images

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK
IMAGES WITH BOOTC-IMAGE-BUILDER

The bootc-image-builder, available as a Technology Preview, is a containerized tool to create disk
images from bootable container images. You can use the images that you build to deploy disk images in
different environments, such as the edge, server, and clouds.

IMPORTANT

Red Hat provides the bootc-image-builder tool as a Technology Preview. Technology
Preview features provide early access to upcoming product innovations, enabling
customers to test functionality and provide feedback during the development process.
However, these features are not fully supported. Documentation for a Technology
Preview feature might be incomplete or include only basic installation and configuration
information. See Technology Preview Features Support Scope on the Red Hat Customer
Portal for information about the support scope for Technology Preview features.

3.1. INTRODUCING IMAGE MODE FOR RHEL FOR BOOTC-IMAGE-
BUILDER

With the bootc-image-builder tool, you can convert bootable container images into disk images for a
variety of different platforms and formats. Converting bootable container images into disk images is
equivalent to installing a bootable container. After you deploy these disk images to the target
environment, you can update them directly from the container registry.

The bootc-image-builder tool supports generating the following image types:
® Disk image formats, such as ISO, suitable for disconnected installations.
® Virtual disk images formats, such as:

o QEMU copy-on-write (QCOW?2)
o Amazon Machine Image (AMI)/ — Raw
o Virtual Machine Image (VMI)

Deploying from a container image is beneficial when you run VMs or servers because you can achieve
the same installation result. That consistency extends across multiple different image types and
platforms when you build them from the same container image. Consequently, you can minimize the
effort in maintaining operating system images across platforms. You can also update systems that you
deploy from these disk images by using the bootc tool, instead of re-creating and uploading new disk
images with bootc-image-builder.

NOTE

Generic base container images do not include any default passwords or SSH keys. Also,
the disk images that you create by using the bootc-image-builder tool do not contain the
tools that are available in common disk images, such as cloud-init. These disk images are
transformed container images only.

Although you can deploy a rhel-9-bootc image directly, you can also create your own customized
images that are derived from this bootable base image. The bootc-image-builder tool takes the rhel-9-
bootc OCI container image as an input.

12

https://access.redhat.com/support/offerings/techpreview

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

NOTE

Building base disk images which come from private registries by using bootc-image-
builder is not supported in this release.

Additional resources

® Red Hat products that use cloud-init

3.2. INSTALLING BOOTC-IMAGE-BUILDER

The bootc-image-builder is intended to be used as a container and it is not available as an RPM package
in RHEL. To access it, follow the procedure.

Prerequisites

® The container-tools meta-package is installed. The meta-package contains all container tools,
such as Podman, Buildah, and Skopeo.

® You are authenticated to registry.redhat.io. For details, see Red Hat Container Registry
Authentication.

Procedure
1. Login to authenticate to registry.redhat.io:
I $ sudo podman login registry.redhat.io
2. Install the bootc-image-builder tool:

I $ sudo podman pull registry.redhat.io/rhel9/bootc-image-builder

Verification

® List allimages pulled to your local system:

$ sudo podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.redhat.io/rhel9/bootc-image-builder latest b361f3e845ea 24 hours ago 676 MB

Additional resources

® Red Hat Container Registry Authentication

® Pulling images from registries

3.3. CREATING QCOW2 IMAGES BY USING BOOTC-IMAGE-BUILDER

Build a RHEL bootable container image into a QEMU Disk Images (QCOW?2) image for the architecture
that you are running the commands on.

The RHEL base image does not include a default user. Optionally, you can inject a user configuration
with the --config option to run the bootc-image-builder container. Alternatively, you can configure the

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_cloud-init_for_rhel_9/red-hat-support-for-cloud-init_cloud-content#red-hat-products-that-user-cloud-init_red-hat-support-for-cloud-init
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/building_running_and_managing_containers/index#proc_pulling-images-from-registries_working-with-container-registries

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

base image with cloud-init to inject users and SSH keys on first boot. See Injecting users and SSH keys
by using cloud-init.

Prerequisites

® You have Podman installed on your host machine.
® You have virt-install installed on your host machine.

® You have root access to run the bootc-image-builder tool, and run the containersin ==
privileged mode, to build the images.

Procedure

1. Optional: Create a config.toml to configure user access, for example:

[[blueprint.customizations.user]]

name = "user"

password = "pass"

key = "ssh-rsa AAA ... user@email.com”
groups = ["wheel"]

2. Run bootc-image-builder. If you want to use user access configuration, pass the config.toml as
an argument:

$ sudo podman run\
--rm\
-it\
--privileged \
--pull=newer \
--security-opt label=type:unconfined_t\
-v ./config.toml:/config.toml \
-v ./output:/output \
registry.redhat.io/rhel9/bootc-image-builder:latest \
--type qcow2 \
--config config.toml \
quay.io/<namespaces/<images:<tag>

You can find the .qcow2 image in the output folder.

Next steps

® You can deploy your image. See Deploying a container image using KVM with a QCOW?2 disk
image. You can make updates to the image and push the changes to a registry. See Managing
RHEL bootable images.

3.4. CREATING AMI IMAGES BY USING BOOTC-IMAGE-BUILDER AND
UPLOADING IT TO AWS

Create an Amazon Machine Image (AMI) from a bootable container image and use it to launch an
Amazon Web Service EC2 (Amazon Elastic Compute Cloud) instance.

Prerequisites

14

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

® You have Podman installed on your host machine.
® You have an existing AWS S3 bucket within your AWS account.

® You have root access to run the bootc-image-builder tool, and run the containersin ==
privileged mode, to build the images.

® You have the vmimport service role configured on your account to import an AMI into your
AWS account.

Procedure
1. Create a disk image from the bootable container image.

e Configure the user details in the Containerfile. Make sure that you assign it with sudo
access.

® Build a customized operating system image with the configured user from the Containerfile.
It creates a default user with passwordless sudo access.

2. Optional: Configure the machine image with cloud-init. See Injecting users and SSH keys by
using cloud-init. The following is an example:

FROM registry.redhat.io/rhel9/rhel-bootc:9.4

RUN dnf -y install cloud-init &&\
In -s ../cloud-init.target /usr/lib/systemd/system/default.target.wants && \
rm -rf /var/{cache,log} /var/lib/{dnf,rhsm}

NOTE

You can also use cloud-init to add users and additional configuration by using
instance metadata.

-

3. Build the bootable container image. For example, to deploy the image to an x86_64 AWS
machine, use the following commands:

$ podman build -t quay.io/<namespace>/<image>:<tag> .
$ podman push quay.io/<namespace>/<image>:<tag> .

4. Use the bootc-image-builder tool to create an AMI from the bootc container image.

$ sudo podman run\
--rm\
-it\
--privileged \
--pull=newer \
-v $SHOME/.aws:/root/.aws:ro \
--env AWS_PROFILE=default \
registry.redhat.io/rhel9/bootc-image-builder:latest \
--type ami \
--aws-ami-name rhel-bootc-x86 \
--aws-bucket rhel-bootc-bucket \
--aws-region us-east-1\
quay.io/<namespaces/<images:<tag>

15

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

NOTE

. The following flags must be specified all together. If you do not specify any flag,
- the AMl is exported to your output directory.

® --aws-ami-name - The name of the AMIimage in AWS

e --aws-bucket - The target S3 bucket name for intermediate storage when you are creating
the AMI

® --aws-region - The target region for AWS uploads
The bootc-image-builder tool builds an AMI image and uploads it to your AWS s3 bucket by
using your AWS credentials to push and register an AMI image after building it.

Next steps
® You can deploy your image. See Deploying a container image to AWS with an AMI disk image .

® You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

Additional resources

® AWS CLI documentation

3.5. CREATING RAW DISK IMAGES BY USING BOOTC-IMAGE-BUILDER

You can convert a bootable container image to a Raw image with an MBR or GPT partition table by using
bootc-image-builder. The RHEL base image does not include a default user, so optionally, you can
inject a user configuration with the --config option to run the bootc-image-builder container.
Alternatively, you can configure the base image with cloud-init to inject users and SSH keys on first
boot. See Injecting users and SSH keys by using cloud-init .

Prerequisites

® You have Podman installed on your host machine.

® You have root access to run the bootc-image-builder tool, and run the containersin ==
privileged mode, to build the images.

® You have pulled your target container image in the container storage.

Procedure

1. Optional: Create a config.toml to configure user access, for example:

[[blueprint.customizations.user]]

name = "user"

password = "pass"

key = "ssh-rsa AAA ... user@email.com”
groups = ["wheel"]

16

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html

CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER

2. Run bootc-image-builder. If you want to use user access configuration, pass the config.toml as
an argument:

$ sudo podman run\
--rm\
-it\
--privileged \
--pull=newer \
--security-opt label=type:unconfined_t\
-v /var/lib/containers/storage:/var/lib/containers/storage \
-v ./config.toml:/config.toml \
-v ./output:/output \
registry.redhat.io/rhel9/bootc-image-builder:latest \
--local \
--type raw \
--config config.toml \
quay.io/<namespaces/<images:<tag>

You can find the .raw image in the output folder.

Next steps

® You can deploy your image. See Deploying a container image by using KVM with a QCOW2 disk
image.

® You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

3.6. CREATING ISO IMAGES BY USING BOOTC-IMAGE-BUILDER

You can use bootc-image-builder to create an ISO from which you can perform an offline deployment
of a bootable container.

Prerequisites

® You have Podman installed on your host machine.

® You have root access to run the bootc-image-builder tool, and run the containersin ==
privileged mode, to build the images.

Procedure

® Run bootc-image-builder:

$ sudo podman run\
--rm\
-it\
--privileged \
--pull=newer \
--security-opt label=type:unconfined_t\
-v $(pwd)/config.toml:/config.toml \
-v $(pwd)/output:/output \
registry.redhat.io/rhel9/bootc-image-builder:latest \

17

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

--type iso \
--config config.toml \
quay.io/<namespaces/<images:<tag>

You can find the .iso image in the output folder.

Next steps
® You can use the ISO image on unattended installation methods, such as USB sticks or Install-

on-boot. The installable boot ISO contains a configured Kickstart file. See Deploying a
container image by using Anaconda and Kickstart.

' WARNING
A Booting the ISO on a machine with an existing operating system or data can

be destructive, because the Kickstart is configured to automatically
reformat the first disk on the system.

® You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

3.7.VERIFICATION AND TROUBLESHOOTING

If you have any issues configuring the requirements for your AWS image, see the following
documentation

® AWS IAM account manager

® Using high-level (s3) commands with the AWS CLI.
® S3 buckets.

® Regions and Zones.

® | aunching a customized RHEL image on AWS.

For more details on users, groups, SSH keys, and secrets, see

® Managing users, groups, SSH keys, and secrets in image mode for RHEL

18

deploying-a-container-image-by-using-anaconda-and-kickstart_deploying-the-rhel-bootable-images
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-regions
https://access.redhat.com/documentation/en-us/red_hat_insights/1-latest/html-single/deploying_and_managing_rhel_systems_in_hybrid_clouds/index#proc_launching-customized-rhel-image-to-aws.adoc_host-management-services

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

You can deploy the rhel-bootc container image by using the following different mechanisms.
® Anaconda
e bootc-image-builder
® bootc install

The following bootable image types are available:

® Disk images that you generated by using the bootc image-builder such as:

o QCOW2 (QEMU copy-on-write, virtual disk)

o Raw (Mac Format)

o AMI (Amazon Cloud)

o |SO: Unattended installation method, by using an USB Sticks or Install-on-boot.

After you have created a layered image that you can deploy, there are several ways that the image can
be installed to a host:

® You can use RHEL installer and Kickstart to install the layered image to a bare metal system, by
using the following mechanisms:

o Deploy by using USB
o PXE

® You can also use bootc-image-builder to convert the container image to a bootable image and
deploy it to a bare metal or to a cloud environment.

The installation method happens only one time. After you deploy your image, any future updates will
apply directly from the container registry as the updates are published.

Figure 4.1. Deploying a bootable container image by using a basic build installelbootc install, or
deploying a container image by using Anaconda and Kickstart

— Deploy: OCl image /base OS image

Container
:' _____________ > engine > e TR
1 1
= i
; v
- Bootable
Container ________ > e Target
registry image environment

i A
' 1
! i
: :
! Kick]
----------------- 4 s Anaconda [mm e e e

19

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

Figure 4.2. Using bootc-image-builder to create disk images from bootable container images and
deploying disk images in different environments, such as the edge, servers, and clouds by using
Anaconda, bootc-image-builder or bootc install

— Deploy: disk image /custom OS image

------ ——---b ISO =P Anaconda semmma

1]

1

H Disk image i

: i

! v

: Bootable

Container —p e - Bootc Target
registry image image builder environment

; A

1 1

1]

I I

: :

i Sl Native i

----------- L

) . VMI, VMDK
Virtualization

image

4.1. DEPLOYING A CONTAINER IMAGE BY USING KVM WITH A QCOW2
DISK IMAGE

After creating a QEMU disk image from a RHEL bootable container image by using the bootc-image-
builder tool, you can use a virtualization software to boot it.

Prerequisites

® You created a container image. See Creating QCOW?2 images by using bootc-image-builder .

® You pushed the container image to an accessible repository.

Procedure

® Run the container image that you create by using either libvirt. See Creating virtual machines by
using the command-line interface for more details.

o The following example uses libvirt:

$ sudo virt-install \
--name bootc \
--memory 4096 \
-=vcpus 2\
--disk gcow2/disk.qcow2 \
--import \
--os-variant rhel9-unknown

Verification

® Connect to the VM in which you are running the container image. See Connecting to virtual
machines for more details.

20

creating-qcow2-images-by-using-bootc-image-builder_creating-bootc-compatible-base-disk-images-with-bootc-image-builder
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_creating-virtual-machines_configuring-and-managing-virtualization#creating-virtual-machines-using-the-command-line-interface_assembly_creating-virtual-machines
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/assembly_connecting-to-virtual-machines_configuring-and-managing-virtualization

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

Next steps

® You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

Additional resources

® Configuring and managing virtualization

4.2. DEPLOYING A CONTAINER IMAGE TO AWS WITH AN AMI DISK
IMAGE

After using the bootc-image-builder tool to create an AMI from a bootable container image, and
uploading it to a AWS s3 bucket, you can deploy a container image to AWS with the AMI disk image.

Prerequisites

® You created an Amazon Machine Image (AMI) from a bootable container image. See Creating
AMl images by using bootc-image-builder and uploading it to AWS.

e cloud-initis available in the Containerfile that you previously created so that you can create a
layered image for your use case.

Procedure

1. In a browser, access Service=EC2 and log in.

2. On the AWS console dashboard menu, choose the correct region. The image must have the
Available status, to indicate that it was correctly uploaded.

3. On the AWS dashboard, select your image and click Launch.

4. In the new window that opens, choose an instance type according to the resources you need to
start your image. Click Review and Launch.

5. Review your instance details. You can edit each section if you need to make any changes. Click
Launch.

6. Before you start the instance, select a public key to access it. You can either use the key pair
you already have or you can create a new key pair.

7. Click Launch Instance to start your instance. You can check the status of the instance, which
displays as Initializing.
After the instance status is Running, the Connect button becomes available.

8. Click Connect. A window appears with instructions on how to connect by using SSH.

9. Run the following command to set the permissions of your private key file so that only you can
read it. See Connect to your Linux instance .

I $ chmod 400 <your-instance-name.pems>

10. Connect to your instance by using its Public DNS:

I $ ssh -i <your-instance-name.pems>ec2-user@<your-instance-IP-address>

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/index
https://us-east-2.console.aws.amazon.com/ec2/v2/home?region=us-east-2#Images:sort=name
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

NOTE

Your instance continues to run unless you stop it.

Verification
After launching your image, you can:

® Tryto connect to http://<your_instance_ip_address>in a browser.

® Checkif you are able to perform any action while connected to your instance by using SSH.

Next steps

e After you deploy your image, you can make updates to the image and push the changes to a
registry. See Managing RHEL bootable images.

Additional resources

® Pushing images to AWS Cloud AMI

® Amazon Machine Images (AMI)

4.3. DEPLOYING A CONTAINER IMAGE BY USING ANACONDA AND
KICKSTART

After you convert your bootable container image to an ISO image by using bootc-image-builder, you
can deploy the ISO image by using Anaconda and Kickstart to install your container image. The
installable boot ISO already contains the ostreecontainer Kickstart file configured that you can use to
provision your custom container image.

' WARNING
A The use of rpm-ostree to make changes, or install content, is not supported.

Prerequisites

® You have downloaded the 9.4 Boot ISO for your architecture from Red Hat. See Downloading
RH boot images.

Procedure

1. Create an ostreecontainer Kickstart file. For example:

Basic setup

text

network --bootproto=dhcp --device=link --activate
Basic partitioning

clearpart --all --initlabel --disklabel=gpt

regpart --add-boot

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/composing_a_customized_rhel_system_image/index#uploading-an-ami-image-to-aws_creating-cloud-images-with-composer
https://github.com/osbuild/bootc-image-builder?tab=readme-ov-file#amazon-machine-images-amis
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index#downloading-rh-boot-images_working-with-iso-images

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

part / --grow --fstype xfs

Reference the container image to install - The kickstart
has no %packages section. A container image is being installed.
ostreecontainer --url registry.redhat.io/rhel9/bootc-image-builder:latest

firewall --disabled
services --enabled=sshd

Only inject a SSH key for root

rootpw --iscrypted locked

sshkey --username root "<your key here>"
reboot

2. Boot a system by using the 9.4 Boot ISO installation media.

a. Append the Kickstart file with the following to the kernel argument:
I inst.ks=http://<path_to_your kickstart>

3. Press CTRL+X to boot the system.

Next steps

® After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images.

Additional resources

® ostreecontainer documentation

® bootc upgrade fails when using local rpm-ostree modifications solution

4.4. DEPLOYING A CUSTOM ISO CONTAINER IMAGE

Convert a bootable container image to an ISO image by using bootc-image-builder. This creates a
system similar to the RHEL ISOs available for download, except that your container image content is
embedded in the ISO disk image. You do not need to have access to the network during installation.
Then, you install the ISO disk image that you created from bootc-image-builder to a bare metal system.

Prerequisites

® You have created a customized container image.

Procedure

1. Create a custom installer ISO disk image with bootc-image-builder. See Creating ISO images
by using bootc-image-builder.

2. Copy the ISO disk image to a USB flash drive.

3. Perform a bare metal installation by using the content in the USB stick into a disconnected
environment.

23

https://pykickstart.readthedocs.io/en/latest/kickstart-docs.html#ostreecontainer
https://access.redhat.com/solutions/7069539

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

Next steps

® After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images.

4.5. DEPLOYING AN ISO BOOTABLE CONTAINER OVER PXE BOOT

You can use a network installation to deploy the RHEL ISO image over PXE boot to run your ISO
bootable container image.

Prerequisites

® You have downloaded the 9.4 Boot ISO for your architecture from Red Hat. See Downloading
RH boot images.

® You have configured the server for the PXE boot. Choose one of the following options:

o ForHTTP clients, see Configuring the DHCPv4 server for HTTP and PXE boot.
o For UEFI-based clients, see Configuring a TFTP server for UEFI-based clients.
o For BIOS-based clients, see Configuring a TFTP server for BIOS-based clients.

® You have a client, also known as the system to which you are installing your ISO image.

Procedure

1. Export the RHEL installation ISO image to the HTTP server. The PXE boot server is now ready
to serve PXE clients.

2. Boot the client and start the installation.

3. Select PXE Boot when prompted to specify a boot source. If the boot options are not displayed,
press the Enter key on your keyboard or wait until the boot window opens.

4. From the Red Hat Enterprise Linux boot window, select the boot option that you want, and
press Enter.

5. Start the network installation.

Next steps

® You can make updates to the image and push the changes to a registry. See Managing RHEL
bootable images.

Additional resources

® Preparing to install from the network using PXE

® Booting the installation from a network by using PXE

4.6. BUILDING, CONFIGURING, AND LAUNCHING DISK IMAGES WITH
BOOTC-IMAGE-BUILDER

You can inject configuration into a custom image by using a Containerfile.

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index#downloading-rh-boot-images_working-with-iso-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#configuring-the-dhcpv4-server-for-http-and-pxe-boot_preparing-for-a-network-install
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#configuring-a-tftp-server-for-uefi-based-clients_preparing-for-a-network-install
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#configuring-a-tftp-server-for-bios-based-clients_preparing-for-a-network-install
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#preparing-for-a-network-install_assembly_preparing-for-your-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#booting-the-installation-using-pxe_booting-the-installer

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

Procedure

1. Create a disk image. The following example shows how to add a user to the disk image.

[[blueprint.customizations.user]]

name = "user"

password = "pass"

key = "ssh-rsa AAA ... user@email.com”
groups = ["wheel"]

® name - User name. Mandatory

® password - Nonencrypted password. Not mandatory

® key - Public SSH key contents. Not mandatory

® groups - An array of groups to add the user into. Not mandatory

2. Run bootc-image-builder and pass the following arguments:

$ sudo podman run\
--rm\
-it\
--privileged \
--pull=newer \
--security-opt label=type:unconfined_t\
-v $(pwd)/config.toml:/config.toml \
-v $(pwd)/output:/output \
registry.redhat.io/rhel9/bootc-image-builder:latest \
--type qcow2 \
--config config.toml \
quay.io/<namespaces/<images:<tag>

3. Launch a VM, for example, by using virt-install:

$ sudo virt-install \
--name bootc \
--memory 4096 \
-=vcpus 2\
--disk gcow2/disk.qcow2 \
--import \
--os-variant rhel9

Verification

® Access the system with SSH:

I # ssh -i /<path_to_private_ssh-key> <user1>@<ip-address>

Next steps

® After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images.

25

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

4.7. DEPLOYING A CONTAINER IMAGE BY USING BOOTC

With bootc, you have a container that is the source of truth. It contains a basic build installer and it is
available as bootc install to-disk or bootc install to-filesystem. By using the bootc install methods
you do not need to perform any additional steps to deploy the container image, because the container

images include a basic installer.

With image mode for RHEL, you can install unconfigured images, for example, images that do not have a
default password or SSH key.

Perform a bare metal installation to a device by using a RHEL ISO image.

Prerequisites

® You have downloaded the 9.4 Boot ISO for your architecture from Red Hat. See Downloading
RH boot images.

® You have created a configuration file.

Procedure

® inject a configuration into the running ISO image, for example:

$ podman run --rm --privileged --pid=host -v /var/lib/containers:/var/lib/containers --
security-opt label=type:unconfined_t <image> bootc install to-disk <path-to-disk>

Next steps

® After you deploy your container image, you can make updates to the image and push the
changes to a registry. See Managing RHEL bootable images.

4.8. ADVANCED INSTALLATION WITH TO-FILESYSTEM
The bootc install contains two subcommands: bootc install to-disk and bootc install to-filesystem.
® The bootc-install-to-filesystem performs installation to the target filesystem.

e The bootc install to-disk subcommand consists of a set of opinionated lower level tools that
you can also call independently. The command consist of the following tools:

o mkfs.$fs /dev/disk
o mount /dev/disk /mnt

o bootc install to-filesystem --karg=root=UUID=<uuid of /mnt> --imgref $self /mnt

4.8.1. Using bootc install to-existing-root

The bootc install to-existing-root is a variant of install to-filesystem. You can use it to convert an
existing system into the target container image.

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/customizing_anaconda/index#downloading-rh-boot-images_working-with-iso-images

CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES

' WARNING
A This conversion eliminates the /boot and /boot/efi partitions and can delete the

existing Linux installation. The conversion process reuses the filesystem, and even
though the user data is preserved, the system no longer boots in package mode.

Prerequisites
® You must have root permissions to complete the procedure.

® You must match the host environment and the target container version, for example, if your
host is a RHEL 9 host, then you must have a RHEL 9 container. Installing a RHEL container on a
Fedora host by using btrfs as the RHEL kernel will not support that filesystem.

Procedure

® Run the following command to convert an existing system into the target container image. Pass
the target rootfs by using the -v /:/target option.

podman run --rm --privileged -v /dev:/dev -v /var/lib/containers:/var/lib/containers -v
/:/target \

--pid=host --security-opt label=type:unconfined_t\

<images \

bootc install to-existing-root

This command deletes the data in /boot, but everything else in the existing operating system is
not automatically deleted. This can be useful because the new image can automatically import
data from the previous host system. Consequently, container images, database, the user home
directory data, configuration files in /etc are all available after the subsequent reboot in
/sysroot.

You can also use the --root-ssh-authorized-keys flag to inherit the root user SSH keys, by
adding --root-ssh-authorized-keys /target/root/.ssh/authorized_keys. For example:

podman run --rm --privileged -v /dev:/dev -v /var/lib/containers:/var/lib/containers -v
/:/target \

--pid=host --security-opt label=type:unconfined_t\

<images \

bootc install to-existing-root --root-ssh-authorized-keys
/target/root/.ssh/authorized_keys

27

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES

After installing and deploying RHEL bootable images, you can perform management operations on your
container images, such as changing or updating the systems. The system supports in-place transactional
updates with rollback after deployment.

This kind of management, also known as Day 2 management baseline, consists of transactionally
fetching new operating system updates from a container registry and booting the system into them,
while supporting manual, or automated rollbacks in case of failures.

You can also rely on automatic updates, that are turned on by default. The systemd service unit and
the systemd timer unit files check the container registry for updates and apply them to the system.
You can trigger an update process with different events, such as updating an application. There are
automation tools watching these updates and then triggering the Cl/CD pipelines. A reboot is required,
because the updates are transactional. For environments that require more sophisticated or scheduled
rollouts, you must disable auto updates and use the bootc utility to update your operating system.

See Day 2 operations support for more details.

Figure 5.1. Manually updating an installed operating system, changing the container image
reference or rolling back changes if needed

Update
Build
Target |~ bootc ey Container —p Container —p ch?nottaE;:I; —p Container
environment switch file engine F registry
image
A

bootc

77

update

5.1. SWITCHING THE CONTAINER IMAGE REFERENCE

You can change the container image reference used for upgrades by using the bootc switch command.
For example, you can switch from the stage to the production tag. The bootc switch command
performs the same operations as the bootc upgrade command and additionally changes the container

image reference.

To manually switch an existing ostree-based container image reference, use the bootc switch
command.

' WARNING
A The use of rpm-ostree to make changes, or install content, is not supported.

Prerequisites

28

https://www.redhat.com/en/blog/how-does-red-hat-support-day-2-operations

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES

® Abooted system using bootc.
Procedure
® Run the following command:
I $ bootc switch [--apply] quay.io/<namespace>/<image>:<tag>

Optionally, you can use the --apply option when you want to automatically take actions, such as
rebooting if the system has changed.

NOTE

The bootc switch command has the same effect as bootc upgrade. The only difference
is the container image reference is changed. This allows preserving the existing states in
/etec and /var, for example, host SSH keys and home directories.

Additional resources

® The bootc-switch man page

5.2. PERFORMING MANUAL UPDATES FROM AN INSTALLED
OPERATING SYSTEM

Installing image mode for RHEL is a one time task. You can perform any other management task, such
as changing or updating the system, by pushing the changes to the container registry.

When using image mode for RHEL, you can choose to perform manual updates for your systems. Manual
updates are also useful if you have an automated way to perform updates, for example, by using Ansible.
Because the automatic updates are enabled by default, to perform manual updates you must turn the
automatic updates off. You can do this by choosing one of the following options:

® Running the bootc upgrade command

® Modifying the systemd timer file

5.3. TURNING OFF AUTOMATIC UPDATES

To perform manual updates you must turn off automatic updates. You can do this by choosing one of
the following options in the procedure below.

Procedure
® Disable the timer of a container build.

o By running the bootc upgrade command:

I $ systemctl mask bootc-fetch-apply-updates.timer

o By modifying the systemd timer file. Use systemd "drop-ins" to override the timer. In the
following example, updates are scheduled for once a week.

1. Create an updates.conf file with the following content:

29

https://containers.github.io/bootc/man/bootc-upgrade.html

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

[Timer]
Clear previous timers
OnBootSec= OnBootSec=1w OnUnitInactiveSec=1w

2. Add your container to the file that you created:

$ mkdir -p /usr/lib/systemd/system/bootc-fetch-apply-updates.timer.d
$ cp updates.conf /usr/lib/systemd/system/bootc-fetch-apply-updates.timer.d

5.4. MANUALLY UPDATING AN INSTALLED OPERATING SYSTEM

To manually fetch updates from a registry and boot the system into the new updates, use bootc
upgrade. This command fetches the transactional in-place updates from the installed operating system
to the container image registry. The command queries the registry and queues an updated container
image for the next boot. It stages the changes to the base image, while not changing the running system
by default.

Procedure

® Run the following command:

I $ bootc upgrade [--apply]

The apply argument is optional and you can use it when you want to automatically take actions,
such as rebooting if the system has changed.

NOTE

The bootc upgrade and bootc update commands are aliases.

Additional resources

® The bootc-upgrade man page

5.5. PERFORMING ROLLBACKS FROM A UPDATED OPERATING
SYSTEM

You can roll back to a previous boot entry to revert changes by using the bootc rollback command. This
command changes the boot loader entry ordering by making the deployment under rollback queued for
the next boot. The current deployment then becomes the rollback. Any staged changes, such as a
queued upgrade that was not applied, are discarded.

After a rollback completes, the system reboots and the update timer run within 1to 3 hours which
automatically update and reboot your system to the image you just rolled back from.

30

https://containers.github.io/bootc/man/bootc-upgrade.html

CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES

' WARNING
A If you perform a rollback, the system will automatically update again unless you turn

off auto-updates. See Turning off automatic updates.

Prerequisites

® You performed an update to the system.

Procedure

® Run the following command:

I $ bootc rollback [-h|--help] [-V|--version]

NOTE

The bootc rollback command has the same effect as bootc upgrade. The only
difference is the container image being tracked. This enables preserving the existing
states in /etc and /var, for example, host SSH keys and home directories.

Verification

e Use systemd journal to check the logged message for the detected rollback invocation.
I $ journalctl -b

You can see a log similar to:

I MESSAGE_ID=26f3b1eb24464d12aa5e7b544a6b5468

Additional resources

® The bootc-rollback man page

5.6. DEPLOYING UPDATES TO SYSTEM GROUPS

You can change the configuration of your operating system by modifying the Containerfile. Then you
can build and push your container image to the registry. When you next boot your operating system, an
update will be applied.

You can also change the container image source by using the bootc switch command. The container
registry is the source of truth. See Switching the container image reference.

Usually, when deploying updates to system groups, you can use a central management service to
provide a client to be installed on each system which connects to the central service. Often, the
management service requires the client to perform a one time registration. The following is an example
on how to deploy updates to system groups. You can modify it to create a persistent systemd service, if
required.

31

https://containers.github.io/bootc/man/bootc-upgrade.html

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

NOTE
For clarity reasons, the Containerfile in the example is not optimized. For example, a

better optimization to avoid creating multiple layers in the image is by invoking RUN a
single time.

You can install a client into a image mode for RHEL image and run it at startup to register the system.

Prerequisites

® The management-client handles future connections to the server, by using a cron job or a
separate systemd service.

Procedure

e Create a management service with the following characteristics. It determines when to upgrade
the system.

1. Disable bootc-fetch-apply-updates.timer if it is included in the base image.
2. Install the client by using dnf, or some other method that applies for your client.

3. Inject the credentials for the management service into the image.

5.7. CHECKING INVENTORY HEALTH

Health checks are one of the Day 2 Operations. You can manually check the system health of the
container images and events that are running inside the container.

You can set health checks by creating the container on the command line. You can display the health
check status of a container by using the podman inspect or podman ps commands.

You can monitor and print events that occur in Podman by using the podman events command. Each
event includes a timestamp, a type, a status, a name, if applicable, and an image, if applicable.

For more information about health checks and events, see chapter Monitoring containers.

5.8. AUTOMATION AND GITOPS

You can automate the building process by using CI/CD pipelines so that an update process can be
triggered by events, such as updating an application. You can use automation tools that track these
updates and trigger the CI/CD pipelines. The pipeline keeps the systems up to date by using the
transactional background operating system updates.

32

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index#assembly_monitoring-containers

CHAPTER 6. MANAGING FILE SYSTEMS IN IMAGE MODE FOR RHEL

CHAPTER 6. MANAGING FILE SYSTEMS IN IMAGE MODE FOR
RHEL

Currently, image mode for RHEL uses OSTree as a backend, and enables composefs for storage by
default. The /opt and /usr/local paths are plain directories, and not symbolic links into /var. This enables
you to easily install third-party content in derived container images that write into /opt for example.

6.1. PHYSICAL AND LOGICAL ROOT WITH /SYSROOT

When a system is fully booted, it is similar to chroot, that is, the operating system changes the apparent
root directory for the current running process and its children. The physical host root filesystem is
mounted at /sysroot. The chroot filesystem is called a deployment root.

The remaining filesystem paths are part of a deployment root which is used as a final target for the
system boot. The system uses the ostree=kernel argument to find the deployment root.

usr

This filesystem keeps all operating system content in /usr, with directories such as /bin working as
symbolic links to /usr/bin.

NOTE

composefs enabled /usr is not different from /. Both directories are part of the same
immutable image, so you do not need to perform a full UsrMove with a bootc system.

/usr/local
The base image is configured with /usr/local as the default directory.
/etc

The /etc directory contains mutable persistent state by default, but it supports enabling the
etc.transient config option. When the directory is in mutable persistent state, it performs a 3-way
merge across upgrades:

® Uses the new default /etc as a base
® Applies the diff between current and previous /etc to the new /etc directory

® Retains locally modified files that are different from the default /usr/etc of the same
deployment in /etc.

The ostree-finalize-staged.service executes these tasks during shutdown time, before creating the
new boot loader entry.

This happens because many components of a Linux system ship default configuration files in the /etc
directory. Even if the default package does not ship it, by default the software only checks for config
files in /etc. Non bootc image based update systems with no distinct versions of /etc are populated only
during the installation time, and will not be changed at any point after installation. This causes the /etc
system state to be influenced by the initial image version and can lead to problems to apply a change,
for example, to /etc/sudoers.conf, and requires external intervention. For more details about file
configuration, see xref: Building and testing RHEL bootable container images.

/var

33

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

The content in the /var directory is persistent by default. You can also make /var or subdirectories
mount points be persistent, whether network or tmpfs.

There is just one /var directory. If it is not a distinct partition, then physically the /var directory is a bind
mount into /ostree/deploy/$stateroot/var and is shared across the available boot loader entries
deployments.

By default, the content in /var acts as a volume, that is, the content from the container image is copied
during the initial installation time, and is not updated thereafter.

The /var and the /etc directories are different. You can use /etc for relatively small configuration files,
and the expected configuration files are often bound to the operating system binaries in /usr. The /var
directory has arbitrarily large data, for example, system logs, databases, and by default, will not be rolled
back if the operating system state is rolled back.

For example, making an update such as dnf downgrade postgresql should not affect the physical
database in /var/lib/postgres. Similarly, making a bootc update or bootc rollback do not affect this
application data.

Having /var separate also makes it work cleanly to stage new operating system updates before applying
them, that is, updates are downloaded and ready, but only take effect on reboot. The same applies for
Docker volume, as it decouples the application code from its data.

You can use this case if you want applications to have a pre-created directory structure, for example,
/var/lib/postgresql. Use systemd tmpfiles.d for this. You can also use StateDirectory=<directory> in

units.

Other directories

There is no support to ship content in /run, /proc or other API Filesystems in container images. Apart
from that, other top level directories such as /usr, and /opt, are lifecycled with the container image.

/opt

With bootc using composefs, the /opt directory is read-only, alongside other top levels directories
such as /ust.

When a software needs to write to its own directory in /opt/exampleapp, a common pattern is to use a
symbolic link to redirect to, for example, /var for operations such as log files:

I RUN rmdir /opt/exampleapp/logs && In -sr /var/log/exampleapp /opt/exampleapp/logs

Optionally, you can configure the systemd unit to launch the service to do these mounts dynamically.
For example:

I BindPaths=/var/log/exampleapp:/opt/exampleapp/logs

Enabling transient root

To enable a fully transient writable rootfs by default, set the following option in prepare-root.conf.

[root]
transient = true

This enables a software to transiently writes to /opt, with symlinks to /var for content that must persist.

6.2. VERSION SELECTION AND BOOTUP

34

CHAPTER 6. MANAGING FILE SYSTEMS IN IMAGE MODE FOR RHEL

Image mode for RHEL uses GRUB by default, with exception to §390x architectures. Each version of
image mode for RHEL currently available on a system has a menu entry.

The menu entry references an OSTree deployment which consists of a Linux kernel, an initramfs and a
hash linking to an OSTree commit, that you can pass by using the ostree=kernel argument.

During bootup, OSTree reads the kernel argument to determine which deployment to use as the root
filesystem. Each update or change to the system, such as package installation, addition of kernel
arguments, creates a new deployment.

This enables rolling back to a previous deployment if the update causes problems.

35

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

CHAPTER 7. APPENDIX: MANAGING USERS, GROUPS, SSH
KEYS, AND SECRETS IN IMAGE MODE FOR RHEL

Learn more about users, groups, SSH keys, and secrets management in image mode for RHEL.

7.1. USERS AND GROUPS CONFIGURATION

Image mode for RHEL is a generic operating system update and configuration mechanism. You cannot
use it to configure users or groups. The only exception is the bootc install command that has the --
root-ssh-authorized-keys option.

Users and groups configuration for generic base images

Usually, the distribution base images do not have any configuration. Do not encrypt passwords and
SSH keys with publicly-available private keys in generic images because of security risks.

Injecting SSH keys throughsystemd credentials

You can use systemd to inject a root password or SSH authorized_keys file in some environments.
For example, use System Management BIOS (SMBIOS) to inject SSH keys system firmware. You can
configure this in local virtualization environments, such as gemu.

Injecting users and SSH keys by usingcloud-init

Many Infrastructure as a service (laaS) and virtualization systems use metadata servers that are
commonly processed by software such as cloud-init or ignition. See AWS instance metadata. The
base image you are using might include cloud-init or Ignition, or you can install it in your own derived
images. In this model, the SSH configuration is managed outside of the bootable image.

Adding users and credentials by using container or unit custom logic

Systems such as cloud-init are not privileged. You can inject any logic you want to manage
credentials in the way you want to launch a container image, for example, by using a systemd unit. To
manage the credentials, you can use a custom network-hosted source, for example, FreelPA.

Adding users and credentials statically in the container build

In package-oriented systems, you can use the derived build to inject users and credentials by using
the following command:

I RUN useradd someuser

You can find issues in the default shadow-utils implementation of useradd: Users and groups IDs
are allocated dynamically, and this can cause drift.

User and group home directories and/var directory

For systems configured with persistent /home - /var/home, any changes to /var made in the
container image after initial installation will not be applied on subsequent updates.

For example, if you inject /var/home/someuser/.ssh/authorized_keys into a container build, existing
systems do not get the updated authorized_keys file.

Using DynamicUser=yes forsystemd units
Use the systemd DynamicUser=yes option where possible for system users.

This is significantly better than the pattern of allocating users or groups at package install time,
because it avoids potential UID or GID drift.

Using systemd-sysusers

36

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://www.freeipa.org/page/Main_Page

CHAPTER 7. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR RHEL

Use systemd-sysusers, for example, in your derived build. For more information, see the systemd -
sysusers documentation.

I COPY mycustom-user.conf /usr/lib/sysusers.d

The sysusers tool makes changes to the traditional /etc/passwd file as necessary during boot time.
If /etc is persistent, this can avoid UID or GID drift. It means that the UID or GID allocation depends
on how a specific machine was upgraded over time.

Using systemd JSON user records

See JSON user records systemd documentation. Unlike sysusers, the canonical state for these
users lives in /usr. If a subsequent image drops a user record, then it also vanishes from the system.

Using nss-altfiles

With nss-altfiles, you can remove the systemd JSON user records. It splits system users into
/usr/lib/passwd and /ust/lib/group, aligning with the way the OSTree project handles the 3 way
merge for /etc as it relates to /etc/passwd. Currently, if the /etc/passwd file is modified in any way
on the local system, then subsequent changes to /etc/passwd in the container image are not applied.
Base images built by rpm-ostree have nns-altfiles enabled by default.

Also, base images have a system users pre-allocated and managed by the NSS file to avoid UID or
GID drift.

In a derived container build, you can also append users to /usr/lib/passwd, for example. Use
sysusers.d or DynamicUser=yes.

Machine-local state for users

The filesystem layout depends on the base image.

By default, the user data is stored in both /etc, /etc/passwd, /etc/shadow and groups, and /home,
depending on the base image. However, the generic base images have to both be machine-local
persistent state. In this model /home is a symlink to /var/home/user.

Injecting users and SSH keys at system provisioning time

For base images where /etc and /var are configured to persist by default, you can inject users by
using installers such as Anaconda or Kickstart.

Typically, generic installers are designed for one time bootstrap. Then, the configuration becomes a
mutable machine-local state that you can change in Day 2 operations, by using some other
mechanism.

You can use the Anaconda installer to set the initial password. However, changing this initial
password requires a different in-system tool, such as passwd.

These flows work equivalently in a bootc-compatible system, to support users directly installing
generic base images, without requiring changes to the different in-system tool.

Transient home directories

Many operating system deployments minimize persistent, mutable, and executable state. This can
damage user home directories.

The /home directory can be set as tmpfs, to ensure that user data is cleared across reboots. This
approach works especially well when combined with a transient /etc directory.

To set up the user’s home directory to, for example, inject SSH authorized_keys or other files, use
the systemd tmpfiles.d snippets:

37

https://www.freedesktop.org/software/systemd/man/latest/systemd-sysusers.html
https://systemd.io/USER_RECORD/

Red Hat Enterprise Linux 9.4 Using image mode for RHEL to build, deploy, and manage operating systems

I f~ /home/user.ssh/authorized _keys 600 user user - <base64 encoded data>

SSH is embedded in the image as: /usr/lib/tmpfiles.d/<username-keys.conf. Another example is a
service embedded in the image that can fetch keys from the network and write them. This is the
pattern used by cloud-init.

UID and GID drift

The /etc/passwd and similar files are a mapping between names and numeric identifiers. When the
mapping is dynamic and mixed with "stateless" container image builds, it can cause issues. Each
container image build might result in the UID changing due to RPM installation ordering or other
reasons. This can be a problem if that user maintains a persistent state. To handle such cases,
convert it to use sysusers.d or use DynamicUser=yes.

7.2. INJECTING SECRETS IN IMAGE MODE FOR RHEL

Image mode for RHEL does not have an opinionated mechanism for secrets. You can inject container
pull secrets in your system for some cases, for example:

38

® For bootc to fetch updates from a registry that requires authentication, you must include a pull

secretin a file. In the following example, the creds secret contains the registry pull secret.

FROM registry.redhat.io/rhel9/bootc-image-builder:latest
COPY containers-auth.conf /usr/lib/tmpfiles.d/link-podman-credentials.conf
RUN --mount=type=secret,id=creds,required=true cp /run/secrets/creds /usr/lib/container-
auth.json &&\
chmod 0600 /ust/lib/container-auth.json && \
In -sr /usr/lib/container-auth.json /etc/ostree/auth.json

To build it, run podman build --secret id=creds,src=$HOME/.docker/config.json. Use a single
pull secret for bootc and Podman by using a symlink to both locations to a common persistent
file embedded in the container image, for example /ust/lib/container-auth.json.

For Podman to fetch container images, include a pull secret to /etc/containers/auth.json. With
this configuration, the two stacks share the /usr/lib/container-auth.json file.

Injecting secrets by embedding them in a container build

You can include secrets in the container image if the registry server is suitably protected. In
some cases, embedding only bootstrap secrets into the container image is a viable pattern,
especially alongside a mechanism for having a machine authenticate to a cluster. In this
pattern, a provisioning tool, whether run as part of the host system or a container image,
uses the bootstrap secret to inject or update other secrets, such as SSH keys, certificates,
among others.

Injecting secrets by using cloud metadata

Most production Infrastructure as a Service (laaS) systems support a metadata server or
equivalent which can securely host secrets, particularly bootstrap secrets. Your container
image can include tools such as cloud-init or ignition to fetch these secrets.

Injecting secrets by embedding them in disk images

You can embed bootstrap secrets only in disk images. For example, when you generate a
cloud disk image from an input container image, such as AMI or OpenStack, the disk image
can contain secrets that are effectively machine-local state. Rotating them requires an
additional management tool or refreshing the disk images.

Injecting secrets by using bare metal installers

CHAPTER 7. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR RHEL

Installer tools usually support injecting configuration through secrets.
Injecting secrets through systemd credentials

The systemd project has a credential concept for securely acquiring and passing credential
data to systems and services, which applies in some deployment methodologies. See the
systemd credentials documentation for more details.

Additional resources

® See Example bootable containers.

39

https://systemd.io/CREDENTIALS/
https://github.com/redhat-cop/rhel-bootc-examples

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCING IMAGE MODE FOR RHEL
	1.1. PREREQUISITES
	1.2. ADDITIONAL RESOURCES

	CHAPTER 2. BUILDING AND TESTING RHEL BOOTABLE CONTAINER IMAGES
	2.1. BUILDING A CONTAINER IMAGE
	2.2. RUNNING A CONTAINER IMAGE
	2.3. PUSHING A CONTAINER IMAGE TO THE REGISTRY

	CHAPTER 3. CREATING BOOTC COMPATIBLE BASE DISK IMAGES WITH BOOTC-IMAGE-BUILDER
	3.1. INTRODUCING IMAGE MODE FOR RHEL FOR BOOTC-IMAGE-BUILDER
	3.2. INSTALLING BOOTC-IMAGE-BUILDER
	3.3. CREATING QCOW2 IMAGES BY USING BOOTC-IMAGE-BUILDER
	3.4. CREATING AMI IMAGES BY USING BOOTC-IMAGE-BUILDER AND UPLOADING IT TO AWS
	3.5. CREATING RAW DISK IMAGES BY USING BOOTC-IMAGE-BUILDER
	3.6. CREATING ISO IMAGES BY USING BOOTC-IMAGE-BUILDER
	3.7. VERIFICATION AND TROUBLESHOOTING

	CHAPTER 4. DEPLOYING THE RHEL BOOTABLE IMAGES
	4.1. DEPLOYING A CONTAINER IMAGE BY USING KVM WITH A QCOW2 DISK IMAGE
	4.2. DEPLOYING A CONTAINER IMAGE TO AWS WITH AN AMI DISK IMAGE
	4.3. DEPLOYING A CONTAINER IMAGE BY USING ANACONDA AND KICKSTART
	4.4. DEPLOYING A CUSTOM ISO CONTAINER IMAGE
	4.5. DEPLOYING AN ISO BOOTABLE CONTAINER OVER PXE BOOT
	4.6. BUILDING, CONFIGURING, AND LAUNCHING DISK IMAGES WITH BOOTC-IMAGE-BUILDER
	4.7. DEPLOYING A CONTAINER IMAGE BY USING BOOTC
	4.8. ADVANCED INSTALLATION WITH TO-FILESYSTEM
	4.8.1. Using bootc install to-existing-root

	CHAPTER 5. MANAGING RHEL BOOTABLE IMAGES
	5.1. SWITCHING THE CONTAINER IMAGE REFERENCE
	5.2. PERFORMING MANUAL UPDATES FROM AN INSTALLED OPERATING SYSTEM
	5.3. TURNING OFF AUTOMATIC UPDATES
	5.4. MANUALLY UPDATING AN INSTALLED OPERATING SYSTEM
	5.5. PERFORMING ROLLBACKS FROM A UPDATED OPERATING SYSTEM
	5.6. DEPLOYING UPDATES TO SYSTEM GROUPS
	5.7. CHECKING INVENTORY HEALTH
	5.8. AUTOMATION AND GITOPS

	CHAPTER 6. MANAGING FILE SYSTEMS IN IMAGE MODE FOR RHEL
	6.1. PHYSICAL AND LOGICAL ROOT WITH /SYSROOT
	6.2. VERSION SELECTION AND BOOTUP

	CHAPTER 7. APPENDIX: MANAGING USERS, GROUPS, SSH KEYS, AND SECRETS IN IMAGE MODE FOR RHEL
	7.1. USERS AND GROUPS CONFIGURATION
	7.2. INJECTING SECRETS IN IMAGE MODE FOR RHEL

