
Red Hat Enterprise Linux 9

Deduplicating and compressing logical volumes
on RHEL

Deploying VDO on LVM to increase the storage capacity

Last Updated: 2024-05-01

Red Hat Enterprise Linux 9 Deduplicating and compressing logical
volumes on RHEL

Deploying VDO on LVM to increase the storage capacity

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Virtual Data Optimizer (VDO) feature in Logical Volume Manager(LVM) to manage
deduplicated and compressed logical volumes. You can manage VDO as a type of LVM's Logical
Volume (LV), similar to LVM thin-provisioned volumes. You can deploy VDO on LVM (LVM-VDO)
to provide deduplicated storage for block access, file access, local storage, and remote storage. You
can also configure a thin-provisioned VDO volume to avoid the physical space of the VDO volume
being 100% used.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO VDO ON LVM

CHAPTER 2. LVM-VDO REQUIREMENTS
2.1. VDO MEMORY REQUIREMENTS
2.2. VDO STORAGE SPACE REQUIREMENTS
2.3. EXAMPLES OF VDO REQUIREMENTS BY PHYSICAL SIZE
2.4. PLACEMENT OF LVM-VDO IN THE STORAGE STACK

CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME
3.1. LVM-VDO DEPLOYMENT SCENARIOS
3.2. THE PHYSICAL AND LOGICAL SIZE OF AN LVM-VDO VOLUME
3.3. SLAB SIZE IN VDO
3.4. INSTALLING VDO
3.5. CREATING AN LVM-VDO VOLUME
3.6. MOUNTING AN LVM-VDO VOLUME
3.7. CHANGING THE COMPRESSION AND DEDUPLICATION SETTINGS ON AN LVM-VDO VOLUME
3.8. MANAGING THIN PROVISIONING WITH VIRTUAL DATA OPTIMIZER

CHAPTER 4. TRIM OPTIONS ON AN LVM-VDO VOLUME
4.1. ENABLING DISCARD MOUNT OPTION ON VDO
4.2. SETTING UP PERIODIC TRIM OPERATION

CHAPTER 5. OPTIMIZING VDO PERFORMANCE
5.1. VDO THREAD TYPES
5.2. IDENTIFYING PERFORMANCE BOTTLENECKS

5.2.1. Analyzing VDO performance with top
5.2.2. Interpreting top results
5.2.3. Analyzing VDO performance with perf
5.2.4. Analyzing VDO performance with sar

5.3. REDISTRIBUTING VDO THREADS
5.3.1. Grouping VDO threads across NUMA nodes
5.3.2. Configuring the CPU affinity

5.4. INCREASING BLOCK MAP CACHE SIZE
5.5. SPEEDING UP DISCARD OPERATIONS
5.6. OPTIMIZING CPU FREQUENCY SCALING

3

4

5

7
7
8
8
9

11
11

13
14
15
15
16
17
18

21
21
21

23
23
24
24
24
25
26
27
27
28
29
30
31

Table of Contents

1

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

2

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

3

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

4

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCTION TO VDO ON LVM
The Virtual Data Optimizer (VDO) feature provides inline block-level deduplication, compression, and
thin provisioning for storage. You can manage VDO as a type of Logical Volume Manager (LVM) Logical
Volumes (LVs), similar to LVM thin-provisioned volumes.

VDO volumes on LVM (LVM-VDO) contain the following components:

VDO pool LV

This is the backing physical device that stores, deduplicates, and compresses data for the
VDO LV. The VDO pool LV sets the physical size of the VDO volume, which is the amount of
data that VDO can store on the disk.

Currently, each VDO pool LV can hold only one VDO LV. As a result, VDO deduplicates and
compresses each VDO LV separately. Duplicate data that is stored on separate LVs do not
benefit from data optimization of the same VDO volume.

VDO LV

This is the virtual, provisioned device on top of the VDO pool LV. The VDO LV sets the
provisioned, logical size of the VDO volume, which is the amount of data that applications
can write to the volume before deduplication and compression occurs.

kvdo

A kernel module that loads into the Linux Device Mapper layer provides a deduplicated,
compressed, and thin provisioned block storage volume.

The kvdo module exposes a block device that the VDO pool LV uses to create a VDO LV.
The VDO LV is then used by the system.

When kvdo receives a request to read a logical block of data from a VDO volume, it maps
the requested logical block to the underlying physical block and then reads and returns the
requested data.

When kvdo receives a request to write a block of data to a VDO volume, it first checks
whether the request is a DISCARD or TRIM request or whether the data is uniformly zero. If
either of these conditions is met, kvdo updates its block map and acknowledges the request.
Otherwise, VDO processes and optimizes the data.

The kvdo module utilizes the Universal Deduplication Service (UDS) index on the volume
internally and analyzes data, as it is received for duplicates. For each new piece of data, UDS
determines if that piece is identical to any previously stored piece of data. If the index finds a
match, the storage system can then verify the accuracy of that match and then update
internal references to avoid storing the same information more than once.

If you are already familiar with the structure of an LVM thin-provisioned implementation, you can refer to
Table 1.1 to understand how the different aspects of VDO are presented to the system.

Table 1.1. A comparison of components in VDO on LVM and LVM thin provisioning

CHAPTER 1. INTRODUCTION TO VDO ON LVM

5

 Physical device Provisioned device

VDO on LVM VDO pool LV VDO LV

LVM thin provisioning Thin pool Thin volume

Since the VDO is thin-provisioned, the file system and applications only see the logical space in use and
not the actual available physical space. Use scripting to monitor the available physical space and
generate an alert if use exceeds a threshold. For information about monitoring the available VDO space
see the Monitoring VDO section.

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

6

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deduplicating_and_compressing_storage/maintaining-vdo_deduplicating-and-compressing-storage#proc_monitoring-vdo_managing-free-space-on-vdo-volumes

CHAPTER 2. LVM-VDO REQUIREMENTS
VDO on LVM has certain requirements on its placement and your system resources.

2.1. VDO MEMORY REQUIREMENTS

Each VDO volume has two distinct memory requirements:

The VDO module

VDO requires a fixed 38 MB of RAM and several variable amounts:

1.15 MB of RAM for each 1 MB of configured block map cache size. The block map cache
requires a minimum of 150MB RAM.

1.6 MB of RAM for each 1 TB of logical space.

268 MB of RAM for each 1 TB of physical storage managed by the volume.

The UDS index

The Universal Deduplication Service (UDS) requires a minimum of 250 MB of RAM, which is also the
default amount that deduplication uses. You can configure the value when formatting a VDO volume,
because the value also affects the amount of storage that the index needs.
The memory required for the UDS index is determined by the index type and the required size of the
deduplication window:

Index type Deduplication window Note

Dense 1 TB per 1 GB of RAM A 1 GB dense index is generally sufficient for up to
4 TB of physical storage.

Sparse 10 TB per 1 GB of RAM A 1 GB sparse index is generally sufficient for up to
40 TB of physical storage.

NOTE

The minimal disk usage for a VDO volume using default settings of 2 GB slab size and
0.25 dense index, requires approx 4.7 GB. This provides slightly less than 2 GB of
physical data to write at 0% deduplication or compression.

Here, the minimal disk usage is the sum of the default slab size and dense index.

The UDS Sparse Indexing feature is the recommended mode for VDO. It relies on the temporal
locality of data and attempts to retain only the most relevant index entries in memory. With the
sparse index, UDS can maintain a deduplication window that is ten times larger than with dense, while
using the same amount of memory.

Although the sparse index provides the greatest coverage, the dense index provides more
deduplication advice. For most workloads, given the same amount of memory, the difference in
deduplication rates between dense and sparse indexes is negligible.

CHAPTER 2. LVM-VDO REQUIREMENTS

7

Additional resources

Examples of VDO requirements by physical size

2.2. VDO STORAGE SPACE REQUIREMENTS

You can configure a VDO volume to use up to 256 TB of physical storage. Only a certain part of the
physical storage is usable to store data. This section provides the calculations to determine the usable
size of a VDO-managed volume.

VDO requires storage for two types of VDO metadata and for the UDS index:

The first type of VDO metadata uses approximately 1 MB for each 4 GB of physical storage plus
an additional 1 MB per slab.

The second type of VDO metadata consumes approximately 1.25 MB for each 1 GB of logical
storage, rounded up to the nearest slab.

The amount of storage required for the UDS index depends on the type of index and the
amount of RAM allocated to the index. For each 1 GB of RAM, a dense UDS index uses 17 GB of
storage, and a sparse UDS index will use 170 GB of storage.

Additional resources

Examples of VDO requirements by physical size

Slab size in VDO

2.3. EXAMPLES OF VDO REQUIREMENTS BY PHYSICAL SIZE

The following tables provide approximate system requirements of VDO based on the physical size of
the underlying volume. Each table lists requirements appropriate to the intended deployment, such as
primary storage or backup storage.

The exact numbers depend on your configuration of the VDO volume.

Primary storage deployment

In the primary storage case, the UDS index is between 0.01% to 25% the size of the physical size.

Table 2.1. Storage and memory requirements for primary storage

Physical size RAM usage: UDS RAM usage: VDO Disk usage Index type

10GB–1TB 250MB 472MB 2.5GB Dense

2–10TB 1GB 3GB 10GB Dense

250MB 22GB Sparse

11–50TB 2GB 14GB 170GB Sparse

51–100TB 3GB 27GB 255GB Sparse

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel#examples-of-vdo-requirements-by-physical-size_lvm-vdo-requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel#examples-of-vdo-requirements-by-physical-size_lvm-vdo-requirements
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#slab-size-in-vdo_creating-a-deduplicated-and-compressed-logical-volume

101–256TB 12GB 69GB 1020GB Sparse

Physical size RAM usage: UDS RAM usage: VDO Disk usage Index type

Backup storage deployment

In the backup storage case, the UDS index covers the size of the backup set but is not bigger than
the physical size. If you expect the backup set or the physical size to grow in the future, factor this
into the index size.

Table 2.2. Storage and memory requirements for backup storage

Physical size RAM usage: UDS RAM usage: VDO Disk usage Index type

10GB–1TB 250MB 472MB 2.5 GB Dense

2–10TB 2GB 3GB 170GB Sparse

11–50TB 10GB 14GB 850GB Sparse

51–100TB 20GB 27GB 1700GB Sparse

101–256TB 26GB 69GB 3400GB Sparse

2.4. PLACEMENT OF LVM-VDO IN THE STORAGE STACK

You must place certain storage layers under a VDO logical volume and others above it.

You can place thick-provisioned layers on top of VDO, but you cannot rely on the guarantees of thick
provisioning in that case. Because the VDO layer is thin-provisioned, the effects of thin provisioning
apply to all layers above it. If you do not monitor the VDO volume, you might run out of physical space
on thick-provisioned volumes above VDO.

The supported placement of the following layers is under VDO. Do not place them above VDO:

DM Multipath

DM Crypt

Software RAID (LVM or MD RAID)

The following configurations are not supported:

VDO on top of a loopback device

Encrypted volumes on top of VDO

Partitions on a VDO volume

RAID, such as LVM RAID, MD RAID, or any other type, on top of a VDO volume

CHAPTER 2. LVM-VDO REQUIREMENTS

9

Deploying Ceph Storage on LVM-VDO

Additional resources

Stacking LVM volumes knowledgebase article

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

10

https://access.redhat.com/articles/2106521#vdo

CHAPTER 3. CREATING A DEDUPLICATED AND
COMPRESSED LOGICAL VOLUME

You can create an LVM logical volume that uses the VDO feature to deduplicate and compress data.

3.1. LVM-VDO DEPLOYMENT SCENARIOS

You can deploy VDO on LVM (LVM-VDO) in a variety of ways to provide deduplicated storage for:

block access

file access

local storage

remote storage

Because LVM-VDO exposes its deduplicated storage as a regular logical volume (LV), you can use it
with standard file systems, iSCSI and FC target drivers, or as unified storage.

NOTE

Deploying Ceph Storage on LVM-VDO is currently not supported.

KVM

You can deploy LVM-VDO on a KVM server configured with Direct Attached Storage.

CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME

11

File systems

You can create file systems on top of a VDO LV and expose them to NFS or CIFS users with the NFS
server or Samba.

iSCSI target

You can export the entirety of the VDO LV as an iSCSI target to remote iSCSI initiators.

Encryption

Device Mapper (DM) mechanisms such as DM Crypt are compatible with VDO. Encrypting a VDO LV

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

12

Device Mapper (DM) mechanisms such as DM Crypt are compatible with VDO. Encrypting a VDO LV
volumes helps ensure data security, and any file systems above the VDO LV are still deduplicated.

IMPORTANT

Applying the encryption layer above the VDO LV results in little if any data
deduplication. Encryption makes duplicate blocks different before VDO can
deduplicate them.

Always place the encryption layer below the VDO LV.

3.2. THE PHYSICAL AND LOGICAL SIZE OF AN LVM-VDO VOLUME

This section describes the physical size, available physical size, and logical size that VDO can utilize.

Physical size

This is the same size as the physical extents allocated to the VDO pool LV. VDO uses this storage
for:

User data, which might be deduplicated and compressed

VDO metadata, such as the UDS index

Available physical size

This is the portion of the physical size that VDO is able to use for user data.
It is equivalent to the physical size minus the size of the metadata, rounded down to a multiple of the
slab size.

CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME

13

Logical Size

This is the provisioned size that the VDO LV presents to applications. It is usually larger than the
available physical size. VDO currently supports any logical size up to 254 times the size of the
physical volume with an absolute maximum logical size of 4 PB.
When you set up a VDO logical volume (LV), you specify the amount of logical storage that the VDO
LV presents. When hosting active VMs or containers, Red Hat recommends provisioning storage at a
10:1 logical to physical ratio, that is, if you are utilizing 1 TB of physical storage, you would present it as
10 TB of logical storage.

If you do not specify the --virtualsize option, VDO provisions the volume to a 1:1 ratio. For example,
if you put a VDO LV on top of a 20 GB VDO pool LV, VDO reserves 2.5 GB for the UDS index, if the
default index size is used. The remaining 17.5 GB is provided for the VDO metadata and user data. As
a result, the available storage to consume is not more than 17.5 GB, and can be less due to metadata
that makes up the actual VDO volume.

Additional resources

Examples of VDO requirements by physical size

3.3. SLAB SIZE IN VDO

The physical storage of the VDO volume is divided into a number of slabs. Each slab is a contiguous
region of the physical space. All of the slabs for a given volume have the same size, which can be any
power of 2 multiple of 128 MB up to 32 GB.

The default slab size is 2 GB to facilitate evaluating VDO on smaller test systems. A single VDO volume
can have up to 8192 slabs. Therefore, in the default configuration with 2 GB slabs, the maximum allowed
physical storage is 16 TB. When using 32 GB slabs, the maximum allowed physical storage is 256 TB.
VDO always reserves at least one entire slab for metadata, and therefore, the reserved slab cannot be
used for storing user data.

Slab size has no effect on the performance of the VDO volume.

Table 3.1. Recommended VDO slab sizes by physical volume size

Physical volume size Recommended slab size

10–99 GB 1 GB

100 GB – 1 TB 2 GB

2–256 TB 32 GB

NOTE

The minimal disk usage for a VDO volume using default settings of 2 GB slab size and
0.25 dense index, requires approx 4.7 GB. This provides slightly less than 2 GB of physical
data to write at 0% deduplication or compression.

Here, the minimal disk usage is the sum of the default slab size and dense index.

You can control the slab size by providing the --config 'allocation/vdo_slab_size_mb=size-in-

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/lvm-vdo-requirements_deduplicating-and-compressing-logical-volumes-on-rhel#examples-of-vdo-requirements-by-physical-size_lvm-vdo-requirements

You can control the slab size by providing the --config 'allocation/vdo_slab_size_mb=size-in-
megabytes' option to the lvcreate command.

3.4. INSTALLING VDO

This procedure installs software necessary to create, mount, and manage VDO volumes.

Procedure

Install the VDO software:

dnf install lvm2 kmod-kvdo vdo

3.5. CREATING AN LVM-VDO VOLUME

This procedure creates an VDO logical volume (LV) on a VDO pool LV.

Prerequisites

Install the VDO software. For more information, see Installing VDO.

An LVM volume group with free storage capacity exists on your system.

Procedure

1. Pick a name for your VDO LV, such as vdo1. You must use a different name and device for each
VDO LV on the system.
In all the following steps, replace vdo-name with the name.

2. Create the VDO LV:

lvcreate --type vdo \
 --name vdo-name
 --size physical-size
 --virtualsize logical-size \
 vg-name

Replace vg-name with the name of an existing LVM volume group where you want to place
the VDO LV.

Replace logical-size with the amount of logical storage that the VDO LV will present.

If the physical size is larger than 16TiB, add the following option to increase the slab size on
the volume to 32GiB:

--config 'allocation/vdo_slab_size_mb=32768'

If you use the default slab size of 2GiB on a physical size larger than 16TiB, the lvcreate
command fails with the following error:

ERROR - vdoformat: formatVDO failed on '/dev/device': VDO Status: Exceeds maximum
number of slabs supported

CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#installing-vdo_creating-a-deduplicated-and-compressed-logical-volume

Example 3.1. Creating a VDO LV for container storage

For example, to create a VDO LV for container storage on a 1TB VDO pool LV, you can
use:

lvcreate --type vdo \
 --name vdo1
 --size 1T
 --virtualsize 10T \
 vg-name

IMPORTANT

If a failure occurs when creating the VDO volume, remove the volume to
clean up.

3. Create a file system on the VDO LV:

For the XFS file system:

mkfs.xfs -K /dev/vg-name/vdo-name

For the ext4 file system:

mkfs.ext4 -E nodiscard /dev/vg-name/vdo-name

Additional resources

lvmvdo(7) man page

3.6. MOUNTING AN LVM-VDO VOLUME

This procedure mounts a file system on an LVM-VDO volume, either manually or persistently.

Prerequisites

An LVM-VDO volume exists on your system. For more information, see Creating an LVM-VDO
volume.

Procedure

To mount the file system on the LVM-VDO volume manually, use:

mount /dev/vg-name/vdo-name mount-point

To configure the file system to mount automatically at boot, add a line to the /etc/fstab file:

For the XFS file system:

/dev/vg-name/vdo-name mount-point xfs defaults 0 0

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#creating-an-lvm-vdo-volume_creating-a-deduplicated-and-compressed-logical-volume

For the ext4 file system:

/dev/vg-name/vdo-name mount-point ext4 defaults 0 0

If the LVM-VDO volume is located on a block device that requires network, such as iSCSI, add
the _netdev mount option. For iSCSI and other block devices requiring network, see the
systemd.mount(5) man page for information about the _netdev mount option.

Additional resources

systemd.mount(5) man page

3.7. CHANGING THE COMPRESSION AND DEDUPLICATION SETTINGS
ON AN LVM-VDO VOLUME

This procedure enables or disables the compression and deduplication of a VDO pool logical volume
(LV).

NOTE

Compression and deduplication are enabled by default.

Prerequisites

An LVM-VDO volume exists on your system.

Procedure

1. To find out if the compression and deduplication is enabled or disabled on your logical volumes:

lvs -o+vdo_compression,vdo_deduplication

2. Find out status of the compression and status of the deduplication index of your running active
VDOPoolLV:

lvs -o+vdo_compression_state,vdo_index_state

The vdo_index_state can show as error, close, opening, closing, online, and offline.

3. To enable or disable the compression for VDOPoolLV:

lvchange --compression y|n vg-name/vdopoolname

4. To enable or disable the deduplication for VDOPoolLV:

lvchange --deduplication y|n vg-name/vdopoolname

Additional resources

lvmvdo(7) man page

3.8. MANAGING THIN PROVISIONING WITH VIRTUAL DATA

CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME

17

3.8. MANAGING THIN PROVISIONING WITH VIRTUAL DATA
OPTIMIZER

It is possible to configure a thin-provisioned VDO volume to prepare for future expansion of the physical
space, in order to address a condition where the physical space usage of the VDO volume is approaching
100%. Instead of using -l 100%FREE in the lvcreate operation, for example, use '95%FREE' to ensure
that there is some reserved space for recovery later on if needed. This procedure describes how to
resolve the following issues:

The volume runs out of space

The file system enters read-only mode

ENOSPC reported by the volume

NOTE

The best way to address high physical space usage on a VDO volume is to delete unused
files, and discard the blocks used by these unused files either by using online discard or
the fstrim program. The physical space of a VDO volume can only be grown to 8192 slabs
that is 16 TB for a VDO volume with the default slab size of 2 GB, or 256 TB for a VDO
volume with the maximal slab size of 32 GB.

In all of the following steps, replace myvg and myvdo with the volume group and VDO name
respectively.

Prerequisites

1. Install the VDO software. For more information, see Installing VDO.

2. An LVM volume group with free storage capacity exists on your system.

3. A thin-provisioned VDO volume using the lvcreate --type vdo --name myvdo myvg -L
logical-size-of-pool --virtualsize virtual-size-of-vdo command. For more information, see
Creating an LVM-VDO volume .

Procedure

1. Determine the optimal logical size for a thin-provisioned VDO volume

vdostats myvg-vpool0-vpool

Device 1K-blocks Used Available Use% Space saving%
myvg-vpool0-vpool 104856576 29664088 75192488 28% 69%

To calculate the space savings ratio, use the following formula:

Savings ratio = 1 / (1 - Space saving%)

In this example,

there is approximately a 3.22:1 space savings ratio on a data set of about 80 GB.

Multiplying the data set size by the ratio would yield a potential logical size of 256 GB if

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#installing-vdo_creating-a-deduplicated-and-compressed-logical-volume
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deduplicating_and_compressing_logical_volumes_on_rhel/creating-a-deduplicated-and-compressed-logical-volume_deduplicating-and-compressing-logical-volumes-on-rhel#creating-an-lvm-vdo-volume_creating-a-deduplicated-and-compressed-logical-volume

Multiplying the data set size by the ratio would yield a potential logical size of 256 GB if
more data with the same space savings were written to the VDO volume.

Adjusting this number downward to 200 GB yields a logical size with a safe margin of free
physical space, given the same space savings ratio.

2. Monitor the free physical space in a VDO volume:

vdostats myvg-vpool0-vpool

This command can be executed periodically to provide monitoring of the used and free physical
space of the VDO volume.

3. Optional: View the warnings on physical space usage on a VDO volume by using the available
/usr/share/doc/vdo/examples/monitor/monitor_check_vdostats_physicalSpace.pl script:

/usr/share/doc/vdo/examples/monitor/monitor_check_vdostats_physicalSpace.pl myvg-
vpool0-vpool

4. When creating a VDO volume, the dmeventd monitoring service monitors the usage of physical
space in a VDO volume. This is enabled by default when a VDO volume is created or started.
Use the journalctl command to view the output of dmeventd in the logs while monitoring a
VDO volume:

lvm[8331]: Monitoring VDO pool myvg-vpool0-vpool.
...

lvm[8331]: WARNING: VDO pool myvg-vpool0-vpool is now 84.63% full.
lvm[8331]: WARNING: VDO pool myvg-vpool0-vpool is now 91.01% full.
lvm[8331]: WARNING: VDO pool myvg-vpool0-vpool is now 97.34% full.

5. Remediate VDO volumes that are almost out of available physical space. When it is possible to
add a physical space to a VDO volume, but the volume space is full before it can be grown, it
may be necessary to temporarily stop I/O to the volume.
To temporarily stop I/O to the volume, execute the following steps, where VDO volume myvdo
contains a file system mounted on the /users/homeDir path:

a. Freeze the filesystem:

xfs_freeze -f /users/homeDir

vgextend myvg /dev/vdc2

lvextend -l new_size myvg/vpool0-name

xfs_freeze -u /users/homeDir

b. Unmount the filesystem:

umount /users/homeDir

vgextend myvg /dev/vdc2

CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME

19

lvextend -l new_size myvg/vpool0-name

mount -o discard /dev/myvg/myvdo /users/homeDir

NOTE

Unmounting or freezing a filesystem with cached data will incur a write of the
cached data, which may fill the physical space of the VDO volume. Consider
the maximum amount of cached filesystem data when setting a monitoring
threshold for free physical space on a VDO volume.

6. Blocks that are no longer used by a file system can be cleaned up by using the fstrim utility.
Executing fstrim against a mounted file system on top of a VDO volume may result in increased
free physical space for that volume. The fstrim utility will send discards to the VDO volume,
which are then used to remove references to the previously used blocks. If any of those blocks
are single-referenced, the physical space will be available to use.

a. Check VDO stats to see what the current amount of free space is:

vdostats --human-readable myvg-vpool0-vpool

 Device Size Used Available Use% Space saving%
myvg-vpool0-vpool 100.0G 95.0G 5.0G 95% 73%

b. Discard unused blocks:

fstrim /users/homeDir

c. View the free physical space of the VDO volume:

vdostats --human-readable myvg-vpool0-vpool

 Device Size Used Available Use% Space saving%
myvg-vpool0-vpool 100.0G 30.0G 70.0G 30% 43%

In this example, after executing fstrim on the file system, the discards were able to return
65G of physical space to use in the VDO volume.

NOTE

Discarding volumes with lower levels of deduplication and compression will
have a possibility of reclaiming physical space than discarding volumes with
higher levels of deduplication and compression. A volume that has high levels
of deduplication and compression may potentially require a more extensive
cleanup to reclaim physical space than just simply discarding already unused
blocks.

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

20

CHAPTER 4. TRIM OPTIONS ON AN LVM-VDO VOLUME
You can mount your file system with the discard option, which informs the VDO volume of the unused
space. Another option is to use the fstrim application, which is an on-demand discarding, or mount -o
discard command for immediate discarding.

When using the fstrim application, the admin needs to schedule and monitor an additional process, while
using mount -o discard command allows for immediate recovery of space when possible.

Note that it is currently recommended to use fstrim application to discard unused blocks rather than the
discard mount option because the performance impact of this option can be quite severe. For this
reason, nodiscard is the default.

4.1. ENABLING DISCARD MOUNT OPTION ON VDO

This procedure enables the discard option on your VDO volume.

Prerequisites

An LVM-VDO volume exists on your system.

Procedure

Enable the discard on your volume:

mount -o discard /dev/vg-name/vdo-name mount-point

Additional resources

xfs(5), mount(8), and lvmvdo(7) man pages

4.2. SETTING UP PERIODIC TRIM OPERATION

This procedure enables a scheduled TRIM operation on your system.

Prerequisites

An LVM-VDO volume exists on your system.

Procedure

Enable and start the timer:

systemctl enable --now fstrim.timer

Verification

Verify that the timer is enabled:

systemctl list-timers fstrim.timer

Example 4.1. Possible output of the verification procedure

CHAPTER 4. TRIM OPTIONS ON AN LVM-VDO VOLUME

21

systemctl list-timers fstrim.timer
NEXT LEFT LAST PASSED UNIT ACTIVATES
Mon 2021-05-10 00:00:00 EDT 5 days left n/a n/a fstrim.timer fstrim.service

NOTE

You will not see any reference to a VDO volume, because the fstrim.timer runs across all
mounted filesystems.

Additional resources

fstrim(8) man page

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

22

CHAPTER 5. OPTIMIZING VDO PERFORMANCE
The VDO kernel driver speeds up tasks by using multiple threads. Instead of one thread doing
everything for an I/O request, it splits the work into smaller parts assigned to different threads. These
threads talk to each other as they handle the request. This way, one thread can handle shared data
without constant locking and unlocking.

When one thread finishes a task, VDO already has another task ready for it. This keeps the threads busy
and reduces the time spent switching tasks. VDO also uses separate threads for slower tasks, such as
adding I/O operations to the queue or handling messages to the deduplication index.

5.1. VDO THREAD TYPES

VDO uses various thread types to handle specific operations:

Logical zone threads (kvdo:logQ)

Maintain the mapping between the logical block numbers (LBNs) presented to the user of the VDO
device and the physical block numbers (PBNs) in the underlying storage system. They also prevent
concurrent writes to the same block. Logical threads are active during both read and write
operations. Processing is generally evenly distributed, however, specific access patterns may
occasionally concentrate work in one thread. For example, frequent access to LBNs in a specific
block map page might make one logical thread handle all those operations.

Physical zone threads (kvdo:physQ)

Handle data block allocation and reference counts during write operations.

I/O submission threads (kvdo:bioQ)

Handle the transfer of block I/O (bio) operations from VDO to the storage system. They handle I/O
requests from other VDO threads and pass them to the underlying device driver. These threads
interact with device-related data structures, create requests for device driver kernel threads, and
prevent delays when I/O requests get blocked due to a full device request queue.

CPU-processing threads (kvdo:cpuQ)

Handle CPU-intensive tasks that do not block or need exclusive access to data structures for to
other thread types. These tasks include calculating hash values and compressing data blocks.

I/O acknowledgement threads (kvdo:ackQ)

Signal the completion of I/O requests to higher-level components, such as the kernel page cache or
application threads performing direct I/O. Their CPU usage and impact on memory contention are
influenced by kernel-level code.

Hash zone threads (kvdo:hashQ)

Coordinate I/O requests with matching hashes to handle potential deduplication tasks. Although they
create and manage deduplication requests, they do not perform significant computations. A single
hash zone thread is usually sufficient.

Deduplication thread (kvdo:dedupeQ)

Handles I/O requests and communicates with the deduplication index. This work is performed on a
separate thread to prevent blocking. It also has a timeout mechanism to skip deduplication if the
index does not respond quickly. There is only one deduplication thread per VDO device.

Journal thread (kvdo:journalQ)

Updates the recovery journal and schedules journal blocks for writing. This task cannot be divided
among multiple threads. There is only one journal thread per VDO device.

Packer thread (kvdo:packerQ)

Works during write operations when the compression is enabled. It collects compressed data blocks

CHAPTER 5. OPTIMIZING VDO PERFORMANCE

23

Works during write operations when the compression is enabled. It collects compressed data blocks
from the CPU threads to reduce wasted space. There is only one packer thread per VDO device.

5.2. IDENTIFYING PERFORMANCE BOTTLENECKS

Identifying bottlenecks in VDO performance is crucial for optimizing system efficiency. One of the
primary steps you can take is to determine whether the bottleneck lies in the CPU, memory, or the
speed of the backing storage. After pinpointing the slowest component, you can develop strategies for
enhancing performance.

To ensure that the root cause of the low performance is not a hardware issue, run tests with and without
VDO in the storage stack.

The journalQ thread in VDO is a natural bottleneck, especially when the VDO volume is handling write
operations. If you notice that another thread type has higher utilization than the journalQ thread, you
can remediate this by adding more threads of that type.

5.2.1. Analyzing VDO performance with top

You can examine the performance of VDO threads by using the top utility.

Procedure

1. Display the individual threads:

$ top -H

NOTE

Tools such as top cannot differentiate between productive CPU cycles and
cycles stalled due to cache or memory delays. These tools interpret cache
contention and slow memory access as actual work. Moving threads between
nodes can appear like reduced CPU utilization while increasing operations per
second.

2. Press the f key to display the fields manager.

3. Use the (↓) key to navigate to the P = Last Used Cpu (SMP) field.

4. Press the spacebar to select the P = Last Used Cpu (SMP) field.

5. Press the q key to close the fields manager. The top utility now displays the CPU load for
individual cores and indicates which CPU each process or thread recently used. You can switch
to per-CPU statistics by pressing 1.

Additional resources

top(1) man page

Interpreting top results

5.2.2. Interpreting top results

While analyzing the performance of VDO threads, use the following table to interpret results of the top

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

24

While analyzing the performance of VDO threads, use the following table to interpret results of the top
utility.

Table 5.1. Interpreting top results

Values Description Suggestions

Thread or CPU usage surpasses
70%.

The thread or CPU is overloaded.
High usage can result from a VDO
thread scheduled on a CPU with
no actual work. This may happen
due to excessive hardware
interrupts, memory conflicts, or
resource competition.

Increase the number of threads of
the type running this core.

Low %id and %wa values The core is actively handling tasks. No action required.

Low %hi value The core is performing standard
processing work.

Add more cores to improve the
performance. Avoid NUMA
conflicts.

High %hi value [a]

Only one thread is
assigned to the core

%id is zero

%wa values is zero

The core is over-committed. Reassign kernel threads and
device interrupt handling to
different cores.

kvdo:bioQ threads
frequently in D state.

VDO is consistently keeping the
storage system busy with I/O
requests. [b]

Reduce the number of I/O
submission threads if the CPU
utilization is very low.

kvdo:bioQ threads frequently in
S state.

VDO has more kvdo:bioQ
threads than it needs.

Reduce the number of
kvdo:bioQ threads.

High CPU utilization per I/O
request.

CPU utilization per I/O request
increases with more threads.

Check for CPU, memory, or lock
contention.

[a] More than a few percent

[b] This is good if the storage system can handle multiple requests or if request processing is efficient.

5.2.3. Analyzing VDO performance with perf

You can check the CPU performance of VDO by using the perf utility.

Prerequisites

The perf package is installed.

CHAPTER 5. OPTIMIZING VDO PERFORMANCE

25

Procedure

1. Display the performance profile:

perf top

2. Analyze the CPU performance by interpreting perf results:

Table 5.2. Interpreting perf results

Values Description Suggestions

kvdo:bioQ threads spend
excessive cycles acquiring spin
locks

Too much contention might be
occurring in the device driver
below VDO

Reduce the number of
kvdo:bioQ threads

High CPU usage Contention between NUMA
nodes.

Check counters such as
stalled-cycles-backend,
cache-misses, and node-
load-misses if they are
supported by your processor.
High miss rates might cause
stalls, resembling high CPU
usage in other tools, indicating
possible contention.

Implement CPU affinity for the
VDO kernel threads or IRQ
affinity for interrupt handlers
to restrict processing work to a
single node.

Additional resources

perf-top(1) man page

5.2.4. Analyzing VDO performance with sar

You can create periodic reports on VDO performance by using the sar utility.

NOTE

Not all block device drivers can provide the data needed by the sar utility. For example,
devices such as MD RAID do not report the %util value.

Prerequisites

Install the sysstat utility:

dnf install sysstat

Procedure

1. Displays the disk I/O statistics at 1-second intervals:

$ sar -d 1

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

26

2. Analyze the VDO performance by interpreting sar results:

Table 5.3. Interpreting sar results

Values Description Suggestions

The %util value for the
underlying storage device
is well under 100%.

VDO is busy at 100%.

bioQ threads are using a
lot of CPU time.

VDO has too few bioQ
threads for a fast device.

Add more bioQ threads.

Note that certain storage
drivers might slow down when
you add bioQ threads due to
spin lock contention.

Additional resources

sar(1) man page

5.3. REDISTRIBUTING VDO THREADS

VDO uses various thread pools for different tasks when handling requests. Optimal performance
depends on setting the right number of threads in each pool, which varies based on available storage,
CPU resources, and the type of workload. You can spread out VDO work across multiple threads to
improve VDO performance.

VDO aims to maximize performance through parallelism. You can improve it by allocating more threads
to a bottlenecked task, depending on factors such as available CPU resources and the root cause of the
bottleneck. High thread utilization (above 70-80%) can lead to delays. Therefore, increasing thread
count can help in such cases. However, excessive threads might hinder performance and incur extra
costs.

For optimal performance, carry out these actions:

Test VDO with various expected workloads to evaluate and optimize its performance.

Increase thread count for pools with more than 50% utilization.

Increase the number of cores available to VDO if the overall utilization is greater than 50%, even
if the individual thread utilization is lower.

5.3.1. Grouping VDO threads across NUMA nodes

Accessing memory across NUMA nodes is slower than local memory access. On Intel processors where
cores share the last-level cache within a node, cache problems are more significant when data is shared
between nodes than when it is shared within a single node. While many VDO kernel threads manage
exclusive data structures, they often exchange messages about I/O requests. VDO threads being
spread across multiple nodes or the scheduler reassigning threads between nodes might cause
contention, that is multiple nodes competing for the same resources.

You can enhance VDO performance by grouping certain threads on the same NUMA nodes.

Group related threads together on one NUMA node

CHAPTER 5. OPTIMIZING VDO PERFORMANCE

27

I/O acknowledgment (ackQ) threads

Higher-level I/O submission threads:

User-mode threads handling direct I/O

Kernel page cache flush thread

Optimize device access

If device access timing varies across NUMA nodes, run bioQ threads on the node closest to
the storage device controllers

Minimize contention

Run I/O submissions and storage device interrupt processing on the same node as logQ or
physQ threads.

Run other VDO-related work on the same node.

If one node cannot handle all VDO work, consider memory contention when moving threads
to other nodes. For example, move the device that interrupts handling and bioQ threads to
another node.

5.3.2. Configuring the CPU affinity

You can improve VDO performance on certain storage device drivers if you adjust the CPU affinity of
VDO threads.

When the interrupt (IRQ) handler of the storage device driver does substantial work and the driver does
not use a threaded IRQ handler, it could limit the ability of the system scheduler to optimize VDO
performance.

For optimal performance, carry out these actions:

Dedicate specific cores to IRQ handling and adjust VDO thread affinity if the core is overloaded.
The core is overloaded if the %hi value is more than a few percent higher than on other cores.

Avoid running singleton VDO threads, like the kvdo:journalQ thread, on busy IRQ cores.

Keep other thread types off cores busy with IRQs only if the individual CPU use is high .

NOTE

The configuration does not persist across system reboots.

Procedure

Set the CPU affinity:

taskset -c <cpu-numbers> -p <process-id>

Replace <cpu-numbers> with a comma-separated list of CPU numbers to which you want to
assign the process. Replace <process-id> with the ID of the running process to which you want
to set CPU affinity.

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

28

Example 5.1. Setting CPU Affinity for kvdo processes on CPU cores 1 and 2

for pid in `ps -eo pid,comm | grep kvdo | awk '{ print $1 }'`
do
 taskset -c "1,2" -p $pid
done

Verification

Display the affinity set:

taskset -p <cpu-numbers> -p <process-id>

Replace <cpu-numbers> with a comma-separated list of CPU numbers to which you want to
assign the process. Replace <process-id> with the ID of the running process to which you want
to set CPU affinity.

Additional resources

taskset(1) man page

5.4. INCREASING BLOCK MAP CACHE SIZE

You can enhance both read and write performance by increasing the overall cache size for your VDO
volume.

If you encounter extended read and write latencies or observe a significant volume of data read from
storage that does not align with application requirements, it may suggest that the cache size needs
adjustment.

WARNING

There is a 15% memory overhead. Larger cache consumes more RAM and can affect
overall system stability.

Procedure

1. Add the following line to the /etc/lvm/profile/<filename> configuration file:

vdo_block_map_cache_size_mb=<cache_size>

Replace <filename> with the name of the configuration file. Replace <cache_size> with the
new size of your cache. If no suffix is supplied, for example 10G or 1T, the value is interpreted as
megabytes.

NOTE

CHAPTER 5. OPTIMIZING VDO PERFORMANCE

29

NOTE

The cache size must be a multiple of 4096, within the range of 128MB to 16TB,
and at least 16MB per logical thread. Changes take effect the next time the VDO
device is started. Already-running devices are not affected.

2. Stop the VDO volume:

vdo stop --name=<volume_name>

Replace <volume_name> with the name of your VDO volume.

3. Start the VDO volume:

vdo start --name=<volume_name>

Replace <volume_name> with the name of your VDO volume.

Verification

Check the current VDO volume configuration:

vdo status --name=<volume_name>

Replace <volume_name> with the name of your VDO volume.

Additional resources

vdo(8) man page

5.5. SPEEDING UP DISCARD OPERATIONS

VDO sets a maximum allowed size of DISCARD (TRIM) sectors for all VDO devices on the system. The
default size is 8 sectors, which corresponds to one 4-KiB block. Increasing the DISCARD size can
significantly improve the speed of the discard operations. However, there is a tradeoff between
improving discard performance and maintaining the speed of other write operations.

The optimal DISCARD size varies depending on the storage stack. Both very large and very small
DISCARD sectors can potentially degrade the performance. Conduct experiments with different values
to discover one that delivers satisfactory results.

For a VDO volume that stores a local file system, it is optimal to use a DISCARD size of 8 sectors, which
is the default setting. For a VDO volume that serves as a SCSI target, a moderately large DISCARD size,
such as 2048 sectors (corresponds to a 1MB discard), works best. It is recommended that the maximum
DISCARD size does not exceed 10240 sectors, which translates to 5MB discard. When choosing the size,
make sure it is a multiple of 8, because VDO may not handle discards effectively if they are smaller than
8 sectors.

Procedure

1. Set the new maximum size for the DISCARD sector:

echo <number-of-sectors> > /sys/kvdo/max_discard_sectors

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

30

Replace <number-of-sectors> with the number of sectors. This setting persists until reboot.

2. Optional: To make the persistent change to the DISCARD sector across reboot, create a
custom systemd service:

a. Create a new /etc/systemd/system/max_discard_sectors.service file with the following
content:

[Unit]
Description=Set maximum DISCARD sector
[Service]
ExecStart=/usr/bin/echo <number-of-sectors> > /sys/kvdo/max_discard_sectors

[Install]
WantedBy=multi-user.target

Replace <number-of-sectors> with the number of sectors.

b. Save the file and exit.

c. Reload the service file:

systemctl daemon-reload

d. Enable the new service:

systemctl enable max_discard_sectors.service

Verification

Optional: If you made the scaling governor change persistent, check if the
max_discard_sectors.service is enabled:

systemctl is-enabled max_discard_sectors.service

5.6. OPTIMIZING CPU FREQUENCY SCALING

By default, RHEL uses CPU frequency scaling to save power and reduce heat when the CPU is not
under heavy load. To prioritize performance over power savings, you can configure the CPU to operate
at its maximum clock speed. This ensures that the CPU can handle data deduplication and compression
processes with maximum efficiency. By running the CPU at its highest frequency, resource-intensive
operations can be executed more quickly, potentially improving the overall performance of VDO in
terms of data reduction and storage optimization.

CHAPTER 5. OPTIMIZING VDO PERFORMANCE

31

WARNING

Tuning CPU frequency scaling for higher performance can increase power
consumption and heat generation. In inadequately cooled systems, this can cause
overheating and might result in thermal throttling, which limits the performance
gains.

Procedure

1. Display available CPU governors:

$ cpupower frequency-info -g

2. Change the scaling governor to prioritize performance:

cpupower frequency-set -g performance

This setting persists until reboot.

3. Optional: To make the persistent change in scaling governor across reboot, create a custom
systemd service:

a. Create a new /etc/systemd/system/cpufreq.service file with the following content:

[Unit]
Description=Set CPU scaling governor to performance

[Service]
ExecStart=/usr/bin/cpupower frequency-set -g performance

[Install]
WantedBy=multi-user.target

b. Save the file and exit.

c. Reload the service file:

systemctl daemon-reload

d. Enable the new service:

systemctl enable cpufreq.service

Verification

Display the currently used CPU frequency policy:

$ cpupower frequency-info -p

Red Hat Enterprise Linux 9 Deduplicating and compressing logical volumes on RHEL

32

Optional: If you made the scaling governor change persistent, check if the cpufreq.service is
enabled:

systemctl is-enabled cpufreq.service

CHAPTER 5. OPTIMIZING VDO PERFORMANCE

33

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO VDO ON LVM
	CHAPTER 2. LVM-VDO REQUIREMENTS
	2.1. VDO MEMORY REQUIREMENTS
	2.2. VDO STORAGE SPACE REQUIREMENTS
	2.3. EXAMPLES OF VDO REQUIREMENTS BY PHYSICAL SIZE
	2.4. PLACEMENT OF LVM-VDO IN THE STORAGE STACK

	CHAPTER 3. CREATING A DEDUPLICATED AND COMPRESSED LOGICAL VOLUME
	3.1. LVM-VDO DEPLOYMENT SCENARIOS
	3.2. THE PHYSICAL AND LOGICAL SIZE OF AN LVM-VDO VOLUME
	3.3. SLAB SIZE IN VDO
	3.4. INSTALLING VDO
	3.5. CREATING AN LVM-VDO VOLUME
	3.6. MOUNTING AN LVM-VDO VOLUME
	3.7. CHANGING THE COMPRESSION AND DEDUPLICATION SETTINGS ON AN LVM-VDO VOLUME
	3.8. MANAGING THIN PROVISIONING WITH VIRTUAL DATA OPTIMIZER

	CHAPTER 4. TRIM OPTIONS ON AN LVM-VDO VOLUME
	4.1. ENABLING DISCARD MOUNT OPTION ON VDO
	4.2. SETTING UP PERIODIC TRIM OPERATION

	CHAPTER 5. OPTIMIZING VDO PERFORMANCE
	5.1. VDO THREAD TYPES
	5.2. IDENTIFYING PERFORMANCE BOTTLENECKS
	5.2.1. Analyzing VDO performance with top
	5.2.2. Interpreting top results
	5.2.3. Analyzing VDO performance with perf
	5.2.4. Analyzing VDO performance with sar

	5.3. REDISTRIBUTING VDO THREADS
	5.3.1. Grouping VDO threads across NUMA nodes
	5.3.2. Configuring the CPU affinity

	5.4. INCREASING BLOCK MAP CACHE SIZE
	5.5. SPEEDING UP DISCARD OPERATIONS
	5.6. OPTIMIZING CPU FREQUENCY SCALING

