
Red Hat Directory Server 12

Searching entries and tuning searches

Finding directory entries and improving search performance

Last Updated: 2024-05-09

Red Hat Directory Server 12 Searching entries and tuning searches

Finding directory entries and improving search performance

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

You can search for directory entries using the web console, command line, and by using the LDAP
search utility. The search performance can be improved by using resource limits and can be set
resource limits globally, at user level and for anonymous binds.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. FINDING ENTRIES USING THE COMMAND LINE (LDAPSEARCH)
1.1. THE LDAPSEARCH COMMAND FORMAT
1.2. COMMONLY USED LDAPSEARCH OPTIONS
1.3. USING SPECIAL CHARACTERS

CHAPTER 2. FINDING ENTRIES USING THE WEB CONSOLE
2.1. FINDING ENTRIES USING THE LDAP BROWSER

CHAPTER 3. LDAP SEARCH FILTERS
3.1. USING ATTRIBUTES IN LDAP SEARCH FILTERS
3.2. USING OPERATORS IN LDAP SEARCH FILTERS
3.3. USING COMPOUND LDAP SEARCH FILTERS
3.4. USING MATCHING RULES IN LDAP SEARCH FILTERS

3.4.1. Matching rule types
3.4.2. Commonly used matching rules
3.4.3. Language ordering matching rules
3.4.4. Language substring matching rules
3.4.5. Using inchainMatch matching rule to find membership of an LDAP entry in nested groups

3.4.5.1. Enabling the inchainMatch matching rule for a user entry
3.4.5.2. Disabling the inchainMatch matching rule

CHAPTER 4. LDAP SEARCH (LDAPSEARCH) EXAMPLES

CHAPTER 5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS
5.1. SEARCH OPERATION LIMITS FOR LARGE DIRECTORIES
5.2. SEARCH PERFORMANCE IMPROVEMENT WITH INDEX SCAN LIMITS
5.3. FINE GRAINED ID LIST SIZE
5.4. SETTING USER AND GLOBAL RESOURCE LIMITS BY USING THE COMMAND LINE
5.5. SETTING RESOURCE LIMITS ON ANONYMOUS BINDS
5.6. PERFORMANCE IMPROVEMENT FOR RANGE SEARCHES

3

4
4
5
8

9
9

11
11

12
13
14
15
16
19
22
24
25
26

27

32
32
32
32
33
36
36

Table of Contents

1

Red Hat Directory Server 12 Searching entries and tuning searches

2

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For submitting feedback through Jira (account required):

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

For submitting feedback through Bugzilla (account required):

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3

https://issues.redhat.com/projects/RHELDOCS/issues
https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Directory Server

CHAPTER 1. FINDING ENTRIES USING THE COMMAND LINE
(LDAPSEARCH)

You can use the ldapsearch command-line utility to search for directory entries. This utility opens a
connection to a specified server using the specified identity and credentials and locates entries based
on a specified search filter. The search scope can include:

a single entry (-s base)

an entry immediate subentries (-s one)

an entire tree or subtree (-s sub)

NOTE

The ldapsearch utility does not search for directory entries based on attributes in the
distinguished name. The distinguished name is only a unique identifier for a directory
entry and cannot be used as a search key. Instead, ldapsearch searches for entries based
on the attribute value pairs stored in entries. If the distinguished name of an entry is, for
example, uid=bjensen,ou=People,dc=example,dc=com, then a search for dc=example
does not match that entry unless dc:example was explicitly added as an attribute value
pair to this entry.

The ldapsearch utility returns results in the LDIF format that is defined in the RFC 2849 specification.

1.1. THE LDAPSEARCH COMMAND FORMAT

The ldapsearch command must use the following format:

ldapsearch [-x | -Y mechanism] [options] [search_filter] [list_of_attributes]

-x or -Y
Use -x (simple binds) or -Y (SASL mechanism) to configure the type of the connection.

options
The ldapsearch command-line options. Specify the options before the search filter, if any are
used.

search_filter
An LDAP search filter. Do not specify a search filter if you configure search filters in a file using
the -f option.

list_of_attributes
A list of attributes separated by a space character. Specifying the list of attributes reduces the
number of attributes returned in the search results. This list of attributes must appear after the
search filter. If you do not specify the list of attributes, the search returns values for all attributes
permitted by the access control set in the directory with the exception of operational attributes.

If you want the search to return operational attributes, you must explicitly specify it in the
ldapsearch search command. To return all operational attributes of an object use +. To retrieve
regular attributes in addition to explicitly specified operational attributes, use an asterisk (*) in
the list of attributes.

Note that you might need to escape the asterisk character with a backslash (*).

Red Hat Directory Server 12 Searching entries and tuning searches

4

https://www.ietf.org/rfc/rfc2849.txt

To retrieve only a list of matching DNs, use the attribute 1.1. For example:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com \
 -b "dc=example,dc=com" -x "(objectclass=inetorgperson)" 1.1

1.2. COMMONLY USED LDAPSEARCH OPTIONS

The following table lists the most commonly used ldapsearch utility options. If a specified value contains
a space character, the value must be surrounded by single or double quotation marks, for example:

-b "cn=My Special Group,ou=groups,dc=example,dc=com"

IMPORTANT

The ldapsearch utility from OpenLDAP uses SASL connections by default. To perform a
simple bind or to use TLS, use the -x argument to disable SASL and allow other
connection methods.

Option Description

-b Specifies the starting point for the search - base
Distinguished Name (DN). Note that distinguished
name must exist in the database. If you set the
LDAP_BASEDN environment variable as a base
DN, you do not need to use this option.
You must specify the option value in single or double
quotation marks if the value contains a space
character. For example:
-b "cn=user,ou=Product
Development,dc=example,dc=com".
To search the root DSE entry, specify an empty
string here, such as -b "" .

-D Specifies the DN used to authenticate to the server.
Directory Server must recognize the DN value, and
the DN must have the authority to search for the
entries. For example:
-D "uid=user_name,dc=example,dc=com".
Do not specify this option if the server supports
anonymous access.

CHAPTER 1. FINDING ENTRIES USING THE COMMAND LINE (LDAPSEARCH)

5

-H Specifies an LDAP URL to connect to the server. An
LDAP URL has the following format:

ldap[s]://hostname:[port]

Specifying the port value is optional. The
ldapsearch utility will then use the default LDAP
port 389 or LDAPS port 636.

The utility can also use an LDAPI URL with each
element separated by the HTML hex code %2F
instead of a forward slash (/). For example:

ldapi://%2Ffull%2Fpath%2Fto%2Fslapd-
example.socket

For LDAPI, specify the full path to the file which
represents the LDAPI socket the server is listening
to. If you did not specify the URL, ldapsearch uses
the localhost or the setting specified in the
/etc/openldap/ldap.conf file.

-h Specifies the hostname or IP address of the machine
with installed Directory Server. For example, -h
server.example.com. If you did not specify a host,
ldapsearch uses the localhost. Directory Server
supports both IPv4 and IPv6 addresses.

NOTE

The -h option is deprecated and will
be removed in a future release. Use
the -H option instead.

-p Specifies the TCP port number used by
Directory Server. For example, -p 1049. The default
port number is 389.

NOTE

The -p option is deprecated and will
be removed in a future release.

-l Specifies the maximum time limit in seconds for a
search request to complete. For example, -l 300. The
time limit should not exceed the value specified in
the nsslapd-timelimit attribute, because
ldapsearch utility compares these two values and
uses the smallest one. The default nsslapd-
timelimit attribute value is 3600 seconds.

Option Description

Red Hat Directory Server 12 Searching entries and tuning searches

6

-s scope Specifies the scope of the search. You can choose
one of the following scopes:

sub
Searches through the entry specified in the
-b option and all of its descendants entries.
This is a default setting.

one
Searches through the immediate children of
the entry specified in the -b option. The
ldapsearch utility considers only children,
not the base DN itself.

base
Searches only through the entry specified in
the -b option or defined by the
LDAP_BASEDN environment variable.

-W Prompts for the password. if you did not specify the
option, the ldapsearch utility uses anonymous
access. Alternatively, use the -w option to pass the
password to the utility.

NOTE

The password can be visible in the
process list for other users and is
saved in the shell’s history.

-x Disables the default SASL connection to allow simple
binds.

-Y SASL_mechanism Sets the SASL mechanism to use for authentication.
If you do not set any mechanism, ldapsearch
selects the best mechanism supported by the server.
If you do not use the -x option, you must specify the -
Y option instead.

-z number Sets the maximum number of entries to return in a
response to a search request. This value overwrites
the nsslapd-sizelimit attribute when binding using
the root DN.

-f Specifies a file with search filters.

Option Description

Additional resources

nsslapd-timelimit description

CHAPTER 1. FINDING ENTRIES USING THE COMMAND LINE (LDAPSEARCH)

7

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/configuration_and_schema_reference/assembly_core-server-configuration-attributes_config-schema-reference-title#ref_nsslapd-timelimit_assembly_cn-config

nsslapd-sizelimit description

1.3. USING SPECIAL CHARACTERS

When using the ldapsearch utility, you might need to specify values with characters that have special
meaning to the command-line interpreter, such as space character, asterisk (*), or backslash (\).
Depending on the command-line interpreter, enclose the value that has the special character either in
single (' ') or double (" ") quotation marks. For example:

-D "cn=John Smith,ou=Product Development,dc=example,dc=com"

In general, use single quotation marks (' ') to enclose values. Use double quotation marks (" ") to allow
variable interpolation if there are shell variables.

Red Hat Directory Server 12 Searching entries and tuning searches

8

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/configuration_and_schema_reference/assembly_core-server-configuration-attributes_config-schema-reference-title#ref_nsslapd-sizelimit_assembly_cn-config

CHAPTER 2. FINDING ENTRIES USING THE WEB CONSOLE
You can search for directory entries using the web console.

2.1. FINDING ENTRIES USING THE LDAP BROWSER

You can use the LDAP Browser in the web console to search for entries in the Directory Server
databases.

Directory Server searches for entries based on the attribute-value pairs stored in the entries, not based
on the attributes used in the distinguished names (DN) of these entries. For example, if an entry has a
DN of uid=user_name,ou=People,dc=example,dc=com, then a search for dc=example matches the
entry only when dc:example attribute exists in this entry.

Prerequisites

You are logged into the Directory Server web console.

You have root permissions.

Procedure

1. In the web console, navigate to LDAP Browser → Search.

2. Expand and select the search criteria to filter entries:

Search parameter Description

Search base Specifies the starting point of the search. It is a
distinguished name (DN) that currently exists in
the database.

NOTE

The Search tabs opens with
pre-defined search base, when
you open an entry details in the
Tree View or Table View, click
on the Options menu (�) and
select Search.

Search Scope Select Subtree to search entries in the whole
subtree starting from the search base and
including all child entries.

Select One Level to search entries starting from
the search base and including only the first level
of child entries.

Select Base to search for attribute values only in
the entry specified as the search base.

CHAPTER 2. FINDING ENTRIES USING THE WEB CONSOLE

9

Size Limit Set the maximum number of entries to return
from a search operation.

Time Limit Set the time in seconds the search engine can
look for entries.

Show Locking Toggle the switch to on to see the lock status of
the found entries.

Search Attributes Select attributes that take part in the search.
You can choose from the predefined attributes
and add custom ones.

Search parameter Description

3. Type the attribute value in the search text field and press Enter.

4. Optional: To further refine your search, use search filters in the Filter tab to search for entries.

NOTE

Directory Server records all search requests to the access log file, which you can view at
Monitoring → Logging → Access Log.

Additional resources

nsslapd-timelimit description

nsslapd-sizelimit description

Red Hat Directory Server 12 Searching entries and tuning searches

10

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/configuration_and_schema_reference/assembly_core-server-configuration-attributes_config-schema-reference-title#ref_nsslapd-timelimit_assembly_cn-config
https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/configuration_and_schema_reference/assembly_core-server-configuration-attributes_config-schema-reference-title#ref_nsslapd-sizelimit_assembly_cn-config

CHAPTER 3. LDAP SEARCH FILTERS
Search filters select specific entries that search operation returns. You can use search filters with the
ldapsearch command-line utility or in the Directory Server web console.

Directory Server searches for entries based on the attribute-value pairs the entries store, not based on
the attributes used in the distinguished names (DN) of these entries. For example, if an entry has the DN
uid=user_name,ou=People,dc=example,dc=com, then a search for dc=example matches the entry
only when the attribute-value pair dc:example exists in this entry.

When using ldapsearch, you can define multiple search filters in a file with each filter on a separate line.
Alternatively, you can specify a search filter directly on the command line.

A search filter has the following basic syntax:

(<attribute><operator><value>)

For example, the search filter (employeeNumber>=500) has employeeNumber as the attribute, >= as
the operator, and 500 as the value.

A search filter with a matching rule has the following syntax:

(<attribute>:<matching_rule>:=<value>)

For example, the search filter (givenName:caseExactMatch:=Daniel) has givenName as the attribute,
caseExactMatch as the matching rule, and Daniel as the value.

You can define filters that use different attributes combined together with Boolean operators.

3.1. USING ATTRIBUTES IN LDAP SEARCH FILTERS

A basic search looks for the presence of attributes or specific values in entries. A search can look for
attributes in entries in several ways:

Checks if the attribute exists (presence search). A presence search uses an asterisk (*) to return
every entry that has a certain attribute set, regardless of value.
For example, "(manager=*)" filter returns every entry that has the manager attribute.

Matchs an exact attribute value (equality search). Equality search looks for an attribute with a
specific value. For example, the "(cn=example)" filter returns all entries that contain the
common name (cn) set to example.
When an attribute has values associated with a language tag, the search returns all values.
Therefore, the following two attribute values both match the "(cn=example)" filter:

cn: example
cn;lang-fr: example

Lists matches against a partial value (substring search). For example, the "(sn=*erson)" search
filter returns the following values:

sn: Derson
sn: Anderson

For more details about configuring the length of the substring searches, see Changing the

CHAPTER 3. LDAP SEARCH FILTERS

11

For more details about configuring the length of the substring searches, see Changing the
search key length in a substring index.

3.2. USING OPERATORS IN LDAP SEARCH FILTERS

Operators in LDAP search filters set the relationship between the attribute and the given search value.
When searching for people, you can use operators to set a range, to return last names within a subset of
letters in the alphabet or employee numbers that come after a certain number.

(employeeNumber>=500)
(sn~=suret)
(salary<=150000)

When having imperfect information or searching in internationalized directories, you can use operators
for phonetic and approximate searches to make the search operation more effective.

You can use the following operators in the search filters:

Search type Operator Description

Equality = Returns entries with attributes
which values exactly match the
specified value. For example,
cn=example.

Substring =string* string Returns entries that contain
attributes with a specified
substring in the value. For
example, cn=exa*l. The asterisk
(*) indicates zero (0) or more
characters.

Greater than or equal to >= Returns entries that contain
attributes with values that are
greater than or equal to the
specified value. For example,
uidNumber>=5000

Less than or equal to <= Returns entries that contain
attributes with values that are less
than or equal to the specified
value. For example,
uidNumber<=5000

Presence =* Returns entries that contain one
or more values for the specified
attribute. For example, cn=*.

Red Hat Directory Server 12 Searching entries and tuning searches

12

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_indexes/changing_the_search_key_length_in_a_substring_index

Approximate ~= Returns entries that contain the
specified attribute with a value
that is approximately equal to the
value specified in the search filter.
For example, l~=san fransico
returns l=san francisco.

Search type Operator Description

3.3. USING COMPOUND LDAP SEARCH FILTERS

You can combine multiple LDAP search filter components by using Boolean operators expressed in the
prefix notation as follows:

(<boolean-operator>(filter)(filter)(filter)...)

You can use the following Boolean operators:

Operator Symbol Description

AND Ampersand (&) All specified filters must be true
for the statement to be true. For
example, (&(filter)(filter)(filter)
…)

OR Vertical bar (|) At least one specified filter must
be true for the statement to be
true. For example, (|(filter)(filter)
(filter)…)

NOT Exclamation point (!) The specified statement must not
be true for the statement to be
true. Only one filter is affected by
the NOT operator. For example, (!
(filter))

A search operation evaluates Boolean expressions in the following order:

Innermost to outermost parenthetical expressions first.

Then the server changes the order to try to evaluate the most restrictive expression first.

Compound search filters are most useful when they are nested together into completed expressions,
such as:

(<boolean-operator>(filter)((<boolean-operator>(filter)(filter))))

You can combine compound filters with other types of searches (approximate, substring, and other

CHAPTER 3. LDAP SEARCH FILTERS

13

operators) to get detailed results. The following example filter returns all entries which have the
organizational unit (ou) as Marketing and which description attribute does not contain the substring
X.500:

(&(ou=Marketing)(!(description=*X.500*)))

In addition, you can expand the filter to return also entries that have a manager set to example or
demo:

(&(ou=Marketing)(!(description=*X.500*))(|
(manager=cn=example,ou=Marketing,dc=example,dc=com)
(manager=cn=demo,ou=Marketing,dc=example,dc=com)))

The following example filter returns all entries that do not represent a person:

(!(objectClass=person))

The following filter returns all entries that do not represent a person and which common name (cn) is
similar to printer3b:

(&(!(objectClass=person))(cn~=printer3b))

3.4. USING MATCHING RULES IN LDAP SEARCH FILTERS

A matching rule specifies how Directory Server compares the value stored in the attribute with the value
in the search filter. Matching rules are related to attribute syntaxes. When attribute syntaxes define the
format of an attribute values, the matching rules define how that format is compared and indexed. A
matching rule also defines how to generate index keys.

A matching rule is a schema element that has an object identifier (OID). All attributes in Directory Server
have defined matching rules. For more information about matching rules types, see Matching rule types.
By specifying a matching rule in a search filter, you can search for an attribute value with a matching rule
that differs from the one defined for the attribute in the schema.

A filter with an extensible matching rule has the following syntax:

(<attribute>:<matching_rule>:=<value>)

Where:

<attribute> is an attribute that belongs to entries that you search, such as cn, mail, name.

<matching_rule> is a string that contains the name or OID of the rule that you want to use for
matching attribute values according to the required syntax. For example, caseExactMatch
matching rule.

<value> is the attribute value or a relational operator plus the attribute value to search for.

The matching rule must be compatible with the syntax of the attribute that you search. You can run a
case-sensitive search for an attribute that has a case-insensitive matching rule defined for it. For
example, the name attribute has the predefined caseIgnoreMatch equality matching rule in the schema
definition. The basic equality search with the filter (name=Daniel) retrieves entries that contain the

Red Hat Directory Server 12 Searching entries and tuning searches

14

name attribute values like DAniel, daniel, DanIel. The equality search with the matching rule filter
(name:caseExactMatch:=Daniel) retrieves entries that contain the name attribute value of Daniel
only.

Many matching rules defined for Directory Server relate to language codes and set internationalized
collation orders. For example, the OID 2.16.840.1.113730.3.3.2.17.1 identifies the Finnish collation
order. For the full list of supported internationalized collation orders, see Language ordering matching
rules and Language substring matching rules.

Additional resources

Matching rule types

Using inchainMatch matching rule to find the ancestry of an LDAP entry

LDAP search (ldapsearch) examples

Commonly used matching rules

3.4.1. Matching rule types

A search filter without a specified matching rule, such as (employeeNumber>=500) or (sn=*erson), uses
a matching rule defined by the syntax of the attribute in its schema definition. You can define the
following types of matching rules for an attribute in the schema definition:

EQUALITY

An EQUALITY matching rule specifies how to compare two values for an equal match. For example,
how to handle strings like Fred and FRED. Update operations use the EQUALITY rule to generate
the index keys. Search operations with filters, such as (name=Fred), use the EQUALITY rule to
compare the value in the filter with values in an entry.

ORDERING

An ORDERING matching rule specifies how to compare two values to determine if one value is
greater or less than another value. Search filters that set a range, such as (employeeNumber>=500)
or (attribute⇐value), use the ORDERING rule. An index for an attribute with an ORDERING rule
orders the equality values.

SUBSTR

A SUBSTR matching rule specifies how to compare a substring value. Substring search filters, such
as (name=*ed), use the SUBSTR rule. Substring (sub) indexes use the SUBSTR rule to generate
the index keys.

In addition to equality, ordering, and substring matching rules, you can specify approximate and other
extensible matching rules in a search filter.

IMPORTANT

CHAPTER 3. LDAP SEARCH FILTERS

15

IMPORTANT

A directory requires matching rules to support searching or indexing for the
corresponding search filter or index type. For example, an attribute must have an
EQUALITY matching rule in order to support equality search filters and eq indexes for
that attribute. An attribute must have both an ORDERING matching rule and an
EQUALITY matching rule in order to support range search filters and indexed range
searches.

Directory Server rejects a search operation with PROTOCOL_ERROR or
UNWILLING_TO_PERFORM if the search operation uses a search filter for an attribute
that has no corresponding matching rule.

Matching rules and custom attributes

For example, you want to create a custom attribute MyFirstName with IA5 String (7-bit ASCII) syntax
and an EQUALITY matching rule of caseExactIA5Match in the schema definition. A search with the
filter (MyFirstName=Fred) returns entries that have the MyFirstName value equal to Fred only;
however, Fred, FRED, and fred are all valid IA5 String values. If you want a search to return all variants of
the attribute value, you must define the MyFirstName attribute to use the equality matching rule
caseIgnoreIA5Match or explicitly specify the matching rule
(MyFirstName:caseIgnoreIA5Match:=Fred) in the search filter.

Additional resources

Maintaining the indexes of a specific database

Managing the directory schema.

Commonly used matching rules

3.4.2. Commonly used matching rules

The following is the list of commonly used matching rules:

Matching rule Description Object identifiers
(OIDs)

Compatible syntaxes

Bitwise AND match Performs bitwise AND
matches.

1.2.840.113556.1.4.803 Typically used with
Integer and numeric
strings. Directory Server
converts numeric strings
automatically to integer.

Bitwise OR match Performs bitwise OR
matches.

1.2.840.113556.1.4.804 Typically used with
Integer and numeric
strings. Directory Server
converts numeric strings
automatically to integer.

booleanMatch Evaluates whether the
values to match are
TRUE or FALSE.

2.5.13.13 Boolean

Red Hat Directory Server 12 Searching entries and tuning searches

16

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_indexes/assembly_maintaining-the-indexes-of-a-specific-database_managing-indexes
https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_the_directory_schema/index

caseExactIA5Match Makes a case-sensitive
comparison of values.

1.3.6.1.4.1.1466.109.114.1 IA5 Syntax, URI

caseExactMatch Makes a case-sensitive
comparison of values.

2.5.13.5 Directory String,
Printable String, OID

caseExactOrderingMatc
h

Allows case-sensitive
ranged searches (less
than and greater than).

2.5.13.6 Directory String,
Printable String, OID

caseExactSubstringsMa
tch

Performs case-sensitive
substring and index
searches.

2.5.13.7 Directory String,
Printable String, OID

caseIgnoreIA5Match Performs case-
insensitive comparisons
of values.

1.3.6.1.4.1.1466.109.114.2 IA5 Syntax, URI

caseIgnoreIA5Substring
sMatch

Performs case-
insensitive searches on
substrings and indexes.

1.3.6.1.4.1.1466.109.114.3 IA5 Syntax, URI

caseIgnoreListMatch Performs case-
insensitive comparisons
of values.

2.5.13.11 Postal address

caseIgnoreListSubstring
sMatch

Performs case-
insensitive searches on
substrings and indexes.

2.5.13.12 Postal address

caseIgnoreMatch Performs case-
insensitive comparisons
of values.

2.5.13.2 Directory String,
Printable String, OID

caseIgnoreOrderingMat
ch

Allows case-insensitive
ranged searches (less
than and greater than).

2.5.13.3 Directory String,
Printable String, OID

caseIgnoreSubstringsMa
tch

Performs case-
insensitive searches on
substrings and indexes.

2.5.13.4 Directory String,
Printable String, OID

distinguishedNameMatc
h

Compares distinguished
name values.

2.5.13.1 Distinguished name
(DN)

Matching rule Description Object identifiers
(OIDs)

Compatible syntaxes

CHAPTER 3. LDAP SEARCH FILTERS

17

generalizedTimeMatch Compares values that
are in a Generalized
Time format.

2.5.13.27 Generalized Time

generalizedTimeOrderin
gMatch

Allows ranged searches
(less than and greater
than) on values that are
in a Generalized Time
format.

2.5.13.28 Generalized Time

integerMatch Evaluates integer values. 2.5.13.14 Integer

integerOrderingMatch Allows ranged searches
(less than and greater
than) on integer values.

2.5.13.15 Integer

keywordMatch Compares the given
search value to a string
in an attribute value.

2.5.13.33 Directory String

numericStringMatch Compares more general
numeric values.

2.5.13.8 Numeric String

numericStringOrdering
Match

Supports ranged
searches (less than and
greater than) on more
general numeric values.

2.5.13.9 Numeric String

numericStringSubstring
Match

Compares more general
numeric values.

2.5.13.10 Numeric String

objectIdentifierMatch Compares object
identifier (OID) values.

2.5.13.0 Object Identifier (OID)

octetStringMatch Evaluates octet string
values.

2.5.13.17 Octet String

octetStringOrderingMat
ch

Supports ranged
searches (less than and
greater than) on a series
of octet string values.

2.5.13.18 Octet String

telephoneNumberMatch Evaluates telephone
number values.

2.5.13.20 Telephone Number

Matching rule Description Object identifiers
(OIDs)

Compatible syntaxes

Red Hat Directory Server 12 Searching entries and tuning searches

18

telephoneNumberSubst
ringsMatch

Performs substring and
index searches on
telephone number
values.

2.5.13.21 Telephone Number

uniqueMemberMatch Compares an assertion
value of the Name And
Optional UID syntax to
an attribute value of a
syntax

2.5.13.23 Name and Optional UID

wordMatch Compares the given
search value to a string
in an attribute value.
This matching rule is
case-insensitive.

2.5.13.32 Directory String

Matching rule Description Object identifiers
(OIDs)

Compatible syntaxes

Additional resources

Language ordering matching rules

Language substring matching rules

LDAP search (ldapsearch) examples

3.4.3. Language ordering matching rules

For international searches, you can use the following language ordering matching rules:

Matching rule Object identifiers (OIDs)

English (Case Exact Ordering Match) 2.16.840.1.113730.3.3.2.11.3

Albanian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.44.1

Arabic (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.1.1

Belorussian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.2.1

Bulgarian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.3.1

Catalan (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.4.1

Chinese - Simplified (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.49.1

CHAPTER 3. LDAP SEARCH FILTERS

19

Chinese - Traditional (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.50.1

Croatian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.22.1

Czech (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.5.1

Danish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.6.1

Dutch (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.33.1

Dutch - Belgian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.34.1

English - US (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.11.1

English - Canadian (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.12.1

English - Irish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.14.1

Estonian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.16.1

Finnish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.17.1

French (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.18.1

French - Belgian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.19.1

French - Canadian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.20.1

French - Swiss (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.21.1

German (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.7.1

German - Austrian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.8.1

German - Swiss (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.9.1

Greek (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.10.1

Hebrew (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.27.1

Hungarian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.23.1

Matching rule Object identifiers (OIDs)

Red Hat Directory Server 12 Searching entries and tuning searches

20

Icelandic (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.24.1

Italian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.25.1

Italian - Swiss (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.26.1

Japanese (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.28.1

Korean (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.29.1

Latvian, Lettish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.31.1

Lithuanian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.30.1

Macedonian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.32.1

Norwegian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.35.1

Norwegian - Bokmul (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.36.1

Norwegian - Nynorsk (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.37.1

Polish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.38.1

Romanian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.39.1

Russian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.40.1

Serbian - Cyrillic (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.45.1

Serbian - Latin (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.41.1

Slovak (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.42.1

Slovenian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.43.1

Spanish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.15.1

Swedish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.46.1

Turkish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.47.1

Ukrainian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.48.1

Matching rule Object identifiers (OIDs)

CHAPTER 3. LDAP SEARCH FILTERS

21

Additional resources

Searching an internationalized directory .

International Search Examples

3.4.4. Language substring matching rules

For international searches, you can use the following language substring matching rules:

Matching rule Object identifiers (OIDs)

English (Case Exact Substring Match) 2.16.840.1.113730.3.3.2.11.3.6

Albanian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.44.1.6

Arabic (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.1.1.6

Belorussian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.2.1.6

Bulgarian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.3.1.6

Catalan (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.4.1.6

Chinese - Simplified (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.49.1.6

Chinese - Traditional (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.50.1.6

Croatian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.22.1.6

Czech (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.5.1.6

Danish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.6.1.6

Dutch (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.33.1.6

Dutch - Belgian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.34.1.6

English - US (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.11.1.6

English - Canadian (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.12.1.6

English - Irish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.14.1.6

Estonian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.16.1.6

Red Hat Directory Server 12 Searching entries and tuning searches

22

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/searching_an_internationalized_directory
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/searching_an_internationalized_directory#Searching_an_Internationalized_Directory-International_Search_Examples

Finnish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.17.1.6

French (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.18.1.6

French - Belgian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.19.1.6

French - Canadian (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.20.1.6

French - Swiss (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.21.1.6

German (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.7.1.6

German - Austrian (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.8.1.6

German - Swiss (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.9.1.6

Greek (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.10.1.6

Hebrew (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.27.1.6

Hungarian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.23.1.6

Icelandic (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.24.1.6

Italian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.25.1.6

Italian - Swiss (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.26.1.6

Japanese (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.28.1.6

Korean (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.29.1.6

Latvian, Lettish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.31.1.6

Lithuanian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.30.1.6

Macedonian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.32.1.6

Norwegian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.35.1.6

Norwegian - Bokmul (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.36.1.6

Matching rule Object identifiers (OIDs)

CHAPTER 3. LDAP SEARCH FILTERS

23

Norwegian - Nynorsk (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.37.1.6

Polish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.38.1.6

Romanian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.39.1.6

Russian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.40.1.6

Serbian - Cyrillic (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.45.1.6

Serbian - Latin (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.41.1.6

Slovak (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.42.1.6

Slovenian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.43.1.6

Spanish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.15.1.6

Swedish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.46.1.6

Turkish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.47.1.6

Ukrainian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.48.1.6

Matching rule Object identifiers (OIDs)

Additional resources

Searching an internationalized directory

International Search Examples

3.4.5. Using inchainMatch matching rule to find membership of an LDAP entry in
nested groups

The inchainMatch matching rule is an extensible match for a search filter that finds membership of an
LDAP entry in nested groups. Directory Server supports both object identifier (OID)
1.2.840.113556.1.4.1941 and the human-readable name inchainMatch.

The use of the matching rule is limited to attributes with Distinguished Name (DN) syntax. You can
perform the following searches by using the inchainMatch matching rule:

The search filter
(member:1.2.840.113556.1.4.1941:=uid=jdoe,ou=people,dc=example,dc=com) finds all
direct or indirect groups of which the user jdoe is a member.

The search filter
(manager:1.2.840.113556.1.4.1941:=uid=jsmith,ou=people,dc=example,dc=com) finds all
direct or indirect users whose manager is the jsmith.

Red Hat Directory Server 12 Searching entries and tuning searches

24

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/searching_an_internationalized_directory
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/searching_an_internationalized_directory#Searching_an_Internationalized_Directory-International_Search_Examples

The search filter
(parentOrganization:1.2.840.113556.1.4.1941:=ou=ExampleCom,ou=europe,dc=example,d
c=com) finds all direct or indirect organizations that ExampleCom belongs to.

The search filter
(memberof:1.2.840.113556.1.4.1941:=cn=Marketing,ou=groups,dc=example,dc=com) finds
all direct or indirect members of the Marketing group.

Note that for performance reasons you must index member, manager, parentOrganization, memberof
attributes that inchainMatch uses.

Directory Server enables the inchainMatch matching rule by default via the In Chain plug-in. However,
inchainMatch is expensive to compute, and only the Directory Manager has permissions to use
inchainMatch by default. To grant permissions to other users, modify the access control instruction
(ACI) in the oid=1.2.840.113556.1.4.1941,cn=features,cn=config entry. For more details, see Enabling
the inchainMatch matching rule for a user entry .

3.4.5.1. Enabling the inchainMatch matching rule for a user entry

Only the Directory Manager has permissions to use the inchainMatch matching rule by default because
inchainMatch is expensive to process. To grant permissions to another user, modify the access control
instruction (ACI) in the oid=1.2.840.113556.1.4.1941,cn=features,cn=config entry. The following
procedure grants read and search permission to the admin user.

Prerequisites

The uid=admin,ou=people,dc=example,dc=com user entry exists.

The uid=jdoe,ou=people,dc=example,dc=com user entry exists and belong to the
cn=Marketing_Germany,ou=groups,dc=example,dc=com group.

The cn=Marketing_Germany,ou=groups,dc=example,dc=com group is the nested group of
the cn=Marketing_EU,ou=groups,dc=example,dc=com group.

Procedure

Grand read and search permissions to uid=admin,ou=people,dc=example,dc=com by
replacing the default ACI in the oid=1.2.840.113556.1.4.1941,cn=features,cn=config entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: oid=1.2.840.113556.1.4.1941,cn=features,cn=config
changetype: modify
replace: aci
aci: (targetattr != "aci")(version 3.0; acl "InChain Matching Rule"; allow(read, search)
userdn = "ldap:///uid=admin,ou=people,dc=example,dc=com";)

NOTE

To grand permission to several users, add these users to a group and set the
groupdn as keyword in the bind rule of the ACI. For more details, see Defining
group-based access.

Verification

CHAPTER 3. LDAP SEARCH FILTERS

25

https://docs.redhat.com/en/documentation/red_hat_directory_server/12/html/managing_access_control/assembly_managing-access-control-instructions_managing-access-control#con_defining-group-based-access_assembly_defining-aci-bind-rules

Search for the groups that the user uid=jdoe,ou=people,dc=example,dc=com belongs to
under the admin user:

$ ldapsearch -D "uid=admin,ou=people,dc=example,dc=com"
ldap://server.example.com -W -xLL -b "dc=example,dc=com" "
(member:1.2.840.113556.1.4.1941:=uid=jdoe,ou=people,dc=example,dc=com)" dn

 dn: cn=Marketing_EU,ou=groups,dc=example,dc=com
 dn: cn=Marketing_Germany,ou=groups,dc=example,dc=com

3.4.5.2. Disabling the inchainMatch matching rule

To implement the inchainMatch matching rule, Directory Server uses the In Chain plug-in that is
enabled by default. If you want to disable inchainMatch, disable the In Chain plug-in by using the
dsconf utility.

Procedure

1. Check if the In Chain plug-in is enabled:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin show 'In Chain'
dn: cn=In Chain,cn=plugins,cn=config
cn: In Chain
nsslapd-pluginDescription: inchain matching rule plugin
nsslapd-pluginEnabled: on
...

2. Disable the In Chain plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin set --enabled
off 'In Chain'

Successfully changed the cn=In Chain,cn=plugins,cn=config

The command disables the inchainMatch matching rule for all users.

Verification

Check if Directory Server disabled the In Chain plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin show 'In Chain'
dn: cn=In Chain,cn=plugins,cn=config
cn: In Chain
nsslapd-pluginDescription: inchain matching rule plugin
nsslapd-pluginEnabled: off
...

Red Hat Directory Server 12 Searching entries and tuning searches

26

CHAPTER 4. LDAP SEARCH (LDAPSEARCH) EXAMPLES

The following examples provide the most common `ldapsearch`es used for searching though the
directory.

Prerequisites

You perform the search for all entries in the directory.

You configured the directory to support anonymous access for search and read operations.
Therefore, you do not need to use -W and -D options in the command to supply any bind
information. For more information on anonymous access, see Granting anonymous access.

The server uses the default port number 389. You do not need to specify it in the search
request.

The server has the server.example.com hostname.

You enabled TLS for the server on the port 636, the default LDAPS port number.

Directory Server store all data under the dc=example,dc=com suffix.

Returning all entries

The following LDAP search returns all entries in the directory:

ldapsearch -H ldap://server.example.com -b "dc=example,dc=com" -s sub -x "
(objectclass=*)"

Use the (objectclass=*) search filter to return every entry in the directory. Each entry must have an
object class, and the objectclass attribute is always indexed.

Specifying search filters on the command line

You can specify a search filter directly on the command by enclosing the filter in quotation marks
("filter"). If you supply the filter in the command, do not specify the -f option. For example, to specify the
"cn=babs jensen", enter:

ldapsearch -H ldap://server.example.com -b "dc=example,dc=com" -s sub -x "cn=babs
jensen"

Searching the Root DSE entry

The root DSE is a special entry that contains information about the directory server instance, including all
of the suffixes that the local Directory Server supports. Search for this entry by supplying a search base
of "", a search scope base, and the filter "objectclass=*", for example:

ldapsearch -H ldap://server.example.com -x -b "" -s base "objectclass=*"

Searching the schema entry

The cn=schema entry is a special entry that contains information about the directory schema, such as
object classes and attribute types.

To list the content of the cn=schema entry, enter either of the following commands:

CHAPTER 4. LDAP SEARCH (LDAPSEARCH) EXAMPLES

27

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html-single/managing_access_control/index#granting-anonymous-access

ldapsearch -x -o ldif-wrap=no -b "cn=schema" \ '(objectClass=subSchema)' -s sub
objectClasses attributeTypes matchingRules \ matchingRuleUse dITStructureRules
nameForms ITContentRules ldapSyntaxes

or

ldapsearch -x -o ldif-wrap=no -b "cn=schema" \ '(objectClass=subSchema)' -s sub "+"

Using LDAP_BASEDN variable

To simplify the search, you can set the search base by using the LDAP_BASEDN environment variable.
You can set LDAP_BASEDN instead of using the ldapsearch command with the -b option. For more
information about setting environment variables, see the documentation for the operating system.

Set LDAP_BASEDN to the directory suffix value. Because the directory suffix is equal to the root entry
in the directory, all searches begin from the directory root entry.

For example, to set the LDAP_BASEDN variable to dc=example,dc=com and search for cn=babs
jensen in the directory, enter:

export LDAP_BASEDN="dc=example,dc=com"

ldapsearch -H ldap://server.example.com -x "cn=babs jensen"

The command uses the default scope sub because the -s option was not supplied to specify the scope.

Displaying subsets of attributes

The ldapsearch command returns all search results in the LDIF format. By default, ldapsearch returns
the entry distinguished name (DN) and all of the attributes that the user is allowed to read. You can set
the directory access control to allow users to read only a subset of the attributes on any given directory
entry.

Directory Server does not return operational attributes by default. To return operational attributes as a
result of a search operation, explicitly specify these attributes in the search command or use the +
argument to return all operational attributes. For more information, see Searching for operational
attributes.

You can limit the returned attributes to a few specific attributes by specifying the required attributes on
the command line after the search filter.

For example, to show the cn and sn attributes for every entry in the directory, enter:

ldapsearch -H ldap://server.example.com -b "dc=example,dc=com" -s sub -x "
(objectclass=*)" sn cn

Searching for operational attributes

Operational attributes are special attributes that Directory Server sets itself. Directory Server uses
operational attributes to perform maintenance tasks, such as processing access control instructions.
These attributes show specific information about the entry, such as the time this entry was initially
created and the name of the user who created it.

You can use operational attributes on every entry in the directory, even if the attribute is specifically
defined for the object class of the entry.

Red Hat Directory Server 12 Searching entries and tuning searches

28

Regular ldapsearch commands do not return operational attributes. According to RFC3673, use + to
return all operational attributes in a search request:

ldapsearch -H ldap://server.example.com -b "dc=example,dc=com" -s sub -x "
(objectclass=*)" '+'

To return only certain defined operational attributes, explicitly specify them in the ldapsearch request:

ldapsearch -H ldap://server.example.com -b "dc=example,dc=com" -s sub -x "
(objectclass=*)" creatorsName createTimestamp modifiersName modifyTimestamp

For the complete list of operational attributes, see Operational Attributes and Object Classes .

NOTE

To return all of the regular entry attributes along with the specified operational attributes,
use the special search attribute, "*", in addition to the operational attributes that you list.

ldapsearch -H ldap://server.example.com -b "dc=example,dc=com" -s sub -x "
(objectclass=*)" "*" aci

Note that you must enclose the asterisk (*) in quotation marks to prevent the shell from
interpreting it.

Specifying search filters by using a file

You can specify search filters in a file instead of entering them on the command line.

Specify each search filter on a separate line in the file. The ldapsearch command runs each search in
the order in which it appears in the file.

For example, the file contains the following filters:

sn=example
givenname=user

The ldapsearch command first finds all the entries with the surname set to example, then all the
entries with the givenname set to user. If the search request finds an entry that matches both search
criteria, then the entry is returned twice.

In the following search, the filters are specified in a file named searchdb:

ldapsearch -H ldap://server.example.com -x -f searchdb

You can limit the set of returned attributes by specifying the attribute names at the end of the search
line. For example, the following ldapsearch command performs both searches but returns only the DN
and the givenname and sn attributes of each entry:

ldapsearch -H ldap://server.example.com -x -f searchdb sn givenname

Specifying DNs that contain commas in search filters

When a DN within a search filter contains a comma as part of its value, the search command must

CHAPTER 4. LDAP SEARCH (LDAPSEARCH) EXAMPLES

29

https://datatracker.ietf.org/doc/html/rfc3673
https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/configuration_and_schema_reference/assembly_operational-attributres-and-object-classes_config-schema-reference-title

When a DN within a search filter contains a comma as part of its value, the search command must
escape the comma with a backslash (\). For example, to find everyone in the example.com Bolivia,
S.A. subtree, enter:

ldapsearch -H ldap://server.example.com -x -s base -b "l=Bolivia\, S.A.,dc=example,dc=com"
"objectclass=*"

Using the nsRole virtual attribute in the filter

In the following example, the ldapsearch command searches for DNs of all user entries that contain the
nsrole attribute set to the managed_role value:

ldapsearch -H ldap://server.example.com -x -b "dc=example,dc=com" "
(nsrole=cn=managed_role,dc=example,dc=com)" dn

Using a client certificate to bind to Directory Server

For more information about certificate-based authentication, see Configuring certificate-based
authentication.

Searching with language matching rules

To explicitly submit a matching rule in a search filter, insert the matching rule after the attribute:

attr:matchingRule:=value

Matching rules are frequently used for searching internationalized directories. The following command
searches for the department numbers after N4709 in the Swedish (2.16.840.1.113730.3.3.2.46.1)
matching rule.

departmentNumber:2.16.840.1.113730.3.3.2.46.1:=>= N4709

For more examples of performing internationalized searches, see Searching an Internationalized
Directory.

Finding groups a user belongs to

To find all direct or indirect groups of which the user uid=jdoe,ou=people,dc=example,dc=com is a
member, enter:

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com -xLL -b
"dc=example,dc=com" "
(member:1.2.840.113556.1.4.1941:=uid=jdoe,ou=people,dc=example,dc=com)" dn

The search with inchainMatch matching rule does not support anonymous access. For more details
about using the inchainMatch matching rule, see Using inchainMatch matching rule to find the
ancestry of an LDAP entry.

Finding members of a group

To find all direct or indirect members of the marketing group, enter:

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com -xLL -b
"dc=example,dc=com" "
(memberof:1.2.840.113556.1.4.1941:=cn=marketing,ou=groups,dc=example,dc=com)" dn

Red Hat Directory Server 12 Searching entries and tuning searches

30

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/securing_red_hat_directory_server/assembly_configuring-certificate-based-authentication_securing-rhds
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html-single/administration_guide/index#Searching_an_Internationalized_Directory

The search with inchainMatch matching rule does not support anonymous access. For more details
about using the inchainMatch matching rule, see Using inchainMatch matching rule to find the
ancestry of an LDAP entry.

Searching for attributes with bit field values

Bitwise searches use the bitwise AND or bitwise OR matching rules to perform bitwise search
operations on attributes with values that are bit fields.

NOTE

Attributes with values for bit fields are not common in LDAP. Default Directory Server
schemas do not use bit fields as attribute syntax. However, several LDAP syntaxes
support integer-style values. You can define custom attributes to use bit field values.
Applications can use custom attributes to perform bitwise operations against bit field
values.

The bitwise AND matching rule (1.2.840.113556.1.4.803) checks if the bit given in the assertion value is
set in the bit field attribute value. It is similar to an equality search. The following example sets
userAccountControl value to the bit that represents 2:

"(UserAccountControl:1.2.840.113556.1.4.803:=2)"

The following example show that the userAccountControl value must have all of the bits that are set in
the value 6 (bits 2 and 4):

"(UserAccountControl:1.2.840.113556.1.4.803:=6)”

The bitwise OR matching rule (1.2.840.113556.1.4.804) checks if any of the bits in the assertion string
are represented in the attribute value. It is similar to a substring search. In this example, the
UserAccountControl value must have any of the bits that are set in the bit field of 6, meaning that the
attribute value can be 2, 4, or 6:

"(UserAccountControl:1.2.840.113556.1.4.804:=6)"

You can use bitwise searches with the Windows-Linux integration, such as using Samba file servers.

Additional resources

The ldapsearch command format

Commonly used ldapsearch options

CHAPTER 4. LDAP SEARCH (LDAPSEARCH) EXAMPLES

31

CHAPTER 5. IMPROVING SEARCH PERFORMANCE THROUGH
RESOURCE LIMITS

Searching through every entry in a database can have a negative impact on a server performance for
larger directories. In large databases, effective indexing might not sufficiently reduce the search scope
to improve the performance.

You can set limits on user and client accounts to reduce the total number of entries or the total amount
of time spent in an individual search. This makes searches more responsive and improves overall server
performance.

5.1. SEARCH OPERATION LIMITS FOR LARGE DIRECTORIES

You can control server limits for search operations by using special operational attribute values on the
client application binding to the directory. You can set the following search operation limits:

The Look through limit specifies how many entries you can examine for a search operation.

The Size limit specifies maximum number of entries the server returns to a client application in
response to the search operation.

The Time limit specifies maximum time the server can spend processing a search operation.

The Idle timeout limit specifies the time when connection to the server can be idle before the
connection is dropped.

The Range timeout limit specifies a separate look-through limit specifically for searches by
using a range.

In the global server configuration, the resource limits set for the client application take precedence over
the default resource limits set.

NOTE

The Directory Manager receives unlimited resources by default, with the exception of
range searches.

5.2. SEARCH PERFORMANCE IMPROVEMENT WITH INDEX SCAN
LIMITS

For large indexes, it is efficient to treat any search which matches the index as an unindexed search. The
search operation has to look in the entire directory to process results rather than searching through an
index that is nearly the size of a directory in addition to the directory itself.

Additional resources

Setting an index scan limit

5.3. FINE GRAINED ID LIST SIZE

In large databases, some queries can consume a large number of CPU and RAM resources. To improve
the performance, you can set a default ID scan limit that applies to all indexes in the database by using
the nsslapd-idlistscanlimit attribute. However, it is useful to either define a limit for certain indexes or

Red Hat Directory Server 12 Searching entries and tuning searches

32

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/tuning_the_performance_of_red_hat_directory_server/assembly_setting-an-index-scan-limit-to-improve-the-performance-when-loading-long-lists-of-ids_assembly_improving-the-performance-of-views

use the list with no IDs defined. You can set individual settings for ID list scan limits for different types of
search filters by using the nsIndexIDListScanLimit attribute.

Additional resources

Setting an index scan limit to improve performance when loading long list of ids

5.4. SETTING USER AND GLOBAL RESOURCE LIMITS BY USING THE
COMMAND LINE

You can set user-level resource limits, global resource limits, and limits for specific types of searches,
such as simple paged and range searches, by using the command line. You can set user-level
attributes on the individual entries and global configuration attributes are set in the appropriate server
configuration area.

You can set the following mentioned operational attributes for each entry by using the ldapmodify
command:

look-through
You can specify the number of entries to examine for a search operation by using the look-
through limit attribute. Setting the attribute’s value to -1 indicates that there is no limit.

1. User-level attribute: nsLookThroughLimit

2. Global configuration:

a. Attribute: nsslapd-lookthroughlimit

b. Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

dsconf instance backend config set --lookthroughlimit value

paged look-through
You can specify the number of entries to examine for simple paged search operations by using
the paged look-through limit attribute. Setting the attribute’s value to -1 indicates that there is
no limit.

1. User-level attribute: nsPagedLookThroughLimit

2. Global configuration:

a. Attribute: nsslapd-pagedlookthroughlimit

b. Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

dsconf instance backend config set --pagedlookthroughlimit value

size
You can specify the maximum number of entries the server returns to a client application in
response to a search operation by using the size limit attribute. Setting the attribute’s value to -
1 indicates that there is no limit.

1. User-level attribute: nsSizeLimit

2. Global configuration:

CHAPTER 5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS

33

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/tuning_the_performance_of_red_hat_directory_server/assembly_setting-an-index-scan-limit-to-improve-the-performance-when-loading-long-lists-of-ids_assembly_improving-the-performance-of-views#proc_setting-an-index-scan-limit-to-a-database-using-the-command-line_assembly_setting-an-index-scan-limit-to-improve-the-performance-when-loading-long-lists-of-ids

a. Attribute: nsslapd-sizelimit

b. Entry: cn=config

dsconf instance config replace nsslapd-sizelimit value

You can add the nsSizeLimit attribute to the user’s entry and for example give it a
search return size limit of 500 entries:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
...
dn: uid=user_name,ou=People,dc=example,dc=com
changetype: modify
add: nsSizeLimit
nsSizeLimit: 500
...

paged size
You can specify the maximum number of entries the server returns to a client application for
simple paged search operations by using the paged size limit attribute. Setting the attribute’s
value to -1 indicates that there is no limit.

1. User-level attribute: nsPagedSizeLimit

2. Global configuration:

a. Attribute: nsslapd-pagedsizelimit

b. Entry: cn=config

dsconf instance config replace nsslapd-pagedsizelimit value

time
You can specify the maximum time the server can spend processing a search operation by using
the time limit attribute. Setting the attribute’s value to -1 indicates that there is no time limit.

1. User-level attribute: nsTimeLimit

2. Global configuration:

a. Attribute: nsslapd-timelimit

b. Entry: cn=config

dsconf instance config replace nsslapd-timelimit value

idle timeout
You can specify the time in seconds for which a connection to the server can be idle before the
connection is dropped by using the idle timeout attribute. Setting the attribute’s value to -1
indicates that there is no limit.

1. User-level attribute: nsidletimeout

2. Global configuration:

Red Hat Directory Server 12 Searching entries and tuning searches

34

a. Attribute: nsslapd-idletimeout

b. Entry: cn=config

dsconf instance config replace nsslapd-idletimeout value

ID list scan
You can specify the maximum number of entry IDs loaded from an index file for search results. If
the ID list size is greater than the maximum number of IDs, the search will not use the index list,
but will treat the search as an unindexed search and look through the entire database.

1. User-level attribute: nsIDListScanLimit

2. Global configuration:

a. Attribute: nsslapd-idlistscanlimit

b. Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

dsconf instance backend config set --idlistscanlimit value

paged ID list scan
You can specify the maximum number of entry IDs loaded from an index file for search results
particularly for paged search operations by using the paged ID list scan limit.

1. User-level attribute: nsPagedIDListScanLimit

2. Global configuration:

a. Attribute: nsslapd-pagedidlistscanlimit

b. Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

dsconf instance backend config set --pagedidlistscanlimit value

range look-through
You can specify the numbers of entries to examine for a range search operation by using the
range look-through limit. Setting the attribute’s value to -1 indicates that there is no limit.

NOTE

A range search is a search by using the greater-than, equal-to-or-greater-than,
less-than, or equal-to-less-than operators.

1. User-level attribute: not available

2. Global configuration:

a. Attribute: nsslapd-rangelookthroughlimit

b. Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

dsconf instance backend config set ----rangelookthroughlimit value

NOTE

CHAPTER 5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS

35

NOTE

You can set an access control list to prevent users from changing the
setting.

Additional resources

Managing access control

5.5. SETTING RESOURCE LIMITS ON ANONYMOUS BINDS

You can configure resource limits for anonymous binds by creating a template user entry that has
resource limits, and then applying this template to anonymous binds, because resource limits are set on
a user entry and anonymous bind does not have a user entry associated with it.

Prerequisites

A template entry has been created.

Procedure

1. Set resource limits you want to apply to anonymous binds:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
...
dn: cn=anonymous_template,ou=people,dc=example,dc=com
objectclass: nsContainer
objectclass: top
cn: anonymous_template
nsSizeLimit: 250
nsLookThroughLimit: 1000
nsTimeLimit: 60
...

NOTE

For performance reasons, the template must be in the normal back end, not in
the cn=config suffix that does not use an entry cache.

2. Add the nsslapd-anonlimitsdn parameter to the server configuration, pointing to the DN of
the template entry on all suppliers in a replication topology:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace
nsslapd-anonlimitsdn="cn=anonymous_template,ou=people,dc=example,dc=com"

5.6. PERFORMANCE IMPROVEMENT FOR RANGE SEARCHES

A range search (all IDs search) uses operators to set a bracket to search and return an entire subset of
the entries within a directory. The range search can evaluate every entry in the directory to check if the
entry is within the provided range.

For example, to search for every entry modified at or after midnight on January 1, run the following
command:

Red Hat Directory Server 12 Searching entries and tuning searches

36

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html/managing_access_control/index

(modifyTimestamp>=20210101010101Z)

To prevent a range search from turning into an all IDs search, you can use the look-through limit. By
using this limit, you can improve overall performance and speed up range search results. However, some
clients or administrative users, such as Directory Manager, cannot have the look-through limit set. In this
case, the range search can take several minutes to complete or can even continue indefinitely.

However, you can set a separate range look-through limit. By setting this limit, clients and
administrative users can have high look-through limits and can still be able to set a reasonable limit on
potentially performance-impaired range searches.

You can configure such setting by using the nsslapd-rangelookthroughlimit attribute. The default
value is 5000.

To set the separate range look-through limit to 7500, run the following command:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --
rangelookthroughlimit 7500

CHAPTER 5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS

37

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. FINDING ENTRIES USING THE COMMAND LINE (LDAPSEARCH)
	1.1. THE LDAPSEARCH COMMAND FORMAT
	1.2. COMMONLY USED LDAPSEARCH OPTIONS
	1.3. USING SPECIAL CHARACTERS

	CHAPTER 2. FINDING ENTRIES USING THE WEB CONSOLE
	2.1. FINDING ENTRIES USING THE LDAP BROWSER

	CHAPTER 3. LDAP SEARCH FILTERS
	3.1. USING ATTRIBUTES IN LDAP SEARCH FILTERS
	3.2. USING OPERATORS IN LDAP SEARCH FILTERS
	3.3. USING COMPOUND LDAP SEARCH FILTERS
	3.4. USING MATCHING RULES IN LDAP SEARCH FILTERS
	3.4.1. Matching rule types
	3.4.2. Commonly used matching rules
	3.4.3. Language ordering matching rules
	3.4.4. Language substring matching rules
	3.4.5. Using inchainMatch matching rule to find membership of an LDAP entry in nested groups
	3.4.5.1. Enabling the inchainMatch matching rule for a user entry
	3.4.5.2. Disabling the inchainMatch matching rule

	CHAPTER 4. LDAP SEARCH (LDAPSEARCH) EXAMPLES
	CHAPTER 5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS
	5.1. SEARCH OPERATION LIMITS FOR LARGE DIRECTORIES
	5.2. SEARCH PERFORMANCE IMPROVEMENT WITH INDEX SCAN LIMITS
	5.3. FINE GRAINED ID LIST SIZE
	5.4. SETTING USER AND GLOBAL RESOURCE LIMITS BY USING THE COMMAND LINE
	5.5. SETTING RESOURCE LIMITS ON ANONYMOUS BINDS
	5.6. PERFORMANCE IMPROVEMENT FOR RANGE SEARCHES

