
Red Hat Directory Server 12

Managing access control

Configuring permissions by using access control instructions

Last Updated: 2024-05-07

Red Hat Directory Server 12 Managing access control

Configuring permissions by using access control instructions

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to define which user can perform specific actions on suffixes and entries in Red Hat
Directory Server. These tasks are controlled by access control instructions (ACI). Learn about the
different ACI types, ACI use cases, bind rules, and methods for checking access rights on entries.

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS
1.1. ACI PLACEMENT
1.2. THE STRUCTURE OF AN ACI
1.3. ACI EVALUATION
1.4. LIMITATIONS OF ACIS
1.5. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY
1.6. DISPLAYING, ADDING, DELETING, AND UPDATING ACIS
1.7. DEFINING ACI TARGETS

1.7.1. The syntax of target rules
1.7.2. Targeting a directory entry
1.7.3. Targeting attributes
1.7.4. Targeting entries and attributes using LDAP filters
1.7.5. Targeting attribute values using LDAP filters
1.7.6. Targeting source and destination DNs

1.8. ADVANCED USAGE OF TARGET RULES
1.8.1. Delegating permissions to create and maintain groups
1.8.2. Targeting both an entry and attributes
1.8.3. Targeting certain attributes of entries matching a filter
1.8.4. Targeting a single directory entry

1.9. DEFINING ACI PERMISSIONS
1.9.1. The syntax of permission rules
1.9.2. User rights in permission rules
1.9.3. Rights required for LDAP operations

1.10. DEFINING ACI BIND RULES
1.10.1. The syntax of bind rules
1.10.2. Defining user-based access
1.10.3. Defining group-based access
1.10.4. Defining access based on value matching
1.10.5. Defining access from specific IP addresses or ranges
1.10.6. Defining access from a specific host or domain
1.10.7. Requiring a certain level of security in connections
1.10.8. Defining access at a specific day of the week
1.10.9. Defining access at a specific time of day
1.10.10. Defining access based on the authentication method
1.10.11. Defining access based on roles
1.10.12. Combining bind rules using Boolean operators

CHAPTER 2. USING MACRO ACCESS CONTROL INSTRUCTIONS
2.1. MACRO ACCESS CONTROL INSTRUCTION EXAMPLE
2.2. MACRO ACCESS CONTROL INSTRUCTION SYNTAX
2.3. THE ($DN) MACRO EXAMPLE
2.4. THE [$DN] MACRO EXAMPLE
2.5. THE ($ATTR.ATTRNAME) MACRO EXAMPLE

CHAPTER 3. MANAGING ACCESS CONTROL INSTRUCTIONS IN LDAP BROWSER
3.1. CREATING AN ACCESS CONTROL INSTRUCTION IN THE LDAP BROWSER
3.2. EDITING ACCESS CONTROL INSTRUCTIONS IN THE LDAP BROWSER
3.3. REMOVING AN ACCESS CONTROL INSTRUCTION IN THE LDAP BROWSER

CHAPTER 4. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

4

5
5
6
6
7
7
7
8
9
9
11

12
13
14
14
14
15
16
16
17
17
17
18
19
19
19
23
24
28
29
30
31
31
32
33
33

35
35
36
37
38
38

40
40
40
41

42

Table of Contents

1

. .

. .

. .

. .

4.1. CONFIGURING WHETHER TO LOCK ACCOUNTS WHEN REACHING OR EXCEEDING THE CONFIGURED
MAXIMUM ATTEMPTS
4.2. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE COMMAND LINE
4.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE WEB CONSOLE

CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES
5.1. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME THE LAST SUCCESSFUL
LOGIN
5.2. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER YOU CREATED THEM

5.3. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER PASSWORD EXPIRY

5.4. AUTOMATICALLY DISABLING ACCOUNT ON BOTH ACCOUNT INACTIVITY AND PASSWORD
EXPIRATION

CHAPTER 6. RE-ENABLING ACCOUNTS THAT REACHED THE INACTIVITY LIMIT
6.1. RE-ENABLING ACCOUNTS INACTIVATED BY THE ACCOUNT POLICY PLUG-IN

CHAPTER 7. TRACKING THE LAST LOGIN TIME WITHOUT SETTING A LOCKOUT POLICY
7.1. CONFIGURING THE ACCOUNT POLICY PLUG-IN TO RECORD THE LAST LOGIN TIME

CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING GET EFFECTIVE RIGHTS SEARCH
8.1. GET EFFECTIVE RIGHTS SEARCH PERMISSIONS
8.2. GET EFFECTIVE RIGHTS SEARCH FORMAT
8.3. COMMON SCENARIOS FOR A GET EFFECTIVE RIGHTS SEARCH

8.3.1. General examples of Get Effective Rights search
8.3.2. Example of Get Effective Rights search for non-existent attributes
8.3.3. Examples of Get Effective Rights search for specific attribute or object class
8.3.4. Examples of Get Effective Rights search for non-existent entries
8.3.5. Examples of Get Effective Rights search for operational attributes
8.3.6. Examples of Get Effective Rights results and Access Control rules

8.4. GET EFFECTIVE RIGHT RETURN CODES

42
43
45

47

47

49

51

53

55
55

56
56

58
58
59
60
60
62
63
64
64
65
66

Red Hat Directory Server 12 Managing access control

2

Table of Contents

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For submitting feedback through Jira (account required):

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

For submitting feedback through Bugzilla (account required):

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

Red Hat Directory Server 12 Managing access control

4

https://issues.redhat.com/projects/RHELDOCS/issues
https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Directory Server

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS
When Directory Server receives a request, it uses the authentication information provided by the user in
the bind operation and the access control instructions (ACI) defined in the directory to allow or deny
access to the requested entry or attribute. The server can allow or deny permissions for actions, such as
read, write, search, and compare. The permission level granted to a user depends on the
authentication information provided.

Access control in Directory Server enables you to set precise rules on when the ACIs are applicable:

For the entire directory, a subtree, or specific entries

For a specific user, all users belonging to a specific group or role, or all users in the directory

For a specific location, such as an IP address, an IP range, or a DNS name.
Note that load balancers can affect location-specific rules.

IMPORTANT

Complex ACIs are difficult to read and understand. Instead of one complex ACI, you can
write multiple simple rules to achieve the same effect. However, a higher number of ACIs
also increases the costs of ACI processing.

1.1. ACI PLACEMENT

Directory Server stores access control instruction (ACI) in the multi-valued aci operational attribute in
directory entries. To set an ACI, add the aci attribute to the corresponding directory entry.
Directory Server applies the ACIs:

Only to the entry that contains the ACI, if it does not have any child entries. For example, if a
client requires access to the uid=user_name,ou=People,dc=example,dc=com object, and an
ACI is only set on dc=example,dc=com and not on any child entries, only this ACI is applied.

NOTE

ACIs with add permissions also apply to child entries created in future.

To the entry that contains the ACI and to all entries below it, if it has child entries. As a direct
consequence, when the server evaluates access permissions to any given entry, it verifies the
ACIs for every entry between the one requested and the directory suffix, as well as the ACIs on
the entry itself.
For example, ACIs are set on the dc=example,dc=com and the
ou=People,dc=example,dc=com entry: If a client wants to access the
uid=user_name,ou=People,dc=example,dc=com object, which has no ACI set,
Directory Server first validates the ACI on the ou=People,dc=example,dc=com entry. If this
ACI grants access, evaluation stops and grants access. If not, Directory Server verifies the ACI
on ou=People,dc=example,dc=com. If this ACI successfully authorizes the client, it can access
the object.

NOTE

ACIs set in the rootDSE entry apply only to this entry.

An ACI created on an entry can be set not to apply directly to that entry but rather to some or all of the

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

5

An ACI created on an entry can be set not to apply directly to that entry but rather to some or all of the
entries in the subtree below. The advantage of this approach is that general ACIs can be placed higher
in the directory tree to have effect on entries located lower in the tree. For example, an ACI that targets
entries that include the inetOrgPerson object class can be created at the level of an
organizationalUnit entry or a locality entry.

NOTE

Minimize the number of ACIs in the directory tree by placing general rules at high level
branch points. To limit the scope of more specific rules, place them to leaf entries as
closely as possible.

1.2. THE STRUCTURE OF AN ACI

The aci attribute uses the following syntax:

(target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

target_rule specifies the entry, attributes, or set of entries and attributes for which to control
access.

version 3.0 is a required string which identifies the access control instructions (ACI) version.

acl "ACL name" sets a name or string that describes the ACI.

permission_rule sets what rights, such as read or write, are allowed or denied.

bind_rules specifies which rules must match during the bind to allow or deny access.

The permission and the bind rule pair are called an access control rule.

To efficiently set multiple access controls for a given target, you can set multiple access control rules for
each target:

(target_rule)(version 3.0; acl "ACL_name"; permission_rule bind_rules; permission_rule bind_rules;
... ;)

1.3. ACI EVALUATION

To evaluate the access rights to a particular entry, the server creates a list of the access control
instructions (ACI) present on the entry itself and on the parent entries back up to the top level entry
stored in Directory Server. ACIs are evaluated across all databases for a particular instance but not
across different instances.

Directory Server evaluates this list of ACIs based on the semantics of the ACIs, not on their placement
in the directory tree. This means that ACIs that are close to the root of the directory tree do not take
precedence over ACIs that are closer to the leaves of the directory tree.

In Directory Server, the deny permission in ACIs take precedence over the allow permission. For
example, if you deny write permission at the directory’s root level, none of the users can write to the
directory, regardless if an other ACI grants this permission. To grant a specific user write permissions to
the directory, you have to add an exception to the original denying rule to allow the user to write in that
directory.

NOTE

Red Hat Directory Server 12 Managing access control

6

NOTE

For improved ACIs, use fine-grained allow rules instead of deny rules.

1.4. LIMITATIONS OF ACIS

When you set access control instructions (ACI), the following restrictions apply:

If your directory database is distributed over multiple servers, the following restrictions apply to
the keywords you can use in ACIs:

ACIs depending on group entries using the groupdn keyword must be located on the same
server as the group entry.
If the group is dynamic, all members of the group must have an entry on the server. Member
entries of static groups can be located on the remote server.

ACIs depending on role definitions using the roledn keyword, must be located on the same
server as the role definition entry. Every entry that is intended to have the role must also be
located on the same server.

However, you can match values stored in the target entry with values stored in the entry of the
bind user by, for example, using the userattr keyword. In this case, access is evaluated normally
even if the bind user does not have an entry on the server that stores the ACI.

You cannot use virtual attributes, such as Class of Service (CoS) attributes, in the following ACI
keywords:

targetfilter

targattrfilters

userattr

Access control rules are evaluated only on the local server. For example, if you specify the host
name of a server in LDAP URLs in ACI keywords, the URL will be ignored.

1.5. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION
TOPOLOGY

Access control instructions (ACI) are stored in aci attributes of entries. Therefore, if an entry containing
ACIs is part of a replicated database, the ACIs are replicated.

ACIs are always evaluated on the server that resolves the incoming LDAP requests. When a consumer
server receives an update request, it returns a referral to the supplier server before evaluating whether
the request can be serviced on the supplier.

1.6. DISPLAYING, ADDING, DELETING, AND UPDATING ACIS

You can use the ldapsearch utility to search, and the ldapmodify utility to add, delete, and update
Access Control Instructions (ACI).

Displaying ACIs:

For example, to display the ACIs set on dc=example,dc=com and sub-entries, enter:

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

7

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com -x -b
"dc=example,dc=com" -s sub '(aci=*)' aci

Adding an ACI

For example, to add an ACI to the ou=People,dc=example,dc=com entry, enter:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="userPassword") (version 3.0; acl
 "Allow users updating their password";
 allow (write) userdn= "ldap:///self";)

Deleting an ACI

To delete an ACI:

If only one aci attribute is set on the entry or you want to remove all ACIs from the entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: delete
delete: aci

If multiple ACIs exist on the entry and you want to delete a specific ACI, specify the exact ACI:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
delete: aci
aci: (targetattr="userPassword") (version 3.0; acl "Allow users
 updating their password"; allow (write) userdn= "ldap:///self";)

Updating an ACI

To update an ACI:

Delete the existing ACI.

Add a new ACI with the updated settings.

1.7. DEFINING ACI TARGETS

Target rules in an access control instruction (ACI) define to which entries Directory Server applies the
ACI. If you do not set a target, the ACI applies to the entry containing the aci attribute and to entries
below.

In an ACI, the following highlighted part is the target rule:

(target_rule)(version 3.0; acl "ACL_name"; permission_rule bind_rules;)

Red Hat Directory Server 12 Managing access control

8

For complex ACIs, Directory Server supports multiple target rules with different keywords in an ACI:

(target_rule_1)(target_rule_2)(...)(version 3.0; acl "ACL_name"; permission_rule bind_rules;)

If you specify multiple target rules, the order is not relevant. Note that you can use each of the following
keywords only once in an ACI:

target

targetattr

targetattrfilters

targetfilter

target_from

target_to

1.7.1. The syntax of target rules

The general syntax of a target rule is:

(keyword comparison_operator "expression")

keyword: Sets the type of the target.

comparison_operator: Valid values are = and != and indicate whether or not the target is the
object specified in the expression.

WARNING

For security reasons, Red Hat recommends not using the != operator,
because it allows the specified operation on all other entries or attributes.
For example:

(targetattr != "userPassword");(version 3.0; acl "example"); allow (write)
...);

The previous example allows users to set, update, or delete any attribute
except the userPassword attribute under the Distinguished Name (DN)
you set the ACI. However, also this enables users, for example, to add an
additional aci attribute that allows write access to this attribute as well.

expression: Sets the target and must be surrounded by quotation marks. The expression itself
depends on the keyword you use.

1.7.2. Targeting a directory entry

To control access based on a Distinguished Name (DN) and the entries below it, use the target keyword

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

9

To control access based on a Distinguished Name (DN) and the entries below it, use the target keyword
in the access control instruction (ACI). A target rule which uses the target keyword takes a DN as
expression:

(target comparison_operator "ldap:///distinguished_name")

NOTE

You must set the ACI with the target keyword on the DN you are targeting or a higher-
level DN of it. For example, if you target ou=People,dc=example,dc=com, you must either
set the ACI on ou=People,dc=example,dc=com or dc=example,dc=com.

Example 1.1. Using the target keyword

To enable users that are stored in the ou=People,dc=example,dc=com entry to search and display all
attributes in their own entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///ou=People,dc=example,dc=com") (version 3.0;
 acl "Allow users to read and search attributes of own entry"; allow (search, read)
 (userdn = "ldap:///self");)

Using wildcards with the target keyword

You can use the * wildcard character target multiple entries.

The following target rule example matches all entries in ou=People,dc=example,dc=com whose uid
attribute is set to a value that starts with the letter a:

(target = "ldap:///uid=a*,ou=People,dc=example,dc=com")

Depending on the position of the wildcard, the rule not only applies to attribute values, but also to the
full DN. Therefore, you can use the wildcard as a substitute for portions of the DN.

Example 1.2. Targeting a directory entries using wildcards

The following rule targets all entries in the dc=example,dc=com tree with a matching uid attribute
and not only entries which are stored in the dc=example,dc=com entry itself:

(target = "ldap:///uid=user_name*,dc=example,dc=com")

The previous target rule matches multiple entries, such as:

uid=user_name,dc=example,dc=com

uid=user_name,ou=People,dc=example,dc=com

uid=user_name2,dc=example,dc=com

Red Hat Directory Server 12 Managing access control

10

IMPORTANT

Directory Serverdoes not support wildcards in the suffix part of a DN. For example, if your
directory’s suffix is dc=example,dc=com, you cannot use a target with a wildcard in this
suffix, such as (target = "ldap:///dc=*.com").

1.7.3. Targeting attributes

To limit access in an access control instruction (ACI) to certain attributes, use the targetattr keyword.
For example, this keyword defines:

In a read operation, what attributes will be returned to a client

In a search operation, what attributes will be searched

In a write operation, what attributes can be written to an object

In an add operation, what attributes can be added when creating a new object

In certain situations, you can use the targetattr keyword to secure ACIs by combining other target
keywords with targetattr. See Advanced usage of target rules.

IMPORTANT

In read and search operations, the default targets no attribute. An ACI without a
targetattr keyword is only useful for ACIs with rights affecting a complete entry, such as
add or delete.

To separate multiple attributes in a target rule that uses the targetattr keyword, use ||:

(targetattr comparison_operator "attribute_1 || attribute_2 || ...")

The attributes set in the expression must be defined in the schema.

The attributes specified in the expression apply to the entry on which you create the ACI and to all
entries below it if not restricted by further target rules.

Example 1.3. Using the targetattr keyword

To enable users stored in dc=example,dc=com and all subentries to update the userPassword
attribute in their own entry, enter:

ldapmodify -D "cn=Directory Manager" -W -H ldap::server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "userPassword") (version 3.0;
 acl "Allow users updating own userPassword";
 allow (write) (userdn = "ldap:///self");)

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

11

Using wildcards with the targetattr keyword

Using the * wildcard character, you can, for example, target all attributes:

(targetattr = "*")

WARNING

For security reasons, do not use wildcards with the targetattr, because it allows
access to all attributes, including operational attributes. For example, if users can
add or modify all attributes, users might create additional ACIs and increase their
own permissions.

1.7.4. Targeting entries and attributes using LDAP filters

To target a group of entries that match a certain criteria, use the targetfilter keyword with an LDAP
filter:

(targetfilter comparison_operator "LDAP_filter")

The filter expression is a standard LDAP search filter.

Example 1.4. Using the targetfilter keyword

To grant permissions to members of the cn=Human Resources,dc=example,dc.com group to
modify all entries having the department attribute set to Engineering or Sales:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetfilter = "(|(department=Engineering)(department=Sales)")
 (version 3.0; acl "Allow HR updating engineering and sales entries";
 allow (write) (groupdn = "ldap:///cn=Human Resources,dc=example,dc.com");)

The targetfilter keyword targets whole entries. If you combine it with the targetattr keyword, the access
control instruction (ACI) applies only to a subset of attributes of the targeted entries. See Targeting
certain attributes of entries matching a filter.

NOTE

Using LDAP filters is useful when targeting entries and attributes that are spread across
the directory. However, the results are sometimes unpredictable because filters do not
directly name the object for which you are managing access. The set of entries targeted
by a filtered ACI is likely to change as attributes are added or deleted. Therefore, if you
use LDAP filters in ACIs, verify that they target the correct entries and attributes by using
the same filter, for example, in an ldapsearch operation.

Red Hat Directory Server 12 Managing access control

12

Using wildcards with the targetfilter keyword

The targetfilter keyword supports wildcards similarly to standard LDAP filters. For example, to target all
uid attributes whose value starts with adm, use:

(targetfilter = "(uid=adm*) ...)

1.7.5. Targeting attribute values using LDAP filters

You can use access control to target specific values of attributes. This means that you can grant or deny
permissions on an attribute if that attribute’s value meets the criteria that is defined in the access
control instruction (ACI). An ACI that grants or denies access based on an attribute’s value is called a
value-based ACI. This applies only to ADD and DEL operations. You cannot limit search rights by
specific values.

To create a value-based ACI, use the targattrfilters keyword with the following syntax:

For one operation with one attribute and filter combination:

(targattrfilters="operation=attribute:filter")

For one operation with multiple attribute and filter combinations:

(targattrfilters="operation=attribute_1:filter_1 && attribute_2:filter_2 ... &&
attribute_m:filter_m")

For two operations, each with multiple attribute and filter combinations:

(targattrfilters="operation_1=attribute_1_1:filter_1_1 && attribute_1_2:filter_1_2 ... &&
attribute_1_m:filter_1_m , operation_2=attribute_2_1:filter_2_1 && attribute_2_2:filter_2_2 ...
& attribute_2_n:filter_2_n ")

In the previous syntax examples, you can set the operations either to add or del. The attribute:filter
combination sets the filter and the attribute the filter is applied to.

The following describes how filter must match:

When creating an entry and a filter applies to an attribute in the new entry, then each instance of
that attribute must match the filter.

When deleting an entry and a filter applies to an attribute in the entry, then each instance of
that attribute must also match the filter.

When modifying an entry and the operation adds an attribute, then the add filter that applies to
that attribute must match.

If the operation deletes an attribute, then the del filter that applies to that attribute must
match. If the individual values of an attribute already present in the entry are replaced, then both
the add and del filters must match.

Example 1.5. Using the targattrfilters keyword

To create an ACI that enables users to add any role to their own entry, except the Admin role, and to
add the telephone attribute, as long as the value begins with the 123 prefix, enter:

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

13

ldapmodify -D "cn=Directory Manager" -W -H ldap::server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targattrfilters="add=nsroledn:(!(nsroledn=cn=Admin)) &&
 telephoneNumber:(telephoneNumber=123*)") (version 3.0;
 acl "Allow adding roles and telephone";
 allow (add) (userdn = "ldap:///self");)

1.7.6. Targeting source and destination DNs

In certain situations, administrators want to allow users to move directory entries. Using the target_from
and target_to keywords in an access control instruction (ACI), you can specify the source and
destination of the operation, however, without enabling the user:

To move entries from a different source as set in the ACI.

To move entries to a different destination as set in the ACI.

To delete existing entries from the source Distinguished Name (DN).

To add new entries to the destination DN.

Example 1.6. Using the target_from and target_to keywords

To enable the uid=user,dc=example,dc=com account to move user accounts from the
cn=staging,dc=example,dc=com entry to cn=people,dc=example,dc=com, enter:

ldapmodify -D "cn=Directory Manager" -W -H ldap:server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target_from="ldap:///uid=*,cn=staging,dc=example,dc=com")
 (target_to="ldap:///cn=People,dc=example,dc=com")
 (version 3.0; acl "MODDN from"; allow (moddn))
 userdn="ldap:///uid=user,dc=example,dc=com";)

ACIs apply only to the subtree where they are defined. In the previous example, the ACI is applied only to
the dc=example,dc=com subtree.

If the target_from or target_to keyword is not set, the ACI matches any source or destination.

1.8. ADVANCED USAGE OF TARGET RULES

By combining multiple keywords, you can create complex target rules. This section provides examples of
the advanced usage of target rules.

1.8.1. Delegating permissions to create and maintain groups

In certain situations, administrators want to delegate permissions to other accounts or groups. By

Red Hat Directory Server 12 Managing access control

14

In certain situations, administrators want to delegate permissions to other accounts or groups. By
combining target keywords, you can create secure access control instructions (ACI) that solve this
request.

Example 1.7. Delegating permissions to create and maintain groups

To enable the uid=user,ou=People,dc=example,dc=com" account to create and update groups in the
ou=groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///cn=*,ou=Groups,dc=example,dc=com")
 (targattrfilters="add=objectclass:(|(objectclas=top)(objectclass=groupOfUniqueNames)))
 (targetattr="cn || uniqueMember || objectClass")
 (version 3.0; acl "example"; allow (read, search, write, add)
 (userdn = "ldap:///uid=test,ou=People,dc=example,dc=com");)

For security reasons, the previous example adds certain limitations. The
uid=test,ou=People,dc=example,dc=com user:

Can create objects that must contain the top and groupOfUniqueNames object classes.

Cannot add additional object classes, such as account. For example, this prevents if you use
Directory Server accounts for local authentication, to create new users with an invalid user
ID, such as 0 for the root user.

The targetfilter rule ensures that the ACI entry applies only to entries with the
groupofuniquenames object class and the targetattrfilter rule ensures that no other object class
can be added.

1.8.2. Targeting both an entry and attributes

The target controls access based on a distinguished name (DN). However, if you use it in combination
with a wildcard and the targetattr keyword, you can target both entries and attributes.

Example 1.8. Targeting both an entry and attributes

To enable the uid=user,ou=People,dc=example,dc.com user to read and search members of
groups in all organizational units in the dc=example,dc=com subtree:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///cn=*,dc=example,dc=com")(targetattr="member" || "cn") (version 3.0;
 acl "Allow uid=user to search and read members of groups";
 allow (read, search) (userdn = "ldap:///uid=user,ou=People,dc=example,dc.com");)

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

15

1.8.3. Targeting certain attributes of entries matching a filter

If you combine the targetattr and targetfilter keywords in two target rules, you can target certain
attributes in entries that match a filter.

Example 1.9. Targeting certain attributes of entries matching a filter

To allow members of the cn=Engineering Admins,dc=example,dc=com group to modify the
jpegPhoto and manager attributes of all entries having the department attribute set to
Engineering, enter:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "jpegPhoto || manager")
 (targetfilter = "(department=Engineering)") (version 3.0;
 acl "Allow engineering admins updating jpegPhoto and manager of department members";
 allow (write) (groupdn = "ldap:///cn=Engineering Admins,dc=example,dc.com");)

1.8.4. Targeting a single directory entry

To target a single directory entry, combine the targetattr and targetfilter keywords.

Example 1.10. Targeting a single directory entry

To enable the uid=user,ou=People,dc=example,dc=com user to read and search the ou and cn
attributes in the ou=Engineering,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=Engineering,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "ou || cn")
 (targetfilter = "(ou=Engineering)") (version 3.0;
 acl "Allow uid=user to search and read engineering attributes";
 allow (read, search) (userdn = "ldap:///uid=user,ou=People,dc=example,dc.com");)

To enable the previous example to target only the ou=Engineering,dc=example,dc=com entry,
sub-entries in ou=Engineering,dc=example,dc=com must not have the ou attribute set to
Engineering.

IMPORTANT

These kinds of ACIs can fail if the structure of your directory changes.

Alternatively, you can create a bind rule that matches the user input in the bind request with an attribute
value that is stored in the targeted entry. See Defining access based on value matching .

Red Hat Directory Server 12 Managing access control

16

1.9. DEFINING ACI PERMISSIONS

Permission rules define the rights that are associated with the access control instruction (ACI) and
whether access is allowed or denied.

In an ACI, the following highlighted part is the permission rule:

(target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

1.9.1. The syntax of permission rules

The general syntax of a permission rule is:

permission (rights)

permission: Sets if the access control instruction (ACI) allows or denies permission.

rights: Sets the rights which the ACI allows or denies. See User rights in permission rules .

Example 1.11. Defining permissions

To enable users stored in the ou=People,dc=example,dc=com entry to search and display all
attributes in their own entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///ou=People,dc=example,dc=com") (version 3.0;
 acl "Allow users to read and search attributes of own entry"; allow (search, read)
 (userdn = "ldap:///self");)

1.9.2. User rights in permission rules

The rights in a permission rule define what operations are granted or denied. In an ACI, you can set one
or multiple of the following rights:

Table 1.1. User rights

Right Description

read Sets whether users can read directory data. This permission applies only to search
operations in LDAP.

write Sets whether users can modify an entry by adding, modifying, or deleting attributes.
This permission applies to the modify and modrdn operations in LDAP.

add Sets whether users can create an entry. This permission applies only to the add
operation in LDAP.

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

17

delete Sets whether users can delete an entry. This permission applies only to the delete
operation in LDAP.

search Sets whether users can search for directory data. To view data returned as part of a
search result, assign search and read rights. This permission applies only to search
operations in LDAP.

compare Sets whether the users can compare data they supply with data stored in the directory.
With compare rights, the directory returns a success or failure message in response to
an inquiry, but the user cannot see the value of the entry or attribute. This permission
applies only to the compare operation in LDAP.

selfwrite Sets whether users can add or delete their own distinguished name (DN) from a group.
This right is used only for group management.

proxy Sets whether the specified DN can access the target with the rights of another entry.
The proxy right is granted within the scope of the ACL, and the user or group who as
the right granted can run commands as any Directory Server user. You cannot restrict
the proxy rights to certain users. For security reasons, set ACIs that use the proxy right
at the most targeted level of the directory.

all Sets all of the rights, except proxy.

Right Description

1.9.3. Rights required for LDAP operations

This section describes the rights you must grant to users depending on the type of LDAP operation
you want to authorize them to perform.

Adding an entry:

Grant add permission on the entry that you want to add.

Grant write permission on the value of each attribute in the entry. This right is granted by
default but can be restricted using the targattrfilters keyword.

Deleting an entry:

Grant delete permission on the entry that you want to delete.

Grant write permission on the value of each attribute in the entry. This right is granted by
default but can be restricted using the targattrfilters keyword.

Modifying an attribute in an entry:

Grant write permission on the attribute type.

Grant write permission on the value of each attribute type. This right is granted by default
but can be restricted using the targattrfilters keyword.

Modifying the RDN of an entry:

Red Hat Directory Server 12 Managing access control

18

Grant write permission on the entry.

Grant write permission on the attribute type that is used in the new RDN.

Grant write permission on the attribute type that is used in the old RDN, if you want to
grant the right to delete the old RDN.

Grant write permission on the value of attribute type that is used in the new RDN. This right
is granted by default but can be restricted using the targattrfilters keyword.

Comparing the value of an attribute:

Grant compare permission on the attribute type.

Searching for entries:

Grant search permission on each attribute type used in the search filter.

Grant read permission on attribute types used in the entry.

1.10. DEFINING ACI BIND RULES

The bind rules in an access control instruction (ACI) define the required bind parameters that must meet
so that Directory Server applies the ACI. For example, you can set bind rules based on:

DNs

Group memberships or assigned roles

Locations from which an entry must bind

Types of authentication that must be in use during the bind

Times or days on which the bind occurs

In an ACI, the following highlighted part is the bind rule:

(target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

1.10.1. The syntax of bind rules

The general syntax of a bind rule is:

keyword comparison_operator "expression"

keyword: Sets the type of the bind operation.

comparison_operator: Valid values are = and != and indicate whether or not the target is the
object specified in the expression. If a keyword supports additional comparison operators, it is
mentioned in the corresponding section.

expression: Sets the expression and must be surrounded by quotation marks. The expression
itself depends on the keyword you use.

1.10.2. Defining user-based access

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

19

The userdn keyword enables you to grant or deny access based on one or multiple DNs and uses the
following syntax:

userdn comparison_operator "ldap:///distinguished_name || ldap:///distinguished_name || ..."

Set the DN in the expression to:

A DN: See Using a DN with the userdn keyword .

An LDAP filter: See Using the userdn keyword with an LDAP filter .

The anyone alias: See Granting anonymous access.

The all alias: See Granting access to authenticated users .

The self alias: See Enabling users to access their own entries .

The parent alias: See Setting access for child entries of a user .

NOTE

Do not specify a host name or port number within the LDAP URL. The URL always applies
to the local server.

Using a DN with the userdn keyword

Set the userdn keyword to a distinguished name (DN) to apply the ACI only to the matching entry. To
match multiple entries, use the * wildcard in the DN.

Using the userdn keyword with a DN must match the following syntax:

userdn comparison_operator ldap:///distinguished_name

Example 1.12. Using a DN with the userdn keyword

To enable the uid=admin,ou=People,dc=example,dc=com user to read the manager attribute of
all other users in the ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0; acl "Allow uid=admin reading manager attribute";
 allow (search, read) userdn = "ldap:///uid=admin,ou=People,dc=example,dc=com";)

Using the userdn keyword with an LDAP filter

If you want to dynamically allow or deny permissions to users, use the userdn keyword with an LDAP
filter:

userdn comparison_operator "ldap:///distinguished_name??scope?(filter)"

Red Hat Directory Server 12 Managing access control

20

NOTE

The LDAP filter supports the * wildcard.

Example 1.13. Using the userdn keyword with an LDAP filter

To enable users who have the department attribute set to Human Resources to update the
homePostalAddress attribute of users in the ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="homePostalAddress") (version 3.0;
 acl "Allow HR setting homePostalAddress"; allow (write)
 userdn = "ldap:///ou=People,dc=example,dc=com??sub?(department=Human Resources)";)

Granting anonymous access

In certain situations, administrators want to configure anonymous access to data in the directory.
Anonymous access means that it is possible to bind to the directory by providing:

No bind DN and password

A valid bind DN and password

To configure anonymous access, use the ldap:///anyone expression with the userdn keyword in a bind
rule:

userdn comparison_operator "ldap:///anyone"

Example 1.14. Granting anonymous access

To enable anyone without authentication to read and search the sn, givenName, and
telephoneNumber attributes in the ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H __ldap://server.example.com -x`
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="sn" || targetattr="givenName" || targetattr = "telephoneNumber")
 (version 3.0; acl "Anonymous read, search for names and phone numbers";
 allow (read, search) userdn = "ldap:///anyone")

Granting access to authenticated users

In certain situations, administrators want to grant permission to any user who is able to successfully bind
to Directory Server, except anonymous binds. To configure this feature, use the ldap:///all expression
with the userdn keyword in a bind rule:

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

21

userdn comparison_operator "ldap:///all"

Example 1.15. Granting access to authenticated users

To enable authenticated users to add and remove themselves as a member to or from the
ou=example,ou=groups,dc=example,dc=com group:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=example,ou=Groups,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="member") (version 3.0;
 acl "Allow users to add/remove themselves from example group";
 allow (selfwrite) userdn = "ldap:///all")

Enabling users to access their own entries

To set ACI which allow or deny access to users to their own entry, use the ldap:///self expression with
the userdn keyword in a bind rule:

userdn comparison_operator "ldap:///self"

Example 1.16. Enabling users to access their own entries

To enable users in the ou=People,dc=example,dc=com entry to update their own userPassword
attribute:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="userPassword") (version 3.0;
 acl "Allow users updating their password";
 allow (write) userdn = "ldap:///self")

Setting access for child entries of a user

To specify that users are granted or denied access to an entry only if their bind DN is the parent of the
targeted entry, use the self:///parent expression with the userdn keyword in a bind rule:

userdn comparison_operator "ldap:///parent"

Example 1.17. Setting access for child entries of a user

To enable the cn=user,ou=People,dc=example,dc=com user to update the manager attribute of
its own sub-entries, such as cn=example,cn=user,ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

Red Hat Directory Server 12 Managing access control

22

dn: cn=user,ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0;
 acl "Allow cn=user to update manager attributes";
 allow (write) userdn = "ldap:///parent")

1.10.3. Defining group-based access

Group-based access control instructions (ACI) enable you to manage access by adding or removing
users to or from a group. To configure an ACI that is based on a group membership, use the groupdn
keyword. If the user is a member of one or multiple of the specified groups, the ACI matches.

When using the groupdn keyword, Directory Server verifies the group membership based on the
following attributes:

member

uniqueMember

memberURL

memberCertificateDescription

Bind rules with the groupdn keyword use the following syntax:

groupdn comparison_operator "ldap:///distinguished_name || ldap:///distinguished_name || ..."

Set the distinguished name (DN) in the expression to:

A DN. See Using a DN with the groupdn keyword .

An LDAP filter. See Using the groupdn keyword with an LDAP filter

If you set multiple DNs in one bind rule, Directory Server applies the ACI if the authenticated user is a
member of one of these groups. To set the user as a member of multiple groups, use multiple groupdn
keywords and combine them using the Boolean and operator. For details, see Combining Bind Rules
Using Boolean Operators.

NOTE

Do not specify a host name or port number within the LDAP URL. The URL always applies
to the local server.

Using a DN with the groupdn keyword

To apply an ACI to members of a group, set the groupdn keyword to the group’s DN.

The groupdn keyword set to a DN uses the following syntax:

groupdn comparison_operator ldap:///distinguished_name

Example 1.18. Using a DN with the groupdn Keyword

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

23

To enable members of the cn=example,ou=Groups,dc=example,dc=com group to search and
read the manager attribute of entries in ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0;
 acl "Allow example group to read manager attribute";
 allow (search, read) groupdn = "ldap:///cn=example,ou=Groups,dc=example,dc=com";)

Using The groupdn keyword with an LDAP filter

Using an LDAP filter with the groupdn keyword, you can define that the authenticated user must be a
member of at least one of the groups that the filter search returns, to match the ACI.

The groupdn keyword with an LDAP filter uses the following syntax:

groupdn comparison_operator "ldap:///distinguished_name??scope?(filter)"

NOTE

The LDAP filter supports the * wildcard.

Example 1.19. Using the groupdn keyword with an LDAP filter

To enable members of groups in dc=example,dc=com and subtrees, which have the manager
attribute set to example, update the homePostalAddress of entries in
ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="homePostalAddress") (version 3.0;
 acl "Allow manager=example setting homePostalAddress"; allow (write)
 userdn = "ldap:///dc=example,dc=com??sub?(manager=example)";)

1.10.4. Defining access based on value matching

Use the userattr keyword in a bind rule to specify which attribute must match between the entry used to
bind to the directory and the targeted entry.

The userattr keyword uses the following syntax:

userattr comparison_operator "attribute_name#bind_type_or_attribute_value

For further details, see:

Using the USERDN bind type

Red Hat Directory Server 12 Managing access control

24

Using the GROUPDN bind type

Using the ROLEDN bind type

Using the SELFDN bind type

Using the LDAPURL bind type

Using the userattr keyword with inheritance

IMPORTANT

By default, Directory Server evaluates access rights on the entry they are created.
However, to prevent user objects on the same level, Directory Server does not grant add
permissions to the entry where you set the access control instructions (ACI), when using
the userattr keyword. To configure this behavior, use the userattr keyword in
conjunction with the parent keyword and grant the permission additionally on level 0.

For details about inheritance, see Defining access based on value matching .

Using the USERDN bind type

To apply an ACI when the binding user distinguished name (DN) matches the DN stored in an attribute,
use the USERDN bind type.

The userattr keyword with the USERDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#USERDN"

Example 1.20. Using the USERDN bind type

To grant a manager all permissions to the telephoneNumber attribute of its own associates:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "telephoneNumber")
 (version 3.0; acl "Manager: telephoneNumber";
 allow (all) userattr = "manager#USERDN";)

The previous ACI is evaluated to be true if the DN of the user who performs the operation on an
entry in ou=People,dc=example,dc=com, matches the DN stored in the manager attribute of this
entry.

Using the GROUPDN bind type

To apply an ACI when the binding user DN is a member of a group set in an attribute, use the
GROUPDN bind type.

The userattr keyword with the GROUPDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#GROUPDN"

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

25

Example 1.21. Using the GROUPDN bind type

To grant users the permission to delete a group entry which they own under the ou=Social
Committee,ou=Groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=Social Committee,ou=Groups,dc=example,dc=com
changetype: modify
add: aci
aci: (target="ou=Social Committee,ou=Groups,dc=example,dc=com)
 (targattrfilters="del=objectClass:(objectClass=groupOfNames)")
 (version 3.0; acl "Delete Group";
 allow (delete) userattr = "owner#GROUPDN";)

The previous ACI is evaluated to be true if the DN of the user who performs the operation is a
member of the group specified in the owner attribute.

The specified group can be a dynamic group, and the DN of the group can be under any suffix in the
database. However, the evaluation of this type of ACI by the server is very resource-intensive.

If you are using static groups that are under the same suffix as the targeted entry, use the following
expression for better performance:

userattr comparison_operator "ldap:///distinguished_name?attribute_name#GROUPDN"

Using the ROLEDN bind type

To apply an ACI when the binding user belongs to a role specified in an attribute, use the ROLEDN bind
type.

The userattr keyword with the ROLEDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#ROLEDN"

Example 1.22. Using the ROLEDN bind type

To enable users with the cn=Administrators,dc=example,dc=com role to search and read the
manager attribute of entries in ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (version 3.0; acl "Allow example role owners to read manager attribute";
 allow (search, read) userattr = manager#ROLEDN;)

The specified role can be under any suffix in the database. If you are also using filtered roles, the
evaluation of this type of ACI uses a lot of resources on the server.

If you are using a static role definition and the role entry is under the same suffix as the targeted entry,

Red Hat Directory Server 12 Managing access control

26

If you are using a static role definition and the role entry is under the same suffix as the targeted entry,
use the following expression for better performance:

Using the SELFDN bind type

The SELFDN bind type enables you to grant permissions, when the bound user’s DN is set in a single-
value attribute of the entry.

The userattr keyword with the SELFDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#SELFDN"

Example 1.23. Using the SELFDN bind type

To enable a user to add ipatokenuniqueid=*,cn=otp,dc=example,dc=com entries that have the
bind user’s DN set in the ipatokenOwner attribute:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=otp,dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///ipatokenuniqueid=*,cn=otp,dc=example,dc=com")
 (targetfilter = "(objectClass=ipaToken)")(version 3.0;
 acl "token-add-delete"; allow (add) userattr = "ipatokenOwner#SELFDN";)

Using the LDAPURL bind type

To apply an ACL when the bind DN matches the filter specified in an attribute of the targeted entry, use
the LDAPURL bind type.

The userattr keyword with the LDAPURL bind type requires the following syntax:

userattr comparison_operator "attribute_name#LDAPURL"

Example 1.24. Using the LDAPURL bind type

To grant read and search permissions to user objects which contain the aciurl attribute set to
ldap:///ou=People,dc=example,dc=com??one?(uid=user*):

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*")
 (version 3.0; acl "Allow read,search "; allow (read,search)
 (userattr = "aciurl#LDAPURL);)

Using the userattr keyword with inheritance

When you use the userattr keyword to associate the entry used to bind with the target entry, the ACI
applies only to the target specified and not to the entries below it. In certain situations, administrators
want to extend the application of the ACI several levels below the targeted entry. This is possible by

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

27

using the parent keyword and specifying the number of levels below the target that should inherit the
ACI.

When using the userattr keyword with the parent keyword, the syntax is as follows:

userattr comparison_operator
"parent[inheritance_level].attribute_name#bind_type_or_attribute_value

inheritance_level: Comma-separated list that indicates how many levels below the target
inherit the ACI. You can include five levels (0, 1, 2, 3, 4) below the targeted entry. Zero (0)
indicates the targeted entry.

attribute_name: The attribute targeted by the userattr or groupattr keyword.

bind_type_or_attribute_value: Sets the attribute value or a bind type, such as USERDN.

For example:

userattr = "parent[0,1].manager#USERDN"

This bind rule is evaluated to be true if the bind DN matches the manager attribute of the targeted
entry. The permissions granted when the bind rule is evaluated to be true apply to the target entry and
to all entries immediately below it.

Example 1.25. Using the userattr keyword with inheritance

To enable a user to read and search the cn=Profiles,dc=example,dc=com entry where the user’s
DN is set in the owner attribute, as well as the first level of child entries which includes
cn=mail,cn=Profiles,dc=example,dc=com and cn=news,cn=Profiles,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x`

dn: cn=Profiles,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="*") (version 3.0; acl "Profile access",
 allow (read,search) userattr="parent[0,1].owner#USERDN" ;)

1.10.5. Defining access from specific IP addresses or ranges

The ip keyword in a bind rule enables you to grant or deny access from a specific IP address or a range
of IP addresses.

Bind rules with the ip keyword use the following syntax:

ip comparison_operator "IP_address_or_range"

Example 1.26. Using IPv4 address ranges in bind rules

To deny access from the 192.0.2.0/24 network to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

Red Hat Directory Server 12 Managing access control

28

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny 192.0.2.0/24"; deny (all)
 (userdn = "ldap:///anyone") and (ip != "192.0.2.");)

Example 1.27. Using IPv6 address ranges in bind rules

To deny access from the 2001:db8::/64 network to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny 2001:db8::/64"; deny (all)
 (userdn = "ldap:///anyone") and (ip != "2001:db8::");)

1.10.6. Defining access from a specific host or domain

The dns keyword in a bind rule enables you to grant or deny access from a specific host or domain.

WARNING

If Directory Server cannot resolve a connecting IP address to its fully qualified
domain name (FQDN) using DNS, the server does not apply access control
instructions (ACI) with the dns bind rule for this client.

If client IP addresses are not resolvable using DNS, use the ip keyword and IP
addresses instead. See Defining access from specific IP addresses or ranges .

Bind rules with the dns keyword use the following syntax:

dns comparison_operator "host_name_or_domain_name"

Example 1.28. Defining access from a specific host

To deny access from the client.example.com host to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

29

add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny client.example.com"; deny (all)
 (userdn = "ldap:///anyone") and (dns != "client.example.com");)

Example 1.29. Defining access from a specific domain

To deny access from all hosts within the example.com domain to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "") (version 3.0;acl "Deny example.com"; deny (all) (userdn =
"ldap:///anyone") and (dns != ".example.com");)

1.10.7. Requiring a certain level of security in connections

The security of a connection is determined by its security strength factor (SSF), which sets the minimum
key strength required to process operations. Using the ssf keyword in a bind rule, you can set that a
connection must use a certain level of security. This enables you to force operations, for example
password changes, to be performed over an encrypted connection.

The value for the SSF for any operation is the higher of the values between a TLS connection and a
SASL bind. This means that if a server is configured to run over TLS and a replication agreement is
configured for SASL/GSSAPI, the SSF for the operation is whichever available encryption type is more
secure.

Bind rules with the ssf keyword use the following syntax:

ssf comparison_operator key_strength

You can use the following comparison operators:

= (equal to)

! (not equal to)

< (less than)

> (greater than)

⇐ (less than or equal to)

>= (greater than or equal to)

If the key_strength parameter is set to 0, no secure operation is required for the LDAP operation.

Example 1.30. Requiring a certain level of security in connections

To configure that users in the dc=example,dc=com entry can only update their userPassword
attribute when the SSF is 128 or higher:

Red Hat Directory Server 12 Managing access control

30

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "userPassword") (version 3.0;
 acl "Allow users updating own userPassword";
 allow (write) (userdn = "ldap:///self") and (ssf >= "128");)

1.10.8. Defining access at a specific day of the week

The dayofweek keyword in a bind rule enables you to grant or deny access based on the day of the
week.

NOTE

Directory Server uses the time on the server to evaluate the access control instruction
(ACI); not the time on the client.

Bind rules with the dayofweek keyword use the following syntax:

dayofweek comparison_operator "comma-separated_list_of_days"

Example 1.31. Granting access on specific days of the week

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server
on Saturdays and Sundays:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (version 3.0; acl "Deny access on Saturdays and Sundays";
 deny (all)
 (userdn = "ldap:///uid=user,ou=People,dc=example,dc=com") and
 (dayofweek = "Sun,Sat");)

1.10.9. Defining access at a specific time of day

The timeofday keyword in a bind rule enables you to grant or deny access based on the time of day.

NOTE

Directory Server uses the time on the server to evaluate the access control instructions
(ACI); not the time on the client.

Bind rules with the timeofday keyword use the following syntax:

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

31

timeofday comparison_operator "time"

You can use the following comparison operators:

= (equal to)

! (not equal to)

< (less than)

> (greater than)

⇐ (less than or equal to)

>= (greater than or equal to)

IMPORTANT

The timeofday keyword requires that you specify the time in 24-hour format.

Example 1.32. Defining access at a specific time of a day

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server
between 6pm and 0am:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
 aci: (version 3.0; acl "Deny access between 6pm and 0am";
 deny (all)
 (userdn = "ldap:///uid=user,ou=People,dc=example,dc=com") and
 (timeofday >= "1800" and timeofday < "2400");)

1.10.10. Defining access based on the authentication method

The authmethod keyword in a bind rule sets what authentication method a client must use when
connecting to the server, to apply the access control instruction (ACI).

Bind rules with the authmethod keyword use the following syntax:

authmethod comparison_operator "authentication_method"

You can set the following authentication methods:

none: Authentication is not required and represents anonymous access. This is the default.

simple: The client must provide a user name and password to bind to the directory.

SSL: The client must bind to the directory using a TLS certificate either in a database, smart
card, or other device. For details about certificate-based authentication, see Defining access
based on the authentication method.

Red Hat Directory Server 12 Managing access control

32

SASL: The client must bind to the directory over a Simple Authentication and Security Layer
(SASL) connection. When you use this authentication method in a bind rule, additionally specify
the SASL mechanism, such as EXTERNAL.

Example 1.33. Enabling access only for connections using the EXTERNAL SASL authentication
method

To deny access to the server if the connection does not use a certificate-based authentication
method or SASL:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x`

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (version 3.0; acl "Deny all access without certificate"; deny (all)
 (authmethod = "none" or authmethod = "simple");)

1.10.11. Defining access based on roles

The roledn keyword in a bind rule enables you to grant or deny access to users having one or multiple
role sets.

NOTE

Red Hat recommends using groups instead of roles.

Bind rules with the roledn keyword use the following syntax:

roledn comparison_operator "ldap:///distinguished_name || ldap:///distinguished_name || ..."

If a distinguished name (DN) contains a comma, escape the comma with a backslash.

Example 1.34. Defining access based on roles

To enable users that have the cn=Human Resources,ou=People,dc=example,dc=com role set in
the nsRole attribute to search and read the manager attribute of entries in
ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0;
 acl "Allow manager role to update manager attribute";
 allow (search, read) roledn = "ldap:///cn=Human Resources,ou=People,dc=example,dc=com";)

1.10.12. Combining bind rules using Boolean operators

When creating complex bind rules, the AND, OR, and NOT Boolean operators enable you to combine

CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS

33

When creating complex bind rules, the AND, OR, and NOT Boolean operators enable you to combine
multiple keywords.

Bind rules combined with Boolean operators have the following syntax:

bind_rule_1 boolean_operator bind_rule_2...

Example 1.35. Combining bind rules using Boolean operators

To configure that users which are member of both the
cn=Administrators,ou=Groups,dc=example,com and
cn=Operators,ou=Groups,dc=example,com] group can [command]`read, search, add, update,
and delete entries in ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///ou=People,dc=example,dc=com") (version 3.0;
 acl "Allow members of administrators and operators group to manage users";
 allow (read, search, add, write, delete)
 groupdn = "ldap:///cn=Administrators,ou=Groups,dc=example,com" AND
 groupdn = "ldap:///cn=Operators,ou=Groups,dc=example,com";)

How Directory Server evaluates boolean operators

Directory Server evaluates Boolean operators by using the following rules:

All expressions from left to right.
In the following example, bind_rule_1 is evaluated first:

(bind_rule_1) OR (bind_rule_2)

From innermost to outermost parenthetical expressions first.
In the following example, bind_rule_2 is evaluated first and bind_rule_3 second:

(bind_rule_1) OR ((bind_rule_2) AND (bind_rule_3))

NOT before AND or OR operators.
In the following example, bind_rule_2 is evaluated first:

(bind_rule_1) AND NOT (bind_rule_2)

The AND and OR operators have no order of precedence.

Red Hat Directory Server 12 Managing access control

34

CHAPTER 2. USING MACRO ACCESS CONTROL
INSTRUCTIONS

Macro access control instructions (ACIs) provides you with the possibility to automate the tailored
access to an LDAP entry distinguished name (DN) or to its part and reduce the number of ACIs.

2.1. MACRO ACCESS CONTROL INSTRUCTION EXAMPLE

The picture below shows a directory tree with suffixes dc=hostedCompany1,dc=example,dc=com
and dc=hostedCompany2,dc=example,dc=com with the repetitive pattern of subdomains. Each
subdomain has the same structure of ou=groups, ou=people entries. The directory tree uses macro
access control instructions (ACIs) to reduce the total number of ACIs.

The ACIs that apply in the directory tree also have a repeating pattern. For example, the following ACI is
located on the dc=hostedCompany1,dc=example,dc=com node and grants read and search rights to
the DomainAdmins group to any entry in that tree:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=com";)

Figure 2.1. Directory tree for macro ACI example

The ACIs below show the different part of DN in the groupdn keyword:

The dc=hostedCompany1,dc=example,dc=com node contains the following ACI:

CHAPTER 2. USING MACRO ACCESS CONTROL INSTRUCTIONS

35

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=com";)

The dc=subdomain1,dc=hostedCompany1,dc=example,dc=com node contains the
following ACI:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)

groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=subdomain1,dc=hostedCompany1,dc=example,dc=
com";)

The dc=hostedCompany2,dc=example,dc=com node contains the following ACI:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany2,dc=example,dc=com";)

The dc=subdomain1,dc=hostedCompany2,dc=example,dc=com node contains the
following ACI:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)

groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=subdomain1,dc=hostedCompany2,dc=example,dc=
com";)

Use the macro to replace multiple ACIs for repetitive patterns. For example, to reduce the ACIs above
to one, use the following macro:

aci: (target="ldap:///ou=Groups,($dn),dc=example,dc=com")
 (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,[$dn],dc=example,dc=com";)

2.2. MACRO ACCESS CONTROL INSTRUCTION SYNTAX

Macro access control instructions (ACIs) include the following types of expressions to replace a DN or a
part of a DN:

($dn),

[$dn],

($attr.attrName), where attrName represents an attribute which is the part of the target entry.

The ACI keywords provide bind credentials which are the subject of the ACI. The subject determines
where the ACI applies.

Table 2.1. Macros for ACI keywords

Red Hat Directory Server 12 Managing access control

36

Macro ACI keywords Description

($dn) target, targetfilter, userdn,
roledn, groupdn, userattr

Matching and direct substitution
in the subject. It will match to
target or to targetfilter and
substitute the matched value into
userdn, groupdn, or userattr.

[$dn] targetfilter, userdn, roledn,
groupdn, userattr

Substitution of multiple RDNs
that work in subtrees of the
subject.

($attr.attrName) userdn, roledn, groupdn,
userattr

Substitution of the
attributeName attribute value
from the target entry into the
subject.

Note, if you use any macro, you must define the target that contains the ($dn) macro. You can combine
($dn) and ($attr.attrName) macros.

2.3. THE ($DN) MACRO EXAMPLE

The ($dn) macro compares the substitution value to the entry from the LDAP request. For example, the
LDAP request targets the entry:

cn=all,ou=groups,dc=subdomain1,dc=hostedCompany1,dc=example,dc=com

The ACI defines the following target:

(target="ldap:///ou=groups,($dn),dc=example,dc=com")

The ($dn) macro matches with dc=subdomain1,dc=hostedCompany1 in this example.

The substring that matches the target expands the subject when the subject of the ACI uses the ($dn)
macro:

aci: (target="ldap:///ou=*,($dn),dc=example,dc=com")
 (targetattr = "*") (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=domainAdmins,ou=groups,($dn),dc=example,dc=com";)

The ACI expands as follow:

aci: (target="ldap:///ou=groups,dc=subdomain1,dc=hostedCompany1,
 dc=example,dc=com") (targetattr = "*") (version 3.0; acl "Domain
 access"; allow (read,search) groupdn="ldap:///cn=domainAdmins,ou=groups,
 dc=subdomain1,dc=hostedCompany1,dc=example,dc=com";)

After the macro is expanded, Red Hat Directory Server evaluates the ACI following the normal process
to determine if access is granted.

CHAPTER 2. USING MACRO ACCESS CONTROL INSTRUCTIONS

37

2.4. THE [$DN] MACRO EXAMPLE

The [$dn] macro examines the DN of the targeted source multiple times. This macro drops the leftmost
RDN component each iteration until it finds a match.

For example, you have an LDAP request with the target at the
cn=all,ou=groups,dc=subdomain1,dc=hostedCompany1,dc=example,dc=com subtree and the
following ACI:

aci: (target="ldap:///ou=groups,($dn),dc=example,dc=com")
 (targetattr = "*") (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=domainAdmins,ou=groups,[$dn],dc=example,dc=com";)

The macro expands as follows:

1. The ($dn) in the target matches dc=subdomain1,dc=hostedCompany1.

2. The replacement for the [$dn] in the subject is dc=subdomain1,dc=hostedCompany1.
The result is
groupdn="ldap:///cn=domainAdmins,ou=Groups,dc=subdomain1,dc=hostedCompany1,d
c=example,dc=com". If the bind DN is a member of that group, the matching process stops,
and the ACI is evaluated. If the result does not match, the process continues and drops the
leftmost part.

3. The [$dn] in the subject is dc=hostedCompany1.
The result is
groupdn="ldap:///cn=domainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=co
m". If the bind DN is not a member of that group, the ACI is not evaluated. If it is a member, the
ACI is evaluated.

The [$dn] macro grants access to domain-level administrators to all the subdomains in the directory
tree. It is useful for expressing a hierarchical relationship between domains. For example, consider the
following ACI:

aci: (target="ldap:///ou=*, ($dn),dc=example,dc=com")
 (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=domainAdmins,ou=groups,[$dn],dc=example,dc=com";)

This ACI grants access to the members of the
cn=domainAdmins,ou=groups,dc=hostedCompany1,dc=example,dc=com to all of the subdomains
under dc=hostedCompany1. An administrator that is a member of that group can access a subtree like
ou=people,dc=subdomain1.1,dc=subdomain1. But members of
cn=domainAdmins,ou=groups,dc=subdomain1.1 do not have an access to the
ou=people,dc=hostedCompany1 and ou=people,dc=subdomain1,dc=hostedCompany1 nodes.

2.5. THE ($ATTR.ATTRNAME) MACRO EXAMPLE

You always use the ($attr.attrName) macro as a part of a DN. For example, define the following roledn:

roledn = "ldap:///cn=DomainAdmins,($attr.ou),dc=HostedCompany1,dc=example,dc=com"

Assuming, that the server receives an LDAP operation that targets at the following entry:

Red Hat Directory Server 12 Managing access control

38

dn: cn=Jane Doe,ou=People,dc=HostedCompany1,dc=example,dc=com
cn: Jane Doe
sn: Doe
ou: Engineering...

To evaluate the roledn part of the ACI, the server looks at the ou attribute in the targeted entry and
uses the value of this attribute to expand the macro. The roledn expands as follows:

roledn = "ldap:///cn=DomainAdmins,ou=Engineering,dc=HostedCompany1,dc=example,dc=com"

Red Hat Directory Server evaluates the ACI according to the normal ACI evaluation algorithm.

If the attribute has multiple values, RHDS uses each value to expand the macro and uses the value that
has a first successful match of the expanded macro. For example:

dn: cn=Jane Doe,ou=People,dc=HostedCompany1,dc=example,dc=com
cn: Jane Doe
sn: Doe
ou: Engineering
ou: People...

When the Red Hat Directory Server evaluates the ACI, it performs a logical OR on the following
expanded expressions:

roledn = "ldap:///cn=DomainAdmins,ou=Engineering,dc=HostedCompany1,dc=example,dc=com"

roledn = "ldap:///cn=DomainAdmins,ou=People,dc=HostedCompany1,dc=example,dc=com"

CHAPTER 2. USING MACRO ACCESS CONTROL INSTRUCTIONS

39

CHAPTER 3. MANAGING ACCESS CONTROL INSTRUCTIONS
IN LDAP BROWSER

This set of instructions provides you with the basics of managing the access control instructions (ACIs)
by using the LDAP browser wizard in the web console.

3.1. CREATING AN ACCESS CONTROL INSTRUCTION IN THE LDAP
BROWSER

You can create and add an access control instruction (ACI) for a Red Hat Directory Server (RHDS) entry
by using the LDAP Browser in the web console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP browser.

3. Select an LDAP entry and click the Options menu.

4. From the drop-down menu, select ACIs.

5. To create an ACI by using the LDAP browser wizard, you have two options:

a. Click Add ACI Wizard to create the ACI using the wizard. Continue with the next step.

b. Click Add ACI Manually, specify the instruction in the text field, and click Save ACI.

6. Follow the steps in the wizard and click the Next button after you complete each step.

7. To create the ACI, review the data that the wizard generated, and click Add ACI.

8. To close the wizard window, click the Finish button.

Verification

Verify the new ACI appears in the Manage ACIs window.

3.2. EDITING ACCESS CONTROL INSTRUCTIONS IN THE LDAP
BROWSER

You can edit an access control instruction (ACI) for a Red Hat Directory Server entry by using the LDAP
Browser Manage ACIs window in the web console.

Prerequisites

Access to the web console.

Red Hat Directory Server 12 Managing access control

40

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP browser.

3. Select an LDAP entry and click the Options menu.

4. From the drop-down menu select ACIs.

5. Click the Options menu and select Edit ACI.

6. Modify the instruction in the text field and click Save ACI.

Verification

In the Manage ACIs window expand the ACI you modified and observe your changes.

3.3. REMOVING AN ACCESS CONTROL INSTRUCTION IN THE LDAP
BROWSER

You can remove an access control instruction (ACI) for a Red Hat Directory Server entry by using the
LDAP Browser in the web console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Select an LDAP entry and click the Options menu.

4. From the drop-down menu select ACIs to open the Manage ACIs window.

5. Click the Node options icon for the ACI you are removing and select Remove ACI.

6. Select the Yes, I’m sure checkbox and click the Delete ACI button.

Verification

On the Manage ACIs window, verify the ACI you removed no longer appears on the list of ACIs.

CHAPTER 3. MANAGING ACCESS CONTROL INSTRUCTIONS IN LDAP BROWSER

41

CHAPTER 4. CONFIGURING A PASSWORD-BASED ACCOUNT
LOCKOUT POLICY

A password-based account lockout policy prevents attackers from repeatedly trying to guess a user’s
password. You can configure the account lockout policy to lock a user account after a specified number
of failed attempts to bind.

If a password-based account lockout policy is configured, Directory Server maintains the lockout
information in the following attributes of the user entries:

passwordRetryCount: Stores the number of failed bind attempts. Directory Server resets the
value if the user successfully binds to the directory later than the time in retryCountResetTime.
This attribute is present after a user fails to bind for the first time.

retryCountResetTime: Stores the time after which the passwordRetryCount attribute is reset.
This attribute is present after a user fails to bind for the first time.

accountUnlockTime: Stores the time after which the user account is unlocked. This attribute is
present after the account was locked for the first time.

4.1. CONFIGURING WHETHER TO LOCK ACCOUNTS WHEN REACHING
OR EXCEEDING THE CONFIGURED MAXIMUM ATTEMPTS

Administrators can configure one of the following behaviors when Directory Server locks accounts on
failed login attempts:

The server locks accounts if the limit has been exceeded. For example, if the limit is set to 3
attempts, the lockout happens after the fourth failed attempt (n+1). This also means that, if the
fourth attempt succeeds, Directory Server does not lock the account.
By default, Directory Server uses this legacy password policy that is often expected by
traditional LDAP clients.

The server locks accounts if the limit has been reached. For example, if the limit is set to 3
attempts, the server locks the account after the third failed attempt (n).
Modern LDAP clients often expect this behavior.

This procedure describes how to disable the legacy password policy. After changing the policy,
Directory Server blocks login attempts for a user that reached the configured limit.

Prerequisites

You configured an account lockout policy.

Procedure

To disable the legacy password policy and lock accounts if the limit has been reached, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace
passwordLegacyPolicy=off

Verification

1. Display the value of the passwordmaxfailure setting:

Red Hat Directory Server 12 Managing access control

42

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy get
passwordmaxfailure
passwordmaxfailure: 2

2. Attempt to bind using an invalid password one more time than the value set in
passwordmaxfailure:

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Constraint violation (19)
 additional info: Exceed password retry limit. Please try later.

With legacy passwords disabled, Directory Server locked the account after the second attempt,
and further tries are blocked with an ldap_bind: Constraint violation (19) error.

Additional resources

Configuring a password-based account lockout policy using the command line

4.2. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT
POLICY USING THE COMMAND LINE

To block login recurring bind attempts with invalid passwords, configure a password-based account
lockout policy.

IMPORTANT

The behavior whether Directory Server locks accounts when reaching or exceeding the
configured maximum attempts depends on the legacy password policy setting.

Procedure

1. Optional: Identify whether the legacy password policy is enabled or disabled:

dsconf -D "cn=Directory Manager" ldap://server.example.com config get
passwordLegacyPolicy
passwordLegacyPolicy: on

2. Enable the password lockout policy and set the maximum number of failures to 2:

[command]`dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy
set --pwdlockout on --pwdmaxfailures=2

CHAPTER 4. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

43

With the legacy password policy enabled, Directory Server will lock accounts after the third
failed attempt to bind (value of the --pwdmaxfailures parameter + 1).

The dsconf pwpolicy set command supports the following parameters:

--pwdlockout: Enables or disables the account lockout feature. Default: off.

--pwdmaxfailures: Sets the maximum number of allowed failed bind attempts before
Directory Server locks the account. Default: 3.
Note that this lockout happens one attempt later if the legacy password policy setting is
enabled. Default: 3.

--pwdresetfailcount: Sets the time in seconds before Directory Server resets the
passwordRetryCount attribute in the user’s entry. Default: 600 seconds (10 minutes).

--pwdlockoutduration: Sets the time of accounts being locked in seconds. This parameter
is ignored if you set the --pwdunlock parameter to off. Default: 3600 seconds (1 hour).

--pwdunlock: Enables or disables whether locked accounts should be unlocked after a
certain amount of time or stay disabled until an administrator manually unlocks them.
Default: on.

Verification

Attempt to bind using an invalid password two more times than the value you set in the --
pwdmaxfailures parameter:

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Constraint violation (19)
 additional info: Exceed password retry limit. Please try later.

With legacy passwords enabled, Directory Server locked the account after the limit has
exceeded, and further tries are blocked with an ldap_bind: Constraint violation (19) error.

Additional resources

Configuring the legacy password policy

4.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT

Red Hat Directory Server 12 Managing access control

44

4.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT
POLICY USING THE WEB CONSOLE

To block login recurring bind attempts with invalid passwords, configure a password-based account
lockout policy.

IMPORTANT

The behavior whether Directory Server locks accounts when reaching or exceeding the
configured maximum attempts depends on the legacy password policy setting.

Prerequisites

You are logged in to the instance in the web console.

Procedure

1. Optional: Identify whether the legacy password policy is enabled or disabled:

dsconf -D "cn=Directory Manager" ldap://server.example.com config get
passwordLegacyPolicy
passwordLegacyPolicy: on

This setting is not available in the web console.

2. Navigate to Database → Password Policies → Global Policy → Account Lockout.

3. Select Enable Account Lockout.

4. Configure the lockout settings:

Number of Failed Logins That Locks out Account: Sets the maximum number of allowed
failed bind attempts before Directory Server locks the account.

Time Until Failure Count Resets: Sets the time in seconds before Directory Server resets
the passwordRetryCount attribute in the user’s entry.

Time Until Account Unlocked: Sets the time of accounts beging locked in seconds. This
parameter is ignored if you disable Do Not Lockout Account Forever.

Do Not Lockout Account Forever: Enables or disables whether locked accounts should be
unlocked after a certain amount of time or stay disabled until an administrator manually
unlocks them.

5. Click Save.

Verification

Attempt to bind using an invalid password two more times than the value you set in Number of
Failed Logins That Locks out Account:

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

CHAPTER 4. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY

45

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Invalid credentials (49)

ldapsearch -H ldap://server.example.com -D
"uid=example,ou=People,dc=example,dc=com" -w invalid-password -b
"dc=example,dc=com" -x
ldap_bind: Constraint violation (19)
 additional info: Exceed password retry limit. Please try later.

With legacy passwords enabled, Directory Server locked the account after the limit has
exceeded, and further tries are blocked with an ldap_bind: Constraint violation (19) error.

Additional resources

Configuring the legacy password policy

Red Hat Directory Server 12 Managing access control

46

CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT
LOCKOUT POLICIES

You can use the Account Policy plug-in to configure different time-based lockout policies, such as:

Automatically disabling accounts a certain amount of time the last successful login

Automatically disabling accounts a certain amount of time after you created them

Automatically disabling accounts a certain amount of time after password expiry

Automatically disabling account on both account inactivity and password expiration

5.1. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT
OF TIME THE LAST SUCCESSFUL LOGIN

Follow this procedure to configure a time-based lockout policy that inactivates users under the
dc=example,dc=com entry who do not log in for more than 21 days.

This the account inactivity feature to ensure, for example if an employee left the company and the
administrator forgets to delete the account, that Directory Server inactivates the account after a
certain amount of time.

Procedure

1. Enable the Account Policy plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
enable

2. Configure the plug-in configuration entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --state-attr lastLoginTime --alt-state-attr 1.1 --spec-attr
acctPolicySubentry --limit-attr accountInactivityLimit

This command uses the following options:

--always-record-login yes: Enables logging of the login time. This is required to use Class
of Service (CoS) or roles with account policies, even if it does not have the
acctPolicySubentry attribute set.

--state-attr lastLoginTime: Configures that the Account Policy plug-in stores the last login
time in the lastLoginTime attribute of users.

--alt-state-attr 1.1: Disables using an alternative attribute to check if the primary one does
not exist. By default, Directory Server uses the createTimestamp attribute as alternative.
However, this causes that Directory Server logs out existing users automatically if their
account do not have the lastLoginTime attribute set and createTimestamp is older than
the configured inactivity period. Disabling the alternative attribute causes that
Directory Server automatically adds the lastLoginTime attribute to user entries when they
log in the next time.

--spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries

CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

47

--spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries
that have the acctPolicySubentry attribute set. You configure this attribute in the CoS
entry.

--limit-attr accountInactivityLimit: Configures that the accountInactivityLimit attribute in
the account inactivation policy entry stores the inactivity time.

3. Restart the instance:

dsctl instance_name restart

4. Create the account inactivation policy entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=Account Inactivation Policy,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: accountpolicy
accountInactivityLimit: 1814400
cn: Account Inactivation Policy

The value in the accountInactivityLimit attribute configures that Directory Server inactivates
accounts 1814400 seconds (21 days) after the last log in.

5. Create the CoS template entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=TemplateCoS,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: cosTemplate
acctPolicySubentry: cn=Account Inactivation Policy,dc=example,dc=com

This template entry references the account inactivation policy.

6. Create the CoS definition entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=DefinitionCoS,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectclass: cosSuperDefinition
objectclass: cosPointerDefinition
cosTemplateDn: cn=TemplateCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

This definition entry references the CoS template entry and causes that the
acctPolicySubentry attribute appears in each user entry with a value set to cn=Account
Inactivation Policy,dc=example,dc=com.

Red Hat Directory Server 12 Managing access control

48

Verification

1. Set the lastLoginTime attribute of a user to a value that is older than the inactivity time you
configured:

ldapmodify -H ldap://server.example.com -x -D "cn=Directory Manager" -W

dn: uid=example,ou=People,dc=example,dc=com
changetype: modify
replace: lastLoginTime
lastLoginTime: 20210101000000Z

2. Try to connect to the directory as a this user:

ldapsearch -H ldap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com"
ldap_bind: Constraint violation (19)
 additional info: Account inactivity limit exceeded. Contact system administrator to reset.

If Directory Server denies access and returns this error, account inactivity works.

Additional resources

Re-enabling accounts that reached the inactivity limit

5.2. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT
OF TIME AFTER YOU CREATED THEM

Follow this procedure to configure that accounts in the dc=example,dc=com entry expire 60 days after
the administrator created them.

Use the account expiration feature, for example, to ensure that accounts for external workers are locked
a certain amount of time after they have been created.

Procedure

1. Enable the Account Policy plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
enable

2. Configure the plug-in configuration entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --state-attr createTimestamp --alt-state-attr 1.1 --spec-attr
acctPolicySubentry --limit-attr accountInactivityLimit

This command uses the following options:

--always-record-login yes: Enables logging of the login time. This is required to use Class
of Service (CoS) or roles with account policies, even if it does not have the
acctPolicySubentry attribute set.

--state-attr createTimestamp: Configures that the Account Policy plug-in uses the value of

CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

49

--state-attr createTimestamp: Configures that the Account Policy plug-in uses the value of
the createTimestamp attribute to calculate whether an account is expired.

--alt-state-attr 1.1: Disables using an alternative attribute to check if the primary one does
not exist.

--spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries
that have the acctPolicySubentry attribute set. You configure this attribute in the CoS
entry.

--limit-attr accountInactivityLimit: Configures that the accountInactivityLimit attribute in
the account expiration policy entry stores the maximum age.

3. Restart the instance:

dsctl instance_name restart

4. Create the account expiration policy entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=Account Expiration Policy,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: accountpolicy
accountInactivityLimit: 5184000
cn: Account Expiration Policy

The value in the accountInactivityLimit attribute configures that accounts expire 5184000
seconds (60 days) after they have been created.

5. Create the CoS template entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=TemplateCoS,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: cosTemplate
acctPolicySubentry: cn=Account Expiration Policy,dc=example,dc=com

This template entry references the account expiration policy.

6. Create the CoS definition entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=DefinitionCoS,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectclass: cosSuperDefinition

Red Hat Directory Server 12 Managing access control

50

objectclass: cosPointerDefinition
cosTemplateDn: cn=TemplateCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

This definition entry references the CoS template entry and causes that the
acctPolicySubentry attribute appears in each user entry with a value set to cn=Account
Expiration Policy,dc=example,dc=com.

Verification

Try to connect to the directory as a user stored in the dc=example,dc=com entry whose
createTimestamp attribute is set to a value more than 60 days ago:

ldapsearch -H ldap://server.example.com -x -D "uid=example,dc=example,dc=com" -
W -b "dc=example,dc=com"
ldap_bind: Constraint violation (19)
 additional info: Account inactivity limit exceeded. Contact system administrator to reset.

If Directory Server denies access and returns this error, account expiration works.

Additional resources

Re-enabling accounts that reached the inactivity limit

5.3. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT
OF TIME AFTER PASSWORD EXPIRY

Follow this procedure to configure a time-based lockout policy that inactivates users under the
dc=example,dc=com entry who do not change their password for more than 28 days.

Prerequisites

Users must have the passwordExpirationTime attribute set in their entry.

Procedure

1. Enable the password expiration feature:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace
passwordExp=on

2. Enable the Account Policy plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
enable

3. Configure the plug-in configuration entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --always-record-login-attr lastLoginTime --state-attr
non_existent_attribute --alt-state-attr passwordExpirationTime --spec-attr
acctPolicySubentry --limit-attr accountInactivityLimit

CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

51

This command uses the following options:

--always-record-login yes: Enables logging of the login time. This is required to use Class
of Service (CoS) or roles with account policies, even if it does not have the
acctPolicySubentry attribute set.

--always-record-login-attr lastLoginTime: Configures that the Account Policy plug-in
stores the last login time in the lastLoginTime attribute of users.

--state-attr non_existent_attribute: Sets the primary time attribute used to evaluate an
account policy to a non-existent dummy attribute name.

--alt-state-attr `passwordExpirationTime: Configures the plug-in to use the
passwordExpirationTime attribute as the alternative attribute to check.

--spec-attr acctPolicySubentry: Configures Directory Server to apply the policy to entries
that have the acctPolicySubentry attribute set. You configure this attribute in the CoS
entry.

--limit-attr accountInactivityLimit: Configures that the accountInactivityLimit attribute in
the account policy entry stores the time when accounts are inactivated after their last
password change.

4. Restart the instance:

dsctl instance_name restart

5. Create the account inactivation policy entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=Account Inactivation Policy,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: accountpolicy
accountInactivityLimit: 2419200
cn: Account Inactivation Policy

The value in the accountInactivityLimit attribute configures that Directory Server inactivates
accounts 2419200 seconds (28 days) after the password was changed.

6. Create the CoS template entry:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=TemplateCoS,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: cosTemplate
acctPolicySubentry: cn=Account Inactivation Policy,dc=example,dc=com

This template entry references the account inactivation policy.

7. Create the CoS definition entry:

Red Hat Directory Server 12 Managing access control

52

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=DefinitionCoS,dc=example,dc=com
objectClass: top
objectClass: ldapsubentry
objectclass: cosSuperDefinition
objectclass: cosPointerDefinition
cosTemplateDn: cn=TemplateCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

This definition entry references the CoS template entry and causes that the
acctPolicySubentry attribute appears in each user entry with a value set to cn=Account
Inactivation Policy,dc=example,dc=com.

Verification

1. Set the passwordExpirationTime attribute of a user to a value that is older than the inactivity
time you configured:

ldapmodify -H ldap://server.example.com -x -D "cn=Directory Manager" -W

dn: uid=example,ou=People,dc=example,dc=com
changetype: modify
replace: passwordExpirationTime
passwordExpirationTime: 20210101000000Z

2. Try to connect to the directory as a this user:

ldapsearch -H ldap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com"
ldap_bind: Constraint violation (19)
 additional info: Account inactivity limit exceeded. Contact system administrator to reset.

If Directory Server denies access and returns this error, account inactivity works.

Additional resources

Re-enabling accounts that reached the inactivity limit

5.4. AUTOMATICALLY DISABLING ACCOUNT ON BOTH ACCOUNT
INACTIVITY AND PASSWORD EXPIRATION

You can apply both account inactivity and password expiration when a user authenticates by using the
checkAllStateAttrs setting. By default, when checkAllStateAttrs is not present in the plug-in
configuration entry, or when you set this parameter to no, the plug-in checks for the state attribute
lastLoginTime. If the attribute is not present in the entry, the plug-in checks the alternate state
attribute.

You can set the main state attribute to a non-existent attribute and set the alternate state attribute to
passwordExpirationtime when you want the plug-in to handle expiration based on the
passwordExpirationtime attribute. When you enable this parameter it check’s the main state attribute
and if the account is fine it then check’s the alternate state attribute.

This differs from the password policy’s password expiration, in that the account policy plug-in

CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

53

completely disables the account if the passwordExpirationtime exceeds the inactivity limit. While with
the password policy expiration the user can still log in and change their password. The account policy
plug-in completely blocks the user from doing anything and an administrator must reset the account.

Procedure

1. Create the plug-in configuration entry and enable the setting:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --
always-record-login yes --state-attr lastLoginTime --alt-state-attr 1.1 --spec-attr
acctPolicySubentry --limit-attr accountInactivityLimit --check-all-state-attrs yes

2. Restart the server to load the new plug-in configuration:

dsctl instance_name restart

WARNING

The checkAllStateAttrs setting is designed to only work when the alternate
state attribute is set to passwordExpiratontime. Setting it to
createTimestamp can cause undesired results and entries might get locked
out.

Red Hat Directory Server 12 Managing access control

54

CHAPTER 6. RE-ENABLING ACCOUNTS THAT REACHED THE
INACTIVITY LIMIT

If Directory Server inactivated an account because it reached the inactivity limit, an administrator can
re-enable the account.

6.1. RE-ENABLING ACCOUNTS INACTIVATED BY THE ACCOUNT
POLICY PLUG-IN

You can re-enable accounts using the dsconf account unlock command or by manually updating the
lastLoginTime attribute of the inactivated user.

Prerequisites

An inactivated user account.

Procedure

Reactivate the account using one of the following methods:

Using the dsconf account unlock command:

dsidm -D "cn=Directory manager" ldap://server.example.com -b
"dc=example,dc=com" account unlock
"uid=example,ou=People,dc=example,dc=com"

By setting the lastLoginTime attribute of the user to a recent time stamp:

ldapmodify -H ldap://server.example.com -x -D "cn=Directory Manager" -W

dn: uid=example,ou=People,dc=example,dc=com
changetype: modify
replace: lastLoginTime
lastLoginTime: 20210901000000Z

Verification

Authenticate as the user that you have reactivated. For example, perform a search:

ldapsearch -H ldap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com -s base"

If the user can successfully authenticate, the account was reactivated.

CHAPTER 6. RE-ENABLING ACCOUNTS THAT REACHED THE INACTIVITY LIMIT

55

CHAPTER 7. TRACKING THE LAST LOGIN TIME WITHOUT
SETTING A LOCKOUT POLICY

You can use the Account Policy plug-in to track user login times without setting an expiration time or
inactivity period. In this case, the plug-in adds the lastLoginTime attribute to user entries.

7.1. CONFIGURING THE ACCOUNT POLICY PLUG-IN TO RECORD THE
LAST LOGIN TIME

Follow this procedure to record the last login time of users in the lastLoginTime attribute of user
entries.

Procedure

1. Enable the Account Policy plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
enable

2. Create the plug-in configuration entry to record login times:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy
config-entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-
record-login yes --state-attr lastLoginTime

This command uses the following options:

--always-record-login yes: Enables logging of the log in time.

--state-attr lastLoginTime: Configures that the Account Policy plug-in stores the last log in
time in the lastLoginTime attribute of users.

3. Restart the instance:

dsctl instance_name restart

Verification

1. Log in to Directory Server as a user. For example, run a search:

ldapsearch -H ldap://server.example.com -x -D
"uid=example,ou=People,dc=example,dc=com" -W -b "dc=example,dc=com"

2. Display the lastLoginTime attribute of the user you used in the previous step:

ldapsearch -H ldap://server.example.com -x -D "cn=Directory Manager" -W -b
"uid=example,ou=people,dc=example,dc=com" lastLoginTime
...
dn: uid=example,ou=People,dc=example,dc=com
lastLoginTime: 20210913091435Z

If the lastLoginTime attribute exists and Directory Server updated its value, recording of the

Red Hat Directory Server 12 Managing access control

56

If the lastLoginTime attribute exists and Directory Server updated its value, recording of the
last login time works.

CHAPTER 7. TRACKING THE LAST LOGIN TIME WITHOUT SETTING A LOCKOUT POLICY

57

CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING
GET EFFECTIVE RIGHTS SEARCH

As an administrator, you can find and control access rights that a user has on attributes within a specific
entry.

Get effective rights (GER) is a way to extend directory searches to display what access rights a user has
to a specified entry. You can specify the following rights:

Read

Write and self-write

Search

Add

Delete

Checking effective rights on an entry is beneficial in the following situations:

You can use the GER commands to better organize access control instructions for the directory.
It is often necessary to restrict what one group of users can view or edit compared to another
group. For example, members of the QA Managers group may have the right to search and
read attributes like manager and salary but only HR Group members have the right to modify
or delete them. Checking effective rights for a user or group is one way to verify that an
administrator sets the appropriate access controls.

You can use the GER commands to see what attributes you can view or modify on your personal
entry. For example, a user should have access to attributes such as homePostalAddress and
cn but may only have read access to manager and salary attributes.

The getEffectiveRights search uses the following entities:

The requester. It is the authenticated entry when the getEffectiveRights search issues an
operation.

The subject whose rights you will evaluate. It is defined as authorization DN in the GER control.

The target. You define it by the search base, search filter, and attribute list of the request.

8.1. GET EFFECTIVE RIGHTS SEARCH PERMISSIONS

Any Get Effective Rights (GER) search shows following access rights that any entry can have:

The upper-level rights which are the rights on the entry. That access rights show what kind of
operations the User A can perform on an entry of the User B.

The second level rights show what rights for a given attribute the User A has. The User A may
have different access permissions for different attributes in the same entry. Any access controls
that a user has are the effective rights over that entry.

For example:

Red Hat Directory Server 12 Managing access control

58

entryLevelRights: vadn
attributeLevelRights: givenName:rscWO, sn:rscW, objectClass:rsc, uid:rsc, cn:rscW

A GER search has the following access rights to entries and attributes:

Table 8.1. Entry Rights

Permissions Description

a Add an entry.

d Delete this entry.

n Rename the DN.

v View the entry.

Table 8.2. Attribute Rights

Permissions Description

r Read.

s Search.

w Write (mod-add).

o Obliterate (mod-del). Analogous to delete.

c Compare.

W Self-write.

O Self-delete.

8.2. GET EFFECTIVE RIGHTS SEARCH FORMAT

The Get effective rights (GER) is an extended directory search. To use it you must pass an -E option to a
Lightweight Directory Access Protocol (LDAP) control with the ldapsearch command. For example:

ldapsearch -x -D bind_dn -W -p server_port -h server_hostname -b base_DN -E
[!]1.3.6.1.4.1.42.2.27.9.5.2=:GER_subject (searchFilter) attributeList

The -b is the base DN of the subtree or entry you can to search for the GER subject.
If the search base is a specific entry DN or if the result returns only one entry, then the results
show the rights the requester has over that specific entry. If multiple entries match the filter,
then the search returns every matching entry with the rights for the requester over each entry.

The 1.3.6.1.4.1.42.2.27.9.5.2 option is the object identifier for the GER control.

CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING GET EFFECTIVE RIGHTS SEARCH

59

An exclamation mark (!) defines whether the search operation returns an error if the server does
not support this control (!) or returns nothing.

The GER_subject is the user whose rights you check. You can leave the GER_subject blank (dn:)
to get the result for the rights of an anonymous user.

An optional attributeList limits the GER results to the specified attribute or object class, for
example, a mail attribute.

Use the asterisk (*) sign to return all attributes.

Use the plus (+) sign to return operational attributes.

The GER option adds extra information to the ldapsearch results, showing what rights a specific user
has. That GER subject users can request rights on their own entries with the additional option -D.

If the requester is not a Directory Manager user, then the requester can only see the rights that a GER
subject has on the entry of the requester. All the other entries return an insufficient access error for the
effective rights.

The following scenarios for a regular user to run a GER search are common:

User A checks the rights that he has over other directory entries.

User A checks the rights that he has to his personal entry.

User A checks the rights that User B has to the entry of User A.

8.3. COMMON SCENARIOS FOR A GET EFFECTIVE RIGHTS SEARCH

The following examples show the common scenarios when and how you can use the Get Effective
Rights search.

8.3.1. General examples of Get Effective Rights search

The most common scenarios when you need to use the Get Effective Rights (GER) search are:

1. Checking personal rights. When a User A is checking the rights on personal entry. For example,
Ted Morris wants to check the rights he has to his entry:

Example 8.1. Checking personal rights (User A to User A)

ldapsearch -x -p 389 -h server.example.com -D
"uid=tmorris,ou=people,dc=example,dc=com" -W -b
"uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=tmorris,ou=people,dc=example,dc=com' "
(objectClass=*)"

 dn: uid=tmorris,ou=People,dc=example,dc=com
 givenName: Ted
 sn: Morris
 ou: IT
 ou: People
 l: Santa Clara
 manager: uid=jsmith,ou=People,dc=example,dc=com
 roomNumber: 4117

Red Hat Directory Server 12 Managing access control

60

 mail: tmorris@example.com
 facsimileTelephoneNumber: +1 408 555 5409
 objectClass: top
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 uid: tmorris
 cn: Ted Morris
 userPassword: {SSHA}bz0uCmHZM5b357zwrCUCJs1IOHtMD6yqPyhxBA==
 entryLevelRights: v
 attributeLevelRights: givenName:rsc, sn:rsc, ou:rsc, l:rsc, manager:rsc,
roomNumber:rscwo, mail:rscwo, facsimileTelephoneNumber:rscwo, objectClass:rsc,
uid:rsc, cn:rsc, userPassword:wo

In this example, the -b option also has DN of the requester.

2. Checking the rights over another user. For example, Ted Morris is a manager and needs to check
entry for one of his subordinates Dave Miller:

Example 8.2. Checking the rights over another user (User A to User B)

ldapsearch -p 389 -h server.example.com -D
"uid=tmorris,ou=people,dc=example,dc=com" -W -b
"uid=dmiller,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=tmorris,ou=people,dc=example,dc=com' "
(objectClass=*)"

 dn: uid=dmiller,ou=People,dc=example,dc=com
 ...
 entryLevelRights: vad
 attributeLevelRights: givenName:rscwo, sn:rscwo, ou:rscwo, l:rscwo, manager:rsc,
roomNumber:rscwo, mail:rscwo, facsimileTelephoneNumber:rscwo, objectClass:rscwo,
uid:rscwo, cn:rscwo, userPassword:rswo

In this example, Ted Morris has read, search, compare, modify, and delete permissions for all
attributes to the entry of Dave Miller.

3. As a Directory Manager, checking the rights of one user having over an entry of another user.
For example, the Directory Manager is checking what rights Jane Smith as a manager has over
the entry of her subordinate Ted Morris:

Example 8.3. Directory Manager checking the rights of one user over another user

ldapsearch -p 389 -h server.example.com -D "cn=Directory Manager" -W -b
"uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=jsmith,ou=people,dc=example,dc=com' "
(objectClass=*)"

dn: uid=tmorris,ou=People,dc=example,dc=com
...
entryLevelRights: vadn
attributeLevelRights: givenName:rscwo, sn:rscwo, ou:rscwo, l:rscwo, manager:rscwo,
roomNumber:rscwo, mail:rscwo, facsimileTelephoneNumber:rscwo, objectClass:rscwo,
uid:rscwo, cn:rscwo, userPassword:rscwo

CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING GET EFFECTIVE RIGHTS SEARCH

61

If a user does not have permissions, the result shows an insufficient access error:

Example 8.4. No permission on the entry

ldapsearch -p 389 -h server.example.com -D
"uid=dmiller,ou=people,dc=example,dc=com" -W -b
"uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=tmorris,ou=people,dc=example,dc=com' "
(objectClass=*)"

ldap_search: Insufficient access
ldap_search: additional info: get-effective-rights: requester has no g permission on the
entry

4. Checking what rights another user has over your entry. For example, Ted Morris checks what
rights Dave Miller has on an entry of Ted Morris:

Example 8.5. Checking what rights another user has over your entry

ldapsearch -p 389 -h server.example.com -D
"uid=tmorris,ou=people,dc=example,dc=com" -W -b
"uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=dmiller,ou=people,dc=example,dc=com' "
(objectClass=*)"

dn: uid=tmorris,ou=people,dc=example,dc=com
...
entryLevelRights: v
attributeLevelRights: givenName:rsc, sn:rsc, ou:rsc, l:rsc,manager:rsc, roomNumber:rsc,
mail:rsc, facsimileTelephoneNumber:rsc, objectClass:rsc, uid:rsc, cn:rsc,
userPassword:none

In this example, Dave Miller has the right to view the DN of the entry and to read, search, and
compare the ou, givenName, l, and other attributes. He has no any rights to the userPassword
attribute.

8.3.2. Example of Get Effective Rights search for non-existent attributes

By default the attributes in an entry have no values. Using an asterisk (*) with the Get Effective Rights
(GER) search returns every attribute available for the entry, including attributes that are not set on the
entry.

Example 8.6. Checking rights on every attribute of the entry

ldapsearch -D "cn=Directory Manager" -W -b "uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)" "*"

dn: uid=scarter,ou=People,dc=example,dc=com
givenName: Sam
telephoneNumber: +1 408 555 4798

Red Hat Directory Server 12 Managing access control

62

sn: Carter
ou: Accounting
ou: People
l: Sunnyvale
manager: uid=dmiller,ou=People,dc=example,dc=com
roomNumber: 4612
mail: scarter@example.com
facsimileTelephoneNumber: +1 408 555 9700
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: scarter
cn: Sam Carter
userPassword: {SSHA}Xd9Jt8g1UsHC8enNDrEmxj3iJPKQLItlDYdD9A==
entryLevelRights: vadn
attributeLevelRights: objectClass:rscwo, aci:rscwo, sn:rscwo, cn:rscwo, description:rscwo,
seeAlso:rscwo, telephoneNumber:rscwo, userPassword:rscwo, destinationIndicator:rscwo,
facsimileTelephoneNumber:rscwo, internationaliSDNNumber:rscwo, l:rscwo, ou:rscwo,
physicalDeliveryOfficeName:rscwo, postOfficeBox:rscwo, postalAddress:rscwo,
postalCode:rscwo, preferredDeliveryMethod:rscwo, registeredAddress:rscwo, st:rscwo,
street:rscwo, teletexTerminalIdentifier:rscwo, telexNumber:rscwo, title:rscwo, x121Address:rscwo,
audio:rscwo, businessCategory:rscwo, carLicense:rscwo, departmentNumber:rscwo,
displayName:rscwo, employeeType:rscwo, employeeNumber:rscwo, givenName:rscwo,
homePhone:rscwo, homePostalAddress:rscwo, initials:rscwo, jpegPhoto:rscwo, labeledUri:rscwo,
manager:rscwo, mobile:rscwo, pager:rscwo, photo:rscwo, preferredLanguage:rscwo, mail:rscwo,
o:rscwo, roomNumber:rscwo, secretary:rscwo, uid:rscwo,x500UniqueIdentifier:rscwo,
userCertificate:rscwo, userSMIMECertificate:rscwo, userPKCS12:rscwo

In this example, the secretary attribute is not set, but you still can see it in the GER search results.

8.3.3. Examples of Get Effective Rights search for specific attribute or object class

The examples in this section show how to search for the rights to specific attribute, set of attributes, and
all attributes that belong to an object class of the entry.

1. Get Effective Rights (GER) search results for specific attributes of an entry by listing them. For
example:

Example 8.7. Get Effective Rights search results for specific attributes

ldapsearch -D "cn=Directory Manager" -W -b
"uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "
(objectclass=*)" cn mail initials

dn: uid=scarter,ou=People,dc=example,dc=com
cn: Sam Carter
mail: scarter@example.com
entryLevelRights: vadn
attributeLevelRights: cn:rscwo, mail:rscwo, initials:rscwo

2. GER search for a specific attribute of an object class of an entry in a format

CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING GET EFFECTIVE RIGHTS SEARCH

63

2. GER search for a specific attribute of an object class of an entry in a format
attribute@objectClass. The requester must be a Directory Manager.

Example 8.8. Get Effective Rights search results for a specific attribute of an object
class

ldapsearch -D "cn=Directory Manager" -W -b
"uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "
(objectclass=*)" uidNumber@posixAccount
...
dn: cn=template_posixaccount_objectclass,uid=scarter,ou=people,dc=example,dc=com
uidnumber: (template_attribute)
entryLevelRights: v
attributeLevelRights: uidNumber:rsc

You can use an asterisk (*) to return all attributes of an object class in a format *@objectClass.
The search result also includes the non-existent attributes.

8.3.4. Examples of Get Effective Rights search for non-existent entries

This example shows how to check the rights of a specific user over the entries of a user, which does not
exist yet. In this case the server generates the template entry within the subtree and you can use the
Get Effective Rights (GER) search on it. For checking a non-existent entry, the Get Effective Rights
(GER) search can use a specified object class to generate a template entry with all of the potential
attributes of this entry.

When the server creates the template entry, it uses the first MUST attribute in the object class definition
to create the RDN attribute. If the MUST attribute does not exist, the server uses MAY attribute. Specify
the RDN value by passing it to the object class in a format @objectclass:rdn_attribute.

For example, to check the rights of scarter for a non-existent POSIX entry with uidNumber as its RDN:

Example 8.9. Checking rights on non-existent entry

ldapsearch -D "cn=Directory Manager" -W -b "ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
@posixaccount:uidnumber

dn: uidNumber=template_posixaccount_objectclass,ou=people,dc=example,dc=com
entryLevelRights: v
attributeLevelRights: description:rsc, gecos:rsc, loginShell:rsc, userPassword:rsc, objectClass:rsc,
homeDirectory:rsc, gidNumber:rsc, uidNumber:rsc, uid:rsc, cn:rsc

8.3.5. Examples of Get Effective Rights search for operational attributes

The ldapsearch command does not return the operational attributes. Use the plus sign (+) to search for
them. Using the + returns only operational attributes which you can use on an entry.

Example 8.10. Searching for operational attributes

ldapsearch -D "cn=Directory Manager" -W -x -b "uid=scarter,ou=people,dc=example,dc=com" -

Red Hat Directory Server 12 Managing access control

64

E '!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
"+"

dn: uid=scarter,ou=People,dc=example,dc=com
entryLevelRights: vadn
attributeLevelRights: nsICQStatusText:rscwo, passwordGraceUserTime:rscwo,
pwdGraceUserTime:rscwo, nsYIMStatusText:rscwo, modifyTimestamp:rscwo,
passwordExpWarned:rscwo, pwdExpirationWarned:rscwo, entrydn:rscwo, aci:rscwo,
nsSizeLimit:rscwo, nsAccountLock:rscwo, passwordExpirationTime:rscwo, entryid:rscwo,
nsSchemaCSN:rscwo, nsRole:rscwo, retryCountResetTime:rscwo, ldapSchemas:rscwo,
nsAIMStatusText:rscwo, copiedFrom:rscwo, nsICQStatusGraphic:rscwo, nsUniqueId:rscwo,
creatorsName:rscwo, passwordRetryCount:rscwo, dncomp:rscwo, nsTimeLimit:rscwo,
passwordHistory:rscwo, pwdHistory:rscwo, nscpEntryDN:rscwo, subschemaSubentry:rscwo,
nsYIMStatusGraphic:rscwo, hasSubordinates:rscwo, pwdpolicysubentry:rscwo,
nsAIMStatusGraphic:rscwo, nsRoleDN:rscwo, createTimestamp:rscwo,
accountUnlockTime:rscwo, copyingFrom:rscwo, nsLookThroughLimit:rscwo,
nsds5ReplConflict:rscwo, modifiersName:rscwo, parentid:rscwo,
passwordAllowChangeTime:rscwo, nsBackendSuffix:rscwo, nsIdleTimeout:rscwo,
ldapSyntaxes:rscwo, numSubordinates:rscwo

8.3.6. Examples of Get Effective Rights results and Access Control rules

The effective Access Control Lists (ACL) define what Get Access Rights (GER) a user has.

Example 8.11. Access Control List

dn: dc=example,dc=com
objectClass: top
objectClass: domain
dc: example
aci: (target=ldap:///ou=Accounting,dc=example,dc=com)(targetattr="*")(version 3.0; acl "test acl";
allow (read,search,compare) (userdn = "ldap:///anyone") ;)

dn: ou=Accounting,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Accounting

In this example, the ACL does not include the dc=example,dc=com subtree. That causes the GER
search result to show that the user does not have any right on the dc=example,dc=com entry:

Example 8.12. GER search results with unset ACL

ldapsearch -D "cn=Directory Manager" -W -b "dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
"*@person"

dn: cn=template_person_objectclass,uid=scarter,ou=people,dc=example,dc=com
objectClass: person
objectClass: top
cn: (template_attribute)
sn: (template_attribute)

CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING GET EFFECTIVE RIGHTS SEARCH

65

description: (template_attribute)
seeAlso: (template_attribute)
telephoneNumber: (template_attribute)
userPassword: (template_attribute)
entryLevelRights: none
attributeLevelRights: sn:none, cn:none, objectClass:none, description:none, seeAlso:none,
telephoneNumber:none, userPassword:none, aci:none

To see the result, you must be a Directory Manager, else the result is blank.

8.4. GET EFFECTIVE RIGHT RETURN CODES

The Get Effective Rights (GER) search result returns an error code if an error occurs. The following
table describes the error codes:

Table 8.3. Error codes

Code Description

0 Successfully completed.

1 Operation error.

12 The critical extension is unavailable. If the critical
expression is set to true and effective rights do not
exist on the entry.

16 No such attribute.

17 Undefined attribute type.

21 Invalid attribute syntax.

50 Insufficient rights.

52 Unavailable.

53 Unwilling to perform.

80 Other.

Red Hat Directory Server 12 Managing access control

66

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. MANAGING ACCESS CONTROL INSTRUCTIONS
	1.1. ACI PLACEMENT
	1.2. THE STRUCTURE OF AN ACI
	1.3. ACI EVALUATION
	1.4. LIMITATIONS OF ACIS
	1.5. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY
	1.6. DISPLAYING, ADDING, DELETING, AND UPDATING ACIS
	1.7. DEFINING ACI TARGETS
	1.7.1. The syntax of target rules
	1.7.2. Targeting a directory entry
	1.7.3. Targeting attributes
	1.7.4. Targeting entries and attributes using LDAP filters
	1.7.5. Targeting attribute values using LDAP filters
	1.7.6. Targeting source and destination DNs

	1.8. ADVANCED USAGE OF TARGET RULES
	1.8.1. Delegating permissions to create and maintain groups
	1.8.2. Targeting both an entry and attributes
	1.8.3. Targeting certain attributes of entries matching a filter
	1.8.4. Targeting a single directory entry

	1.9. DEFINING ACI PERMISSIONS
	1.9.1. The syntax of permission rules
	1.9.2. User rights in permission rules
	1.9.3. Rights required for LDAP operations

	1.10. DEFINING ACI BIND RULES
	1.10.1. The syntax of bind rules
	1.10.2. Defining user-based access
	1.10.3. Defining group-based access
	1.10.4. Defining access based on value matching
	1.10.5. Defining access from specific IP addresses or ranges
	1.10.6. Defining access from a specific host or domain
	1.10.7. Requiring a certain level of security in connections
	1.10.8. Defining access at a specific day of the week
	1.10.9. Defining access at a specific time of day
	1.10.10. Defining access based on the authentication method
	1.10.11. Defining access based on roles
	1.10.12. Combining bind rules using Boolean operators

	CHAPTER 2. USING MACRO ACCESS CONTROL INSTRUCTIONS
	2.1. MACRO ACCESS CONTROL INSTRUCTION EXAMPLE
	2.2. MACRO ACCESS CONTROL INSTRUCTION SYNTAX
	2.3. THE ($DN) MACRO EXAMPLE
	2.4. THE [$DN] MACRO EXAMPLE
	2.5. THE ($ATTR.ATTRNAME) MACRO EXAMPLE

	CHAPTER 3. MANAGING ACCESS CONTROL INSTRUCTIONS IN LDAP BROWSER
	3.1. CREATING AN ACCESS CONTROL INSTRUCTION IN THE LDAP BROWSER
	3.2. EDITING ACCESS CONTROL INSTRUCTIONS IN THE LDAP BROWSER
	3.3. REMOVING AN ACCESS CONTROL INSTRUCTION IN THE LDAP BROWSER

	CHAPTER 4. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY
	4.1. CONFIGURING WHETHER TO LOCK ACCOUNTS WHEN REACHING OR EXCEEDING THE CONFIGURED MAXIMUM ATTEMPTS
	4.2. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE COMMAND LINE
	4.3. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY USING THE WEB CONSOLE

	CHAPTER 5. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES
	5.1. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME THE LAST SUCCESSFUL LOGIN
	5.2. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER YOU CREATED THEM
	5.3. AUTOMATICALLY DISABLING ACCOUNTS A CERTAIN AMOUNT OF TIME AFTER PASSWORD EXPIRY
	5.4. AUTOMATICALLY DISABLING ACCOUNT ON BOTH ACCOUNT INACTIVITY AND PASSWORD EXPIRATION

	CHAPTER 6. RE-ENABLING ACCOUNTS THAT REACHED THE INACTIVITY LIMIT
	6.1. RE-ENABLING ACCOUNTS INACTIVATED BY THE ACCOUNT POLICY PLUG-IN

	CHAPTER 7. TRACKING THE LAST LOGIN TIME WITHOUT SETTING A LOCKOUT POLICY
	7.1. CONFIGURING THE ACCOUNT POLICY PLUG-IN TO RECORD THE LAST LOGIN TIME

	CHAPTER 8. CHECKING ACCESS RIGHTS ON ENTRIES USING GET EFFECTIVE RIGHTS SEARCH
	8.1. GET EFFECTIVE RIGHTS SEARCH PERMISSIONS
	8.2. GET EFFECTIVE RIGHTS SEARCH FORMAT
	8.3. COMMON SCENARIOS FOR A GET EFFECTIVE RIGHTS SEARCH
	8.3.1. General examples of Get Effective Rights search
	8.3.2. Example of Get Effective Rights search for non-existent attributes
	8.3.3. Examples of Get Effective Rights search for specific attribute or object class
	8.3.4. Examples of Get Effective Rights search for non-existent entries
	8.3.5. Examples of Get Effective Rights search for operational attributes
	8.3.6. Examples of Get Effective Rights results and Access Control rules

	8.4. GET EFFECTIVE RIGHT RETURN CODES

