
Red Hat Directory Server 11

Performance Tuning Guide

Tuning the performance of Directory Server

Last Updated: 2023-11-07

Red Hat Directory Server 11 Performance Tuning Guide

Tuning the performance of Directory Server

Marc Muehlfeld
Red Hat Customer Content Services

Petr Bokoč
Red Hat Customer Content Services

Tomáš Čapek
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2021 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides tips for improving server and database performance.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO DIRECTORY SERVER PERFORMANCE TUNING
1.1. SETTING GOALS FOR DIRECTORY SERVER PERFORMANCE

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE
2.1. MONITORING SERVER ACTIVITY
2.2. MONITORING DATABASE ACTIVITY
2.3. MONITORING DATABASE LINK ACTIVITY
2.4. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN

CHAPTER 3. TUNING THE NUMBER OF LOCKS
3.1. MANUALLY MONITORING THE NUMBER OF LOCKS
3.2. AVOIDING DATA CORRUPTION BY MONITORING FREE DATABASE LOCKS
3.3. SETTING THE NUMBER OF LOCKS USING THE COMMAND LINE
3.4. SETTING THE NUMBER OF LOCKS USING THE WEB CONSOLE

CHAPTER 4. IMPROVING SEARCH PERFORMANCE (AND BALANCING READ PERFORMANCE)
4.1. USING INDEXES
4.2. TUNING DIRECTORY SERVER RESOURCE SETTINGS
4.3. SETTING INDEX SCAN LIMITS
4.4. FINE GRAINED ID LIST SIZE
4.5. TUNING THE DATABASE CACHE FOR SEARCHES
4.6. MANAGING SPECIAL ENTRIES

CHAPTER 5. TUNING TRANSACTION LOGGING
5.1. MOVING THE DATABASE DIRECTORY TO A SEPARATE DISK OR PARTITION
5.2. CHANGING THE DATABASE CHECKPOINT INTERVAL
5.3. DISABLING DURABLE TRANSACTIONS
5.4. SPECIFYING TRANSACTION BATCHING

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS
6.1. THE DATABASE AND ENTRY CACHE AUTO-SIZING FEATURE
6.2. DETERMINING THE REQUIRED CACHE SIZES
6.3. MANUALLY SETTING THE ENTRY CACHE SIZE
6.4. SETTING THE SIZE OF THE DN CACHE
6.5. SETTING THE DATABASE CACHE SIZE

CHAPTER 7. SETTING THE NUMBER OF DIRECTORY SERVER THREADS
7.1. AUTOMATIC THREAD TUNING
7.2. MANUALLY SETTING THE NUMBER OF THREAD

CHAPTER 8. TUNING THE REPLICATION PERFORMANCE
8.1. IMPROVING THE MULTI-SUPPLIER REPLICATION EFFICIENCY

CHAPTER 9. TUNING DATABASE LINK PERFORMANCE
9.1. MANAGING CONNECTIONS TO THE REMOTE SERVER
9.2. DETECTING ERRORS DURING NORMAL PROCESSING

CHAPTER 10. IMPROVING IMPORT PERFORMANCE
10.1. TUNING DIRECTORY SERVER FOR LARGE DATABASE IMPORTS AND IMPORTS WITH LARGE
ATTRIBUTES
10.2. TUNING DIRECTORY SERVER FOR IMPORTING A LARGE NUMBER OF ENTRIES

APPENDIX A. REVISION HISTORY

2

3
3

5
5
8

12
13

16
16
16
17
17

18
18

20
21
22
24
24

25
25
26
27
28

29
29
31

33
34
35

38
38
40

41
41

43
43
45

47

47
47

48

Table of Contents

1

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see “our CTO Chris Wright's message ”.

Performance Tuning Guide

2

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO DIRECTORY SERVER
PERFORMANCE TUNING
This article provides some procedures and options that administrators can use to optimize the
performance of their Red Hat Directory Server deployments. Performance tuning a Directory Server
instance is unique to each server because of differences for every server in its machine environment,
directory size and data type, load and network use, even the types of operations that users and clients
perform.

The purpose of this guide is to highlight the features that Red Hat Directory Server provides for tracking
and assessing server and database performance. There are also some procedures given to help tune
server performance. For more in-depth planning information, however, check out the Red Hat
Directory Server Deployment Guide, and for for command-line and UI-based administrative instructions,
see the Red Hat Directory Server Administration Guide.

1.1. SETTING GOALS FOR DIRECTORY SERVER PERFORMANCE

Performance tuning is simply a way to identify potential (or real) bottlenecks in the normal operating
environment of the server and then taking steps to mitigate those bottlenecks.

The general plan for performance tuning is:

1. Assess the environment. Look at everything around the Directory Server: its usage, the load, the
network connection and reliability, most common operations, the physical machine its on, along
with any services competing for its resources.

2. Measure the current Directory Server performance and establish baselines.

3. Identify the server areas which can be improved.

4. Make any changes to the Directory Server settings and, potentially, to the host machine.

5. Measure the Directory Server performance again to see how the changes affected the
performance.

Directory Server provides some sort of monitoring in three areas:

The server process (counters and logs)

The databases (counters)

Any database links (counters)

In the Directory Server, most performance measurements are going to be how well the Directory Server
retrieves and delivers information to clients. With that in mind, these are the server areas that can be
tuned for the best Directory Server performance (and these are the areas covered in this article):

Search operations

Indexing performance (which affects both search and write operations)

Database transactions

Database and entry cache settings

Database links

CHAPTER 1. INTRODUCTION TO DIRECTORY SERVER PERFORMANCE TUNING

3

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/deployment_guide/
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/

Other changes can be made to the host machine's settings or hardware which can also affect
Directory Server performance:

Available memory (based on directory size)

Other servers running on the same machine (which could compete for resources)

Distributing user databases across other Directory Server instances on other machines

Balancing server loads due to network performance

These changes relate much more to planning an effective Directory Server deployment than changes
that can be made to an instance. Reviewing the Deployment Guide can provide more detail about how to
plan an optimal enterprise deployment.

Performance Tuning Guide

4

CHAPTER 2. TRACKING SERVER AND DATABASE
PERFORMANCE
Red Hat Directory Server has two methods of recording and tracking performance data: performance
counters and logs. Counters are used to determine how well the Directory Server performing,
particularly in database performance; logs are used to diagnose any problem areas with server and
LDAP operations and configuration.

Performance counters focus on the operations and information of the Directory Server for the server, all
configured databases, and database links (chaining databases).

There are three types of logs: access (for client connections), errors (for errors, warnings, and details of
events), and audit (changes to Directory Server configuration). The access and error logs run by default
(and the errors log is required for the server to run). Audit logging, because of the overhead, must be
enabled manually.

NOTE

The access log is buffered. This allows full access logging even with highly loaded servers,
but there is a time lag between when the event occurs in the server and when the event is
written to the log.

2.1. MONITORING SERVER ACTIVITY

The Directory Server's current activities can be monitored from either the Web Console or the
command line. It is also possible to monitor the activity of the caches for all of the database.

NOTE

Some of the counters for Directory Server database attributes monitored by server use
64-bit integers, even on 32-bit systems (total connections, operations initiated,
operations completed, entries sent, and bytes sent). On high-volume systems, this keeps
the counters from rolling too quickly and skewing monitoring data.

2.1.1. Monitoring the Directory Server Using the Command Line

To monitor the server using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com monitor server

The following table describes the attributes the command returns:

Table 2.1. Server Monitoring Attributes

Attribute Description

version Identifies the directory's current version number.

threads The current number of active threads used for handling requests. Additional
threads may be created by internal server tasks, such as replication or
chaining.

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE

5

connection Provides the following summary information for each open connection (only
available if you bind to the directory as Directory Manager):

fd — The file descriptor used for this connection.

opentime — The time this connection was opened.

opsinitiated — The number of operations initiated by this connection.

opscompleted — The number of operations completed.

binddn — The distinguished name used by this connection to connect to the
directory.

rw — The field shown if the connection is blocked for read or write.

By default, this information is available to Directory Manager. However, the
ACI associated with this information can be edited to allow others to access
the information.

currentconnections Identifies the number of connections currently in service by the directory.

totalconnections Identifies the number of connections handled by the directory since it
started.

currentconnectionsatmaxthre
ads

Displays all connections that are currently in a max thread state.

maxthreadsperconnhits Displays how many times a connection hit max thread.

dtablesize Shows the number of file descriptors available to the directory. Each
connection requires one file descriptor: one for every open index, one for log
file management, and one for ns-slapd itself. Essentially, this value shows
how many additional concurrent connections can be serviced by the
directory. For more information on file descriptors, see the operating
system documentation.

readwaiters Identifies the number of threads waiting to read data from a client.

opsinitiated Identifies the number of operations the server has initiated since it started.

opscompleted Identifies the number of operations the server has completed since it
started.

entriessent Identifies the number of entries sent to clients since the server started.

bytessent Identifies the number of bytes sent to clients since the server started.

Attribute Description

Performance Tuning Guide

6

currenttime Identifies the time when this snapshot of the server was taken. The time is
displayed in Greenwich Mean Time (GMT) in UTC format.

starttime Identifies the time when the server started. The time is displayed in
Greenwich Mean Time (GMT) in UTC format.

nbackends Identifies the number of back ends (databases) the server services.

Attribute Description

2.1.2. Monitoring the Server Using the Web Console

To monitor the server using the web console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Monitoring tab, select Server Statistics.

The following table describes the fields visible in this menu:

Table 2.2. General Information (Server)

Field Description

Server Instance Displays the name of the Directory Server instance.

Version Identifies the current server version.

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE

7

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

Server Started The date and time the server was started.

Server Uptime The time the instance is running.

Worker Threads The current number of active threads used for handling requests.
Additional threads may be created by internal server tasks, such as
replication or chaining.

Threads Waiting To
Read

The total number of threads waiting to read from the client. Threads may
not be immediately read if the server starts to receive a request from the
client, and then the transmission of that request is halted for some reason.
Generally, threads waiting to read are an indication of a slow network or
client.

Conns At Max
Threads

Displays all connections that are currently in a max thread state.

Conns Hit Max
Threads

Displays how many times a connection hit max thread.

Total Connections The total number of connections established to this Directory Server
instance.

Current Connections The total number of open connections. Each connection can account for
multiple operations, and therefore multiple threads.

Operations Started The number of operations initiated by this connection.

Operations
Completed

The number of operations completed by the server for this connection.

Entries Returned to
Clients

The number of entries sent to clients since the server started.

Bytes Sent to Clients The number of bytes sent to clients since the server started.

Field Description

2.2. MONITORING DATABASE ACTIVITY

NOTE

Some of the counters for Directory Server database attributes monitored by server use
64-bit integers, even on 32-bit systems (entry cache hits, entry cache tries, the current
cache size, and the maximum cache size). On high-volume systems, this keeps the
counters from rolling too quickly and skewing monitoring data.

2.2.1. Monitoring Database Activity Using the Command Line

Performance Tuning Guide

8

To monitor the current activity of a database:

dsconf -D "cn=Directory Manager" ldap://server.example.com monitor backend

The following table describes the attributes the command returns:

Table 2.3. Database Monitoring Attributes

Attribute Description

readonly Indicates whether the database is in read-only mode (1) or in read-write mode
(0).

entrycachehits The total number of successful entry cache lookups. The value is the total number
of times the server could retrieve an entry from the entry cache without reloading
it from the database.

entrycachetries The total number of entry cache lookups since you started the instance. The
value is the total number, since the instance has been started, {DS} tried to
retrieve entry from the entry cache.

entrycachehitratio The number of entry cache tries to successful entry cache lookups. This number
is based on the total lookups and hits since you last started the instance. The
closer the entry cache hit ratio is to 100%, the better.

Whenever an operation attempts to find an entry that is not present in the entry
cache, the server needs to access the database to obtain the entry. Thus, as this
ratio drops towards zero, the number of disk accesses increases, and directory
search performance decreases. To improve this ratio, increase the size of the
entry cache of the database.

To improve this ratio, increase the size of the entry cache by increasing the value
of the nsslapd-cachememsize attribute in the cn=database_name, cn=ldbm
database,cn=plugins,cn=config entry.

currententrycachesize The total size, in bytes, of directory entries currently present in the entry cache.

To increase the size of the entries which can be present in the cache, increase the
value of the nsslapd-cachememsize attribute in the cn=database_name,
cn=ldbm database,cn=plugins,cn=config entry.

maxentrycachesize The maximum size, in bytes, of directory entries that {DS} can maintain in the
entry cache.

To increase the size of the entries which can be present in the cache, increase the
value of the nsslapd-cachememsize attribute in the cn=database_name,
cn=ldbm database,cn=plugins,cn=config entry.

currententrycachecount The current number of entries stored in the entry cache of a given backend.

maxentrycachecount The maximum number of entries stored in the entry cache of a database.

To tune this value, increase the value of the nsslapd-cachesize attribute in the
cn=database_name,cn=ldbm database,cn=plugins,cn=config

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE

9

dncachehits The number of times the server could process a request by obtaining a
normalized distinguished name (DN) from the DN cache rather than normalizing it
again.

dncachetries The total number of DN cache accesses since you started the instance.

dncachehitratio The ratio of cache tries to successful DN cache hits. The closer this value is to
100%, the better.

currentdncachesize The total size, in bytes, of DN currently present in the DN cache.

To increase the size of the entries which can be present in the DN cache, increase
the value of the nsslapd-dncachememsize attribute in the
cn=database_name, cn=ldbm database,cn=plugins,cn=config entry.

maxdncachesize The maximum size, in bytes, of DNs that {DS} can maintain in the DN cache.

To increase the size of the entries which can be present in the cache, increase the
value of the nsslapd-dncachememsize attribute in the cn=database_name,
cn=ldbm database,cn=plugins,cn=config entry.

currentdncachecount The number of DNs currently present in the DN cache.

maxdncachecount The maximum number of DNs allowed in the DN cache.

Attribute Description

2.2.2. Monitoring Database Activity Using the Web Console

To monitor the database activity using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Monitoring tab, select the database entry to display.

4. Select Entry Cache to display the performance values of the entry cache:

Performance Tuning Guide

10

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

The following table describes the fields visible on this tab:

Table 2.4. Fields on the Entry Cache Tab

Field Name Description

Entry Cache Hit Ratio Ratio that indicates the number of entry cache tries to successful entry
cache lookups. This number is based on the total lookups and hits since the
directory was last started. The closer this value is to 100%, the better.
Whenever an operation attempts to find an entry that is not present in the
entry cache, the directory has to perform a disk access to obtain the entry.
Thus, as this ratio drops towards zero, the number of disk accesses
increases, and directory search performance drops.

To improve this ratio, increase the size of the entry cache by increasing the
value of the nsslapd-cachememsize attribute in the
cn=database_name, cn=ldbm database,cn=plugins,cn=config entry
for the database.

Entry Cache Tries The total number of entry cache lookups since the directory was last
started. That is, the total number of entries requested since server startup.

Entry Cache Hits The total number of successful entry cache lookups. That is, the total
number of times the server could process a search request by obtaining
data from the cache rather than by going to disk.

Entry Cache Max Size The size of the entry cache in bytes maintained by the directory.

This value is managed by the nsslapd-cachememsize attribute in the
cn=database_name, cn=ldbm database,cn=plugins,cn=config entry
for the database.

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE

11

Entry Cache Current
Size

The number of directory entries currently present in the entry cache.

Entry Cache Max
Entries

DEPRECATED.

The maximum number of directory entries that can be maintained in the
entry cache.

Do not attempt to manage the cache size by setting a maximum number of
allowed entries. This can make it difficult for the host to allocate RAM
effectively. Manage the cache size by setting the amount of RAM available
to the cache, using the nsslapd-cachememsize attribute.

Entry Cache Count The number of directory entries currently present in the entry cache.

Field Name Description

5. Select DN Cache for performance values on the DN cache.

2.3. MONITORING DATABASE LINK ACTIVITY

The activity for database links (chained databases) can also be displayed, however, only using the
command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com monitor chaining

Performance Tuning Guide

12

The following table describes the attributes the command returns:

Table 2.5. Database Link Monitoring Attributes

Attribute Name Description

nsAddCount The number of add operations received.

nsDeleteCount The number of delete operations received.

nsModifyCount The number of modify operations received.

nsRenameCount The number of rename operations received.

nsSearchBaseCount The number of base-level searches received.

nsSearchOneLevelCount The number of one-level searches received.

nsSearchSubtreeCount The number of subtree searches received.

nsAbandonCount The number of abandon operations received.

nsBindCount The number of bind request received.

nsUnbindCount The number of unbinds received.

nsCompareCount The number of compare operations received.

nsOperationConnectionCount The number of open connections for normal operations.

nsBindConnectionCount The number of open connections for bind operations.

2.4. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN

When the disk space available on a system becomes too small, the Directory Server process terminates.
As a consequence, there is a risk of corrupting the database or loosing data.

To prevent this problem, you can configure Directory Server to monitor the free disk space. The
monitoring thread checks the free space on the file systems that contain the configuration, transaction
log, and database directories.

Depending on the remaining free disk space, Directory Server behaves different:

If the free disk space reaches the defined threshold, Directory Server:

Disables verbose logging

Disables access access logging

Deletes archived log files

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE

13

NOTE

Directory Server always continues writing error logs, even if the threshold is
reached.

If the free disk space is lower than the half of the configured threshold, Directory Server shuts
down within a defined grace period.

If the available disk space is ever lower than 4 KB, Directory Server shuts down immediately.

If disk space is freed up, then Directory Server aborts the shutdown process and re-enables all of the
previously disabled log settings.

2.4.1. Configuring Local Disk Monitoring Using the Command Line

To configure local disk monitoring using the command line:

1. Enable the disk monitoring feature, set a threshold value, and a grace period:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-disk-
monitoring=on nsslapd-disk-monitoring-threshold=3000000000 nsslapd-disk-monitoring-
grace-period=60

This command sets the threshold of free disk space to 3 GB and the grace period to 60
seconds.

2. Optionally, configure that Directory Server neither disables access logging nor deletes archived
logs, by enabling the nsslapd-disk-monitoring-logging-critical parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-disk-
monitoring-logging-critical=on

3. Restart the Directory Server instance:

dsctl instance_name restart

2.4.2. Configuring Local Disk Monitoring Using the Web Console

To configure local disk monitoring using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. Open the Server Settings menu, and select Server Configuration.

4. Enable Enable Disk Space Monitoring, and set the threshold in bytes and the grace period in
minutes.

Performance Tuning Guide

14

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

This example sets the monitoring threshold to 3 GB (3,221,225,472 bytes) and the time before
Directory Server shuts down the instance after reaching the threshold to 60 minutes.

5. Optionally, configure that Directory Server neither disables access logging nor deletes archived
logs by selecting Preserve Logs.

6. Click Save Configuration.

7. Click the Actions button, and select Restart Instance.

CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE

15

CHAPTER 3. TUNING THE NUMBER OF LOCKS
Lock mechanisms in Directory Server control how many copies of Directory Server processes can run at
the same time. For example, during an import job, Directory Server sets a lock in the
/run/lock/dirsrv/slapd-instance_name/imports/ directory to prevent the ns-slapd (Directory Server)
process, another import, or export operations from running.

If the server runs out of available locks, the following error is logged in the
/var/log/dirsrv/slapd-instance_name/errors file:

libdb: Lock table is out of available locks

If error messages indicate that the lock table is out of available locks, double the number of locks. If the
problem persists, double the value again.

3.1. MANUALLY MONITORING THE NUMBER OF LOCKS

To monitor the number of locks using the command line, enter:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
 -s sub -b "cn=database,cn=monitor,cn=ldbm database,cn=plugins,cn=config"
 nsslapd-db-current-locks nsslapd-db-max-locks

For details about the monitoring attributes, see the descriptions in the Directory Server Configuration,
Command, and File Reference.

3.2. AVOIDING DATA CORRUPTION BY MONITORING FREE DATABASE
LOCKS

Running out of database locks can lead to data corruption. To avoid this, Directory Server, by default,
monitors the remaining number of free database locks every 500 milliseconds and, if the number of
active database locks is equal or higher than the 90%, Directory Server aborts all searches.

You can change the interval and threshold:

1. For example, to set the interval to 600 milliseconds and the threshold to 85 percent, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --locks-
monitoring-enabled on --locks-monitoring-pause 600 --locks-monitoring-threshold 85

The --locks-monitoring-enabled on option ensure that the feature is enabled.

NOTE

If you set a too high interval, the server can run out of locks before the next
monitoring check happens. Setting a too short interval can slow down the server.

2. Restart the instance:

dsctl instance_name restart

Performance Tuning Guide

16

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#Database_Attributes_under_cnbdb_cnconfig_cnldbm_database_cnplugins_cnconfig

3.3. SETTING THE NUMBER OF LOCKS USING THE COMMAND LINE

To set the number of locks using the command line:

1. Use the dsconf backend config set command to update the number of locks. For example, to
set the value to 20000:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --
locks=20000

2. Restart the Directory Server instance:

dsctl instance_name restart

3.4. SETTING THE NUMBER OF LOCKS USING THE WEB CONSOLE

To set the number of locks using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. Open the Database menu, and select Global Database Configuration.

4. Click Show Advanced Settings.

5. Update the value in the Database Locks field.

6. Click Save Configuration.

7. Click the Actions button, and select Restart Instance.

CHAPTER 3. TUNING THE NUMBER OF LOCKS

17

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

CHAPTER 4. IMPROVING SEARCH PERFORMANCE (AND
BALANCING READ PERFORMANCE)
The most effective way to improve search operations against the directory is to configure thorough
indexes for entries, combined with reasonable limits on search results.

4.1. USING INDEXES

An index (as it implies) is a tag that shows that a certain entry contains a certain attribute, without
having to contain any other detail about the entry (which saves space and makes returning search
results faster). Each index is organized around a Directory Server attribute and a certain way of
matching that attribute:

Presence index (pres) simply shows what entries contain an attribute.

Equality index (eq) shows which attribute values match a specific search string.

Approximate index (approx) is used for efficient sounds-like searches, which shows entries which
have a value that phonetically matches a string.

Substring index (sub) matches any substring of an attribute value to the given search string.
(This index if very expensive for the server to maintain.)

International index uses a matching rule to match strings in a directory which contains values in
languages other than English.

NOTE

Indexing is described in much more detail in the Managing Indexes chapter in the Red Hat
Directory Server Administration Guide.

However, just creating indexes is not directly going to increase server performance. Maintaining indexes
puts a burden on the Directory Server for every modify, add, and delete operation by having to verify
every attribute in the change against every index maintained by the server:

1. The Directory Server receives an add or modify operation.

2. The Directory Server examines the indexing attributes to determine whether an index is
maintained for the attribute values.

3. If the created attribute values are indexed, then the Directory Server generates the new index
entries.

4. Once the server completes the indexing, the actual attribute values are created according to
the client request.

For example, the Directory Server adds the entry:

dn: cn=John Doe, ou=People,dc=example,dc=com
objectclass: top
objectClass: person
objectClass: orgperson
objectClass: inetorgperson
cn: John Doe

Performance Tuning Guide

18

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/managing_indexes

cn: John
sn: Doe
ou: Manufacturing
ou: people
telephoneNumber: 408 555 8834
description: Manufacturing lead for the Z238 line of widgets.

The Directory Server is maintaining the following indexes:

Equality, approximate, and substring indexes for cn (common name) and sn (surname)
attributes.

Equality and substring indexes for the telephone number attribute.

Substring indexes for the description attribute.

When adding that entry to the directory, the Directory Server must perform these steps:

1. Create the cn equality index entry for John and John Doe.

2. Create the appropriate cn approximate index entries for John and John Doe.

3. Create the appropriate cn substring index entries for John and John Doe.

4. Create the sn equality index entry for Doe.

5. Create the appropriate sn approximate index entry for Doe.

6. Create the appropriate sn substring index entries for Doe.

7. Create the telephone number equality index entry for 408 555 8834.

8. Create the appropriate telephone number substring index entries for 408 555 8834.

9. Create the appropriate description substring index entries for Manufacturing lead for the
Z238 line of widgets. A large number of substring entries are generated for this string.

Before creating new indexes, make sure to balance the overhead of maintaining the indexes against the
potential improvements in search performance. Especially important, match the types of indexes that
you maintain to the type of information stored in the directory and the type of information users
routinely search for.

Approximate indexes are not efficient for attributes commonly containing numbers, such as
telephone numbers.

Substring indexes do not work for binary attributes.

Equality indexes should be avoided if the value is big (such as attributes intended to contain
photographs or passwords containing encrypted data).

Maintaining indexes for attributes not commonly used in a search increases overhead without
improving global searching performance.

Attributes that are not indexed can still be specified in search requests, although the search
performance may be degraded significantly, depending on the type of search.

The more indexes you maintain, the more disk space you require.

NOTE

CHAPTER 4. IMPROVING SEARCH PERFORMANCE (AND BALANCING READ PERFORMANCE)

19

NOTE

Creating indexes is much more effective for directories which have a high search
operation load and low modify operation load.

4.2. TUNING DIRECTORY SERVER RESOURCE SETTINGS

You can configure several parameters to manage and improve the amount of resources
Directory Server uses.

4.2.1. Updating Directory Server Resource Settings Using the Command Line

To update the server resource settings using the command line:

1. Update the performance settings:

 dsconf -D "cn=Directory Manager" ldap://server.example.com config replace
parameter_name=setting

You can set the following parameters:

nsslapd-threadnumber: Sets the number of worker threads.

nsslapd-maxdescriptors: Sets the maximum number of file descriptors.

nsslapd-timelimit: Sets the search time limit.

nsslapd-sizelimit: Sets the search size limit.

nsslapd-pagedsizelimit: Sets the paged search size limit.

nsslapd-idletimeout: Sets the idle connection timeout.

nsslapd-ioblocktimeout: Sets the input/output (I/O) block timeout.

nsslapd-ndn-cache-enabled: Enables or disables the normalized DN cache.

nsslapd-ndn-cache-max-size: Sets the normalized DN cache size, if nsslapd-ndn-cache-
enabled is enabled.

nsslapd-outbound-ldap-io-timeout: Sets the outbound I/O timeout.

nsslapd-maxbersize: Sets the maximum Basic Encoding Rules (BER) size.

nsslapd-maxsasliosize: Sets the maximum Simple Authentication and Security Layer
(SASL) I/O size.

nsslapd-listen-backlog-size: Sets the maximum number of sockets available to receive
incoming connections.

nsslapd-max-filter-nest-level: Sets the maximum nested filter level.

nsslapd-ignore-virtual-attrs: Enables or disables virtual attribute lookups.

nsslapd-connection-nocanon: Enables or disables revers DNS lookups.

Performance Tuning Guide

20

nsslapd-enable-turbo-mode: Enables or disables the turbo mode feature.

For further details about these parameters, see their descriptions in the Red Hat
Directory Server Configuration, Command, and File Reference.

2. Restart the Directory Server instance:

dsctl instance_name restart

4.2.2. Updating Directory Server Resource Settings Using the Web Console

To update the server resource settings using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. Open the Server Settings menu, and select Tuning & Limits.

4. Update the settings. Optionally, click Show Advanced Settings to display all settings.

To display a tooltip and the corresponding attribute name in the cn=config entry for a
parameter, hover the mouse cursor over the setting. For further details, see the parameter
description in the Red Hat Directory Server Configuration, Command, and File Reference. .

5. Click Save Configuration.

6. Click the Actions button, and select Restart Instance.

4.3. SETTING INDEX SCAN LIMITS

In large directories, the search results list can get huge. A directory with a million inetorgperson entries
would have a million entries that were returned with a filter like (objectclass=inetorgperson), and an
index for the sn attribute would have at least a million entries in it.

Loading a long ID list from the database significantly reduces search performance. The configuration

CHAPTER 4. IMPROVING SEARCH PERFORMANCE (AND BALANCING READ PERFORMANCE)

21

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig-nsslapd_ndn_cache_max-size

parameter, nsslapd-idlistscanlimit, sets a limit on the number of IDs that are read before a key is
considered to match the entire primary index (meaning the search is treated as an unindexed search
with a different set of resource limits).

For large indexes, it is actually more efficient to treat any search which matches the index as an
unindexed search. The search operation only has to look in one place to process results (the entire
directory) rather than searching through an index that is nearly the size of a directory, plus the directory
itself.

The default value of the nsslapd-idlistscanlimit attribute is 4000, which is gives good performance for
a common range of database sizes and access patterns. It's usually not necessary to change this value. If
the database index is slightly larger than the 4000 entries, but still significantly smaller than the overall
directory, then raising the scan limit improves searches which would otherwise hit the default limit of
4000.

On the other hand, lowering the limit can significantly speed up searches that would otherwise hit the
4000 entry limit, but where it is not necessary to scan every entry.

4.3.1. Setting an Index Scan Limit Using the Command Line

To set an index scan limit using the command line:

1. For example, to set the number of entry IDs that Directory Server searches during a search
operation to 8000:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --
idlistscanlimit=8000

2. Restart the Directory Server instance:

dsctl instance_name restart

4.3.2. Setting an Index Scan Limit Using the Web Console

To set an index scan limit using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select Global Database Configuration.

4. Update the value in the ID List Scan Limit field.

5. Click Save Configuration.

6. Click the Actions button, and select Restart Instance.

4.4. FINE GRAINED ID LIST SIZE

In large databases, some queries can consume a large amount of CPU and RAM resources. To improve
the performance, you can set a default ID scan limit that applies to all indexes in the database using the

Performance Tuning Guide

22

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

nsslapd-idlistscanlimit attribute. However in some cases it is useful to define a limit for certain indexes,
or use no ID list. You can set individual settings for ID list scan limits for different types of search filters
using the nsIndexIDListScanLimit attribute.

To set a limit, for example for the objectClass attribute, add the nsIndexIDListScanLimit parameter
to the DN cn=objectclass,cn=index,cn=userRoot,cn=ldbm database,cn=plugins,cn=config.

The nsIndexIDListScanLimit attribute is multi valued and takes the following list of parameters as a
value:

nsIndexIDListScanLimit: limit=NNN [type=eq[,sub,...]] [flags=AND[,XXX,...]] [values=val[,val,...]]

limit: The maximum size of the ID list. Valid values are:

-1: Unlimited.

0: Do not use the index.

1 to the maximum 32-bit integer (2147483647): Maximum number of IDs.

type: Optional. The type of the index. eq, sub, pres, and so on. The value must be one of the
actual nsIndexType specified for the index definition. For example, you cannot use type=eq if
you do not have nsIndexType=eq defined.

flags: Optional. Flags that alter the behavior of applying the scan limit. Valid values are:

AND: Apply the scan limit only to searches in which the attribute appears in an AND clause.

OR: Apply the scan limit only to searches in which the attribute appears in an OR clause.

values: Optional. Comma separated list of values which must match the search filter in order for
the limit to be applied. Since the matches are done one at a time, the values will match if any of
the values matches.

The values must be used with only one type at a time.

The values must correspond to the index type, and must correspond to the syntax of the
attribute to which the index is applied. For example, if you specified the integer based attribute
uidNumber and it is indexed for eq, you cannot use type=eq values=abc.

If the value contains spaces, commas, NULL, or other values which require to be escaped, the
LDAP filter escape syntax should be used: backslash (\) followed by the 2 hex digit code for the
character. In the following example, the commas in the DN value are escaped with \2C.

nsIndexIDListScanLimit: limit=0 type=eq
values=uid=user\2Cou=People\2Cdc=example\2Cdc=com

Example 4.1. Setting nsIndexIDListScanLimit

In a large database with 10 million entries that contain the object class inetOrgPerson, a search for
(&(objectClass=inetOrgPerson)(uid=user)) creates first an ID list containing all 10 million IDs
matching objectClass=inetOrgPerson. When the database applies the second part of the filter, it
searches the result list for objects matching uid=user. In this cases it is useful to define a limit for
certain indexes, or use no ID list at all.

To set that no ID list is created for objectClass=inetOrgPerson in AND clauses, add the following

CHAPTER 4. IMPROVING SEARCH PERFORMANCE (AND BALANCING READ PERFORMANCE)

23

To set that no ID list is created for objectClass=inetOrgPerson in AND clauses, add the following
nsIndexIDListScanLimit:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=objectclass,cn=index,cn=userRoot,cn=ldbm database,cn=plugins,cn=config
changetype: modify
replace: nsIndexIDListScanLimit
nsIndexIDListScanLimit: limit=0 type=eq flags=AND values=inetOrgPerson

modifying entry "cn=objectclass,cn=index,cn=userRoot,cn=ldbm database,cn=plugins,cn=config"

No ID list is created for objectClass=inetOrgPerson when used in an AND clause. In all other
situations the value of nsslapd-idlistscanlimit is applied.

4.5. TUNING THE DATABASE CACHE FOR SEARCHES

The database attributes that affect search performance mainly define the amount of memory available
to the server. The maximum values that can be set for the database's cache size attributes depends on
the amount of real memory on the machine. Roughly, the amount of available memory on the machine
should always be greater than sum total of the default database cache size and sum of each entry cache
size.

Use caution when changing these cache sizing attributes. The ability to improve server performance
with these attributes depends on the size of the database, the amount of physical memory available on
the machine, and whether directory searches are random (that is, if the directory clients are searching
for random and widely scattered directory data).

If the database does not fit into memory and if searches are random, attempting to increase the values
set on these attributes does not help directory performance. In fact, changing these attributes may
harm overall performance.

The attributes of each database used to store directory data can be resized.

To improve the cache hit ratio on search operations, increase the amount of data that the
Directory Server maintains in the database cache, as described in Section 6.5, “Setting the Database
Cache Size”, by editing the values for the nsslapd-dbcachesize parameter.

4.6. MANAGING SPECIAL ENTRIES

Directory Server stores the cn=config entry in the /etc/dirsrv/slapd-instance_name/dse.ldif
configuration file and not in the same highly scalable database as regular entries. For this reason, do not
store regular user or groups in cn=config.

Performance Tuning Guide

24

CHAPTER 5. TUNING TRANSACTION LOGGING
Every Directory Server contains a transaction log which writes operations for all the databases it
manages. Whenever a directory database operation such as a modify is performed, the server creates a
single database transaction for all of the database operations invoked as a result of that LDAP
operation. This includes both updating the entry data in the entry index file and updating all of the
attribute indexes. If all of the operations succeed, the server commits the transaction, writes the
operations to the transaction log, and verifies that the entire transaction is written to disk. If any of these
operations fail, the server rolls back the transaction, and all of the operations are discarded. This all-or-
nothing approach in the server guarantees that an update operation is atomic. Either the entire
operation succeeds permanently and irrevocably, or it fails.

Periodically, the Directory Server (through internal housekeeping threads) flushes the contents of the
transaction logs to the actual database index files and checks if the transaction logs require trimming.

If the server experiences a failure, such as a power outage, and shuts down abnormally, the information
about recent directory changes is still saved by the transaction log. When the server restarts, the
directory automatically detects the error condition and uses the database transaction log to recover the
database.

Although database transaction logging and database recovery are automatic processes that require no
intervention, it can be advisable to tune some of the database transaction logging attributes to optimize
performance.

WARNING

The transaction logging attributes are provided only for system modifications and
diagnostics. These settings should be changed only with the guidance of Red Hat
Technical Support. Setting these attributes and other configuration attributes
inconsistently may cause the directory to be unstable.

5.1. MOVING THE DATABASE DIRECTORY TO A SEPARATE DISK OR
PARTITION

To achieve higher performance, store the directory server databases and transaction log on a fast drive,
such as a nonvolatile memory express (NVMe) drive or an SSD.

For example, if you already run a Directory Server instance and want to mount the /dev/nvme0n1p1
partition to the /var/lib/dirsrv/slapd-instance_name/db/ directory:

1. Stop the instance:

systemctl stop dirsrv@instance_name

2. Mount the /dev/nvme0n1p1 partition to a temporary directory. For example:

mount /dev/nvme0n1p1 /mnt/

3. Copy the content of the /var/lib/dirsrv/slapd-instance_name/db/ directory to the temporary



CHAPTER 5. TUNING TRANSACTION LOGGING

25

3. Copy the content of the /var/lib/dirsrv/slapd-instance_name/db/ directory to the temporary
mount point:

mv /var/lib/dirsrv/slapd-instance_name/db/* /mnt/

4. Unmount the temporary directory:

umount /mnt/

5. If /var/lib/dirsrv/slapd-instance_name/db/ is also a separate mount point, unmount the
directory:

umount /var/lib/dirsrv/slapd-instance_name/db/

6. Update the /etc/fstab file to mount the /dev/nvme0n1p1 partition automatically to
/var/lib/dirsrv/slapd-instance_name/db/ when the system boots. For details, see the
corresponding section in the Red Hat System Administrator's Guide.

7. Mount the file system. If you added the entry to /etc/fstab:

mount /var/lib/dirsrv/slapd-instance_name/db/

8. If SELinux is running in enforcing mode, restore the SELinux context:

restorecon -Rv /var/lib/dirsrv/slapd-instance_name/db/

9. Start the instance:

systemctl start dirsrv@instance_name

5.2. CHANGING THE DATABASE CHECKPOINT INTERVAL

At regular intervals, the Directory Server writes operations logged in the transaction log to the database
index files and logs a checkpoint entry in the database transaction log. By indicating which changes have
already been written to the database indexes, checkpoint entries indicate where to begin recovery from
the transaction log, thus speeding up the recovery process.

By default, the Directory Server is set up to send a checkpoint entry to the database transaction log
every 60 seconds. Increasing the checkpoint interval may increase the performance of directory write
operations. However, increasing the checkpoint interval may also increase the amount of time required
to recover directory databases after a disorderly shutdown and require more disk space due to large
database transaction log files. Therefore, only modify this attribute if you are familiar with database
optimization and can fully assess the effect of the change.

5.2.1. Changing the Database Checkpoint Interval Using the Command Line

To change the database checkpoint interval using the command line, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --checkpoint-
interval=120

This example changes the interval to 120 seconds.

Performance Tuning Guide

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/ch-access_control_lists#s1-acls-mounting

5.2.2. Changing the Database Checkpoint Interval Using the Web Console

To change the database checkpoint interval using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select Global Database Configuration.

4. Click Show Advanced Settings.

5. Update the value in the Database Checkpoint Interval field.

6. Click Save Configuration.

5.3. DISABLING DURABLE TRANSACTIONS

Durable transaction logging means that each LDAP update operation, comprised of a sequence of
database operations in a transaction, is physically written to disk. Even though each LDAP operation can
be comprised of multiple database operations, each LDAP operation is treated as a single database
transaction. Each LDAP operation is both atomic and durable.

WARNING

Turning off durable transactions can improve Directory Server write performance at
the risk of data loss.

When durable transaction logging is disabled, every directory database operation is written to the
database transaction log file but may not be physically written to disk immediately. If a directory change
was written to the logical database transaction log file but not physically written to disk at the time of a
system crash, the change cannot be recovered. When durable transactions are disabled, the recovered
database is consistent but does not reflect the results of any LDAP write operations that completed just
before the system crash.

By default, durable database transaction logging is enabled. To disable durable transaction logging:

1. Stop the Directory Server instance:

dsctl instance_name stop

2. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file, and set the nsslapd-db-durable-
transaction parameter in the cn=config,cn=ldbm database,cn=plugins,cn=config entry to
off:

dn: cn=config,cn=ldbm database,cn=plugins,cn=config
...
nsslapd-db-durable-transaction: off



CHAPTER 5. TUNING TRANSACTION LOGGING

27

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

...

3. Start the Directory Server instance:

dsctl instance_name start

5.4. SPECIFYING TRANSACTION BATCHING

To improve the update performance when a full transaction durability is not required, use the following
command:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --txn-batch-
val=value

The --txn-batch-val specifies how many transactions be batched before Directory Server commits them
to the transaction log. Setting this value to a value greater than 0 causes the server to delay committing
transactions until the number of queued transactions is equal to this value.

Performance Tuning Guide

28

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS
Directory Server uses the following caches:

The Entry cache , which contains individual directory entries.

The DN cache is used to associate DNs and RDNs with entries.

The Database cache , which contains the database index files *.db and *.db4 files.

For the highest performance improvements, all cache sizes must be able to store all of their records. If
you do not use the recommended auto-sizing feature and have not enough RAM available, assign free
memory to the caches in the previously shown order.

6.1. THE DATABASE AND ENTRY CACHE AUTO-SIZING FEATURE

By default, Directory Server automatically determine the optimized size for the database and entry
cache. Auto-sizing optimizes the size of both caches based on the hardware resources of the server
when the instance starts.

IMPORTANT

Red Hat recommends to use the auto-tuning settings. Do not set the entry cache size
manually.

6.1.1. Manually Re-enabling the Database and Entry Cache Auto-sizing

If you upgraded the instance from a version prior to 10.1.1, or previously manually set an entry cache size,
you can enable the auto-tuning for the entry cache.

The following parameters in the cn=config,cn=ldbm database,cn=plugins,cn=config entry control
the auto-sizing:

nsslapd-cache-autosize

This settings controls if auto-sizing is enabled for the database and entry cache. Auto-sizing is
enabled:

For both the database and entry cache, if the nsslapd-cache-autosize parameter is set to a
value greater than 0.

For the database cache, if the nsslapd-cache-autosize and nsslapd-dbcachesize
parameters are set to 0.

For the entry cache, if the nsslapd-cache-autosize and nsslapd-cachememsize
parameters are set to 0.

nsslapd-cache-autosize-split

The value sets the percentage of RAM that is used for the database cache. The remaining
percentage is used for the entry cache.

Using more than 1.5 GB RAM for the database cache does not improve the performance. Therefore,
Directory Server limits the database cache 1.5 GB.

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS

29

To enable the database and entry cache auto-sizing:

1. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

2. Backup the /etc/dirsrv/slapd-instance_name/dse.ldif file:

cp /etc/dirsrv/slapd-instance_name/dse.ldif \
 /etc/dirsrv/slapd-instance_name/dse.ldif.bak.$(date "+%F_%H-%M-%S")

3. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file:

a. Set the percentage of free system RAM to use for the database and entry cache. For
example, to set 10%:

nsslapd-cache-autosize: 10

NOTE

If you set the nsslapd-cache-autosize parameter to 0, you must additionally
set:

the nsslapd-dbcachesize in the
cn=config,cn=ldbm database,cn=plugins,cn=config entry to 0 to
enable the auto-sized database cache.

the nsslapd-cachememsize in the
cn=database_name,cn=ldbm database,cn=plugins,cn=config entry
to 0 to enable the auto-sized entry cache for a database.

b. Optionally, set the percentage used from the free system RAM for the database cache. For
example, to set 40%:

nsslapd-cache-autosize-split: 40

Directory Server uses the remaining 60% of free memory for the entry cache.

c. Save the changes.

4. Start the Directory Server instance:

systemctl start dirsrv@instance_name

Example 6.1. The nsslapd-cache-autosize and nsslapd-cache-autosize-split Parameter

The following settings are the default values for the parameters:

nsslapd-cache-autosize: 25
nsslapd-cache-autosize-split: 25
nsslapd-dbcachesize: 1536MB

Using these settings, 25% of the system's free RAM is used (nsslapd-cache-autosize). From this

Performance Tuning Guide

30

Using these settings, 25% of the system's free RAM is used (nsslapd-cache-autosize). From this
memory, 25% are used for the database cache (nsslapd-cache-autosize-split) and the remaining
75% for the entry cache.

Depending on the free RAM, this results in the following cache sizes:

GB of Free RAM Database Cache Size Entry Cache Size

1 GB 64 MB 192 MB

2 GB 128 MB 384 MB

4 GB 256 MB 768 MB

8 GB 512 MB 1,536 MB

16 GB 1,024 MB 3,072 MB

32 GB 1,536 MB 6,656 MB

64 GB 1,536 MB 14,848 MB

128 GB 1,536 MB 31,232 MB

6.2. DETERMINING THE REQUIRED CACHE SIZES

The dsconf monitor dbmon command enables you to monitor cache statistics at runtime.

To display the statistics, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com monitor dbmon
DB Monitor Report: 2020-06-24 11:31:27
--
Database Cache:
 - Cache Hit Ratio: 50%
 - Free Space: 397.31 KB
 - Free Percentage: 2.2%
 - RO Page Drops: 0
 - Pages In: 2934772
 - Pages Out: 219075

Normalized DN Cache:
 - Cache Hit Ratio: 60%
 - Free Space: 19.98 MB
 - Free Percentage: 99.9%
 - DN Count: 100000
 - Evictions: 9282348

Backends:
 - dc=example,dc=com (userroot):

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS

31

 - Entry Cache Hit Ratio: 66%
 - Entry Cache Count: 50000
 - Entry Cache Free Space: 2.0 KB
 - Entry Cache Free Percentage: 0.8%
 - Entry Cache Average Size: 8.9 KB
 - DN Cache Hit Ratio: 21%
 - DN Cache Count: 100000
 - DN Cache Free Space: 4.29 MB
 - DN Cache Free Percentage: 69.8%
 - DN Cache Average Size: 130.0 B

Optionally, pass the -b back_end or -x option to the command to display the statistics for a specific
back end or the index.

If your caches are sufficiently sized, the number in DN Cache Count matches the values in the Cache
Count backend entries. Additionally, if all of the entries and DNs fit within their respective caches, the
Entry Cache Count count value matches the DN Cache Count value.

The output of the example shows:

Only 2.2% free database cache is left:

Database Cache:
 ...
 - Free Space: 397.31 KB
 - Free Percentage: 2.2%

However, to operate efficiently, at least 15% free database cache is required. To determine the
optimal size of the database cache, calculate the sizes of all *.db and *.db4 files in the
/var/lib/dirsrv/slapd-instance_name/db/ directory including subdirectories and the changelog
database, and add 12% for overhead.

To set the database cache, see Section 6.5, “Setting the Database Cache Size” .

The DN cache of the userroot database is well-chosen:

Backends:
 - dc=example,dc=com (userroot):
 ...
 - DN Cache Count: 100000
 - DN Cache Free Space: 4.29 MB
 - DN Cache Free Percentage: 69.8%
 - DN Cache Average Size: 130.0 B

The DN cache of the database contains 100000 records, 69,8% of the cache is free, and each
DN in memory requires 130 bytes on average.

To set the DN cache, see Section 6.4, “Setting the Size of the DN Cache” .

The statistics on the entry cache of the userroot database indicates that the entry cache value
should be increased for better performance:

Backends:
 - dc=example,dc=com (userroot):
 ...

Performance Tuning Guide

32

 - Entry Cache Count: 50000
 - Entry Cache Free Space: 2.0 KB
 - Entry Cache Free Percentage: 0.8%
 - Entry Cache Average Size: 8.9 KB

The entry cache contains in this database 50000 records and only 2 Kilobytes of free space are
left. To enable Directory Server to cache all 100000 DNs, the cache must be increased to
minimum of 890 MB (100000 DNs * 8,9 KB average entry size). However, Red Hat
recommends to round the minimum required size to the next highest GB and double the result.
In this example, the entry cache should be set to 2 Gigabytes.

To set the entry cache, see Section 6.3, “Manually Setting the Entry Cache Size” .

6.3. MANUALLY SETTING THE ENTRY CACHE SIZE

The entry cache is used to store directory entries that are used during search and read operations.
Setting the entry cache to a size that enables Directory Server to store all records has the highest
performance impact on search operations.

If entry caching is not configured, Directory Server reads the entry from the id2entry.db database file
and converts the DNs from the on-disk format to the in-memory format. Entries that are stored in the
cache enable the server to skip the disk I/O and conversion steps.

NOTE

Instead of manually setting the entry cache size Red Hat recommends the auto-sizing
feature for optimized settings based on the hardware resources. For details, see
Section 6.1.1, “Manually Re-enabling the Database and Entry Cache Auto-sizing” .

6.3.1. Manually Setting the Entry Cache Size Using the Command Line

To manually set the entry cache size using the command line:

1. Disable automatic cache tuning:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --cache-
autosize=0

2. Display the suffixes and their corresponding back end:

dsconf -D "cn=Directory Manager" ldap://server.example.com suffix list
dc=example,dc=com (userroot)

This command displays the name of the back end database next to each suffix. You require the
suffix's database name in the next step.

3. Set the entry cache size for the database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix set --cache-
memsize=2147483648 userRoot

This command sets the entry cache to 2 gigabytes.

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS

33

4. Restart the Directory Service instance:

dsctl instance_name restart

6.3.2. Manually Setting the Entry Cache Size Using the Web Console

To manually set the entry cache size using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select Global Database Configuration.

4. Disable Automatic Cache Tuning.

5. Click Save Configuration.

6. Click the Actions button, and select Restart Instance.

7. Set the size of the database cache in the Entry Cache Size (bytes) field.

8. Click Save Configuration.

9. Click the Actions button, and select Restart Instance.

6.4. SETTING THE SIZE OF THE DN CACHE

The entryrdn index is used to associate DNs and RDNs with entries. It enables the server to efficiently
perform subtree rename, entry move, and moddn operations. The DN cache is used to cache the in-
memory representation of the entryrdn index to avoid expensive file I/O and transformation
operations. For best performance, especially with but not limited to entry rename and move operations,
set the DN cache to a size that enables Directory Server to cache all DNs in the database.

If a DN is not stored in the cache, Directory Server reads the DN from the entryrdn.db index database
file and converts the DNs from the on-disk format to the in-memory format. DNs that are stored in the
cache enable the server to skip the disk I/O and conversion steps.

6.4.1. Setting the Size of the DN Cache Using the Command Line

To set the DN cache size of a database using the command line:

1. Display the suffixes and their corresponding back end:

dsconf -D "cn=Directory Manager" ldap://server.example.com suffix list
dc=example,dc=com (userroot)

This command displays the name of the back end database next to each suffix. You require the
suffix's database name in the next step.

2. To disable database and entry cache auto-sizing, enter:

Performance Tuning Guide

34

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --cache-
autosize=0

3. To set the DN cache size, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix set --
dncache-memsize=20971520 userRoot

This command sets the DN cache for the userRoot database to 20 megabytes.

4. Restart the Directory Service instance:

dsctl instance_name restart

6.4.2. Setting the Size of the DN Cache Using the Web Console

To set DN cache size of a database using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select the suffix for which you want to set the DN cache size.

4. Enter the size in bytes into the DN Cache Size (bytes) field.

5. Click Save Configuration.

6. Click the Actions button, and select Restart Instance.

6.5. SETTING THE DATABASE CACHE SIZE

The database cache contains the Berkeley database index files for the database, meaning all of the *.db
and other files used for attribute indexing by the database. This value is passed to the Berkeley DB API
function set_cachesize().

This cache size has less of an impact on Directory Server performance than the entry cache size, but if
there is available RAM after the entry cache size is set, increase the amount of memory allocated to the
database cache.

The operating system also has a file system cache which may compete with the database cache for RAM
usage. Refer to the operating system documentation to find information on file system cache settings
and monitoring the file system cache.

NOTE

Instead of manually setting the entry cache size Red Hat recommends the auto-sizing
feature for optimized settings based on the hardware resources. For details, see
Section 6.1.1, “Manually Re-enabling the Database and Entry Cache Auto-sizing” .

6.5.1. Manually Setting the Database Cache Size Using the Command Line

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS

35

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

To manually set the database cache size using the command line:

1. Disable automatic cache tuning:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --cache-
autosize=0

Manually set the database cache size:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend config set --
dbcachesize=268435456

This command sets the database cache to 256 megabytes.

2. Restart the Directory Service instance:

dsctl instance_name restart

6.5.2. Manually Setting the Database Cache Size Using the Web Console

To manually set the database cache size using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select Global Database Configuration.

4. Disable Automatic Cache Tuning.

5. Click Save Configuration.

6. Set the Database Cache Size (bytes) field to the database cache size.

7. Click Save Configuration.

8. Click the Actions button, and select Restart Instance.

6.5.3. Storing the Database Cache on a RAM Disk

If your system running the Directory Server instance has enough free RAM, you can optionally store the
database cache on a RAM disk for further performance improvements:

1. Create a directory for the database cache and metadata on the RAM disk:

mkdir -p /dev/shm/slapd-instance_name/

2. Set the following permissions on the directory:

chown dirsrv:dirsrv /dev/shm/slapd-instance_name/
chmod 770 /dev/shm/slapd-instance_name/

Performance Tuning Guide

36

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

3. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

4. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file and set the new path in the nsslapd-db-
home-directory attribute in the cn=bdb,cn=config,cn=ldbm database,cn=plugins,cn=config
entry:

dn: cn=bdb,cn=config,cn=ldbm database,cn=plugins,cn=config
...
nsslapd-db-home-directory: /dev/shm/slapd-instance_name/

If the nsslapd-db-home-directory attribute does not exist, add it with the new value to the
cn=bdb,cn=config,cn=ldbm database,cn=plugins,cn=config entry.

5. Start the Directory Server instance:

systemctl start dirsrv@instance_name

NOTE

When the database cache is stored on a RAM disk, Directory Server needs to recreate it
after each reboot. As a consequence, the service start and initial operations are slower
until the cache is recreated.

CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS

37

CHAPTER 7. SETTING THE NUMBER OF DIRECTORY SERVER
THREADS
The number of threads Directory Server uses to handle simultaneous connections affects the
performance of the server. For example, if all threads are busy handling time-consuming tasks (such as
add operations), new incoming connections are queued until a free thread can process the request.

If the server provides a low number of CPU threads, configuring a higher number of threads can increase
the performance. However, on a server with many CPU threads, setting a too high value does not further
increase the performance.

By default, Directory Server automatically calculates the number of threads automatically. This number
is based on the hardware resources of the server when the instance starts.

NOTE

Red Hat recommends to use the auto-tuning settings. Do not set the number of threads
manually.

7.1. AUTOMATIC THREAD TUNING

If you enable automatic thread tuning, Directory Server will use the following optimized number of
threads:

Number of CPU Threads Number of Directory Server Threads

1 16

2 16

4 24

8 32

16 48

32 64

64 96

128 192

256 384

512 512

[a]

1024 512 [a]

Performance Tuning Guide

38

2048 512 [a]

[a] The recommended maximum number of threads is applied.

Number of CPU Threads Number of Directory Server Threads

7.1.1. Enabling Automatic Thread Tuning Using the Command Line

Directory Server can automatically set the number of threads based on the available hardware threads.
To enable this feature:

1. Enable automatic setting of the number of threads:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
threadnumber="-1"

2. Restart the Directory Server instance:

dsctl instance_name restart

IMPORTANT

If you enabled the automatic setting of the number of threads, the nsslapd-
threadnumber parameter shows the calculated number of threads while Directory Server
is running.

7.1.2. Enabling Automatic Thread Tuning Using the Web Console

Directory Server can automatically set the number of threads based on the available hardware threads.
To enable this feature:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. Open the Server Settings menu, and select Tuning & Limits.

4. Set the Number Of Worker Threads field to -1.

5. Click Save.

6. Click the Actions button, and select Restart Instance.

IMPORTANT

If you enabled the automatic setting, the Number Of Worker Threads field shows the
calculated number of threads while Directory Server is running.

CHAPTER 7. SETTING THE NUMBER OF DIRECTORY SERVER THREADS

39

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

7.2. MANUALLY SETTING THE NUMBER OF THREAD

In certain situations, it can be necessary to manually set a fixed number of Directory Server threads
instead of using the automatic thread tuning.

NOTE

If the number of hardware threads changes, for example, because you increased the CPU
cores of the virtual machine that runs the Directory Server instance, you must manually
update the number of threads. For details about using the optimized and automatic
setting, see Section 7.1, “Automatic Thread Tuning”.

7.2.1. Manually Setting the Number of Threads Using the Command Line

To manually set the number of threads using the command line:

1. Set the number of threads:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
threadnumber="64"

This command sets the number of threads to 64.

2. Restart the Directory Server instance:

dsctl instance_name restart

7.2.2. Manually Setting the Number of Threads Using the Web Console

To manually set the number of threads using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. Open the Server Settings menu, and select Tuning & Limits.

4. Set the Number Of Worker Threads field to the number of threads.

5. Click Save.

6. Click the Actions button, and select Restart Instance.

Performance Tuning Guide

40

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

CHAPTER 8. TUNING THE REPLICATION PERFORMANCE

8.1. IMPROVING THE MULTI-SUPPLIER REPLICATION EFFICIENCY

The replication latency in a multi-supplier replication environment, especially if the servers are
connected using a wide area network (WAN), can be high in case of multiple suppliers are receiving
updates at the same time. This happens when one suppliers exclusively accesses a replica without
releasing it for a long time. In such situations, other suppliers cannot send updates to this consumer,
which increases the replication latency.

To release a replica after a fixed amount of time, set the nsds5ReplicaReleaseTimeout parameter on
replication suppliers and hubs.

NOTE

The 60 seconds default value is ideal for most environments. A value set too high or too
low can have a negative impact on the replication performance. If the value is set too low,
replication servers are constantly reacquiring one another, and servers are not able to
send many updates. In a high-traffic replication environment, a longer timeout can
improve situations where one supplier exclusively accesses a replica. However, in most
cases, a value higher than 120 seconds slows down replication.

8.1.1. Setting the Replication Release Timeout Using the Command Line

To set the replication release timeout using the command line:

1. Set the timeout value:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication set --
suffix="dc=example,dc=com" --repl-release-timeout=70

This command sets the replication release timeout value for the dc=example,dc=com suffix to
70 seconds.

2. Restart the Directory Server instance:

dsctl instance_name restart

8.1.2. Setting the Replication Release Timeout Using the Web Console

To set the replication release timeout using the Web Console:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. Open the Replication menu, and select Configuration.

4. Click Show Advanced Settings.

5. Set the timeout value in the Replication Release Timeout field.

CHAPTER 8. TUNING THE REPLICATION PERFORMANCE

41

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

6. Click Save.

7. Click the Actions button, and select Restart Instance.

Performance Tuning Guide

42

CHAPTER 9. TUNING DATABASE LINK PERFORMANCE
Database link performance can be improved through changes to the Directory Server's connection and
thread management.

9.1. MANAGING CONNECTIONS TO THE REMOTE SERVER

Each database link maintains a pool of connections to a remote server. This section describes how to
optimize them.

9.1.1. Managing Connections to the Remote Server Using the Command Line

This section describes how you update the settings for a specific database, as well as the default
settings.

9.1.1.1. Updating the Database Link Connection Management Settings for a Specific
Database

To update the database link connection management settings for a specific database:

1. Use the following command to update a setting for a database link:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining link-set
parameter=value link_name

For a list of parameters you can set, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining link-set --help

2. Restart the Directory Server instance:

dsctl instance_name restart

9.1.1.2. Updating the Default Database Link Connection Management Settings

To update the default database link connection management settings, use the following command:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining config-set-def
parameter=value

For a list of parameters you can set, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining config-set-def --help

9.1.2. Managing Connections to the Remote Server Using the Web Console

This section describes how you update the settings for a specific database, as well as the default
settings.

9.1.2.1. Updating the Database Link Connection Management Settings for a Specific
Database

CHAPTER 9. TUNING DATABASE LINK PERFORMANCE

43

To update the database link connection management settings for a specific database:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select the database link configuration you want to update.

4. Click Show Advanced Settings.

5. Update the fields in the advanced settings area:

To display a tooltip and the corresponding attribute name in the cn=config entry for a
parameter, hover the mouse cursor over the setting. For further details, see the parameter's
description in the Red Hat Directory Server Configuration, Command, and File Reference. .

6. Click Save Configuration.

7. Click the Actions button, and select Restart Instance.

9.1.2.2. Updating the Default Database Link Connection Management Settings

To update the default database link connection management settings:

1. Open the Directory Server user interface in the web console. For details, see Logging Into
Directory Server Using the Web Console section in the Red Hat Directory Server Administration
Guide.

2. Select the instance.

3. On the Database tab, select Chaining Configuration.

Performance Tuning Guide

44

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/i
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/logging_into_directory_server_using_the_web_console

4. Update the fields in the Default Database Link Creation Settings area:

To display a tooltip and the corresponding attribute name in the cn=config entry for a
parameter, hover the mouse cursor over the setting. For further details, see the parameter's
description in the Red Hat Directory Server Configuration, Command, and File Reference. .

5. Click Save Default Settings.

6. Click the Actions button, and select Restart Instance.

9.2. DETECTING ERRORS DURING NORMAL PROCESSING

Protect server performance by detecting errors during the normal chaining operation between the
database link and the remote server. The database link has two attributes — nsMaxResponseDelay and
nsMaxTestResponseDelay — which work together to determine if the remote server is no longer
responding.

The first attribute, nsMaxResponseDelay, sets a maximum duration for an LDAP operation to
complete. If the operation takes more than the amount of time specified in this attribute, the database
link's server suspects that the remote server is no longer online.

Once the nsMaxResponseDelay period has been met, the database link pings the remote server.
During the ping, the database link issues another LDAP request, a simple search request for an object

CHAPTER 9. TUNING DATABASE LINK PERFORMANCE

45

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/i

that does not exist in the remote server. The duration of the ping is set using the
nsMaxTestResponseDelay.

If the remote server does not respond before the nsMaxTestResponseDelay period has passed, then
an error is returned, and the connection is flagged as down. All connections between the database link
and remote server will be blocked for 30 seconds, protecting the server from a performance
degradation. After 30 seconds, operation requests made by the database link to the remote server
continue as normal.

Both attributes are stored in the cn=config,cn=chaining database,cn=plugins,cn=config entry. The
following table describes the attributes in more detail:

Table 9.1. Database Link Processing Error Detection Parameters

Attribute Name Description

nsMaxResponseDelay Maximum amount of time it can take a remote server to respond to an
LDAP operation request made by a database link before an error is
suspected. This period is given in seconds. The default delay period is 60
seconds. Once this delay period has been met, the database link tests the
connection with the remote server.

nsMaxTestResponseDelay Duration of the test issued by the database link to check whether the
remote server is responding. If a response from the remote server is not
returned before this period has passed, the database link assumes the
remote server is down, and the connection is not used for subsequent
operations. This period is given in seconds. The default test response delay
period is 15 seconds.

Performance Tuning Guide

46

CHAPTER 10. IMPROVING IMPORT PERFORMANCE
Very large entry sizes or a large number of entries can negatively impact server performance during
import operations. This section describes how to tune both Directory Server settings and operating
system settings to improve the import performance.

10.1. TUNING DIRECTORY SERVER FOR LARGE DATABASE IMPORTS
AND IMPORTS WITH LARGE ATTRIBUTES

Update the entry cache in the following scenarios:

You want to import a very large database.

You want to import a database with large attributes, such as binary attributes that store
certificate chains or images.

For details, about setting the size of the entry cache, see Section 6.1, “The Database and Entry Cache
Auto-Sizing Feature” and Section 6.3, “Manually Setting the Entry Cache Size” .

10.2. TUNING DIRECTORY SERVER FOR IMPORTING A LARGE
NUMBER OF ENTRIES

When you import a large number of entries, operating system settings on the maximum number of user
processes can limit the performance of Directory Server.

To temporarily increase the maximum number of processes, enter:

ulimit -u 32000

When a user logs off, the changes are back to the default settings.

To permanently increase the maximum number of processes, see “How to set ulimit values ”.

CHAPTER 10. IMPROVING IMPORT PERFORMANCE

47

https://access.redhat.com/solutions/1346533

APPENDIX A. REVISION HISTORY
Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
Directory Server.

Revision 11.5-1 Tue May 10 2022 Marc Muehlfeld
Red Hat Directory Server 11.5 release of this guide.

Revision 11.4-1 Tue Nov 09 2021 Marc Muehlfeld
Red Hat Directory Server 11.4 release of this guide.

Revision 11.3-1 Tue May 11 2021 Marc Muehlfeld
Red Hat Directory Server 11.3 release of this guide.

Revision 11.2-1 Tue Nov 03 2020 Marc Muehlfeld
Red Hat Directory Server 11.2 release of this guide.

Revision 11.1-1 Tue Apr 28 2020 Marc Muehlfeld
Red Hat Directory Server 11.1 release of this guide.

Revision 11.0-1 Tue Nov 05 2019 Marc Muehlfeld
Red Hat Directory Server 11.0 release of this guide.

Performance Tuning Guide

48

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO DIRECTORY SERVER PERFORMANCE TUNING
	1.1. SETTING GOALS FOR DIRECTORY SERVER PERFORMANCE

	CHAPTER 2. TRACKING SERVER AND DATABASE PERFORMANCE
	2.1. MONITORING SERVER ACTIVITY
	2.1.1. Monitoring the Directory Server Using the Command Line
	2.1.2. Monitoring the Server Using the Web Console

	2.2. MONITORING DATABASE ACTIVITY
	2.2.1. Monitoring Database Activity Using the Command Line
	2.2.2. Monitoring Database Activity Using the Web Console

	2.3. MONITORING DATABASE LINK ACTIVITY
	2.4. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN
	2.4.1. Configuring Local Disk Monitoring Using the Command Line
	2.4.2. Configuring Local Disk Monitoring Using the Web Console

	CHAPTER 3. TUNING THE NUMBER OF LOCKS
	3.1. MANUALLY MONITORING THE NUMBER OF LOCKS
	3.2. AVOIDING DATA CORRUPTION BY MONITORING FREE DATABASE LOCKS
	3.3. SETTING THE NUMBER OF LOCKS USING THE COMMAND LINE
	3.4. SETTING THE NUMBER OF LOCKS USING THE WEB CONSOLE

	CHAPTER 4. IMPROVING SEARCH PERFORMANCE (AND BALANCING READ PERFORMANCE)
	4.1. USING INDEXES
	4.2. TUNING DIRECTORY SERVER RESOURCE SETTINGS
	4.2.1. Updating Directory Server Resource Settings Using the Command Line
	4.2.2. Updating Directory Server Resource Settings Using the Web Console

	4.3. SETTING INDEX SCAN LIMITS
	4.3.1. Setting an Index Scan Limit Using the Command Line
	4.3.2. Setting an Index Scan Limit Using the Web Console

	4.4. FINE GRAINED ID LIST SIZE
	4.5. TUNING THE DATABASE CACHE FOR SEARCHES
	4.6. MANAGING SPECIAL ENTRIES

	CHAPTER 5. TUNING TRANSACTION LOGGING
	5.1. MOVING THE DATABASE DIRECTORY TO A SEPARATE DISK OR PARTITION
	5.2. CHANGING THE DATABASE CHECKPOINT INTERVAL
	5.2.1. Changing the Database Checkpoint Interval Using the Command Line
	5.2.2. Changing the Database Checkpoint Interval Using the Web Console

	5.3. DISABLING DURABLE TRANSACTIONS
	5.4. SPECIFYING TRANSACTION BATCHING

	CHAPTER 6. MANAGING THE DATABASE CACHE SETTINGS
	6.1. THE DATABASE AND ENTRY CACHE AUTO-SIZING FEATURE
	6.1.1. Manually Re-enabling the Database and Entry Cache Auto-sizing

	6.2. DETERMINING THE REQUIRED CACHE SIZES
	6.3. MANUALLY SETTING THE ENTRY CACHE SIZE
	6.3.1. Manually Setting the Entry Cache Size Using the Command Line
	6.3.2. Manually Setting the Entry Cache Size Using the Web Console

	6.4. SETTING THE SIZE OF THE DN CACHE
	6.4.1. Setting the Size of the DN Cache Using the Command Line
	6.4.2. Setting the Size of the DN Cache Using the Web Console

	6.5. SETTING THE DATABASE CACHE SIZE
	6.5.1. Manually Setting the Database Cache Size Using the Command Line
	6.5.2. Manually Setting the Database Cache Size Using the Web Console
	6.5.3. Storing the Database Cache on a RAM Disk

	CHAPTER 7. SETTING THE NUMBER OF DIRECTORY SERVER THREADS
	7.1. AUTOMATIC THREAD TUNING
	7.1.1. Enabling Automatic Thread Tuning Using the Command Line
	7.1.2. Enabling Automatic Thread Tuning Using the Web Console

	7.2. MANUALLY SETTING THE NUMBER OF THREAD
	7.2.1. Manually Setting the Number of Threads Using the Command Line
	7.2.2. Manually Setting the Number of Threads Using the Web Console

	CHAPTER 8. TUNING THE REPLICATION PERFORMANCE
	8.1. IMPROVING THE MULTI-SUPPLIER REPLICATION EFFICIENCY
	8.1.1. Setting the Replication Release Timeout Using the Command Line
	8.1.2. Setting the Replication Release Timeout Using the Web Console

	CHAPTER 9. TUNING DATABASE LINK PERFORMANCE
	9.1. MANAGING CONNECTIONS TO THE REMOTE SERVER
	9.1.1. Managing Connections to the Remote Server Using the Command Line
	9.1.1.1. Updating the Database Link Connection Management Settings for a Specific Database
	9.1.1.2. Updating the Default Database Link Connection Management Settings

	9.1.2. Managing Connections to the Remote Server Using the Web Console
	9.1.2.1. Updating the Database Link Connection Management Settings for a Specific Database
	9.1.2.2. Updating the Default Database Link Connection Management Settings

	9.2. DETECTING ERRORS DURING NORMAL PROCESSING

	CHAPTER 10. IMPROVING IMPORT PERFORMANCE
	10.1. TUNING DIRECTORY SERVER FOR LARGE DATABASE IMPORTS AND IMPORTS WITH LARGE ATTRIBUTES
	10.2. TUNING DIRECTORY SERVER FOR IMPORTING A LARGE NUMBER OF ENTRIES

	APPENDIX A. REVISION HISTORY

