
Red Hat Developer Toolset 11

User Guide

Installing and Using Red Hat Developer Toolset

Last Updated: 2022-07-27

Red Hat Developer Toolset 11 User Guide

Installing and Using Red Hat Developer Toolset

Olga Tikhomirova
Red Hat Customer Content Services
otikhomi@redhat.com

Zuzana Zoubková
Red Hat Customer Content Services

Jaromír Hradílek
Red Hat Customer Content Services

Matt Newsome
Red Hat Software Engineering

Robert Krátký
Red Hat Customer Content Services

Vladimír Slávik
Red Hat Customer Content Services

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. The Red Hat Developer Toolset User Guide provides an overview of this product, explains
how to invoke and use the Red Hat Developer Toolset versions of the tools, and links to resources
with more in-depth information.

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PART I. INTRODUCTION

CHAPTER 1. RED HAT DEVELOPER TOOLSET
1.1. ABOUT RED HAT DEVELOPER TOOLSET

What Is New in Red Hat Developer Toolset 11.0
1.2. MAIN FEATURES
1.3. COMPATIBILITY

Architecture support
1.4. GETTING ACCESS TO RED HAT DEVELOPER TOOLSET

1.4.1. Using Red Hat Software Collections
1.5. INSTALLING RED HAT DEVELOPER TOOLSET

1.5.1. Installing All Available Components
1.5.2. Installing Individual Package Groups
1.5.3. Installing Optional Packages
1.5.4. Installing Debugging Information

1.6. UPDATING RED HAT DEVELOPER TOOLSET
1.6.1. Updating to a Minor Version
1.6.2. Updating to a Major Version

1.7. UNINSTALLING RED HAT DEVELOPER TOOLSET
1.8. USING RED HAT DEVELOPER TOOLSET CONTAINER IMAGES
1.9. ADDITIONAL RESOURCES

Online Documentation
See Also

PART II. DEVELOPMENT TOOLS

CHAPTER 2. GNU COMPILER COLLECTION (GCC)
2.1. GNU C COMPILER

2.1.1. Installing the C Compiler
2.1.2. Using the C Compiler
2.1.3. Running a C Program

2.2. GNU C++ COMPILER
2.2.1. Installing the C++ Compiler
2.2.2. Using the C++ Compiler
2.2.3. Running a C++ Program
2.2.4. C++ Compatibility

2.2.4.1. C++ ABI
2.3. GNU FORTRAN COMPILER

2.3.1. Installing the Fortran Compiler
2.3.2. Using the Fortran Compiler
2.3.3. Running a Fortran Program

2.4. SPECIFICS OF GCC IN RED HAT DEVELOPER TOOLSET
2.5. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 3. GNU MAKE
3.1. INSTALLING MAKE
3.2. USING MAKE

7

8

9
9
9

10
11
11
11
11

13
13
13
14
14
15
15
15
15
16
16
16
17

18

19
19
19
19

20
20
21
21
22
22
23
24
24
24
25
25
26
26
26
27

28
28
28

Table of Contents

1

. .

. .

. .

. .

. .

. .

3.3. USING MAKEFILES
3.4. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 4. BINUTILS
4.1. INSTALLING BINUTILS
4.2. USING THE GNU ASSEMBLER
4.3. USING THE GNU LINKER
4.4. USING OTHER BINARY TOOLS
4.5. SPECIFICS OF BINUTILS IN RED HAT DEVELOPER TOOLSET
4.6. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 5. ELFUTILS
5.1. INSTALLING ELFUTILS
5.2. USING ELFUTILS
5.3. ADDITIONAL RESOURCES

See Also

CHAPTER 6. DWZ
6.1. INSTALLING DWZ
6.2. USING DWZ
6.3. ADDITIONAL RESOURCES

Installed Documentation
See Also

CHAPTER 7. ANNOBIN
7.1. INSTALLING ANNOBIN
7.2. USING ANNOBIN PLUGIN
7.3. USING ANNOCHECK
7.4. ADDITIONAL RESOURCES

Installed Documentation

PART III. DEBUGGING TOOLS

CHAPTER 8. GNU DEBUGGER (GDB)
8.1. INSTALLING THE GNU DEBUGGER
8.2. PREPARING A PROGRAM FOR DEBUGGING

Compiling Programs with Debugging Information
Installing Debugging Information for Existing Packages

8.3. RUNNING THE GNU DEBUGGER
8.4. LISTING SOURCE CODE
8.5. SETTING BREAKPOINTS

Setting a New Breakpoint
Listing Breakpoints
Deleting Existing Breakpoints

8.6. STARTING EXECUTION
8.7. DISPLAYING CURRENT VALUES
8.8. CONTINUING EXECUTION
8.9. ADDITIONAL RESOURCES

Installed Documentation

29
30
30
30
30

32
33
33
33
34
35
35
35
35
35

37
38
38
38
38

39
39
39
39
39
39

41
41
41
41

42
42

43

44
44
44
44
45
45
46
47
47
48
48
49
49
50
50
50

Red Hat Developer Toolset 11 User Guide

2

. .

. .

. .

. .

. .

. .

. .

Online Documentation
See Also

CHAPTER 9. STRACE
9.1. INSTALLING STRACE
9.2. USING STRACE

9.2.1. Redirecting Output to a File
9.2.2. Tracing Selected System Calls
9.2.3. Displaying Time Stamps
9.2.4. Displaying a Summary
9.2.5. Tampering with System Call Results

9.3. ADDITIONAL RESOURCES
Installed Documentation
See Also

CHAPTER 10. LTRACE
10.1. INSTALLING LTRACE
10.2. USING LTRACE

10.2.1. Redirecting Output to a File
10.2.2. Tracing Selected Library Calls
10.2.3. Displaying Time Stamps
10.2.4. Displaying a Summary

10.3. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation
See Also

CHAPTER 11. MEMSTOMP
11.1. INSTALLING MEMSTOMP
11.2. USING MEMSTOMP
11.3. ADDITIONAL RESOURCES

Installed Documentation
See Also

PART IV. PERFORMANCE MONITORING TOOLS

CHAPTER 12. SYSTEMTAP
12.1. INSTALLING SYSTEMTAP
12.2. USING SYSTEMTAP
12.3. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 13. VALGRIND
13.1. INSTALLING VALGRIND
13.2. USING VALGRIND
13.3. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 14. OPROFILE
14.1. INSTALLING OPROFILE
14.2. USING OPROFILE

51
51

52
52
52
52
53
54
55
55
56
56
56

57
57
57
57
58
59
59
60
60
60
60

61
62
62
64
64
64

65

66
66
67
67
67
67
68

69
69
70
70
70
70
71

72
72
72

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

14.3. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation
See Also

CHAPTER 15. DYNINST
15.1. INSTALLING DYNINST
15.2. USING DYNINST

15.2.1. Using Dyninst with SystemTap
15.2.2. Using Dyninst as a Stand-alone Library

15.3. ADDITIONAL RESOURCES
Installed Documentation
Online Documentation
See Also

PART V. COMPILER TOOLSETS

CHAPTER 16. COMPILER TOOLSETS DOCUMENTATION

PART VI. GETTING HELP

CHAPTER 17. ACCESSING RED HAT PRODUCT DOCUMENTATION
Red Hat Developer Toolset
Red Hat Enterprise Linux

CHAPTER 18. CONTACTING GLOBAL SUPPORT SERVICES
18.1. GATHERING REQUIRED INFORMATION

Background Information
Diagnostics
Account and Contact Information
Issue Severity

18.2. ESCALATING AN ISSUE
18.3. RE-OPENING A SERVICE REQUEST
18.4. ADDITIONAL RESOURCES

Online Documentation

APPENDIX A. CHANGES IN VERSION 11.0
A.1. CHANGES IN GCC

General Improvements
Language-specific Improvements
Architecture-specific Improvements

A.2. CHANGES IN BINUTILS
The assembler
The linker
Other binary utilities

A.3. CHANGES IN ELFUTILS
A.4. CHANGES IN DWZ
A.5. CHANGES IN GDB

New features
New and improved commands
Python API

A.6. CHANGES IN LTRACE
A.7. CHANGES IN STRACE

Changes in Behavior
Improvements

73
73
73
74

75
75
75
75
76
80
80
80
80

82

83

84

85
85
85

86
86
86
86
86
87
87
87
88
88

89
89
89
89
91
91
91
91

92
92
93
93
93
94
94
94
94
95
95

Red Hat Developer Toolset 11 User Guide

4

Bug Fixes
A.8. CHANGES IN SYSTEMTAP
A.9. CHANGES IN VALGRIND
A.10. CHANGES IN DYNINST
A.11. CHANGES IN ANNOBIN

GCC plugin
Annocheck

96
97
97
97
98
98
98

Table of Contents

5

Red Hat Developer Toolset 11 User Guide

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. INTRODUCTION

Red Hat Developer Toolset 11 User Guide

8

CHAPTER 1. RED HAT DEVELOPER TOOLSET

1.1. ABOUT RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux
platform. It provides a complete set of development and performance analysis tools that can be
installed and used on multiple versions of Red Hat Enterprise Linux. Executables built with the Red Hat
Developer Toolset toolchain can then also be deployed and run on multiple versions of Red Hat
Enterprise Linux. For detailed compatibility information, see Section 1.3, “Compatibility”.

Red Hat Developer Toolset does not replace the default system tools provided with Red Hat
Enterprise Linux 7 when installed on those platforms. Instead, a parallel set of developer tools provides
an alternative, newer version of those tools for optional use by developers. The default compiler and
debugger, for example, remain those provided by the base Red Hat Enterprise Linux system.

What Is New in Red Hat Developer Toolset 11.0
Since Red Hat Developer Toolset 4.1, the Red Hat Developer Toolset content is also available in the ISO
format together with the rest of Red Hat Software Collections content at
https://access.redhat.com/downloads, specifically for Server and Workstation. Note that packages that
require the Optional channel, which are discussed in Section 1.5.3, “Installing Optional Packages” , cannot
be installed from the ISO image.

Table 1.1. Red Hat Developer Toolset Components

Name Version Description

GCC 11.2 A portable compiler suite with support for C, C++, and Fortran.

binutils 2.36 A collection of binary tools and other utilities to inspect and manipulate
object files and binaries.

elfutils 0.185 A collection of binary tools and other utilities to inspect and manipulate
ELF files.

dwz 0.14 A tool to optimize DWARF debugging information contained in ELF
shared libraries and ELF executables for size.

GDB 10.2 A command line debugger for programs written in C, C++, and Fortran.

ltrace 0.7.91 A debugging tool to display calls to dynamic libraries that a program
makes. It can also monitor system calls executed by programs.

strace 5.13 A debugging tool to monitor system calls that a program uses and
signals it receives.

memstomp 0.1.5 A debugging tool to identify calls to library functions with overlapping
memory regions that are not allowed by various standards.

SystemTap 4.5 A tracing and probing tool to monitor the activities of the entire system
without the need to instrument, recompile, install, and reboot.

CHAPTER 1. RED HAT DEVELOPER TOOLSET

9

https://access.redhat.com/downloads
https://access.redhat.com/downloads/content/201/ver=1/rhel---7/3.1/x86_64/product-software
https://access.redhat.com/downloads/content/203

Valgrind 3.17.0 An instrumentation framework and a number of tools to profile
applications in order to detect memory errors, identify memory
management problems, and report any use of improper arguments in
system calls.

OProfile 1.4.0 A system-wide profiler that uses the performance monitoring hardware
on the processor to retrieve information about the kernel and
executables on the system.

Dyninst 11.0.0 A library for instrumenting and working with user-space executables
during their execution.

make 4.3 A dependency-tracking build automation tool.

annobin 9.82 A build security checking tool.

Name Version Description

Red Hat Developer Toolset differs from "Technology Preview" compiler releases previously supplied in
Red Hat Enterprise Linux in two important respects:

1. Red Hat Developer Toolset can be used on multiple major and minor releases of Red Hat
Enterprise Linux, as detailed in Section 1.3, “Compatibility”.

2. Unlike Technology Preview compilers and other tools shipped in earlier Red Hat
Enterprise Linux, Red Hat Developer Toolset is fully supported under Red Hat Enterprise Linux
Subscription Level Agreements, is functionally complete, and is intended for production use.

Important bug fixes and security errata are issued to Red Hat Developer Toolset subscribers in a similar
manner to Red Hat Enterprise Linux for two years from the release of each major version release. A new
major version of Red Hat Developer Toolset is released annually, providing significant updates for
existing components and adding major new components. A single minor release, issued six months after
each new major version release, provides a smaller update of bug fixes, security errata, and new minor
components.

Additionally, the Red Hat Enterprise Linux Application Compatibility Specification also applies to
Red Hat Developer Toolset (subject to some constraints on the use of newer C++11 language features,
detailed in Section 2.2.4, “C++ Compatibility”).

IMPORTANT

Applications and libraries provided by Red Hat Developer Toolset do not replace the
Red Hat Enterprise Linux system versions, nor are they used in preference to the system
versions. Using a framework called Software Collections, an additional set of developer
tools is installed into the /opt/ directory and is explicitly enabled by the user on demand
using the scl utility.

1.2. MAIN FEATURES

Red Hat Developer Toolset 11.0 brings the following changes:

Red Hat Developer Toolset 11 User Guide

10

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/rhel-abi-compatibility

The Red Hat Developer Toolset version of the GNU Compiler Collection (GCC) has been
upgraded to version 11.2 with many new features and bug fixes.

The Red Hat Developer Toolset version of the GNU Debugger (GDB) has been upgraded to
version 10.2 with many new features and bug fixes.

For a full list of changes and features introduced in this release, see Appendix A, Changes in Version 11.0.

1.3. COMPATIBILITY

Red Hat Developer Toolset 11.0 is available for Red Hat Enterprise Linux 7 for a number of architectures.

For ABI compatibility information, see Section 2.2.4, “C++ Compatibility”.

Table 1.2. Red Hat Developer Toolset 11.0 Compatibility

 Runs on Red Hat
Enterprise Linux 7.7

Runs on Red Hat
Enterprise Linux 7.9

Built with Red Hat
Enterprise Linux 7.7

Supported Supported

Built with Red Hat
Enterprise Linux 7.9

Not Supported Supported

Architecture support
Red Hat Developer Toolset is available on the following architectures:

The 64-bit Intel and AMD architectures

IBM Power Systems, big endian

IBM Power Systems, little endian

64-bit IBM Z

1.4. GETTING ACCESS TO RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is an offering distributed as a part of Red Hat Software Collections.

This content set is available to customers with Red Hat Enterprise Linux 7 subscriptions listed at
https://access.redhat.com/solutions/472793.

Enable Red Hat Developer Toolset by using Red Hat Subscription Management. For information on how
to register your system with this subscription management service, see the Red Hat Subscription
Management collection of guides.

1.4.1. Using Red Hat Software Collections

Complete the following steps to attach a subscription that provides access to the repository for
Red Hat Software Collections (which includes Red Hat Developer Toolset), and then enable that
repository:

1. Determine the pool ID of a subscription that provides Red Hat Software Collections (and thus

CHAPTER 1. RED HAT DEVELOPER TOOLSET

11

https://access.redhat.com/solutions/472793
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

1. Determine the pool ID of a subscription that provides Red Hat Software Collections (and thus
also Red Hat Developer Toolset). To do so, display a list of all subscriptions that are available for
your system:

subscription-manager list --available

For each available subscription, this command displays its name, unique identifier, expiration
date, and other details related to your subscription. The pool ID is listed on a line beginning with
Pool ID.

For a complete list of subscriptions that provide access to Red Hat Developer Toolset, see
https://access.redhat.com/solutions/472793.

2. Attach the appropriate subscription to your system:

subscription-manager attach --pool=pool_id

Replace pool_id with the pool ID you determined in the previous step. To verify the list of
subscriptions your system has currently attached, at any time:

subscription-manager list --consumed

3. Determine the exact name of the Red Hat Software Collections repository. Retrieve repository
metadata and to display a list of available Yum repositories:

subscription-manager repos --list

The repository names depend on the specific version of Red Hat Enterprise Linux you are using
and are in the following format:

rhel-variant-rhscl-version-rpms
rhel-variant-rhscl-version-debug-rpms
rhel-variant-rhscl-version-source-rpms

In addition, certain packages, such as devtoolset-11-gcc-plugin-devel , depend on packages
that are only available in the Optional channel. The repository names with these packages use
the following format:

rhel-version-variant-optional-rpms
rhel-version-variant-optional-debug-rpms
rhel-version-variant-optional-source-rpms

For both the regular repositories and optional repositories, replace variant with the Red Hat
Enterprise Linux system variant (server or workstation), and version with the Red Hat
Enterprise Linux system version (7).

4. Enable the repositories from step no. 3:

subscription-manager repos --enable repository

Replace repository with the name of the repository to enable.

Once the subscription is attached to the system, you can install Red Hat Developer Toolset as described
in Section 1.5, “Installing Red Hat Developer Toolset” . For more information on how to register your

Red Hat Developer Toolset 11 User Guide

12

https://access.redhat.com/solutions/472793

system using Red Hat Subscription Management and associate it with subscriptions, see the Red Hat
Subscription Management collection of guides.

1.5. INSTALLING RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is distributed as a collection of RPM packages that can be installed, updated,
uninstalled, and inspected by using the standard package management tools that are included in
Red Hat Enterprise Linux. Note that a valid subscription that provides access to the Red Hat
Software Collections content set is required in order to install Red Hat Developer Toolset on your
system. For detailed instructions on how to associate your system with an appropriate subscription and
get access to Red Hat Developer Toolset, see Section 1.4, “Getting Access to Red Hat
Developer Toolset”.

IMPORTANT

Before installing Red Hat Developer Toolset, install all available Red Hat Enterprise Linux
updates.

1.5.1. Installing All Available Components

To install all components that are included in Red Hat Developer Toolset, install the devtoolset-11
package:

yum install devtoolset-11

This installs all development, debugging, and performance monitoring tools, and other dependent
packages to the system. Alternatively, you can choose to install only a selected package group as
described in Section 1.5.2, “Installing Individual Package Groups” .

NOTE

Note that since Red Hat Developer Toolset 3.0, the scl-utils package is not a part of
Red Hat Developer Toolset, which is a change from preceding versions where the scl
utility was installed along with the Red Hat Developer Toolset software collection.

1.5.2. Installing Individual Package Groups

To make it easier to install only certain components, such as the integrated development environment
or the software development toolchain, Red Hat Developer Toolset is distributed with a number of meta
packages that allow you to install selected package groups as described in Table 1.3, “Red Hat
Developer Toolset Meta Packages”.

Table 1.3. Red Hat Developer Toolset Meta Packages

Package Name Description Installed Components

devtoolset-11-perftools Performance monitoring tools SystemTap, Valgrind, OProfile,
Dyninst

devtoolset-11-toolchain Development and debugging
tools

GCC, make, GDB, binutils, elfutils,
dwz, memstomp, strace, ltrace

CHAPTER 1. RED HAT DEVELOPER TOOLSET

13

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/

To install any of these meta packages:

yum install package_name

Replace package_name with a space-separated list of meta packages you want to install. For example,
to install only the development and debugging toolchain and packages that depend on it:

yum install devtoolset-11-toolchain

Alternatively, you can choose to install all available components as described in Section 1.5.1, “Installing
All Available Components”.

1.5.3. Installing Optional Packages

Red Hat Developer Toolset is distributed with a number of optional packages that are not installed by
default. To list all Red Hat Developer Toolset packages that are available to you but not installed on your
system:

$ yum list available devtoolset-11-*

To install any of these optional packages:

yum install package_name

Replace package_name with a space-separated list of packages that you want to install. For example, to
install the devtoolset-11-gdb-gdbserver and devtoolset-11-gdb-doc packages:

yum install devtoolset-11-gdb-gdbserver devtoolset-11-gdb-doc

1.5.4. Installing Debugging Information

To install debugging information for any of the Red Hat Developer Toolset packages, make sure that the
yum-utils package is installed and run:

debuginfo-install package_name

For example, to install debugging information for the devtoolset-11-dwz package:

debuginfo-install devtoolset-11-dwz

Note that in order to use this command, you need to have access to the repository with these packages.
If your system is registered with Red Hat Subscription Management, enable the rhel-variant-
rhscl-version-debug-rpms repository as described in Section 1.4, “Getting Access to Red Hat
Developer Toolset”. For more information on how to get access to debuginfo packages, see
https://access.redhat.com/site/solutions/9907.

NOTE

Red Hat Developer Toolset 11 User Guide

14

https://access.redhat.com/site/solutions/9907

NOTE

The devtoolset-11-package_name-debuginfo packages can conflict with the
corresponding packages from the base Red Hat Enterprise Linux system or from other
versions of Red Hat Developer Toolset. This conflict also occurs in a multilib environment,
where 64-bit debuginfo packages conflict with 32-bit debuginfo packages.

Manually uninstall the conflicting debuginfo packages prior to installing Red Hat
Developer Toolset 11.0 and install only relevant debuginfo packages when necessary.

1.6. UPDATING RED HAT DEVELOPER TOOLSET

1.6.1. Updating to a Minor Version

When a new minor version of Red Hat Developer Toolset is available, update your Red Hat
Enterprise Linux installation:

yum update

This updates all packages on your Red Hat Enterprise Linux system, including the Red Hat
Developer Toolset versions of development, debugging, and performance monitoring tools, and other
dependent packages.

IMPORTANT

Use of Red Hat Developer Toolset requires the removal of any earlier pre-release
versions of it. Additionally, it is not possible to update to Red Hat Developer Toolset 11.0
from a pre-release version of Red Hat Developer Toolset, including beta releases. If you
have previously installed any pre-release version of Red Hat Developer Toolset, uninstall
it from your system as described in Section 1.7, “Uninstalling Red Hat Developer Toolset”
and install the new version as documented in Section 1.5, “Installing Red Hat
Developer Toolset”.

1.6.2. Updating to a Major Version

When a new major version of Red Hat Developer Toolset is available, you can install it in parallel with the
previous version. For detailed instructions on how to install Red Hat Developer Toolset on your system,
see Section 1.5, “Installing Red Hat Developer Toolset” .

1.7. UNINSTALLING RED HAT DEVELOPER TOOLSET

To uninstall Red Hat Developer Toolset packages from your system:

yum remove devtoolset-11* libasan libatomic libcilkrts libitm liblsan libtsan libubsan

This removes the GNU Compiler Collection, GNU Debugger, binutils, and other packages that are a
part of Red Hat Developer Toolset from the system.

NOTE

CHAPTER 1. RED HAT DEVELOPER TOOLSET

15

NOTE

Red Hat Developer Toolset 11.0 for Red Hat Enterprise Linux 7 no longer includes the
libatomic and libitm libraries, which the above command attempts to remove, because
they are not required for a proper function of Red Hat Developer Toolset components on
that system. Nevertheless, the above command works as expected even on Red Hat
Enterprise Linux 7.

Note that the uninstallation of the tools provided by Red Hat Developer Toolset does not affect the
Red Hat Enterprise Linux system versions of these tools.

1.8. USING RED HAT DEVELOPER TOOLSET CONTAINER IMAGES

Docker-formatted container images can be used to run Red Hat Developer Toolset components inside
virtual software containers, thus isolating them from the host system and allowing for their rapid
deployment. For detailed description of the Red Hat Developer Toolset docker-formatted container
images and Red Hat Developer Toolset Dockerfiles, see Using Red Hat Software Collections Container
Images.

NOTE

The docker package, which contains the Docker daemon, command-line tool, and other
necessary components for building and using docker-formatted container images, is
currently available only for the Server variant of the Red Hat Enterprise Linux 7 product.

Follow the instructions outlined at Getting Docker in RHEL 7 to set up an environment
for building and using docker-formatted container images.

1.9. ADDITIONAL RESOURCES

For more information about Red Hat Developer Toolset and Red Hat Enterprise Linux, see the
resources listed below.

Online Documentation

Red Hat Subscription Management collection of guides — The Red Hat Subscription
Management collection of guides provides detailed information on how to manage subscriptions
on Red Hat Enterprise Linux.

Red Hat Developer Toolset 11.0 Release Notes — The Release Notes for Red Hat
Developer Toolset 11.0 contain more information.

Red Hat Enterprise Linux 7 Developer Guide — The Developer Guide for Red Hat
Enterprise Linux 7 provides more information on the Eclipse IDE, libraries and runtime support,
compiling and building, debugging, and profiling on these systems.

Red Hat Enterprise Linux 7 Installation Guide — The Installation Guide for Red Hat
Enterprise Linux 7 explains how to obtain, install, and update the system.

Red Hat Enterprise Linux 7 System Administrator’s Guide — The System Administrator’s Guide
for Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

Using Red Hat Software Collections Container Images — This book provides information on how
to use container images based on Red Hat Software Collections. The available container images

Red Hat Developer Toolset 11 User Guide

16

https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/devtoolset-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#getting_docker_in_rhel_7
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/11/html/11.0_release_notes/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/

include applications, daemons, databases, as well as the Red Hat Developer Toolset container
images. The images can be run on Red Hat Enterprise Linux 7 Server and Red Hat
Enterprise Linux Atomic Host.

Getting Started with Containers — The guide contains a comprehensive overview of information
about building and using container images on Red Hat Enterprise Linux 7 and Red Hat
Enterprise Linux Atomic Host.

See Also

Appendix A, Changes in Version 11.0 — A list of changes and improvements over the version of
the Red Hat Developer Toolset tools in the previous version of Red Hat Developer Toolset.

CHAPTER 1. RED HAT DEVELOPER TOOLSET

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers

PART II. DEVELOPMENT TOOLS

Red Hat Developer Toolset 11 User Guide

18

CHAPTER 2. GNU COMPILER COLLECTION (GCC)
The GNU Compiler Collection, commonly abbreviated GCC, is a portable compiler suite with support
for a wide selection of programming languages.

Red Hat Developer Toolset is distributed with GCC 11.2. This version is more recent than the version
included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

2.1. GNU C COMPILER

2.1.1. Installing the C Compiler

In Red Hat Developer Toolset, the GNU C compiler is provided by the devtoolset-11-gcc package and is
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

2.1.2. Using the C Compiler

To compile a C program on the command line, run the gcc compiler as follows:

$ scl enable devtoolset-11 'gcc -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line,:

$ scl enable devtoolset-11 'gcc -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file:

$ scl enable devtoolset-11 'gcc -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset gcc as default:

$ scl enable devtoolset-11 'bash'

NOTE

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

19

NOTE

To verify the version of gcc you are using at any point:

$ which gcc

Red Hat Developer Toolset’s gcc executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset gcc:

$ gcc -v

Example 2.1. Compiling a C Program on the Command Line

Consider a source file named hello.c with the following contents:

Compile this source code on the command line by using the gcc compiler from Red Hat
Developer Toolset:

$ scl enable devtoolset-11 'gcc -o hello hello.c'

This creates a new binary file called hello in the current working directory.

2.1.3. Running a C Program

When gcc compiles a program, it creates an executable binary file. To run this program on the command
line, change to the directory with the executable file and run it:

$./file_name

Example 2.2. Running a C Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.1,
“Compiling a C Program on the Command Line”, you can run it by typing the following at a shell
prompt:

$./hello
Hello, World!

2.2. GNU C++ COMPILER

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello, World!\n");
 return 0;
}

Red Hat Developer Toolset 11 User Guide

20

2.2.1. Installing the C++ Compiler

In Red Hat Developer Toolset, the GNU C++ compiler is provided by the devtoolset-11-gcc-c++
package and is automatically installed with the devtoolset-11-toolchain package as described in
Section 1.5, “Installing Red Hat Developer Toolset” .

2.2.2. Using the C++ Compiler

To compile a C++ program on the command line, run the g++ compiler as follows:

$ scl enable devtoolset-11 'g++ -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the g++ compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line:

$ scl enable devtoolset-11 'g++ -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the g++ compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file:

$ scl enable devtoolset-11 'g++ -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset g++ as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of g++ you are using at any point:

$ which g++

Red Hat Developer Toolset’s g++ executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset g++:

$ g++ -v

Example 2.3. Compiling a C++ Program on the Command Line

Consider a source file named hello.cpp with the following contents:

#include <iostream>

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

21

Compile this source code on the command line by using the g++ compiler from Red Hat
Developer Toolset:

$ scl enable devtoolset-11 'g++ -o hello hello.cpp'

This creates a new binary file called hello in the current working directory.

2.2.3. Running a C++ Program

When g++ compiles a program, it creates an executable binary file. To run this program on the command
line, change to the directory with the executable file and run it:

$./file_name

Example 2.4. Running a C++ Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.3,
“Compiling a C++ Program on the Command Line”, you can run it:

$./hello
Hello, World!

2.2.4. C++ Compatibility

All compilers from Red Hat Enterprise Linux versions 5, 6, and 7 and from Red Hat Developer Toolset
versions 1 to 10 in any -std mode are compatible with any other of those compilers in C++98 mode.

A compiler in C++11, C++14, or C++17 mode is only guaranteed to be compatible with another compiler in
those same modes if they are from the same release series.

Supported examples:

C++11 and C++11 from Red Hat Developer Toolset 6.x

C++14 and C++14 from Red Hat Developer Toolset 6.x

C++17 and C++17 from Red Hat Developer Toolset 10.x

IMPORTANT

using namespace std;

int main(int argc, char *argv[]) {
 cout << "Hello, World!" << endl;
 return 0;
}

Red Hat Developer Toolset 11 User Guide

22

IMPORTANT

The GCC compiler in Red Hat Developer Toolset 10.x can build code using C++20
but this capability is experimental and not supported by Red Hat.

All compatibility information mentioned in this section is relevant only for
Red Hat-supplied versions of the GCC C++ compiler.

2.2.4.1. C++ ABI

Any C++98-compliant binaries or libraries built by the Red Hat Developer Toolset toolchain explicitly
with -std=c++98 or -std=gnu++98 can be freely mixed with binaries and shared libraries built by the
Red Hat Enterprise Linux 5, 6 or 7 system GCC.

The default language standard setting for Red Hat Developer Toolset 11.0 is C++17 with GNU
extensions, equivalent to explicitly using option -std=gnu++17.

Using the C++14 language version is supported in Red Hat Developer Toolset when all C++ objects
compiled with the respective flag have been built using Red Hat Developer Toolset 6 or later. Objects
compiled by the system GCC in its default mode of C++98 are also compatible, but objects compiled
with the system GCC in C++11 or C++14 mode are not compatible.

Starting with Red Hat Developer Toolset 10.x, using the C++17 language version is no longer
experimental and is supported by Red Hat. All C++ objects compiled with C++17 must be built using
Red Hat Developer Toolset 10.x or later.

IMPORTANT

Use of C++11, C++14, and C++17 features in your application requires careful consideration
of the above ABI compatibility information.

The mixing of objects, binaries and libraries, built by the Red Hat Enterprise Linux 7 system toolchain
GCC using the -std=c++0x or -std=gnu++0x flags, with those built with the C++11 or later language
versions using the GCC in Red Hat Developer Toolset is explicitly not supported.

Aside from the C++11, C++14, and C++17 ABI, discussed above, the Red Hat Enterprise Linux Application
Compatibility Specification is unchanged for Red Hat Developer Toolset. When mixing objects built with
Red Hat Developer Toolset with those built with the Red Hat Enterprise Linux 7 toolchain (particularly
.o/.a files), the Red Hat Developer Toolset toolchain should be used for any linkage. This ensures any
newer library features provided only by Red Hat Developer Toolset are resolved at link-time.

A new standard mangling for SIMD vector types has been added to avoid name clashes on systems with
vectors of varying lengths. The compiler in Red Hat Developer Toolset uses the new mangling by
default. It is possible to use the previous standard mangling by adding the -fabi-version=2 or -fabi-
version=3 options to GCC C++ compiler calls. To display a warning about code that uses the old
mangling, use the -Wabi option.

On Red Hat Enterprise Linux 7, the GCC C++ compiler still uses the old mangling by default, but emits
aliases with the new mangling on targets that support strong aliases. It is possible to use the new
standard mangling by adding the -fabi-version=4 option to compiler calls. To display a warning about
code that uses the old mangling, use the -Wabi option.

On Red Hat Enterprise Linux 7, the GCC C++ compiler in Red Hat Developer Toolset still uses the old
reference-counted implementation of std::string. This is done for compatibility with the Red Hat
Enterprise Linux 7 system toolchain GCC. This means that some new C++17 features, such as

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

23

https://access.redhat.com/articles/rhel-abi-compatibility

std::pmr::string, are not available on Red Hat Enterprise Linux 7, even when using the Red Hat
Developer Toolset compiler.

2.3. GNU FORTRAN COMPILER

2.3.1. Installing the Fortran Compiler

In Red Hat Developer Toolset, the GNU Fortran compiler is provided by the devtoolset-11-gcc-
gfortran package and is automatically installed with devtoolset-11-toolchain as described in
Section 1.5, “Installing Red Hat Developer Toolset” .

2.3.2. Using the Fortran Compiler

To compile a Fortran program on the command line, run the gfortran compiler as follows:

$ scl enable devtoolset-11 'gfortran -o output_file source_file...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

When you are working on a project that consists of several source files, it is common to compile an
object file for each of the source files first and then link these object files together. This way, when you
change a single source file, you can recompile only this file without having to compile the entire project.
To compile an object file on the command line:

$ scl enable devtoolset-11 'gfortran -o object_file -c source_file'

This creates an object file named object_file. If the -o option is omitted, the compiler creates a file
named after the source file with the .o file extension. To link object files together and create a binary
file:

$ scl enable devtoolset-11 'gfortran -o output_file object_file...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset gfortran as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of gfortran you are using at any point:

$ which gfortran

Red Hat Developer Toolset’s gfortran executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset gfortran:

$ gfortran -v

Red Hat Developer Toolset 11 User Guide

24

Example 2.5. Compiling a Fortran Program on the Command Line

Consider a source file named hello.f with the following contents:

Compile this source code on the command line by using the gfortran compiler from Red Hat
Developer Toolset:

$ scl enable devtoolset-11 'gfortran -o hello hello.f'

This creates a new binary file called hello in the current working directory.

2.3.3. Running a Fortran Program

When gfortran compiles a program, it creates an executable binary file. To run this program on the
command line, change to the directory with the executable file and run it:

$./file_name

Example 2.6. Running a Fortran Program on the Command Line

Assuming that you have successfully compiled the hello binary file as shown in Example 2.5,
“Compiling a Fortran Program on the Command Line”, you can run it:

$./hello
 Hello, World!

2.4. SPECIFICS OF GCC IN RED HAT DEVELOPER TOOLSET

Static linking of libraries

Certain more recent library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This creates
an additional minor security risk as standard Red Hat Enterprise Linux errata do not change this code. If
the need arises for developers to rebuild their applications due to this risk, Red Hat will communicate this
using a security erratum.

IMPORTANT

Because of this additional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Specify libraries after object files when linking

In Red Hat Developer Toolset, libraries are linked using linker scripts which might specify some symbols
through static archives. This is required to ensure compatibility with multiple versions of Red Hat
Enterprise Linux. However, the linker scripts use the names of the respective shared object files. As a

program hello
 print *, "Hello, World!"
end program hello

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

25

consequence, the linker uses different symbol handling rules than expected, and does not recognize
symbols required by object files when the option adding the library is specified before options specifying
the object files:

$ scl enable devtoolset-11 'gcc -lsomelib objfile.o'

Using a library from the Red Hat Developer Toolset in this manner results in the linker error message
undefined reference to symbol. To prevent this problem, follow the standard linking practice, and
specify the option adding the library after the options specifying the object files:

$ scl enable devtoolset-11 'gcc objfile.o -lsomelib'

Note that this recommendation also applies when using the base Red Hat Enterprise Linux version of
GCC.

2.5. ADDITIONAL RESOURCES

For more information about the GNU Compiler Collections and its features, see the resources listed
below.

Installed Documentation

gcc(1) — The manual page for the gcc compiler provides detailed information on its usage; with
few exceptions, g++ accepts the same command line options as gcc. To display the manual
page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man gcc'

gfortran(1) — The manual page for the gfortran compiler provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man gfortran'

C++ Standard Library Documentation — Documentation on the C++ standard library can be
optionally installed:

yum install devtoolset-11-libstdc++-docs

Once installed, HTML documentation is available at /opt/rh/devtoolset-
11/root/usr/share/doc/devtoolset-11-libstdC++-docs-11.2/html/index.html.

Online Documentation

Red Hat Enterprise Linux 7 Developer Guide — The Developer Guide for Red Hat
Enterprise Linux 7 provides in-depth information about GCC.

Using the GNU Compiler Collection — The upstream GCC manual provides an in-depth
description of the GNU compilers and their usage.

The GNU C++ Library — The GNU C++ library documentation provides detailed information
about the GNU implementation of the standard C++ library.

The GNU Fortran Compiler — The GNU Fortran compiler documentation provides detailed
information on gfortran's usage.

Red Hat Developer Toolset 11 User Guide

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/index
http://gcc.gnu.org/onlinedocs/gcc-9.3.0/gcc/
http://gcc.gnu.org/onlinedocs/gcc-9.3.0/libstdc++/manual/
http://gcc.gnu.org/onlinedocs/gcc-9.3.0/gfortran/

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz — Instructions on using the dwz tool to optimize DWARF debugging information
contained in ELF shared libraries and ELF executables for size.

Chapter 8, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

CHAPTER 2. GNU COMPILER COLLECTION (GCC)

27

CHAPTER 3. GNU MAKE
The GNU make utility, commonly abbreviated make, is a tool for controlling the generation of
executables from source files. make automatically determines which parts of a complex program have
changed and need to be recompiled. make uses configuration files called Makefiles to control the way
programs are built.

Red Hat Developer Toolset is distributed with make 4.3. This version is more recent than the version
included in Red Hat Enterprise Linux and provides a number of bug fixes and enhancements.

3.1. INSTALLING MAKE

In Red Hat Developer Toolset, GNU make is provided by the devtoolset-11-make package and is
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

3.2. USING MAKE

To build a program without using a Makefile, run the make tool as follows:

$ scl enable devtoolset-11 'make source_file_without_extension'

This command makes use of implicit rules that are defined for a number of programming languages,
including C, C++, and Fortran. The result is a binary file named source_file_without_extension in the
current working directory.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset make as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of make you are using at any point:

$ which make

Red Hat Developer Toolset’s make executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset make:

$ make -v

Example 3.1. Building a C Program Using make

Consider a source file named hello.c with the following contents:

#include <stdio.h>

int main(int argc, char *argv[]) {

Red Hat Developer Toolset 11 User Guide

28

Build this source code using the implicit rules defined by the make utility from Red Hat
Developer Toolset:

$ scl enable devtoolset-11 'make hello'
cc hello.c -o hello

This creates a new binary file called hello in the current working directory.

3.3. USING MAKEFILES

To build complex programs that consist of a number of source files, make uses configuration files called
Makefiles that control how to compile the components of a program and build the final executable.
Makefiles can also contain instructions for cleaning the working directory, installing and uninstalling
program files, and other operations.

make automatically uses files named GNUmakefile, makefile, or Makefile in the current directory. To
specify another file name, use the -f option:

$ make -f make_file

Describing the details of Makefile syntax is beyond the scope of this guide. See GNU make, the
upstream GNU make manual, which provides an in-depth description of the GNU make utility, Makefile
syntax, and their usage.

The full make manual is also available in the Texinfo format as a part of your installation. To view this
manual:

$ scl enable devtoolset-11 'info make'

Example 3.2. Building a C Program Using a Makefile

Consider the following universal Makefile named Makefile for building the simple C program
introduced in Example 3.1, “Building a C Program Using make” . The Makefile defines some variables
and specifies four rules, which consist of targets and their recipes. Note that the lines with recipes
must start with the TAB character:

 printf("Hello, World!\n");
 return 0;
}

CC=gcc
CFLAGS=-c -Wall
SOURCE=hello.c
OBJ=$(SOURCE:.c=.o)
EXE=hello

all: $(SOURCE) $(EXE)

$(EXE): $(OBJ)
 $(CC) $(OBJ) -o $@

.o: .c
 $(CC) $(CFLAGS) $< -o $@

CHAPTER 3. GNU MAKE

29

http://www.gnu.org/software/make/manual/make.html

To build the hello.c program using this Makefile, run the make utility:

$ scl enable devtoolset-11 'make'
gcc -c -Wall hello.c -o hello.o
gcc hello.o -o hello

This creates a new object file hello.o and a new binary file called hello in the current working
directory.

To clean the working directory, run:

$ scl enable devtoolset-11 'make clean'
rm -rf hello.o hello

This removes the object and binary files from the working directory.

3.4. ADDITIONAL RESOURCES

For more information about the GNU make tool and its features, see the resources listed below.

Installed Documentation

make(1) — The manual page for the make utility provides information on its usage. To display
the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man make'

The full make manual, which includes detailed information about Makefile syntax, is also
available in the Texinfo format. To display the info manual for the version included in Red Hat
Developer Toolset:

$ scl enable devtoolset-11 'info make'

Online Documentation

GNU make — The upstream GNU make manual provides an in-depth description of the GNU
make utility, Makefile syntax, and their usage.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Instructions on using the GNU Compiler
Collection, a portable compiler suite with support for a wide selection of programming
languages.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and

clean:
 rm -rf $(OBJ) $(EXE)

Red Hat Developer Toolset 11 User Guide

30

http://www.gnu.org/software/make/manual/make.html

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Chapter 6, dwz — Instructions on using the dwz tool to optimize DWARF debugging information
contained in ELF shared libraries and ELF executables for size.

Chapter 8, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

CHAPTER 3. GNU MAKE

31

CHAPTER 4. BINUTILS
binutils is a collection of various binary tools, such as the GNU linker, GNU assembler, and other
utilities that allow you to inspect and manipulate object files and binaries. See Table 4.1, “Tools Included
in binutils for Red Hat Developer Toolset” for a complete list of binary tools that are distributed with the
Red Hat Developer Toolset version of binutils.

Red Hat Developer Toolset is distributed with binutils 2.36. This version is more recent than the version
included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset and
provides bug fixes and enhancements.

Table 4.1. Tools Included in binutils for Red Hat Developer Toolset

Name Description

addr2line Translates addresses into file names and line
numbers.

ar Creates, modifies, and extracts files from archives.

as The GNU assembler.

c++filt Decodes mangled C++ symbols.

dwp Combines DWARF object files into a single DWARF
package file.

elfedit Examines and edits ELF files.

gprof Display profiling information.

ld The GNU linker.

ld.bfd An alternative to the GNU linker.

ld.gold Another alternative to the GNU linker.

nm Lists symbols from object files.

objcopy Copies and translates object files.

objdump Displays information from object files.

ranlib Generates an index to the contents of an archive to
make access to this archive faster.

readelf Displays information about ELF files.

size Lists section sizes of object or archive files.

Red Hat Developer Toolset 11 User Guide

32

strings Displays printable character sequences in files.

strip Discards all symbols from object files.

Name Description

4.1. INSTALLING BINUTILS

In Red Hat Developer Toolset, binutils are provided by the devtoolset-11-binutils package and are
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

4.2. USING THE GNU ASSEMBLER

To produce an object file from an assembly language program, run the as tool as follows:

$ scl enable devtoolset-11 'as option ... -o object_file source_file'

This creates an object file named object_file in the current working directory.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset as as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of as you are using at any point:

$ which as

Red Hat Developer Toolset’s as executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset as:

$ as -v

4.3. USING THE GNU LINKER

To create an executable binary file or a library from object files, run the ld tool as follows:

$ scl enable devtoolset-11 'ld option ... -o output_file object_file ...'

This creates a binary file named output_file in the current working directory. If the -o option is omitted,
the compiler creates a file named a.out by default.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat

CHAPTER 4. BINUTILS

33

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset ld as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of ld you are using at any point:

$ which ld

Red Hat Developer Toolset’s ld executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset ld:

$ ld -v

4.4. USING OTHER BINARY TOOLS

The binutils provide many binary tools other than a linker and an assembler. For a complete list of these
tools, see Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” .

To execute any of the tools that are a part of binutils:

$ scl enable devtoolset-11 'tool option ... file_name'

See Table 4.1, “Tools Included in binutils for Red Hat Developer Toolset” for a list of tools that are
distributed with binutils. For example, to use the objdump tool to inspect an object file:

$ scl enable devtoolset-11 'objdump option ... object_file'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of binutils you are using at any point:

$ which objdump

Red Hat Developer Toolset’s objdump executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset objdump:

$ objdump -v

Red Hat Developer Toolset 11 User Guide

34

4.5. SPECIFICS OF BINUTILS IN RED HAT DEVELOPER TOOLSET

Static linking of libraries

Certain more recent library features are statically linked into applications built with Red Hat
Developer Toolset to support execution on multiple versions of Red Hat Enterprise Linux. This creates
an additional minor security risk as standard Red Hat Enterprise Linux errata do not change this code. If
the need arises for developers to rebuild their applications due to this risk, Red Hat will communicate this
using a security erratum.

IMPORTANT

Because of this additional security risk, developers are strongly advised not to statically
link their entire application for the same reasons.

Specify libraries after object files when linking

In Red Hat Developer Toolset, libraries are linked using linker scripts which might specify some symbols
through static archives. This is required to ensure compatibility with multiple versions of Red Hat
Enterprise Linux. However, the linker scripts use the names of the respective shared object files. As a
consequence, the linker uses different symbol handling rules than expected, and does not recognize
symbols required by object files when the option adding the library is specified before options specifying
the object files:

$ scl enable devtoolset-11 'ld -lsomelib objfile.o'

Using a library from the Red Hat Developer Toolset in this manner results in the linker error message
undefined reference to symbol. To prevent this problem, follow the standard linking practice, and
specify the option adding the library after the options specifying the object files:

$ scl enable devtoolset-11 'ld objfile.o -lsomelib'

Note that this recommendation also applies when using the base Red Hat Enterprise Linux version of
binutils.

4.6. ADDITIONAL RESOURCES

For more information about binutils, see the resources listed below.

Installed Documentation

as(1), ld(1), addr2line(1), ar(1), c++filt(1), dwp(1), elfedit(1), gprof(1), nm(1), objcopy(1),
objdump(1), ranlib(1), readelf(1), size(1), strings(1), strip(1), — Manual pages for various
binutils tools provide more information about their respective usage. To display a manual page
for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man tool'

Online Documentation

Documentation for binutils — The binutils documentation provides an in-depth description of
the binary tools and their usage.

See Also

CHAPTER 4. BINUTILS

35

http://sourceware.org/binutils/docs-2.36/

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 5, elfutils — Information on how to use elfutils, a collection of binary tools to inspect
and manipulate ELF files.

Chapter 2, GNU Compiler Collection (GCC) — Information on how to compile programs written
in C, C++, and Fortran.

Red Hat Developer Toolset 11 User Guide

36

CHAPTER 5. ELFUTILS
elfutils is a collection of various binary tools, such as eu-objdump, eu-readelf, and other utilities that
allow you to inspect and manipulate ELF files. See Table 5.1, “Tools Included in elfutils for Red Hat
Developer Toolset” for a complete list of binary tools that are distributed with the Red Hat
Developer Toolset version of elfutils.

Red Hat Developer Toolset is distributed with elfutils 0.185. This version is more recent than the version
included the previous release of Red Hat Developer Toolset and provides some bug fixes and
enhancements.

Table 5.1. Tools Included in elfutils for Red Hat Developer Toolset

Name Description

eu-addr2line Translates addresses into file names and line
numbers.

eu-ar Creates, modifies, and extracts files from archives.

eu-elfcmp Compares relevant parts of two ELF files for
equality.

eu-elflint Verifies that ELF files are compliant with the generic
ABI (gABI) and processor-specific supplement ABI
(psABI) specification.

eu-findtextrel Locates the source of text relocations in files.

eu-make-debug-archive Creates an offline archive for debugging.

eu-nm Lists symbols from object files.

eu-objdump Displays information from object files.

eu-ranlib Generates an index to the contents of an archive to
make access to this archive faster.

eu-readelf Displays information about ELF files.

eu-size Lists section sizes of object or archive files.

eu-stack A new utility for unwinding processes and cores.

eu-strings Displays printable character sequences in files.

eu-strip Discards all symbols from object files.

eu-unstrip Combines stripped files with separate symbols and
debug information.

CHAPTER 5. ELFUTILS

37

5.1. INSTALLING ELFUTILS

In Red Hat Developer Toolset, elfutils is provided by the devtoolset-11-elfutils package and is
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

5.2. USING ELFUTILS

To execute any of the tools that are part of elfutils, run the tool as follows:

$ scl enable devtoolset-11 'tool option ... file_name'

See Table 5.1, “Tools Included in elfutils for Red Hat Developer Toolset” for a list of tools that are
distributed with elfutils. For example, to use the eu-objdump tool to inspect an object file:

$ scl enable devtoolset-11 'eu-objdump option ... object_file'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset binary tools as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of elfutils you are using at any point:

$ which eu-objdump

Red Hat Developer Toolset’s eu-objdump executable path will begin with /opt.
Alternatively, you can use the following command to confirm that the version number
matches that for Red Hat Developer Toolset eu-objdump:

$ eu-objdump -V

5.3. ADDITIONAL RESOURCES

For more information about elfutils, see the resources listed below.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Instructions on compiling programs written in C,
C++, and Fortran.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 6, dwz — Instructions on using the dwz tool to optimize DWARF debugging information
contained in ELF shared libraries and ELF executables for size.

Red Hat Developer Toolset 11 User Guide

38

CHAPTER 6. DWZ
dwz is a command line tool that attempts to optimize DWARF debugging information contained in ELF
shared libraries and ELF executables for size. To do so, dwz replaces DWARF information
representation with equivalent smaller representation where possible and reduces the amount of
duplication by using techniques from Appendix E of the DWARF Standard.

Red Hat Developer Toolset is distributed with dwz 0.14.

6.1. INSTALLING DWZ

In Red Hat Developer Toolset, the dwz utility is provided by the devtoolset-11-dwz package and is
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

6.2. USING DWZ

To optimize DWARF debugging information in a binary file, run the dwz tool as follows:

$ scl enable devtoolset-11 'dwz option... file_name'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset dwz as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of dwz you are using at any point:

$ which dwz

Red Hat Developer Toolset’s dwz executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset dwz:

$ dwz -v

6.3. ADDITIONAL RESOURCES

For more information about dwz and its features, see the resources listed below.

Installed Documentation

dwz(1) — The manual page for the dwz utility provides detailed information on its usage. To
display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man dwz'

See Also

CHAPTER 6. DWZ

39

http://www.dwarfstd.org/doc/DWARF4.pdf

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Instructions on compiling programs written in C,
C++, and Fortran.

Chapter 4, binutils — Instructions on using binutils, a collection of binary tools to inspect and
manipulate object files and binaries.

Chapter 5, elfutils — Instructions on using elfutils, a collection of binary tools to inspect and
manipulate ELF files.

Red Hat Developer Toolset 11 User Guide

40

CHAPTER 7. ANNOBIN
The Annobin project consists of the annobin plugin and the annockeck program.

The annobin plugin scans the GNU Compiler Collection (GCC) command line, the compilation state,
and the compilation process, and generates the ELF notes. The ELF notes record how the binary was
built and provide information for the annocheck program to perform security hardening checks.

The security hardening checker is part of the annocheck program and is enabled by default. It checks
the binary files to determine whether the program was built with necessary security hardening options
and compiled correctly. annocheck is able to recursively scan directories, archives, and RPM packages
for ELF object files.

NOTE

The files must be in ELF format. annocheck does not handle any other binary file types.

7.1. INSTALLING ANNOBIN

In Red Hat Developer Toolset, the annobin plugin and the annockeck program are provided by the
devtoolset-11-gcc package and are installed as described in Section 1.5.3, “Installing Optional
Packages”.

7.2. USING ANNOBIN PLUGIN

To pass options to the annobin plugin with gcc, use:

$ scl enable devtoolset-11 'gcc -fplugin=annobin -fplugin-arg-annobin-option file-name'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset as as default:

$ scl enable devtoolset-11 'bash'

7.3. USING ANNOCHECK

To scan files, directories or RPM packages with the annocheck program:

$ scl enable devtoolset-11 'annocheck file-name'

NOTE

annocheck only looks for the ELF files. Other file types are ignored.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset as as default:

$ scl enable devtoolset-11 'bash'

NOTE

CHAPTER 7. ANNOBIN

41

NOTE

To verify the version of annocheck you are using at any point:

$ which annocheck

Red Hat Developer Toolset’s annocheck executable path will begin with /opt.
Alternatively, you can use the following command to confirm that the version number
matches that for Red Hat Developer Toolset annocheck:

$ annocheck --version

7.4. ADDITIONAL RESOURCES

For more information about annocheck, annobin and its features, see the resources listed below.

Installed Documentation

annocheck(1) — The manual page for the annocheck utility provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man annocheck'

annobin(1) — The manual page for the annobin utility provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man annobin'

Red Hat Developer Toolset 11 User Guide

42

PART III. DEBUGGING TOOLS

PART III. DEBUGGING TOOLS

43

CHAPTER 8. GNU DEBUGGER (GDB)
The GNU Debugger, commonly abbreviated as GDB, is a command line tool that can be used to debug
programs written in various programming languages. It allows you to inspect memory within the code
being debugged, control the execution state of the code, detect the execution of particular sections of
code, and much more.

Red Hat Developer Toolset is distributed with GDB 10.2. This version is more recent than the version
included in Red Hat Enterprise Linux and the previous release of Red Hat Developer Toolset and
provides some enhancements and numerous bug fixes.

8.1. INSTALLING THE GNU DEBUGGER

In Red Hat Developer Toolset, the GNU Debugger is provided by the devtoolset-11-gdb package and
is automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

8.2. PREPARING A PROGRAM FOR DEBUGGING

Compiling Programs with Debugging Information
To compile a C program with debugging information that can be read by the GNU Debugger, make sure
the gcc compiler is run with the -g option:

$ scl enable devtoolset-11 'gcc -g -o output_file input_file...'

Similarly, to compile a C++ program with debugging information:

$ scl enable devtoolset-11 'g++ -g -o output_file input_file...'

Example 8.1. Compiling a C Program With Debugging Information

Consider a source file named fibonacci.c that has the following contents:

Compile this program on the command line using GCC from Red Hat Developer Toolset with
debugging information for the GNU Debugger:

#include <stdio.h>
#include <limits.h>

int main (int argc, char *argv[]) {
 unsigned long int a = 0;
 unsigned long int b = 1;
 unsigned long int sum;

 while (b < LONG_MAX) {
 printf("%ld ", b);
 sum = a + b;
 a = b;
 b = sum;
 }

 return 0;
}

Red Hat Developer Toolset 11 User Guide

44

$ scl enable devtoolset-11 'gcc -g -o fibonacci fibonacci.c'

This creates a new binary file called fibonacci in the current working directory.

Installing Debugging Information for Existing Packages
To install debugging information for a package that is already installed on the system:

debuginfo-install package_name

Note that the yum-utils package must be installed for the debuginfo-install utility to be available on
your system.

Example 8.2. Installing Debugging Information for the glibc Package

Install debugging information for the glibc package:

debuginfo-install glibc
Loaded plugins: product-id, refresh-packagekit, subscription-manager
--> Running transaction check
---> Package glibc-debuginfo.x86_64 0:2.17-105.el7 will be installed
...

8.3. RUNNING THE GNU DEBUGGER

To run the GNU Debugger on a program you want to debug:

$ scl enable devtoolset-11 'gdb file_name'

This starts the gdb debugger in interactive mode and displays the default prompt, (gdb). To quit the
debugging session and return to the shell prompt, run the following command at any time:

(gdb) quit

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset gdb as default:

$ scl enable devtoolset-11 'bash'

NOTE

CHAPTER 8. GNU DEBUGGER (GDB)

45

NOTE

To verify the version of gdb you are using at any point:

$ which gdb

Red Hat Developer Toolset’s gdb executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset gdb:

$ gdb -v

Example 8.3. Running the gdb Utility on the fibonacci Binary File

This example assumes that you have successfully compiled the fibonacci binary file as shown in
Example 8.1, “Compiling a C Program With Debugging Information” .

Start debugging fibonacci with gdb:

$ scl enable devtoolset-11 'gdb fibonacci'
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-2.el7
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from fibonacci...done.
(gdb)

8.4. LISTING SOURCE CODE

To view the source code of the program you are debugging:

(gdb) list

Before you start the execution of the program you are debugging, gdb displays the first ten lines of the
source code, and any subsequent use of this command lists another ten lines. Once you start the
execution, gdb displays the lines that are surrounding the line on which the execution stops, typically
when you set a breakpoint.

You can also display the code that is surrounding a particular line:

(gdb) list file_name:line_number

Red Hat Developer Toolset 11 User Guide

46

Similarly, to display the code that is surrounding the beginning of a particular function:

(gdb) list file_name:function_name

Note that you can change the number of lines the list command displays:

(gdb) set listsize number

Example 8.4. Listing the Source Code of the fibonacci Binary File

The fibonacci.c file listed in Example 8.1, “Compiling a C Program With Debugging Information” has
exactly 17 lines. Assuming that you have compiled it with debugging information and you want the
gdb utility to be capable of listing the entire source code, you can run the following command to
change the number of listed lines to 20:

(gdb) set listsize 20

You can now display the entire source code of the file you are debugging by running the list
command with no additional arguments:

(gdb) list
1 #include <stdio.h>
2 #include <limits.h>
3
4 int main (int argc, char *argv[]) {
5 unsigned long int a = 0;
6 unsigned long int b = 1;
7 unsigned long int sum;
8
9 while (b < LONG_MAX) {
10 printf("%ld ", b);
11 sum = a + b;
12 a = b;
13 b = sum;
14 }
15
16 return 0;
17 }

8.5. SETTING BREAKPOINTS

Setting a New Breakpoint
To set a new breakpoint at a certain line:

(gdb) break file_name:line_number

You can also set a breakpoint on a certain function:

(gdb) break file_name:function_name

Example 8.5. Setting a New Breakpoint

CHAPTER 8. GNU DEBUGGER (GDB)

47

This example assumes that you have compiled the fibonacci.c file listed in Example 8.1, “Compiling a
C Program With Debugging Information” with debugging information.

Set a new breakpoint at line 10:

(gdb) break 10
Breakpoint 1 at 0x4004e5: file fibonacci.c, line 10.

Listing Breakpoints
To display a list of currently set breakpoints:

(gdb) info breakpoints

Example 8.6. Listing Breakpoints

This example assumes that you have followed the instructions in Example 8.5, “Setting a New
Breakpoint”.

Display the list of currently set breakpoints:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000000004004e5 in main at fibonacci.c:10

Deleting Existing Breakpoints
To delete a breakpoint that is set at a certain line:

(gdb) clear line_number

Similarly, to delete a breakpoint that is set on a certain function:

(gdb) clear function_name

Example 8.7. Deleting an Existing Breakpoint

This example assumes that you have compiled the fibonacci.c file listed in Example 8.1, “Compiling a
C Program With Debugging Information” with debugging information.

Set a new breakpoint at line 7:

(gdb) break 7
Breakpoint 2 at 0x4004e3: file fibonacci.c, line 7.

Remove this breakpoint:

(gdb) clear 7
Deleted breakpoint 2

Red Hat Developer Toolset 11 User Guide

48

8.6. STARTING EXECUTION

To start an execution of the program you are debugging:

(gdb) run

If the program accepts any command line arguments, you can provide them as arguments to the run
command:

(gdb) run argument…

The execution stops when the first breakpoint (if any) is reached, when an error occurs, or when the
program terminates.

Example 8.8. Executing the fibonacci Binary File

This example assumes that you have followed the instructions in Example 8.5, “Setting a New
Breakpoint”.

Execute the fibonacci binary file:

(gdb) run
Starting program: /home/john/fibonacci

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

8.7. DISPLAYING CURRENT VALUES

The gdb utility allows you to display the value of almost anything that is relevant to the program, from a
variable of any complexity to a valid expression or even a library function. However, the most common
task is to display the value of a variable.

To display the current value of a certain variable:

(gdb) print variable_name

Example 8.9. Displaying the Current Values of Variables

This example assumes that you have followed the instructions in Example 8.8, “Executing the
fibonacci Binary File” and the execution of the fibonacci binary stopped after reaching the
breakpoint at line 10.

Display the current values of variables a and b:

(gdb) print a
$1 = 0
(gdb) print b
$2 = 1

CHAPTER 8. GNU DEBUGGER (GDB)

49

8.8. CONTINUING EXECUTION

To resume the execution of the program you are debugging after it reached a breakpoint:

(gdb) continue

The execution stops again when another breakpoint is reached. To skip a certain number of breakpoints
(typically when you are debugging a loop):

(gdb) continue number

The gdb utility also allows you to stop the execution after executing a single line of code:

(gdb) step

Finally, you can execute a certain number of lines:

(gdb) step number

Example 8.10. Continuing the Execution of the fibonacci Binary File

This example assumes that you have followed the instructions in Example 8.8, “Executing the
fibonacci Binary File”, and the execution of the fibonacci binary stopped after reaching the
breakpoint at line 10.

Resume the execution:

(gdb) continue
Continuing.

Breakpoint 1, main (argc=1, argv=0x7fffffffe4d8) at fibonacci.c:10
10 printf("%ld ", b);

The execution stops the next time the breakpoint is reached.

Execute the next three lines of code:

(gdb) step 3
13 b = sum;

This allows you to verify the current value of the sum variable before it is assigned to b:

(gdb) print sum
$3 = 2

8.9. ADDITIONAL RESOURCES

For more information about the GNU Debugger and all its features, see the resources listed below.

Installed Documentation

Installing the devtoolset-11-gdb-doc package provides the following documentation in HTML and PDF

Red Hat Developer Toolset 11 User Guide

50

Installing the devtoolset-11-gdb-doc package provides the following documentation in HTML and PDF
formats in the /opt/rh/devtoolset-11/root/usr/share/doc/devtoolset-11-gdb-doc-10.2 directory:

The Debugging with GDB book, which is a copy of the upstream material with the same name.
The version of this document exactly corresponds to the version of GDB available in Red Hat
Developer Toolset.

The GDB’s Obsolete Annotations document, which lists the obsolete GDB level 2 annotations.

Online Documentation

Red Hat Enterprise Linux 7 Developer Guide — The Developer Guide for Red Hat
Enterprise Linux 7 provides more information on the GNU Debugger and debugging.

GDB Documentation — The upstream GDB documentation includes the GDB User Manual and
other reference material.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 2, GNU Compiler Collection (GCC) — Further information on how to compile programs
written in C, C++, and Fortran.

Chapter 9, strace — Instructions on using the strace utility to monitor system calls that a
program uses and signals it receives.

Chapter 11, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

CHAPTER 8. GNU DEBUGGER (GDB)

51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/index
http://www.gnu.org/software/gdb/documentation/

CHAPTER 9. STRACE
strace is a diagnostic and debugging tool for the command line that can be used to trace system calls
that are made and received by a running process. It records the name of each system call, its arguments,
and its return value, as well as signals received by the process and other interactions with the kernel, and
prints this record to standard error output or a selected file.

Red Hat Developer Toolset is distributed with strace 5.13.

9.1. INSTALLING STRACE

In Red Hat Enterprise Linux, the strace utility is provided by the devtoolset-11-strace package and is
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

9.2. USING STRACE

To run the strace utility on a program you want to analyze:

$ scl enable devtoolset-11 'strace program argument...'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility on an
already running process by using the -p command line option followed by the process ID:

$ scl enable devtoolset-11 'strace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset strace as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of strace you are using at any point:

$ which strace

Red Hat Developer Toolset’s strace executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset strace:

$ strace -V

9.2.1. Redirecting Output to a File

By default, strace prints the name of each system call, its arguments and the return value to standard
error output. To redirect this output to a file, use the -o command line option followed by the file name:

$ scl enable devtoolset-11 'strace -o file_name program argument...'

Red Hat Developer Toolset 11 User Guide

52

Replace file_name with the name of the file.

Example 9.1. Redirecting Output to a File

Consider a slightly modified version of the fibonacci file from Example 8.1, “Compiling a C Program
With Debugging Information”. This executable file displays the Fibonacci sequence and optionally
allows you to specify how many members of this sequence to list. Run the strace utility on this file
and redirect the trace output to fibonacci.log:

$ scl enable devtoolset-11 'strace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

9.2.2. Tracing Selected System Calls

To trace only a selected set of system calls, run the strace utility with the -e command line option:

$ scl enable devtoolset-11 'strace -e expression program argument...'

Replace expression with a comma-separated list of system calls to trace or any of the keywords listed in
Table 9.1, “Commonly Used Values of the -e Option” . For a detailed description of all available values,
see the strace(1) manual page.

Table 9.1. Commonly Used Values of the -e Option

Value Description

%file System calls that accept a file name as an argument.

%process System calls that are related to process
management.

%network System calls that are related to networking.

%signal System calls that are related to signal management.

%ipc System calls that are related to inter-process
communication (IPC).

%desc System calls that are related to file descriptors.

Note that the syntax -e expression is a shorthand for the full form -e trace=expression.

Example 9.2. Tracing Selected System Calls

Consider the employee file from Example 11.1, “Using memstomp” . Run the strace utility on this
executable file and trace only the mmap and munmap system calls:

$ scl enable devtoolset-11 'strace -e mmap,munmap ./employee'

CHAPTER 9. STRACE

53

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f896c744000
mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f896c735000
mmap(0x3146a00000, 3745960, PROT_READ|PROT_EXEC,
MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x3146a00000
mmap(0x3146d89000, 20480, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x189000) = 0x3146d89000
mmap(0x3146d8e000, 18600, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x3146d8e000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f896c734000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f896c733000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f896c732000
munmap(0x7f896c735000, 61239) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f896c743000
John,john@example.comDoe,
+++ exited with 0 +++

9.2.3. Displaying Time Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
strace utility with the -t command line option:

$ scl enable devtoolset-11 'strace -t program argument...'

To also display milliseconds, supply the -t option twice:

$ scl enable devtoolset-11 'strace -tt program argument...'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

$ scl enable devtoolset-11 'strace -r program argument...'

Example 9.3. Displaying Time Stamps

Consider an executable file named pwd. Run the strace utility on this file and include time stamps in
the output:

$ scl enable devtoolset-11 'strace -tt pwd'
19:43:28.011815 execve("./pwd", ["./pwd"], [/* 36 vars */]) = 0
19:43:28.012128 brk(0) = 0xcd3000
19:43:28.012174 mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fc869cb0000
19:43:28.012427 open("/etc/ld.so.cache", O_RDONLY) = 3
19:43:28.012446 fstat(3, {st_mode=S_IFREG|0644, st_size=61239, ...}) = 0
19:43:28.012464 mmap(NULL, 61239, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fc869ca1000

Red Hat Developer Toolset 11 User Guide

54

19:43:28.012483 close(3) = 0
...
19:43:28.013410 +++ exited with 0 +++

9.2.4. Displaying a Summary

To display a summary of how much time was required to execute each system call, how many times were
these system calls executed, and how many errors were encountered during their execution, run the
strace utility with the -c command line option:

$ scl enable devtoolset-11 'strace -c program argument...'

Example 9.4. Displaying a Summary

Consider an executable file named lsblk. Run the strace utility on this file and display a trace
summary:

$ scl enable devtoolset-11 'strace -c lsblk > /dev/null'
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 80.88 0.000055 1 106 16 open
 19.12 0.000013 0 140 munmap
 0.00 0.000000 0 148 read
 0.00 0.000000 0 1 write
 0.00 0.000000 0 258 close
 0.00 0.000000 0 37 2 stat
...
------ ----------- ----------- --------- --------- ----------------
100.00 0.000068 1790 35 total

9.2.5. Tampering with System Call Results

Simulating errors returned from system calls can help identify missing error handling in programs.

To make a program receive a generic error as the result of a particular system call, run the strace utility
with the -e fault= option and supply the system call:

$ scl enable devtoolset-11 'strace -e fault=syscall program argument...'

To specify the error type or return value, use the -e inject= option:

$ scl enable devtoolset-11 'strace -e inject=syscall:error=error-type program argument'
$ scl enable devtoolset-11 'strace -e inject=syscall:retval=return-value program argument'

Note that specifying the error type and return value is mutually exclusive.

Example 9.5. Tampering with System Call Results

Consider an executable file named lsblk. Run the strace utility on this file and make the mmap()
system call return an error:

CHAPTER 9. STRACE

55

$ scl enable devtoolset-11 'strace -e fault=mmap:error=EPERM lsblk > /dev/null'
execve("/usr/bin/lsblk", ["lsblk"], 0x7fff1c0e02a0 /* 54 vars */) = 0
brk(NULL) = 0x55d9e8b43000
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = -
1 EPERM (Operation not permitted) (INJECTED)
writev(2, [{iov_base="lsblk", iov_len=5}, {iov_base=": ", iov_len=2}, {iov_base="error while loading
shared libra"..., iov_len=36}, {iov_base=": ", iov_len=2}, {iov_base="", iov_len=0}, {iov_base="",
iov_len=0}, {iov_base="cannot create cache for search p"..., iov_len=35}, {iov_base=": ",
iov_len=2}, {iov_base="Cannot allocate memory", iov_len=22}, {iov_base="\n", iov_len=1}],
10lsblk: error while loading shared libraries: cannot create cache for search path: Cannot allocate
memory
) = 105
exit_group(127) = ?
+++ exited with 127 +++

9.3. ADDITIONAL RESOURCES

For more information about strace and its features, see the resources listed below.

Installed Documentation

strace(1) — The manual page for the strace utility provides detailed information about its usage.
To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man strace'

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 10, ltrace — Instructions on tracing program library calls using the ltrace tool.

Chapter 8, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Chapter 11, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Red Hat Developer Toolset 11 User Guide

56

CHAPTER 10. LTRACE
ltrace is a diagnostic and debugging tool for the command line that can be used to display calls that are
made to shared libraries. It uses the dynamic library hooking mechanism, which prevents it from tracing
calls to statically linked libraries. ltrace also displays return values of the library calls. The output is
printed to standard error output or to a selected file.

Red Hat Developer Toolset is distributed with ltrace 0.7.91. While the base version ltrace remains the
same as in the previous release of Red Hat Developer Toolset, various enhancements and bug fixes
have ported.

10.1. INSTALLING LTRACE

In Red Hat Enterprise Linux, the ltrace utility is provided by the devtoolset-11-ltrace package and is
automatically installed with devtoolset-11-toolchain as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

10.2. USING LTRACE

To run the ltrace utility on a program you want to analyze:

$ scl enable devtoolset-11 'ltrace program argument...'

Replace program with the name of the program you want to analyze, and argument with any command
line options and arguments you want to supply to this program. Alternatively, you can run the utility on an
already running process by using the -p command line option followed by the process ID:

$ scl enable devtoolset-11 'ltrace -p process_id'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset ltrace as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of ltrace you are using at any point:

$ which ltrace

Red Hat Developer Toolset’s ltrace executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset ltrace:

$ ltrace -V

10.2.1. Redirecting Output to a File

By default, ltrace prints the name of each system call, its arguments and the return value to standard
error output. To redirect this output to a file, use the -o command line option followed by the file name:

CHAPTER 10. LTRACE

57

$ scl enable devtoolset-11 'ltrace -o file_name program argument...'

Replace file_name with the name of the file.

Example 10.1. Redirecting Output to a File

Consider a slightly modified version of the fibonacci file from Example 8.1, “Compiling a C Program
With Debugging Information”. This executable file displays the Fibonacci sequence and optionally
allows you to specify how many members of this sequence to list. Run the ltrace utility on this file
and redirect the trace output to fibonacci.log:

$ scl enable devtoolset-11 'ltrace -o fibonacci.log ./fibonacci 20'
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

This creates a new plain-text file called fibonacci.log in the current working directory.

10.2.2. Tracing Selected Library Calls

To trace only a selected set of library calls, run the ltrace utility with the -e command line option:

$ scl enable devtoolset-11 'ltrace -e expression program argument...'

Replace expression with a chain of rules to specify the library calls to trace. The rules can consist of
patterns that identify symbol names (such as malloc or free) and patterns that identify library
SONAMEs (such as libc.so). For example, to trace call to the malloc and free function but to omit
those that are done by the libc library:

$ scl enable devtoolset-11 'ltrace -e malloc+free-@libc.so* program'

Example 10.2. Tracing Selected Library Calls

Consider the ls command. Run the ltrace utility on this program and trace only the opendir, readdir,
and closedir function calls:

$ scl enable devtoolset-11 'ltrace -e opendir+readdir+closedir ls'
ls->opendir(".") = { 3 }
ls->readdir({ 3 }) = { 61533, "." }
ls->readdir({ 3 }) = { 131, ".." }
ls->readdir({ 3 }) = { 67185100, "BUILDROOT" }
ls->readdir({ 3 }) = { 202390772, "SOURCES" }
ls->readdir({ 3 }) = { 60249, "SPECS" }
ls->readdir({ 3 }) = { 67130110, "BUILD" }
ls->readdir({ 3 }) = { 136599168, "RPMS" }
ls->readdir({ 3 }) = { 202383274, "SRPMS" }
ls->readdir({ 3 }) = nil
ls->closedir({ 3 }) = 0
BUILD BUILDROOT RPMS SOURCES SPECS SRPMS
+++ exited (status 0) +++

For a detailed description of available filter expressions, see the ltrace(1) manual page.

Red Hat Developer Toolset 11 User Guide

58

10.2.3. Displaying Time Stamps

To prefix each line of the trace with the exact time of the day in hours, minutes, and seconds, run the
ltrace utility with the -t command line option:

$ scl enable devtoolset-11 'ltrace -t program argument...'

To also display milliseconds, supply the -t option twice:

$ scl enable devtoolset-11 'ltrace -tt program argument...'

To prefix each line of the trace with the time required to execute the respective system call, use the -r
command line option:

$ scl enable devtoolset-11 'ltrace -r program argument...'

Example 10.3. Displaying Time Stamps

Consider the pwd command. Run the ltrace utility on this program and include time stamps in the
output:

$ scl enable devtoolset-11 'ltrace -tt pwd'
13:27:19.631371 __libc_start_main(["pwd"] <unfinished ...>
13:27:19.632240 getenv("POSIXLY_CORRECT") = nil
13:27:19.632520 strrchr("pwd", '/') = nil
13:27:19.632786 setlocale(LC_ALL, "") = "en_US.UTF-8"
13:27:19.633220 bindtextdomain("coreutils", "/usr/share/locale") = "/usr/share/locale"
13:27:19.633471 textdomain("coreutils") = "coreutils"
(...)
13:27:19.637110 exited (status 0)

10.2.4. Displaying a Summary

To display a summary of how much time was required to execute each system call and how many times
were these system calls executed, run the ltrace utility with the -c command line option:

$ scl enable devtoolset-11 'ltrace -c program argument...'

Example 10.4. Displaying a Summary

Consider the lsblk command. Run the ltrace utility on this program and display a trace summary:

$ scl enable devtoolset-11 'ltrace -c lsblk > /dev/null'
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 53.60 0.261644 261644 1 __libc_start_main
 4.48 0.021848 58 374 mbrtowc
 4.41 0.021524 57 374 wcwidth
 4.39 0.021409 57 374 __ctype_get_mb_cur_max
 4.38 0.021359 57 374 iswprint
 4.06 0.019838 74 266 readdir64
 3.21 0.015652 69 224 strlen

CHAPTER 10. LTRACE

59

...
------ ----------- ----------- --------- --------------------
100.00 0.488135 3482 total

10.3. ADDITIONAL RESOURCES

For more information about ltrace and its features, see the resources listed below.

Installed Documentation

ltrace(1) — The manual page for the ltrace utility provides detailed information about its usage.
To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man ltrace'

Online Documentation

ltrace for RHEL 6 and 7 — This article on the Red Hat Developer Blog offers additional in-depth
information (including practical examples) on how to use ltrace for application debugging.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 9, strace — Instructions on tracing program system calls using the strace tool.

Chapter 8, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Chapter 11, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Red Hat Developer Toolset 11 User Guide

60

https://developers.redhat.com/blog/2014/07/10/ltrace-for-rhel-6-and-7/

CHAPTER 11. MEMSTOMP
memstomp is a command line tool that can be used to identify function calls with overlapping memory
regions in situations when such an overlap is not permitted by various standards. It intercepts calls to the
library functions listed in Table 11.1, “Function Calls Inspected by memstomp” and for each memory
overlap, it displays a detailed backtrace to help you debug the problem.

Similarly to Valgrind, the memstomp utility inspects applications without the need to recompile them.
However, it is much faster than this tool and therefore serves as a convenient alternative to it.

Red Hat Developer Toolset is distributed with memstomp 0.1.5.

Table 11.1. Function Calls Inspected by memstomp

Function Description

memcpy Copies n bytes from one memory area to another and returns a pointer to the second
memory area.

memccpy Copies a maximum of n bytes from one memory area to another and stops when a certain
character is found. It either returns a pointer to the byte following the last written byte, or
NULL if the given character is not found.

mempcpy Copies n bytes from one memory area to another and returns a pointer to the byte
following the last written byte.

strcpy Copies a string from one memory area to another and returns a pointer to the second
string.

stpcpy Copies a string from one memory area to another and returns a pointer to the terminating
null byte of the second string.

strncpy Copies a maximum of n characters from one string to another and returns a pointer to the
second string.

stpncpy Copies a maximum of n characters from one string to another. It either returns a pointer to
the terminating null byte of the second string, or if the string is not null-terminated, a
pointer to the byte following the last written byte.

strcat Appends one string to another while overwriting the terminating null byte of the second
string and adding a new one at its end. It returns a pointer to the new string.

strncat Appends a maximum of n characters from one string to another while overwriting the
terminating null byte of the second string and adding a new one at its end. It returns a
pointer to the new string.

wmemcpy The wide-character equivalent of the memcpy() function that copies n wide characters
from one array to another and returns a pointer to the second array.

CHAPTER 11. MEMSTOMP

61

wmempcpy The wide-character equivalent of the mempcpy() function that copies n wide characters
from one array to another and returns a pointer to the byte following the last written wide
character.

wcscpy The wide-character equivalent of the strcpy() function that copies a wide-character
string from one array to another and returns a pointer to the second array.

wcsncpy The wide-character equivalent of the strncpy() function that copies a maximum of n wide
characters from one array to another and returns a pointer to the second string.

wcscat The wide-character equivalent of the strcat() function that appends one wide-character
string to another while overwriting the terminating null byte of the second string and
adding a new one at its end. It returns a pointer to the new string.

wcsncat The wide-character equivalent of the strncat() function that appends a maximum of n
wide characters from one array to another while overwriting the terminating null byte of the
second wide-character string and adding a new one at its end. It returns a pointer to the
new string.

Function Description

11.1. INSTALLING MEMSTOMP

In Red Hat Developer Toolset, the memstomp utility is provided by the devtoolset-11-memstomp
package and is automatically installed with devtoolset-11-toolchain as described in Section 1.5,
“Installing Red Hat Developer Toolset”.

11.2. USING MEMSTOMP

To run the memstomp utility on a program you want to analyze:

$ scl enable devtoolset-11 'memstomp program argument...'

To immediately terminate the analyzed program when a problem is detected, run the utility with the --
kill (or -k for short) command line option:

$ scl enable devtoolset-11 'memstomp --kill program argument...'

The use of the --kill option is especially recommended if you are analyzing a multi-threaded program;
the internal implementation of backtraces is not thread-safe and running the memstomp utility on a
multi-threaded program without this command line option can therefore produce unreliable results.

Additionally, if you have compiled the analyzed program with the debugging information or this
debugging information is available to you, you can use the --debug-info (or -d) command line option to
produce a more detailed backtrace:

$ scl enable devtoolset-11 'memstomp --debug-info program argument...'

For detailed instructions on how to compile your program with the debugging information built in the
binary file, see Section 8.2, “Preparing a Program for Debugging” . For information on how to install
debugging information for any of the Red Hat Developer Toolset packages, see Section 1.5.4, “Installing

Red Hat Developer Toolset 11 User Guide

62

Debugging Information”.

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset memstomp as default:

$ scl enable devtoolset-11 'bash'

Example 11.1. Using memstomp

In the current working directory, create a source file named employee.c with the following contents:

Compile this program into a binary file named employee:

$ scl enable devtoolset-11 'gcc -rdynamic -g -o employee employee.c'

To identify erroneous function calls with overlapping memory regions:

$ scl enable devtoolset-11 'memstomp --debug-info ./employee'
memstomp: 0.1.4 successfully initialized for process employee (pid 14887).

strcat(dest=0x7fff13afc265, src=0x7fff13afc269, bytes=21) overlap for employee(14887)
 ??:0 strcpy()
 ??:0 strcpy()

#include <stdio.h>
#include <string.h>

#define BUFSIZE 80

int main(int argc, char *argv[]) {
 char employee[BUFSIZE] = "John,Doe,john@example.com";
 char name[BUFSIZE] = {0};
 char surname[BUFSIZE] = {0};
 char *email;
 size_t length;

 /* Extract the information: */
 memccpy(name, employee, ',', BUFSIZE);
 length = strlen(name);
 memccpy(surname, employee + length, ',', BUFSIZE);
 length += strlen(surname);
 email = employee + length;

 /* Compose the new entry: */
 strcat(employee, surname);
 strcpy(employee, name);
 strcat(employee, email);

 /* Print the result: */
 puts(employee);

 return 0;
}

CHAPTER 11. MEMSTOMP

63

 ??:0 _Exit()
 ??:0 strcat()
 employee.c:26 main()
 ??:0 __libc_start_main()
 ??:0 _start()
John,john@example.comDoe,

11.3. ADDITIONAL RESOURCES

For more information about memstomp and its features, see the resources listed below.

Installed Documentation

memstomp(1) — The manual page for the memstomp utility provides detailed information
about its usage. To display the manual page for the version included in Red Hat
Developer Toolset:

$ scl enable devtoolset-11 'man memstomp'

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 8, GNU Debugger (GDB) — Instructions on debugging programs written in C, C++, and
Fortran.

Chapter 9, strace — Instructions on using the strace utility to monitor system calls that a
program uses and signals it receives.

Chapter 13, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Red Hat Developer Toolset 11 User Guide

64

PART IV. PERFORMANCE MONITORING TOOLS

PART IV. PERFORMANCE MONITORING TOOLS

65

CHAPTER 12. SYSTEMTAP
SystemTap is a tracing and probing tool that allows users to monitor the activities of the entire system
without needing to instrument, recompile, install, and reboot. It is programmable with a custom scripting
language, which gives it expressiveness (to trace, filter, and analyze) and reach (to look into the running
kernel and applications).

SystemTap can monitor various types of events, such as function calls within the kernel or applications,
timers, tracepoints, performance counters, and so on. Some included example scripts produce output
similar to netstat, ps, top, and iostat, others include pretty-printed function callgraph traces or tools for
working around security bugs.

Red Hat Developer Toolset is distributed with SystemTap 4.5. This version is more recent than the
version included in the previous release of Red Hat Developer Toolset and provides numerous bug fixes
and enhancements.

Table 12.1. Tools Distributed with SystemTap for Red Hat Developer Toolset

Name Description

stap Translates probing instructions into C code, builds a kernel module, and loads it into a
running Linux kernel.

stapdyn The Dyninst backend for SystemTap.

staprun Loads, unloads, attaches to, and detaches from kernel modules built with the stap utility.

stapsh Serves as a remote shell for SystemTap.

stap-prep Determines and—if possible—downloads the kernel information packages that are required
to run SystemTap.

stap-merge Merges per-CPU files. This script is automatically executed when the stap utility is
executed with the -b command line option.

stap-report Gathers important information about the system for the purpose of reporting a bug in
SystemTap.

stap-server A compile server, which listens for requests from stap clients.

12.1. INSTALLING SYSTEMTAP

In Red Hat Developer Toolset, SystemTap is provided by the devtoolset-11-systemtap package and is
automatically installed with devtoolset-11-perftools as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

In order to place instrumentation into the Linux kernel, SystemTap may also require installation of
additional packages with debugging information. To determine which packages to install, run the stap-
prep utility as follows:

$ scl enable devtoolset-11 'stap-prep'

Red Hat Developer Toolset 11 User Guide

66

Note that if you execute this command as the root user, the utility automatically offers the packages for
installation. For more information on how to install these packages on your system, see the Red Hat
Enterprise Linux 7 SystemTap Beginners Guide.

12.2. USING SYSTEMTAP

To execute any of the tools that are part of SystemTap:

$ scl enable devtoolset-11 'tool option...'

See Table 12.1, “Tools Distributed with SystemTap for Red Hat Developer Toolset” for a list of tools that
are distributed with SystemTap. For example, to run the stap tool to build an instrumentation module:

$ scl enable devtoolset-11 'stap option... argument...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset SystemTap as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of SystemTap you are using at any point:

$ which stap

Red Hat Developer Toolset’s stap executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset SystemTap:

$ stap -V

12.3. ADDITIONAL RESOURCES

For more information about SystemTap and its features, see the resources listed below.

Installed Documentation

stap(1) — The manual page for the stap command provides detailed information on its usage, as
well as references to other related manual pages. To display the manual page for the version
included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man stap'

staprun(8) — The manual page for the staprun command provides detailed information on its
usage. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man staprun'

Online Documentation

CHAPTER 12. SYSTEMTAP

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/index

Red Hat Enterprise Linux 7 SystemTap Beginners Guide — The SystemTap Beginners Guide for
Red Hat Enterprise Linux 7 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 7 SystemTap Tapset Reference — The SystemTap Tapset Reference
for Red Hat Enterprise Linux 7 provides further details about SystemTap.

The SystemTap Documentation — The SystemTap documentation provides further
documentation about SystemTap, and numerous examples of the SystemTap scripts.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 13, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 14, OProfile — Instructions on using the OProfile tool to determine which sections of
code consume the greatest amount of CPU time and why.

Chapter 15, Dyninst — Instructions on using the Dyninst library to instrument a user-space
executable.

Red Hat Developer Toolset 11 User Guide

68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_tapset_reference/index
http://sourceware.org/systemtap/documentation.html

CHAPTER 13. VALGRIND
Valgrind is an instrumentation framework that ships with a number of tools for profiling applications. It
can be used to detect various memory errors and memory-management problems, such as the use of
uninitialized memory or an improper allocation and freeing of memory, or to identify the use of improper
arguments in system calls. For a complete list of profiling tools that are distributed with the Red Hat
Developer Toolset version of Valgrind, see Table 13.1, “Tools Distributed with Valgrind for Red Hat
Developer Toolset”.

Valgrind profiles an application by rewriting it and instrumenting the rewritten binary. This allows you to
profile your application without the need to recompile it, but it also makes Valgrind significantly slower
than other profilers, especially when performing extremely detailed runs. It is therefore not suited to
debugging time-specific issues, or kernel-space debugging.

Red Hat Developer Toolset is distributed with Valgrind 3.17.0. This version is more recent than the
version included in the previous release of Red Hat Developer Toolset and provides numerous bug fixes
and enhancements.

Table 13.1. Tools Distributed with Valgrind for Red Hat Developer Toolset

Name Description

Memcheck Detects memory management problems by intercepting system calls and checking all read
and write operations.

Cachegrind Identifies the sources of cache misses by simulating the level 1 instruction cache (I1), level 1
data cache (D1), and unified level 2 cache (L2).

Callgrind Generates a call graph representing the function call history.

Helgrind Detects synchronization errors in multithreaded C, C++, and Fortran programs that use
POSIX threading primitives.

DRD Detects errors in multithreaded C and C++ programs that use POSIX threading primitives
or any other threading concepts that are built on top of these POSIX threading primitives.

Massif Monitors heap and stack usage.

13.1. INSTALLING VALGRIND

In Red Hat Developer Toolset, Valgrind is provided by the devtoolset-11-valgrind package and is
automatically installed with devtoolset-11-perftools .

For detailed instructions on how to install Red Hat Developer Toolset and related packages to your
system, see Section 1.5, “Installing Red Hat Developer Toolset” .

NOTE

Note that if you use Valgrind in combination with the GNU Debugger, it is recommended
that you use the version of GDB that is included in Red Hat Developer Toolset to ensure
that all features are fully supported.

CHAPTER 13. VALGRIND

69

13.2. USING VALGRIND

To run any of the Valgrind tools on a program you want to profile:

$ scl enable devtoolset-11 'valgrind --tool=tool program argument...'

See Table 13.1, “Tools Distributed with Valgrind for Red Hat Developer Toolset” for a list of tools that are
distributed with Valgrind. The argument of the --tool command line option must be specified in lower
case, and if this option is omitted, Valgrind uses Memcheck by default. For example, to run Cachegrind
on a program to identify the sources of cache misses:

$ scl enable devtoolset-11 'valgrind --tool=cachegrind program argument...'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset Valgrind as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of Valgrind you are using at any point:

$ which valgrind

Red Hat Developer Toolset’s valgrind executable path will begin with /opt. Alternatively,
you can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset Valgrind:

$ valgrind --version

13.3. ADDITIONAL RESOURCES

For more information about Valgrind and its features, see the resources listed below.

Installed Documentation

valgrind(1) — The manual page for the valgrind utility provides detailed information on how to
use Valgrind. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man valgrind'

Valgrind Documentation — HTML documentation for Valgrind is located at /opt/rh/devtoolset-
11/root/usr/share/doc/devtoolset-11-valgrind-3.17.0/html/index.html.

Online Documentation

Red Hat Enterprise Linux 7 Developer Guide — The Developer Guide for Red Hat
Enterprise Linux 7 provides more information about Valgrind and its Eclipse plug-in.

Red Hat Enterprise Linux 7 Performance Tuning Guide — The Performance Tuning Guide for
Red Hat Enterprise Linux 7 provide more detailed information about using Valgrind to profile
applications.

Red Hat Developer Toolset 11 User Guide

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/index

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 11, memstomp — Instructions on using the memstomp utility to identify calls to library
functions with overlapping memory regions that are not allowed by various standards.

Chapter 12, SystemTap — An introduction to the SystemTap tool and instructions on how to use
it to monitor the activities of a running system.

Chapter 14, OProfile — Instructions on using the OProfile tool to determine which sections of
code consume the greatest amount of CPU time and why.

Chapter 15, Dyninst — Instructions on using the Dyninst library to instrument a user-space
executable.

CHAPTER 13. VALGRIND

71

CHAPTER 14. OPROFILE
OProfile is a low overhead, system-wide profiler that uses the performance-monitoring hardware on the
processor to retrieve information about the kernel and executables on the system, such as when
memory is referenced, the number of level 2 cache (L2) requests, and the number of hardware
interrupts received. It consists of a configuration utility, a daemon for collecting data, and a number of
tools that can be used to transform the data into a human-readable form. For a complete list of tools
that are distributed with the Red Hat Developer Toolset version of OProfile, see Table 14.1, “Tools
Distributed with OProfile for Red Hat Developer Toolset”.

OProfile profiles an application without adding any instrumentation by recording the details of every
nth event. This allows it to consume fewer resources than Valgrind, but it also causes its samples to be
less precise. Unlike Valgrind, which only collects data for a single process and its children in user-space,
OProfile is well suited to collect system-wide data on both user-space and kernel-space processes, and
requires root privileges to run.

Red Hat Developer Toolset is distributed with OProfile 1.4.0.

Table 14.1. Tools Distributed with OProfile for Red Hat Developer Toolset

Name Description

operf Records samples either for a single process or system-wide using the Linux Performance
Events subsystem.

opannotate Generates an annotated source file or assembly listing from the profiling data.

oparchive Generates a directory containing executable, debug, and sample files.

opgprof Generates a summary of a profiling session in a format compatible with gprof.

ophelp Displays a list of available events.

opimport Converts a sample database file from a foreign binary format to the native format.

opjitconv Converts a just-in-time (JIT) dump file to the Executable and Linkable Format (ELF).

opreport Generates image and symbol summaries of a profiling session.

ocount A new tool for counting the number of times particular events occur during the duration of
a monitored command.

14.1. INSTALLING OPROFILE

In Red Hat Developer Toolset, OProfile is provided by the devtoolset-11-oprofile package and is
automatically installed with devtoolset-11-perftools as described in Section 1.5, “Installing Red Hat
Developer Toolset”.

14.2. USING OPROFILE

To run any of the tools that are distributed with OProfile:

Red Hat Developer Toolset 11 User Guide

72

scl enable devtoolset-11 'tool option...'

See Table 14.1, “Tools Distributed with OProfile for Red Hat Developer Toolset” for a list of tools that
are distributed with OProfile. For example, to use the ophelp command to list available events in the
XML format:

$ scl enable devtoolset-11 'ophelp -X'

Note that you can execute any command using the scl utility, causing it to be run with the Red Hat
Developer Toolset binaries used in preference to the Red Hat Enterprise Linux system equivalent. This
allows you to run a shell session with Red Hat Developer Toolset OProfile as default:

$ scl enable devtoolset-11 'bash'

NOTE

To verify the version of OProfile you are using at any point:

$ which operf

Red Hat Developer Toolset’s operf executable path will begin with /opt. Alternatively, you
can use the following command to confirm that the version number matches that for
Red Hat Developer Toolset OProfile:

operf --version

14.3. ADDITIONAL RESOURCES

For more information about OProfile and its features, see the resources listed below.

Installed Documentation

oprofile(1) — The manual page named oprofile provides an overview of OProfile and available
tools. To display the manual page for the version included in Red Hat Developer Toolset:

$ scl enable devtoolset-11 'man oprofile'

opannotate(1), oparchive(1), operf(1), opgprof(1), ophelp(1), opimport(1), opreport(1) —
Manual pages for various tools distributed with OProfile provide more information on their
respective usage. To display the manual page for the version included in Red Hat
Developer Toolset:

scl enable devtoolset-11 'man tool'

Online Documentation

Red Hat Enterprise Linux 7 Developer Guide — The Developer Guide for Red Hat
Enterprise Linux 7 provides more information on OProfile.

Red Hat Enterprise Linux 7 System Administrator’s Guide — The System Administrator’s Guide
for Red Hat Enterprise Linux 7 documents how to use the operf tool.

CHAPTER 14. OPROFILE

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 12, SystemTap — An introduction to SystemTap and instructions on how to use it to
monitor the activities of a running system.

Chapter 13, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 15, Dyninst — Instructions on using the Dyninst library to instrument a user-space
executable.

Red Hat Developer Toolset 11 User Guide

74

CHAPTER 15. DYNINST
The Dyninst library provides an application programming interface (API) for instrumenting and working
with user-space executables during their execution. It can be used to insert code into a running program,
change certain subroutine calls, or even remove them from the program. It serves as a valuable
debugging and performance-monitoring tool. The Dyninst API is also commonly used along with
SystemTap to allow non- root users to instrument user-space executables.

Red Hat Developer Toolset is distributed with Dyninst 11.0.0.

15.1. INSTALLING DYNINST

In Red Hat Developer Toolset, the Dyninst library is provided by the devtoolset-11-dyninst package
and is automatically installed with devtoolset-11-perftools as described in Section 1.5, “Installing
Red Hat Developer Toolset”. In addition, it is recommended that you also install the GNU Compiler
Collection provided by the devtoolset-11-toolchain package.

If you intend to write a custom instrumentation for binaries, install the relevant header files:

yum install devtoolset-11-dyninst-devel

You can also install API documentation for this library:

yum install devtoolset-11-dyninst-doc

For a complete list of documents that are included in the devtoolset-11-dyninst-doc package, see
Section 15.3, “Additional Resources”. For detailed instructions on how to install optional packages to
your system, see Section 1.5, “Installing Red Hat Developer Toolset” .

15.2. USING DYNINST

15.2.1. Using Dyninst with SystemTap

To use Dyninst along with SystemTap to allow non- root users to instrument user-space executables,
run the stap command with the --dyninst (or --runtime=dyninst) command line option. This tells stap
to translate a SystemTap script into C code that uses the Dyninst library, compile this C code into a
shared library, and then load the shared library and run the script. Note that when executed like this, the
stap command also requires the -c or -x command line option to be specified.

To use the Dyninst runtime to instrument an executable file:

$ scl enable devtoolset-11 "stap --dyninst -c 'command' option... argument..."

Similarly, to use the Dyninst runtime to instrument a user’s process:

$ scl enable devtoolset-11 "stap --dyninst -x process_id option... argument..."

See Chapter 12, SystemTap for more information about the Red Hat Developer Toolset version of
SystemTap. For a general introduction to SystemTap and its usage, see the SystemTap Beginners
Guide for Red Hat Enterprise Linux 7.

Example 15.1. Using Dyninst with SystemTap

CHAPTER 15. DYNINST

75

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/index

Consider a source file named exercise.C that has the following contents:

This program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to the standard output.
Compile this program on the command line using the g++ compiler from Red Hat Developer Toolset:

$ scl enable devtoolset-11 'g++ -g -o exercise exercise.C'

Now consider another source file named count.stp with the following contents:

#!/usr/bin/stap

global count = 0

probe process.function("print_iteration") {
 count++
}

probe end {
 printf("Function executed %d times.\n", count)
}

This SystemTap script prints the total number of times the print_iteration() function was called
during the execution of a process. Run this script on the exercise binary file:

$ scl enable devtoolset-11 "stap --dyninst -c './exercise' count.stp"
Enter the starting number: 5
Iteration number 5
Iteration number 4
Iteration number 3
Iteration number 2
Iteration number 1
Function executed 5 times.

15.2.2. Using Dyninst as a Stand-alone Library

Before using the Dyninst library as a part of your application, set the value of the DYNINSTAPI_RT_LIB
environment variable to the path to the runtime library file:

#include <stdio.h>

void print_iteration(int value) {
 printf("Iteration number %d\n", value);
}

int main(int argc, char **argv) {
 int i;
 printf("Enter the starting number: ");
 scanf("%d", &i);
 for(; i>0; --i)
 print_iteration(i);
 return 0;
}

Red Hat Developer Toolset 11 User Guide

76

$ export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
11/root/usr/lib64/dyninst/libdyninstAPI_RT.so

This sets the DYNINSTAPI_RT_LIB environment variable in the current shell session.

Example 15.2, “Using Dyninst as a Stand-alone Application” illustrates how to write and build a program
to monitor the execution of a user-space process. For a detailed explanation of how to use Dyninst, see
the resources listed in Section 15.3, “Additional Resources”.

Example 15.2. Using Dyninst as a Stand-alone Application

Consider the exercise.C source file from Example 15.1, “Using Dyninst with SystemTap” : this
program prompts the user to enter a starting number and then counts down to 1, calling the
print_iteration() function for each iteration in order to print the number to standard output.

Now consider another source file named count.C with the following contents:

#include <stdio.h>
#include <fcntl.h>
#include "BPatch.h"
#include "BPatch_process.h"
#include "BPatch_function.h"
#include "BPatch_Vector.h"
#include "BPatch_thread.h"
#include "BPatch_point.h"

void usage() {
 fprintf(stderr, "Usage: count <process_id> <function>\n");
}

// Global information for counter
BPatch_variableExpr *counter = NULL;

void createCounter(BPatch_process *app, BPatch_image *appImage) {
 int zero = 0;
 counter = app->malloc(*appImage->findType("int"));
 counter->writeValue(&zero);
}

bool interceptfunc(BPatch_process *app,
 BPatch_image *appImage,
 char *funcName) {
 BPatch_Vector<BPatch_function *> func;
 appImage->findFunction(funcName, func);
 if(func.size() == 0) {
 fprintf(stderr, "Unable to find function to instrument()\n");
 exit (-1);
 }
 BPatch_Vector<BPatch_snippet *> incCount;
 BPatch_Vector<BPatch_point *> *points;
 points = func[0]->findPoint(BPatch_entry);
 if ((*points).size() == 0) {
 exit (-1);
 }

CHAPTER 15. DYNINST

77

Note that a client application is expected to destroy all Bpatch objects before any of the Dyninst
library destructors are called. Otherwise the mutator might terminate unexpectedly with a
segmentation fault. To work around this problem, set the BPatch object of the mutator as a local
variable in the main() function. Or, if you need to use BPatch as a global variable, manually detach all
the mutatee processes before the mutator exits.

This program accepts a process ID and a function name as command line arguments and then prints
the total number of times the function was called during the execution of the process. You can use
the following Makefile to build these two files:

 BPatch_arithExpr counterPlusOne(BPatch_plus, *counter, BPatch_constExpr(1));
 BPatch_arithExpr addCounter(BPatch_assign, *counter, counterPlusOne);

 return app->insertSnippet(addCounter, *points);
}

void printCount(BPatch_thread *thread, BPatch_exitType) {
 int val = 0;
 counter->readValue(&val, sizeof(int));
 fprintf(stderr, "Function executed %d times.\n", val);
}

int main(int argc, char *argv[]) {
 int pid;
 BPatch bpatch;
 if (argc != 3) {
 usage();
 exit(1);
 }
 pid = atoi(argv[1]);
 BPatch_process *app = bpatch.processAttach(NULL, pid);
 if (!app) exit (-1);
 BPatch_image *appImage = app->getImage();
 createCounter(app, appImage);
 fprintf(stderr, "Finding function %s(): ", argv[2]);
 BPatch_Vector<BPatch_function*> countFuncs;
 fprintf(stderr, "OK\nInstrumenting function %s(): ", argv[2]);
 interceptfunc(app, appImage, argv[2]);
 bpatch.registerExitCallback(printCount);
 fprintf(stderr, "OK\nWaiting for process %d to exit...\n", pid);
 app->continueExecution();
 while (!app->isTerminated())
 bpatch.waitForStatusChange();
 return 0;
}

DTS = /opt/rh/devtoolset-11/root
CXXFLAGS = -g -I$(DTS)/usr/include/dyninst
LBITS := $(shell getconf LONG_BIT)

ifeq ($(LBITS),64)
 DYNINSTLIBS = $(DTS)/usr/lib64/dyninst
else
 DYNINSTLIBS = $(DTS)/usr/lib/dyninst
endif

Red Hat Developer Toolset 11 User Guide

78

To compile the two programs on the command line using the g++ compiler from Red Hat
Developer Toolset, run the make utility:

$ scl enable devtoolset-11 make
g++ -g -I/opt/rh/devtoolset-11/root/usr/include/dyninst count.C -c
g++ -g -I/opt/rh/devtoolset-11/root/usr/include/dyninst count.o -L /opt/rh/devtoolset-
11/root/usr/lib64/dyninst -ldyninstAPI -o count
g++ -g -I/opt/rh/devtoolset-11/root/usr/include/dyninst exercise.C -o exercise

This creates new binary files called exercise and count in the current working directory.

In one shell session, execute the exercise binary file as follows and wait for it to prompt you to enter
the starting number:

$./exercise
Enter the starting number:

Do not enter this number. Instead, start another shell session and type the following at its prompt to
set the DYNINSTAPI_RT_LIB environment variable and execute the count binary file:

$ export DYNINSTAPI_RT_LIB=/opt/rh/devtoolset-
11/root/usr/lib64/dyninst/libdyninstAPI_RT.so
$./count `pidof exercise` print_iteration
Finding function print_iteration(): OK
Instrumenting function print_iteration(): OK
Waiting for process 8607 to exit...

Now switch back to the first shell session and enter the starting number as requested by the exercise
program. For example:

Enter the starting number: 5
Iteration number 5
Iteration number 4
Iteration number 3
Iteration number 2
Iteration number 1

When the exercise program terminates, the count program displays the number of times the
print_iteration() function was executed:

.PHONY: all
all: count exercise

count: count.C
 g++ $(CXXFLAGS) count.C -I /usr/include/dyninst -c
 g++ $(CXXFLAGS) count.o -L $(DYNINSTLIBS) -ldyninstAPI -o count

exercise: exercise.C
 g++ $(CXXFLAGS) exercise.C -o exercise

.PHONY: clean
clean:
 rm -rf *~ *.o count exercise

CHAPTER 15. DYNINST

79

Function executed 5 times.

15.3. ADDITIONAL RESOURCES

For more information about Dyninst and its features, see the resources listed below.

Installed Documentation
The devtoolset-11-dyninst-doc package installs the following documents in the /opt/rh/devtoolset-
11/root/usr/share/doc/devtoolset-11-dyninst-doc-11.0.0/ directory:

Dyninst Programmer’s Guide — A detailed description of the Dyninst API is stored in the
DyninstAPI.pdf file.

DynC API Programmer’s Guide — An introduction to DynC API is stored in the dynC_API.pdf
file.

ParseAPI Programmer’s Guide — An introduction to the ParseAPI is stored in the ParseAPI.pdf
file.

PatchAPI Programmer’s Guide — An introduction to PatchAPI is stored in the PatchAPI.pdf file.

ProcControlAPI Programmer’s Guide — A detailed description of ProcControlAPI is stored in the
ProcControlAPI.pdf file.

StackwalkerAPI Programmer’s Guide — A detailed description of StackwalkerAPI is stored in the
stackwalker.pdf file.

SymtabAPI Programmer’s Guide — An introduction to SymtabAPI is stored in the
SymtabAPI.pdf file.

InstructionAPI Reference Manual — A detailed description of the InstructionAPI is stored in the
InstructionAPI.pdf file.

For information on how to install this package on your system, see Section 15.1, “Installing Dyninst”.

Online Documentation

Dyninst Home Page — The project home page provides links to additional documentation and
related publications.

Red Hat Enterprise Linux 7 SystemTap Beginners Guide — The SystemTap Beginners Guide for
Red Hat Enterprise Linux 7 provides an introduction to SystemTap and its usage.

Red Hat Enterprise Linux 7 SystemTap Tapset Reference — The SystemTap Tapset Reference
for Red Hat Enterprise Linux 7 provides further details about SystemTap.

See Also

Chapter 1, Red Hat Developer Toolset — An overview of Red Hat Developer Toolset and more
information on how to install it on your system.

Chapter 12, SystemTap — An introduction to SystemTap and instructions on how to use it to
monitor the activities of a running system.

Chapter 13, Valgrind — Instructions on using the Valgrind tool to profile applications and detect

Red Hat Developer Toolset 11 User Guide

80

http://www.dyninst.org/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_beginners_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/systemtap_tapset_reference/index

Chapter 13, Valgrind — Instructions on using the Valgrind tool to profile applications and detect
memory errors and memory management problems, such as the use of uninitialized memory,
improper allocation and freeing of memory, and the use of improper arguments in system calls.

Chapter 14, OProfile — Instructions on using the OProfile tool to determine which sections of
code consume the greatest amount of CPU time and why.

CHAPTER 15. DYNINST

81

PART V. COMPILER TOOLSETS

Red Hat Developer Toolset 11 User Guide

82

CHAPTER 16. COMPILER TOOLSETS DOCUMENTATION
The descriptions of the three compiler toolsets:

LLVM Toolset

Go Toolset

Rust Toolset

have been moved to a separate documentation set under Red Hat Developer Tools.

CHAPTER 16. COMPILER TOOLSETS DOCUMENTATION

83

https://access.redhat.com/documentation/en-us/red_hat_developer_tools/

PART VI. GETTING HELP

Red Hat Developer Toolset 11 User Guide

84

CHAPTER 17. ACCESSING RED HAT PRODUCT
DOCUMENTATION

Red Hat Product Documentation located at https://access.redhat.com/site/documentation/ serves as a
central source of information. It is currently translated in 23 languages, and for each product, it provides
different kinds of books from release and technical notes to installation, user, and reference guides in
HTML, PDF, and EPUB formats.

Below is a brief list of documents that are directly or indirectly relevant to this book.

Red Hat Developer Toolset

Red Hat Developer Toolset 11.0 Release Notes — The Release Notes for Red Hat
Developer Toolset 11.0 contain more information.

Using Red Hat Software Collections Container Images — The Using Red Hat
Software Collections Container Images provides instructions for obtaining, configuring, and
using container images that are shipped with Red Hat Software Collections, including the
Red Hat Developer Toolset container images.

Red Hat Software Collections Packaging Guide — The Software Collections Packaging Guide
explains the concept of Software Collections and documents how to create, build, and extend
them.

Red Hat Enterprise Linux

Red Hat Enterprise Linux 7 Developer Guide — The Developer Guide for Red Hat
Enterprise Linux 7 provides more information about libraries and runtime support, compiling and
building, debugging, and profiling.

Red Hat Enterprise Linux 7 Installation Guide — The Installation Guide for Red Hat
Enterprise Linux 7 explains how to obtain, install, and update the system.

Red Hat Enterprise Linux 7 System Administrator’s Guide — The System Administrator’s Guide
for Red Hat Enterprise Linux 7 documents relevant information regarding the deployment,
configuration, and administration of Red Hat Enterprise Linux 7.

CHAPTER 17. ACCESSING RED HAT PRODUCT DOCUMENTATION

85

https://access.redhat.com/site/documentation/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/11/html/11.0_release_notes/index
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/index
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/packaging_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/index

CHAPTER 18. CONTACTING GLOBAL SUPPORT SERVICES
Unless you have a Self-Support subscription, when both the Red Hat Documentation website and
Customer Portal fail to provide the answers to your questions, you can contact Global Support Services
(GSS).

18.1. GATHERING REQUIRED INFORMATION

Several items of information should be gathered before contacting GSS.

Background Information
Ensure you have the following background information at hand before calling GSS:

Hardware type, make, and model on which the product runs

Software version

Latest upgrades

Any recent changes to the system

An explanation of the problem and the symptoms

Any messages or significant information about the issue

NOTE

If you ever forget your Red Hat login information, it can be recovered at
https://access.redhat.com/site/help/LoginAssistance.html.

Diagnostics
The diagnostics report for Red Hat Enterprise Linux is required as well. This report is also known as a
sosreport and the program to create the report is provided by the sos package. To install the sos
package and all its dependencies on your system:

yum install sos

To generate the report:

sosreport

For more information, access the Knowledgebase article at https://access.redhat.com/kb/docs/DOC-
3593.

Account and Contact Information
In order to help you, GSS requires your account information to customize their support, as well contact
information to get back to you. When you contact GSS ensure you have your:

Red Hat customer number or Red Hat Network (RHN) login name

Company name

Contact name

Preferred method of contact (phone or email) and contact information (phone number or email

Red Hat Developer Toolset 11 User Guide

86

https://access.redhat.com/site/help/LoginAssistance.html
https://access.redhat.com/kb/docs/DOC-3593

Preferred method of contact (phone or email) and contact information (phone number or email
address)

Issue Severity
Determining an issue’s severity is important to allow the GSS team to prioritize their work. There are
four levels of severity.

Severity 1 (urgent)

A problem that severely impacts your use of the software for production purposes. It halts your
business operations and has no procedural workaround.

Severity 2 (high)

A problem where the software is functioning, but production is severely reduced. It causes a high
impact to business operations, and no workaround exists.

Severity 3 (medium)

A problem that involves partial, non-critical loss of the use of the software. There is a medium to low
impact on your business, and business continues to function by utilizing a workaround.

Severity 4 (low)

A general usage question, report of a documentation error, or a recommendation for a future product
improvement.

For more information on determining the severity level of an issue, see
https://access.redhat.com/support/policy/severity.

Once the issue severity has been determined, submit a service request through the Customer Portal
under the Connect option, or at https://access.redhat.com/support/contact/technicalSupport.html.
Note that you need your Red Hat login details in order to submit service requests.

If the severity is level 1 or 2, then follow up your service request with a phone call. Contact information
and business hours are found at https://access.redhat.com/support/contact/technicalSupport.html.

If you have a premium subscription, then after hours support is available for Severity 1 and 2 cases.

Turn-around rates for both premium subscriptions and standard subscription can be found at
https://access.redhat.com/support/offerings/production/sla.html.

18.2. ESCALATING AN ISSUE

If you feel an issue is not being handled correctly or adequately, you can escalate it. There are two types
of escalations:

Technical escalation

If an issue is not being resolved appropriately or if you need a more senior resource to attend to it.

Management escalation

If the issue has become more severe or you believe it requires a higher priority.

More information on escalation, including contacts, is available at
https://access.redhat.com/support/policy/mgt_escalation.html.

18.3. RE-OPENING A SERVICE REQUEST

If there is more relevant information regarding a closed service request (such as the problem
reoccurring), you can re-open the request via the Red Hat Customer Portal at

CHAPTER 18. CONTACTING GLOBAL SUPPORT SERVICES

87

https://access.redhat.com/support/policy/severity
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/offerings/production/sla.html
https://access.redhat.com/support/policy/mgt_escalation.html

https://access.redhat.com/support/policy/mgt_escalation.html or by calling your local support center,
the details of which can be found at https://access.redhat.com/support/contact/technicalSupport.html.

IMPORTANT

In order to re-open a service request, you need the original service-request number.

18.4. ADDITIONAL RESOURCES

For more information, see the resources listed below.

Online Documentation

Getting Started — The Getting Started page serves as a starting point for people who purchased
a Red Hat subscription and offers the Red Hat Welcome Kit and the Quick Guide to Red Hat
Support for download.

How can a RHEL Self-Support subscription be used? — A Knowledgebase article for customers
with a Self-Support subscription.

Red Hat Global Support Services and public mailing lists — A Knowledgebase article that
answers frequent questions about public Red Hat mailing lists.

Red Hat Developer Toolset 11 User Guide

88

https://access.redhat.com/support/policy/mgt_escalation.html
https://access.redhat.com/support/contact/technicalSupport.html
https://access.redhat.com/support/start/
https://access.redhat.com/knowledge/articles/54702
https://access.redhat.com/knowledge/articles/92323

APPENDIX A. CHANGES IN VERSION 11.0
The following sections document features and compatibility changes introduced with Red Hat
Developer Toolset 11.0. The list is not full and will be updated.

A.1. CHANGES IN GCC

Red Hat Developer Toolset 11.0 is distributed with GCC 11.2.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

General Improvements

GCC now defaults to the DWARF Version 5 debugging format.

Column numbers shown in diagnostics represent real column numbers by default and respect
multicolumn characters.

The straight-line code vectorizer considers the whole function when vectorizing.

A series of conditional expressions that compare the same variable can be transformed into a
switch statement if each of them contains a comparison expression.

Interprocedural optimization improvements:

A new IPA-modref pass, controlled by the -fipa-modref option, tracks side effects of
function calls and improves the precision of points-to analysis.

The identical code folding pass, controlled by the -fipa-icf option, was significantly
improved to increase the number of unified functions and reduce compile-time memory
use.

Link-time optimization improvements:

Memory allocation during linking was improved to reduce peak memory use.

Using a new GCC_EXTRA_DIAGNOSTIC_OUTPUT environment variable in IDEs, you can
request machine-readable “fix-it hints” without adjusting build flags.

The static analyzer, run by the -fanalyzer option, is improved significantly with numerous bug
fixes and enhancements provided.

To mitigate CVE-2021-42574, a new warning was added to GCC with the release of the RHSA-
2021:4669 advisory. This new -Wbidirectional=[none|unpaired|any] warning warns about
possibly dangerous bidirectional (BiDi) Unicode characters and has three levels:

-Wbidirectional=unpaired (default) warns about improperly terminated BiDi contexts.

-Wbidirectional=none turns the warning off.

-Wbidirectional=any warns about any use of BiDi characters.

Language-specific Improvements
C family

C and C++ compilers support non-rectangular loop nests in OpenMP constructs and the

APPENDIX A. CHANGES IN VERSION 11.0

89

https://access.redhat.com/security/cve/CVE-2021-42574
https://access.redhat.com/errata/RHSA-2021:4669

C and C++ compilers support non-rectangular loop nests in OpenMP constructs and the
allocator routines of the OpenMP 5.0 specification.

Attributes:

The new no_stack_protector attribute marks functions that should not be instrumented
with stack protection (-fstack-protector).

The improved malloc attribute can be used to identify allocator and deallocator API pairs.

New warnings:

-Wsizeof-array-div, enabled by the -Wall option, warns about divisions of two sizeof
operators when the first one is applied to an array and the divisor does not equal the size of
the array element.

-Wstringop-overread, enabled by default, warns about calls to string functions that try to
read past the end of the arrays passed to them as arguments.

Enhanced warnings:

-Wfree-nonheap-object detects more instances of calls to deallocation functions with
pointers not returned from a dynamic memory allocation function.

-Wmaybe-uninitialized diagnoses the passing of pointers and references to uninitialized
memory to functions that take const-qualified arguments.

-Wuninitialized detects reads from uninitialized dynamically allocated memory.

C

Several new features from the upcoming C2X revision of the ISO C standard are supported with
the -std=c2x and -std=gnu2x options. For example:

The standard attribute is supported.

The __has_c_attribute preprocessor operator is supported.

Labels may appear before declarations and at the end of a compound statement.

C++

The default mode is changed to -std=gnu++17.

The C++ library libstdc++ has improved C++17 support now.

Several new C++20 features are implemented. Note that C++20 support is experimental.
For more information about the features, see C++20 Language Features.

The C++ front end has experimental support for some of the upcoming C++23 draft features.

New warnings:

-Wctad-maybe-unsupported, disabled by default, warns about performing class template
argument deduction on a type with no deduction guides.

-Wrange-loop-construct, enabled by -Wall, warns when a range-based for loop is creating
unnecessary and resource inefficient copies.

Red Hat Developer Toolset 11 User Guide

90

https://gcc.gnu.org/projects/cxx-status.html#cxx20

-Wmismatched-new-delete, enabled by -Wall, warns about calls to operator delete with
pointers returned from mismatched forms of operator new or from other mismatched
allocation functions.

-Wvexing-parse, enabled by default, warns about the most vexing parse rule: the cases
when a declaration looks like a variable definition, but the C++ language requires it to be
interpreted as a function declaration.

Architecture-specific Improvements
The 64-bit ARM architecture

The Armv8-R architecture is supported through the -march=armv8-r option.

GCC can autovectorize operations performing addition, subtraction, multiplication, and the
accumulate and subtract variants on complex numbers.

AMD and Intel 64-bit architectures

The following Intel CPUs are supported: Sapphire Rapids, Alder Lake, and Rocket Lake.

New ISA extension support for Intel AVX-VNNI is added. The -mavxvnni compiler switch
controls the AVX-VNNI intrinsics.

AMD CPUs based on the znver3 core are supported with the new -march=znver3 option.

Three microarchitecture levels defined in the x86-64 psABI supplement are supported with the
new -march=x86-64-v2, -march=x86-64-v3, and -march=x86-64-v4 options.

A.2. CHANGES IN BINUTILS

Red Hat Developer Toolset 11.0 is distributed with binutils 2.36.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

The assembler

On Intel architectures, the AMX, AVX VNNI, HRESET, Key Locker, TDX, and UINTR instructions
are supported.

When setting the link order attribute of ELF sections, you can use a numeric section index
instead of a symbol name.

The following ARM cores are supported: Cortex-A78, Cortex-A78AE, Cortex-A78C, Cortex-X1,
Cortex-R82, Neoverse V1, and Neoverse N2.

On 64-bit ARM architectures, the Armv8-R and Armv8.7-A ISA extensions are supported.

A .nop directive has been added that generates a single no-operation instruction that will work
on any target.

The SHF_GNU_RETAIN flag is supported. It specifies that the section should not be garbage
collected by the linker. This flag can be applied to sections using the R flag in the .section
directive.

The linker

APPENDIX A. CHANGES IN VERSION 11.0

91

https://gitlab.com/x86-psABIs/x86-64-ABI

A new libdep plugin has been added. It records linking dependencies in static libraries and uses
them when a final link is performed.

A new --error-handling-script=<NAME> command-line option has been added. It runs a helper
script when an undefined symbol or a missing library is encountered.

The linker now deduplicates the types in the .ctf sections. You can specify how the linker does
this by using the new --ctf-share-types command-line option. The default value of this option,
which is share-unconflicted, produces the most compact output.

The linker omits the variable section from the .ctf sections by default, saving space. This
behavior can be unsuitable for projects that have their own analog of symbol tables, which are
not reflected in ELF symbol tables.

The SHF_GNU_RETAIN ELF section flag is supported. This flag specifies that the section
should not be garbage collected by the linker.

Other binary utilities

nm: a new command-line option --ifunc-chars=CHARS has been added that specifies a string
of one or two characters. The first character is used as the type character when displaying global
ifunc symbols. The second character, if present, is used when displaying local ifunc symbols.

ar: the previously unused l modifier can be used for specifying dependencies of a static library.
The arguments of this l option (or its longer form --record-libdeps) are stored verbatim in the
__.LIBDEP member of the archive, which the linker may read at link time.

readelf: using the --lto-syms command-line option you can display the contents of the LTO
symbol table sections.

readelf accepts the -C command-line option that enables demangling of symbol names. In
addition, the --demangle=<style>, --no-demangle, --recurse-limit, and --no-recurse-limit
options are have been added.

To mitigate CVE-2021-42574, a new command-line option was added to binutils with the
release of the RHSA-2021:4730 advisory.
Tools which display names or strings (readelf, strings, nm, and objdump) now have a new --
unicode (-U) command-line option, which controls how Unicode characters are handled. The
following values can be set for the option:

--unicode=default treats BiDi characters as normal for the tool. This is the default
behaviour when the --unicode option is not used.

--unicode=locale displays BiDi characters according to the current locale.

--unicode=hex displays BiDi characters as hex byte values.

--unicode=escape displays BiDi characters as Unicode escape sequences.

--unicode=highlight displays BiDi characters as Unicode escape sequences highlighted in
red if it’s supported by the output device.

A.3. CHANGES IN ELFUTILS

Red Hat Developer Toolset 11.0 is distributed with elfutils 0.185.

The following features have been added or modified since the previous release of Red Hat

Red Hat Developer Toolset 11 User Guide

92

https://access.redhat.com/security/cve/CVE-2021-42574
https://access.redhat.com/errata/RHSA-2021:4730

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

The eu-elflint and eu-readelf tools now recognize and show the SHF_GNU_RETAIN and
SHT_X86_64_UNWIND flags on ELF sections.

The DEBUGINFOD_SONAME macro has been added to debuginfod.h. This macro can be used
with the dlopen function to load the libdebuginfod.so library dynamically from an application.

A new function debuginfod_set_verbose_fd has been added to the debuginfod-client library.
This function enhances the debuginfod_find_* queries functionality by redirecting the verbose
output to a separate file.

Setting the DEBUGINFOD_VERBOSE environment variable now shows more information
about which servers the debuginfod client connects to and the HTTP responses of those
servers.

The debuginfod server provides a new thread-busy metric and more detailed error metrics to
make it easier to inspect processes that run on the debuginfod server.

The libdw library transparently handles the DW_FORM_indirect location value so that the
dwarf_whatform function returns the actual FORM of an attribute.

To reduce network traffic, the debuginfod-client library stores negative results in a cache, and
client objects can reuse an existing connection.

A.4. CHANGES IN DWZ

Red Hat Developer Toolset 11.0 is distributed with dwz 0.14.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

The DWARF Version 5 debugging format is supported.

The DWARF supplementary object files can be produced using the .debug_sup section.

A new experimental optimization has been added that exploits the One Definition Rule of C++.

The DW_OP_GNU_variable_value expression opcode is supported.

Numerous bugs have been fixed and performance improvements have been added.

A.5. CHANGES IN GDB

Red Hat Developer Toolset 11.0 is distributed with GDB 10.2.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

New features

Multithreaded symbol loading is enabled by default on architectures that support this feature.
This change provides better performance for programs with many symbols.

Text User Interface (TUI) windows can be arranged horizontally.

GDB supports debugging multiple target connections simultaneously but this support is

APPENDIX A. CHANGES IN VERSION 11.0

93

GDB supports debugging multiple target connections simultaneously but this support is
experimental and limited. For example, you can connect each inferior to a different remote
server that runs on a different machine, or you can use one inferior to debug a local native
process or a core dump or some other process.

New and improved commands

A new tui new-layout name window weight [window weight…] command creates a new text
user interface (TUI) layout, you can also specify a layout name and displayed windows.

The improved alias [-a] [--] alias = command [default-args] command can specify default
arguments when creating a new alias.

The set exec-file-mismatch and show exec-file-mismatch commands set and show a new
exec-file-mismatch option. When GDB attaches to a running process, this option controls how
GDB reacts when it detects a mismatch between the current executable file loaded by GDB and
the executable file used to start the process.

Python API

The gdb.register_window_type function implements new TUI windows in Python.

You can now query dynamic types. Instances of the gdb.Type class can have a new boolean
attribute dynamic and the gdb.Type.sizeof attribute can have value None for dynamic types. If
Type.fields() returns a field of a dynamic type, the value of its bitpos attribute can be None.

A new gdb.COMMAND_TUI constant registers Python commands as members of the TUI help
class of commands.

A new gdb.PendingFrame.architecture() method retrieves the architecture of the pending
frame.

A new gdb.Architecture.registers method returns a gdb.RegisterDescriptorIterator object, an
iterator that returns gdb.RegisterDescriptor objects. Such objects do not provide the value of
a register but help understand which registers are available for an architecture.

A new gdb.Architecture.register_groups method returns a gdb.RegisterGroupIterator
object, an iterator that returns gdb.RegisterGroup objects. Such objects help understand
which register groups are available for an architecture.

A.6. CHANGES IN LTRACE

Red Hat Developer Toolset 11.0 is distributed with ltrace 0.7.91.

The following feature has been modified since the previous release of Red Hat Developer Toolset:

If a path is specified in the $XDG_CONFIG_DIRS patch file but does not exist, no diagnostic is
given.

A.7. CHANGES IN STRACE

Red Hat Developer Toolset 11.0 is distributed with strace 5.13.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

Red Hat Developer Toolset 11 User Guide

94

Changes in Behavior

Modified %process class contains system calls associated with process lifecycle (creation,
execution, and termination):

New calls: kill, tkill, tgkill, pidfd_send_signal, and rt_sigqueueinfo

Removed calls: arch_prctl and unshare

Improvements

A new -n (--syscall-number) option prints system call numbers.

A new --secontext[=full] option displays SELinux contexts.

Poke injection is implemented and two new options are added: --inject=SET:poke_enter= and -
-inject=SET:poke_exit=.

On IBM POWER architecture, System Call Vectored (SCV) ABI support is added.

libdw-based stack tracing is enabled for non-native personalities.

Netlink data is printed in a more structured way.

Decoding of the following system calls is implemented: close_range, epoll_pwait2, faccessat2,
landlock_add_rule, landlock_create_ruleset, landlock_restrict_self, mount_setattr, and
process_madvise.

Decoding of the following system calls is enhanced: io_uring_setup, membarrier,
perf_event_open, and pidfd_open.

Decoding of the GPIO_* and TEE_* ioctl commands is implemented.

Decoding of the following ioctl commands is implemented: FS_IOC_FS[GS]ETXATTR,
FS_IOC_[GS]ETFLAGS, FS_IOC32_[GS]ETFLAGS, LOOP_CONFIGURE, SIOCADDMULTI,
SIOCDELMULTI, SIOCGIFENCAP, SIOCOUTQNSD, SIOCSIFENCAP,
SIOCSIFHWBROADCAST, UBI_IOCRPEB and UBI_IOCSPEB,
V4L2_BUF_TYPE_META_CAPTURE, V4L2_BUF_TYPE_META_OUTPUT, and
VIDIOC_QUERY_EXT_CTRL.

Decoding of the NT_PRSTATUS and NT_FPREGSET regsets of the PTRACE_GETREGSET
and PTRACE_SETREGSET ptrace requests is implemented.

Decoding of the regs argument of the following ptrace requests is implemented:
PTRACE_GETREGS, PTRACE_GETREGS64, PTRACE_SETREGS, PTRACE_SETREGS64,
PTRACE_GETFPREGS, and PTRACE_SETFPREGS.

Decoding of the struct msginfo argument of the IPC_INFO and MSG_INFO msgctl system
calls commands is implemented.

Decoding of the struct msqid_ds argument of the MSG_STAT and MSG_STAT_ANY msgctl
system calls commands is implemented.

Decoding of the struct seminfo argument of the IPC_INFO and SEM_INFO semctl system
calls commands is implemented.

Decoding of the struct semid_ds argument of the IPC_SET, IPC_STAT, SEM_STAT, and
SEM_STAT_ANY semctl system calls commands is implemented.

Decoding of the struct shminfo argument of the IPC_INFO shmctl system calls command is

APPENDIX A. CHANGES IN VERSION 11.0

95

Decoding of the struct shminfo argument of the IPC_INFO shmctl system calls command is
implemented.

Decoding of the struct shm_info argument of the SHM_INFO shmctl system calls command is
implemented.

Decoding of the struct shmid_ds argument of the SHM_STAT and SHM_STAT_ANY shmctl
system calls commands is implemented.

Decoding of the IFLA_BRPORT_* netlink attributes is updated to match the Linux 5.12 kernel.

Lists of the following constants are updated: *_MAGIC, ALG_*, AUDIT_*, BPF_*, BTRFS_*,
CAP_*, CLOSE_RANGE_*, DEVCONF_*, ETH_*, FAN_*, IFLA_*, INET_DIAG_*, IORING_*,
IPV6_*, IP_*, KEXEC_*, KEYCTL_*, KEY_*, KVM_*, LOOP_*, MDBA_*, MEMBARRIER_CMD_*,
MPOL_*, MS_*, MTD_*, NDA_*, NFT_MSG_*, NLMSGERR_*, NT_*, PR_*, PTP_PEROUT_*,
PTRACE_*, RESOLVE_*, RTAX_*, RTA_*, RTC_*, RTM_*, RTNH_*, RTPROT_*, SCTP_*,
SEGV_*, SO_*, STATX_*, ST_*, SYS_*, TCA_*, TRAP_*, UFFDIO_*, UFFD_*, and V4L2_*.

Lists of ioctl commands are updated to match such lists from the Linux 5.13 kernel update.

With the release of the RHEA-2022:4635 advisory, strace can now display mismatches between
the actual SELinux contexts and the definitions extracted from the SELinux context database.
An existing --secontext option of strace has been extended with the mismatch parameter. This
parameter enables to print the expected context along with the actual one upon mismatch only.
The output is separated by double exclamation marks (!!), first the actual context, then the
expected one. In the examples below, the full,mismatch parameters print the expected full
context along with the actual one because the user part of the contexts mismatches. However,
when using a solitary mismatch, it only checks the type part of the context. The expected
context is not printed because the type part of the contexts matches.

[...]
$ strace --secontext=full,mismatch -e statx stat /home/user/file
statx(AT_FDCWD, "/home/user/file"
[system_u:object_r:user_home_t:s0!!unconfined_u:object_r:user_home_t:s0], ...

$ strace --secontext=mismatch -e statx stat /home/user/file
statx(AT_FDCWD, "/home/user/file" [user_home_t:s0], ...

SELinux context mismatches often cause access control issues associated with SELinux. The
mismatches printed in the system call traces can significantly expedite the checks of SELinux
context correctness. The system call traces can also explain specific kernel behavior with
respect to access control checks.

Bug Fixes

Decoding of the SIOCGIFINDEX, SIOCBRADDIF, and SIOCBRDELIF ioctl commands is fixed.

The clock_gettime64, clock_settime64, clock_adjtime64, and lock_getres_time64 system
calls are added to the %clock trace class.

The statx system call is added to the %fstat trace class.

Previously, strace used insufficient buffer sizes for network interface name printing. This led to
assertions on attempts of printing interface names that require quoting, for example, names
longer than 4 characters in -xx mode. With the release of the RHEA-2022:4635 advisory, this
bug has been fixed.

Red Hat Developer Toolset 11 User Guide

96

https://access.redhat.com/errata/RHEA-2022:4635
https://access.redhat.com/errata/RHEA-2022:4635

A.8. CHANGES IN SYSTEMTAP

Red Hat Developer Toolset 11.0 is distributed with SystemTap 4.5.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

32-bit floating-point variables are automatically widened to double variables and, as a result, can
be accessed directly as $context variables.

enum values can be accessed as $context variables.

The BPF uconversions tapset has been extended and includes more tapset functions to access
values in user space, for example user_long_error().

Concurrency control has been significantly improved to provide stable operation on large
servers.

For further information about notable changes, see the upstream SystemTap 4.5 release notes.

A.9. CHANGES IN VALGRIND

Red Hat Developer Toolset 11.0 is distributed with Valgrind 3.17.0.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

Valgrind can read the DWARF Version 5 debugging format.

Valgrind supports debugging queries to the debuginfod server.

The ARMv8.2 processor instructions are partially supported.

The Power ISA v.3.1 instructions on POWER10 processors are partially supported.

The IBM z14 processor instructions are supported.

Most IBM z15 instructions are supported. The Valgrind tool suite supports the miscellaneous-
instruction-extensions facility 3 and the vector-enhancements facility 2 for the IBM z15
processor. As a result, Valgrind runs programs compiled with GCC -march=z15 correctly and
provides improved performance and debugging experience.

The --track-fds=yes option respects -q (--quiet) and ignores the standard file descriptors
stdin, stdout, and stderr by default. To track the standard file descriptors, use the --track-
fds=all option.

The DHAT tool has two new modes of operation: --mode=copy and --mode=ad-hoc.

A.10. CHANGES IN DYNINST

Red Hat Developer Toolset 11.0 is distributed with Dyninst 11.0.0.

The following features have been added since the previous release of Red Hat Developer Toolset 11.0:

Support for the debuginfod server and for fetching separate debuginfo files.

APPENDIX A. CHANGES IN VERSION 11.0

97

https://sourceware.org/pipermail/systemtap/2021q2/027225.html

Improved detection of indirect calls to procedure linkage table (PLT) stubs.

Improved C++ name demangling.

Fixed memory leaks during code emitting.

A.11. CHANGES IN ANNOBIN

Red Hat Developer Toolset 11.0 is distributed with Annobin 9.82.

The following features have been added or modified since the previous release of Red Hat
Developer Toolset:

GCC plugin

ARM and RISCV targets are supported.

The LTO compiler is supported.

Annocheck

In verbose mode, the reason for skipping specific tests is reported.

Some messages are highlighted with color.

Some GO tests have been added.

On 64-bit ARM architectures, tests for BTI and PAC security features have been added.

To mitigate CVE-2021-42574, a new test is added to detect the presence of multibyte
characters in symbol names. This change has been implemented in Annobin with the release of
the RHSA-2021:4729 advisory.

Red Hat Developer Toolset 11 User Guide

98

https://access.redhat.com/security/cve/CVE-2021-42574
https://access.redhat.com/errata/RHSA-2021:4729

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. INTRODUCTION
	CHAPTER 1. RED HAT DEVELOPER TOOLSET
	1.1. ABOUT RED HAT DEVELOPER TOOLSET
	What Is New in Red Hat Developer Toolset 11.0

	1.2. MAIN FEATURES
	1.3. COMPATIBILITY
	Architecture support

	1.4. GETTING ACCESS TO RED HAT DEVELOPER TOOLSET
	1.4.1. Using Red Hat Software Collections

	1.5. INSTALLING RED HAT DEVELOPER TOOLSET
	1.5.1. Installing All Available Components
	1.5.2. Installing Individual Package Groups
	1.5.3. Installing Optional Packages
	1.5.4. Installing Debugging Information

	1.6. UPDATING RED HAT DEVELOPER TOOLSET
	1.6.1. Updating to a Minor Version
	1.6.2. Updating to a Major Version

	1.7. UNINSTALLING RED HAT DEVELOPER TOOLSET
	1.8. USING RED HAT DEVELOPER TOOLSET CONTAINER IMAGES
	1.9. ADDITIONAL RESOURCES
	Online Documentation
	See Also

	PART II. DEVELOPMENT TOOLS
	CHAPTER 2. GNU COMPILER COLLECTION (GCC)
	2.1. GNU C COMPILER
	2.1.1. Installing the C Compiler
	2.1.2. Using the C Compiler
	2.1.3. Running a C Program

	2.2. GNU C++ COMPILER
	2.2.1. Installing the C++ Compiler
	2.2.2. Using the C++ Compiler
	2.2.3. Running a C++ Program
	2.2.4. C++ Compatibility
	2.2.4.1. C++ ABI

	2.3. GNU FORTRAN COMPILER
	2.3.1. Installing the Fortran Compiler
	2.3.2. Using the Fortran Compiler
	2.3.3. Running a Fortran Program

	2.4. SPECIFICS OF GCC IN RED HAT DEVELOPER TOOLSET
	2.5. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 3. GNU MAKE
	3.1. INSTALLING MAKE
	3.2. USING MAKE
	3.3. USING MAKEFILES
	3.4. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 4. BINUTILS
	4.1. INSTALLING BINUTILS
	4.2. USING THE GNU ASSEMBLER
	4.3. USING THE GNU LINKER
	4.4. USING OTHER BINARY TOOLS
	4.5. SPECIFICS OF BINUTILS IN RED HAT DEVELOPER TOOLSET
	4.6. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 5. ELFUTILS
	5.1. INSTALLING ELFUTILS
	5.2. USING ELFUTILS
	5.3. ADDITIONAL RESOURCES
	See Also

	CHAPTER 6. DWZ
	6.1. INSTALLING DWZ
	6.2. USING DWZ
	6.3. ADDITIONAL RESOURCES
	Installed Documentation
	See Also

	CHAPTER 7. ANNOBIN
	7.1. INSTALLING ANNOBIN
	7.2. USING ANNOBIN PLUGIN
	7.3. USING ANNOCHECK
	7.4. ADDITIONAL RESOURCES
	Installed Documentation

	PART III. DEBUGGING TOOLS
	CHAPTER 8. GNU DEBUGGER (GDB)
	8.1. INSTALLING THE GNU DEBUGGER
	8.2. PREPARING A PROGRAM FOR DEBUGGING
	Compiling Programs with Debugging Information
	Installing Debugging Information for Existing Packages

	8.3. RUNNING THE GNU DEBUGGER
	8.4. LISTING SOURCE CODE
	8.5. SETTING BREAKPOINTS
	Setting a New Breakpoint
	Listing Breakpoints
	Deleting Existing Breakpoints

	8.6. STARTING EXECUTION
	8.7. DISPLAYING CURRENT VALUES
	8.8. CONTINUING EXECUTION
	8.9. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 9. STRACE
	9.1. INSTALLING STRACE
	9.2. USING STRACE
	9.2.1. Redirecting Output to a File
	9.2.2. Tracing Selected System Calls
	9.2.3. Displaying Time Stamps
	9.2.4. Displaying a Summary
	9.2.5. Tampering with System Call Results

	9.3. ADDITIONAL RESOURCES
	Installed Documentation
	See Also

	CHAPTER 10. LTRACE
	10.1. INSTALLING LTRACE
	10.2. USING LTRACE
	10.2.1. Redirecting Output to a File
	10.2.2. Tracing Selected Library Calls
	10.2.3. Displaying Time Stamps
	10.2.4. Displaying a Summary

	10.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 11. MEMSTOMP
	11.1. INSTALLING MEMSTOMP
	11.2. USING MEMSTOMP
	11.3. ADDITIONAL RESOURCES
	Installed Documentation
	See Also

	PART IV. PERFORMANCE MONITORING TOOLS
	CHAPTER 12. SYSTEMTAP
	12.1. INSTALLING SYSTEMTAP
	12.2. USING SYSTEMTAP
	12.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 13. VALGRIND
	13.1. INSTALLING VALGRIND
	13.2. USING VALGRIND
	13.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 14. OPROFILE
	14.1. INSTALLING OPROFILE
	14.2. USING OPROFILE
	14.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 15. DYNINST
	15.1. INSTALLING DYNINST
	15.2. USING DYNINST
	15.2.1. Using Dyninst with SystemTap
	15.2.2. Using Dyninst as a Stand-alone Library

	15.3. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	PART V. COMPILER TOOLSETS
	CHAPTER 16. COMPILER TOOLSETS DOCUMENTATION
	PART VI. GETTING HELP
	CHAPTER 17. ACCESSING RED HAT PRODUCT DOCUMENTATION
	Red Hat Developer Toolset
	Red Hat Enterprise Linux

	CHAPTER 18. CONTACTING GLOBAL SUPPORT SERVICES
	18.1. GATHERING REQUIRED INFORMATION
	Background Information
	Diagnostics
	Account and Contact Information
	Issue Severity

	18.2. ESCALATING AN ISSUE
	18.3. RE-OPENING A SERVICE REQUEST
	18.4. ADDITIONAL RESOURCES
	Online Documentation

	APPENDIX A. CHANGES IN VERSION 11.0
	A.1. CHANGES IN GCC
	General Improvements
	Language-specific Improvements
	Architecture-specific Improvements

	A.2. CHANGES IN BINUTILS
	The assembler
	The linker
	Other binary utilities

	A.3. CHANGES IN ELFUTILS
	A.4. CHANGES IN DWZ
	A.5. CHANGES IN GDB
	New features
	New and improved commands
	Python API

	A.6. CHANGES IN LTRACE
	A.7. CHANGES IN STRACE
	Changes in Behavior
	Improvements
	Bug Fixes

	A.8. CHANGES IN SYSTEMTAP
	A.9. CHANGES IN VALGRIND
	A.10. CHANGES IN DYNINST
	A.11. CHANGES IN ANNOBIN
	GCC plugin
	Annocheck

