& RedHat

Red Hat Decision Manager 7.9

Developing decision services in Red Hat
Decision Manager

Last Updated: 2020-11-04

Red Hat Decision Manager 7.9 Developing decision services in Red Hat
Decision Manager

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to develop decision services with Red Hat Decision Manager using
Decision Model and Notation (DMN) models, Drools Rule Language (DRL) files, guided decision
tables, and other decision-authoring assets.

Table of Contents

Table of Contents

[3 2 Y o P 1
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt ittt ettt et eaeeaneeraneeaneeeaneeeaness 12
PART |. DESIGNING A DECISION SERVICEUSING DMN MODELS iiitiiiiiiiiiiiiiienneennnnns 13
CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER coivvvnnnnnn. 14
CHAPTER 2. DECISION MODEL AND NOTATION (DMN) ..ttt ei et eeaneennneenneenns 18
2.1. DMN CONFORMANCE LEVELS 18
2.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS 18
2.3. RULE EXPRESSIONS IN FEEL 22
2.3.1. Data types in FEEL 23
2.3.2. Built-in functions in FEEL 27
2.3.2.1. Conversion functions 28
2.3.2.2. Boolean functions 32
2.3.2.3. String functions 32
2.3.2.4. List functions 37
2.3.2.5. Numeric functions 45
2.3.2.6. Date and time functions 49
2.3.2.7. Range functions 49
2.3.2.8. Temporal functions 57
2.3.2.9. Sort functions 59
2.3.2.10. Context functions 59

2.3.3. Variable and function names in FEEL 60

2.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS 61
2.4.1. DMN decision tables 61
2.4.1.1. Hit policies in DMN decision tables 63

2.4.2. Boxed literal expressions 64
2.4.3. Boxed context expressions 64
2.4.4. Boxed relation expressions 65
2.4.5. Boxed function expressions 66
2.4.6. Boxed invocation expressions 68
2.4.7. Boxed list expressions 69
2.5.DMN MODEL EXAMPLE 70
CHAPTER 3. DMN SUPPORT IN RED HAT DECISION MANAGERttt iiiiieiiennennnnenn, 79
3.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION MANAGER 79
CHAPTER 4. CREATING AND EDITING DMN MODELSINBUSINESS CENTRALc.coviiiiiiieennnn. 81
4.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN BUSINESS CENTRAL 89
4.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN BUSINESS CENTRAL 98
4.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL 108
4.3.1. Including other DMN models within a DMN file in Business Central 108
4.3.2. Including PMML models within a DMN file in Business Central m

4.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN BUSINESS CENTRAL 116
4.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL 121
4.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS CENTRAL 122
CHAPTER 5. DMN MODEL EXECUTION ...t tttitttitett ettt eeaeeaneeeaneennneeaneeeaneennneenn 129
5.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION 129
5.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA CLIENT API 131
5.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API 134

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 6. ADDITIONAL RESOURCESiittiiitttitttat et rateeaeeanneeanneeaneeenneennnens 139
PART Il. DESIGNING A DECISION SERVICEUSING PMML MODELSciiittiiiiiiiniennnennns 140
CHAPTER 7. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER ccvvvnn... 141
CHAPTER 8. PREDICTIVE MODEL MARKUP LANGUAGE (PMML) ...ttt iiii i nnnens 145
8.1. PMML CONFORMANCE LEVELS 145
CHAPTER 9. PMML MODEL EXAMPLES ..ottt tit e et eeeeeieeeanneeaneeenneennnens 146
CHAPTER 10. PMML SUPPORT IN RED HAT DECISION MANAGERttt eeaens 153
10.1. PMML NAMING CONVENTIONS IN RED HAT DECISION MANAGER 153
10.2. PMML EXTENSIONS IN RED HAT DECISION MANAGER 154
CHAPTER 11. PMML MODEL EXECUTION ..ottt ittt ettt et et eeitenneeaneeeaneennneenn 155
11.1. EMBEDDING A PMML CALL DIRECTLY IN A JAVA APPLICATION 155
11.1.1. PMML execution helper class 159

11.2. EXECUTING A PMML MODEL USING KIE SERVER 162
CHAPTER 12. ADDITIONAL RESOURCES ...ttt tit ettt et e et anneeaneeenneennnens 169
PART Ill. DESIGNING A DECISION SERVICEUSING DRLRULESciiuiiiitiiiiiinneennnennnn, 170
CHAPTER 13. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER cccvvvnn... 171
CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULESttt iiitei e eaneennnenns 175
14.1. PACKAGES IN DRL 176
14.2. IMPORT STATEMENTS IN DRL 176
14.3. FUNCTIONS IN DRL 176
14.4. QUERIES IN DRL 177
14.5. TYPE DECLARATIONS AND METADATA IN DRL 178
14.5.1. Type declarations without metadata in DRL 178
14.5.2. Enumerative type declarations in DRL 180
14.5.3. Extended type declarations in DRL 180
14.5.4. Type declarations with metadata in DRL 180
14.5.5. Metadata tags for fact type and attribute declarations in DRL 181
14.5.6. Property-change settings and listeners for fact types 187
14.5.7. Access to DRL declared types in application code 189
14.6. GLOBAL VARIABLES IN DRL 190
14.7. RULE ATTRIBUTES IN DRL 191
14.7.1. Timer and calendar rule attributes in DRL 193
14.8. RULE CONDITIONS IN DRL (WHEN) 197
14.8.1. Patterns and constraints 198
14.8.2. Bound variables in patterns and constraints 202
14.8.3. Nested constraints and inline casts 203
14.8.4. Date literal in constraints 204
14.8.5. Supported operators in DRL pattern constraints 204
14.8.6. Operator precedence in DRL pattern constraints 208
14.8.7. Supported rule condition elements in DRL (keywords) 209
14.8.8. OOPath syntax with graphs of objects in DRL rule conditions 219
14.9. RULE ACTIONS IN DRL (THEN) 222
14.9.1. Supported rule action methods in DRL 223
14.9.2. Other rule action methods from drools and kcontext variables 225
14.9.3. Advanced rule actions with conditional and named consequences 226
14.10. COMMENTS IN DRL FILES 228

Table of Contents

14.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING 228
14.12. RULE UNITS IN DRL RULE SETS 232
14.12.1. Data sources for rule units 236
14.12.2. Rule unit execution control 237
14.12.3. Rule unit identity conflicts 241
CHAPTER 15, DAT A OBUEC T S ittt ettt ettt ettt et e ittt et e eaneennneeaneeraneesnneennens 244
15.1. CREATING DATA OBJECTS 244
CHAPTER 16. CREATING DRL RULESIN BUSINESS CENTRAL ...\ttt ieie e nneennnns 246
16.1. ADDING WHEN CONDITIONS IN DRL RULES 250
16.2. ADDING THEN ACTIONS IN DRL RULES 254
CHAPTER 17. EXECUTING RULES ...ttt ittt ettt eneeeaeennneeaneeraneennneennnns 256
CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTINGDRLRULES 262
18.1. CREATING AND EXECUTING DRL RULES IN RED HAT CODEREADY STUDIO 262
18.2. CREATING AND EXECUTING DRL RULES USING JAVA 266
18.3. CREATING AND EXECUTING DRL RULES USING MAVEN 269
CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGERFORANIDE 275
19.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE 275
19.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING) 278
19.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION) 281
State example using salience 284
State example using agenda groups 287
Dynamic facts in the State example 288
19.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION) 289
19.5. PRICING EXAMPLE DECISIONS (DECISION TABLES) 295
Spreadsheet decision table setup 296
Base pricing rules 299
Promotional discount rules 300
19.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION) 300
Rule execution behavior in the Pet Store example 301
Pet Store rule file imports, global variables, and Java functions 303
Pet Store rules with agenda groups 304
Pet Store example execution 308
19.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE) 312
Politician and Hope classes 313
Rule definitions for politician honesty 314
Example execution and audit trail 315
19.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION) 318
Sudoku example execution and interaction 318
Sudoku example classes 324
Sudoku validation rules (validate.drl) 324
Sudoku solving rules (sudoku.drl) 325
19.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION) 332
Conway example execution and interaction 333
Conway example rules with ruleflow groups 334
19.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION) 338
Recursive query and related rules 342
Transitive closure rule 343

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager
Reactive query rule
Queries with unbound arguments in rules
CHAPTER 20. PERFORMANCE TUNING CONSIDERATIONS WITHDRLciiiiiiiiiiiiiiiii e

CHAPTER 21 NEXT STEPS ..o i i e i i it i ettt

PART IV. DESIGNING A DECISION SERVICE USING GUIDED DECISION TABLES l

CHAPTER 22. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
CHAPTER 23. GUIDED DECISION TABLES i e

CHAPTER 24. DAT A OBUECT S i i i e i i ettt ci e
24.1. CREATING DATA OBJECTS

CHAPTER 25. CREATING GUIDED DECISION TABLES e

CHAPTER 26. HIT POLICIES FOR GUIDED DECISION TABLES ...ttt eieeenienneens
26.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS
26.1.1. Types of guided decision tables

CHAPTER 27. ADDING COLUMNS TO GUIDED DECISIONTABLESt

CHAPTER 28. TYPES OF COLUMNS IN GUIDED DECISION TABLESottt
28.1."ADD A CONDITION"
28.1.1. Inserting an any other value in condition column cells
28.2."ADD A CONDITION BRL FRAGMENT"
28.3."ADD A METADATA COLUMN"
28.4."ADD AN ACTION BRL FRAGMENT"
28.5."ADD AN ATTRIBUTE COLUMN"
28.6. "DELETE AN EXISTING FACT"
28.7."EXECUTE A WORK ITEM"
28.8."SET THE VALUE OF A FIELD"
28.9."SET THE VALUE OF AFIELD WITH A WORK ITEM RESULT"

CHAPTER 29. VIEWING RULE NAME COLUMN IN GUIDED DECISIONTABLEScooooaet
CHAPTER 30. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES
CHAPTER 31. ADDING ROWS AND DEFINING RULES IN GUIDED DECISIONTABLES

CHAPTER 32. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS
32.1. ADVANCED ENUMERATION OPTIONS FOR RULE ASSETS

CHAPTER 33. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES
33.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES
33.2. TYPES OF NOTIFICATIONS
33.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

CHAPTER 34. CONVERTING A GUIDED DECISION TABLE TO A SPREADSHEET DECISION TABLE
CHAPTER 35. EXECUTING RULES ... i i e e i et
CHAPTER 36. NEXT STEPS .o i i i e ettt
PART V. DESIGNING A DECISION SERVICE USING SPREADSHEET DECISIONTABLES

CHAPTER 37. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

359

361
362
364

Table of Contents

CHAPTER 38. SPREADSHEET DECISION TABLES ... o e 404
CHAPTER 39. DAT A OBUEC TS i i i e i i et it et 405
39.1. CREATING DATA OBJECTS 405
CHAPTER 40.DECISION TABLE USE CASE ... o i e it 407
CHAPTER 41. DEFINING SPREADSHEET DECISION TABLESot 409
41.1. RULESET DEFINITIONS 4n
41.2. RULETABLE DEFINITIONS 413
41.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS 415
CHAPTER 42. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL 419

CHAPTER 43. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION

TABLE IN BUSINESS CENT RAL 1.ttt ettt iteeateeateeaneennneeannesaneesaneeenneeaneeenns 420
CHAPTER 44. EXECUTING RULES ...ttt tee et tanteeaeenneeeanneraneeenneennnens 421
CHAPTER 45, NEXT ST EP S .ottt ittt ettt ettt et e et et eaeenaneenneeraneenaneennnns 427
PART VI. DESIGNING A DECISION SERVICEUSING GUIDEDRULESiiiiiiiiiiiiiiiiienannn, 428
CHAPTER 46. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER 429
CHAPTER 47. GUIDED RULES ..ottt ettt ettt et eaeeaneeeaeennneeaneeeaneesaneennnns 433
CHAPTER 48. DATA OBUE CT S . .titiitttitttit ettt ettt et eaneeeaneeeaneennneeaneeeaneesaneennnns 434
48.1. CREATING DATA OBJECTS 434
CHAPTER 49. CREATING GUIDED RULESttt ittt e eaeenineeaneeeaneennneennnns 436
49.1. ADDING WHEN CONDITIONS IN GUIDED RULES 437
49.2. ADDING THEN ACTIONS IN GUIDED RULES 440
49.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS 443
49.3.1. Advanced enumeration options for rule assets 444
49.4. ADDING OTHER RULE OPTIONS 446
49.4.1. Rule attributes 447
CHAPTERS0. EXECUTING RULES ... ittt itit it i ei et eenneeeneeeaneennneennnns 450
CHAPTER Sl NEXT ST EP S .ottt ettt ettt ettt e e et et aeeanneeaneeraneennneennnns 456
PART VII. DESIGNING A DECISION SERVICE USING GUIDED RULETEMPLATESccivvvvinnnnn. 457
CHAPTER 52. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER 458
CHAPTER 53. GUIDED RULE TEMP LATES .ottt ittt et e ittt eeeeieeeaneennneennens 462
CHAPTER 54. DAT A OBUEC TS ittt ettt ettt ettt et eaaeeeaneeeaneennneeaneesaneeraneennnns 463
54.1. CREATING DATA OBJECTS 463
CHAPTER 55. CREATING GUIDED RULE TEMPLATES ...ttt tieeieeenteraneennneennnns 465
55.1. ADDING WHEN CONDITIONS IN GUIDED RULE TEMPLATES 466
55.2. ADDING THEN ACTIONS IN GUIDED RULE TEMPLATES 469
55.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS 471
55.3.1. Advanced enumeration options for rule assets 473
55.4. ADDING OTHER RULE OPTIONS 474
55.4.1. Rule attributes 475

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 56. DEFINING DATA TABLES FOR GUIDED RULE TEMPLATESccoiiiiiiiiiin...
CHAPTERS57.EXECUTING RULES ... i i et
CHAPTER 58. NEXT STEPS .o i i i i et i et
PART VIII. TESTING A DECISION SERVICE USING TESTSCENARIOS ...
CHAPTER 59. TEST SCENARIOS .. i i i i it i et

CHAPTER 60. DATA OBUECT S .o i i e i i et ittt
60.1. CREATING DATA OBJECTS

CHAPTER 61. TEST SCENARIOS DESIGNERIN BUSINESS CENTRAL iiittiiiiiiiiiienneennnns

61.1. IMPORTING DATA OBJECTS

61.2. IMPORTING A TEST SCENARIO

61.3. SAVING A TEST SCENARIO

61.4. COPYING A TEST SCENARIO

61.5. DOWNLOADING A TEST SCENARIO

61.6. SWITCHING BETWEEN VERSIONS OF A TEST SCENARIO

61.7. VIEW OR HIDE THE ALERTS PANEL

61.8. CONTEXTUAL MENU OPTIONS

61.9. GLOBAL SETTINGS FOR TEST SCENARIOS
61.9.1. Configuring global settings for rule-based test scenarios
61.9.2. Configuring global settings for DMN-based test scenarios

CHAPTER 62. TEST SCENARIO TEMPLATE . o i e
62.1. CREATING A TEST SCENARIO TEMPLATE FOR RULE-BASED TEST SCENARIOS
62.2. USING ALIASES IN RULE-BASED TEST SCENARIOS

CHAPTER 63. TEST TEMPLATE FOR DMN-BASED TESTSCENARIOS t
63.1. CREATING A TEST SCENARIO TEMPLATE FOR DMN-BASED TEST SCENARIOS

CHAPTER 64. DEFINING ATEST SCENARIO ... i i e i

CHAPTER 65. BACKGROUND INSTANCE INTESTSCENARIOS ... i
65.1. ADDING A BACKGROUND DATA IN RULE-BASED TEST SCENARIOS
65.2. ADDING A BACKGROUND DATA IN DMN-BASED TEST SCENARIOS

CHAPTER 66. USING LIST AND MAP COLLECTIONS IN TESTSCENARIOS ...t

CHAPTER 67. EXPRESSION SYNTAXINTESTSCENARIOS
67.1. EXPRESSION SYNTAX IN RULE-BASED TEST SCENARIOS
67.2. EXPRESSION SYNTAX IN DMN-BASED SCENARIOS

CHAPTER 68. RUNNING THE TEST SCENARIOS ... i i i
CHAPTER 69. RUNNING ATEST SCENARIO LOCALLY .. i i

CHAPTER 70. EXPORTING AND IMPORTING TEST SCENARIO SPREADSHEETSccovinn.
70.1. EXPORTING A TEST SCENARIO SPREADSHEET
70.2. IMPORTING A TEST SCENARIO SPREADSHEET

CHAPTER 71. COVERAGE REPORTS FORTEST SCENARIOS e
711. GENERATING COVERAGE REPORTS FOR RULE-BASED TEST SCENARIOS
71.2. GENERATING COVERAGE REPORTS FOR DMN-BASED TEST SCENARIOS

CHAPTER 72. EXECUTING A TEST SCENARIO USING THE KIESERVERRESTAPIcooiiiiiiitt.

492
492
493
493
493
494
494
494
495
496
496
497

498
498
499

500
500

501

502
502
503

505

507
507
509

Table of Contents

CHAPTER 73. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT 523
CHAPTER 74. TEST SCENARIOS (LEGACY) DESIGNER IN BUSINESS CENTRAL ccvvvnneinnn.. 526
74.1. CREATING AND RUNNING A TEST SCENARIO (LEGACY) 526
74.1.1. Adding GIVEN facts in test scenarios (legacy) 528
74.1.2. Adding EXPECT results in test scenarios (legacy) 529
CHAPTER 75. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER 532
CHAPTER 76. NEXT ST E P S ..ottt ittt ettt et e e aieeeeeneeeessannnneeseennnneesnnns 536
PART IX. DECISION ENGINE IN RED HAT DECISION MANAGERttt iie e 537
CHAPTER 77. DECISION ENGINE IN RED HAT DECISIONMANAGERottt iiieenne, 538
CHAPTER 78. KIE SESSIONS ..ottt ettt et ettt eeaneeeesennnneesaannnneesnnnn 539
78.1. STATELESS KIE SESSIONS 539
78.1.1. Global variables in stateless KIE sessions 542
78.2. STATEFUL KIE SESSIONS 543
78.3. KIE SESSION POOLS 546
CHAPTER 79. INFERENCE AND TRUTH MAINTENANCE IN THEDECISIONENGINE 548
79.1. FACT EQUALITY MODES IN THE DECISION ENGINE 552
CHAPTER 80. EXECUTION CONTROL INTHEDECISIONENGINEciiutiiiiiiiiiennnennnnn, 554
80.1. SALIENCE FOR RULES 554
80.2. AGENDA GROUPS FOR RULES 555
80.3. ACTIVATION GROUPS FOR RULES 556
80.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE 557
80.5. FACT PROPAGATION MODES IN THE DECISION ENGINE 559
80.6. AGENDA EVALUATION FILTERS 560
80.7. RULE UNITS IN DRL RULE SETS 560
80.7.1. Data sources for rule units 564
80.7.2. Rule unit execution control 565
80.7.3. Rule unit identity conflicts 569
CHAPTER 81. PHREAK RULE ALGORITHMIN THEDECISIONENGINEottt 573
81.1. RULE EVALUATION IN PHREAK 573
81.1.1. Rule evaluation with forward and backward chaining 577
81.2. RULE BASE CONFIGURATION 578
81.3. SEQUENTIAL MODE IN PHREAK 580
CHAPTER 82. COMPLEX EVENT PROCESSING (CEP) ...tiitiiitii i eieiteeaneennneennnns 583
82.1. EVENTS IN COMPLEX EVENT PROCESSING 584
82.2. DECLARING FACTS AS EVENTS 584
82.3. METADATA TAGS FOR EVENTS 585
82.4. EVENT PROCESSING MODES IN THE DECISION ENGINE 587
82.4.1. Negative patterns in decision engine stream mode 589
82.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES 590
82.6. TEMPORAL OPERATORS FOR EVENTS 593
82.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE 601
82.8. EVENT STREAMS AND ENTRY POINTS 603
82.8.1. Declaring entry points for rule data 603
82.9. SLIDING WINDOWS OF TIME OR LENGTH 605
82.9.1. Declaring sliding windows for rule data 605
82.10. MEMORY MANAGEMENT FOR EVENTS 606

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 83. DECISION ENGINE QUERIES AND LIVEQUERIES ciiiiiiii it ieiiiiee e 608
CHAPTER 84. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING cccvvvvvnnn.., 610
84.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE 6
CHAPTER 85. EXAMPLE DECISIONS IN RED HAT DECISION MANAGERFORANIDE 613
85.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE 613
85.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING) 616
85.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION) 619
State example using salience 622
State example using agenda groups 625
Dynamic facts in the State example 626
85.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION) 627
85.5. PRICING EXAMPLE DECISIONS (DECISION TABLES) 633
Spreadsheet decision table setup 634
Base pricing rules 637
Promotional discount rules 638
85.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION) 638
Rule execution behavior in the Pet Store example 639
Pet Store rule file imports, global variables, and Java functions 641
Pet Store rules with agenda groups 642
Pet Store example execution 646
85.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE) 650
Politician and Hope classes 651
Rule definitions for politician honesty 652
Example execution and audit trail 653
85.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION) 656
Sudoku example execution and interaction 656
Sudoku example classes 662
Sudoku validation rules (validate.drl) 662
Sudoku solving rules (sudoku.drl) 663
85.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
670
Conway example execution and interaction 671
Conway example rules with ruleflow groups 672
85.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION) 676
Recursive query and related rules 680
Transitive closure rule 681
Reactive query rule 682
Queries with unbound arguments in rules 683
CHAPTER 86. PERFORMANCE TUNING CONSIDERATIONS WITH THE DECISION ENGINE 685
CHAPTER 87. ADDITIONAL RESOURCESttt ittt ei et ennneeaneeeaneennneennnns 687
PART X. INTEGRATING MACHINE LEARNING WITH RED HAT DECISION MANAGER 688
CHAPTER 88. PRAGMATIC Al 1.ttt ittt ettt ettt at e et et et aeennneeaneeeaneenaneennens 689
CHAPTER 89. CREDIT CARD FRAUD DISPUTEUSE CASE\ttt it eieiteeaneennneennnns 692
89.1. USING A PMML MODEL WITH A DMN MODEL TO RESOLVE CREDIT CARD TRANSACTION DISPUTES
692
89.2. CREDIT CARD TRANSACTION DISPUTE EXERCISE PMML FILE 702

Table of Contents

CHAPTER 90. ADDITIONAL RESOURCES e e i al
APPENDIX A. VERSIONING INFORMATION ... i i i 712
APPENDIX B. CONTACT INFORMATION .. i i e 713

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

10

PREFACE

PREFACE

As a developer of business decisions, you can use Red Hat Decision Manager to develop decision
services using Decision Model and Notation (DMN) models, Drools Rule Language (DRL) rules, guided
decision tables, and other rule-authoring assets.

1

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message .

12

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. DESIGNING A DECISION SERVICE USING DMN MODELS

PART |. DESIGNING A DECISION SERVICE USING DMN
MODELS

As a business analyst or business rules developer, you can use Decision Model and Notation (DMN) to
model a decision service graphically. The decision requirements of a DMN decision model are
determined by a decision requirements graph (DRG) that is depicted in one or more decision
requirements diagrams (DRDs). A DRD can represent part or all of the overall DRG for the DMN model.
DRDs trace business decisions from start to finish, with each decision node using logic defined in DMN
boxed expressions such as decision tables.

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. You can design
your DMN models directly in Business Central or import existing DMN models into your Red Hat
Decision Manager projects for deployment and execution. DMN 1.1 and 1.3 models are currently not
supported in the DMN designer in Business Central.

For more information about DMN, see the Object Management Group (OMG) Decision Model and
Notation specification.

For a step-by-step tutorial with an example DMN decision service, see Getting started with decision
services.

13

https://www.omg.org/spec/DMN
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 1.1. Decision-authoring assets supported in Red Hat Decision Manager

Highlights Authoring tools Documentation
Decision Model . Business Central Designing a
. ® Are decision models based on a . .
and Notation . . or other DMN- decision service
notation standard defined by the)))
(DMN) models Object Management Group compliant editor using DMN models

(OMG)

® Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

® Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

e Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

® Are optimal for creating

comprehensive, illustrative, and
stable decision flows

14

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights

Authoring tools Documentation

Guided decision
tables

Spreadsheet
decision tables

Guided rules

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

15

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Arereusable rule structures that . .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9)
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

16

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation)

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

e Can beincluded with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

17

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Decision Model and Notation (DMN) is a standard established by the Object Management Group
(OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables
DMN models to be shared between DMN-compliant platforms and across organizations so that
business analysts and business rules developers can collaborate in designing and implementing DMN
decision services. The DMN standard is similar to and can be used together with the Business Process
Model and Notation (BPMN) standard for designing and modeling business processes.

For more information about the background and applications of DMN, see the OMG Decision Model and
Notation specification.

2.1. DMN CONFORMANCE LEVELS

The DMN specification defines three incremental levels of conformance in a software implementation. A
product that claims compliance at one level must also be compliant with any preceding levels. For
example, a conformance level 3 implementation must also include the supported components in
conformance levels 1and 2. For the formal definitions of each conformance level, see the OMG Decision
Model and Notation specification.

The following list summarizes the three DMN conformance levels:

Conformance level 1

A DMN conformance level 1implementation supports decision requirement diagrams (DRDs),
decision logic, and decision tables, but decision models are not executable. Any language can be used
to define the expressions, including natural, unstructured languages.

Conformance level 2

A DMN conformance level 2 implementation includes the requirements in conformance level 1, and
supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully
executable decision models.

Conformance level 3

A DMN conformance level 3 implementation includes the requirements in conformance levels 1and
2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed
expressions, and fully executable decision models.

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. You can design
your DMN models directly in Business Central or import existing DMN models into your Red Hat
Decision Manager projects for deployment and execution. DMN 1.1 and 1.3 models are currently not
supported in the DMN designer in Business Central.

2.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
A decision requirements diagram (DRD) is a visual representation of your DMN model. A DRD can
represent part or all of the overall decision requirements graph (DRG) for the DMN model. DRDs trace
business decisions using decision nodes, business knowledge models, sources of business knowledge,
input data, and decision services.

The following table summarizes the components in a DRD:

Table 2.1. DRD components

18

https://www.omg.org/spec/DMN
https://www.omg.org/spec/DMN

Component

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Description Notation

Elements

Requirement
connectors

Decision

Business
knowledge model

Knowledge source

Input data

Decision service

Information
requirement

Knowledge
requirement

Authority
requirement

Node where one or more input elements
determine an output based on defined Decision
decision logic.

Reusable function with one or more Busi
decision elements. Decisions that have krmﬁ‘
the same logic but depend on different e
sub-input data or sub-decisions use

business knowledge models to determine
which procedure to follow.

External authorities, documents,

: . Knowledge
committees, or policies that regulate a source
decision or business knowledge model.

Knowledge sources are references to
real-world factors rather than executable
business rules.

Information used in a decision node or a
business knowledge model. Input data
usually includes business-level concepts

or objects relevant to the business, such
as loan applicant data used in a lending
strategy.

Top-level decision containing a set of T)
.. . . Decision service
reusable decisions published as a service

for invocation. A decision service can be L—J

invoked from an external application or a
BPMN business process.

Connection from an input data node or
decision node to another decision node
that requires the information.

Connection from a business knowledge ~ ====== -—3
model to a decision node or to another

business knowledge model that invokes

the decision logic.

Connection from an input data node or a i]
decision node to a dependent knowledge

source or from a knowledge source to a

decision node, business knowledge

model, or another knowledge source.

19

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Description Notation

Artifacts Text annotation Explanatory note associated with an input
data node, decision node, business m"“
knowledge model, or knowledge source.
Association Connection from an input datanode, -« - - - - -+ - -
decision node, business knowledge
model, or knowledge source to a text
annotation.
The following table summarizes the permitted connectors between DRD elements:
Table 2.2. DRD connector rules
Starts from Connects to Connection type Example
Decision Decision Information
requirement Decision |——p» Decision
Business Decision Knowledge
Busi
knowledge model requirement k < -----2 Decision

Business Bus) B
knowledge model krﬁa krﬁ.

Decision service Decision Knowledge rD i | 1
. ecision service | _ _ _ _ -
requirement > Decision

NN

Business Sl Busi
Decision service |.____: k
knowledge model |] &
Input data Decision Information
requirement Decision

20

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Starts from Connects to Connection type Example
Knowledge source Authorit
g | y ------ meuz.
requirement source

Knowledge source Decision Authority
requirement %ﬂ """ Decision
Business Knowled Busi
knowledge model suumi. """ krﬁ‘
K led e led Knowled
nowledge sourc ge |
source source
Decision Text annotation Association
Decision ... annotation
Business Busi
Text
knowledge model krﬁ‘ """" annotation

Knowledge source
Knowled Text
— “‘.
Input data
Text

The following example DRD illustrates some of these DMN components in practice:

21

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 2.1. Example DRD: Loan prequalification

quul'fﬁlhcaﬂun

£
5

2

Fl

Totes [Notes

Applicant -‘;L\c'tﬁa‘f;h i

The following example DRD illustrates DMN components that are part of a reusable decision service:

Figure 2.2. Example DRD: Phone call handling as a decision service

/ Call can be handled \

Call conditions
satisfied
Suitable
Sttt office
A
Banned
phone — s banned Is office open
numbers

-] r

1 nzmggr] ' Office , tlncomingcall ,

In a DMN decision service node, the decision nodes in the bottom segment incorporate input data from
outside of the decision service to arrive at a final decision in the top segment of the decision service
node. The resulting top-level decisions from the decision service are then implemented in any
subsequent decisions or business knowledge requirements of the DMN model. You can reuse DMN
decision services in other DMN models to apply the same decision logic with different input data and
different outgoing connections.

2.3. RULE EXPRESSIONS IN FEEL

Friendly Enough Expression Language (FEEL) is an expression language defined by the Object
Management Group (OMG) DMN specification. FEEL expressions define the logic of a decision in a
DMN model. FEEL is designed to facilitate both decision modeling and execution by assigning
semantics to the decision model constructs. FEEL expressions in decision requirements diagrams
(DRDs) occupy table cells in boxed expressions for decision nodes and business knowledge models.

22

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

For more information about FEEL in DMN, see the OMG Decision Model and Notation specification.

2.3.1. Data typesin FEEL

Friendly Enough Expression Language (FEEL) supports the following data types:
® Numbers
® Strings
® Boolean values
® Dates
® Time
® Date and time
® Days and time duration
® Years and months duration
® Functions
® Contexts
® Ranges (orintervals)

® |sts

NOTE

The DMN specification currently does not provide an explicit way of declaring a variable
as a function, context, range, or list, but Red Hat Decision Manager extends the DMN
built-in types to support variables of these types.

The following list describes each data type:

Numbers

Numbers in FEEL are based on the [EEE 754-2008 Decimal 128 format, with 34 digits of precision.
Internally, numbers are represented in Java as BigDecimals with MathContext DECIMAL128. FEEL
supports only one number data type, so the same type is used to represent both integers and
floating point numbers.

FEEL numbers use a dot (.) as a decimal separator. FEEL does not support -INF, +INF, or NaN. FEEL
uses null to represent invalid numbers.

Red Hat Decision Manager extends the DMN specification and supports additional number
notations:

® Scientific: You can use scientific notation with the suffix e<exps> or E<exps. For example,
1.2e3 is the same as writing the expression 1.2*10**3, but is a literal instead of an expression.

® Hexadecimal: You can use hexadecimal numbers with the prefix 0x. For example, 0xff is the

same as the decimal number 255. Both uppercase and lowercase letters are supported. For
example, OXFF is the same as Oxff.

23

https://www.omg.org/spec/DMN
http://ieeexplore.ieee.org/document/4610935/
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

e Type suffixes: You can use the type suffixes f, F, d, D, I, and L. These suffixes are ignored.

Strings

Strings in FEEL are any sequence of characters delimited by double quotation marks.

Example

I "John Doe"

Boolean values

FEEL uses three-valued boolean logic, so a boolean logic expression may have values true, false, or
null.

Dates

Date literals are not supported in FEEL, but you can use the built-in date() function to construct date
values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The formatis "YYYY-MM-DD" where YYYY is the year with four digits, MM is the number
of the month with two digits, and DD is the number of the day.

Example:

I date("2017-06-23")

Date objects have time equal to "00:00:00", which is midnight. The dates are considered to be local,
without a timezone.

Time

Time literals are not supported in FEEL, but you can use the built-in time() function to construct time
values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "hh:mm:ss[.uuu][(+-)hh:mm]" where hh s the hour of the day (from 00 to
23), mm is the minutes in the hour, and ssis the number of seconds in the minute. Optionally, the
string may define the number of milliseconds (uuu) within the second and contain a positive (+) or
negative () offset from UTC time to define its timezone. Instead of using an offset, you can use the
letter z to represent the UTC time, which is the same as an offset of -00:00. If no offset is defined,
the time is considered to be local.

Examples:

time("04:25:12")

time("14:10:00+02:00")
time("22:35:40.345-05:00")
time("15:00:30z")

Time values that define an offset or a timezone cannot be compared to local times that do not define
an offset or a timezone.

Date and time

24

Date and time literals are not supported in FEEL, but you can use the built-in date and time()
function to construct date and time values. Date and time strings in FEEL follow the format defined
in the XML Schema Part 2: Datatypes document. The format is "<date>T<time>", where <date> and
<time> follow the prescribed XML schema formatting, conjoined by T.

Examples:

I date and time("2017-10-22T723:59:00")

https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#dateTime

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

date and time("2017-06-13T14:10:00+02:00")
date and time("2017-02-05T722:35:40.345-05:00")
date and time("2017-06-13T15:00:30z")

Date and time values that define an offset or a timezone cannot be compared to local date and time
values that do not define an offset or a timezone.

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dateTime as a synonym of date and time.

Days and time duration

Days and time duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow
the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days,
hours, minutes and seconds. Months and years are not supported.

Examples:

duration("P1DT23H12M30S")
duration("P23D")

duration("PT12H")

duration("PT35M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dayTimeDuration as a synonym of days and time
duration.

Years and months duration

Years and months duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Years and months duration strings in FEEL
follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only
years and months. Days, hours, minutes, or seconds are not supported.

Examples:

duration
duration
duration
duration

"P3Y5M")
"P2Y")
"P1OM")
"P25M")

P —

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword yearMonthDuration as a synonym of years and months
duration.

Functions

25

https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#duration

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

FEEL has function literals (or anonymous functions) that you can use to create functions. The DMN
specification currently does not provide an explicit way of declaring a variable as a function, but Red
Hat Decision Manager extends the DMN built-in types to support variables of functions.

Example:

I function(a,b)a +b

In this example, the FEEL expression creates a function that adds the parameters a and b and
returns the result.

Contexts

FEEL has context literals that you can use to create contexts. A contextin FEEL is a list of key and
value pairs, similar to maps in languages like Java. The DMN specification currently does not provide
an explicit way of declaring a variable as a context, but Red Hat Decision Manager extends the DMN
built-in types to support variables of contexts.

Example:

I {x:5,y:3}

In this example, the expression creates a context with two entries, X and y, representing a coordinate
in a chart.

In DMN 1.2, another way to create contexts is to create an item definition that contains the list of
keys as attributes, and then declare the variable as having that item definition type.

The Red Hat Decision Manager DMN API supports DMN ItemDefinition structural types in a
DMNContext represented in two ways:

e User-defined Java type: Must be a valid JavaBeans object defining properties and getters
for each of the components in the DMN ItemDefinition. If necessary, you can also use the
@FEELProperty annotation for those getters representing a component name which would
result in an invalid Java identifier.

e java.util.Map interface: The map needs to define the appropriate entries, with the keys
corresponding to the component name in the DMN ItemDefinition.

Ranges (or intervals)

26

FEEL has range literals that you can use to create ranges or intervals. A range in FEEL is a value that
defines a lower and an upper bound, where either can be open or closed. The DMN specification
currently does not provide an explicit way of declaring a variable as a range, but Red Hat Decision
Manager extends the DMN built-in types to support variables of ranges.

The syntax of a range is defined in the following formats:

range := interval_start endpoint '.." endpoint interval_end
interval_start := open_start | closed_start
open_start ="("|"T

closed start =T
interval_end :=open_end | closed_end

open_end =0T
closed_end =7
endpoint = expression

The expression for the endpoint must return a comparable value, and the lower bound endpoint
must be lower than the upper bound endpoint.

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

For example, the following literal expression defines an interval between 1 and 10, including the
boundaries (a closed interval on both endpoints):

I [1..10]

The following literal expression defines an interval between 1hour and 12 hours, including the lower
boundary (a closed interval), but excluding the upper boundary (an open interval):

I [duration("PT1H") .. duration("PT12H"))

You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal
expressions. For example, the following literal expression returns true if the value of a variable xis
between 0 and 100:

I xin[1..100]

Lists

FEEL has list literals that you can use to create lists of items. A listin FEEL is represented by a
comma-separated list of values enclosed in square brackets. The DMN specification currently does
not provide an explicit way of declaring a variable as a list, but Red Hat Decision Manager extends
the DMN built-in types to support variables of lists.

Example:

I [2,3,4,5]

All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be
accessed by index, where the first element is 1. Negative indexes can access elements starting from
the end of the list so that -1 is the last element.

For example, the following expression returns the second element of a list x:

I x[2]

The following expression returns the second-to-last element of a list x:

I X[-2]

Elements in a list can also be counted by the function count, which uses the list of elements as the
parameter.

For example, the following expression returns 4:

I count([2, 3,4,5]))

2.3.2. Built-in functions in FEEL

To promote interoperability with other platforms and systems, Friendly Enough Expression Language
(FEEL) includes a library of built-in functions. The built-in FEEL functions are implemented in the
Drools Decision Model and Notation (DMN) engine so that you can use the functions in your DMN
decision services.

27

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

The following sections describe each built-in FEEL function, listed in the format NAME(PARAMETERS
). For more information about FEEL functions in DMN, see the OMG Decision Model and Notation
specification.

2.3.2.1. Conversion functions

The following functions support conversion between values of different types. Some of these functions
use specific string formats, such as the following examples:

e date string: Follows the format defined in the XML Schema Part 2: Datatypes document, such
as 2020-06-01

® time string: Follows one of the following formats:
o Format defined in the XML Schema Part 2: Datatypes document, such as 23:59:00z

o Format for a local time defined by ISO 8601 followed by @ and an IANA Timezone, such as
00:01:00@Etc/UTC

e date time string: Follows the format of a date string followed by T and a time string, such as
2012-12-25T11:00:00Z

e duration string: Follows the format of days and time duration and years and months
duration defined in the XQuery 1.0 and XPath 2.0 Data Model , such as P1Y2M

date(from) -using date

Converts from to a date value.

Table 2.3. Parameters

Parameter Type Format
from string date string
Example

I date("2012-12-25") - date("2012-12-24") = duration("P1D")

date(from) -using date and time

Converts from to a date value and sets time components to null.

Table 2.4. Parameters

Parameter Type

from date and time

Example

I date(date and time("2012-12-25T11:00:00Z")) = date("2012-12-25")

28

https://www.omg.org/spec/DMN
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xpath-datamodel/#types

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

date(year, month, day)
Produces a date from the specified year, month, and day values.

Table 2.5. Parameters

Parameter Type

year number

month number

day number
Example

I date(2012, 12, 25) = date("2012-12-25")

date and time(date, time)
Produces a date and time from the specified date and ignores any time components and the
specified time.

Table 2.6. Parameters

Parameter Type
date date ordate and time
time time

Example

I date and time ("2012-12-24T23:59:00") = date and time(date("2012-12-24"), time("23:59:00"))

date and time(from)
Produces a date and time from the specified string.

Table 2.7. Parameters

Parameter Type Format
from string date time string
Example

date and time("2012-12-24T23:59:00") + duration("PT1M") = date and time("2012-12-
25T00:00:00")

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

time(from)

Produces a time from the specified string.

Table 2.8. Parameters

Parameter Type Format
from string time string
Example

time("23:59:00z") + duration("PT2M") = time("00:01:00@Etc/UTC")

time(from)

Produces a time from the specified parameter and ignores any date components.

Table 2.9. Parameters

Parameter Type
from time ordate and time
Example

I time(date and time("2012-12-25T11:00:00Z")) = time("11:00:00Z")

time(hour, minute, second, offset?)

Produces a time from the specified hour, minute, and second component values.

Table 2.10. Parameters

Parameter Type

hour number

minute number

second number

offset (Optional) days and time duration or null
Example

time("23:59:00z") = time(23, 59, 0, duration("PTOH"))

30

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

number(from, grouping separator, decimal separator)

Converts from to a number using the specified separators.

Table 2.11. Parameters

from string representing a valid number

grouping separator Space (), comma (,), period (.), or null

decimal separator Same types as grouping separator, but the values cannot match
Example
I number("1 000,0"," ", ",") = number("1,000.0",",", ".")

string(from)

Provides a string representation of the specified parameter.

Table 2.12. Parameters

Parameter Type

from Non-null value

Examples

string(1.1)="1.1"
string(null) = null

duration(from)

Converts from to a days and time duration value or years and months duration value.

Table 2.13. Parameters

Parameter Type Format
from string duration string
Examples

date and time("2012-12-24T23:59:00") - date and time("2012-12-22T03:45:00") = duration(
"P2DT20H14M")
duration("P2Y2M") = duration("P26M")

31

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

years and months duration(from, to)

Calculates the years and months duration between the two specified parameters.

Table 2.14. Parameters

Parameter Type

from date ordate and time
to date ordate and time
Example

I years and months duration(date("2011-12-22"), date("2013-08-24")) = duration("P1Y8M")

2.3.2.2. Boolean functions

The following functions support Boolean operations.

not(negand)
Performs the logical negation of the negand operand.

Table 2.15. Parameters

Parameter Type

negand boolean

Examples

not(true) = false
not(null) = null

2.3.2.3. String functions

The following functions support string operations.

NOTE

In FEEL, Unicode characters are counted based on their code points.

substring(string, start position, length?)

Returns the substring from the start position for the specified length. The first character is at
position value 1.

Table 2.16. Parameters

32

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Parameter Type

string string
start position number
length (Optional) number
Examples
substring("testing",3) = "sting"
substring("testing",3,3) = "sti"
substring("testing", -2, 1) ="n"
substring("\UO1F40Eab", 2) = "ab"

NOTE

L

In FEEL, the string literal "\UO1F40Eab" is the ab string (horse symbol followed by a
4 and b).

string length(string)
Calculates the length of the specified string.

Table 2.17. Parameters

Parameter Type

string string

Examples
string length("tes") = 3
string length("UO1F40Eab") = 3

upper case(string)

Produces an uppercase version of the specified string.

Table 2.18. Parameters

Parameter Type

string string

Example

I upper case("aBc4") = "ABC4"

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

lower case(string)

Produces a lowercase version of the specified string.

Table 2.19. Parameters

Parameter Type

string string

Example
I lower case("aBc4") = "abc4"

substring before(string, match)

Calculates the substring before the match.

Table 2.20. Parameters

Parameter Type

string string
match string
Examples

substring before("testing”, "ing") = "test"
substring before("testing", "xyz") ="

substring after(string, match)

Calculates the substring after the match.

Table 2.21. Parameters

Parameter Type

string string
match string
Examples

substring after("testing", "test") = "ing"
Substrlng after(llll, ||a||) —_m

34

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

replace(input, pattern, replacement, flags?)

Calculates the regular expression replacement.

Table 2.22. Parameters

Parameter Type

input string
pattern string
replacement string
flags (Optional) string
NOTE
) This function uses regular expression parameters as defined in XQuery 1.0 and XPath
p 2.0 Functions and Operators.

Example
I replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") = "[1=ab][2=]cd"

contains(string, match)

Returns true if the string contains the match.

Table 2.23. Parameters

Parameter Type

string string
match string
Example

I contains("testing”, "to") = false

starts with(string, match)

Returns true if the string starts with the match

Table 2.24. Parameters

35

https://www.w3.org/TR/xquery-operators/#regex-syntax

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Parameter Type

string string
match string
Example

I starts with("testing", "te") = true

ends with(string, match)

Returns true if the string ends with the match.

Table 2.25. Parameters

Parameter Type

string string
match string
Example

I ends with("testing”, "g") = true

matches(input, pattern, flags?)

Returns true if the input matches the regular expression.

Table 2.26. Parameters

Parameter Type

input string
pattern string
flags (Optional) string
NOTE
2 This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.
Example

I matches("teeesting", "Me*sting") = true

36

https://www.w3.org/TR/xquery-operators/#regex-syntax

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

split(string, delimiter)
Returns a list of the original string and splits it at the delimiter regular expression pattern.

Table 2.27. Parameters

Parameter Type

string string
delimiter string for a regular expression pattern
NOTE
» This function uses regular expression parameters as defined in XQuery 1.0 and XPath

2.0 Functions and Operators.

Examples

split("John Doe", "\s") = ["John", "Doe"]
Split("a;b;c;;ll’ ";ll) = [llall,llbll,"cll,llll,ll"]
2.3.2.4. List functions

The following functions support list operations.

NOTE

In FEEL, the index of the first elementin alistis 1. The index of the last element in a list
can be identified as -1.

list contains(list, element)

Returns true if the list contains the element.

Table 2.28. Parameters

Parameter Type

list list
element Any type, including null
Example

I list contains([1,2,3], 2) = true

count(list)

Counts the elements in the list.

37

https://www.w3.org/TR/xquery-operators/#regex-syntax

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Table 2.29. Parameters

Parameter

list list

Examples

count([1,2,3]) =3
count([])=0
count([1,[2,3]]) =2

min(list)

Returns the minimum comparable element in the list.

Table 2.30. Parameters

Parameter Type

list list

Alternative signature

I min(e, e2, ...,eN)

max(list)

Returns the maximum comparable element in the list.

Table 2.31. Parameters

Parameter Type

list list

Alternative signature
I max(el, e2, ...,eN)
Examples

max(1,2,3) =3
max([]) = null

38

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

sum(list)

Returns the sum of the numbers in the list.

Table 2.32. Parameters

Parameter Type

list list of number elements

Alternative signature

I sum(ni, n2,....,nN)

Examples
sum([1,2,3]) =6
sum(1,2,3)=6
sum(1)=1
sum([]) = null

mean(list)

Calculates the average (arithmetic mean) of the elements in the list.

Table 2.33. Parameters

Parameter Type

list list of number elements

Alternative signature

I mean(ni, n2, ..., nN)

all(list)

Returns true if all elements in the list are true.

Table 2.34. Parameters

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Parameter Type

list list ofboolean elements

Alternative signature
I all(b1, b2, ..., bN)
Examples

all([false,null,true]) = false
all(true) = true

all([true]) = true

all([]) = true

all(0) =null

any(list)

Returns true if any element in the list is true.

Table 2.35. Parameters

Parameter Type

list list ofboolean elements

Alternative signature
I any(b1,b2,...,bN)
Examples

any([false,null,true]) = true
any(false) = false
(
(

any([]) = false
any(0) = null

sublist(list, start position, length?)

40

Returns the sublist from the start position, limited to the length elements.

Table 2.36. Parameters

Parameter Type

list list

start position number

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Parameter Type

length (Optional) number

Example

sublist([4,5,6], 1, 2) = [4,5]

append(list, item)

Creates a list that is appended to the item or items.

Table 2.37. Parameters

Parameter Type

list list
item Any type
Example

append([1],2,3) =[1,2,3]

concatenate(list)

Creates a list that is the result of the concatenated lists.

Table 2.38. Parameters

Parameter

list list

Example

concatenate([1,2],[3]) = [1,2,3]

insert before(list, position, newltem)

Creates a list with the newltem inserted at the specified position.

Table 2.39. Parameters

Parameter Type

list list

position number

41

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Parameter Type

newltem Any type

Example

I insert before([1,3],1,2) =[2,1,3]

remove(list, position)

Creates a list with the removed element excluded from the specified position.

Table 2.40. Parameters

Parameter Type

list list
position number
Example

remove([1,2,3],2) =[1,3]

reverse(list)

Returns a reversed list.

Table 2.41. Parameters

Parameter

list list

Example

I reverse([1,2,3]) = [3,2,1]

index of(list, match)

Returns indexes matching the element.

Parameters

e list of type list
e match of any type

Table 2.42. Parameters

42

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Parameter Type

list list
match Any type
Example

index of([1,2,3,2],2) = [2,4]

union(list)

Returns a list of all the elements from multiple lists and excludes duplicates.

Table 2.43. Parameters

Parameter Type

list list

Example

union([1,2],[2,3]) = [1,2,3]

distinct values(list)

Returns a list of elements from a single list and excludes duplicates.

Table 2.44. Parameters

Parameter

list list

Example

I distinct values([1,2,3,2,1]) = [1,2,3]

flatten(list)

Returns a flattened list.

Table 2.45. Parameters

Parameter

list list

Example

AN

3

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

I flatten([[1,2],[[3]], 4]) = [1,2,3,4]

product(list)

Returns the product of the numbers in the list.

Table 2.46. Parameters

Parameter Type

list list of number elements

Alternative signature

I product(n1, n2, ..., nN)

Examples
product([2, 3, 4]) = 24
product(2, 3,4) =24

median(list)
Returns the median of the numbers in the list. If the number of elements is odd, the result is the
middle element. If the number of elements is even, the result is the average of the two middle
elements.

Table 2.47. Parameters

Parameter Type

list list of number elements

Alternative signature
I median(n1, n2, ..., nN)

Examples

median(
median(

stddev(list)

Returns the standard deviation of the numbers in the list.

Table 2.48. Parameters

44

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Parameter Type

list list of number elements

Alternative signature

stddev(n1, n2, ..., nN)

Examples
stddev(2, 4,7,5) =2.081665999466132735282297706979931
stddev([47]) = null
stddev(47) = null
stddev([]) = null
mode(list)

Returns the mode of the numbers in the list. If multiple elements are returned, the numbers are
sorted in ascending order.

Table 2.49. Parameters

Parameter Type

list list of number elements

Alternative signature

I mode(n1, n2, ..., nN)

Examples
mode(6, 3,9, 6,6) = [6]
mode([6,1,9,6,1]) =[1, 6]
mode([]) =[]

2.3.2.5. Numeric functions

The following functions support number operations.

decimal(n, scale)

Returns a number with the specified scale.

Table 2.50. Parameters

Parameter

n number

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Parameter Type

scale number in the range [-6111..6176]

Examples

decimal(1/3,2)
decimal(1.5,0)
decimal(2.5,0)

.33
2
2

floor(n)

Returns the greatest integer that is less than or equal to the specified number.

Table 2.51. Parameters

Parameter

n number

Examples

floor(1.5) =1
floor(-1.5)=-2

ceiling(n)

Returns the smallest integer that is greater than or equal to the specified number.

Table 2.52. Parameters

Parameter Type

n number

Examples

ceiling(1.5) =2
ceiling(-1.5) = -1

abs(n)

Returns the absolute value.

Table 2.53. Parameters

Parameter Type

n number, days and time duration, oryears and months duration

46

Examples

abs
abs
abs
abs

o~ o~~~

modulo(dividend, divisor)

10) =10
-10) =10
@"PT5H") = @"PT5H"
@"-PT5H") = @"PT5H"

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Returns the remainder of the division of the dividend by the divisor. If either the dividend or divisor is
negative, the result is of the same sign as the divisor.

NOTE

L

This function is also expressed as modulo(dividend, divisor) = dividend -

Table 2.54. Parameters

divisor*floor(dividen d/divisor).

Parameter Type

dividend

divisor

Examples

modulo
modulo
modulo
modulo
modulo
modulo
modulo
modulo

—_— e~~~ o~~~

sqrt(number)

Returns the square root of the specified number.

Table 2.55. Parameters

12,5)
-12,5)
12,-5)
-12,-5)= -2
10.1,4.5)=1.1
-10.1,4.5)= 3.4
10.1, -4.5)= -3.4
-10.1, -4.5)= -1.1

number

number

Parameter Type

n

Example

sqri(16) =4

number

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

log(number)

Returns the logarithm of the specified number.

Table 2.56. Parameters

Parameter Type
n number
Example

I decimal(log(10),2)=2.30

exp(number)
Returns Euler's number e raised to the power of the specified number.

Table 2.57. Parameters

Parameter Type
n number
Example

I decimal(exp(5),2) = 148.41

odd(number)
Returns true if the specified number is odd.

Table 2.58. Parameters

Parameter Type

n number

Examples

odd(5) = true
odd(2) = false

even(number)

Returns true if the specified number is even.

Table 2.59. Parameters

48

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Parameter Type

n number

Examples

even(5) = false
even (2) = true

2.3.2.6. Date and time functions

The following functions support date and time operations.

is(valuel, value2)
Returns true if both values are the same element in the FEEL semantic domain.

Table 2.60. Parameters

Parameter Type

value1 Any type
value2 Any type
Examples

is(date("2012-12-25"), time("23:00:50")) = false
is(date("2012-12-25"), date("2012-12-25")) = true
is(time("23:00:502"), time("23:00:50")) = false

2.3.2.7. Range functions

The following functions support temporal ordering operations to establish relationships between single
scalar values and ranges of such values. These functions are similar to the components in the Health
Level Seven (HL7) International Clinical Quality Language (CQL) 1.4 syntax.

before()

Returns true when an element A is before an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. before(point1 point2)
b. before(point range)

c. before(range point)

https://cql.hl7.org/08-a-cqlsyntax.html

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

d. before(range1,range2)

Requirements for evaluating totrue
a. point1 < point2
b. point < range.start or (point = range.start and not(range.start included))
c. range.end < point or (range.end = point and not(range.end included))

d. rangel.end < range2.start or ((not(range1.end included) or not(range2.start included))
and range1.end = range2.start)

Examples

before(1, 10) = true

before(10, 1) = false

before(1, [1..10]) = false

before(1, (1..10]) = true

before(1, [5..10]) = true

before([1..10], 10) = false

before([1..10), 10) = true

before([1..10], 15) = true

before([1..10], [15..20]) = true

before([1..10], [10..20]) = false

before([1..10), [10..20]) = true

before([1..10], (10..20]) = true
after()

Returns true when an element A is after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. after(point1 point2)
b. after(point range)
c. after(range, point)

d. after(range1 range2)

Requirements for evaluating totrue
a. point1 > point2
b. point > range.end or (point = range.end and not(range.end included))
c. range.start > point or (range.start = point and not(range.start included))

d. range1l.start > range2.end or ((not(range1.start included) or not(range2.end included))
and range1.start = range2.end)

Examples

50

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

after(10, 5) = true
after(5,10) = false
after(12 [1..10]) = true
after(10, [1..10)) = true
after(10, [1..10]) = false
after([11..20], 12) = false
after([11..20], 10) = true
after((11..20], 11) = true
after([11..20], 11) = false
after([11..20], [1..10]) = true
after([1..10], [11..20]) = false
after([11..20], [1..11)) = true
after((11..20], [1..11]) = true
meets()

Returns true when an element A meets an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. meets(rangei, range2)

Requirements for evaluating totrue

a. rangel.end included and range2.start included and range1.end = range2.start

Examples
meets([1..5], [5..10]) = tru
meets([1..5), [5..10]) = false
meets([1..5], (5..10]) = false
meets([1..5], [6..10]) = false
met by()

Returns true when an element A is met by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. met by(range1, range2)

Requirements for evaluating totrue

a. range1l.start included and range2.end included and range1.start = range2.end

Examples
met by([5..10], [1..5]) = tru
met by([5..10], [1..5)) = false
met by((5..10], [1..5]) = false
met by([6..10], [1..5]) = false

51

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

overlaps()

Returns true when an element A overlaps an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. overlaps(range1, range2)

Requirements for evaluating totrue

a. (rangeil.end > range2.start or (rangel.end = range2.start and (range1.end included or
range2.end included))) and (range1.start < range2.end or (range1.start = range2.end
and range1.start included and range2.end included))

Examples

overlaps([1..5], [3..8]) = true
overlaps([3..8], [1..5]) = true
overlaps([1..8], [3..5]) = true
overlaps([3..5], [1..8]) = true
overlaps([1..5], [6..8]) = false
overlaps([6..8], [1..5]) = false
overlaps([1..5], [5..8]) = true
overlaps([1..5], (5..8]) = false
overlaps([1..5), [5..8]) = false
overlaps([1..5), (5..8]) = false
overlaps([5..8], [1..5]) = tru
overlaps((5..8], [1..5]) = false
overlaps([5..8], [1..5)) = false
overlaps((5..8], [1..5)) = false

overlaps before()

Returns true when an element A overlaps before an element B and when the relevant requirements
for evaluating to true are also met.

Signatures

a. overlaps before(range1 range2)

Requirements for evaluating totrue

a. (rangei.start < range2.start or (rangei.start = range2.start and range1.start included
and range2.start included)) and (range1l.end > range2.start or (range1.end =
range2.start and rangeil.end included and range2.start included)) and (rangei.end <
range2.end or (rangel.end = range2.end and (not(range1.end included) or range2.end
included)))

Examples

52

overlaps before
overlaps before
overlaps before
overlaps before

— o~~~

[1..5],[3..8
6..8
5.8
[1..5], (5..8

[1..5], [
[1..5], [

1)
1)
1)
1)

alse

alse

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

overlaps before([1..5), [5..8]) = false
overlaps before([1..5), (1..5]) = true
overlaps before([1..5], (1..5]) = true
overlaps before([1..5), [1..5]) = false
overlaps before([1..5], [1..5]) = false

overlaps after()

Returns true when an element A overlaps after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. overlaps after(range1 range2)

Requirements for evaluating totrue

a. (range2.start < range1.start or (range2.start = range1.start and range2.start included
and not(range1.start included))) and (range2.end > range1.start or (range2.end =
rangei.start and range2.end included and range1.start included)) and (range2.end <
range1.end or (range2.end = rangei.end and (not(range2.end included) or range1.end

included)))
Examples
overlaps after([3..8], [1..5])= true
overlaps after([6..8], [1..5])= false
overlaps after([5..8], [1..5])= true
overlaps after((5..8], [1..5])= false
overlaps after([5..8], [1..5))= false
overlaps after((1..5], [1..5))= true
overlaps after((1..5], [1..5])= true
overlaps after([1..5], [1..5))= false
overlaps after([1..5], [1..5])= false
overlaps after((1..5), [1..5])= false
overlaps after((1..5], [1..6])= false
overlaps after((1..5], (1..5])= false
overlaps after((1..5], [2..5])= false

finishes()

Returns true when an element A finishes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. finishes(point, range)

b. finishes(range1, range2)

Requirements for evaluating totrue

a. range.end included and range.end = point

53

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

b. range1.end included = range2.end included and range1.end = range2.end and (
range1l.start > range2.start or (range1.start = range2.start and (not(range1.start
included) or range2.start included)))

Examples
finishes(10, [1..10]) = true
finishes(10, [1..10)) = false
finishes([5..10], [1..10]) = true
finishes([5..10), [1 ..10]) = false
finishes([5..10), [1..10)) = true
finishes([1..10], [1..10]) = true
finishes((1..10], [1..10]) = true
finished by()

Returns true when an element A is finished by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. finished by(range, point)

b. finished by(range1 range2)

Requirements for evaluating totrue

a. range.end included and range.end = point

b. rangei.end included = range2.end included and rangei.end = range2.end and (
range1l.start < range2.start or (range1.start = range2.start and (range1.start included or
not(range2.start included))))

Examples
finished by([1..10], 10) = true
finished by([1..10), 10) = false
finished by([1..10], [5..10]) = true
finished by([1..10], [5..10)) = false
finished by([1..10), [5..10)) = true
finished by([1..10], [1..10]) = true
finished by([1..10], (1..10]) = true
includes()

Returns true when an element A includes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. includes(range, point)

b. includes(range1, range2)

Requirements for evaluating totrue

54

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range1l.start < range2.start or (range1.start = range2.start and (range1.start included
or not(range2.start included)))) and (range1.end > range2.end or (rangei.end =
range2.end and (range1.end included or not(range2.end included))))

Examples
includes([1..10], 5) = true
includes([1..10], 12) = false
includes([1..10], 1) = true
includes([1..10], 10) = true
includes((1..10], 1) = false
includes([1..10), 10) = false
includes([1..10], [4..6]) = true
includes([1..10], [1..5]) = true
includes((1..10], (1..5]) = true
includes([1..10], (1..10)) = true
includes([1..10), [5..10)) = true
includes([1..10], [1..10)) = tru
includes([1..10], (1..10]) =tru
includes([1..10], [1..10]) = tru
during()

Returns true when an element A is during an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. during(point, range)

b. during(range1 range2)

Requirements for evaluating totrue

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range2.start < rangei.start or (range2.start = range1.start and (range2.start included
or not(range1.start included)))) and (range2.end > range1.end or (range2.end =
rangei.end and (range2.end included or not(range1.end included))))

Examples
during(5, [1..10]) = true
during(12, [1..10]) = false
during(1, [1..10]) = true
during 10 [1..10]) = true

(
(
(
(
during(1, (1..10]) = false
dur|ng(10 [1..10)) = false
(
(
(

during([4..6], [1..10]) = true
during([1..5], [1..10]) = true
during((1..5], (1..10]) = true

55

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

during((1..10), [1..10]) = true

during([5..10), [1..10)) = true

during([1..10), [1..10]) = true

during((1..10], [1..10]) = true

during([1..10], [1..10]) = true
starts()

Returns true when an element A starts an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. starts(point, range)

b. starts(range1l, range2)

Requirements for evaluating totrue

a. range.start = point and range.start included

b. range1l.start = range2.start and range1.start included = range2.start included and (
rangel.end < range2.end or (rangei.end = range2.end and (not(range1.end included)
or range2.end included)))

Examples

starts(1, [1..10]) = true
)

(

starts(1, (1..10]) = false
starts(2, [1..10]) = false
starts([1..5], [1..10]) = true
starts((1..5], (1..10]) = true
starts((1..5], [1..10]) = false
starts([1..5], (1..10]) = false
starts([1..10], [1..10]) = true
starts([1..10), [1..10]) = true
starts((1..10), (1..10)) = true

started by()

Returns true when an element A is started by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. started by(range, point)

b. started by(rangei, range2)

Requirements for evaluating totrue

a. range.start = point and range.start included

56

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

b. range1l.start = range2.start and range1.start included = range2.start included and (
range2.end < range1.end or (range2.end = rangei.end and (not(range2.end included)
or rangel.end included)))

Examples
started by([1..10], 1) = true
started by((1..10], 1) = false
started by([1..10], 2) = false
started by([1..10], [1..5]) = true
started by((1..10], (1..5]) = true
started by([1..10], (1..5]) = false
started by((1..10], [1..5]) = false
started by([1..10], [1..10]) = true
started by([1..10], [1..10)) = true
started by((1..10), (1..10)) = true
coincides()

Returns true when an element A coincides with an element B and when the relevant requirements
for evaluating to true are also met.

Signatures
a. coincides(point1, point2)

b. coincides(range1, range2)

Requirements for evaluating totrue

a. point1 = point2

b. range1l.start = range2.start and range1.start included = range2.start included and
rangel.end = range2.end and range1.end included = range2.end included

Examples
coincides(5,5) = true
coincides(3, 4) = false
coincides([1..5], [1..5]) = true
coincides((1..5), [1..5]) = false
coincides([1..5], [2..6]) = false

2.3.2.8. Temporal functions
The following functions support general temporal operations.

day of year(date)

Returns the Gregorian number of the day of the year.

Table 2.61. Parameters

57

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Parameter Type

date date ordate and time

Example

I day of year(date(2019, 9, 17)) = 260

day of week(date)

Returns the Gregorian day of the week: "Monday", "Tuesday”, "Wednesday", "Thursday",
"Friday", "Saturday", or "Sunday".

Table 2.62. Parameters

Parameter Type

date date ordate and time

Example

I day of week(date(2019, 9, 17)) = "Tuesday"

month of year(date)

Returns the Gregorian month of the year: "January”, "February", "March”, "April”, "May", "June",
"July", "August”, "September”, "October”, "November", or "December".

Table 2.63. Parameters

Parameter Type

date date ordate and time

Example

month of year(date(2019, 9, 17)) = "September"

month of year(date)
Returns the Gregorian week of the year as defined by ISO 8601.

Table 2.64. Parameters

Parameter Type

date date ordate and time

Examples

58

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

week of year(date
week of year(date
week of year(date

(2019, 9, 1

(

(
week of year(date

(

(

7)) =38

2003, 12, 29)) =

2004, 1,4)) = 1
)) 53
))
))

2005, 1, 1
2005, 1, 3
2005, 1,9

week of year(date
week of year(date

P

2.3.2.9. Sort functions
The following functions support sorting operations.

sort(list, precedes)

Returns a list of the same elements but ordered according to the sorting function.

Table 2.65. Parameters

Parameter Type

list list
precedes function
Example

sort(list: [3,1,4,5,2], precedes: function(x,y) x <y) = [1,2,3,4,5]

2.3.2.10. Context functions
The following functions support context operations.

get value(m, key)

Returns the value from the context for the specified entry key.

Table 2.66. Parameters

Parameter Type

m context
key string
Examples

get value({key1 : "value1"}, "key1") = "value1"
get value({key1 : "value1"}, "unexistent-key") = null

get entries(m)

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Returns a list of key-value pairs for the specified context.

Table 2.67. Parameters

Parameter Type

m context

Example

get entries({key1 : "value1", key2 : "value2"}) = [{ key : "key1", value : "valuei" }, {key : "key2",
value : "value2"} |

2.3.3. Variable and function names in FEEL

Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports
spaces and a few special characters as part of variable and function names. A FEEL name must start with
aletter, ?, or _ element. The unicode letter characters are also allowed. Variable names cannot start with
a language keyword, such as and, true, or every. The remaining characters in a variable name can be any
of the starting characters, as well as digits, white spaces, and special characters such as +,-,/,% ', and ..

For example, the following names are all valid FEEL names:
® Age
® Birth Date
® Flight 234 pre-check procedure
Several limitations apply to variable and function names in FEEL:

Ambiguity

The use of spaces, keywords, and other special characters as part of names can make FEEL
ambiguous. The ambiguities are resolved in the context of the expression, matching names from left
to right. The parser resolves the variable name as the longest name matched in scope. You can use (
) to disambiguate names if necessary.

Spaces in names

The DMN specification limits the use of spaces in FEEL names. According to the DMN specification,
names can contain multiple spaces but not two consecutive spaces.

In order to make the language easier to use and avoid common errors due to spaces, Red Hat
Decision Manager removes the limitation on the use of consecutive spaces. Red Hat Decision
Manager supports variable names with any number of consecutive spaces, but normalizes them into
a single space. For example, the variable references First Name with one space and First Name with
two spaces are both acceptable in Red Hat Decision Manager.

Red Hat Decision Manager also normalizes the use of other white spaces, like the non-breakable
white space that is common in web pages, tabs, and line breaks. From a Red Hat Decision Manager

FEEL engine perspective, all of these characters are normalized into a single white space before
processing.

The keyword in

60

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

The keyword in is the only keyword in the language that cannot be used as part of a variable name.
Although the specifications allow the use of keywords in the middle of variable names, the use of in
in variable names conflicts with the grammar definition of for, every and some expression
constructs.

2.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic
of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

The following are the types of DMN boxed expressions:
® Decision tables
® |iteral expressions
® Contexts
® Relations
® Functions
® |nvocations

® | sts

’ NOTE

Red Hat Decision Manager does not provide boxed list expressions in Business Central,
but supports a FEEL list data type that you can use in boxed literal expressions. For
more information about the list data type and other FEEL data types in Red Hat
Decision Manager, see Section 2.3.1, “Data types in FEEL".

All Friendly Enough Expression Language (FEEL) expressions that you use in your boxed expressions
must conform to the FEEL syntax requirements in the OMG Decision Model and Notation specification.

2.4.1. DMN decision tables

A decision table in DMN is a visual representation of one or more business rules in a tabular format. You
use decision tables to define rules for a decision node that applies those rules at a given pointin the
decision model. Each rule consists of a single row in the table, and includes columns that define the
conditions (input) and outcome (output) for that particular row. The definition of each row is precise
enough to derive the outcome using the values of the conditions. Input and output values can be FEEL
expressions or defined data type values.

For example, the following decision table determines credit score ratings based on a defined range of a
loan applicant’s credit score:

61

https://www.omg.org/spec/DMN

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 2.3. Decision table for credit score rating

Hit policy

Rules

Input colurmn

Decision Tabhle l

Output column

|

Credit Score.FICO
(number)

== 750

[700..750)

[650. . 700)

[600. .650)

< 608

Credit Score Rating
(Credit_Score_Rating)

"Excellent"

"Good"

"Fair"

"FPoor"

"Bad"

Input and output names

Description and data types

- ‘/alues

The following decision table determines the next step in a lending strategy for applicants depending on
applicant loan eligibility and the bureau call type:

Figure 2.4. Decision table for lending strategy

Strategy (Decision Table)
Eligibility BureauCallType Strategy -

v fstring] (string) (t5trategy) Description
"IMELIGIBLE" - "DECLINE"

1 Disregard BureauCallType when ineligible.
"ELIGIBLE" "FULL", "MINI" "BUREAU"

2
"ELIGIBLE" "MONE" "THROUGH"

3

The following decision table determines applicant qualification for a loan as the concluding decision
node in a loan prequalification decision model:

62

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Figure 2.5. Decision table for loan prequalification

Loan Pre-Qualification (pecision Table)
Loan Pre-Qualification
ot
E Credit Score Rating . Back End Ratio Front End Ratio s i Description
(Credit_Score_Rating) (Back_End_Ratio) (Front_End_Ratio) Qualification FETsam P
(string) (string)
"Poor", "Bad" - - "Mot Qualified" "Credit Score too low."
1
"Insufficient" |"Sufficient" "Not Qualified" "Debt to income ratio is too high."
2
- "Sufficient" "Insufficient" "Mot Qualified" '_'Hortga%e ﬁayment to income ratio
3 is tod Righ."
- "Insufficient" | "Insufficient" "Not Qualified" "Debt to income ratio is too high
4 AND mortgage ﬁayment to income
ratio 1s too high."
"Fair!", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,,
5 "Excellent™ prequalified for the requested loan.

Decision tables are a popular way of modeling rules and decision logic, and are used in many
methodologies (such as DMN) and implementation frameworks (such as Drools).

IMPORTANT

Red Hat Decision Manager supports both DMN decision tables and Drools-native
decision tables, but they are different types of assets with different syntax requirements
and are not interchangeable. For more information about Drools-native decision tables in
Red Hat Decision Manager, see Designing a decision service using spreadsheet decision
tables.

2.4.1.1. Hit policies in DMN decision tables

Hit policies determine how to reach an outcome when multiple rules in a decision table match the
provided input values. For example, if one rule in a decision table applies a sales discount to military
personnel and another rule applies a discount to students, then when a customer is both a student and in
the military, the decision table hit policy must indicate whether to apply one discount or the other
(Unique, First) or both discounts (Collect Sum). You specify the single character of the hit policy (U, F,
C+) in the upper-left corner of the decision table.

The following decision table hit policies are supported in DMN:
® Unique (U): Permits only one rule to match. Any overlap raises an error.

® Any (A): Permits multiple rules to match, but they must all have the same output. If multiple
matching rules do not have the same output, an error is raised.

® Priority (P): Permits multiple rules to match, with different outputs. The output that comes first
in the output values list is selected.

® First (F): Uses the first match in rule order.

® Collect (C+, C>, C<, C#):Aggregates output from multiple rules based on an aggregation
function.

o Collect (C): Aggregates values in an arbitrary list.

o Collect Sum (C+): Outputs the sum of all collected values. Values must be numeric.

63

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

o Collect Min (C<): Outputs the minimum value among the matches. The resulting values
must be comparable, such as numbers, dates, or text (lexicographic order).

o Collect Max (C>): Outputs the maximum value among the matches. The resulting values
must be comparable, such as numbers, dates or text (lexicographic order).

o Collect Count (C#): Outputs the number of matching rules.

2.4.2. Boxed literal expressions

A boxed literal expression in DMN is a literal FEEL expression as text in a table cell, typically with a
labeled column and an assigned data type. You use boxed literal expressions to define simple or
complex node logic or decision data directly in FEEL for a particular node in a decision. Literal FEEL
expressions must conform to FEEL syntax requirements in the OMG Decision Model and Notation
specification.

For example, the following boxed literal expression defines the minimum acceptable PITI calculation
(principal, interest, taxes, and insurance) in a lending decision, where acceptable rate is a variable
defined in the DMN model:

Figure 2.6. Boxed literal expression for minimum PITI value

Lender Acceptable PITI (Literal expression)

Lender Acceptable PITI
frAumber)

decimal(acceptable rate, 2)

The following boxed literal expression sorts a list of possible dating candidates (soul mates) in an online
dating application based on their score on criteria such as age, location, and interests:

Figure 2.7. Boxed literal expression for matching online dating candidates

Sorted Souls (Literal expression)

Sorted Souls
(tCandidates)

sort(Candidate Souls, function(cl, c2) cl.Score >= c2,5core)

2.4.3. Boxed context expressions

A boxed context expression in DMN is a set of variable names and values with a result value. Each name-

64

https://www.omg.org/spec/DMN

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

value pair is a context entry. You use context expressions to represent data definitions in decision logic
and set a value for a desired decision element within the DMN decision model. A value in a boxed context
expression can be a data type value or FEEL expression, or can contain a nested sub-expression of any
type, such as a decision table, a literal expression, or another context expression.

For example, the following boxed context expression defines the factors for sorting delayed passengers
in a flight-rebooking decision model, based on defined data types (tPassengerTable,
tFlightNumberList):

Figure 2.8. Boxed context expression for flight passenger waiting list

Prioritized Waiting List (Conrext)

Prioritized Waiting List
(tPassengerTable)

Cancelled Flights Flight List[Status = "cancelled"].Flight Number
(tFlightNumbert ist)

Waiting List Passenger List[list contains(Cancelled Flights, Flight Number)]
(tPassengerTable)

sort{ Waiting List, Passenger Priority)

<result>

The following boxed context expression defines the factors that determine whether a loan applicant can

meet minimum mortgage payments based on principal, interest, taxes, and insurance (PITI), represented
as a front-end ratio calculation with a sub-context expression:

Figure 2.9. Boxed context expression for front-end client PITI ratio

Front End Ratio (Context)

Front End Ratio
(Front_End_Ratio)

PITI
pmt ERe uested Product.Amount"‘%(Requested Product.Rate/100)/12))/
1 1-(1/(1+{Requested Product Rate/100)/12)**-Requested Product.Term))
fnumiber)
Client PITI tax Applicant Data.Monthly. Tax
1 (number) 2 (number)

insurance | Applicant Data.Monthly. Insurance
(number)

income Applicant Data.Monthly. Income
(number)

if client PITI <= Lender Acceptable PITI()
<resulft> then "Sufficient"
else "Insufficient"

2.4.4. Boxed relation expressions

A boxed relation expression in DMN is a traditional data table with information about given entities, listed
as rows. You use boxed relation tables to define decision data for relevant entities in a decision at a
particular node. Boxed relation expressions are similar to context expressions in that they set variable
names and values, but relation expressions contain no result value and list all variable values based on a
single defined variable in each column.

65

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

For example, the following boxed relation expression provides information about employees in an
employee rostering decision:

Figure 2.10. Boxed relation expression with employee information

Employee Information (relation)

Mame Dept Salary
{string) {string) frumber)
"John" "Sales” 100000
1
"Mary" "Finances" 120000
2

2.4.5. Boxed function expressions

A boxed function expression in DMN is a parameterized boxed expression containing a literal FEEL
expression, a nested context expression of an external JAVA or PMML function, or a nested boxed
expression of any type. By default, all business knowledge models are defined as boxed function
expressions. You use boxed function expressions to call functions on your decision logic and to define all
business knowledge models.

For example, the following boxed function expression determines airline flight capacity in a flight-
rebooking decision model:

Figure 2.11. Boxed function expression for flight capacity

Flight Capacity (function)

Flight Capacity
{boolean)

(flight, rebooked list)

flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number])

The following boxed function expression contains a basic Java function as a context expression for
determining absolute value in a decision model calculation:

66

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Figure 2.12. Boxed function expression for absolute value

Absolute jFunction)

Absolute
frumber)
]
(value)
class "Java. lang.Math"
l {(string)
method signature "abs(double)"
2 .
{(string)

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 2.13. Boxed function expression for installment calculation in business knowledge model

InstallmentCalculation (Function)

InstallmentCalculation
fnumber)

(ProductType, Rate, Term, Amount)

MonthlyFee if ProductType ="STANDARD LOAN" then 20,00

(number) else 1f ProductType ="SPECIAL LOAN" then 25.00 else null

MonthlyRepayment (Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)
fnumber)

MonthlyRepayment+MonthlyFee

The following boxed function expression uses a PMML model included in the DMN file to define the
minimum acceptable PITI calculation (principal, interest, taxes, and insurance) in a lending decision:

67

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 2.14. Boxed function expression with an included PMML model in business knowledge model

PITI ¢Function)

PITI
frumber)

(fid1, fid2, fld3)

document . .
1 (string) PITI Model
model - "
2 (string) LinReg

2.4.6. Boxed invocation expressions

A boxed invocation expression in DMN is a boxed expression that invokes a business knowledge model.
A boxed invocation expression contains the name of the business knowledge model to be invoked and a
list of parameter bindings. Each binding is represented by two boxed expressions on a row: The box on
the left contains the name of a parameter and the box on the right contains the binding expression
whose value is assigned to the parameter to evaluate the invoked business knowledge model. You use
boxed invocations to invoke at a particular decision node a business knowledge model defined in the
decision model.

For example, the following boxed invocation expression invokes a Reassign Next Passenger business
knowledge model as the concluding decision node in a flight-rebooking decision model:

68

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

Figure 2.15. Boxed invocation expression to reassign flight passengers

Rebooked Passengers (invocation)

Rebooked Passengers
(tPassengerTable)
#
Reassign Next Passenger
Waiting List Frioritized Waiting List
1
(tPassengerTable)
5 Reassigned Passengers List []
(tPassengerTabia)
3
{tFlight Table)

The following boxed invocation expression invokes an InstallmentCalculation business knowledge
model to calculate a monthly installment amount for a loan before proceeding to affordability decisions:

Figure 2.16. Boxed invocation expression for required monthly installment

RequiredMonthlyInstallment (invocation)

RequiredMonthlylnstallment
fnumber)
#
InstallmentCalculation

, ProductType RequestedProduct. ProductType
[string)

5 Rate ReguestedProduct. Rate
(number)

2 Term RequestedProduct. Term
(strig)

4 Amount ReguestedProduct. Amount
fnumber)

2.4.7. Boxed list expressions
A boxed list expression in DMN represents a FEEL list of items. You use boxed lists to define lists of

relevant items for a particular node in a decision. You can also use literal FEEL expressions for list items
in cells to create more complex lists.

69

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

For example, the following boxed list expression identifies approved credit score agencies in a loan
application decision service:

Figure 2.17. Boxed list expression for approved credit score agencies

Approved credit score agencies (List)

: "Acme Agency, Inc."
5 "Top Scores, Inc."
3 "Global Scoring, Inc."

The following boxed list expression also identifies approved credit score agencies but uses FEEL logic
to define the agency status (Inc., LLC, SA, GA) based on a DMN input node:

Figure 2.18. Boxed list expression using FEEL logic for approved credit score agency status

Approved credit score agencies (List)

: "Acme Agency" + suffix
5 "Top Scores" + suffix
3 "Global Scoring" + suffix

Approved credit
sCore agencies

2.5. DMN MODEL EXAMPLE

The following is a real-world DMN model example that demonstrates how you can use decision
modeling to reach a decision based on input data, circumstances, and company guidelines. In this
scenario, a flight from San Diego to New York is canceled, requiring the affected airline to find alternate
arrangements for its inconvenienced passengers.

70

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

First, the airline collects the information necessary to determine how best to get the travelers to their
destinations:

Input data

e List of flights

® List of passengers

Decisions

® Prioritize the passengers who will get seats on a new flight

® Determine which flights those passengers will be offered

Business knowledge models

® The company process for determining passenger priority

® Any flights that have space available

® Company rules for determining how best to reassign inconvenienced passengers
The airline then uses the DMN standard to model its decision process in the following decision
requirements diagram (DRD) for determining the best rebooking solution:

Figure 2.19. DRD for flight rebooking

Rebooked
FPassengers
. "‘\
'\-\.\"‘
k3 "‘\
Prioritized Reassign Next
Waiting List Passenger

Passenger Passenger List Flight Capacity

Flight List Priority

Similar to flowcharts, DRDs use shapes to represent the different elements in a process. Ovals contain
the two necessary input data, rectangles contain the decision points in the model, and rectangles with
clipped corners (business knowledge models) contain reusable logic that can be repeatedly invoked.

71

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

The DRD draws logic for each element from boxed expressions that provide variable definitions using
FEEL expressions or data type values.

Some boxed expressions are basic, such as the following decision for establishing a prioritized waiting
list:

Figure 2.20. Boxed context expression example for prioritized wait list

Prioritized Waiting List (Conrext)

Prioritized Waiting List
(tPassengerTable)

Cancelled Flights Flight List[Status = "cancelled"].Flight Number
(tFlightNumbert ist)

Waiting List Passenger List[list contains(Cancelled Flights, Flight Number)]
(tPassengerTable)

sort{ Waiting List, Passenger Priority)
<resulft>

Some boxed expressions are more complex with greater detail and calculation, such as the following
business knowledge model for reassigning the next delayed passenger:

Figure 2.21. Boxed function expression for passenger reassignment

Reassign Next Passenger (Function)

Reassign Mext Passenger
(tPassengerTable)
F
(Waiting List, Reassigned Passengers List, Flights)
- Next Passenger Waiting List[1]
(tPassenger)
Original Flight Flights[Flight Number = Next Passenger.Flight Mumber][1]
2 [Flight)
Flights[From = Orlglnal Flight.From and
3 BestlternarelElisht Depz:lrgﬂr%glgaérgli%g} -Ili—glaglﬂg Departure and
(tFlight) Status = “scﬁedule i
Flight Capac1ty(1tem, R93551gned Passengers List)][1]
Name Next Passenger.Name
l (string)
Status Next Passenger.Status
= (string)
Reassigned Passenger Miles Next Passenger.Miles
4 3
(tPassenger] (numéber)
Flight Number | Best Alternate Flight.Flight Number
4 (string)
<result> Select expression
g Remaining Waiting List remove(Waiting List, 1)
(tPassengerTable)
Updated Reassigned Passengers List | append(Reassigned Passengers List, Reassigned Passenger)
6 (tPassengerTable)
ir count(tRemaining Waiting List) = @
Reassign Next Passenger(Remalnlnﬂ Waiting List,
<results dated Reassigned Passengers List,
e Flights)
else
Updated Reassigned Passengers List

The following is the DMN source file for this decision model:

72

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

<dmn:definitions xmIns="https://www.drools.org/kie-dmn/Flight-rebooking"
xmins:dmn="http://www.omg.org/spec/DMN/20151101/dmn.xsd"
xmins:feel="http://www.omg.org/spec/FEEL/20140401" id="_0019_flight_rebooking" name="0019-
flight-rebooking" namespace="https://www.drools.org/kie-dmn/Flight-rebooking">
<dmn:itemDefinition id="_tFlight" name="tFlight">
<dmn:itemComponent id="_tFlight_Flight" name="Flight Number">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight From" name="From">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_To" name="To">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Dep" name="Departure">
<dmn:typeRef>feel:dateTime</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Arr" name="Arrival">
<dmn:typeRef>feel:dateTime</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Capacity" name="Capacity">
<dmn:typeRef>feel:number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Status" name="Status">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tFlightTable" isCollection="true" name="tFlightTable">
<dmn:typeRef>tFlight</dmn:typeRef>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tPassenger" name="tPassenger">
<dmn:itemComponent id="_tPassenger_Name" name="Name">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Status" name="Status">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Miles" nhame="Miles">
<dmn:typeRef>feel:number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Flight" name="Flight Number">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tPassengerTable" isCollection="true" name="tPassengerTable">
<dmn:typeRef>tPassenger</dmn:typeRef>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tFlightNumberList" isCollection="true" name="tFlightNumberList">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemDefinition>
<dmn:inputData id="i_Flight_List" name="Flight List">
<dmn:variable name="Flight List" typeRef="tFlightTable"/>
</dmn:inputData>
<dmn:inputData id="i_Passenger_List" name="Passenger List">
<dmn:variable name="Passenger List" typeRef="tPassengerTable"/>
</dmn:inputData>

73

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<dmn:decision name="Prioritized Waiting List" id="d_PrioritizedWaitingList">
<dmn:variable name="Prioritized Waiting List" typeRef="tPassengerTable"/>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Passenger_List"/>
</dmn:informationRequirement>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Flight_List"/>
</dmn:informationRequirement>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_PassengerPriority"/>
</dmn:knowledgeRequirement>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Cancelled Flights" typeRef="tFlightNumberList"/>
<dmn:literalExpression>
<dmn:text>Flight List[Status = "cancelled"].Flight Number</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Waiting List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>Passenger List[list contains(Cancelled Flights, Flight Number)]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:literalExpression>
<dmn:text>sort(Waiting List, passenger priority)</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:decision>
<dmn:decision name="Rebooked Passengers" id="d_RebookedPassengers">
<dmn:variable name="Rebooked Passengers" typeRef="tPassengerTable"/>
<dmn:informationRequirement>
<dmn:requiredDecision href="#d_PrioritizedWaitingList"/>
</dmn:informationRequirement>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Flight_List"/>
</dmn:informationRequirement>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_ReassignNextPassenger"/>
</dmn:knowledgeRequirement>
<dmn:invocation>
<dmn:literalExpression>
<dmn:text>reassign next passenger</dmn:text>
</dmn:literalExpression>
<dmn:binding>
<dmn:parameter name="Waiting List"/>
<dmn:literalExpression>
<dmn:text>Prioritized Waiting List</dmn:text>
</dmn:literalExpression>
</dmn:binding>
<dmn:binding>
<dmn:parameter name="Reassigned Passengers List"/>
<dmn:literalExpression>
<dmn:text>[]</dmn:text>

74

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

</dmn:literalExpression>
</dmn:binding>
<dmn:binding>
<dmn:parameter name="Flights"/>
<dmn:literalExpression>
<dmn:text>Flight List</dmn:text>
</dmn:literalExpression>
</dmn:binding>
</dmn:invocation>
</dmn:decision>
<dmn:businessKnowledgeModel id="b_PassengerPriority" name="passenger priority">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="Passengeri" typeRef="tPassenger"/>
<dmn:formalParameter name="Passenger2" typeRef="tPassenger"/>
<dmn:decisionTable hitPolicy="UNIQUE">
<dmn:input id="b_Passenger_Priority_dt i P1_Status" label="Passengeri.Status">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passengeri.Status</dmn:text>
</dmn:inputExpression>
<dmn:inputValues>
<dmn:text>"gold", "silver", "bronze"</dmn:text>
</dmn:inputValues>
</dmn:input>
<dmn:input id="b_Passenger_Priority_dt i P2_Status" label="Passenger2.Status">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passenger2.Status</dmn:text>
</dmn:inputExpression>
<dmn:inputValues>
<dmn:text>"gold", "silver", "bronze"</dmn:text>
</dmn:inputValues>
</dmn:input>
<dmn:input id="b_Passenger_Priority_dt i P1_Miles" label="Passengeri.Miles">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passengeri.Miles</dmn:text>
</dmn:inputExpression>
</dmn:input>
<dmn:output id="b_Status_Priority_dt 0" label="Passenger1 has priority">
<dmn:outputValues>
<dmn:text>true, false</dmn:text>
</dmn:outputValues>
<dmn:defaultOutputEntry>
<dmn:text>false</dmn:text>
</dmn:defaultOutputEntry>
</dmn:output>
<dmn:rule id="b_Passenger_Priority_dt _r1">
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i1">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i2">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r1_o1">
<dmn:text>true</dmn:text>

75

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt_r2">
<dmn:inputEntry id="b_Passenger_Priority_dt r2_i1">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r2_i2">
<dmn:text>"silver","bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r2_i3">
<dmn:text>-</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r2_o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r3">
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i1">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i2">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r3 o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r4">
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i1">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i2">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i3">
<dmn:text>-</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r4 o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt_r5">
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i1">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i2">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r5 o1">
<dmn:text>true</dmn:text>

76

CHAPTER 2. DECISION MODEL AND NOTATION (DMN)

</dmn:outputEntry>
</dmn:rule>
</dmn:decisionTable>
</dmn:encapsulatedLogic>
<dmn:variable name="passenger priority" typeRef="feel:boolean"/>
</dmn:businessKnowledgeModel>
<dmn:businessKnowledgeModel id="b_ReassignNextPassenger" name="reassign next passenger">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="Waiting List" typeRef="tPassengerTable"/>
<dmn:formalParameter name="Reassigned Passengers List" typeRef="tPassengerTable"/>
<dmn:formalParameter name="Flights" typeRef="tFlightTable"/>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Next Passenger" typeRef="tPassenger"/>
<dmn:literalExpression>
<dmn:text>Waiting List[1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Original Flight" typeRef="tFlight"/>
<dmn:literalExpression>
<dmn:text>Flights[Flight Number = Next Passenger.Flight Number][1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Best Alternate Flight" typeRef="tFlight"/>
<dmn:literalExpression>
<dmn:text>Flights[From = Original Flight.From and To = Original Flight.To and Departure >
Original Flight.Departure and Status = "scheduled" and has capacity(item, Reassigned Passengers
List)][1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Reassigned Passenger" typeRef="tPassenger"/>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Name" typeRef="feel:string"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Name</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Status" typeRef="feel:string"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Status</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Miles" typeRef="feel:number"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Miles</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Flight Number" typeRef="feel:string"/>
<dmn:literalExpression>

77

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<dmn:text>Best Alternate Flight.Flight Number</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Remaining Waiting List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>remove(Waiting List, 1)</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Updated Reassigned Passengers List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>append(Reassigned Passengers List, Reassigned Passenger)</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:literalExpression>
<dmn:text>if count(Remaining Waiting List) > 0 then reassign next passenger(Remaining
Waiting List, Updated Reassigned Passengers List, Flights) else Updated Reassigned Passengers
List</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:encapsulatedLogic>
<dmn:variable name="reassign next passenger" typeRef="tPassengerTable"/>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_HasCapacity"/>
</dmn:knowledgeRequirement>
</dmn:businessKnowledgeModel>
<dmn:businessKnowledgeModel id="b_HasCapacity" name="has capacity">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="flight" typeRef="tFlight"/>
<dmn:formalParameter name="rebooked list" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number]
)</dmn:text>
</dmn:literalExpression>
</dmn:encapsulatedLogic>
<dmn:variable name="has capacity" typeRef="feel:boolean"/>
</dmn:businessKnowledgeModel>
</dmn:definitions>

78

CHAPTER 3. DMN SUPPORT IN RED HAT DECISION MANAGER

CHAPTER 3. DMN SUPPORT IN RED HAT DECISION MANAGER

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. You can integrate
DMN models with your Red Hat Decision Manager decision services in several ways:

® Design your DMN models directly in Business Central using the DMN designer.

® |mport DMN files into your project in Business Central (Menu - Design = Projects = Import
Asset). DMN 1.1 and 1.3 models are currently not supported in the DMN designer in Business
Central.

® Package DMN files as part of your project knowledge JAR (KJAR) file without Business Central.

In addition to all DMN conformance level 3 requirements, Red Hat Decision Manager also includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. From a platform perspective,
DMN models are like any other business asset in Red Hat Decision Manager, such as DRL files or
spreadsheet decision tables, that you can include in your Red Hat Decision Manager project and deploy
to KIE Server in order to start your DMN decision services.

For more information about including external DMN files with your Red Hat Decision Manager project
packaging and deployment method, see Packaging and deploying a Red Hat Decision Manager project .

3.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION
MANAGER

Red Hat Decision Manager provides the following DMN properties that you can configure when you
execute your DMN models on KIE Server or on your client application. You can configure some of these
properties using the kmodule.xml file in your Red Hat Decision Manager project when you deploy your
project on KIE Server.

org.kie.dmn.strictConformance

When enabled, this property disables by default any extensions or profiles provided beyond the DMN
standard, such as some helper functions or enhanced features of DMN 1.2 backported into DMN 1.1.
You can use this property to configure the decision engine to support only pure DMN features, such
as when running the DMN Technology Compatibility Kit (TCK).

Default value: false

I -Dorg.kie.dmn.strictConformance=true

org.kie.dmn.runtime.typecheck

When enabled, this property enables verification of actual values conforming to their declared types
in the DMN model, as input or output of DRD elements. You can use this property to verify whether

data supplied to the DMN model or produced by the DMN model is compliant with what is specified

in the model.

Default value: false

I -Dorg.kie.dmn.runtime.typecheck=true

org.kie.dmn.decisionservice.coercesingleton

By default, this property makes the result of a decision service defining a single output decision be

79

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://dmn-tck.github.io/tck/

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

the single value of the output decision value. When disabled, this property makes the result of a
decision service defining a single output decision be a context with the single entry for that decision.
You can use this property to adjust your decision service outputs according to your project
requirements.

Default value: true

I -Dorg.kie.dmn.decisionservice.coercesingleton=false

org.kie.dmn.profiles.$PROFILE_NAME

When valorized with a Java fully qualified name, this property loads a DMN profile onto the decision
engine at start time. You can use this property to implement a predefined DMN profile with
supported features different from or beyond the DMN standard. For example, if you are creating
DMN models using the Signavio DMN modeller, use this property to implement features from the
Signavio DMN profile into your DMN decision service.

I -Dorg.kie.dmn.profiles.signavio=org.kie.dmn.signavio.KieDMNSignavioProfile

org.kie.dmn.runtime.listeners.$LISTENER_NAME

When valorized with a Java fully qualified name, this property loads and registers a DMN Runtime
Listener onto the decision engine at start time. You can use this property to register a DMN listener
in order to be notified of several events during DMN model evaluations.

To configure this property when deploying your project on KIE Server, modify this property in the
kmodule.xml file of your project. This approach is helpful when the listener is specific to your project
and when the configuration must be applied in KIE Server only to your deployed project.

<kmodule xmins="http://www.drools.org/xsd/kmodule">
<configuration>
<property key="org.kie.dmn.runtime.listeners.mylistener" value="org.acme.MyDMNListener"/>
</configuration>
</kmodule>

To configure this property globally for your Red Hat Decision Manager environment, modify this
property using a command terminal or any other global application configuration mechanism. This
approach is helpful when the decision engine is embedded as part of your Java application.

I -Dorg.kie.dmn.runtime.listeners.mylistener=org.acme.MyDMNListener

org.kie.dmn.compiler.execmodel

80

When enabled, this property enables DMN decision table logic to be compiled into executable rule
models during run time. You can use this property to evaluate DMN decision table logic more
efficiently. This property is helpful when the executable model compilation was not originally
performed during project compile time. Enabling this property may result in added compile time
during the first evaluation by the decision engine, but subsequent compilations are more efficient.
Default value: false

I -Dorg.kie.dmn.compiler.execmodel=true

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

CHAPTER 4. CREATING AND EDITING DMN MODELS IN
BUSINESS CENTRAL

You can use the DMN designer in Business Central to design DMN decision requirements diagrams
(DRDs) and define decision logic for a complete and functional DMN decision model. Red Hat Decision
Manager provides design and runtime support for DMN 1.2 models at conformance level 3, and includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. Red Hat Decision Manager also
provides runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. DMN 1.1and 1.3
models are currently not supported in the DMN designer in Business Central.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.

2. Create orimport a DMN file in your Business Central project.
To create a DMN file, click Add Asset = DMN, enter an informative DMN model name, select
the appropriate Package, and click Ok.

To import an existing DMN file, click Import Asset, enter the DMN model name, select the
appropriate Package, select the DMN file to upload, and click Ok.

The new DMN file is now listed in the DMN panel of the Project Explorer, and the DMN decision
requirements diagram (DRD) canvas appears.

NOTE

If you imported a DMN file that does not contain layout information, the
imported decision requirements diagram (DRD) is formatted automatically in the
DMN designer. Click Save in the DMN designer to save the DRD layout.

If an imported DRD is not automatically formatted, you can select the Perform

automatic layout icon in the upper-right toolbar in the DMN designer to format
the DRD.

3. Begin adding components to your new or imported DMN decision requirements diagram (DRD)
by clicking and dragging one of the DMN nodes from the left toolbar:

81

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.1. Adding DRD components

My DMN model.dmn - DMN -

Model Overview Documentation Data Types

i

O (g oy 9 o

DMMN Decision

The following DRD components are available:

Decision: Use this node for a DMN decision, where one or more input elements determine
an output based on defined decision logic.

Business knowledge model: Use this node for reusable functions with one or more decision
elements. Decisions that have the same logic but depend on different sub-input data or
sub-decisions use business knowledge models to determine which procedure to follow.

Knowledge source: Use this node for external authorities, documents, committees, or
policies that regulate a decision or business knowledge model. Knowledge sources are
references to real-world factors rather than executable business rules.

Input data: Use this node for information used in a decision node or a business knowledge
model. Input data usually includes business-level concepts or objects relevant to the
business, such as loan applicant data used in a lending strategy.

Text annotation: Use this node for explanatory notes associated with an input data node,
decision node, business knowledge model, or knowledge source.

Decision service: Use this node to enclose a set of reusable decisions implemented as a
decision service for invocation. A decision service can be used in other DMN models and can
be invoked from an external application or a BPMN business process.

4. In the DMN designer canvas, double-click the new DRD node to enter an informative node
name.

82

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

5. If the node is a decision or business knowledge model, select the node to display the node
options and click the Edit icon to open the DMN boxed expression designer to define the

decision logic for the node:
Figure 4.2. Opening a new decision node boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

AE]w

& |
ng

Figure 4.3. Opening a hew business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A
PITI O b=
< -

o

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,

or a nested boxed expression of any type.

83

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 4.4. Selecting the logic type for a decision node

« Back to My DMN mao Select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

For business knowledge models, you click the top-left function cell to select the function type,
or right-click the function value cell, select Clear, and select a boxed expression of another type.

84

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.5. Selecting the function or other logic type for a business knowledge model

« Back to My DMN model

PITI (Function)

FITI
c Select Function Kind
FEEL
JAVA
PRINL

&« Back to My DMN model

PITI (Function)

PITI
fAnyl

Edit parameters

| Clear
#« Back to My DMN model
PITI (Function)
PITI
fAny) .
E Select logic type
Edit parameters
Literal expression
) Context
Select expression
Decision Table
Relation
Functicon
Invocation

6. Inthe selected boxed expression designer for either a decision node (any expression type) or

85

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

86

business knowledge model (function expression), click the applicable table cells to define the
table name, variable data types, variable names and values, function parameters and bindings,
or FEEL expressions to include in the decision logic.

You can right-click cells for additional actions where applicable, such as inserting or removing
table rows and columns or clearing table contents.

The following is an example decision table for a decision node that determines credit score
ratings based on a defined range of a loan applicant’s credit score:

Figure 4.6. Decision node decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.,FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
>= 750 "Excellent"
1
[TO8..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< 500 "Bad"
5

The following is an example boxed function expression for a business knowledge model that
calculates mortgage payments based on principal, interest, taxes, and insurance (PITI) as a
literal expression:

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.7. Business knowledge model function for PITI calculation

« Back to Loan Pre-Qualification

- 11
PITI (Function)

PITI
frumber)

{pmt, tax, insurance, income)

(pmt+tax+insurance)/income

7. After you define the decision logic for the selected node, click Back to "<MODEL_NAME>"to
return to the DRD view.

8. For the selected DRD node, use the available connection options to create and connect to the
next node in the DRD, or click and drag a new node onto the DRD canvas from the left toolbar.
The node type determines which connection options are supported. For example, an Input data
node can connect to a decision node, knowledge source, or text annotation using the applicable
connection type, whereas a Knowledge source node can connect to any DRD element. A
Decision node can connect only to another decision or a text annotation.

The following connection types are available, depending on the node type:

® Information requirement: Use this connection from an input data node or decision node to
another decision node that requires the information.

® Knowledge requirement: Use this connection from a business knowledge model to a
decision node or to another business knowledge model that invokes the decision logic.

® Authority requirement: Use this connection from an input data node or a decision node to a
dependent knowledge source or from a knowledge source to a decision node, business

knowledge model, or another knowledge source.

® Association: Use this connection from an input data node, decision node, business
knowledge model, or knowledge source to a text annotation.

87

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.8. Connecting credit score input to the credit score rating decision

redit
%tnn
ing

Create DMN Information Requirement

$ ul
i

redit
%tnn
ing

o

9. Continue adding and defining the remaining DRD components of your decision model.
Periodically click Save in the DMN designer to save your work.

NOTE

As you periodically save a DRD, the DMN designer performs a static validation of
the DMN model and might produce error messages until the model is defined
completely. After you finish defining the DMN model completely, if any errors
remain, troubleshoot the specified problems accordingly.

10. After you add and define all components of the DRD, click Save to save and validate the
completed DRD.
To adjust the DRD layout, you can select the Perform automatic layouticon in the upper-right
toolbar of the DMN designer.

The following is an example DRD for a loan prequalification decision model:

88

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.9. Completed DRD for loan prequalification

Prequalification|

o g
| | & = ST

The following is an example DRD for a phone call handling decision model using a reusable
decision service:

Figure 4.10. Completed DRD for phone call handling with a decision service

(Call can be handled \

Call conditions
satisfied
Suitable
R office
A
Banned
hone —» Is banned Is office open
numbers

- 1 T/

l nir:ﬁggr J ' Office , 'Incomingcall ’

In a DMN decision service node, the decision nodes in the bottom segment incorporate input
data from outside of the decision service to arrive at a final decision in the top segment of the
decision service node. The resulting top-level decisions from the decision service are then
implemented in any subsequent decisions or business knowledge requirements of the DMN
model. You can reuse DMN decision services in other DMN models to apply the same decision
logic with different input data and different outgoing connections.

4.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN
BUSINESS CENTRAL

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic

89

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

You can use the DMN designer in Business Central to define decision logic for your DRD components
using built-in boxed expressions.
Prerequisites

e A DMN fileis created or imported in Business Central.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. Inthe DMN designer canvas, select a decision node or business knowledge model node that you
want to define and click the Edit icon to open the DMN boxed expression designer:

Figure 4.11. Opening a new decision hode boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

NS b
i
- 0

90

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.12. Opening a new business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A
PITI 0 &=
< o

=

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 4.13. Selecting the logic type for a decision node

« Backto My DMN M@ gajact logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

For business knowledge model nodes, you click the top-left function cell to select the function
type, or right-click the function value cell, select Clear, and select a boxed expression of another

type.

o1

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.14. Selecting the function or other logic type for a business knowledge model

« Back to My DMN model

PITI (Function)

FITI
c Select Function Kind
FEEL
JAVA
PRINL

&« Back to My DMN model

PITI (Function)

PITI
fAnyl

Edit parameters

| Clear
#« Back to My DMN model
PITI (Function)
PITI
fAnyt .
E Select logic type
Edit parameters
Literal expression
) Context
Select expression
Decision Table
Relation
Function
Invocation

3. For this example, use a decision node and select Decision Table as the boxed expression type.

92

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

A decision table in DMN is a visual representation of one or more rules in a tabular format. Each
rule consists of a single row in the table, and includes columns that define the conditions (input)
and outcome (output) for that particular row.

4. Click the input column header to define the name and data type for the input condition. For
example, name the input column Credit Score.FICO with a humber data type. This column
specifies numeric credit score values or ranges of loan applicants.

5. Click the output column header to define the name and data type for the output values. For
example, name the output column Credit Score Rating and next to the Data Type option, click
Manage to go to the Data Types page where you can create a custom data type with score
ratings as constraints.

Figure 4.15. Managing data types for a column header value

% Back to Loan Pre-Qualification

" = ".'_')"*"I'-.'.'-‘l"f :":_?li I,' 5 |)
Credit Score Rating (Decision Table) Edit Output Clause

MName
A Credi;n3:;;F|CU Credit Ss?f Credit Score Rating

Data Type
: Any i

6. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.

If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

Figure 4.16. Adding a new data type

Model Documentation Data Types Included Models Overview Q

Custom Data Types

New Data Type Import Data Object Search d yo Q | Expand all | Collapse all

* Name * Type

Credit_Score_Rating string - B List # Add Constraints @ v x

7. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

e "Excellent"
. "Good"

e "Fair”

93

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

e "Poor"
o "Bad"

Figure 4.17. Adding constraints to the new data type

Data Type constraints

Add constraints to limit and define valid input for the string data type.

Select constraint type

Enumeration

i "Excellent”

s "Good”

5 "Fairt

i "Poor"

i "Bad"

Clear all

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

94

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.18. Dragging constraints to change constraint order

Data Type constraints

Add constraints to limit and define valid input for the string data type.
Select constraint type

Enumeration

!J"Excellent"
i "Good"

it "Fair"
it "Poor"

it "Bad"

8 8 e

m

-

For information about constraint types and syntax requirements for the specified data type, see

the Decision Model and Notation specification.

8. Click OK to save the constraints and click the check mark to the right of the data type to save

the data type.

9. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,

and set the data type to this new custom data type.

10. Use the Credit Score.FICO input column to define credit score values or ranges of values, and
use the Credit Score Rating column to specify one of the corresponding ratings you defined in

the Credit_Score_Rating data type.
Right-click any value cell to insert or delete rows (rules) or columns (clauses).

95

https://www.omg.org/spec/DMN

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager
Figure 4.19. Decision node decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.,FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
>= 750 "Excellent"
1
[7o0..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GO0 "Bad"
5

1. After you define all rules, click the top-left corner of the decision table to define the rule Hit
Policy and Builtin Aggregator (for COLLECT hit policy only).
The hit policy determines how to reach an outcome when multiple rules in a decision table match
the provided input values. The built-in aggregator determines how to aggregate rule values
when you use the COLLECT hit policy.

96

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.20. Defining the decision table hit policy

« Back to Loan Pre-Qualification

Credit Score Rating (pecision Table)
Edit Hit Policy

Hit Policy

Description
UNIQUE w

Builtin Aggregator

=Mone= ”
5 [7O0, ., 750) "Good"
2 [650, ., TO0) "Fair"
[6DO, 650) "Poor"
4
< GO0 "Bad"
5

The following example is a more complex decision table that determines applicant qualification
for aloan as the concluding decision node in the same loan prequalification decision model:

Figure 4.21. Decision table for loan prequalification

Loan Pre-Qualification (pecision

Table)

Loan Pre-Qualification
lificati
E Credit Score Rating | Back End Ratio Front End Ratio LGN Description
(Credit Score Rating) (Back_End_Ratio) (Front_End_Ratio) qualification eTsan
(string) (string)
. "Poor", "Bad" - - "Not Qualified" "Credit Score too low."
- "Insufficient" |"Sufficient" "Mot Qualified" "Debt to income ratio is too high."
2
- "sufficient" "Insufficient" |"Mot Qualified" '_'Mortga%e ﬁayment to income ratio
3 is too high.”
- "Insufficient" |"Insufficient" |"Not Qualified" |"Debt to income ratio is too high
4 AND mortgage ﬁayment to income
ratio is”tdo high."
"Fair", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,
5 "Excellent” prequalified for the requested loah.

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define variables and parameters for decision logic, but according to the
requirements of the boxed expression type. Some boxed expressions, such as boxed literal expressions,
can be single-column tables, while other boxed expressions, such as function, context, and invocation
expressions, can be multi-column tables with nested boxed expressions of other types.

97

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

For example, the following boxed context expression defines the parameters that determine whether a
loan applicant can meet minimum mortgage payments based on principal, interest, taxes, and insurance
(PITI), represented as a front-end ratio calculation with a sub-context expression:

Figure 4.22. Boxed context expression for front-end client PITI ratio

Front End Ratio (Context)

Front End Ratio

(Front_End_Ratio)
PITI
pmt ERe uested Product.Amount*%(Requested Product.Rate/100)/12))/
1 1-(1/(1+{Requested Product Rate/100)/12)**-Requested Product.Term))
fnumiber)
Client PITI tax Applicant Data.Monthly. Tax
1 (number) 2 (number)

insurance | Applicant Data.Monthly. Insurance

("5}

(number)

income Applicant Data.Monthly. Income

(number)

if Client PITI <= Lender Acceptable PITI()

<resulft> then "Sufficient
else "Insufficient"

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 4.23. Boxed function expression for installment calculation in business knowledge model

InstallmentCalculation (Function)

InstallmentCalculation
(number)

(ProductType, Rate, Term, Amount)

if ProductType ="STANDARD LOAN" then 20,00
M;’:ﬁ:{"};‘*e slse if ProdhctType ="SPECIAL LOANT then 25.00 else null

MonthlyRepayment (Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)

fnumber)

MonthlyRepayment+MonthlyFee

<result=

For more information and examples of each boxed expression type, see Section 2.4, "DMN decision
logic in boxed expressions”.

4.2. CREATING CUSTOM DATATYPES FOR DMN BOXED
EXPRESSIONS IN BUSINESS CENTRAL

In DMN boxed expressions in Business Central, data types determine the structure of the data that you
use within an associated table, column, or field in the boxed expression. You can use default DMN data

types (such as String, Number, Boolean) or you can create custom data types to specify additional
fields and constraints that you want to implement for the boxed expression values.

98

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Custom data types that you create for a boxed expression can be simple or structured:
® Simple data types have only a name and a type assignment. Example: Age (number).

® Structured data types contain multiple fields associated with a parent data type. Example: A
single type Person containing the fields Name (string), Age (humber), Email (string).

Prerequisites

o A DMN file is created or imported in Business Central.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. Inthe DMN designer canvas, select a decision node or business knowledge model for which you
want to define the data types and click the Edit icon to open the DMN boxed expression
designer.

3. If the boxed expression is for a decision node that is not yet defined, click the undefined table to
select the type of boxed expression you want to use, such as a boxed literal expression, boxed
context expression, decision table, or other DMN boxed expression.

Figure 4.24. Selecting the logic type for a decision node

« Back to My DMN mao select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

4. Click the cell for the table header, column header, or parameter field (depending on the boxed
expression type) for which you want to define the data type and click Manage to go to the Data
Types page where you can create a custom data type.

99

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager
Figure 4.25. Managing data types for a column header value
« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table) O e

MName
A CFEdi;ﬂii?;;HCD Credit 5’(’;??;; Credit Score Rating

Data Type
, Any et

You can also set and manage custom data types for a specified decision node or business
knowledge model node by selecting the Properties icon in the upper-right corner of the DMN
designer:

100

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.26. Managing data types in decision requirements diagram (DRD) properties

& X Properties > (£
-
N _4341 aa5f-4d20-48d3-b8e2-3cdb 27606600
Description

<p>This decision logic converts the borrower’s Credit Score numl

Documentation Links ©Add

None

Mame

Credit Score Rating

Question

What is borrower's credit rating based on FICO score (Borrower FICO5c

Allowed Answers

Excellent, Good, Fair, Poor, Bad
R v Information item

Lend
Accept

IT Data type fanage

Any ~

The data type that you define for a specified cell in a boxed expression determines the structure
of the data that you use within that associated table, column, or field in the boxed expression.

In this example, an output column Credit Score Rating for a DMN decision table defines a set of
custom credit score ratings based on an applicant’s credit score.

. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.

If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

101

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.27. Adding a new data type

Model Documentation Data Types Included Models Overview Q

Custom Data Types

New Data Type Import Data Object Search data types Q | Expand all | Collapse all
* Name * Type -
Credit_Score_Rating string - = List # Add Constraints @ v x

If the data type requires a list of items, enable the List setting.

6. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

e "Excellent"”
e "Good"

o "Fair"

e "Poor"

e "Bad"

Figure 4.28. Adding constraints to the new data type

Data Type constraints

Add constraints to limit and define valid input for the string data type.

Select constraint type

Enumeration

i "Excellent”

s "Good”

5 "Fairt

i "Poor"

i "Bad®

Clear all

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

102

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.29. Dragging constraints to change constraint order

Data Type constraints

Add constraints to limit and define valid input for the string data type.
Select constraint type

Enumeration

i!J"Ex-::eIIent"
i "Good"

it "Fair"
it "Poor"

it "Bad"

8 8 e

m

-

Clear all “ Cancel

For information about constraint types and syntax requirements for the specified data type, see

the Decision Model and Notation specification.

7. Click OK to save the constraints and click the check mark to the right of the data type to save

the data type.

8. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,
set the data type to this new custom data type, and define the rule values for that column with

the rating constraints that you specified.

103

https://www.omg.org/spec/DMN

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager
Figure 4.30. Decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
== 750 "Excellent"
1
[TO8..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GO0 "Bad"
5

In the DMN decision model for this scenario, the Credit Score Rating decision flows into the
following Loan Prequalification decision that also requires custom data types:

Figure 4.31. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)

Loan Pre-Qualification

Undefined.
Credit Score Rating | Back End Ratio | Front End Ratio {lindefinec>)

) 5 ; Description
o, <Undefined>, <Undefined>
(<Undefined>) r) |’ / Qualification Reason

(string) (string)

9. Continuing with this example, return to the Data Types window, click New Data Type, and
create a Loan_Qualification data type as a Structure with no constraints.
When you save the new structured data type, the first sub-field appears so that you can begin
defining nested data fields in this parent data type. You can use these sub-fields in association
with the parent structured data type in boxed expressions, such as nested column headers in
decision tables or nested table parameters in context or function expressions.

For additional sub-fields, select the addition icon next to the Loan_Qualification data type:

104

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.32. Adding a new structured data type with nested fields

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object Search data typ Q | Expand all | Collapse all
Credit_Score_Rating (string) # "Excellent”, "Good", “Fair”, "Poor”, & [+ i}
i1 ¥ Loan_Qualification (Structure) & % i}

10. For this example, under the structured Loan_Qualification data type, add a Qualification field
with "Qualified" and "Not Qualified" enumeration constraints, and a Reason field with no
constraints. Add also a simple Back_End_Ratio and a Front_End_Ratio data type, both with
"Sufficient" and "Insufficient” enumeration constraints.

Click the check mark to the right of each data type that you create to save your changes.

Figure 4.33. Adding nested data types with constraints

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object earch data typ Q | Expandall | Collapse all
Credit_Score_Rating (string) # “Excellent”, "Good", “Fair”, "Poor”.... & o o :
Back_End_Ratio (string) & “Sufficient”, "Insufficient™ V4 [+] o
Front_End_Ratio (string) # “Sufficient”, "Insufficient™ ’ 0 ﬂ

v Loan_Qualification (Structure) V4 (+] o
Qualification (string) # "Qualified”, "Not Qualified" S O o
Reason (string) ' (+] @

To change the order or nesting of data types, you can click the left end of the data type row and
drag the row as needed:

105

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.34. Dragging data types to change data type order or nesting

Model Owverview Documentation

Custom Data Types

New Data Type Import Data Object

Credit_Score_Rating (string)

- Back End Ratio (string)

Front_End_Ratio (string)

v Loan_Qualification (Structure)

Qualification (string)

Reason (string)

Data Types

& “Excellent”, "Good", *

2 “Sufficient™, "Insufficient”

~Sufficient™, "Insufficient”

Fair®,

Included Models

“POOr™,...

"Qualified”, "Not Qualified”

Q | Expand all | Collapse all
& © W .
S O W
S © B
S O o
& O O
S © O

11. Return to the decision table and, for each column, click the column header cell, set the data type
to the new corresponding custom data type, and define the rule values as needed for the
column with the constraints that you specified, if applicable.

Figure 4.35. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)
Loan Pre-Qualification
lificati
E Credit Score Rating | Back End Ratio Front End Ratio LGN Description
(Credit Score Rating) (Back_End_Ratio) (Front_End_Ratio) qualification eTsan
(string) (string)
. "Poor", "Bad" - - "Not Qualified" "Credit Score too low."
- "Insufficient" |"Sufficient" "Mot Qualified" "Debt to income ratio is too high."
2
- "sufficient" "Insufficient" |"Mot Qualified" '_'Mortga%e ﬁayment to income ratio
3 is too high.”
- "Insufficient" |"Insufficient" |"Not Qualified" |"Debt to income ratio is too high
4 AND mortgage ﬁayment to income
ratio is”tdo high."
"Fair", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,
5 "Excellent” prequalified for the requested loah.

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define custom data types as needed.

For example, the following boxed function expression uses custom tCandidate and tProfile structured
data types to associate data for online dating compatibility:

106

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.36. Boxed function expression for online dating compatibility

Evaluate Match (Function)

Evaluate Match
{tCandidate)

{Lonely Soul, Candidate)

Profilel Lonely Soul
(tPrafile)

Profile? Candidate

(tPrafile)
Is Soul a Match(LlLonely Soul, Candidate) and

3 Is Match Is Soul a Match(Candidate, Lonely Soul

fboolean)

Score Number of Matching Interests(Lonely Soul, Candidate) -
4 absolute(Lonely Soul.Age - Candidate. Age)

fnumber)

<resuft> Select expression

Figure 4.37. Custom data type definitions for online dating compatibility
Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object arch data fype Q | Expand all | Collapse all
-

> tProfiles (tProfile) = List v Yes s L]]
v tCandidate (Structure) & [+ i
v Profile1 (tProfile) S O W

MName (string) & [+ i}

Gender (tGender) 4 o o

City (string) S © 1w

107

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.38. Parameter definitions with custom data types for online dating compatibility

Edit Parameters

Evaluate Match (runction)
Add parameter

Evaluate Match .
{tCandidate) Lonely Soul tProfile ~

Candidate tProfile +

(Lonely Soul, Candidate)

Profilel Lonely Soul
(tProfile)

Profile2 Candidate
{tProfile)

Is Soul a Match(Lonely Soul, ¢
Is Match Is Soul a Match(Candidate, Lonei}r Soul]

fbooclean)

Score Number of Matching Interests(Lonely Soul, Candidate) -
4 absolute(Lonely Soul.Age - Candidate.Age)

frumber)

<result= Select expression

4.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Included Models tab to include other DMN
models and Predictive Model Markup Language (PMML) models from your project in a specified DMN
file. When you include a DMN model within another DMN file, you can use all of the nodes and logic from
both models in the same decision requirements diagram (DRD). When you include a PMML model within
a DMN file, you can invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node.

You cannot include DMN or PMML models from other projects in Business Central.

4.3.1. Including other DMN models within a DMN file in Business Central

In Business Central, you can include other DMN models from your project in a specified DMN file. When
you include a DMN model within another DMN file, you can use all of the nodes and logic from both
models in the same decision requirements diagram (DRD), but you cannot edit the nodes from the
included model. To edit nodes from included models, you must update the source file for the included
model directly. If you update the source file for an included DMN model, open the DMN file where the
DMN model is included (or close an re-open) to verify the changes.

You cannot include DMN models from other projects in Business Central.

Prerequisites

® The DMN models are created or imported (as .dmn files) in the same project in Business
Central as the DMN file in which you want to include the models.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer, click the Included Models tab.

108

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

3. Click Include Model, select a DMN model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 4.39. Including a DMN model

Include model

Models that have been added to the project directory may be included in this DMN file, Decision
requirements diagram components of included DMN models will be available to use in this DMN file.
PMML models will be available for invocation through DMN functions.

Models

Lending.dmn

Provide a unique name

Lending Strategy

Include Cancel

The DMN model is added to this DMN file, and all DRD nodes from the included model are listed
under Decision Components in the Decision Navigator view:

Figure 4.40. DMN file with decision components from the included DMN model

%= Decision Navigator < @ Loan prequalification.dmn - DMN « Save | Delete | Rename

m . = Model Overview Documentation Data Types Included Models
» Decision Graphs

Included Models

~ Decision Components Included models are externally defined models that have been added to this DMN file. External DMN m
PMML models can be invoked through DMN functions.
Filter by v

O Lending Strategy.Post-bureauAffordability

Lending.dmn

O Lending Strategy.Pre-bureauRiskCategory
Lending.dmn

Lending Strategy

Lending.d
O Lending Strategy.Adjudication ending.dmn
Lending.dmn E 9 ® 24
o Lending Strategy.InstallmentCalculation Remove

Lending.dmn

o Lending Strategy.CreditContingencyFactorTa...
Lending.dmn

o Lending Strategy.AffordabilityCalculation
Lending.dmn

All data types from the included model are also listed in read-only mode in the Data Types tab
for the DMN file:

109

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

110

Figure 4.41. DMN file with data types from the included DMN model

& Loan prequalification... v | save | ~ Delete | Reriame | Copy = B Hl & D C|v | &~ @|3% B |4 Download | Latest Version v || Hide Alerts | | x

Model Overview Documentation DataTypes Included Models Q

Custom Data Types

New Data Type Import Data Object earch data typ Q | Expand all | Collapse all

@ This list contains Data Types on read-only mode. You can edit them by opening the original file. x

> Credit_Score (Structure)

> Loan_Qualification {Structure) S O o
Lending.tEligibility (string) »* “INELIGIELE", "ELIGIBLE S O |
Lending.tBureaucCallType (string) # "FULL", "MINI", "NONE 4 L+ o
Lending.tStrategy (string) A “DECLINE®, "BUREAU", "THROUGH" S © !

4. In the Model tab of the DMN designer, click and drag the included DRD components onto the
canvas to begin implementing them in your DRD:

Figure 4.42. Adding DRD components from the included DMN model

&= Decision Navigator < Loan prequalification.dmn - DMN «

m - = Model Overview Documentation Data Types Included Models
» Decision Graphs

[
~ Decision Components Q

Filter by v

Lending Strategy.Post-bureauAffordability
Lending.dmn

Credit Score
Rating

i g0 m0 § 80

Lending Strategy.Pre-bureauRiskCategory
Lending.dmn

Lending Strategy.Adjudication
Lending.dmn

Lending Strategy.InstallmentCalculation
Lending.dmn

i i i Lending Strategy.ins
Lending Strategy.CreditContingencyFactorTa... R, Calculg ion

Lending.dmn

Lending Strategy.AffordabilityCalculation
Lending.dmn

To edit DRD nodes or data types from included models, you must update the source file for the
included model directly. If you update the source file for an included DMN model, open the DMN
file where the DMN model is included (or close an re-open) to verify the changes.

To edit the included model name or to remove the included model from the DMN file, use the
Included Models tab in the DMN designer.

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

IMPORTANT

When you remove an included model, any nodes from that included model that
are currently used in the DRD are also removed.

4.3.2. Including PMML models within a DMN file in Business Central

In Business Central, you can include Predictive Model Markup Language (PMML) models from your
project in a specified DMN file. When you include a PMML model within a DMN file, you can invoke that
PMML model as a boxed function expression for a DMN decision node or business knowledge model
node. If you update the source file for an included PMML model, you must remove and re-include the
PMML model in the DMN file to apply the source changes.

You cannot include PMML models from other projects in Business Central.

Prerequisites

® The PMML models are imported (as .pmml files) in the same project in Business Central as the
DMN file in which you want to include the models.

Procedure

1. In your DMN project, add the following dependencies to the project pom.xml file to enable
PMML evaluation:

<!I-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml</artifactld>
<version>${rhdm.version}</version>
<scope>provided</scope>
</dependency>

<!I-- Alternative dependencies for JPMML Evaluator, override “kie-pmml dependency -->

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-jpmml</artifactld>
<version>${rhdm.version}</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jpmml</groupld>
<artifactld>pmml-evaluator</artifactld>
<version>1.5.1</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jpmml</groupld>
<artifactld>pmml-evaluator-extension</artifactld>
<version>1.5.1</version>
<scope>provided</scope>

</dependency>

m

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

12

To access the project pom.xml file in Business Central, you can select any existing asset in the
project and then in the Project Explorer menu on the left side of the screen, click the
Customize View gear icon and select Repository View = pom.xml.

If you want to use the full PMML specification implementation with the Java Evaluator API for
PMML (JPMML), use the alternative set of JPMML dependencies in your DMN project. If the
JPMML dependencies and the standard kiespmml dependency are both present, the kie-pmml
dependency is disabled. For information about JPMML licensing terms, see Openscoring.io.

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.9.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

. If you added the JPMML dependencies in your DMN project to use the JPMML Evaluator,

download the following JAR files and add them to the ~/kie-server.war/WEB-INF/lib and
~/business-central.war/WEB-INF/lib directories in your Red Hat Decision Manager
distribution:

e kie-dmn-jpmml JAR file in the Red Hat Decision Manager 7.9.0 Maven Repository
distribution (rhdm-7.9.0-maven-repository/maven-repository/org/kie/kie-dmn-
jpmml/7.44.0.Final-redhat-00003/kie-dmn-jpmmi-7.44.0.Final-redhat-00003.jar) from the
Red Hat Customer Portal

e JPMML Evaluator 1.5.1 JAR file from the online Maven repository
e JPMML Evaluator Extensions 1.5.1 JAR file from the online Maven repository

These artifacts are required to enable JPMML evaluation in KIE Server and Business Central.

IMPORTANT

Red Hat supports integration with the Java Evaluator AP| for PMML (JPMML)
for PMML execution in Red Hat Decision Manager. However, Red Hat does not
support the JPMML libraries directly. If you include JPMML libraries in your Red
Hat Decision Manager distribution, see the Openscoring.io licensing terms for
JPMML.

https://openscoring.io/
https://access.redhat.com/solutions/3363991
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhdm&version=7.9.0
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator/1.5.1
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator-extension/1.5.1
https://openscoring.io/

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

3. In Business Central, go to Menu = Design = Projects, click the project name, and select the
DMN file you want to modify.

4. In the DMN designer, click the Included Models tab.

5. Click Include Model, select a PMML model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 4.43. Including a PMML model

Include model

Models that have been added to the project directory may be included in this DMN file, Decision
requirements diagram components of included DMN models will be available to use in this DMN file.
PMML models will be available for invocation through DMN functions.

Models

PITLpmml

Provide a unique name

PITI Model

Include Cancel

The PMML model is added to this DMN file:

Figure 4.44. DMN file with included PMML model

@ Loan prequalification.dmn - DMN - Save | Delete | Rename | Copy

Model Overview Documentation Data Types Included Models

Included Models

Included models are externally defined models that have been added to this DMM file. External DMN models b
PMML models can be invoked through DMN functions.

PITI Model

PITL.pmml

o 1

Remove

13

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

6. In the Model tab of the DMN designer, select or create the decision node or business
knowledge model node in which you want to invoke the PMML model and click the Edit icon to

open the DMN boxed expression designer:
Figure 4.45. Opening a new decision hode boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

AE]w
i
O

Figure 4.46. Opening a new business knowledge model boxed expression

« Back to My DMN model

PITI (Function)

PITI
{=Undefined=)

Edit parameters

w A

PITI O

< -
o

7. Set the expression type to Function (default for business knowledge model nodes), click the
top-left function cell, and select PMML.

14

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

8. In the document and model rows in the table, double-click the undefined cells to specify the
included PMML document and the relevant PMML model within that document:

Figure 4.47. Adding a PMML model in a DMN business knowledge model

« Back to Loan Pre-Qualification

PITI ¢(Function)

FITI
(=Undefined=)
Fi
document

L

1 (string) PITI Maodel
model i . . . ;
Lecon | NANL /
2 (string) Second select PMML mode

Figure 4.48. Example PMML definition in a DMN business knowledge model

PITI ¢Function)

PITI
frumber)

(fid1, fid2, fld3)

document " "
1 (string) PITI Model
model o .
2 (string) LinReg

If you update the source file for an included PMML model, you must remove and re-include the
PMML model in the DMN file to apply the source changes.

To edit the included model name or to remove the included model from the DMN file, use the
Included Models tab in the DMN designer.

115

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

4.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN
BUSINESS CENTRAL

For complex DMN models, you can use the DMN designer in Business Central to design multiple DMN
decision requirements diagrams (DRDs) that represent parts of the overall decision requirements graph
(DRG) for the DMN decision model. In simple cases, you can use a single DRD to represent all of the
overall DRG for the decision model, but in complex cases, a single DRD can become large and difficult to
follow. Therefore, to better organize DMN decision models with many decision requirements, you can
divide the model into smaller nested DRDs that constitute the larger central DRD representation of the
overall DRG.

Prerequisites

® You understand how to design DRDs in Business Central. For information about creating DRDs,
see Chapter 4, Creating and editing DMN models in Business Central .

Procedure

1. In Business Central, navigate to your DMN project and create or import a DMN file in the
project.

2. Open the new or imported DMN file to view the DRD in the DMN designer, and begin designing
or modifying the DRD using the DMN nodes in the left toolbar.

3. Forany DMN nodes that you want to define in a separate nested DRD, select the node, click the
DRD Actions icon, and select from the available options.

Figure 4.49. DRD actions icon for subdividing a DRD

The following options are available:

® Create: Use this option to create a nested DRD where you can separately define the DMN
components and diagram for the selected node.

® Add to: If you already created a nested DRD, use this option to add the selected node to an
existing DRD.

® Remove: If the node that you selected is already within a nested DRD, use this option to
remove the node from that nested DRD.

After you create a nested DRD within your DMN decision model, the new DRD opensiin a
separate DRD canvas and the available DRD and components are listed in the Decision
Navigator left menu. You can use the Decision Navigator menu to rename or remove a nested
DRD.

16

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.50. Rename new nested DRD in the Decision Navigator menu

A
DRDs
v < |Credit Score Rating] | v 1 o
O credit Score Rating] crERd.;ttl?\cgﬂre
[oara

4. In the separate canvas for the new nested DRD, design the flow and logic for all required
components in this portion of the DMN model, as usual.

5. Continue adding and defining any other nested DRDs for your decision model and save the
completed DMN file.
For example, the following DRD for a loan prequalification decision model contains all DMN
components for the model without any nested DRDs. This example relies on the single DRD for
all components and logic, resulting in a large and complex diagram.

Figure 4.51. Single DRD for loan prequalification

Prequalification|

o e
o] [& = .

Alternatively, by following the steps in this procedure, you can divide this example DRD into
multiple nested DRDs to better organize the decision requirements, as shown in the following
example:

17

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

18

Figure 4.52. Multiple nested DRDs for loan prequalification

%= Decision Navigator
m DRG
= «& Loan Pre-Qualification
O Back End Ratio
O Credit Score Rating
O Front End Ratio

[Loan Prequalification

DRDs
~ «§ Front End Ratio
O Applicant Data
O Front End Ratio
* [(JLlender Acceptable PITI
f () Function
CALending regulations
~ 3JPIm
f () Function
O Requested Product
+ «§ Credit Score Rating
I credit Score Rating
O Credit Score
~ «5 Back End Ratio
O applicant Data
[Back End Ratio
» CJDITI
f () Function
» [(JLender Acceptable DITI
f () Function

CALending regulations

& Loan Pre-Qualification.dmn.dmn - DMN «~

Model Documentation Data Types Included Models

o

Loan
cJ Prequalification

Save v Delete Rename

Overview

Front End Credit Score
Ratio Rating

Back End
Ratio

Alerts

Level Text

Figure 4.53. Overview of front end ratio DRD

%= Decision Navigator
m DRG
~ «& Loan Pre-Qualification
CJBack End Ratio
[cCredit Score Rating
CJFront End Ratio

JLoan Prequalification

DRDs

~ « Front End Ratio
O Applicant Data
I Front End Ratio
= [JLender Acceptable PITI
f () Function
CALending regulations
- CJPITI
f () Function
O Requested Product

~ «f Credit Score Rating
[cCredit Score Rating
O Credit Score
~ «5 Back End Ratio
O Applicant Data
[CJBack End Ratio
- DM
f () Function
» [(JLender Acceptable DITI
f () Function

CALending regulations

& Loan Pre-Qualification.dmn.dmn - DMN +

Model Documentation Data Types Included Models

o

Loan
(=] Prequalification

[

Save [v Delete | Rename

Overview

e

Front End o Credit Score
Ratio Rating

ALC =

Back End
Ratio

Alerts

Level Text

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.54. DRD for front end ratio

Front End NDtE,'E-S on
Ratio [""" ratio.
calculation

Applicant
plgata

Requested
Product

Lending
regulations

Figure 4.55. Overview of credit score rating DRD

& Decision Navigator < & Loan Pre-Qualification.dmn.dmn - DMN ~ Save | v | | Delete Rename
m DRG “ Model Documentation DataTypes Included Models — Overview
~ «5 Loan Pre-Qualification
[CJBack End Ratio ()
[credit Score Rating
CJFront End Ratio (o]
DO Loan Prequalification Loan
=] Prequalification
DRDs
(=
~ « Front End Ratio
O Applicant Data [
CJFront End Ratio L il
| Creditscore | O Back End
= (JLender Acceptable PITI (=] F"%';%E”d g Rating . Ratio

”} Function
CALending regulations
~ CJPITI
f () Function
O Requested Product

~ « Credit 5core Rating
[Credit Score Rating

O Credit Score

~ « Back End Ratio
O Applicant Data
[CJBack End Ratio
~ OJom
f () Function
~ CJLender Acceptable DITI
Alerts
f () Function

CALending regulations Level Text

19

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.56. DRD for credit score rating

Figure 4.57. Overview of back end ratio DRD

= Decision Navigator
m DRG
~ « Loan Pre-Qualification
[Back End Ratio
O Credit Score Rating
O Front End Ratio

[Loan Prequalification

DRDs
~ « Front End Ratio
O applicant Data
O Front End Ratio
= OJLender Acceptable PITI
f () Function
CA Lending regulations
= 3JPIm
f () Function
O Requested Product
~ « Credit Score Rating
I credit Score Rating

O credit Score

Credit Score
Rating

~ «§ Back End Ratio
O applicant Data
[Back End Ratio
- 3JDIm
f () Function
= OJLender Acceptable DITI

f () Function

CA Lending regulations

120

Credit Score

< & Loan Pre-Qualification.dmn.dmn - DMN +

Mo

del

o

(™

Alerts

Level

Documentation

Included Models

Loan
Prequalification

Save

= Delete | Rename

Overview

Front End
Ratio

Credit Score
Rating

®

Back End
Ratio

Text

Ao

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.58. DRD for back end ratio

BackEnd |......... N Stia
Ratio i
calculation

-
[] =

Lendear
Acceptable
ITl

Apglica nt

ata oITl

Lending

regulations

4.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Documentation tab to generate a report of
your DMN model that you can print or download as an HTML file for offline use. The DMN model report
contains all decision requirements diagrams (DRDs), data types, and boxed expressions in your DMN
model. You can use this report to share your DMN model details or as part of your internal reporting
workflow.

121

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.59. Example DMN model report

Model Overview Documentation DataTypes Included Madels

& Print

i Download HTML file
Supported by il RedHat

9Drools

Loan Pre-Qualification

DMN Model Documentation

Namespace http-ffwwu. trisatech.com/definitions/_dz0a7f15-31 76-427e-add8-68d30003cB4c
Generated on: 18 November 2019
Generated by: whadrmin

Generated from: Loan prequalification.dmn

Table of Contents

1. Loan Pre-Qualification - DMN model
2. Loan Pre-Qualification - Data Types

3. Loan Pre-Qualification - DRD components

4.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS
CENTRAL

The DMN designer in Business Central provides the following additional features to help you navigate
through the components and properties of decision requirements diagrams (DRDs).

DMN file and diagram views

In the upper-left corner of the DMN designer, select the Project Explorer view to navigate between
all DMN and other files or select the Decision Navigator view to navigate between the decision
components, graphs, and boxed expressions of a selected DRD:

122

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.60. Project Explorer view

Project Explorer AR & Loan prequalification... « | save | Delete | Rename | Ct
N Maodel Overview Documentation Data Types
<default> » mortgages » mortgages
[
o
DMN
: =
DM Community Challenge
Flight rebooking O
Lending =
(-

l":'. Lean prequalification

] pRL -
-

; Requested

£| DATA OBJECTS ~
DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
ENUMERATION DEFINITIONS ~

GUIDED DECISION TABLES ~

123

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.61. Decision Navigator view

Q Decision Navigator

«» Decision Graphs

« «5 Loan Pre-Qualification
O Applicant Data
» CJBack End Ratio
® Context
+ [Credit Score Rating
B Decision Table
O Credit Score
- DT
f () Function
+ [Front End Ratio
® Context

* (O Lender Acceptable DTI

f () Function

+ (O Lender Acceptable PITI

f () Function

» [Loan Pre-Qualification

B Decision Table
* [Passenger Priority
f () Function
= CJPITI
f () Function
O Requested Product

124

> I
[#
@

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

& Decision Navigator < & Loan prequalificatio... | save | Delete | Rename | Co
m . = Model Overview Documentation Data Types
» Decision Graphs
[
« Decision Components m
(]
Filter by v
A
—
= Lending Strategy.Post-bureauAffordability
Lending.dmn (=]
- Lending Strategy.Pre-bureauRiskCategory (|

Lending.dmn

Lending Strategy.Adjudication
Lending.dmn

; Requested

Lending Strategy.InstallmentCalculation
Lending.dmn

Lending Strategy.CreditContingencyFactorTa...
Lending.dmn

Lending Strategy.AffordabilityCalculation
Lending.dmn

Lending Strategy.ApplicationRiskScoreModel
Lending.dmn

Lending Strategy.Post-bureauRiskCategoryT...
Lending.dmn

NOTE

The DRD components from any DMN models included in the DMN file (in the
Included Models tab) are also listed in the Decision Components panel for the DMN
file.

N

In the upper-right corner of the DMN designer, select the Explore diagram icon to view an elevated
preview of the selected DRD and to navigate between the nodes of the selected DRD:

125

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.62. Explore diagram view

Hide Alerts | | | % Explore diagram >| | £
o (®
R Preview
Explorer
Le
Acct

Loan Pre-Qualification

o
o
o
(-
o
o
(-
o
(-
(-
o

Credit Score
Requested Product
PITI

Credit Score Rating
Applicant Data

Lender Acceptable PITI
Back End Ratio
Lender Acceptable DTI
Loan Pre-Qualification
Front End Ratio

DTl

Clear | & || +* | X

DRD properties and design

In the upper-right corner of the DMN designer, select the Properties icon to modify the identifying
information, data types, and appearance of a selected DRD, DRD node, or boxed expression cell:

126

CHAPTER 4. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 4.63. DRD node properties

« | &~ | f7 22| | & | Download | Latest Version >~ || Hide Alerts | | | % Properties >
Q Id @

O Description

<p=This decision determines if a prospective barrower is prequalifie

& m}
:
T

o Documentation Links ©rdd

Vorne

Name

Loan Pre-Qualification

Question

Is borrower successfully prequalified for the requested loan?

Allowed Answers

QualifiedNot QualifiedDecision Reason

v Information item
Data type Manage
Any w

~ Background details

Background colour

=

» Border colour
File Column Line
JCESSFUL - 0 0 > Font settings

To view the properties of the entire DRD, click the DRD canvas background instead of a specific
node.

DRD search

In the upper-right corner of the DMN designer, use the search bar to search for text that appears in
your DRD. The search feature is especially helpful in complex DRDs with many nodes:

127

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 4.64. DRD search

|BackEnd 10of1 AV

x 2

. Lender
AF’S licant DTl Accea:-ta ble
Tl

ata

128

CHAPTER 5. DMN MODEL EXECUTION

CHAPTER 5. DMN MODEL EXECUTION

You can create or import DMN files in your Red Hat Decision Manager project using Business Central or
package the DMN files as part of your project knowledge JAR (KJAR) file without Business Central.
After you implement your DMN files in your Red Hat Decision Manager project, you can execute the
DMN decision service by deploying the KIE container that contains it to KIE Server for remote access or
by manipulating the KIE container directly as a dependency of the calling application. Other options for
creating and deploying DMN knowledge packages are also available, and most are similar for all types of
knowledge assets, such as DRL files or process definitions.

For information about including external DMN assets with your project packaging and deployment
method, see Packaging and deploying a Red Hat Decision Manager project .

5.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You typically embed
knowledge assets directly into a project if there is a tight relationship between the version of the code
and the version of the DMN definition. Any changes to the decision take effect after you have
intentionally updated and redeployed the application. A benefit of this approach is that proper
operation does not rely on any external dependencies to the run time, which can be a limitation of
locked-down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change, (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

® You have built the DMN project as a KJAR artifact and deployed it to a Maven repository, or you
have included your DMN assets as part of your project classpath. Ideally, you have built the DMN
project as an executable model for more efficient execution:

I mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

Procedure

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

<!I-- Required for the DMN runtime API -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-core</artifactld>
<version>${rhdm.version}</version>
</dependency>

<I-- Required if not using classpath KIE container -->
<dependency>

129

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

130

<groupld>org.kie</groupld>

<artifactld>kie-ci</artifactld>

<version>${rhdm.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.44.0.Final-redhat-00003).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.9.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseld);

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

. Obtain DMNRuntime from the KIE container and a reference to the DMN model to be

evaluated, by using the model namespace and modelName:

DMNRuntime dmnRuntime =
KieRuntimeFactory.of(kieContainer.getKieBase()).get(DMNRuntime.class);

String namespace = "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a";
String modelName = "dmn-movieticket-ageclassification"”;

DMNModel dmnModel = dmnRuntime.getModel(namespace, modelName);

https://access.redhat.com/solutions/3363991

CHAPTER 5. DMN MODEL EXECUTION

4. Execute the decision services for the desired model:

DMNContext dmnContext = dmnRuntime.newContext(); ﬂ

for (Integer age : Arrays.aslList(1,12,13,64,65,66)) {
dmnContext.set("Age", age);
DMNResult dmnResult =
dmnRuntime.evaluateAll(dmnModel, dmnContext); 6

for (DMNDecisionResult dr : dmnResult.getDecisionResults()) { ﬂ
log.info("Age: "+ age +", " +
"Decision: " + dr.getDecisionName() + ", " +

"Result: " + dr.getResult());

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

Assign input variables for the input DMN context.

Evaluate all DMN decisions defined in the DMN model.

o0 o

Q Each evaluation may result in one or more results, creating the loop.

This example prints the following output:

Age 1 Decision 'AgeClassification’ : Child
Age 12 Decision 'AgeClassification’ : Child
Age 13 Decision 'AgeClassification’ : Adult
Age 64 Decision 'AgeClassification’ : Adult
Age 65 Decision 'AgeClassification’ : Senior
Age 66 Decision 'AgeClassification’ : Senior

If the DMN model was not previously compiled as an executable model for more efficient
execution, you can enable the following property when you execute your DMN models:

I -Dorg.kie.dmn.compiler.execmodel=true

5.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA
CLIENT API

The KIE Server Java client API provides a lightweight approach to invoking a remote DMN service either
through the REST or JMS interfaces of KIE Server. This approach reduces the number of runtime
dependencies necessary to interact with a KIE base. Decoupling the calling code from the decision
definition also increases flexibility by enabling them to iterate independently at the appropriate pace.

For more information about the KIE Server Java client API, see Interacting with Red Hat Decision
Manager using KIE APIs.

Prerequisites

131

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

e KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

® You have built the DMN project as a KJAR artifact and deployed it to KIE Server. Ideally, you
have built the DMN project as an executable model for more efficient execution:

I mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

® You have the ID of the KIE container containing the DMN model. If more than one model is
present, you must also know the model namespace and model name of the relevant model.

Procedure

1. Inyour client application, add the following dependency to the relevant classpath of your Java
project:

<!I-- Required for the KIE Server Java client API -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhdm.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.44.0.Final-redhat-00003).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.9.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Instantiate a KieServicesClient instance with the appropriate connection information.

132

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/solutions/3363991

CHAPTER 5. DMN MODEL EXECUTION

Example:

KieServicesConfiguration conf =
KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD); @)

conf.setMarshallingFormat(MarshallingFormat.JSON); @)

KieServicesClient kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

ﬂ The connection information:
® Example URL: http://localhost:8080/kie-server/services/rest/server
® The credentials should reference a user with the kie-server role.

The Marshalling format is an instance of
org.kie.server.api.marshalling.MarshallingFormat. It controls whether the messages will
be JSON or XML. Options for Marshalling format are JSON, JAXB, or XSTREAM.

3. Obtain a DMNServicesClient from the KIE server Java client connected to the related KIE
Server by invoking the method getServicesClient() on the KIE server Java client instance:

DMNServicesClient dmnClient =
kieServicesClient.getServicesClient(DMNServicesClient.class);

The dmnClient can now execute decision services on KIE Server.

4. Execute the decision services for the desired model.
Example:

for (Integer age : Arrays.aslList(1,12,13,64,65,66)) {
DMNContext dmnContext = dmnClient.newContext();
dmnContext.set("Age", age); 9
ServiceResponse<DMNResult> serverResp = 6
dmnClient.evaluateAll($kieContainerld,

$modelNamespace,

$modelName,

dmnContext);

DMNResult dmnResult = serverResp.getResult(); ﬂ
for (DMNDecisionResult dr : dmnResult.getDecisionResults()) {
log.info("Age: "+ age +", " +
"Decision: " + dr.getDecisionName() + ", " +

"Result: " + dr.getResult());

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

9 Assign input variables for the input DMN Context.

9 Evaluate all the DMN Decisions defined in the DMN model:

133

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

e S$kieContainerld is the ID of the container where the KJAR containing the DMN model
is deployed
o $modelNamespace is the namespace for the model.

e $modelName is the name for the model.

Q The DMN Result object is available from the server response.

At this point, the dmnResult contains all the decision results from the evaluated DMN model.

You can also execute only a specific DMN decision in the model by using alternative methods of
the DMNServicesClient.

NOTE

If the KIE container only contains one DMN model, you can omit
$modelNamespace and $modelName because the KIE Server APl selects it by
default.

5.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API

Directly interacting with the REST endpoints of KIE Server provides the most separation between the
calling code and the decision logic definition. The calling code is completely free of direct
dependencies, and you can implement it in an entirely different development platform such as Node.js
or .NET. The examples in this section demonstrate Nix-style curl commands but provide relevant
information to adapt to any REST client.

For more information about the KIE Server REST API, see Interacting with Red Hat Decision Manager
using KIE APIs.

Prerequisites

e KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

® You have built the DMN project as a KJAR artifact and deployed it to KIE Server. Ideally, you
have built the DMN project as an executable model for more efficient execution:

I mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

® You have the ID of the KIE container containing the DMN model. If more than one model is
present, you must also know the model namespace and model name of the relevant model.

Procedure

1. Determine the base URL for accessing the KIE Server REST APl endpoints. This requires
knowing the following values (with the default local deployment values as an example):

® Host (localhost)

134

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

CHAPTER 5. DMN MODEL EXECUTION

e Port (8080)

® Root context (kie-server)

® Base REST path (services/rest/)

Example base URL in local deployment:
http://localhost:8080/kie-server/services/rest/

. Determine user authentication requirements.

When users are defined directly in the KIE Server configuration, HTTP Basic authentication is
used and requires the user name and password. Successful requests require that the user have
the kie-server role.

The following example demonstrates how to add credentials to a curl request:

I curl -u username:password <request>

If KIE Server is configured with Red Hat Single Sign-On, the request must include a bearer
token:

I curl -H "Authorization: bearer STOKEN" <request>

. Specify the format of the request and response. The REST API endpoints work with both JSON
and XML formats and are set using request headers:

JSON

I curl -H "accept: application/json" -H "content-type: application/json"
XML

I curl -H "accept: application/xml" -H "content-type: application/xml"

. (Optional) Query the container for a list of deployed decision models:
[GET] server/containers/{containerld}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/xml" -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/MovieDMNContainer/dmn"

Sample XML output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK models successfully retrieved from container
'MovieDMNContainer™>
<dmn-model-info-list>
<model>
<model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a</model-namespace>
<model-name>dmn-movieticket-ageclassification</model-name>
<model-id> 99</model-id>

135

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

136

<decisions>
<dmn-decision-info>
<decision-id>_3</decision-id>
<decision-name>AgeClassification</decision-name>
</dmn-decision-info>
</decisions>
</model>
</dmn-model-info-list>
</response>

Sample JSON output:

{
"type" : "SUCCESS",

"msg" : "OK models successfully retrieved from container '"MovieDMNContainer™,
"result" : {
"dmn-model-info-list" : {
"models" : [{
"model-namespace” : "http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a",
"model-name” : "dmn-movieticket-ageclassification”,
"model-id" : "_99",
"decisions” : [{
"decision-id" : "_3",
"decision-name" : "AgeClassification”

5. Execute the model:
[POST] server/containers/{containerld}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/json" -H "content-type: application/json" -X POST
"http://localhost:8080/kie-server/services/rest/server/containers/MovieDMNContainer/dmn" -d
"{\"model-namespace\" : \"http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a\", \"model-name\" : \"dmn-movieticket-ageclassification\", \"decision-name\" : |
], \"decision-id\" : [], \"dmn-context\" : {\"Age\" : 66}}"

Example JSON request:

"model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a",
"model-name" : "dmn-movieticket-ageclassification”,
"decision-name" : [],
"decision-id" : [],
"dmn-context" : {"Age" : 66}
}

Example XML request (JAXB format):

CHAPTER 5. DMN MODEL EXECUTION

<?xml version="1.0" encoding="UTF-8"7>
<dmn-evaluation-context>
<model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a</model-namespace>
<model-name>dmn-movieticket-ageclassification</model-name>
<dmn-context xsi:type="jaxbListWrapper" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<type>MAP</type>
<element xsi:type="jaxbStringObjectPair" key="Age">
<value xsi:type="xs:int" xmins:xs="http://www.w3.0rg/2001/XMLSchema">66</value>
</element>
</dmn-context>
</dmn-evaluation-context>

NOTE
Regardless of the request format, the request requires the following elements:
® Model namespace

® Model name

® Context object containing input values

Example JSON response:

{
"type" : "SUCCESS",

"msg" : "OK from container 'MovieDMNContainer™,
"result" : {
"dmn-evaluation-result" : {
"messages" : [],
"model-namespace” : "http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a",
"model-name" : "dmn-movieticket-ageclassification”,
"decision-name" : [],
"dmn-context" : {
"Age" : 66,
"AgeClassification" : "Senior"
b
"decision-results" : {
" 3"
"messages" : [],
"decision-id" : "_3",
"decision-name" : "AgeClassification”,
"result" : "Senior",
"status" : "SUCCEEDED"

Example XML (JAXB format) response:

137

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

138

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK from container 'MovieDMNContainer">
<dmn-evaluation-result>
<model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a</model-namespace>
<model-name>dmn-movieticket-ageclassification</model-name>
<dmn-context xsi:type="jaxbListWrapper"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<type>MAP</type>
<element xsi:type="jaxbStringObjectPair" key="Age">
<value xsi:type="xs:int"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">66</value>
</element>
<element xsi:type="jaxbStringObjectPair" key="AgeClassification">
<value xsi:type="xs:string"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">Senior</value>
</element>
</dmn-context>
<messages/>
<decisionResults>
<entry>
<key>_3</key>
<value>
<decision-id>_3</decision-id>
<decision-name>AgeClassification</decision-name>
<result xsi:type="xs:string"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">Senior</result>
<messages/>
<status>SUCCEEDED</status>
</value>
</entry>
</decisionResults>
</dmn-evaluation-result>
</response>

CHAPTER 6. ADDITIONAL RESOURCES

CHAPTER 6. ADDITIONAL RESOURCES
Decision Model and Notation specification
DMN Technology Compatibility Kit
Packaging and deploying a Red Hat Decision Manager project

Interacting with Red Hat Decision Manager using KIE APIs

139

https://www.omg.org/spec/DMN
https://dmn-tck.github.io/tck/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

PART Il. DESIGNING A DECISION SERVICE USING PMML
MODELS

As a business rules developer, you can use Predictive Model Markup Language (PMML) to define
statistical or data-mining models that you can integrate with your decision services in Red Hat Decision
Manager. Red Hat Decision Manager includes consumer conformance support of PMML 4.2.1 for
Regression, Scorecard, Tree, and Mining models. Red Hat Decision Manager does not include a built-in
PMML model editor, but you can use an XML or PMML-specific authoring tool to create PMML models
and then integrate them with your Red Hat Decision Manager projects.

For more information about PMML, see the DMG PMML specification.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models and include your PMML models as part of your DMN service. For information
about DMN support in Red Hat Decision Manager 7.9, see the following resources:

® Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

® Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

140

http://dmg.org/pmml/pmml-v4-2-1.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-included-models-pmml-proc_dmn-models

CHAPTER 7. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 7. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 7.1. Decision-authoring assets supported in Red Hat Decision Manager

Highlights Authoring tools Documentation
Decision Model . Business Central Designing a
. ® Are decision models based on a . .
and Notation . . or other DMN- decision service
notation standard defined by the)))
(DMN) models Object Management Group compliant editor using DMN models

(OMG)

® Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

® Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

e Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

® Are optimal for creating

comprehensive, illustrative, and
stable decision flows

141

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Highlights

Authoring tools Documentation

Guided decision
tables

Spreadsheet
decision tables

Guided rules

142

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

CHAPTER 7. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Arereusable rule structures that . .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9)
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

143

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation)

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

® Can beincluded with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

144

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 8. PREDICTIVE MODEL MARKUP LANGUAGE (PMML)

CHAPTER 8. PREDICTIVE MODEL MARKUP LANGUAGE
(PMML)

Predictive Model Markup Language (PMML) is an XML-based standard established by the Data Mining
Group (DMG) for defining statistical and data-mining models. PMML models can be shared between
PMML-compliant platforms and across organizations so that business analysts and developers are
unified in designing, analyzing, and implementing PMML-based assets and services.

For more information about the background and applications of PMML, see the DMG PMML
specification.

8.1. PMML CONFORMANCE LEVELS

The PMML specification defines producer and consumer conformance levels in a software
implementation to ensure that PMML models are created and integrated reliably. For the formal
definitions of each conformance level, see the DMG PMML conformance page.

The following list summarizes the PMML conformance levels:

Producer conformance

A tool or application is producer conforming if it generates valid PMML documents for at least one
type of model. Satisfying PMML producer conformance requirements ensures that a model
definition document is syntactically correct and defines a model instance that is consistent with
semantic criteria that are defined in model specifications.

Consumer conformance

An application is consumer conforming if it accepts valid PMML documents for at least one type of
model. Satisfying consumer conformance requirements ensures that a PMML model created
according to producer conformance can be integrated and used as defined. For example, if an
application is consumer conforming for Regression model types, then valid PMML documents
defining models of this type produced by different conforming producers would be interchangeable
in the application.

Red Hat Decision Manager includes consumer conformance support for the following PMML 4.2.1
model types:

® Regression models

® Scorecard models

® Tree models

® Mining models (with sub-types modelChain, selectAll, and selectFirst)

For alist of all PMML model types, including those not supported in Red Hat Decision Manager, see the
DMG PMML specification.

145

http://dmg.org/pmml/pmml-v4-2-1.html
http://dmg.org/pmml/v4-2-1/Conformance.html
http://dmg.org/pmml/v4-2-1/Regression.html
http://dmg.org/pmml/v4-2-1/Scorecard.html
http://dmg.org/pmml/v4-2-1/TreeModel.html
http://dmg.org/pmml/v4-2-1/MultipleModels.html#xsdElement_MiningModel
http://dmg.org/pmml/v4-2-1/GeneralStructure.html

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 9. PMML MODEL EXAMPLES

PMML defines an XML schema that enables PMML models to be used between different PMML-
compliant platforms. The PMML specification enables multiple software platforms to work with the
same file for authoring, testing, and production execution, assuming producer and consumer
conformance are met.

The following are examples of PMML Regression, Scorecard, Tree, and Mining models. These examples
illustrate the supported types of models that you can integrate with your decision services in Red Hat
Decision Manager.

For more PMML examples, see the DMG PMML Sample Files page.

Example PMML Regression model

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins="http://www.dmg.org/PMML-4_2">
<Header copyright="JBoss"/>
<DataDictionary numberOfFields="5">
<DataField dataType="double" name="fld1" optype="continuous"/>
<DataField dataType="double" name="fld2" optype="continuous"/>
<DataField dataType="string" name="fld3" optype="categorical">
<Value value="x"/>
<Value value="y"/>
</DataField>
<DataField dataType="double" name="fld4" optype="continuous"/>
<DataField dataType="double" name="fld5" optype="continuous"/>
</DataDictionary>
<RegressionModel algorithmName="linearRegression" functionName="regression"
modelName="LinReg" normalizationMethod="logit" targetFieldName="fld4">
<MiningSchema>
<MiningField name="fld1"/>
<MiningField name="fld2"/>
<MiningField name="{ld3"/>
<MiningField name="fld4" usageType="predicted"/>
<MiningField name="fld5" usageType="target"/>
</MiningSchema>
<RegressionTable intercept="0.5">
<NumericPredictor coefficient="5" exponent="2" name="fld1"/>
<NumericPredictor coefficient="2" exponent="1" name="{ld2"/>
<CategoricalPredictor coefficient="-3" name="{ld3" value="x"/>
<CategoricalPredictor coefficient="3" name="fld3" value="y"/>
<PredictorTerm coefficient="0.4">
<FieldRef field="fld1"/>
<FieldRef field="fld2"/>
</PredictorTerm>
</RegressionTable>
</RegressionModel>
</PMML>

Example PMML Scorecard model

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

146

http://dmg.org/pmml/v4-2-1/pmml-4-2.xsd
http://dmg.org/pmml/pmml_examples/index.html

CHAPTER 9. PMML MODEL EXAMPLES

xmins="http://www.dmg.org/PMML-4_2">
<Header copyright="JBoss"/>
<DataDictionary numberOfFields="4">
<DataField name="parami" optype="continuous" dataType="double"/>
<DataField name="param2" optype="continuous" dataType="double"/>
<DataField name="overallScore" optype="continuous" dataType="double" />
<DataField name="finalscore" optype="continuous" dataType="double" />
</DataDictionary>
<Scorecard modelName="ScorecardCompoundPredicate" useReasonCodes="true"
isScorable="true" functionName="regression" baselineScore="15" initialScore="0.8"
reasonCodeAlgorithm="pointsAbove">
<MiningSchema>
<MiningField name="param1" usageType="active" invalidValueTreatment="asMissing">
</MiningField>
<MiningField name="param2" usageType="active" invalidValueTreatment="asMissing">
</MiningField>
<MiningField name="overallScore" usageType="target"/>
<MiningField name="finalscore" usageType="predicted"/>
</MiningSchema>
<Characteristics>
<Characteristic name="ch1" baselineScore="50" reasonCode="reasonCh1">
<Attribute partialScore="20">
<SimplePredicate field="param1" operator="lessThan" value="20"/>
</Attribute>
<Attribute partialScore="100">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="param1" operator="greaterOrEqual" value="20"/>
<SimplePredicate field="param2" operator="lessOrEqual" value="25"/>
</CompoundPredicate>
</Attribute>
<Attribute partialScore="200">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="param1" operator="greaterOrEqual" value="20"/>
<SimplePredicate field="param2" operator="greaterThan" value="25"/>
</CompoundPredicate>
</Attribute>
</Characteristic>
<Characteristic name="ch2" reasonCode="reasonCh2">
<Attribute partialScore="10">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="param2" operator="lessOrEqual" value="-5"/>
<SimplePredicate field="param2" operator="greaterOrEqual" value="50"/>
</CompoundPredicate>
</Attribute>
<Attribute partialScore="20">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="param2" operator="greaterThan" value="-5"/>
<SimplePredicate field="param2" operator="lessThan" value="50"/>
</CompoundPredicate>
</Attribute>
</Characteristic>
</Characteristics>
</Scorecard>
</PMML>

Example PMML Tree model

147

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins="http://www.dmg.org/PMML-4_2">
<Header copyright="JBOSS"/>
<DataDictionary numberOfFields="5">
<DataField dataType="double" name="fld1" optype="continuous"/>
<DataField dataType="double" name="fld2" optype="continuous"/>
<DataField dataType="string" name="fld3" optype="categorical">
<Value value="true"/>
<Value value="false"/>
</DataField>
<DataField dataType="string" name="fld4" optype="categorical">
<Value value="optA"/>
<Value value="optB"/>
<Value value="optC"/>
</DataField>
<DataField dataType="string" name="fld5" optype="categorical">
<Value value="tgtX"/>
<Value value="tgtY"/>
<Value value="tgtZ"/>
</DataField>
</DataDictionary>
<TreeModel functionName="classification" modelName="TreeTest">
<MiningSchema>
<MiningField name="fld1"/>
<MiningField name="fld2"/>
<MiningField name="{ld3"/>
<MiningField name="fld4"/>
<MiningField name="{ld5" usageType="predicted"/>
</MiningSchema>
<Node score="tgtX">
<True/>
<Node score="tgtX">
<SimplePredicate field="fld4" operator="equal" value="optA"/>
<Node score="tgtX">
<CompoundPredicate booleanOperator="surrogate">
<SimplePredicate field="fld1" operator="lessThan" value="30.0"/>
<SimplePredicate field="fld2" operator="greaterThan" value="20.0"/>
</CompoundPredicate>
<Node score="tgtX">
<SimplePredicate field="fld2" operator="lessThan" value="40.0"/>
</Node>
<Node score="tgtZ">
<SimplePredicate field="fld2" operator="greaterOrEqual" value="10.0"/>
</Node>
</Node>
<Node score="{gtZ">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="fld1" operator="greaterOrEqual" value="60.0"/>
<SimplePredicate field="fld1" operator="lessOrEqual" value="70.0"/>
</CompoundPredicate>
<Node score="tgtZ">
<SimpleSetPredicate booleanOperator="isNotIn" field="fld4">
<Array type="string">optA optB</Array>
</SimpleSetPredicate>
</Node>

148

CHAPTER 9. PMML MODEL EXAMPLES

</Node>
</Node>
<Node score="tgtY">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="fld4" operator="equal" value="optA"/>
<SimplePredicate field="fld4" operator="equal" value="optC"/>
</CompoundPredicate>
<Node score="tgtY">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="fld1" operator="greaterThan" value="10.0"/>
<SimplePredicate field="fld1" operator="lessThan" value="50.0"/>
<SimplePredicate field="fld4" operator="equal" value="optA"/>
<SimplePredicate field="fld2" operator="lessThan" value="100.0"/>
<SimplePredicate field="fld3" operator="equal" value="false"/>
</CompoundPredicate>
</Node>
<Node score="{gtZ">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="fld4" operator="equal" value="optC"/>
<SimplePredicate field="fld2" operator="lessThan" value="30.0"/>
</CompoundPredicate>
</Node>
</Node>
</Node>
</TreeModel>
</PMML>

Example PMML Mining model (modelChain)

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.dmg.org/PMML-4_2">
<Header>
<Application name="Drools-PMML" version="7.0.0-SNAPSHOT" />
</Header>
<DataDictionary numberOfFields="7">
<DataField name="age" optype="continuous" dataType="double" />
<DataField name="occupation" optype="categorical" dataType="string">
<Value value="SKYDIVER" />
<Value value="ASTRONAUT" />
<Value value="PROGRAMMER" />
<Value value="TEACHER" />
<Value value="INSTRUCTOR" />
</DataField>
<DataField name="residenceState" optype="categorical" dataType="string">
<Value value="AP" />
<Value value="KN" />
<Value value="TN" />
</DataField>
<DataField name="validLicense" optype="categorical" dataType="boolean" />
<DataField name="overallScore" optype="continuous" dataType="double" />
<DataField name="grade" optype="categorical" dataType="string">
<Value value="A" />
<Value value="B" />
<Value value="C" />
<Value value="D" />

149

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<Value value="F" />
</DataField>
<DataField name="qualificationLevel" optype="categorical" dataType="string">
<Value value="Unqualified" />
<Value value="Barely" />
<Value value="Well" />
<Value value="Over" />
</DataField>
</DataDictionary>
<MiningModel modelName="SampleModelChainMine" functionName="classification">
<MiningSchema>
<MiningField name="age" />
<MiningField name="occupation" />
<MiningField name="residenceState" />
<MiningField name="validLicense" />
<MiningField name="overallScore" />
<MiningField name="qualificationLevel" usageType="target"/>
</MiningSchema>
<Segmentation multipleModelMethod="modelChain">
<Segment id="1">

<True />
<Scorecard modelName="Sample Score 1" useReasonCodes="true" isScorable="true"
functionName="regression" baselineScore="0.0" initialScore="0.345">

<MiningSchema>
<MiningField name="age" usageType="active" invalidValueTreatment="asMissing" />
<MiningField name="occupation" usageType="active" invalidValueTreatment="asMissing" />
<MiningField name="residenceState" usageType="active" invalidValueTreatment="asMissing"

/>
<MiningField name="validLicense" usageType="active" invalidValueTreatment="asMissing" />
<MiningField name="overallScore" usageType="predicted" />
</MiningSchema>
<Output>
<OutputField name="calculatedScore" displayName="Final Score" dataType="double"
feature="predictedValue" targetField="overallScore" />
</Output>
<Characteristics>

<Characteristic name="AgeScore" baselineScore="0.0" reasonCode="ABZ">
<Extension name="cellRef" value="B8" />
<Attribute partialScore="10.0">
<Extension name="cellRef" value="C10" />
<SimplePredicate field="age" operator="lessOrEqual" value="5" />
</Attribute>
<Attribute partialScore="30.0" reasonCode="CX1">
<Extension name="cellRef" value="C11" />
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="age" operator="greaterOrEqual" value="5" />
<SimplePredicate field="age" operator="lessThan" value="12" />
</CompoundPredicate>
</Attribute>
<Attribute partialScore="40.0" reasonCode="CX2">
<Extension name="cellRef" value="C12" />
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="age" operator="greaterOrEqual" value="13" />
<SimplePredicate field="age" operator="lessThan" value="44" />
</CompoundPredicate>
</Attribute>

150

CHAPTER 9. PMML MODEL EXAMPLES

<Attribute partialScore="25.0">
<Extension name="cellRef" value="C13" />
<SimplePredicate field="age" operator="greaterOrEqual" value="45" />
</Attribute>
</Characteristic>
<Characteristic name="OccupationScore" baselineScore="0.0">
<Extension name="cellRef" value="B16" />
<Attribute partialScore="-10.0" reasonCode="CX2">
<Extension name="description" value="skydiving is a risky occupation" />
<Extension name="cellRef" value="C18" />
<SimpleSetPredicate field="occupation" booleanOperator="isIn">
<Array n="2" type="string">SKYDIVER ASTRONAUT</Array>
</SimpleSetPredicate>
</Attribute>
<Attribute partialScore="10.0">
<Extension name="cellRef" value="C19" />
<SimpleSetPredicate field="occupation" booleanOperator="isIn">
<Array n="2" type="string">TEACHER INSTRUCTOR</Array>
</SimpleSetPredicate>
</Attribute>
<Attribute partialScore="5.0">
<Extension name="cellRef" value="C20" />
<SimplePredicate field="occupation" operator="equal" value="PROGRAMMER" />
</Attribute>
</Characteristic>
<Characteristic name="ResidenceStateScore" baselineScore="0.0" reasonCode="RES">
<Extension name="cellRef" value="B22" />
<Attribute partialScore="-10.0">
<Extension name="cellRef" value="C24" />
<SimplePredicate field="residenceState" operator="equal" value="AP" />
</Attribute>
<Attribute partialScore="10.0">
<Extension name="cellRef" value="C25" />
<SimplePredicate field="residenceState" operator="equal" value="KN" />
</Attribute>
<Attribute partialScore="5.0">
<Extension name="cellRef" value="C26" />
<SimplePredicate field="residenceState" operator="equal" value="TN" />
</Attribute>
</Characteristic>
<Characteristic name="ValidLicenseScore" baselineScore="0.0">
<Extension name="cellRef" value="B28" />
<Attribute partialScore="1.0" reasonCode="LX00">
<Extension name="cellRef" value="C30" />
<SimplePredicate field="validLicense" operator="equal" value="true" />
</Attribute>
<Attribute partialScore="-1.0" reasonCode="LX00">
<Extension name="cellRef" value="C31" />
<SimplePredicate field="validLicense" operator="equal" value="false" />
</Attribute>
</Characteristic>
</Characteristics>
</Scorecard>
</Segment>
<Segment id="2">
<True />

151

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<TreeModel modelName="SampleTree" functionName="classification"
missingValueStrategy="lastPrediction" noTrueChildStrategy="returnLastPrediction">

<MiningSchema>

<MiningField name="age" usageType="active" />

<MiningField name="validLicense" usageType="active" />

<MiningField name="calculatedScore" usageType="active" />

<MiningField name="qualificationLevel" usageType="predicted" />
</MiningSchema>

<Output>
<OutputField name="qualification" displayName="Qualification Level" dataType="string"
feature="predictedValue" targetField="qualificationLevel" />
</Output>
<Node score="Well" id="1">
<True/>

<Node score="Barely" id="2">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="age" operator="greaterOrEqual" value="16" />
<SimplePredicate field="validLicense" operator="equal" value="true" />
</CompoundPredicate>
<Node score="Barely" id="3">
<SimplePredicate field="calculatedScore" operator="lessOrEqual" value="50.0" />
</Node>
<Node score="Well" id="4">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="calculatedScore" operator="greaterThan" value="50.0" />
<SimplePredicate field="calculatedScore" operator="lessOrEqual" value="60.0" />
</CompoundPredicate>
</Node>
<Node score="Over" id="5">
<SimplePredicate field="calculatedScore" operator="greaterThan" value="60.0" />
</Node>
</Node>
<Node score="Unqualified" id="6">
<CompoundPredicate booleanOperator="surrogate">
<SimplePredicate field="age" operator="lessThan" value="16" />
<SimplePredicate field="calculatedScore" operator="lessOrEqual" value="40.0" />
<True />
</CompoundPredicate>
</Node>
</Node>
</TreeModel>
</Segment>
</Segmentation>
</MiningModel>
</PMML>

152

CHAPTER 10. PMML SUPPORT IN RED HAT DECISION MANAGER

CHAPTER 10. PMML SUPPORT IN RED HAT DECISION
MANAGER

Red Hat Decision Manager includes consumer conformance support for the following PMML 4.2.1
model types:

® Regression models

® Scorecard models

® Tree models

® Mining models (with sub-types modelChain, selectAll, and selectFirst)

For alist of all PMML model types, including those not supported in Red Hat Decision Manager, see the
DMG PMML specification.

Red Hat Decision Manager does not include a built-in PMML model editor, but you can use an XML or
PMML-specific authoring tool to create PMML models and then integrate the PMML models in your
decision services in Red Hat Decision Manager. You can import PMML files into your project in Business
Central (Menu - Design = Projects = Import Assef) or package the PMML files as part of your project
knowledge JAR (KJAR) file without Business Central.

When you add a PMML file to a project in Red Hat Decision Manager, multiple assets are generated.
Each type of PMML model generates a different set of assets, but all PMML model types generate at
least the following set of assets:

o A DRL file that contains all of the rules associated with your PMML model
® At least two Java classes:
o A data class that is used as the default object type for the model type
©o A RuleUnit class that is used to manage data sources and rule execution

If a PMML file has MiningModel as the root model, multiple instances of each of these files are
generated.

For more information about including assets such as PMML files with your project packaging and
deployment method, see Packaging and deploying a Red Hat Decision Manager project .

10.1. PMML NAMING CONVENTIONS IN RED HAT DECISION MANAGER

The following are naming conventions for generated PMML packages, classes, and rules:
® |f no package name is given in a PMML model file, then the default package name
org.kie.pmml.pmml_4 2 is prefixed to the model name for the generated rules in the format
"org.kie.pmml.pmmi_4_2"+modelName.

® The package name for the generated RuleUnit Java class is the same as the package name for
the generated rules.

® The name of the generated RuleUnit Java class is the model name with RuleUnit added to itin
the format modelName+"RuleUnit".

153

http://dmg.org/pmml/v4-2-1/Regression.html
http://dmg.org/pmml/v4-2-1/Scorecard.html
http://dmg.org/pmml/v4-2-1/TreeModel.html
http://dmg.org/pmml/v4-2-1/MultipleModels.html#xsdElement_MiningModel
http://dmg.org/pmml/v4-2-1/GeneralStructure.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

® Each PMML model has at least one data class that is generated. The package name for these
classes is org.kie.pmml.pmmi_4_2.model.

® The names of generated data classes are determined by the model type, prefixed with the
model name:

o Regression models: One data class named modelName+"RegressionData"
o Scorecard models: One data class named modelName+"ScoreCardData"

o Tree models: Two data classes, the first named modelName+"TreeNode" and the second
named modelName+"TreeToken"

© Mining models: One data class named modelName+"MiningModelData"

NOTE

The mining model also generates all of the rules and classes that are within each of its
segments.

10.2. PMML EXTENSIONS IN RED HAT DECISION MANAGER

The PMML specification supports Extension elements that extend the content of a PMML model. You
can use extensions at almost every level of a PMML model definition, and as the first and last child in the
main element of a model for maximum flexibility. For more information about PMML extensions, see the
DMG PMML Extension Mechanism.

To optimize PMML integration, Red Hat Decision Manager supports the following additional PMML
extensions:

¢ modelPackage: Designates a package name for the generated rules and Java classes. Include
this extension in the Header section of the PMML model file.

e adapter: Designates the type of construct (bean or trait) that is used to contain input and
output data for rules. Insert this extension in the MiningSchema or Output section (or both) of
the PMML model file.

e externalClass: Used in conjunction with the adapter extension in defininga MiningField or

OutputField. This extension contains a class with an attribute name that matches the name of
the MiningField or OutputField element.

154

http://dmg.org/pmml/v4-2-1/GeneralStructure.html#xsdElement_Extension

CHAPTER 11. PMML MODEL EXECUTION

CHAPTER 1. PMML MODEL EXECUTION

You can import PMML files into your Red Hat Decision Manager project using Business Central (Menu
-» Design = Projects = Import Asset) or package the PMML files as part of your project knowledge
JAR (KJAR) file without Business Central. After you implement your PMML files in your Red Hat
Decision Manager project, you can execute the PMML-based decision service by embedding PMML
calls directly in your Java application or by sending an ApplyPmmiIModelCommand command to a
configured KIE Server.

For more information about including PMML assets with your project packaging and deployment
method, see Packaging and deploying a Red Hat Decision Manager project .

NOTE

You can also include a PMML model as part of a Decision Model and Notation (DMN)
service in Business Central. When you include a PMML model within a DMN file, you can
invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node. For more information about including PMML models in a
DMN service, see Designing a decision service using DMN models .

11.1. EMBEDDING A PMML CALL DIRECTLY IN A JAVA APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You typically embed
knowledge assets directly into a project if there is a tight relationship between the version of the code
and the version of the PMML definition. Any changes to the decision take effect after you have
intentionally updated and redeployed the application. A benefit of this approach is that proper
operation does not rely on any external dependencies to the run time, which can be a limitation of
locked-down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

® A KJAR containing the PMML model to execute has been created. For more information about
project packaging, see Packaging and deploying a Red Hat Decision Manager project .

Procedure

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

<!I-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml</artifactld>
<version>${rhdm.version}</version>
</dependency>

<!-- Required for the KIE public API -->

155

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-included-models-pmml-proc_dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>${rhdm.version}</version>
</dependencies>

<!-- Required if not using classpath KIE container -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>${rhdm.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.44.0.Final-redhat-00003).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.9.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseld);

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

3. Create aninstance of the PMMLRequestData class, which applies your PMML model to a set of
data:

156

https://access.redhat.com/solutions/3363991

-

o

CHAPTER 11. PMML MODEL EXECUTION

public class PMMLRequestData {

private String correlationld;
private String modelName;

private String source; 6
private List<Parameterinfo<?>> requestParams; ﬂ

Identifies data that is associated with a particular request or result
The name of the model that should be applied to the request data

Used by internally generated PMMLRequestData objects to identify the segment that
generated the request

The default mechanism for sending input data points

4. Create an instance of the PMML4Result class, which holds the output information that is the
result of applying the PMML-based rules to the input data:

® 0060 o o

public class PMML4Result {

private String correlationld;

private String segmentationld; ﬂ

private String segmentld;

private int segmentindex;

private String resultCode;

private Map<String, Object> resultVariables; 6

Used when the model type is MiningModel. The segmentationld is used to differentiate
between multiple segmentations.

Used in conjunction with the segmentationld to identify which segment generated the
results.

Used to maintain the order of segments.

Used to determine whether the model was successfully applied, where OK indicates
success.

Contains the name of a resultant variable and its associated value.

In addition to the normal getter methods, the PMML4Result class also supports the following
methods for directly retrieving the values for result variables:

public <T> Optional<T> getResultValue(String objName, String objField, Class<T> clazz,
Object...params)

public Object getResultValue(String objName, String objField, Object...params)

157

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

5. Create an instance of the Parameterinfo class, which serves as a wrapper for basic data type
objects used as part of the PMMLRequestData class:

public class Parameterinfo<T> { ﬂ
private String correlationld;
private String name;
private String capitalizedName;
private Class<T> type;
private T value;

The parameterized class to handle many different types
The name of the variable that is expected as input for the model

The class that is the actual type of the variable

0009

The actual value of the variable

6. Execute the PMML model based on the required PMML class instances that you have created:

public void executeModel(KieBase kbase,
Map<String,Object> variables,
String modelName,
String correlationld,
String modelPkgName) {
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
PMMLRequestData request = new PMMLRequestData(correlationld, modelName);
PMML4Result resultHolder = new PMML4Result(correlationld);
variables.entrySet().forEach(es -> {
request.addRequestParam(es.getKey(), es.getValue());

ik

DataSource<PMMLRequestData> requestData = executor.newDataSource("request”);
DataSource<PMML4Result> resultData = executor.newDataSource("results");
DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");

requestData.insert(request);
resultData.insert(resultHolder);

List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
modelPkgName);
Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
(InternalKnowledgeBase)kbase,
possiblePackageNames);

if (ruleUnitClass != null) {
executor.run(ruleUnitClass);
if ("OK".equals(resultHolder.getResultCode())) {
// extract result variables here

}
}
}

158

CHAPTER 11. PMML MODEL EXECUTION

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule,
InternalKnowledgeBase ikb, List<String> possiblePackages) {
RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
Map<String,InternalkKnowledgePackage> pkgs = ikb.getPackagesMap();
Rulelmpl rulelmpl = null;
for (String pkgName: possiblePackages) {
if (pkgs.containsKey(pkgName)) {
InternalkKnowledgePackage pkg = pkgs.get(pkgName);
rulelmpl = pkg.getRule(startingRule);
if (rulelmpl = null) {
RuleUnitDescr descr = unitRegistry.getRuleUnitFor(rulelmpl).orElse(null);
if (descr = null) {
return descr.getRuleUnitClass();

}
}
}
}

return null;

}

protected List<String> calculatePossiblePackageNames(String modelld,
String...knownPackageNames) {
List<String> packageNames = new ArrayList<>();
String javaModelld = modelld.replaceAll("\s","");
if (knownPackageNames != null && knownPackageNames.length > 0) {
for (String knownPkgName: knownPackageNames) {
packageNames.add(knownPkgName + "." + javaModelld);

}

}
String basePkgName = PMML4Unitimpl.DEFAULT_ROOT_PACKAGE+"."+javaModelld;

packageNames.add(basePkgName);
return packageNames;

}

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE
sessions and adds the required DataSource objects to those sessions, and then executes the
rules based on the RuleUnit that is passed as a parameter to the run() method. The
calculatePossiblePackageNames and the getStartingRuleUnit methods determine the fully
qualified name of the RuleUnit class that is passed to the run() method.

To facilitate your PMML model execution, you can also use a PMML4ExecutionHelper class supported
in Red Hat Decision Manager. For more information about the PMML helper class, see Section 11.1.1,
"PMML execution helper class”.

11.1.1. PMML execution helper class

Red Hat Decision Manager provides a PMML4ExecutionHelper class that helps create the
PMMLRequestData class required for PMML model execution and that helps execute rules using the
RuleUnitExecutor class.

The following are examples of a PMML model execution without and with the PMML4ExecutionHelper
class, as a comparison:

Example PMML model execution without using PMML4ExecutionHelper

159

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

public void executeModel(KieBase kbase,
Map<String,Object> variables,
String modelName,
String correlationld,
String modelPkgName) {
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
PMMLRequestData request = new PMMLRequestData(correlationld, modelName);
PMML4Result resultHolder = new PMML4Result(correlationld);
variables.entrySet().forEach(es -> {
request.addRequestParam(es.getKey(), es.getValue());

Ik

DataSource<PMMLRequestData> requestData = executor.newDataSource("request”);
DataSource<PMML4Result> resultData = executor.newDataSource("results");
DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");

requestData.insert(request);
resultData.insert(resultHolder);

List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
modelPkgName);
Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
(InternalKnowledgeBase)kbase,
possiblePackageNames);

if (ruleUnitClass != null) {
executor.run(ruleUnitClass);
if ("OK".equals(resultHolder.getResultCode())) {
// extract result variables here

}
}
}

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule,
InternalKnowledgeBase ikb, List<String> possiblePackages) {
RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
Map<String,InternalkKnowledgePackage> pkgs = ikb.getPackagesMap();
Rulelmpl rulelmpl = null;
for (String pkgName: possiblePackages) {
if (pkgs.containsKey(pkgName)) {
InternalkKnowledgePackage pkg = pkgs.get(pkgName);
rulelmpl = pkg.getRule(startingRule);
if (rulelmpl = null) {
RuleUnitDescr descr = unitRegistry.getRuleUnitFor(rulelmpl).orElse(null);
if (descr = null) {
return descr.getRuleUnitClass();

}
}
}
}

return null;

}

protected List<String> calculatePossiblePackageNames(String modelld,
String...knownPackageNames) {
List<String> packageNames = new ArrayList<>();

160

CHAPTER 11. PMML MODEL EXECUTION

String javaModelld = modelld.replaceAll("\s","");
if (knownPackageNames != null && knownPackageNames.length > 0) {
for (String knownPkgName: knownPackageNames) {
packageNames.add(knownPkgName + "." + javaModelld);
}
}
String basePkgName = PMML4Unitimpl.DEFAULT_ROOT_PACKAGE+"."+javaModelld;
packageNames.add(basePkgName);
return packageNames;

Example PMML model execution using PMML4ExecutionHelper

public void executeModel(KieBase kbase,
Map<String,Object> variables,
String modelName,
String modelPkgName,
String correlationld) {
PMML4ExecutionHelper helper = PMML4ExecutionHelperFactory.getExecutionHelper(modelName,
kbase);
helper.addPossiblePackageName(modelPkgName);

PMMLRequestData request = new PMMLRequestData(correlationld, modelName);
variables.entrySet().forEach(entry -> {
request.addRequestParam(entry.getKey(), entry.getValue);

b

PMML4Result resultHolder = helper.submitRequest(request);
if ("OK".equals(resultHolder.getResultCode)) {
// extract result variables here

}
}

When you use the PMML4ExecutionHelper, you do not need to specify the possible package names nor
the RuleUnit class as you would in a typical PMML model execution.

To construct a PMML4ExecutionHelper class, you use the PMML4ExecutionHelperFactory class to
determine how instances of PMML4ExecutionHelper are retrieved.

The following are the available PMML4ExecutionHelperFactory class methods for constructing a
PMML4ExecutionHelper class:

PMML4ExecutionHelperFactory methods for PMML assets in a KIE base

Use these methods when PMML assets have already been compiled and are being used from an
existing KIE base:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase,
boolean includeMiningDataSources)

PMML4ExecutionHelperFactory methods for PMML assets on the project classpath

Use these methods when PMML assets are on the project classpath. The classPath argument is the
project classpath location of the PMML file:

161

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

public static PMML4ExecutionHelper getExecutionHelper(String modelName, String classPath,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName,String classPath,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

PMML4ExecutionHelperFactory methods for PMML assets in a byte array

Use these methods when PMML assets are in the form of a byte array:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

PMML4ExecutionHelperFactory methods for PMML assets in aResource

Use these methods when PMML assets are in the form of an org.kie.api.io.Resource object:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

NOTE

The classpath, byte array, and resource PMML4ExecutionHelperFactory methods
create a KIE container for the generated rules and Java classes. The container is used as
the source of the KIE base that the RuleUnitExecutor uses. The container is not
persisted. The PMML4ExecutionHelperFactory method for PMML assets that are
already in a KIE base does not create a KIE container in this way.

11.2. EXECUTING A PMML MODEL USING KIE SERVER

You can execute PMML models that have been deployed to KIE Server by sending the
ApplyPmmIModelCommand command to the configured KIE Server. When you use this command, a
PMMLRequestData object is sent to the KIE Server and a PMML4Result result object is received as a
reply. You can send PMML requests to KIE Server through the KIE Server REST API from a configured
Java class or directly from a REST client.

Prerequisites

162

e KIE Server is installed and configured, including a known user name and credentials for a user

with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

A KIE container is deployed in KIE Server in the form of a KJAR that includes the PMML model.
For more information about project packaging, see Packaging and deploying a Red Hat Decision
Manager project.

® You have the container ID of the KIE container containing the PMML model.

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Procedure

CHAPTER 11. PMML MODEL EXECUTION

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

<!-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml</artifactld>
<version>${rhdm.version}</version>
</dependency>

<!-- Required for the KIE public API -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>${rhdm.version}</version>
</dependencies>

<!-- Required for the KIE Server Java client API -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhdm.version}</version>
</dependency>

<I-- Required if not using classpath KIE container -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>${rhdm.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.44.0.Final-redhat-00003).

163

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.9.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseld);

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

3. Create a class for sending requests to KIE Server and receiving responses:

public class ApplyScorecardModel {
private static final Releaseld releaseld =
new Releaseld("org.acme”,"my-kjar","1.0.0");
private static final String containerld = "SampleModelContainer";
private static KieCommands commandFactory;
private static ClassLoader kjarClassLoader;

private RuleServicesClient serviceClient; 9

// Attributes specific to your class instance
private String rankedFirstCode;
private Double score;

// Initialization of non-final static attributes

static {
commandFactory = KieServices.Factory.get().getCommands();

164

https://access.redhat.com/solutions/3363991

CHAPTER 11. PMML MODEL EXECUTION

// Specifications for kjarClassLoader, if used
KieMavenRepository kmp = KieMavenRepository.getMavenRepository();
File artifactFile = kmp.resolveArtifact(releaseld).getFile();
if (artifactFile != null) {
URL urls[] = new URL[1];
try {
urls[0] = artifactFile.toURI().toURLY();
classLoader = new KieURLClassLoader(urls,PMML4Result.class.getClassLoader());
} catch (MalformedURLException e) {
logger.error("Error getting classLoader for "+containerld);
logger.error(e.getMessage());
}
}else {
logger.warn("Did not find the artifact file for "+releaseld.toString());
}
}

public ApplyScorecardModel(KieServicesConfiguration kieConfig) {
KieServicesClient clientFactory = KieServicesFactory.newKieServicesClient(kieConfig);
serviceClient = clientFactory.getServicesClient(RuleServicesClient.class);

}

// Getters and setters

// Method for executing the PMML model on KIE Server

public void applyModel(String occupation, int age) {
PMMLRequestData input = new PMMLRequestData("1234","SampleModelName"); 6
input.addRequestParam(new Parameterinfo("1234","occupation”,String.class,occupation));
input.addRequestParam(new Parameterinfo("1234","age",Integer.class,age));

CommandFactoryServicelmpl cf = (CommandFactoryServicelmpl)commandFactory;
ApplyPmmIModelCommand command = (ApplyPmmIModelCommand)
cf.newApplyPmmIModel(request);

ServiceResponse<ExecutionResults> results =
ruleClient.executeCommandsWithResults(CONTAINER_ID, command); €

if (results 1= null) { @
PMML4Result resultHolder = (PMML4Result)results.getResult().getValue("results");
if (resultHolder != null && "OK".equals(resultHolder.getResultCode())) {
this.score = resultHolder.getResultValue("ScoreCard","score",Double.class).get();
Map<String,Object> rankingMap =
(Map<String,Object>)resultHolder.getResultValue("ScoreCard","ranking");
if (rankingMap != null && !rankingMap.isEmpty()) {
this.rankedFirstCode = rankingMap.keySet().iterator().next();

ﬂ Defines the class loader if you did not include the KJAR in your client project dependencies

Identifies the service client as defined in the configuration settings, including KIE Server
REST API access credentials

165

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Initializes a PMMLRequestData object
Creates an instance of the ApplyPmmIModelCommand

Sends the command using the service client

QD00

Retrieves the results of the executed PMML model

4. Execute the class instance to send the PMML invocation request to KIE Server.
Alternatively, you can use JMS and REST interfaces to send the ApplyPmmIModelCommand
command to KIE Server. For REST requests, you use the ApplyPmmiModelCommand
command as a POST request to http:/SERVER:PORT/kie-

server/services/rest/server/containers/instances/{containerld} in JSON, JAXB, or XStream
request format.

Example POST endpoint

http://localhost:8080/kie-
server/services/rest/server/containers/instances/SampleModelContainer

Example JSON request body

{
"commands": [{
"apply-pmml-model-command"”: {
"outldentifier": null,
"packageName": null,
"hasMining": false,
"requestData": {
"correlationld": "123",
"modelName": "SimpleScorecard",
"source": null,
"requestParams": |
{
"correlationld": "123",
"name": "param1"”,
"type": "java.lang.Double",
"value": "10.0"
b
{

"correlationld": "123",
"name": "param2",

"type": "java.lang.Double",
"value": "15.0"

Example curl request with endpoint and body

166

CHAPTER 11. PMML MODEL EXECUTION

curl -X POST "http://localhost:8080/kie-
server/services/rest/server/containers/instances/SampleModelContainer" -H "accept:
application/json" -H "content-type: application/json" -d "{ \"commands\": [{ \"apply-pmmi-
model-command\": { \"outldentifier\": null, \"packageName\": null, \"hasMining\": false,
\"requestData\": { \"correlationld\": \"123\", \"modelName\": \"SimpleScorecard\", \"source\":
null, \"requestParams\": [{ \"correlationld\": \"123\", \"name\": \"param1\", \"type\":
\"java.lang.Double\", \"value\": \"10.0\" }, { \"correlationld\": \"123\", \"name\": \"param?2\",
\"type\": \"java.lang.Double\", \"value\": \"15.0\" } 1 } } } [}"

Example JSON response

{
"results" : [{
"value" : {"org.kie.api.pmml.DoubleFieldOutput":{
"value" : 40.8,
"correlationld" : "123",
"segmentationld" : null,
"segmentld" : null,
"name" : "OverallScore",
"displayValue" : "OverallScore",
"weight" : 1.0
1
"key" : "OverallScore"
3 A
"value" : {"org.kie.api.pomml.PMML4Result":{
"resultVariables" : {
"OverallScore" : {
"value" : 40.8,
"correlationld" : "123",
"segmentationld" : null,
"segmentld" : null,
"name" : "OverallScore",
"displayValue" : "OverallScore",
"weight" : 1.0
b
"ScoreCard" : {
"modelName" : "SimpleScorecard",
"score" : 40.8,
"holder" : {
"modelName" : "SimpleScorecard",
"correlationld" : "123",
"voverallScore" : null,
"moverallScore" : true,
"vparam1" : 10.0,
"mparami" : false,
"vparam2" : 15.0,
"mparam2" : false
b
"enableRC" : true,
"pointsBelow" : true,
"ranking" : {
"reasonCh1" : 5.0,
"reasonCh2" : -6.0

}
}

167

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

b

"correlationld" : "123",
"segmentationld" : null,
"segmentld" : null,
"segmentindex" : 0,
"resultCode" : "OK",
"resultObjectName" : null

1

"key" : "results"

gt

"facts" : []

}

168

CHAPTER 12. ADDITIONAL RESOURCES

CHAPTER 12. ADDITIONAL RESOURCES
® PMML specification
® Packaging and deploying a Red Hat Decision Manager project

® Interacting with Red Hat Decision Manager using KIE APIs

169

http://dmg.org/pmml/pmml-v4-2-1.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

PART lll. DESIGNING A DECISION SERVICE USING DRL RULES

As a business rules developer, you can define business rules using the DRL (Drools Rule Language)
designer in Business Central. DRL rules are defined directly in free-form .drl text files instead of in a
guided or tabular format like other types of rule assets in Business Central. These DRL files form the
core of the decision service for your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.9, see the following resources:

® Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

® Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites
® The space and project for the DRL rules have been created in Business Central. Each asset is

associated with a project assigned to a space. For details, see Getting started with decision
services.

170

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 13. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 13. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 13.1. Decision-authoring assets supported in Red Hat Decision Manager

Highlights Authoring tools Documentation
Decision Model . Business Central Designing a
. ® Are decision models based on a . .
and Notation . . or other DMN- decision service
notation standard defined by the)))
(DMN) models Object Management Group compliant editor using DMN models

(OMG)

® Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

® Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

e Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

® Are optimal for creating

comprehensive, illustrative, and
stable decision flows

171

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Highlights

Authoring tools Documentation

Guided decision

tables

172

Spreadsheet
decision tables

Guided rules

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

CHAPTER 13. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Are reusable rule structures that L .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9)
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

173

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation)

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

@ Can beincluded with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

174

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These DRL
files are the source in which all other rule assets in Business Central are ultimately rendered. You can
create and manage DRL files within the Business Central interface, or create them externally as part of a
Maven or Java project using Red Hat CodeReady Studio or another integrated development
environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule
conditions (when) and actions (then). The DRL designer in Business Central provides syntax
highlighting for Java, DRL, and XML.

DRL files consist of the following components:

Components in a DRL file

package

import

function // Optional
query // Optional
declare // Optional
global // Optional

rule "rule name"
/I Attributes
when
// Conditions
then
// Actions
end

rule "rule2 name"

The following example DRL rule determines the age limit in a loan application decision service:

Example rule for loan application age limit

rule "Underage"
salience 15
agenda-group "applicationGroup”
when
$application : LoanApplication()
Applicant(age < 21)
then
$application.setApproved(false);
$application.setExplanation("Underage");
end

A DRL file can contain single or multiple rules, queries, and functions, and can define resource
declarations such as imports, globals, and attributes that are assigned and used by your rules and

175

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed last. All
other DRL components can follow any order.

Each rule must have a unique name within the rule package. If you use the same rule name more than
once in any DRL file in the package, the rules fail to compile. Always enclose rule names with double
quotation marks (rule "rule name") to prevent possible compilation errors, especially if you use spaces
in rule names.

All data objects related to a DRL rule must be in the same project package as the DRL file in Business

Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

14.1. PACKAGES IN DRL

A package is a folder of related assets in Red Hat Decision Manager, such as data objects, DRL files,
decision tables, and other asset types. A package also serves as a unique namespace for each group of
rules. A single rule base can contain multiple packages. You typically store all the rules for a package in
the same file as the package declaration so that the package is self-contained. However, you can import
objects from other packages that you want to use in the rules.

The following example is a package name and namespace for a DRL file in a mortgage application
decision service:

Example package definition in a DRL file

I package org.mortgages;

14.2. IMPORT STATEMENTS IN DRL

Similar to import statements in Java, imports in DRL files identify the fully qualified paths and type
names for any objects that you want to use in the rules. You specify the package and data object in the
format packageName.objectName, with multiple imports on separate lines. The decision engine
automatically imports classes from the Java package with the same name as the DRL package and from
the package java.lang.

The following example is an import statement for a loan application object in a mortgage application
decision service:

Example import statement in a DRL file

I import org.mortgages.LoanApplication;

14.3. FUNCTIONS IN DRL

Functions in DRL files put semantic code in your rule source file instead of in Java classes. Functions are
especially useful if an action (then) part of a rule is used repeatedly and only the parameters differ for
each rule. Above the rules in the DRL file, you can declare the function or import a static method from a
helper class as a function, and then use the function by name in an action (then) part of the rule.

The following examples illustrate a function that is either declared or imported in a DRL file:

Example function declaration with a rule (option 1)

176

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

function String hello(String applicantName) {
return "Hello " + applicantName + "!";

}

rule "Using a function"
when
/I Empty
then
System.out.printin(hello("James"));
end

Example function import with a rule (option 2)

import function my.package.applicant.hello;

rule "Using a function"
when
/l Empty
then
System.out.printin(hello("James"));
end

14.4. QUERIES IN DRL

Queries in DRL files search the working memory of the decision engine for facts related to the rules in
the DRL file. You add the query definitions in DRL files and then obtain the matching results in your
application code. Queries search for a set of defined conditions and do not require when or then
specifications. Query names are global to the KIE base and therefore must be unique among all other
rule queries in the project. To return the results of a query, you construct a QueryResults definition
using ksession.getQueryResults("'name"), where "name" is the query name. This returns a list of query
results, which enable you to retrieve the objects that matched the query. You define the query and
query results parameters above the rules in the DRL file.

The following example is a query definition in a DRL file for underage applicants in a mortgage
application decision service, with the accompanying application code:

Example query definition in a DRL file

query "people under the age of 21"
$person : Person(age < 21)
end

Example application code to obtain query results

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.printin("we have " + results.size() + " people under the age of 21");

You can also iterate over the returned QueryResults using a standard for loop. Each elementis a
QueryResultsRow that you can use to access each of the columns in the tuple.

Example application code to obtain and iterate over query results

I QueryResults results = ksession.getQueryResults("people under the age of 21");

177

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

System.out.printin("we have " + results.size() + " people under the age of 21");
System.out.printin("These people are under the age of 21:");

for (QueryResultsRow row : results) {
Person person = (Person) row.get("person");
System.out.printin(person.getName() + "\n");

}

14.5. TYPE DECLARATIONS AND METADATA IN DRL

Declarations in DRL files define new fact types or metadata for fact types to be used by rules in the DRL
file:

® New fact types: The default fact type in the java.lang package of Red Hat Decision Manager is
Object, but you can declare other types in DRL files as needed. Declaring fact types in DRL files
enables you to define a new fact model directly in the decision engine, without creating models
in a lower-level language like Java. You can also declare a new type when a domain model is
already built and you want to complement this model with additional entities that are used
mainly during the reasoning process.

® Metadata for fact types:You can associate metadata in the format @key(value) with new or
existing facts. Metadata can be any kind of data that is not represented by the fact attributes
and is consistent among all instances of that fact type. The metadata can be queried at run time
by the decision engine and used in the reasoning process.

14.5.1. Type declarations without metadata in DRL

A declaration of a new fact does not require any metadata, but must include a list of attributes or fields.
If a type declaration does not include identifying attributes, the decision engine searches for an existing
fact class in the classpath and raises an error if the class is missing.

The following example is a declaration of a new fact type Person with no metadata in a DRL file:

Example declaration of a new fact type with a rule

declare Person
name : String
dateOfBirth : java.util.Date
address : Address

end

rule "Using a declared type"
when
$p : Person(name == "James")
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName("Mark");
insert(mark);
end

In this example, the new fact type Person has the three attributes name, dateOfBirth, and address.
Each attribute has a type that can be any valid Java type, including another class that you create or a
fact type that you previously declared. The dateOfBirth attribute has the type java.util.Date, from the
Java API, and the address attribute has the previously defined fact type Address.

178

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

To avoid writing the fully qualified name of a class every time you declare it, you can define the full class
name as part of the import clause:

Example type declaration with the fully qualified class name in the import

import java.util.Date

declare Person
name : String
dateOfBirth : Date
address : Address
end

When you declare a new fact type, the decision engine generates at compile time a Java class
representing the fact type. The generated Java class is a one-to-one JavaBeans mapping of the type
definition.

For example, the following Java class is generated from the example Person type declaration:

Generated Java class for the Person fact type declaration

public class Person implements Serializable {
private String name;
private java.util.Date dateOfBirth;
private Address address;

// Empty constructor
public Person() {...}

// Constructor with all fields
public Person(String name, Date dateOfBirth, Address address) {...}

// If keys are defined, constructor with keys
public Person(...keys...) {...}

// Getters and setters
// “equals’ and "hashCode"
// toString”

You can then use the generated class in your rules like any other fact, as illustrated in the previous rule
example with the Person type declaration:

Example rule that uses the declared Person fact type

rule "Using a declared type"
when
$p : Person(name == "James")
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName("Mark");
insert(mark);
end

179

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

14.5.2. Enumerative type declarations in DRL

DRL supports the declaration of enumerative types in the format declare enum <factTypes, followed
by a comma-separated list of values ending with a semicolon. You can then use the enumerative list in
the rules in the DRL file.

For example, the following enumerative type declaration defines days of the week for an employee
scheduling rule:

Example enumerative type declaration with a scheduling rule

declare enum DaysOfWeek

SUN("Sunday"),MON("Monday"), TUE("Tuesday"),WED("Wednesday"), THU("Thursday"),FRI("Friday"
),SAT("Saturday");

fullName : String
end

rule "Using a declared Enum"
when
$emp : Employee(dayOff == DaysOfWeek.MONDAY)
then
end
14.5.3. Extended type declarations in DRL

DRL supports type declaration inheritance in the format declare <factType1> extends <factType2s.
To extend a type declared in Java by a subtype declared in DRL, you repeat the parent type in a
declaration statement without any fields.

For example, the following type declarations extend a Student type from a top-level Person type, and a
LongTermStudent type from the Student subtype:

Example extended type declarations

import org.people.Person

declare Person end

declare Student extends Person
school : String

end

declare LongTermStudent extends Student

years : int
course : String
end

14.5.4. Type declarations with metadata in DRL

You can associate metadata in the format @key(value) (the value is optional) with fact types or fact
attributes. Metadata can be any kind of data that is not represented by the fact attributes and is

180

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

consistent among all instances of that fact type. The metadata can be queried at run time by the
decision engine and used in the reasoning process. Any metadata that you declare before the attributes
of a fact type are assigned to the fact type, while metadata that you declare after an attribute are
assigned to that particular attribute.

In the following example, the two metadata attributes @author and @dateOfCreation are declared for
the Person fact type, and the two metadata items @key and @maxLength are declared for the name
attribute. The @key metadata attribute has no required value, so the parentheses and the value are
omitted.

Example metadata declaration for fact types and attributes

import java.util.Date

declare Person
@author(Bob)
@dateOfCreation(01-Feb-2009)

name : String @key @maxLength(30)
dateOfBirth : Date
address : Address

end

For declarations of metadata attributes for existing types, you can identify the fully qualified class name
as part of the import clause for all declarations or as part of the individual declare clause:

Example metadata declaration for an imported type

import org.drools.examples.Person

declare Person
@author(Bob)
@dateOfCreation(01-Feb-2009)
end

Example metadata declaration for a declared type

declare org.drools.examples.Person
@author(Bob)
@dateOfCreation(01-Feb-2009)
end

14.5.5. Metadata tags for fact type and attribute declarations in DRL

Although you can define custom metadata attributes in DRL declarations, the decision engine also
supports the following predefined metadata tags for declarations of fact types or fact type attributes.

181

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

NOTE

The examples in this section that refer to the VoiceCall class assume that the sample
application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

public class VoiceCall {
private String originNumber;
private String destinationNumber;
private Date callDateTime;
private long callDuration; //in milliseconds

// Constructors, getters, and setters

}

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the decision
engine during complex event processing.
Default parameter: fact

Supported parameters: fact, event
I @role(fact | event)
Example: Declare VoiceCall as event type

declare VoiceCall
@role(event)
end

@timestamp

This tag is automatically assigned to every event in the decision engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working memory
of the decision engine. You can specify a custom time stamp attribute instead of the default time
stamp added by the session clock.

Default parameter: The time added by the decision engine session clock

Supported parameters: Session clock time or custom time stamp attribute
I @timestamp(<attributeName>)
Example: Declare VoiceCall timestamp attribute

declare VoiceCall

@role(event)

@timestamp(callDateTime)
end

@duration

This tag determines the duration time for events in the decision engine. Events can be interval-

182

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

based events or point-in-time events. Interval-based events have a duration time and persist in the
working memory of the decision engine until their duration time has lapsed. Point-in-time events
have no duration and are essentially interval-based events with a duration of zero. By default, every
event in the decision engine has a duration of zero. You can specify a custom duration attribute
instead of the default.

Default parameter: Null (zero)

Supported parameters: Custom duration attribute
I @duration(<attributeName>)
Example: Declare VoiceCall duration attribute

declare VoiceCall
@role(event)
@timestamp(callDateTime)
@duration(callDuration)
end

@expires

This tag determines the time duration before an event expires in the working memory of the decision
engine. By default, an event expires when the event can no longer match and activate any of the
current rules. You can define an amount of time after which an event should expire. This tag
definition also overrides the implicit expiration offset calculated from temporal constraints and
sliding windows in the KIE base. This tag is available only when the decision engine is running in
stream mode.

Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]
I @expires(<timeOffset>)
Example: Declare expiration offset for VoiceCall events

declare VoiceCall
@role(event)
@timestamp(callDateTime)
@duration(callDuration)
@expires(1h35m)

end

@typesafe

This tab determines whether a given fact type is compiled with or without type safety. By default, all
type declarations are compiled with type safety enabled. You can override this behavior to type-
unsafe evaluation, where all constraints are generated as MVEL constraints and executed
dynamically. This is useful when dealing with collections that do not have any generics or mixed type
collections.

Default parameter: true

Supported parameters: true, false

I @typesafe(<boolean>)

183

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Example: Declare VoiceCall for type-unsafe evaluation

declare VoiceCall
@role(fact)
@typesafe(false)
end

@serialVersionUID

This tag defines an identifying serialVersionUID value for a serializable class in a fact declaration. If a
serializable class does not explicitly declare a serialVersionUID, the serialization run time calculates a
default serialVersionUID value for that class based on various aspects of the class, as described in
the Java Object Serialization Specification. However, for optimal deserialization results and for
greater compatibility with serialized KIE sessions, set the serialVersionUID as needed in the relevant
class or in your DRL declarations.

Default parameter: Null

Supported parameters: Custom serialVersionUID integer
I @serialVersionUID(<integer>)
Example: Declare serialVersionUID for a VoiceCall class

declare VoiceCall
@serialVersionUID(42)
end

@key

184

This tag enables a fact type attribute to be used as a key identifier for the fact type. The generated
class can then implement the equals() and hashCode() methods to determine if two instances of
the type are equal to each other. The decision engine can also generate a constructor using all the
key attributes as parameters.

Default parameter: None

Supported parameters: None
I <attributeDefinition> @key
Example: Declare Person type attributes as keys

declare Person
firstName : String @key
lastName : String @key
age :int

end

For this example, the decision engine checks the firstName and lastName attributes to determine if
two instances of Person are equal to each other, but it does not check the age attribute. The
decision engine also implicitly generates three constructors: one without parameters, one with the
@key fields, and one with all fields:

Example constructors from the key declarations

https://docs.oracle.com/javase/10/docs/specs/serialization/index.html

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Person() // Empty constructor
Person(String firstName, String lastName)

Person(String firstName, String lastName, int age)

You can then create instances of the type based on the key constructors, as shown in the following
example:

Example instance using the key constructor

I Person person = new Person("John", "Doe");

@position

This tag determines the position of a declared fact type attribute or field in a positional argument,
overriding the default declared order of attributes. You can use this tag to modify positional
constraints in patterns while maintaining a consistent format in your type declarations and positional
arguments. You can use this tag only for fields in classes on the classpath. If some fields in a single
class use this tag and some do not, the attributes without this tag are positioned last, in the declared
order. Inheritance of classes is supported, but not interfaces of methods.

Default parameter: None

Supported parameters: Any integer
I <attributeDefinition> @position (<integer>)
Example: Declare a fact type and override declared order

declare Person
firstName : String @position(1)
lastName : String @position(0)
age : int @position(2)
occupation: String

end

In this example, the attributes are prioritized in positional arguments in the following order:

1. lastName

2. firstName

3. age

4. occupation
In positional arguments, you do not need to specify the field name because the position maps to a
known named field. For example, the argument Person(lastName == "Doe") is the same as
Person("Doe";), where the lastName field has the highest position annotation in the DRL
declaration. The semicolon ; indicates that everything before it is a positional argument. You can mix
positional and named arguments on a pattern by using the semicolon to separate them. Any variables
in a positional argument that have not yet been bound are bound to the field that maps to that

position.

The following example patterns illustrate different ways of constructing positional and named

185

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

186

arguments. The patterns have two constraints and a binding, and the semicolon differentiates the
positional section from the named argument section. Variables and literals and expressions using only
literals are supported in positional arguments, but not variables alone.

Example patterns with positional and named arguments

Person("Doe", "John", $a;)
Person("Doe", "John"; $a : age)
Person("Doe"; firstName == "John", $a : age)

Person(lastName == "Doe"; firstName == "John", $a : age)

Positional arguments can be classified as input arguments or output arguments. Input arguments
contain a previously declared binding and constrain against that binding using unification. Output
arguments generate the declaration and bind it to the field represented by the positional argument
when the binding does not yet exist.

In extended type declarations, use caution when defining @position annotations because the
attribute positions are inherited in subtypes. This inheritance can result in a mixed attribute order
that can be confusing in some cases. Two fields can have the same @position value and consecutive
values do not need to be declared. If a position is repeated, the conflict is solved using inheritance,
where position values in the parent type have precedence, and then using the declaration order from
the first to last declaration.

For example, the following extended type declarations result in mixed positional priorities:

Example extended fact type with mixed position annotations

declare Person
firstName : String @position(1)
lastName : String @position(0)
age : int @position(2)
occupation: String

end

declare Student extends Person
degree : String @position(1)
school : String @position(0)

graduationDate : Date
end

In this example, the attributes are prioritized in positional arguments in the following order:
1. lastName (position O in the parent type)
2. school (position O in the subtype)
3. firstName (position 1in the parent type)
4. degree (position 1in the subtype)
5. age (position 2 in the parent type)

6. occupation (first field with no position annotation)

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

7. graduationDate (second field with no position annotation)

14.5.6. Property-change settings and listeners for fact types

By default, the decision engine does not re-evaluate all fact patterns for fact types each time a rule is
triggered, but instead reacts only to modified properties that are constrained or bound inside a given
pattern. For example, if a rule calls modify() as part of the rule actions but the action does not generate
new data in the KIE base, the decision engine does not automatically re-evaluate all fact patterns
because no data was modified. This property reactivity behavior prevents unwanted recursions in the
KIE base and results in more efficient rule evaluation. This behavior also means that you do not always
need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

e ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

e ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

o DISABLED: No types are property reactive. All property-change listeners are ignored.

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml file
of your Red Hat Decision Manager distribution:

Example property reactivity setting in system properties

<system-properties>
<property name="drools.propertySpecific" value="ALLOWED"/>

</system-properties>

The decision engine supports the following property-change settings and listeners for fact classes or
declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the decision engine (all types are property reactive), this
tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to re-evaluate all fact patterns for the
specified fact type each time the rule is triggered, instead of reacting only to modified properties
that are constrained or bound inside a given pattern.

Example: Disable default property reactivity in a DRL type declaration

187

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

declare Person
@classReactive
firstName : String
lastName : String
end

Example: Disable default property reactivity in a Java class

@classReactive

public static class Person {
private String firstName;
private String lastName;

}

@propertyReactive

If property reactivity is set to ALLOWED in the decision engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to react only to modified properties that
are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating
all fact patterns for the fact each time the rule is triggered.

Example: Enable property reactivity in a DRL type declaration (when reactivity is
disabled globally)

declare Person
@propertyReactive
firstName : String
lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@propertyReactive

public static class Person {
private String firstName;
private String lastName;

}

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact patterns
in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the decision
engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.

Default parameter: None

Supported parameters: Property name, * (all), ! (not), I* (no properties)
I <factPattern> @watch (<property>)

Example: Enable or disable property reactivity in fact patterns

188

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

/I Listens for changes in both “firstName™ (inferred) and “lastName:
Person(firstName == $expectedFirstName) @watch(lastName)

/I Listens for changes in all properties of the "Person’ fact:
Person(firstName == $expectedFirstName) @watch(*)

/I Listens for changes in "lastName™ and explicitly excludes changes in “firstName™:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

/I Listens for changes in all properties of the "Person’ fact except "age':
Person(firstName == $expectedFirstName) @watch(*, lage)

/I Excludes changes in all properties of the "Person’ fact (equivalent to using "@classReactivity’
tag):
Person(firstName == $expectedFirstName) @watch(!*)

The decision engine generates a compilation error if you use the @watch tag for properties in a fact
type that uses the @classReactive tag (disables property reactivity) or when property reactivity is
set to ALLOWED in the decision engine and the relevant fact type does not use the
@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch(firstName, ! firstName).

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the decision engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
@propertyChangeSupport
end

14.5.7. Access to DRL declared types in application code

Declared types in DRL are typically used within the DRL files while Java models are typically used when
the model is shared between rules and applications. Because declared types are generated at KIE base
compile time, an application cannot access them until application run time. In some cases, an application
needs to access and handle facts directly from the declared types, especially when the application wraps
the decision engine and provides higher-level, domain-specific user interfaces for rules management.

To handle declared types directly from the application code, you can use the
org.drools.definition.type.FactType APl in Red Hat Decision Manager. Through this API, you can
instantiate, read, and write fields in the declared fact types.

The following example code modifies a Person fact type directly from an application:

Example application code to handle a declared fact type through the FactType API

import java.util.Date;
import org.kie.api.definition.type.FactType;

import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;

189

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

// Get a reference to a KIE base with the declared type:
KieBase kbase = ...

// Get the declared fact type:
FactType personType = kbase.getFactType("org.drools.examples”, "Person");

// Create instances:
Object bob = personType.newlnstance();

// Set attribute values:

personType.set(bob, "name", "Bob");

personType.set(bob, "dateOfBirth", new Date());

personType.set(bob, "address", new Address("King's Road","London","404"));

// Insert the fact into a KIE session:
KieSession ksession = ...
ksession.insert(bob);
ksession.fireAllIRules();

// Read attributes:
String name = (String) personType.get(bob, "name");
Date date = (Date) personType.get(bob, "dateOfBirth");

The APl also includes other helpful methods, such as setting all the attributes at once, reading values
from a Map collection, or reading all attributes at once into a Map collection.

Although the API behavior is similar to Java reflection, the APl does not use reflection and relies on
more performant accessors that are implemented with generated bytecode.

14.6. GLOBAL VARIABLES IN DRL

Global variables in DRL files typically provide data or services for the rules, such as application services
used in rule consequences, and return data from rules, such as logs or values added in rule
consequences. You set the global value in the working memory of the decision engine through a KIE
session configuration or REST operation, declare the global variable above the rules in the DRL file, and
then use it in an action (then) part of the rule. For multiple global variables, use separate lines in the DRL
file.

The following example illustrates a global variable list configuration for the decision engine and the
corresponding global variable definition in the DRL file:

Example global list configuration for the decision engine

List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal("myGlobalList", list);

Example global variable definition with a rule

global java.util.List myGlobalList;

rule "Using a global"

190

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

when
/I Empty
then
myGiloballList.add("My global list");
end

' WARNING
A Do not use global variables to establish conditions in rules unless a global variable

has a constant immutable value. Global variables are not inserted into the working
memory of the decision engine, so the decision engine cannot track value changes
of variables.

Do not use global variables to share data between rules. Rules always reason and
react to the working memory state, so if you want to pass data from rule to rule,
assert the data as facts into the working memory of the decision engine.

A use case for a global variable might be an instance of an email service. In your integration code that is
calling the decision engine, you obtain your emailService object and then set it in the working memory
of the decision engine. In the DRL file, you declare that you have a global of type emailService and give
it the name "email"”, and then in your rule consequences, you can use actions such as
email.sendSMS(number, message).

If you declare global variables with the same identifier in multiple packages, then you must set all the
packages with the same type so that they all reference the same global value.

14.7. RULE ATTRIBUTES IN DRL

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.
In DRL files, you typically define rule attributes above the rule conditions and actions, with multiple
attributes on separate lines, in the following format:

rule "rule_name"
/Il Attribute
/I Attribute
when
// Conditions
then
// Actions
end

The following table lists the names and supported values of the attributes that you can assign to rules:

Table 14.1. Rule attributes

Attribute Value

191

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Attribute Value

salience

enabled

date-effective

date-expires

no-loop

agenda-group

activation-group

duration

timer

192

An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation

group.

Example: activation-group "GroupName"

Along integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

A string identifying either int (interval) orcron timer definitions for
scheduling the rule.

Example: timer (cron:* 0/15 * * * ?) (every 15 minutes)

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Attribute Value

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *"" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the ho-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

NOTE

When you use Red Hat Decision Manager without the
executable model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information about
executable models, see Packaging and deploying a Red Hat
Decision Manager project.

14.7.1. Timer and calendar rule attributes in DRL

Timers and calendars are DRL rule attributes that enable you to apply scheduling and timing constraints
to your DRL rules. These attributes require additional configurations depending on the use case.

193

http://www.quartz-scheduler.org/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

The timer attribute in DRL rules is a string identifying either int (interval) or cron timer definitions for
scheduling a rule and supports the following formats:

Timer attribute formats

timer (int: <initial delay> <repeat interval>)

timer (cron: <cron expression>)
Example interval timer attributes

/I Run after a 30-second delay
timer (int: 30s)

/I Run every 5 minutes after a 30-second delay each time
timer (int: 30s 5m)

Example cron timer attribute

// Run every 15 minutes
timer (cron:* 0/15*** ?)

Interval timers follow the semantics of java.util.Timer objects, with an initial delay and an optional
repeat interval. Cron timers follow standard Unix cron expressions.

The following example DRL rule uses a cron timer to send an SMS text message every 15 minutes:

Example DRL rule with a cron timer

rule "Send SMS message every 15 minutes"
timer (cron:* 0/15*** ?)

when
$a : Alarm(on == true)
then
channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on.");
end

Generally, a rule that is controlled by a timer becomes active when the rule is triggered and the rule
consequence is executed repeatedly, according to the timer settings. The execution stops when the rule
condition no longer matches incoming facts. However, the way the decision engine handles rules with
timers depends on whether the decision engine is in active mode or in passive mode.

By default, the decision engine runs in passive mode and evaluates rules, according to the defined timer
settings, when a user or an application explicitly calls fireAllRules(). Conversely, if a user or application
calls fireUntilHalt(), the decision engine starts in active mode and evaluates rules continually until the
user or application explicitly calls halt().

When the decision engine is in active mode, rule consequences are executed even after control returns
from a call to fireUntilHalt() and the decision engine remains reactive to any changes made to the
working memory. For example, removing a fact that was involved in triggering the timer rule execution
causes the repeated execution to terminate, and inserting a fact so that some rule matches causes that
rule to be executed. However, the decision engine is not continually active, but is active only after a rule
is executed. Therefore, the decision engine does not react to asynchronous fact insertions until the next
execution of a timer-controlled rule. Disposing a KIE session terminates all timer activity.

194

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

When the decision engine is in passive mode, rule consequences of timed rules are evaluated only when
fireAllRules() is invoked again. However, you can change the default timer-execution behavior in
passive mode by configuring the KIE session with a TimedRuleExecutionOption option, as shown in the
following example:

KIE session configuration to automatically execute timed rules in passive mode

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
ksconf.setOption(TimedRuleExecutionOption.YES);
KSession ksession = kbase.newKieSession(ksconf, null);

You can additionally set a FILTERED specification on the TimedRuleExecutionOption option that
enables you to define a callback to filter those rules, as shown in the following example:

KIE session configuration to filter which timed rules are automatically executed

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
conf.setOption(new TimedRuleExecutionOption.FILTERED(new TimedRuleExecutionFilter() {
public boolean accept(Rule[] rules) {
return rules[0].getName().equals("MyRule");

D)

For interval timers, you can also use an expression timer with expr instead of int to define both the delay
and interval as an expression instead of a fixed value.

The following example DRL file declares a fact type with a delay and period that are then used in the
subsequent rule with an expression timer:

Example rule with an expression timer

declare Bean
delay : String = "30s"
period :long = 60000
end

rule "Expression timer"
timer (expr: $d, $p)
when
Bean($d : delay, $p : period)
then
/I Actions
end

The expressions, such as $d and $p in this example, can use any variable defined in the pattern-
matching part of the rule. The variable can be any String value that can be parsed into a time duration
or any numeric value that is internally converted in a long value for a duration in milliseconds.

Both interval and expression timers can use the following optional parameters:
e start and end: A Date or a String representing a Date or a long value. The value can also be a

Number that is transformed into a Java Date in the format new Date(((Number)
n).longValue()).

195

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

e repeat-limit: An integer that defines the maximum number of repetitions allowed by the timer. If
both the end and the repeat-limit parameters are set, the timer stops when the first of the two
is reached.

Example timer attribute with optional start, end, and repeat-limit parameters
I timer (int: 30s 1h; start=3-JAN-2020, end=4-JAN-2020, repeat-limit=50)

In this example, the rule is scheduled for every hour, after a delay of 30 seconds each hour, beginning on
3 January 2020 and ending either on 4 January 2020 or when the cycle repeats 50 times.

If the system is paused (for example, the session is serialized and then later deserialized), the rule is
scheduled only one time to recover from missing activations regardless of how many activations were
missed during the pause, and then the rule is subsequently scheduled again to continue in sync with the
timer setting.

The calendar attribute in DRL rules is a Quartz calendar definition for scheduling a rule and supports
the following format:

Calendar attribute format
I calendars "<definition or registered name>"
Example calendar attributes

/I Exclude non-business hours
calendars "™ * 0-7,18-23 ? * *"

/' Weekdays only, as registered in the KIE session
calendars "weekday"

You can adapt a Quartz calendar based on the Quartz calendar APl and then register the calendar in the
KIE session, as shown in the following example:

Adapting a Quartz Calendar

I Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)
Registering the calendar in the KIE session

I ksession.getCalendars().set("weekday", weekDayCal);

You can use calendars with standard rules and with rules that use timers. The calendar attribute can
contain one or more comma-separated calendar names written as String literals.

The following example rules use both calendars and timers to schedule the rules:

Example rules with calendars and timers

rule "Weekdays are high priority"
calendars "weekday"
timer (int:0 1h)
when

196

http://www.quartz-scheduler.org/

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Alarm()
then
send("priority high - we have an alarm");
end

rule "Weekends are low priority"
calendars "weekend"
timer (int:0 4h)
when
Alarm()
then
send("priority low - we have an alarm");
end

14.8. RULE CONDITIONS IN DRL (WHEN)

The when part of a DRL rule (also known as the Left Hand Side (LHS) of the rule) contains the
conditions that must be met to execute an action. Conditions consist of a series of stated patterns and
constraints, with optional bindings and supported rule condition elements (keywords), based on the
available data objects in the package. For example, if a bank requires loan applicants to have over 21
years of age, then the when condition of an "Underage" rule would be Applicant(age < 21).

NOTE

DRL uses when instead of if because if is typically part of a procedural execution flow
during which a condition is checked at a specific point in time. In contrast, when indicates
that the condition evaluation is not limited to a specific evaluation sequence or point in
time, but instead occurs continually at any time. Whenever the condition is met, the
actions are executed.

If the when section is empty, then the conditions are considered to be true and the actions in the then
section are executed the first time a fireAllRules() call is made in the decision engine. This is useful if
you want to use rules to set up the decision engine state.

The following example rule uses empty conditions to insert a fact every time the rule is executed:

Example rule without conditions

rule "Always insert applicant”
when
// Empty
then // Actions to be executed once
insert(new Applicant());
end

/I The rule is internally rewritten in the following way:

rule "Always insert applicant”
when
eval(true)
then
insert(new Applicant());
end

197

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

If rule conditions use multiple patterns with no defined keyword conjunctions (such as and, or, or not),
the default conjunction is and:

Example rule without keyword conjunctions

rule "Underage"
when
application : LoanApplication()
Applicant(age < 21)
then
/I Actions
end

/I The rule is internally rewritten in the following way:

rule "Underage"
when
application : LoanApplication()
and Applicant(age < 21)
then
/I Actions
end

14.8.1. Patterns and constraints

A pattern in a DRL rule condition is the segment to be matched by the decision engine. A pattern can
potentially match each fact that is inserted into the working memory of the decision engine. A pattern
can also contain constraints to further define the facts to be matched.

In the simplest form, with no constraints, a pattern matches a fact of the given type. In the following
example, the type is Person, so the pattern will match against all Person objects in the working memory
of the decision engine:

Example pattern for a single fact type
I Person()

The type does not need to be the actual class of some fact object. Patterns can refer to superclasses or
even interfaces, potentially matching facts from many different classes. For example, the following
pattern matches all objects in the working memory of the decision engine:

Example pattern for all objects
I Object() // Matches all objects in the working memory

The parentheses of a pattern enclose the constraints, such as the following constraint on the person’s
age:

Example pattern with a constraint

I Person(age == 50)

198

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

A constraint is an expression that returns true or false. Pattern constraints in DRL are essentially Java
expressions with some enhancements, such as property access, and some differences, such as equals()
and lequals() semantics for == and != (instead of the usual same and not same semantics).

Any JavaBeans property can be accessed directly from pattern constraints. A bean property is exposed
internally using a standard JavaBeans getter that takes no arguments and returns something. For
example, the age property is written as age in DRL instead of the getter getAge():

DRL constraint syntax with JavaBeans properties

Person(age == 50)
/[This is the same as the following getter format:

Person(getAge() == 50)

Red Hat Decision Manager uses the standard JDK Introspector class to achieve this mapping, so it
follows the standard JavaBeans specification. For optimal decision engine performance, use the
property access format, such as age, instead of using getters explicitly, such as getAge().

' WARNING
A Do not use property accessors to change the state of the object in a way that might

affect the rules because the decision engine caches the results of the match
between invocations for higher efficiency.

For example, do not use property accessors in the following ways:

public int getAge() {
age++; // Do not do this.
return age;

}

public int getAge() {
Date now = DateUtil.now(); // Do not do this.
return DateUltil.differencelnYears(now, birthday);

}

Instead of following the second example, insert a fact that wraps the current date in
the working memory and update that fact between fireAllRules() as needed.

However, if the getter of a property cannot be found, the compiler uses the property name as a fallback
method name, without arguments:

Fallback method if object is not found

Person(age == 50)

/I'If "Person.getAge()’ does not exist, the compiler uses the following syntax:

199

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

I Person(age() == 50)

You can also nest access properties in patterns, as shown in the following example. Nested properties
are indexed by the decision engine.

Example pattern with nested property access

Person(address.houseNumber == 50)
/[This is the same as the following format:

Person(getAddress().getHouseNumber() == 50)

WARNING
AA In stateful KIE sessions, use nested accessors carefully because the working

memory of the decision engine is not aware of any of the nested values and does
not detect when they change. Either consider the nested values immutable while
any of their parent references are inserted into the working memory, or, if you want
to modify a nested value, mark all of the outer facts as updated. In the previous
example, when the houseNumber property changes, any Person with that
Address must be marked as updated.

You can use any Java expression that returns a boolean value as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property access:

Example pattern with a constraint using property access and Java expression
I Person(age == 50)

You can change the evaluation priority by using parentheses, as in any logical or mathematical
expression:

Example evaluation order of constraints
I Person(age > 100 && (age % 10==0))

You can also reuse Java methods in constraints, as shown in the following example:

Example constraints with reused Java methods

I Person(Math.round(weight / (height * height)) < 25.0)

200

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

' WARNING
A Do not use constraints to change the state of the object in a way that might affect

the rules because the decision engine caches the results of the match between
invocations for higher efficiency. Any method that is executed on a fact in the rule
conditions must be a read-only method. Also, the state of a fact should not change
between rule invocations unless those facts are marked as updated in the working
memory on every change.

For example, do not use a pattern constraint in the following ways:

I Person(incrementAndGetAge() == 10) // Do not do this.

I Person(System.currentTimeMillis() % 1000 == 0) // Do not do this.

Standard Java operator precedence applies to constraint operators in DRL, and DRL operators follow
standard Java semantics except for the == and != operators.

The == operator uses null-safe equals() semantics instead of the usual same semantics. For example,
the pattern Person(firstName == "John") is similar to
java.util.Objects.equals(person.getFirstName(), "John"), and because "John" is not null, the pattern
is also similar to "John".equals(person.getFirstName()).

The = operator uses null-safe lequals() semantics instead of the usual not same semantics. For
example, the pattern Person(firstName != "John") is similar to
ljava.util.Objects.equals(person.getFirstName(), "John").

If the field and the value of a constraint are of different types, the decision engine uses type coercion to
resolve the conflict and reduce compilation errors. For instance, if "ten" is provided as a string in a
numeric evaluator, a compilation error occurs, whereas "10" is coerced to a numeric 10. In coercion, the

field type always takes precedence over the value type:

Example constraint with a value that is coerced
I Person(age == "10") // "10" is coerced to 10

For groups of constraints, you can use a delimiting comma , to use implicit and connective semantics:

Example patterns with multiple constraints

/I Person is at least 50 years old and weighs at least 80 kilograms:
Person(age > 50, weight > 80)

// Person is at least 50 years old, weighs at least 80 kilograms, and is taller than 2 meters:
Person(age > 50, weight > 80, height > 2)

201

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

NOTE

Although the && and , operators have the same semantics, they are resolved with
different priorities. The && operator precedes the || operator, and both the && and ||
operators together precede the, operator. Use the comma operator at the top-level
constraint for optimal decision engine performance and human readability.

You cannot embed a comma operator in a composite constraint expression, such as in parentheses:

Example of misused comma in composite constraint expression

/I Do not use the following format:
Person((age > 50, weight > 80) || height > 2)

/I Use the following format instead:
Person((age > 50 && weight > 80) || height > 2)

14.8.2. Bound variables in patterns and constraints

You can bind variables to patterns and constraints to refer to matched objects in other portions of a
rule. Bound variables can help you define rules more efficiently or more consistently with how you
annotate facts in your data model. To differentiate more easily between variables and fields in a rule, use
the standard format $variable for variables, especially in complex rules. This convention is helpful but
not required in DRL.

For example, the following DRL rule uses the variable $p for a pattern with the Person fact:

Pattern with a bound variable

rule "simple rule"
when
$p : Person()
then
System.out.printin("Person " + $p);
end

Similarly, you can also bind variables to properties in pattern constraints, as shown in the following
example:

/I Two persons of the same age:
Person($firstAge : age) / Binding
Person(age == $firstAge) // Constraint expression

202

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

NOTE

Ensure that you separate constraint bindings and constraint expressions for clearer and
more efficient rule definitions. Although mixed bindings and expressions are supported,
they can complicate patterns and affect evaluation efficiency.

/I Do not use the following format:
Person($age : age *2 < 100)

/I Use the following format instead:
Person(age * 2 < 100, $age : age)

The decision engine does not support bindings to the same declaration, but does support unification of
arguments across several properties. While positional arguments are always processed with unification,
the unification symbol := exists for named arguments.

The following example patterns unify the age property across two Person facts:

Example pattern with unification

Person($age := age)
Person($age := age)

Unification declares a binding for the first occurrence and constrains to the same value of the bound
field for sequence occurrences.

14.8.3. Nested constraints and inline casts

In some cases, you might need to access multiple properties of a nested object, as shown in the following
example:

Example pattern to access multiple properties
I Person(name == "mark", address.city == "london", address.country == "uk")

You can group these property accessors to nested objects with the syntax .(<constraints>) for more
readable rules, as shown in the following example:

Example pattern with grouped constraints

I Person(name == "mark", address.(city == "london", country == "uk"))

NOTE

The period prefix . differentiates the nested object constraints from a method call.

When you work with nested objects in patterns, you can use the syntax <types#<subtype> to cast to a
subtype and make the getters from the parent type available to the subtype. You can use either the
object name or fully qualified class name, and you can cast to one or multiple subtypes, as shown in the
following examples:

Example patterns with inline casting to a subtype

203

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

// Inline casting with subtype name:
Person(name == "mark", address#LongAddress.country == "uk")

/I Inline casting with fully qualified class name:
Person(name == "mark", address#org.domain.LongAddress.country == "uk")

/I Multiple inline casts:
Person(name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000)

These example patterns cast Address to LongAddress, and additionally to DetailedCountry in the last
example, making the parent getters available to the subtypes in each case.

You can use the instanceof operator to infer the results of the specified type in subsequent uses of
that field with the pattern, as shown in the following example:

I Person(name == "mark", address instanceof LongAddress, address.country == "uk")

If an inline cast is not possible (for example, if instanceof returns false), the evaluation is considered
false.

14.8.4. Date literal in constraints

By default, the decision engine supports the date format dd-mmm-yyyy. You can customize the date
format, including a time format mask if needed, by providing an alternative format mask with the system
property drools.dateformat="dd-mmm-yyyy hh:mm". You can also customize the date format by
changing the language locale with the drools.defaultlanguage and drools.defaultcountry system
properties (for example, the locale of Thailand is set as drools.defaultlanguage=th and
drools.defaultcountry=TH).

Example pattern with a date literal restriction

I Person(bornBefore < "27-Oct-2009")

14.8.5. Supported operators in DRL pattern constraints

DRL supports standard Java semantics for operators in pattern constraints, with some exceptions and
with some additional operators that are unique in DRL. The following list summarizes the operators that
are handled differently in DRL constraints than in standard Java semantics or that are unique in DRL
constraints.

) #

Use the .() operator to group property accessors to nested objects, and use the # operator to cast to
a subtype in nested objects. Casting to a subtype makes the getters from the parent type available to
the subtype. You can use either the object name or fully qualified class name, and you can cast to

one or multiple subtypes.

Example patterns with nested objects

/I ' Ungrouped property accessors:
Person(name == "mark", address.city == "london", address.country == "uk")

/I Grouped property accessors:
Person(hame == "mark", address.(city == "london", country == "uk"))

204

0

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

NOTE

The period prefix . differentiates the nested object constraints from a method call.

Example patterns with inline casting to a subtype

// Inline casting with subtype name:
Person(name == "mark", address#LongAddress.country == "uk")

/' Inline casting with fully qualified class name:
Person(name == "mark", address#org.domain.LongAddress.country == "uk")

/I Multiple inline casts:
Person(name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000

)

Use this operator to dereference a property in a null-safe way. The value to the left of the !. operator
must be not null (interpreted as != null) in order to give a positive result for pattern matching.

Example constraint with null-safe dereferencing

Person($streetName : address!.street)
/[This is internally rewritten in the following way:

Person(address != null, $streetName : address.street)

Use this operator to access a List value by index or a Map value by key.

Example constraints with List and Map access

/I The following format is the same as “childList(0).getAge() == 18":
Person(childList[0].age == 18)

/I The following format is the same as “credentialMap.get("jdoe").isValid() :
Person(credentialMap["jdoe"].valid)

<, <=z, 3, >=

Use these operators on properties with natural ordering. For example, for Date fields, the < operator
means before, and for String fields, the operator means alphabetically before. These properties
apply only to comparable properties.

Example constraints with before operator

Person(birthDate < $otherBirthDate)

Person(firstName < $otherFirstName)

205

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Use these operators as equals() and !equals() methods in constraints, instead of the usual same
and not same semantics.

Example constraint with null-safe equality

Person(firstName == "John")
/[This is similar to the following formats:

java.util.Objects.equals(person.getFirstName(), "John")
"John".equals(person.getFirstName())

Example constraint with null-safe not equality

Person(firstName = "John")
/[This is similar to the following format:

liava.util.Objects.equals(person.getFirstName(), "John")

&&, ||

Use these operators to create an abbreviated combined relation condition that adds more than one
restriction on a field. You can group constraints with parentheses () to create a recursive syntax
pattern.

Example constraints with abbreviated combined relation

/I Simple abbreviated combined relation condition using a single "&&:
Person(age > 30 && < 40)

/I Complex abbreviated combined relation using groupings:
Person(age ((> 30 && < 40) || (> 20 && < 25)))

/I Mixing abbreviated combined relation with constraint connectives:
Person(age > 30 && < 40 || location == "london")

matches, not matches

Use these operators to indicate that a field matches or does not match a specified Java regular
expression. Typically, the regular expression is a String literal, but variables that resolve to a valid
regular expression are also supported. These operators apply only to String properties. If you use
matches against a null value, the resulting evaluation is always false. If you use not matches against
a null value, the resulting evaluation is always true. As in Java, regular expressions that you write as
String literals must use a double backslash \\ to escape.

Example constraint to match or not match a regular expression

Person(country matches "(USA)?\S*UK")

Person(country not matches "(USA)?\S*UK")

contains, not contains

206

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Use these operators to verify whether a field that is an Array or a Collection contains or does not
contain a specified value. These operators apply to Array or Collection properties, but you can also
use these operators in place of String.contains() and !String.contains() constraints checks.

Example constraints with contains and not contains for a Collection

/I Collection with a specified field:
FamilyTree(countries contains "UK")

FamilyTree(countries not contains "UK")
/I Collection with a variable:
FamilyTree(countries contains $var)

FamilyTree(countries not contains $var)
Example constraints with contains and not contains for a String literal

// Sting literal with a specified field:
Person(fullName contains "Jr")

Person(fullName not contains "Jr")
/I String literal with a variable:
Person(fullName contains $var)

Person(fullName not contains $var)

NOTE

3 For backward compatibility, the excludes operator is a supported synonym for not
contains.

#

memberOf, not memberOf

Use these operators to verify whether a field is a member of or is not a member of an Array or a
Collection that is defined as a variable. The Array or Collection must be a variable.

Example constraints with memberOf and not memberOf with a Collection
FamilyTree(person memberOf $europeanDescendants)
FamilyTree(person not memberOf $europeanDescendants)

soundslike

Use this operator to verify whether a word has almost the same sound, using English pronunciation,
as the given value (similar to the matches operator). This operator uses the Soundex algorithm.

Example constraint with soundslike

207

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

/[Match firstName "Jon" or "John™:
Person(firstName soundslike "John")

str

Use this operator to verify whether a field that is a String starts with or ends with a specified value.
You can also use this operator to verify the length of the String.

Example constraints with str

/I Verify what the String starts with:
Message(routingValue str[startsWith] "R1")

/I Verify what the String ends with:
Message(routingValue strlendsWith] "R2")

// Verify the length of the String:
Message(routingValue str[length] 17)

in, notin

Use these operators to specify more than one possible value to match in a constraint (compound
value restriction). This functionality of compound value restriction is supported only in the in and not
in operators. The second operand of these operators must be a comma-separated list of values
enclosed in parentheses. You can provide values as variables, literals, return values, or qualified
identifiers. These operators are internally rewritten as a list of multiple restrictions using the
operators == or !=.

Example constraints with in and notin

Person($color : favoriteColor)
Color(type in ("red", "blue", $color))

Person($color : favoriteColor)
Color(type notin ("red", "blue", $color))

14.8.6. Operator precedence in DRL pattern constraints

DRL supports standard Java operator precedence for applicable constraint operators, with some
exceptions and with some additional operators that are unique in DRL. The following table lists DRL
operator precedence where applicable, from highest to lowest precedence:

Table 14.2. Operator precedence in DRL pattern constraints

Operator type Operators Notes

Nested or null-safe property ., .(), ! Not standard Java semantics
access

List orMap access [Not standard Java semantics
Constraint binding : Not standard Java semantics

208

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Operator type Operators Notes

Multiplicative * 1%

Additive + -

Shift >>, >>>, <<

Relational < <=,> >= instanceof

Equality ==I= Uses equals() and lequals() semantics, not
standard Java same and not same
semantics

Non-short-circuiting AND &

Non-short-circuiting A

exclusive OR

Non-short-circuiting

inclusive OR

Logical AND &&

Logical OR I

Ternary ?:

Comma-separated AND , Not standard Java semantics

14.8.7. Supported rule condition elements in DRL (keywords)

DRL supports the following rule condition elements (keywords) that you can use with the patterns that
you define in DRL rule conditions:
and

Use this to group conditional components into a logical conjunction. Infix and prefix and are
supported. You can group patterns explicitly with parentheses (). By default, all listed patterns are
combined with and when no conjunction is specified.

Example patterns with and

/Infix “and’:
Color(colorType : type) and Person(favoriteColor == colorType)

/lInfix "and” with grouping:

(Color(colorType : type) and (Person(favoriteColor == colorType) or Person(favoriteColor ==
colorType))

209

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

or

210

/I Prefix "and’:
(and Color(colorType : type) Person(favoriteColor == colorType))

/I Default implicit “and™:
Color(colorType : type)
Person(favoriteColor == colorType)

NOTE

Do not use a leading declaration binding with the and keyword (as you can with or, for
example). A declaration can only reference a single fact at a time, and if you use a
declaration binding with and, then when and is satisfied, it matches both facts and
results in an error.

Example misuse of and

/I Gauses compile error:
$person : (Person(name == "Romeo") and Person(name == "Juliet"))

Use this to group conditional components into a logical disjunction. Infix and prefix or are supported.
You can group patterns explicitly with parentheses (). You can also use pattern binding with or, but
each pattern must be bound separately.

Example patterns with or

/Infix “or’:
Color(colorType : type) or Person(favoriteColor == colorType)

/lInfix “or” with grouping:
(Color(colorType : type) or (Person(favoriteColor == colorType) and Person(favoriteColor ==
colorType))

/I Prefix “or’:
(or Color(colorType : type) Person(favoriteColor == colorType))

Example patterns with or and pattern binding

pensioner : (Person(sex == "f", age > 60) or Person(sex == "m", age > 65))

(or pensioner : Person(sex == "f", age > 60)
pensioner : Person(sex == "m", age > 65))

The behavior of the or condition element is different from the connective || operator for constraints
and restrictions in field constraints. The decision engine does not directly interpret the or element
but uses logical transformations to rewrite a rule with or as a number of sub-rules. This process
ultimately results in a rule that has a single or as the root node and one sub-rule for each of its
condition elements. Each sub-rule is activated and executed like any normal rule, with no special
behavior or interaction between the sub-rules.

Therefore, consider the or condition element a shortcut for generating two or more similar rules that,
in turn, can create multiple activations when two or more terms of the disjunction are true.

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

exists

Use this to specify facts and constraints that must exist. This option is triggered on only the first
match, not subsequent matches. If you use this element with multiple patterns, enclose the patterns
with parentheses ().

Example patterns with exists

exists Person(firstName == "John")
exists (Person(firstName == "John", age == 42))

exists (Person(firstName == "John") and
Person(lastName == "Doe"))

not

Use this to specify facts and constraints that must not exist. If you use this element with multiple
patterns, enclose the patterns with parentheses ().

Example patterns with not

not Person(firstName == "John")
not (Person(firstName == "John", age == 42))

not (Person(firstName == "John") and
Person(lastName == "Doe"))

forall

Use this to verify whether all facts that match the first pattern match all the remaining patterns.
When a forall construct is satisfied, the rule evaluates to true. This element is a scope delimiter, so it
can use any previously bound variable, but no variable bound inside of it is available for use outside of
it.

Example rule with forall

rule "All full-time employees have red ID badges"
when
forall($emp : Employee(type == "fulltime")
Employee(this == $emp, badgeColor = "red"))
then
// True, all full-time employees have red ID badges.
end

In this example, the rule selects all Employee objects whose type is "fulltime". For each fact that
matches this pattern, the rule evaluates the patterns that follow (badge color) and if they match, the
rule evaluates to true.

To state that all facts of a given type in the working memory of the decision engine must match a set
of constraints, you can use forall with a single pattern for simplicity.

Example rule with forall and a single pattern

21

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

rule "All full-time employees have red ID badges"

when
forall(Employee(badgeColor = "red"))
then
// True, all full-time employees have red ID badges.
end

You can use forall constructs with multiple patterns or nest them with other condition elements, such
as inside a not element construct.

Example rule with forall and multiple patterns

rule "All employees have health and dental care programs"
when
forall($emp : Employee()
HealthCare(employee == $emp)
DentalCare(employee == $emp)
)
then
// True, all employees have health and dental care.
end

Example rule with forall and not

rule "Not all employees have health and dental care"
when
not (forall($emp : Employee()
HealthCare(employee == $emp)
DentalCare(employee == $emp))

)

then
// True, not all employees have health and dental care.
end
2
NOTE
4 The format forall(p1 p2 p3 ...) is equivalent to not(p1 and not(and p2 p3 ...)).

from

Use this to specify a data source for a pattern. This enables the decision engine to reason over data
that is not in the working memory. The data source can be a sub-field on a bound variable or the
result of a method call. The expression used to define the object source is any expression that
follows regular MVEL syntax. Therefore, the from element enables you to easily use object property
navigation, execute method calls, and access maps and collection elements.

Example rule with from and pattern binding

rule "Validate zipcode"
when
Person($personAddress : address)
Address(zipcode == "23920W") from $personAddress

212

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

then
/I Zip code is okay.
end

Example rule with from and a graph notation

rule "Validate zipcode"
when
$p : Person()
$a : Address(zipcode == "23920W") from $p.address
then
/I Zip code is okay.
end

Example rule with from to iterate over all objects

rule "Apply 10% discount to all items over US$ 100 in an order"
when
$order : Order()
$item : Orderltem(value > 100) from $order.items
then
/I Apply discount to “$item’.
end

NOTE

example:

when
$order : Order()

Example rule with from and lock-on-active rule attribute

rule "Assign people in North Carolina (NC) to sales region 1"

ruleflow-group "test"
lock-on-active true
when
$p : Person()
$a : Address(state == "NC") from $p.address
then
modify ($p) {} // Assign the person to sales region 1.
end

rule "Apply a discount to people in the city of Raleigh"
ruleflow-group "test"
lock-on-active true
when
$p : Person()
$a : Address(city == "Raleigh") from $p.address

Orderltem(value > 100, order == $order)

For large collections of objects, instead of adding an object with a large graph that the
decision engine must iterate over frequently, add the collection directly to the KIE
session and then join the collection in the condition, as shown in the following

213

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

then
modify ($p) {} // Apply discount to the person.
end

IMPORTANT

Using from with lock-on-active rule attribute can result in rules not being executed.
You can address this issue in one of the following ways:

® Avoid using the from element when you can insert all facts into the working
memory of the decision engine or use nested object references in your
constraint expressions.

® Place the variable used in the modify() block as the last sentence in your rule
condition.

® Avoid using the lock-on-active rule attribute when you can explicitly manage
how rules within the same ruleflow group place activations on one another.

The pattern that contains a from clause cannot be followed by another pattern starting with a
parenthesis. The reason for this restriction is that the DRL parser reads the from expression as
"from $l (String() or Number())" and it cannot differentiate this expression from a function call. The
simplest workaround to this is to wrap the from clause in parentheses, as shown in the following
example:

Example rules with from used incorrectly and correctly

/I Do not use “from’ in this way:
rule R
when
$I : List()
String() from $I
(String() or Number())
then
/I Actions
end

/' Use “from’ in this way instead:
rule R
when
$I : List()
(String() from $I)
(String() or Number())
then
/I Actions
end

entry-point

Use this to define an entry point, or event stream, corresponding to a data source for the pattern.
This element is typically used with the from condition element. You can declare an entry point for
events so that the decision engine uses data from only that entry point to evaluate the rules. You can
declare an entry point either implicitly by referencing it in DRL rules or explicitly in your Java
application.

| puOUPEGUIURY [[N SO S DI Y

214

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

CXdITIpIE ruie witll 1mrom entry-point

rule "Authorize withdrawal"
when
WithdrawRequest($ai : accountld, $am : amount) from entry-point "ATM Stream"
CheckingAccount(accountld == $ai, balance > $am)
then
/I Authorize withdrawal.
end

Example Java application code with EntryPoint object and inserted facts

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual:
KieSession session = ...

// Create a reference to the entry point:
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point:
atmStream.insert(aWithdrawRequest);

collect

Use this to define a collection of objects that the rule can use as part of the condition. The rule
obtains the collection either from a specified source or from the working memory of the decision
engine. The result pattern of the collect element can be any concrete class that implements the
java.util.Collection interface and provides a default no-arg public constructor. You can use Java
collections like List, LinkedList, and HashSet, or your own class. If variables are bound before the
collect element in a condition, you can use the variables to constrain both your source and result
patterns. However, any binding made inside the collect element is not available for use outside of it.

Example rule with collect

import java.util.List

rule "Raise priority when system has more than three pending alarms"
when
$system : System()
$alarms : List(size >= 3)
from collect(Alarm(system == $system, status == 'pending'))
then
// Raise priority because "$system’ has three or more “$alarms™ pending.
end

In this example, the rule assesses all pending alarms in the working memory of the decision engine for
each given system and groups them in a List. If three or more alarms are found for a given system,
the rule is executed.

You can also use the collect element with nested from elements, as shown in the following example:

Example rule with collect and nested from

215

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

import java.util.LinkedList;

rule "Send a message to all parents”
when
$town : Town(name == 'Paris')
$mothers : LinkedList()
from collect(Person(children > 0)
from $town.getPeople()

)

then
// Send a message to all parents.
end

accumulate

Use this to iterate over a collection of objects, execute custom actions for each of the elements, and
return one or more result objects (if the constraints evaluate to true). This element is a more flexible
and powerful form of the collect condition element. You can use predefined functions in your
accumulate conditions or implement custom functions as needed. You can also use the abbreviation
acc for accumulate in rule conditions.

Use the following format to define accumulate conditions in rules:

Preferred format for accumulate

I accumulate(<source pattern>; <functions> [;<constraints>])

NOTE
4 Although the decision engine supports alternate formats for the accumulate element

for backward compatibility, this format is preferred for optimal performance in rules
and applications.

The decision engine supports the following predefined accumulate functions. These functions
accept any expression as input.

® average
® min

® max

e count

® sum

e collectList
e collectSet

In the following example rule, min, max, and average are accumulate functions that calculate the
minimum, maximum, and average temperature values over all the readings for each sensor:

Example rule with accumulate to calculate temperature values

216

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

rule "Raise alarm"
when
$s : Sensor()
accumulate(Reading(sensor == $s, $temp : temperature);
$min : min($temp),
$max : max($temp),
$avg : average($temp);
$min < 20, $avg > 70)
then
// Raise the alarm.
end

The following example rule uses the average function with accumulate to calculate the average
profit for all items in an order:

Example rule with accumulate to calculate average profit

rule "Average profit"
when
$order : Order()
accumulate(Orderltem(order == $order, $cost : cost, $price : price);
$avgProfit : average(1 - $cost / $price))
then
/I Average profit for “$order” is “$avgProfit".
end

To use custom, domain-specific functions in accumulate conditions, create a Java class that
implements the org.kie.api.runtime.rule.AccumulateFunction interface. For example, the following
Java class defines a custom implementation of an AverageData function:

Example Java class with custom implementation of average function

// An implementation of an accumulator capable of calculating average values

public class AverageAccumulateFunction implements
org.kie.api.runtime.rule.AccumulateFunction<AverageAccumulateFunction.AverageData> {

public void readExternal(Objectinput in) throws IOException, ClassNotFoundException {

}

public void writeExternal(ObjectOutput out) throws IOException {

}

public static class AverageData implements Externalizable {
public int count = 0;
public double total = 0;

public AverageData() {}
public void readExternal(Objectinput in) throws IOException, ClassNotFoundException {

count =in.readint();
total = in.readDouble();

}

217

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

public void writeExternal(ObjectOutput out) throws IOException {
out.writelnt(count);
out.writeDouble(total);

}
}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#createContext()
Y/
public AverageData createContext() {
return new AverageData();

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#init(java.io.Serializable)
Y/
public void init(AverageData context) {
context.count = 0;
context.total = 0;

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#accumulate(java.io.Serializable,
java.lang.Object)
Y/
public void accumulate(AverageData context,
Object value) {
context.count++;
context.total += ((Number) value).doubleValue();

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#reverse(java.io.Serializable,
java.lang.Object)
Y/
public void reverse(AverageData context, Object value) {
context.count--;
context.total -= ((Number) value).doubleValue();

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#getResult(java.io.Serializable)
v
public Object getResult(AverageData context) {
return new Double(context.count == 0 ? 0 : context.total / context.count);

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.Accumulate Function#supportsReverse()
Y/
public boolean supportsReverse() {
return true;

}

218

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#getResultType()
Y/
public Class< ? > getResultType() {
return Number.class;

}

To use the custom function in a DRL rule, import the function using the import accumulate
statement:

Format to import a custom function
I import accumulate <class_name> <function_name>
Example rule with the imported average function

import accumulate AverageAccumulateFunction.AverageData average

rule "Average profit"
when
$order : Order()
accumulate(Orderltem(order == $order, $cost : cost, $price : price);
$avgProfit : average(1 - $cost / $price))
then
/I Average profit for “$order” is “$avgProfit".
end

14.8.8. OOPath syntax with graphs of objects in DRL rule conditions

OOPath is an object-oriented syntax extension of XPath that is designed for browsing graphs of objects
in DRL rule condition constraints. OOPath uses the compact notation from XPath for navigating
through related elements while handling collections and filtering constraints, and is specifically useful for
graphs of objects.

When the field of a fact is a collection, you can use the from condition element (keyword) to bind and
reason over all the items in that collection one by one. If you need to browse a graph of objects in the
rule condition constraints, the extensive use of the from condition element results in a verbose and
repetitive syntax, as shown in the following example:

Example rule that browses a graph of objects with from

rule "Find all grades for Big Data exam"
when
$student: Student($plan: plan)
$exam: Exam(course == "Big Data") from $plan.exams
$grade: Grade() from $exam.grades
then
/I Actions
end

In this example, the domain model contains a Student object with a Plan of study. The Plan can have

219

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

zero or more Exam instances and an Exam can have zero or more Grade instances. Only the root object
of the graph, the Student in this case, needs to be in the working memory of the decision engine for this
rule setup to function.

As a more efficient alternative to using extensive from statements, you can use the abbreviated
OOPath syntax, as shown in the following example:

Example rule that browses a graph of objects with OOPath syntax

rule "Find all grades for Big Data exam"
when
Student($grade: /plan/exams[course == "Big Data")/grades)
then
/I Actions
end

Formally, the core grammar of an OOPath expression is defined in extended Backus-Naur form (EBNF)
notation in the following way:

EBNF notation for OOPath expressions

OOPExpr=[ID (™" [™=")] ("/"|"?/") OOPSegment { ("/"|"?/"|".") OOPSegment } ;
OOPSegment = ID ["#" ID] ["[" (Number | Constraints) "]"]

In practice, an OOPath expression has the following features and capabilities:

® Starts with a forward slash / or with a question mark and forward slash ?/if it is a non-reactive
OOPath expression (described later in this section).

® Can dereference a single property of an object with the period . operator.

® Can dereference multiple properties of an object with the forward slash / operator. If a
collection is returned, the expression iterates over the values in the collection.

e Can filter out traversed objects that do not satisfy one or more constraints. The constraints are
written as predicate expressions between square brackets, as shown in the following example:

Constraints as a predicate expression
I Student($grade: /plan/exams[course == "Big Data"]/grades)

e Can downcast a traversed object to a subclass of the class declared in the generic collection.
Subsequent constraints can also safely access the properties declared only in that subclass, as
shown in the following example. Objects that are not instances of the class specified in this inline
cast are automatically filtered out.

Constraints with downcast objects
I Student($grade: /plan/exams#AdvancedExam[course == "Big Data", level > 3 J/grades)

® Can backreference an object of the graph that was traversed before the currently iterated
graph. For example, the following OOPath expression matches only the grades that are above
the average for the passed exam:

220

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Constraints with backreferenced object
I Student($grade: /plan/exams/grades| result > ../averageResult])

® Can recursively be another OOPath expression, as shown in the following example:

Recursive constraint expression
I Student($exam: /plan/exams][/grades| result >20]1])

® Can access objects by their index between square brackets [], as shown in the following
example. To adhere to Java convention, OOPath indexes are O-based, while XPath indexes are
1-based.

Constraints with access to objects by index
I Student($grade: /plan/exams[0]/grades)

OOPath expressions can be reactive or non-reactive. The decision engine does not react to updates
involving a deeply nested object that is traversed during the evaluation of an OOPath expression.

To make these objects reactive to changes, modify the objects to extend the class
org.drools.core.phreak.ReactiveObject. After you modify an object to extend the ReactiveObject
class, the domain object invokes the inherited method notifyModification to notify the decision engine
when one of the fields has been updated, as shown in the following example:

Example object method to notify the decision engine that an exam has been moved to a
different course

public void setCourse(String course) {
this.course = course;
notifyModification(this);
}

With the following corresponding OOPath expression, when an exam is moved to a different course, the
rule is re-executed and the list of grades matching the rule is recomputed:

Example OOPath expression from "Big Data" rule
I Student($grade: /plan/exams| course == "Big Data"]/grades)

You can also use the ?/ separator instead of the / separator to disable reactivity in only one sub-portion
of an OOPath expression, as shown in the following example:

Example OOPath expression that is partially non-reactive
I Student($grade: /plan/exams[course == "Big Data"]?/grades)

With this example, the decision engine reacts to a change made to an exam or if an exam is added to the
plan, but not if a new grade is added to an existing exam.

If an OOPath portion is non-reactive, all remaining portions of the OOPath expression also become non-
reactive. For example, the following OOPath expression is completely non-reactive:

221

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Example OOPath expression that is completely non-reactive
I Student($grade: ?/plan/exams| course == "Big Data"]/grades)

For this reason, you cannot use the ?/ separator more than once in the same OOPath expression. For
example, the following expression causes a compilation error:

Example OOPath expression with duplicate non-reactivity markers
I Student($grade: /plan?/exams| course == "Big Data"]?/grades)

Another alternative for enabling OOPath expression reactivity is to use the dedicated implementations
for List and Set interfaces in Red Hat Decision Manager. These implementations are the ReactiveList
and ReactiveSet classes. A ReactiveCollection class is also available. The implementations also provide
reactive support for performing mutable operations through the Iterator and Listlterator classes.

The following example class uses these classes to configure OOPath expression reactivity:

Example Java class to configure OOPath expression reactivity

public class School extends AbstractReactiveObject {
private String name;
private final List<Child> children = new ReactiveList<Child>(); ﬂ

public void setName(String name) {
this.name = name;
notifyModification(); €))

}

public void addChild(Child child) {
children.add(child); €)
// No need to call "notifyModification()” here
}
}

ﬂ Uses the ReactiveList instance for reactive support over the standard Java List instance.
9 Uses the required notifyModification() method for when a field is changed in reactive support.

9 The children field is a ReactiveList instance, so the notifyModification() method call is not
required. The notification is handled automatically, like all other mutating operations performed
over the children field.

14.9. RULE ACTIONS IN DRL (THEN)

The then part of the rule (also known as the Right Hand Side (RHS) of the rule) contains the actions to
be performed when the conditional part of the rule has been met. Actions consist of one or more
methods that execute consequences based on the rule conditions and on available data objects in the
package. For example, if a bank requires loan applicants to have over 21 years of age (with a rule
condition Applicant(age < 21)) and a loan applicant is under 21years old, the then action of an
"Underage" rule would be setApproved(false), declining the loan because the applicant is under age.

222

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

The main purpose of rule actions is to to insert, delete, or modify data in the working memory of the
decision engine. Effective rule actions are small, declarative, and readable. If you need to use imperative
or conditional code in rule actions, then divide the rule into multiple smaller and more declarative rules.

Example rule for loan application age limit

rule "Underage"
when
application : LoanApplication()
Applicant(age < 21)
then
application.setApproved(false);
application.setExplanation("Underage");
end

14.9.1. Supported rule action methods in DRL

DRL supports the following rule action methods that you can use in DRL rule actions. You can use these
methods to modify the working memory of the decision engine without having to first reference a
working memory instance. These methods act as shortcuts to the methods provided by the
KnowledgeHelper class in your Red Hat Decision Manager distribution.

For all rule action methods, download the Red Hat Decision Manager 7.9.0 Source DistributionZIP file
from the Red Hat Customer Portal and navigate to ~/rhdm-7.9.0-sources/src/drools-
$VERSION/drools-core/src/main/java/org/drools/core/spi/KnowledgeHelper.java.

set

Use this to set the value of a field.

I set<field> (<value>)
Example rule action to set the values of a loan application approval

$application.setApproved (false);
$application.setExplanation("has been bankrupt");

modify

Use this to specify fields to be modified for a fact and to notify the decision engine of the change.
This method provides a structured approach to fact updates. It combines the update operation with
setter calls to change object fields.

modify (<fact-expression>) {
<expressions,
<expressions,

Example rule action to modify a loan application amount and approval

modify(LoanApplication) {
setAmount(100),
setApproved (true)

223

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

update

Use this to specify fields and the entire related fact to be updated and to notify the decision engine
of the change. After a fact has changed, you must call update before changing another fact that
might be affected by the updated values. To avoid this added step, use the modify method instead.

update (<object, <handle>) // Informs the decision engine that an object has changed

update (<object>) // Causes "KieSession' to search for a fact handle of the object
Example rule action to update a loan application amount and approval

LoanApplication.setAmount(100);
update(LoanApplication);

N NOTE
?
If you provide property-change listeners, you do not need to call this method when an
object changes. For more information about property-change listeners, see Decision
4 engine in Red Hat Decision Manager.
insert

Use this to insert a new fact into the working memory of the decision engine and to define resulting
fields and values as needed for the fact.

I insert(new <object>);
Example rule action to insert a new loan applicant object

I insert(new Applicant());

insertLogical

Use this to insert a new fact logically into the decision engine. The decision engine is responsible for
logical decisions on insertions and retractions of facts. After regular or stated insertions, facts must
be retracted explicitly. After logical insertions, the facts that were inserted are automatically
retracted when the conditions in the rules that inserted the facts are no longer true.

I insertLogical(new <object>);
Example rule action to logically insert a new loan applicant object

I insertLogical(new Applicant());

delete

Use this to remove an object from the decision engine. The keyword retract is also supported in DRL
and executes the same action, but delete is typically preferred in DRL code for consistency with the
keyword insert.

I delete(<object>);

224

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#property-change-listeners-con_decision-engine

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Example rule action to delete a loan applicant object

I delete(Applicant);

14.9.2. Other rule action methods from drools and kcontext variables

In addition to the standard rule action methods, the decision engine supports methods in conjunction
with the predefined drools and kcontext variables that you can also use in rule actions.

You can use the drools variable to call methods from the KnowledgeHelper class in your Red Hat
Decision Manager distribution, which is also the class that the standard rule action methods are based
on. For all drools rule action options, download the Red Hat Decision Manager 7.9.0 Source
Distribution ZIP file from the Red Hat Customer Portal and navigate to ~/rhdm-7.9.0-
sources/src/drools-$VERSION/drools-
core/src/main/java/org/drools/core/spi/KnowledgeHelper.java.

The following examples are common methods that you can use with the drools variable:

e drools.halt(): Terminates rule execution if a user or application has previously called
fireUntilHalt(). When a user or application calls fireUntilHalt(), the decision engine starts in
active mode and evaluates rules continually until the user or application explicitly calls halt().
Otherwise, by default, the decision engine runs in passive mode and evaluates rules only when a
user or an application explicitly calls fireAllRules().

e drools.getWorkingMemory(): Returns the WorkingMemory object.

e drools.setFocus("<agenda_group>"): Sets the focus to a specified agenda group to which
the rule belongs.

e drools.getRule().getName(): Returns the name of the rule.

e drools.getTuple(), drools.getActivation(): Returns the Tuple that matches the currently
executing rule and then delivers the corresponding Activation. These calls are useful for logging
and debugging purposes.

You can use the kcontext variable with the getKieRuntime() method to call other methods from the
KieContext class and, by extension, the RuleContext class in your Red Hat Decision Manager
distribution. The full Knowledge Runtime APl is exposed through the kcontext variable and provides
extensive rule action methods. For all kcontext rule action options, download the Red Hat Decision
Manager 7.9.0 Source Distribution ZIP file from the Red Hat Customer Portal and navigate to
~/rhdm-7.9.0-sources/src/kie-api-parent-$VERSION/kie-
api/src/main/java/org/kie/api/runtime/rule/RuleContext.java.

The following examples are common methods that you can use with the kcontext.getKieRuntime()
variable-method combination:

e kcontext.getKieRuntime().halt(): Terminates rule execution if a user or application has
previously called fireUntilHalt(). This method is equivalent to the drools.halt() method. When a
user or application calls fireUntilHalt(), the decision engine starts in active mode and evaluates
rules continually until the user or application explicitly calls halt(). Otherwise, by default, the
decision engine runs in passive mode and evaluates rules only when a user or an application
explicitly calls fireAllRules().

e kcontext.getKieRuntime().getAgenda(): Returns a reference to the KIE session Agenda, and in
turn provides access to rule activation groups, rule agenda groups, and ruleflow groups.

225

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

14.9.3.

Example call to access agenda group "CleanUp" and set the focus
I kcontext.getKieRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

This example is equivalent to drools.setFocus("CleanUp").

kcontext.getKieRuntime().getQueryResults(<string> query): Runs a query and returns the
results. This method is equivalent to drools.getKieRuntime().getQueryResults().

kcontext.getKieRuntime().getKieBase(): Returns the KieBase object. The KIE base is the
source of all the knowledge in your rule system and the originator of the current KIE session.

kcontext.getKieRuntime().setGlobal(), ~.getGlobal(), ~.getGlobals(): Sets or retrieves global
variables.

kcontext.getKieRuntime().getEnvironment(): Returns the runtime Environment, similar to
your operating system environment.

Advanced rule actions with conditional and named consequences

In general, effective rule actions are small, declarative, and readable. However, in some cases, the
limitation of having a single consequence for each rule can be challenging and lead to verbose and
repetitive rule syntax, as shown in the following example rules:

Example rules with verbose and repetitive syntax

rule "Give 10% discount to customers older than 60"
when
$customer : Customer(age > 60)
then
modify($customer) { setDiscount(0.1) };

end

rule "Give free parking to customers older than 60"
when
$customer : Customer(age > 60)
$car : Car(owner == $customer)
then
modify($car) { setFreeParking(true) };

end

A partial solution to the repetition is to make the second rule extend the first rule, as shown in the
following modified example:

Partially enhanced example rules with an extended condition

rule "Give 10% discount to customers older than 60"
when
$customer : Customer(age > 60)
then
modify($customer) { setDiscount(0.1) };

end

rule "Give free parking to customers older than 60"
extends "Give 10% discount to customers older than 60"

226

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

when
$car : Car(owner == $customer)
then
modify($car) { setFreeParking(true) };
end

As a more efficient alternative, you can consolidate the two rules into a single rule with modified
conditions and labelled corresponding rule actions, as shown in the following consolidated example:

Consolidated example rule with conditional and named consequences

rule "Give 10% discount and free parking to customers older than 60"
when
$customer : Customer(age > 60)
do[giveDiscount]
$car : Car(owner == $customer)
then
modify($car) { setFreeParking(true) };
then[giveDiscount]
modify($customer) { setDiscount(0.1) };
end

This example rule uses two actions: the usual default action and another action named giveDiscount.
The giveDiscount action is activated in the condition with the keyword do when a customer older than
60 years old is found in the KIE base, regardless of whether or not the customer owns a car.

You can configure the activation of a named consequence with an additional condition, such as the if
statement in the following example. The condition in the if statement is always evaluated on the pattern
that immediately precedesiit.

Consolidated example rule with an additional condition

rule "Give free parking to customers older than 60 and 10% discount to golden ones among them"
when
$customer : Customer(age > 60)
if (type == "Golden") do[giveDiscount]
$car : Car(owner == $customer)
then
modify($car) { setFreeParking(true) };
then[giveDiscount]
modify($customer) { setDiscount(0.1) };
end

You can also evaluate different rule conditions using a nested if and else if construct, as shown in the
following more complex example:

Consolidated example rule with more complex conditions

rule "Give free parking and 10% discount to over 60 Golden customer and 5% to Silver ones"
when
$customer : Customer(age > 60)
if (type == "Golden") do[giveDiscount10]
else if (type == "Silver") break[giveDiscount5]
$car : Car(owner == $customer)
then

227

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

modify($car) { setFreeParking(true) };
then[giveDiscount10]
modify($customer) { setDiscount(0.1) };
then[giveDiscount5]
modify($customer) { setDiscount(0.05) };
end

This example rule gives a 10% discount and free parking to Golden customers over 60, but only a 5%
discount without free parking to Silver customers. The rule activates the consequence named
giveDiscount5 with the keyword break instead of do. The keyword do schedules a consequence in the
decision engine agenda, enabling the remaining part of the rule conditions to continue being evaluated,
while break blocks any further condition evaluation. If a named consequence does not correspond to
any condition with do but is activated with break, the rule fails to compile because the conditional part
of the rule is never reached.

14.10. COMMENTS IN DRL FILES

DRL supports single-line comments prefixed with a double forward slash // and multi-line comments
enclosed with a forward slash and asterisk /* ... */. You can use DRL comments to annotate rules or any
related components in DRL files. DRL comments are ignored by the decision engine when the DRL file is
processed.

Example rule with comments

rule "Underage"
// This is a single-line comment.
when
$application : LoanApplication() // This is an in-line comment.
Applicant(age < 21)
then
/* This is a multi-line comment
in the rule actions. */
$application.setApproved(false);
$application.setExplanation("Underage");
end

IMPORTANT

The hash symbol #is not supported for DRL comments.

14.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING

Red Hat Decision Manager provides standardized messages for DRL errors to help you troubleshoot
and resolve problems in your DRL files. The error messages use the following format:

Figure 14.1. Error message format for DRL file problems
[ERR 101] Lime &:35 no viable alternative at input ') in rule “test rule® in pattern WorkerPerformanceContext

1st 2nd

Block Block 3rd Block 4th Block 5th Block

® 1Ist Block: Error code

® 2nd Block:Line and column in the DRL source where the error occurred

228

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

e 3rd Block: Description of the problem
® 4th Block: Component in the DRL source (rule, function, query) where the error occurred
e 5th Block:Pattern in the DRL source where the error occurred (if applicable)

Red Hat Decision Manager supports the following standardized error messages:

101: no viable alternative

Indicates that the parser reached a decision point but could not identify an alternative.

Example rule with incorrect spelling

1: rule "simple rule"

2: when

3: exists Person()

4: exits Student() // Must be “exists’
5: then

6: end

Error message
I [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule "simple rule"
Example rule without a rule name

1: package org.drools.examples;
2:rule // Must be ‘rule "rule name™ (or ‘rule rule_name’ if no spacing)
3: when

4: Object()
5: then

6: System.out.printin("A RHS");
7:end

Error message
I [ERR 101] Line 3:2 no viable alternative at input 'when'

In this example, the parser encountered the keyword when but expected the rule name, so it flags
when as the incorrect expected token.

Example rule with incorrect syntax

1: rule "simple rule"

2: when

3: Student(name == "Andy) // Must be ""Andy™
4: then

5: end

Error message

I [ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule "simple rule" in pattern Student

229

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

N NOTE
?
A line and column value of 0:-1 means the parser reached the end of the source file
(<eof>) but encountered incomplete constructs, usually due to missing quotation
’ marks "...", apostrophes '...", or parentheses (...).

102: mismatched input

Indicates that the parser expected a particular symbol that is missing at the current input position.

Example rule with an incomplete rule statement

1: rule simple_rule
2: when
3: $p : Person(
/I Must be a complete rule statement

Error message

I [ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule "simple rule" in pattern Person

NOTE

?
A line and column value of 0:-1 means the parser reached the end of the source file
(<eof>) but encountered incomplete constructs, usually due to missing quotation

; marks "...", apostrophes '...", or parentheses (...).

Example rule with incorrect syntax

: package org.drools.examples;

when
not(Car((type == "tesla", price == 10000) || (type == "kia", price == 1000)) from $carList)
/ Must use "&&" operators instead of commas °,

1
2:
3: rule "Wrong syntax"
4
5

6: then
7. System.out.printin("OK");
8:end

Error messages

[ERR 102] Line 5:36 mismatched input ', expecting)" in rule "Wrong syntax" in pattern Car
[ERR 101] Line 5:57 no viable alternative at input 'type" in rule "Wrong syntax”"
[ERR 102] Line 5:106 mismatched input ')' expecting 'then" in rule "Wrong syntax”

In this example, the syntactic problem results in multiple error messages related to each other. The
single solution of replacing the commas , with && operators resolves all errors. If you encounter
multiple errors, resolve one at a time in case errors are consequences of previous errors.

103: failed predicate

230

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Indicates that a validating semantic predicate evaluated to false. These semantic predicates are
typically used to identify component keywords in DRL files, such as declare, rule, exists, not, and
others.

Example rule with an invalid keyword

1: package nesting;

2:

3: import org.drools.compiler.Person
4: import org.drools.compiler.Address
5:

6: Some text // Must be a valid DRL keyword
7:

8: rule "test something"

9: when

10: $p: Person(name=="Michael")
11: then

12: $p.name = "other";
13: System.out.printin(p.name);
14: end

Error message

[ERR 103] Line 6:0 rule 'rule_key' failed predicate:
{(validateldentifierKey(DroolsSoftKeywords.RULE))}? in rule

The Some text line is invalid because it does not begin with or is not a part of a DRL keyword
construct, so the parser fails to validate the rest of the DRL file.

NOTE

b _ This error is similar to 102: mismatched input, but usually involves DRL keywords.

104: trailing semi-colon not allowed

Indicates that an eval() clause in a rule condition uses a semicolon ; but must not use one.

Example rule with eval() and trailing semicolon

1: rule "simple rule"

2: when

3: eval(abc();) // Must not use semicolon °;
4: then

5: end

Error message

I [ERR 104] Line 3:4 trailing semi-colon not allowed in rule "simple rule"

105: did not match anything

Indicates that the parser reached a sub-rule in the grammar that must match an alternative at least
once, but the sub-rule did not match anything. The parser has entered a branch with no way out.

231

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Example rule with invalid text in an empty condition

1: rule "empty condition”

2: when

3: None // Must remove "None’ if condition is empty
4: then

5 insert(new Person());

6: end

Error message

[ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'WHEN" in rule "empty
condition”

In this example, the condition is intended to be empty but the word None is used. This error is
resolved by removing None, which is not a valid DRL keyword, data type, or pattern construct.

NOTE

If you encounter other DRL error messages that you cannot resolve, contact your Red
Hat Technical Account Manager.

14.12. RULE UNITS IN DRL RULE SETS

Rule units are groups of data sources, global variables, and DRL rules that function together for a
specific purpose. You can use rule units to partition a rule set into smaller units, bind different data
sources to those units, and then execute the individual unit. Rule units are an enhanced alternative to
rule-grouping DRL attributes such as rule agenda groups or activation groups for execution control.

Rule units are helpful when you want to coordinate rule execution so that the complete execution of one
rule unit triggers the start of another rule unit and so on. For example, assume that you have a set of
rules for data enrichment, another set of rules that processes that data, and another set of rules that
extract the output from the processed data. If you add these rule sets into three distinct rule units, you
can coordinate those rule units so that complete execution of the first unit triggers the start of the
second unit and the complete execution of the second unit triggers the start of third unit.

To define a rule unit, implement the RuleUnit interface as shown in the following example:

Example rule unit class

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
private int adultAge;
private DataSource<Person> persons;

public AdultUnit() {}

public AdultUnit(DataSource<Person> persons, int age) {
this.persons = persons;
this.age = age;

}

232

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

// A data source of "Persons’ in this rule unit:
public DataSource<Person> getPersons() {
return persons;

}

// A global variable in this rule unit:
public int getAdultAge() {
return adultAge;

}

// Life-cycle methods:

@Override

public void onStart() {
System.out.printin("AdultUnit started.");

}

@Override
public void onEnd() {
System.out.printin("AdultUnit ended.");

}
}

In this example, persons is a source of facts of type Person. A rule unit data source is a source of the
data processed by a given rule unit and represents the entry point that the decision engine uses to
evaluate the rule unit. The adultAge global variable is accessible from all the rules belonging to this rule
unit. The last two methods are part of the rule unit life cycle and are invoked by the decision engine.

The decision engine supports the following optional life-cycle methods for rule units:

Table 14.3. Rule unit life-cycle methods

Method Invoked when

onStart() Rule unit execution starts
onEnd() Rule unit execution ends
onSuspend() Rule unit execution is suspended (used only with

runUntilHalt())

onResume() Rule unit execution is resumed (used only with
runUntilHalt())

onYield(RuleUnit other) The consequence of a rule in the rule unit triggers the
execution of a different rule unit

You can add one or more rules to a rule unit. By default, all the rules in a DRL file are automatically
associated with a rule unit that follows the naming convention of the DRL file name. If the DRL file is in
the same package and has the same name as a class that implements the RuleUnit interface, then all of
the rules in that DRL file implicitly belong to that rule unit. For example, all the rules in the AdultUnit.drl
file in the org.mypackage.myunit package are automatically part of the rule unit
org.mypackage.myunit.AdultUnit.

233

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

To override this naming convention and explicitly declare the rule unit that the rules in a DRL file belong
to, use the unit keyword in the DRL file. The unit declaration must immediately follow the package
declaration and contain the name of the class in that package that the rules in the DRL file are part of.

Example rule unit declaration in a DRL file

package org.mypackage.myunit
unit AdultUnit

rule Adult
when
$p : Person(age >= adultAge) from persons
then
System.out.printin($p.getName() + " is adult and greater than " + adultAge);
end

' WARNING
A Do not mix rules with and without a rule unit in the same KIE base. Mixing two rule

paradigms in a KIE base results in a compilation error.

You can also rewrite the same pattern in a more convenient way using OOPath notation, as shown in the
following example:

Example rule unit declaration in a DRL file that uses OOPath notation

package org.mypackage.myunit
unit AdultUnit

rule Adult
when
$p : /persons[age >= adultAge]
then
System.out.printin($p.getName() + " is adult and greater than " + adultAge);
end

NOTE

OOPath is an object-oriented syntax extension of XPath that is designed for browsing
graphs of objects in DRL rule condition constraints. OOPath uses the compact notation
from XPath for navigating through related elements while handling collections and
filtering constraints, and is specifically useful for graphs of objects.

In this example, any matching facts in the rule conditions are retrieved from the persons data source
defined in the DataSource definition in the rule unit class. The rule condition and action use the
adultAge variable in the same way that a global variable is defined at the DRL file level.

To execute one or more rule units defined in a KIE base, create a new RuleUnitExecutor class bound to
the KIE base, create the rule unit from the relevant data source, and run the rule unit executer:

234

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

Example rule unit execution

// Create a "RuleUnitExecutor’ class and bind it to the KIE base:
KieBase kbase = kieContainer.getKieBase();
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

// Create the "AdultUnit’ rule unit using the ‘persons’ data source and run the executor:
RuleUnit adultUnit = new AdultUnit(persons, 18);
executor.run(adultUnit);

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE sessions
and adds the required DataSource objects to those sessions, and then executes the rules based on the
RuleUnit that is passed as a parameter to the run() method.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

org.mypackage.myunit.AdultUnit started.
Jane is adult and greater than 18
John is adult and greater than 18
org.mypackage.myunit.AdultUnit ended.

Instead of explicitly creating the rule unit instance, you can register the rule unit variables in the executor
and pass to the executor the rule unit class that you want to run, and then the executor creates an
instance of the rule unit. You can then set the DataSource definition and other variables as needed
before running the rule unit.

Alternate rule unit execution option with registered variables

executor.bindVariable("persons”, persons);
.bindVariable("adultAge", 18);
executor.run(AdultUnit.class);

The name that you pass to the RuleUnitExecutor.bindVariable() method is used at run time to bind
the variable to the field of the rule unit class with the same name. In the previous example, the
RuleUnitExecutor inserts into the new rule unit the data source bound to the "persons" name and
inserts the value 18 bound to the String "adultAge" into the fields with the corresponding names inside
the AdultUnit class.

To override this default variable-binding behavior, use the @UnitVar annotation to explicitly define a
logical binding name for each field of the rule unit class. For example, the field bindings in the following

class are redefined with alternative names:

Example code to modify variable binding names with @UnitVvar

package org.mypackage.myunit;
public static class AdultUnit implements RuleUnit {

@UnitVar("minAge")
private int adultAge = 18;

235

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

@UnitVar("data")
private DataSource<Person> persons;

}

You can then bind the variables to the executor using those alternative names and run the rule unit:

Example rule unit execution with modified variable names

executor.bindVariable("data", persons);
.bindVariable("minAge", 18);
executor.run(AdultUnit.class);

You can execute a rule unit in passive mode by using the run() method (equivalent to invoking
fireAllRules() on a KIE session) or in active mode using the runUntilHalt() method (equivalent to
invoking fireUntilHalt() on a KIE session). By default, the decision engine runs in passive mode and
evaluates rule units only when a user or an application explicitly calls run() (or fireAllRules() for standard
rules). If a user or application calls runUntilHalt() for rule units (or fireUntilHalt() for standard rules), the
decision engine starts in active mode and evaluates rule units continually until the user or application
explicitly calls halt().

If you use the runUntilHalt() method, invoke the method on a separate execution thread to avoid
blocking the main thread:

Example rule unit execution with runUntilHalt() on a separate thread

I new Thread(() -> executor.runUntilHalt(adultUnit)).start();

14.12.1. Data sources for rule units

A rule unit data source is a source of the data processed by a given rule unit and represents the entry
point that the decision engine uses to evaluate the rule unit. A rule unit can have zero or more data
sources and each DataSource definition declared inside a rule unit can correspond to a different entry
point into the rule unit executor. Multiple rule units can share a single data source, but each rule unit
must use different entry points through which the same objects are inserted.

You can create a DataSource definition with a fixed set of data in a rule unit class, as shown in the
following example:

Example data source definition

DataSource<Person> persons = DataSource.create(new Person("John", 42),
new Person("Jane", 44),
new Person("Sally", 4));

Because a data source represents the entry point of the rule unit, you can insert, update, or delete facts
in arule unit:

Example code to insert, modify, and delete a fact in a rule unit

// Insert a fact:
Person john = new Person("John", 42);
FactHandle johnFh = persons.insert(john);

// Modify the fact and optionally specify modified properties (for property reactivity):

236

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

john.setAge(43);
persons.update(johnFh, john, "age");

// Delete the fact:
persons.delete(johnFh);

14.12.2. Rule unit execution control

Rule units are helpful when you want to coordinate rule execution so that the execution of one rule unit
triggers the start of another rule unit and so on.

To facilitate rule unit execution control, the decision engine supports the following rule unit methods
that you can use in DRL rule actions to coordinate the execution of rule units:

e drools.run(): Triggers the execution of a specified rule unit class. This method imperatively
interrupts the execution of the rule unit and activates the other specified rule unit.

e drools.guard(): Prevents (guards) a specified rule unit class from being executed until the
associated rule condition is met. This method declaratively schedules the execution of the other
specified rule unit. When the decision engine produces at least one match for the condition in
the guarding rule, the guarded rule unit is considered active. A rule unit can contain multiple
guarding rules.

As an example of the drools.run() method, consider the following DRL rules that each belong to a
specified rule unit. The NotAdult rule uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit:

Example DRL rules with controlled execution using drools.run()

package org.mypackage.myunit
unit AdultUnit

rule Adult
when
Person(age >= 18, $name : name) from persons
then
System.out.printin($name + " is adult");
end

package org.mypackage.myunit
unit NotAdultUnit

rule NotAdult
when
$p : Person(age < 18, $name : name) from persons
then
System.out.printin($name + " is NOT adult");
modify($p) { setAge(18); }
drools.run(AdultUnit.class);
end

The example also uses a RuleUnitExecutor class created from the KIE base that was built from these
rules and a DataSource definition of persons bound to it:

Example rule executor and data source definitions

237

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
DataSource<Person> persons = executor.newDataSource("persons”,
new Person("John", 42),
new Person("Jane", 44),
new Person("Sally", 4));

In this case, the example creates the DataSource definition directly from the RuleUnitExecutor class
and binds it to the "persons" variable in a single statement.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

Sally is NOT adult
John is adult
Jane is adult
Sally is adult

The NotAdult rule detects a match when evaluating the person "Sally", who is under 18 years old. The
rule then modifies her age to 18 and uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit. The AdultUnit rule unit contains a rule that can now be executed
for all of the 3 persons in the DataSource definition.

As an example of the drools.guard() method, consider the following BoxOffice class and
BoxOfficeUnit rule unit class:

Example BoxOffice class

public class BoxOffice {
private boolean open;

public BoxOffice(boolean open) {
this.open = open;

}

public boolean isOpen() {
return open;

}

public void setOpen(boolean open) {
this.open = open;
}
}

Example BoxOfficeUnit rule unit class

public class BoxOfficeUnit implements RuleUnit {
private DataSource<BoxOffice> boxOffices;

public DataSource<BoxOffice> getBoxOffices() {
return boxOffices;

}
}

238

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

The example also uses the following TicketlssuerUnit rule unit class to keep selling box office tickets for
the event as long as at least one box office is open. This rule unit uses DataSource definitions of
persons and tickets:

Example TicketlssuerUnit rule unit class

public class TicketlssuerUnit implements RuleUnit {

}

private DataSource<Person> persons;
private DataSource<AdultTicket> tickets;

private List<String> results;
public TicketlssuerUnit() { }

public TicketlssuerUnit(DataSource<Person> persons, DataSource<AdultTicket> tickets) {
this.persons = persons;
this.tickets = tickets;

}

public DataSource<Person> getPersons() {
return persons;

}

public DataSource<AdultTicket> getTickets() {
return tickets;

}

public List<String> getResults() {
return results;

}

The BoxOfficeUnit rule unit contains a BoxOfficelsOpen DRL rule that uses the drools.guard(
TicketlssuerUnit.class) method to guard the execution of the TicketlssuerUnit rule unit that
distributes the event tickets, as shown in the following DRL rule examples:

Example DRL rules with controlled execution using drools.guard()

package org.mypackage.myunit;
unit TicketlssuerUnit;

rule IssueAdultTicket when

$p: /persons| age >= 18]

then

tickets.insert(new AdultTicket($p));

end
rule RegisterAdultTicket when

$t: /tickets

then

results.add($t.getPerson().getName());

end

package org.mypackage.myunit;
unit BoxOfficeUnit;

239

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Int
act

rule BoxOfficelsOpen

when
$box: /boxOffices[open]
then
drools.guard(TicketlssuerUnit.class);
end
his example, so long as at least one box office is open, the guarded TicketlssuerUnit rule unit is

ive and distributes event tickets. When no more box offices are in open state, the guarded

TicketlssuerUnit rule unit is prevented from being executed.

The following example class illustrates a more complete box office scenario:

Example class for the box office scenario

240

DataSource<Person> persons = executor.newDataSource("persons");
DataSource<BoxOffice> boxOffices = executor.newDataSource("boxOffices");
DataSource<AdultTicket> tickets = executor.newDataSource("tickets");

List<String> list = new ArrayList<>();
executor.bindVariable("results", list);

// Two box offices are open:

BoxOffice office1 = new BoxOffice(true);
FactHandle officeFH1 = boxOffices.insert(office1);
BoxOffice office2 = new BoxOffice(true);
FactHandle officeFH2 = boxOffices.insert(office2);

persons.insert(new Person("John", 40));

// Execute "BoxOfficelsOpen’ rule, run "TicketlssuerUnit" rule unit, and execute "RegisterAdultTicket’
rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("John", list.get(0));
list.clear();

persons.insert(new Person("Matteo", 30));

// Execute "RegisterAdultTicket rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Matteo", list.get(0));
list.clear();

// One box office is closed, the other is open:
office1.setOpen(false);
boxOffices.update(officeFH1, office);
persons.insert(new Person("Mark", 35));
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Mark", list.get(0));

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

list.clear();

// All box offices are closed:

office2.setOpen(false);

boxOffices.update(officeFH2, office2); // Guarding rule is no longer true.
persons.insert(new Person("Edson", 35));
executor.run(BoxOfficeUnit.class); // No execution

assertEquals(0, list.size());

14.12.3. Rule unit identity conflicts

In rule unit execution scenarios with guarded rule units, a rule can guard multiple rule units and at the
same time a rule unit can be guarded and then activated by multiple rules. For these two-way guarding
scenarios, rule units must have a clearly defined identity to avoid identity conflicts.

By default, the identity of a rule unit is the rule unit class name and is treated as a singleton class by the
RuleUnitExecutor. This identification behavior is encoded in the getUnitldentity() default method of
the RuleUnit interface:

Default identity method in the RuleUnitinterface

default Identity getUnitldentity() {
return new Identity(getClass());

}

In some cases, you may need to override this default identification behavior to avoid conflicting
identities between rule units.

For example, the following RuleUnit class contains a DataSource definition that accepts any kind of
object:

Example Unit0 rule unit class

public class Unit0 implements RuleUnit {
private DataSource<Object> input;

public DataSource<Object> getlnput() {
return input;

}
}

This rule unit contains the following DRL rule that guards another rule unit based on two conditions (in
OOPath notation):

Example GuardAgeCheck DRL rule in the rule unit

package org.mypackage.myunit
unit Unit0

rule GuardAgeCheck
when
$i: /input#integer
$s: /input#String

241

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

then
drools.guard(new AgeCheckUnit($i));
drools.guard(new AgeCheckUnit($s.length()));
end

The guarded AgeCheckUnit rule unit verifies the age of a set of persons. The AgeCheckUnit contains
a DataSource definition of the persons to check, a minAge variable that it verifies against, and a List
for gathering the results:

Example AgeCheckUnit rule unit

public class AgeCheckUnit implements RuleUnit {
private final int minAge;
private DataSource<Person> persons;
private List<String> results;

public AgeCheckUnit(int minAge) {
this.minAge = minAge;

}

public DataSource<Person> getPersons() {
return persons;

}

public int getMinAge() {
return minAge;

}

public List<String> getResults() {
return results;
}
}

The AgeCheckUnit rule unit contains the following DRL rule that performs the verification of the
persons in the data source:

Example CheckAge DRL rule in the rule unit

package org.mypackage.myunit
unit AgeCheckUnit

rule CheckAge
when
$p : /persons{ age > minAge }
then
results.add($p.getName() + ">" + minAge);
end

This example creates a RuleUnitExecutor class, binds the class to the KIE base that contains these two
rule units, and creates the two DataSource definitions for the same rule units:

Example executor and data source definitions

I RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

242

CHAPTER 14. DRL (DROOLS RULE LANGUAGE) RULES

DataSource<Obiject> input = executor.newDataSource("input");
DataSource<Person> persons = executor.newDataSource("persons”,
new Person("John", 42),
new Person("Sally", 4));

List<String> results = new ArrayList<>();
executor.bindVariable("results", results);

You can now insert some objects into the input data source and execute the Unit0 rule unit:

Example rule unit execution with inserted objects

ds.insert("test");
ds.insert(3);

ds.insert(4);
executor.run(Unit0.class);

Example results list from the execution
I [Sally>3, John>3]

In this example, the rule unit named AgeCheckUnit is considered a singleton class and then executed
only once, with the minAge variable set to 3. Both the String "test" and the Integer 4 inserted into the
input data source can also trigger a second execution with the minAge variable set to 4. However, the
second execution does not occur because another rule unit with the same identity has already been
evaluated.

To resolve this rule unit identity conflict, override the getUnitldentity() method in the AgeCheckUnit
class to include also the minAge variable in the rule unit identity:

Modified AgeCheckUnit rule unit to override the getUnitldentity() method

public class AgeCheckUnit implements RuleUnit {

@Override
public Identity getUnitldentity() {
return new ldentity(getClass(), minAge);

}
}

With this override in place, the previous example rule unit execution produces the following output:

Example results list from executing the modified rule unit
I [John>4, Sally>3, John>3]

The rule units with minAge set to 3 and 4 are now considered two different rule units and both are
executed.

243

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 15. DATA OBJECTS

Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

15.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1.

2.

244

In Business Central, go to Menu - Desigh = Projects and click the project name.
Click Add Asset —» Data Object.

Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects = New item to select the object to be imported.

To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

Click Ok.

In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

® |d: Enter the unique ID of the field.
® Label: (Optional) Enter a label for the field.
® Type: Enter the data type of the field.

® List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

CHAPTER 15. DATA OBJECTS

Figure 15.1. Add data fields to a data object

New Field »
Id* salary
Label Salary
Type * Biginteger w
List & O

Cancel Create and continue

7. Click Create to add the new field, or click Create and continueto add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

245

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 16. CREATING DRL RULES IN BUSINESS CENTRAL

You can create and manage DRL rules for your project in Business Central. In each DRL rule file, you
define rule conditions, actions, and other components related to the rule, based on the data objects you
create or import in the package.

Procedure

1.

2.

246

In Business Central, go to Menu - Desigh = Projects and click the project name.
Click Add Asset — DRL file.

Enter an informative DRL file name and select the appropriate Package. The package that you
specify must be the same package where the required data objects have been assigned or will
be assigned.

You can also select Show declared DSL sentences if any domain specific language (DSL)
assets have been defined in your project. These DSL assets will then become usable objects for
conditions and actions that you define in the DRL designer.

Click Ok to create the rule asset.

The new DRL file is now listed in the DRL panel of the Project Explorer, or in the DSLR panel if
you selected the Show declared DSL sentences option. The package to which you assigned
this DRL file is listed at the top of the file.

In the Fact types list in the left panel of the DRL designer, confirm that all data objects and data
object fields (expand each) required for your rules are listed. If not, you can either import
relevant data objects from other packages by using import statements in the DRL file, or create
data objects within your package.

After all data objects are in place, return to the Model tab of the DRL designer and define the
DRL file with any of the following components:

Components in a DRL file

package
import
function // Optional
query // Optional
declare // Optional
global // Optional
rule "rule name"
/I Attributes
when
// Conditions
then

/I Actions
end

CHAPTER 16. CREATING DRL RULES IN BUSINESS CENTRAL

rule "rule2 name"

® package: (automatic) This was defined for you when you created the DRL file and selected
the package.

e import: Use this to identify the data objects from either this package or another package
that you want to use in the DRL file. Specify the package and data object in the format
packageName.objectName, with multiple imports on separate lines.

Importing data objects
I import org.mortgages.LoanApplication;

e function: (optional) Use this to include a function to be used by rules in the DRL file.
Functions in DRL files put semantic code in your rule source file instead of in Java classes.
Functions are especially useful if an action (then) part of a rule is used repeatedly and only
the parameters differ for each rule. Above the rules in the DRL file, you can declare the
function or import a static method from a helper class as a function, and then use the
function by name in an action (then) part of the rule.

Declaring and using a function with a rule (option 1)

function String hello(String applicantName) {
return "Hello " + applicantName + "!";

}

rule "Using a function"
when
// Empty
then
System.out.printin(hello("James"));
end

Importing and using the function with a rule (option 2)

import function my.package.applicant.hello;

rule "Using a function"
when
/I Empty
then
System.out.printin(hello("James"));
end

® query: (optional) Use this to search the decision engine for facts related to the rules in the
DRL file. You add the query definitions in DRL files and then obtain the matching results in
your application code. Queries search for a set of defined conditions and do not require
when or then specifications. Query names are global to the KIE base and therefore must be
unique among all other rule queries in the project. To return the results of a query, construct
a traditional QueryResults definition using ksession.getQueryResults("name"), where

247

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

248

"name" is the query name. This returns a list of query results, which enable you to retrieve
the objects that matched the query. Define the query and query results parameters above
the rules in the DRL file.

Example query definition in a DRL file

query "people under the age of 21"
$person : Person(age < 21))
end

Example application code to obtain query results

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.printin("we have " + results.size() + " people under the age of 21");

declare: (optional) Use this to declare a new fact type to be used by rules in the DRL file.
The default fact type in the java.lang package of Red Hat Decision Manager is Object, but
you can declare other types in DRL files as needed. Declaring fact types in DRL files enables
you to define a new fact model directly in the decision engine, without creating models in a
lower-level language like Java.

Declaring and using a new fact type

declare Person
name : String
dateOfBirth : java.util.Date
address : Address

end

rule "Using a declared type"
when
$p : Person(name == "James")
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName("Mark");
insert(mark);
end

global: (optional) Use this to include a global variable to be used by rules in the DRL file.
Global variables typically provide data or services for the rules, such as application services
used in rule consequences, and return data from rules, such as logs or values added in rule
consequences. Set the global value in the working memory of the decision engine through a
KIE session configuration or REST operation, declare the global variable above the rules in
the DRL file, and then use it in an action (then) part of the rule. For multiple global variables,
use separate lines in the DRL file.

Setting the global list configuration for the decision engine

List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal("myGlobalList", list);

Defining the global list in a rule

CHAPTER 16. CREATING DRL RULES IN BUSINESS CENTRAL

global java.util.List myGlobalList;

rule "Using a global"
when
// Empty
then
myGiloballist.add("My global list");
end

' WARNING
A Do not use global variables to establish conditions in rules unless a

global variable has a constant immutable value. Global variables are not
inserted into the working memory of the decision engine, so the
decision engine cannot track value changes of variables.

Do not use global variables to share data between rules. Rules always
reason and react to the working memory state, so if you want to pass
data from rule to rule, assert the data as facts into the working memory
of the decision engine.

e rule: Use this to define each rule in the DRL file. Rules consist of a rule name in the format
rule "name", followed by optional attributes that define rule behavior (such as salience or
no-loop), followed by when and then definitions. Each rule must have a unique name within
the rule package. The when part of the rule contains the conditions that must be met to
execute an action. For example, if a bank requires loan applicants to have over 21years of
age, then the when condition for an "Underage" rule would be Applicant(age <21). The
then part of the rule contains the actions to be performed when the conditional part of the
rule has been met. For example, when the loan applicant is under 21 years old, the then
action would be setApproved(false), declining the loan because the applicant is under
age.

Rule for loan application age limit

rule "Underage"
salience 15
when
$application : LoanApplication()
Applicant(age < 21)
then
$application.setApproved(false);
$application.setExplanation("Underage");
end

At a minimum, each DRL file must specify the package, import, and rule components. All
other components are optional.

The following is an example DRL file in a loan application decision service:

Example DRL file for a loan application

249

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

package org.mortgages;

import org.mortgages.LoanApplication;
import org.mortgages.Bankruptcy;
import org.mortgages.Applicant;

rule "Bankruptcy history"
salience 10
when
$a : LoanApplication()
exists (Bankruptcy(yearOfOccurrence > 1990 || amountOwed > 10000))
then
$a.setApproved(false);
$a.setExplanation("has been bankrupt");
delete($a);
end

rule "Underage"

salience 15

when
$application : LoanApplication()
Applicant(age < 21)

then
$application.setApproved(false);
$application.setExplanation("Underage");
delete($application);

end

Figure 16.1. Example DRL file for a loan application in Business Central

Model Overview

1 package mortgages.mortgages;
Fact types:(hide) 4 B o
. 3 import mortgages.mortgages.LoanApplication;
B 4 import mortgages.mortgages.Bankruptcy;
@ @ mortgages.mortgages.Bankruptcy 5 import mortgages.mortgages.Applicant;
£ mortgages.mortgages.IncomeSource 6
® @mortgag e 7 rule "Bankruptcy history"”
@mortgages.mortgages.LoanAppllcatlon 8 Salience 10
9 when
10 $a : LoanApplication()
11 exists (Bankruptcy(yearOfOccurrence = 1998 || amountOwed > 10008))
12 then
13 $a.setApproved(false);
14 $a.setExplanation("has been bankrupt");
15 delete(%a);
16 end
17
18 rule "Underage"
19 salience 15
20 when
21 $application : LoanApplication{)
22 Applicant(age = 21)
23 then
24 $application.setApproved(false);
25 $application.setExplanation{ "Underage" };
26 delete($application);
27 end

7. After you define all components of the rule, click Validate in the upper-right toolbar of the DRL
designer to validate the DRL file. If the file validation fails, address any problems described in
the error message, review all syntax and components in the DRL file, and try again to validate
the file until the file passes.

8. Click Save in the DRL designer to save your work.

16.1. ADDING WHEN CONDITIONS IN DRL RULES

250

CHAPTER 16. CREATING DRL RULES IN BUSINESS CENTRAL

The when part of the rule contains the conditions that must be met to execute an action. For example, if
a bank requires loan applicants to have over 21 years of age, then the when condition of an "Underage"
rule would be Applicant(age < 21). Conditions consist of a series of stated patterns and constraints,
with optional bindings and other supported DRL elements, based on the available data objects in the
package.

Prerequisites

e The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

e The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Business Central.

® The rule name is defined in the format rule "name" below the package, import, and other lines
that apply to the entire DRL file. The same rule name cannot be used more than once in the
same package. Optional rule attributes (such as salience or no-loop) that define rule behavior
are below the rule name, before the when section.

Procedure

1. In the DRL designer, enter when within the rule to begin adding condition statements. The
when section consists of zero or more fact patterns that define conditions for the rule.
If the when section is empty, then the conditions are considered to be true and the actions in
the then section are executed the first time a fireAllRules() call is made in the decision engine.
This is useful if you want to use rules to set up the decision engine state.

Example rule without conditions

rule "Always insert applicant”
when
// Empty
then // Actions to be executed once
insert(new Applicant());
end

/I The rule is internally rewritten in the following way:

rule "Always insert applicant”
when
eval(true)
then
insert(new Applicant());
end

2. Enter a pattern for the first condition to be met, with optional constraints, bindings, and other
supported DRL elements. A basic pattern format is <patternBinding> : <patternType> (
<constraints>). Patterns are based on the available data objects in the package and define the
conditions to be met in order to trigger actions in the then section.

® Simple pattern: A simple pattern with no constraints matches against a fact of the given
type. For example, the following condition is only that the applicant exists.

when
Applicant()

251

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

® Pattern with constraints: A pattern with constraints matches against a fact of the given
type and the additional restrictions in parentheses that are true or false. For example, the
following condition is that the applicant is under the age of 21.

when
Applicant(age < 21)

e Pattern with binding: A binding on a pattern is a shorthand reference that other
components of the rule can use to refer back to the defined pattern. For example, the
following binding a on LoanApplication is used in a related action for underage applicants.

when
$a : LoanApplication()
Applicant(age < 21)

then
$a.setApproved(false);
$a.setExplanation("Underage")

3. Continue defining all condition patterns that apply to this rule. The following are some of the
keyword options for defining DRL conditions:

® and: Use this to group conditional components into a logical conjunction. Infix and prefix
and are supported. By default, all listed patterns are combined with and when no
conjunction is specified.

/I All of the following examples are interpreted the same way:
$a : LoanApplication() and Applicant(age < 21))

$a : LoanApplication()
and Applicant(age < 21)

$a : LoanApplication()
Applicant(age < 21)

(and $a : LoanApplication() Applicant(age < 21))

® or: Use this to group conditional components into a logical disjunction. Infix and prefix or are
supported.

/I All of the following examples are interpreted the same way:
Bankruptcy(amountOwed == 100000) or IncomeSource(amount == 20000)

Bankruptcy(amountOwed == 100000)
or IncomeSource(amount == 20000)

(or Bankruptcy(amountOwed == 100000) IncomeSource(amount == 20000))

e exists: Use this to specify facts and constraints that must exist. This option is triggered on
only the first match, not subsequent matches. If you use this element with multiple patterns,
enclose the patterns with parentheses ().

I exists (Bankruptcy(yearOfOccurrence > 1990 || amountOwed > 10000))

® not: Use this to specify facts and constraints that must not exist.

252

CHAPTER 16. CREATING DRL RULES IN BUSINESS CENTRAL

I not (Applicant(age <21))

e forall: Use this to verify whether all facts that match the first pattern match all the remaining
patterns. When a forall construct is satisfied, the rule evaluates to true.

forall($app : Applicant(age < 21)
Applicant(this == $app, status = 'underage'))

e from: Use this to specify a data source for a pattern.

Applicant(ApplicantAddress : address)
Address(zipcode == "23920W") from ApplicantAddress

e entry-point: Use this to define an Entry Point corresponding to a data source for the
pattern. Typically used with from.

I Applicant() from entry-point "LoanApplication”

e collect: Use this to define a collection of objects that the rule can use as part of the
condition. In the example, all pending applications in the decision engine for each given
mortgage are grouped in a List. If three or more pending applications are found, the rule is
executed.

$m : Mortgage()
$a : List(size >=3)
from collect(LoanApplication(Mortgage == $m, status == 'pending'))

e accumulate: Use this to iterate over a collection of objects, execute custom actions for each
of the elements, and return one or more result objects (if the constraints evaluate to true).
This option is a more flexible and powerful form of collect. Use the format accumulate(
<source pattern>; <functions> [;<constraints>]). In the example, min, max, and average
are accumulate functions that calculate the minimum, maximum, and average temperature
values over all the readings for each sensor. Other supported functions include count, sum,
variance, standardDeviation, collectList, and collectSet.

$s : Sensor()
accumulate(Reading(sensor == $s, $temp : temperature);
$min : min($temp),
$max : max($temp),
$avg : average($temp);
$min < 20, $avg > 70)

NOTE

For more information about DRL rule conditions, see Section 14.8, “Rule
conditions in DRL (WHEN)".

4. After you define all condition components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

5. Click Save in the DRL designer to save your work.

253

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

16.2. ADDING THEN ACTIONS IN DRL RULES

The then part of the rule contains the actions to be performed when the conditional part of the rule has
been met. For example, when a loan applicant is under 21 years old, the then action of an "Underage"
rule would be setApproved(false), declining the loan because the applicant is under age. Actions
consist of one or more methods that execute consequences based on the rule conditions and on
available data objects in the package. The main purpose of rule actions is to to insert, delete, or modify
data in the working memory of the decision engine.

Prerequisites

e The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

e The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Business Central.

® The rule name is defined in the format rule "name" below the package, import, and other lines
that apply to the entire DRL file. The same rule name cannot be used more than once in the
same package. Optional rule attributes (such as salience or no-loop) that define rule behavior
are below the rule name, before the when section.

Procedure

1. In the DRL designer, enter then after the when section of the rule to begin adding action
statements.

2. Enter one or more actions to be executed on fact patterns based on the conditions for the rule.
The following are some of the keyword options for defining DRL actions:

e set: Use this to set the value of a field.

$application.setApproved (false);
$application.setExplanation("has been bankrupt");

o modify: Use this to specify fields to be modified for a fact and to notify the decision engine

of the change. This method provides a structured approach to fact updates. It combines the
update operation with setter calls to change object fields.

modify(LoanApplication) {
setAmount(100),
setApproved (true)

e update: Use this to specify fields and the entire related fact to be updated and to notify the
decision engine of the change. After a fact has changed, you must call update before
changing another fact that might be affected by the updated values. To avoid this added
step, use the modify method instead.

LoanApplication.setAmount(100);
update(LoanApplication);

e insert: Use this to insert a new fact into the decision engine.

254

CHAPTER 16. CREATING DRL RULES IN BUSINESS CENTRAL

I insert(new Applicant());

e insertLogical: Use this to insert a new fact logically into the decision engine. The decision
engine is responsible for logical decisions on insertions and retractions of facts. After
regular or stated insertions, facts must be retracted explicitly. After logical insertions, the
facts that were inserted are automatically retracted when the conditions in the rules that
inserted the facts are no longer true.

I insertLogical(new Applicant());

e delete: Use this to remove an object from the decision engine. The keyword retract s also
supported in DRL and executes the same action, but delete is typically preferred in DRL
code for consistency with the keyword insert.

I delete(Applicant);

NOTE

For more information about DRL rule actions, see Section 14.9, "Rule actions in
DRL (THEN)".

3. After you define all action components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

4. Click Save in the DRL designer to save your work.

255

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER 17. EXECUTING RULES

After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on KIE Server to test the rules.

Prerequisites

Procedure

256

® Business Central and KIE Server are installed and running. For installation options, see Planning
a Red Hat Decision Manager installation.

1. In Business Central, go to Menu - Design = Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to KIE Server. If the build fails, address any problems described in the Alerts panel at
the bottom of the screen.

For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

NOTE

If the rule assets in your project are not built from an executable rule model by
default, verify that the following dependency is in the pom.xml file of your
project and rebuild the project:

<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-model-compiler</artifactld>
<version>${rhdm.version}</version>
</dependency>

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Packaging and deploying
a Red Hat Decision Manager project.

. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
KIE Server. The project must contain a pom.xml file and any other required components for
executing the project resources.

For example test projects, see "Other methods for creating and executing DRL rules”.

. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

® Kie-ci: Enables your client application to load Business Central project data locally using

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/developing_decision_services_in_red_hat_decision_manager#drl-rules-other-con

CHAPTER 17. EXECUTING RULES

® kie-server-client: Enables your client application to interact remotely with assets on KIE
Server

e slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with KIE Server

Example dependencies for Red Hat Decision Manager 7.9 in a client application pom.xml file:

<!I-- For local execution -->

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>7.44.0.Final-redhat-00003</version>

</dependency>

<!I-- For remote execution on KIE Server -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>7.44.0.Final-redhat-00003</version>
</dependency>

<!I-- For debug logging (optional) -->
<dependency>
<groupld>org.slf4j</groupld>
<artifactld>slf4j-simple</artifactld>
<version>1.7.25</version>
</dependency>

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.9.0.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

257

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

258

5. Ensure that the dependencies for artifacts containing model classes are defined in the client

application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.

To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View = pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

<dependency>
<groupld>com.sample</groupld>
<artifactld>Person</artifactld>
<version>1.0.0</version>
</dependency>

. If you added the slf4j dependency to the client application pom.xml file for debug logging,

create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

I org.slf4j.simpleLogger.defaultiLoglLevel=debug

. Inyour client application, create a .java main class containing the necessary imports and a

main() method to load the KIE base, insert facts, and execute the rules.

For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

package com.sample;
import com.sample.Person;
dialect "java"

rule "Wage"
when
Person(hourlyRate * wage > 100)
Person(name : firstName, surname : lastName)
then
System.out.printin("Hello" + " " + name + " " + surname + "!");
System.out.printin("You are rich!");
end

To test this rule locally outside of KIE Server (if needed), configure the .java class to import KIE
services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

import org.kie.api.KieServices;
import org.kie.api.builder.Releaseld;
import org.kie.api.runtime.KieContainer;

CHAPTER 17. EXECUTING RULES

import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.Releaseldimpl;

public class RulesTest {

public static final void main(String[] args) {
try {
// Identify the project in the local repository:
Releaseld rid = new Releaseldlmpl("com.myspace", "MyProject”, "1.0.0");

// Load the KIE base:

KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.newKieContainer(rid);
KieSession kSession = kContainer.newKieSession();

// Set up the fact model:
Person p = new Person();
p.setWage(12);
p.setFirstName("Tom");
p.setLastName("Summers");
p.setHourlyRate(10);

// Insert the person into the session:
kSession.insert(p);

// Fire all rules:
kSession.fireAllRules();
kSession.dispose();

}

catch (Throwable t) {
t.printStackTrace();

}
}
}

To test this rule on KIE Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on KIE Server

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;

import org.kie.api.KieServices;

import org.kie.api.runtime.ExecutionResults;

import org.kie.api.runtime.KieContainer;

import org.kie.api.runtime.KieSession;

import org.kie.server.api.marshalling.MarshallingFormat;

259

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;

import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;
public class RulesTest {

private static final String containerName = "testProject";
private static final String sessionName = "myStatelessSession";

public static final void main(String[] args) {
try {
// Define KIE services configuration and client:
Set<Class<?>> allClasses = new HashSet<Class<?>>();
allClasses.add(Person.class);

String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";

String username = "$USERNAME";
String password = "$PASSWORD";
KieServicesConfiguration config =
KieServicesFactory.newRestConfiguration(serverUrl,
username,
password);
config.setMarshallingFormat(MarshallingFormat.JAXB);
config.addExtraClasses(allClasses);
KieServicesClient kieServicesClient =
KieServicesFactory.newKieServicesClient(config);

// Set up the fact model:
Person p = new Person();
p.setWage(12);
p.setFirstName("Tom");
p.setLastName("Summers");
p.setHourlyRate(10);

// Insert Person into the session:

KieCommands kieCommands = KieServices.Factory.get().getCommands();

ListcCommand> commandList = new ArrayList<Command>();
commandList.add(kieCommands.newlInsert(p, "personReturnld"));

// Fire all rules:

commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
BatchExecutionCommand batch = kiefCommands.newBatchExecution(commandList,

sessionName);

// Use rule services client to send request:

RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);

ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);

System.out.printin("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));

}

260

CHAPTER 17. EXECUTING RULES

catch (Throwable 1) {
t.printStackTrace();

}
}
}

. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

I mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"
Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*.." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

261

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

CHAPTER18. OTHER METHODS FOR CREATING AND
EXECUTING DRL RULES

As an alternative to creating and managing DRL rules within the Business Central interface, you can
create DRL rule files externally as part of a Maven or Java project using Red Hat CodeReady Studio or
another integrated development environment (IDE). These standalone projects can then be integrated
as knowledge JAR (KJAR) dependencies in existing Red Hat Decision Manager projects in Business
Central. The DRL files in your standalone project must contain at a minimum the required package
specification, import lists, and rule definitions. Any other DRL components, such as global variables and
functions, are optional. All data objects related to a DRL rule must be included with your standalone DRL
project or deployment.

You can also use executable rule models in your Maven or Java projects to provide a Java-based
representation of a rule set for execution at build time. The executable model is a more efficient
alternative to the standard asset packaging in Red Hat Decision Manager and enables KIE containers
and KIE bases to be created more quickly, especially when you have large lists of DRL (Drools Rule
Language) files and other Red Hat Decision Manager assets.

18.1. CREATING AND EXECUTING DRL RULES IN RED HAT
CODEREADY STUDIO

You can use Red Hat CodeReady Studio to create DRL files with rules and integrate the files with your
Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you already
use Red Hat CodeReady Studio for your decision service and want to continue with the same workflow.
If you do not already use this method, then the Business Central interface of Red Hat Decision Manager
is recommended for creating DRL files and other rule assets.

Prerequisites

® Red Hat CodeReady Studio has been installed from the Red Hat Customer Portal.

Procedure
1. In the Red Hat CodeReady Studio, click File = New — Project.
2. Inthe New Project window that opens, select Drools = Drools Project and click Next.

3. Click the second icon to Create a project and populate it with some example files to help you
get started quickly. Click Next.

4. Enter a Project name and select the Maven radio button as the project building option. The
GAV values are generated automatically. You can update these values as needed for your
project:

® Group ID: com.sample
e Artifact ID: my-project
® Version: 1.0.0-SNAPSHOT

5. Click Finish to create the project.
This configuration sets up a basic project structure, class path, and sample rules. The following is
an overview of the project structure:

262

https://access.redhat.com/downloads/

CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

my-project
“-- src/main/java
| *-- com.sample
| “-- DecisionTableTest.java
| "-- DroolsTest.java
| -- ProcessTest.java
|
“-- src/main/resources
| -- dtables
| "-- Sample.xls
| *-- process
| "-- sample.bpmn
| -- rules
| "-- Sample.drl
| *-- META-INF

|
*-- JRE System Library

|
“-- Maven Dependencies
|

*-- Drools Library

T--src
|
“-- target

*-- pom.xml

Notice the following elements:

e A Sample.drl rule file in the src/main/resources directory, containing an example Hello
World and GoodBye rules.

e A DroolsTest.java file under the src/main/java directory in the com.sample package. The
DroolsTest class can be used to execute the Sample.drl rule.

e The Drools Library directory, which acts as a custom class path containing JAR files
necessary for execution.

You can edit the existing Sample.drl file and DroolsTest.java files with new configurations as
needed, or create new rule and object files. In this procedure, you are creating a new rule and
new Java objects.

. Create a Java object on which the rule or rules will operate.

In this example, a Person.java file is created in my-project/src/main/java/com.sample. The
Person class contains getter and setter methods to set and retrieve the first name, last name,
hourly rate, and the wage of a person:

public class Person {
private String firstName;
private String lastName;
private Integer hourlyRate;
private Integer wage;

public String getFirstName() {
return firstName;

263

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

public Integer getHourlyRate() {
return hourlyRate;

}

public void setHourlyRate(Integer hourlyRate) {
this.hourlyRate = hourlyRate;

}

public Integer getWage(){
return wage;

}

public void setWage(Integer wage){
this.wage = wage;
}
}

7. Click File = Save to save the file.

8. Create arule file in .drl format in my-project/src/main/resources/rules. The DRL file must
contain at a minimum a package specification, an import list of data objects to be used by the
rule or rules, and one or more rules with when conditions and then actions.

The following Wage.drl file contains a Wage rule that imports the Person class, calculates the
wage and hourly rate values, and displays a message based on the result:

package com.sample;
import com.sample.Person;
dialect "java"

rule "Wage"
when
Person(hourlyRate * wage > 100)
Person(name : firstName, surname : lastName)
then
System.out.printin("Hello" + " " + name +
System.out.printin("You are rich!");
end

+ surname + "I");

9. Click File = Save to save the file.

264

10. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the KIE base and execute rules.

1.

CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

NOTE

You can also add the main() method and Person class within a single Java object

file, similar to the DroolsTest.java sample file.

In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the KIE base, insert facts, and execute the rule from the main()
method that passes the fact model to the rule.

In this example, a RulesTest.java file is created in my-project/src/main/java/com.sample with
the required imports and main() method:

package com.sample;

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {
public static final void main(String[] args) {

try {
// Load the KIE base:

KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession();

// Set up the fact model:
Person p = new Person();
p.setWage(12);
p.setFirstName("Tom");
p.setLastName("Summers");
p.setHourlyRate(10);

// Insert the person into the session:

kSession.insert(p);

// Fire all rules:
kSession.fireAllRules();
kSession.dispose();

}

catch (Throwable t) {
t.printStackTrace();

}

12. Click File = Save to save the file.

13. After you create and save all DRL assets in your project, right-click your project folder and select

Run As — Java Application to build the project. If the project build fails, address any problems
described in the Problems tab of the lower window in CodeReady Studio, and try again to
validate the project until the project builds.

265

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

IF THE RUN AS -» JAVA APPLICATION OPTION IS NOT AVAILABLE

If Java Application is not an option when you right-click your project and select Run As,
then go to Run As = Run Configurations, right-click Java Application, and click New.
Then in the Main tab, browse for and select your Project and the associated Main class.
Click Apply and then click Run to test the project. The next time you right-click your
project folder, the Java Application option will appear.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of the
project in Business Central. To access the project pom.xml file in Business Central, you can select any
existing asset in the project and then in the Project Explorer menu on the left side of the screen, click
the Customize View gear icon and select Repository View = pom.xml.

18.2. CREATING AND EXECUTING DRL RULES USING JAVA

You can use Java objects to create DRL files with rules and integrate the objects with your Red Hat
Decision Manager decision service. This method of creating DRL rules is helpful if you already use
external Java objects for your decision service and want to continue with the same workflow. If you do
not already use this method, then the Business Central interface of Red Hat Decision Manager is
recommended for creating DRL files and other rule assets.

Procedure

1. Create a Java object on which the rule or rules will operate.
In this example, a Person.java file is created in a directory my-project. The Person class
contains getter and setter methods to set and retrieve the first name, last name, hourly rate,
and the wage of a person:

public class Person {
private String firstName;
private String lastName;
private Integer hourlyRate;
private Integer wage;

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

public Integer getHourlyRate() {
return hourlyRate;

}

266

CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

public void setHourlyRate(Integer hourlyRate) {
this.hourlyRate = hourlyRate;

}

public Integer getWage(){
return wage;

}

public void setWage(Integer wage){
this.wage = wage;
}
}

2. Create arule file in .drl format under the my-project directory. The DRL file must contain at a
minimum a package specification (if applicable), an import list of data objects to be used by the
rule or rules, and one or more rules with when conditions and then actions.

The following Wage.drl file contains a Wage rule that calculates the wage and hourly rate
values and displays a message based on the result:

package com.sample;
import com.sample.Person;
dialect "java"

rule "Wage"
when
Person(hourlyRate * wage > 100)
Person(name : firstName, surname : lastName)
then
System.out.printin("Hello" + " " + name + " " + surname + "!");
System.out.printin("You are rich!");
end

3. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the KIE base and execute rules.

4. In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the KIE base, insert facts, and execute the rule from the main()
method that passes the fact model to the rule.

In this example, a RulesTest.java file is created in my-project with the required imports and
main() method:

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {
public static final void main(String[] args) {
try {
// Load the KIE base:
KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession();

267

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

// Set up the fact model:
Person p = new Person();
p.setWage(12);
p.setFirstName("Tom");
p.setLastName("Summers");
p.setHourlyRate(10);

// Insert the person into the session:
kSession.insert(p);

// Fire all rules:
kSession.fireAllRules();
kSession.dispose();

}

catch (Throwable t) {
t.printStackTrace();

}
}
}

5. Download the Red Hat Decision Manager 7.9.0 Source DistributionZIP file from the Red Hat
Customer Portal and extract it under my-project/dm-engine-jars/.

6. In the my-project/META-INF directory, create a kmodule.xml metadata file with the following
content:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmiIns="http://www.drools.org/xsd/kmodule">
</kmodule>

This kmodule.xml file is a KIE module descriptor that selects resources to KIE bases and
configures sessions. This file enables you to define and configure one or more KIE bases, and to
include DRL files from specific packages in a specific KIE base. You can also create one or more
KIE sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">
<kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
<ksession name="KSession1_1" type="stateful" default="true" />
<ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
</kbase>
<kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
<fileLogger file="debuglnfo" threaded="true" interval="10" />
<workltemHandlers>
<workltemHandler name="name" type="new org.domain.WorkltemHandler()" />
</workltemHandlers>
<listeners>

268

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

<ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
<agendaEventListener type="org.domain.FirstAgendaListener" />
<agendaEventListener type="org.domain.SecondAgendaListener" />
<processEventListener type="org.domain.ProcessListener" />
</listeners>
</ksession>
</kbase>
</kmodule>

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. The KIE session from KBase2 is a stateless KIE
session, which means that data from a previous invocation of the KIE session (the previous
session state) is discarded between session invocations. Specific packages of rule assets are
included with both KIE bases. When you specify packages in this way, you must organize your
DRL files in a folder structure that reflects the specified packages.

7. After you create and save all DRL assets in your Java object, navigate to the my-project
directory in the command line and run the following command to build your Java files. Replace
RulesTest.java with the name of your Java main class.

I javac -classpath "./dm-engine-jars/*.." RulesTest.java

If the build fails, address any problems described in the command line error messages and try
again to validate the Java object until the object passes.

8. After your Java files build successfully, run the following command to execute the rules locally.
Replace RulesTest with the prefix of your Java main class.

I java -classpath "./dm-engine-jars/*:." RulesTest

9. Review the rules to ensure that they executed properly, and address any needed changes in the
Java files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Java project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of the
project in Business Central. To access the project pom.xml file in Business Central, you can select any
existing asset in the project and then in the Project Explorer menu on the left side of the screen, click
the Customize View gear icon and select Repository View = pom.xml.

18.3. CREATING AND EXECUTING DRL RULES USING MAVEN

You can use Maven archetypes to create DRL files with rules and integrate the archetypes with your
Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you already
use external Maven archetypes for your decision service and want to continue with the same workflow. If
you do not already use this method, then the Business Central interface of Red Hat Decision Manager is
recommended for creating DRL files and other rule assets.

Procedure

1. Navigate to a directory where you want to create a Maven archetype and run the following
command:

mvn archetype:generate -Dgroupld=com.sample.app -Dartifactld=my-app -
DarchetypeArtifactld=maven-archetype-quickstart -DinteractiveMode=false

269

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

270

This creates a directory my-app with the following structure:

my-app
|-- pom.xml
“--src

-- AppTest.java

The my-app directory contains the following key components:
® A src/main directory for storing the application sources
® A src/test directory for storing the test sources

e A pom.xml file with the project configuration

. Create a Java object on which the rule or rules will operate within the Maven archetype.

In this example, a Person.java file is created in the directory my-
app/src/main/java/com/sample/app. The Person class contains getter and setter methods to
set and retrieve the first name, last name, hourly rate, and the wage of a person:

package com.sample.app;
public class Person {

private String firstName;
private String lastName;
private Integer hourlyRate;
private Integer wage;

public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

public Integer getHourlyRate() {
return hourlyRate;

}

public void setHourlyRate(Integer hourlyRate) {
this.hourlyRate = hourlyRate;

}

public Integer getWage(){
return wage;

}

public void setWage(Integer wage){
this.wage = wage;
}
}

3. Create arule file in .drl format in my-app/src/main/resources/rules. The DRL file must contain
at a minimum a package specification, an import list of data objects to be used by the rule or
rules, and one or more rules with when conditions and then actions.

The following Wage.drl file contains a Wage rule that imports the Person class, calculates the
wage and hourly rate values, and displays a message based on the result:

package com.sample.app;
import com.sample.app.Person;
dialect "java"

rule "Wage"
when
Person(hourlyRate * wage > 100)
Person(name : firstName, surname : lastName)
then
System.out.printin("Hello " + name + " " + surname + "!");
System.out.printin("You are rich!");
end

4. In the my-app/src/main/resources/META-INF directory, create a kmodule.xml metadata file
with the following content:

<?xml version="1.0" encoding="UTF-8"7>
<kmodule xmins="http://www.drools.org/xsd/kmodule">
</kmodule>

This kmodule.xml file is a KIE module descriptor that selects resources to KIE bases and
configures sessions. This file enables you to define and configure one or more KIE bases, and to
include DRL files from specific packages in a specific KIE base. You can also create one or more
KIE sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

<?xml version="1.0" encoding="UTF-8"?7>
<kmodule xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins="http://www.drools.org/xsd/kmodule">

271

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

<kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
<ksession name="KSession1_1" type="stateful" default="true" />
<ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
</kbase>
<kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
<ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
<fileLogger file="debuglnfo" threaded="true" interval="10" />
<workltemHandlers>
<workltemHandler name="name" type="new org.domain.WorkltemHandler()" />
</workltemHandlers>
<listeners>
<ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
<agendaEventListener type="org.domain.FirstAgendaListener" />
<agendaEventListener type="org.domain.SecondAgendaListener" />
<processEventListener type="org.domain.ProcessListener" />
</listeners>
</ksession>
</kbase>
</kmodule>

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. The KIE session from KBase2 is a stateless KIE
session, which means that data from a previous invocation of the KIE session (the previous
session state) is discarded between session invocations. Specific packages of rule assets are
included with both KIE bases. When you specify packages in this way, you must organize your
DRL files in a folder structure that reflects the specified packages.

5. In the my-app/pom.xml configuration file, specify the libraries that your application requires.
Provide the Red Hat Decision Manager dependencies as well as the group ID, artifact ID, and
version (GAV) of your application.

<?xml version="1.0" encoding="UTF-8"7>
<project xmins="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupld>com.sample.app</groupld>
<artifactld>my-app</artifactid>
<version>1.0.0</version>
<repositories>
<repository>
<id>jboss-ga-repository</id>
<url>http://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupld>org.drools</groupld>
<artifactld>drools-compiler</artifactld>
<version>VERSION</version>
</dependency>
<dependency>

272

CHAPTER 18. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>VERSION</version>
</dependency>
<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>4.11</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

For information about Maven dependencies and the BOM (Bill of Materials) in Red Hat Decision

Manager, see What is the mapping between Red Hat Decision Manager and Maven library
version?.

rule. The AppTest.java file is created by Maven by default.

7. In the AppTest.java file, add the required import statements to import KIE services, a KIE

Use the testApp method in my-app/src/test/java/com/sample/app/AppTest.java to test the

container, and a KIE session. Then load the KIE base, insert facts, and execute the rule from the

testApp() method that passes the fact model to the rule.

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

// Load the KIE base:

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();
KieSession kSession = kContainer.newKieSession();

// Set up the fact model:
Person p = new Person();
p.setWage(12);
p.setFirstName("Tom");
p.setLastName("Summers");
p.setHourlyRate(10);

// Insert the person into the session:
kSession.insert(p);

// Fire all rules:

kSession.fireAllRules();
kSession.dispose();

8. After you create and save all DRL assets in your Maven archetype, navigate to the my-app
directory in the command line and run the following command to build your files:

I mvn clean install

273

https://access.redhat.com/solutions/3405361

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

If the build fails, address any problems described in the command line error messages and try
again to validate the files until the build is successful.

9. After your files build successfully, run the following command to execute the rules locally.
Replace com.sample.app with your package name.

I mvn exec:java -Dexec.mainClass="com.sample.app"

10. Review the rules to ensure that they executed properly, and address any needed changes in the
files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Maven project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of
the project in Business Central. To access the project pom.xml file in Business Central, you can select
any existing asset in the project and then in the Project Explorer menu on the left side of the screen,
click the Customize View gear icon and select Repository View - pom.xml.

274

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION
MANAGER FOR AN IDE

Red Hat Decision Manager provides example decisions distributed as Java classes that you can import
into your integrated development environment (IDE). You can use these examples to better understand
decision engine capabilities or use them as a reference for the decisions that you define in your own Red
Hat Decision Manager projects.

The following example decision sets are some of the examples available in Red Hat Decision Manager:

e Hello World example: Demonstrates basic rule execution and use of debug output

e State example: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

® Fibonacci example: Demonstrates recursion and conflict resolution through rule salience
® Banking example: Demonstrates pattern matching, basic sorting, and calculation

® Pet Store example: Demonstrates rule agenda groups, global variables, callbacks, and GUI
integration

® Sudoku example: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

® House of Doom example: Demonstrates backward chaining and recursion

NOTE

For optimization examples provided with Red Hat Business Optimizer, see Getting
started with Red Hat Business Optimizer.

19.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER
EXAMPLE DECISIONS IN AN IDE

You can import Red Hat Decision Manager example decisions into your integrated development
environment (IDE) and execute them to explore how the rules and code function. You can use these
examples to better understand decision engine capabilities or use them as a reference for the decisions
that you define in your own Red Hat Decision Manager projects.

Prerequisites

® Java 8 or later is installed.
® Maven 3.5.x or later is installed.

® An IDE is installed, such as Red Hat CodeReady Studio.

Procedure

1. Download and unzip the Red Hat Decision Manager 7.9.0 Source Distributionfrom the Red
Hat Customer Portal to a temporary directory, such as /rhdm-7.9.0-sources.

275

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/getting_started_with_red_hat_decision_manager#examples-con
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

2. Openyour IDE and select File = Import - Maven — Existing Maven Projects or the
equivalent option for importing a Maven project.

3. Click Browse, navigate to ~/rhdm-7.9.0-sources/src/drools-$VERSION/drools-examples (or,
for the Conway’s Game of Life example, ~/rhdm-7.9.0-sources/src/droolsjbpm-integration-
$VERSION/droolsjbpm-integration-examples), and import the project.

4. Navigate to the example package that you want to run and find the Java class with the main
method.

5. Right-click the Java class and select Run As = Java Application to run the example.
To run all examples through a basic user interface, run the DroolsExamplesApp.java class (or,
for Conway's Game of Life, the DroolsdbpmintegrationExamplesApp.java class) in the
org.drools.examples main class.

276

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

JBoss BRMS examples - o x

Which GUI example do you want to see?

SudokuExample

PetStoreExample

TextAdventure

Pong

WumpusWorld

Which output example do you want to see?

HelloWorldExample

FibonacciExample

ShoppingExample

HonestPoliticianExample

GolfingExample

SimpleRuleTemplateExample

TroubleTicketExample

TroubleTicketExampleWithDT

TroubleTicketExampleWithDSL

StateExampleUsingSalience

StateExampleUsingAgendaGroup

PricingRuleTemplateExample

PricingRuleDTExample

DataDrivenTemplateExample

WorkltemConsequenceExamplel

WorkltemConsequenceExample2

277

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.2. Interface for all examples in droolsjppm-integration-examples
(DroolsdbpmintegrationExamplesApp.java)

Drools and [BFM integration. .. - o x

Which GUI example do you want to see?

ConwayGUl

BrokerExample (Fusion CEP)

Which output example do you want to see?

NumberGuessExample

19.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND
DEBUGGING)

The Hello World example decision set demonstrates how to insert objects into the decision engine
working memory, how to match the objects using rules, and how to configure logging to trace the
internal activity of the decision engine.
The following is an overview of the Hello World example:

® Name: helloworld

® Main class: org.drools.examples.helloworld.HelloWorldExample (in src/main/java)

® Module: drools-examples

® Type: Java application

® Rule file: org.drools.examples.helloworld.HelloWorld.drl (in src/main/resources)

® Objective: Demonstrates basic rule execution and use of debug output

In the Hello World example, a KIE session is generated to enable rule execution. All rules require a KIE
session for execution.

KIE session for rule execution

KieServices ks = KieServices.Factory.get(); ﬂ
KieContainer kc = ks.getKieClasspathContainer();
KieSession ksession = kc.newKieSession("HelloWorldKS"); 6

ﬂ Obtains the KieServices factory. This is the main interface that applications use to interact with
the decision engine.

9 Creates a KieContainer from the project class path. This detectsa /META-INF/kmodule.xml file
from which it configures and instantiates a KieContainer with a KieModule.

9 Creates a KieSession based on the "HelloWorldKS" KIE session configuration defined in the
/META-INF/kmodule.xml file.

278

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

NOTE

For more information about Red Hat Decision Manager project packaging, see Packaging
and deploying a Red Hat Decision Manager project.

Red Hat Decision Manager has an event model that exposes internal engine activity. Two default debug
listeners, DebugAgendaEventListener and DebugRuleRuntimeEventListener, print debug event
information to the System.err output. The KieRuntimeLogger provides execution auditing, the result
of which you can view in a graphical viewer.

Debug listeners and audit loggers

// Set up listeners.
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
KieRuntimeLogger logger = KieServices.get().getLoggers().newFileLogger(ksession,
"./target/helloworld");

// Set up a ThreadedFileLogger so that the audit view reflects events while debugging.
KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./target/helloworld",
1000);

The logger is a specialized implementation built on the Agenda and RuleRuntime listeners. When the
decision engine has finished executing, logger.close() is called.

The example creates a single Message object with the message "Hello World", inserts the status
HELLO into the KieSession, executes rules with fireAllRules().

Data insertion and execution

// Insert facts into the KIE session.

final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

// Fire the rules.
ksession.fireAllIRules();

Rule execution uses a data model to pass data as inputs and outputs to the KieSession. The data
model in this example has two fields: the message, which is a String, and the status, which can be
HELLO or GOODBYE.

Data model class

public static class Message {
public static final int HELLO = 0;
public static final int GOODBYE = 1;

private String message;

279

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.9/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

private int status;

The two rules are located in the file
src/main/resources/org/drools/examples/helloworld/HelloWorid.drl.

The when condition of the "Hello World" rule states that the rule is activated for each Message object
inserted into the KIE session that has the status Message.HELLO. Additionally, two variable bindings
are created: the variable message is bound to the message attribute and the variable m is bound to
the matched Message object itself.

The then action of the rule specifies to print the content of the bound variable message to System.out,
and then changes the values of the message and status attributes of the Message object bound to m.
The rule uses the modify statement to apply a block of assignments in one statement and to notify the
decision engine of the changes at the end of the block.

"Hello World" rule

rule "Hello World"
when
m : Message(status == Message.HELLO, message : message)
then
System.out.printin(message);
modify (m) { message = "Goodbye cruel world",
status = Message.GOODBYE };
end

The "Good Bye" rule is similar to the "Hello World" rule except that it matches Message objects that
have the status Message.GOODBYE.

"Good Bye" rule

rule "Good Bye"

when
Message(status == Message.GOODBYE, message : message)
then
System.out.printin(message);
end

To execute the example, run the org.drools.examples.helloworld.HelloWorldExample class as a Java
application in your IDE. The rule writes to System.out, the debug listener writes to System.err, and the
audit logger creates a log file in target/helloworld.log.

System.out output in the IDE console

Hello World
Goodbye cruel world

System.err output in the IDE console

==>[ActivationCreated(0): rule=Hello World;
tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[Objectinserted: handle=

280

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

[fid:1:1:0rg.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;
tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
==>[ActivationCreated(4): rule=Good Bye;
tuple=[fid:1:2:0org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=
[fid:1:2:0rg.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
old_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96;
new_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;
tuple=[fid:1:2:0org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

To better understand the execution flow of this example, you can load the audit log file from
target/helloworld.log into your IDE debug view or Audit View, if available (for example, in Window -
Show View in some IDEs).

In this example, the Audit view shows that the object is inserted, which creates an activation for the
"Hello World" rule. The activation is then executed, which updates the Message object and causes the
"Good Bye" rule to activate. Finally, the "Good Bye" rule is executed. When you select an event in the
Audit View, the origin event, which is the "Activation created” event in this example, is highlighted in
green.

Figure 19.3. Hello World example Audit View

Problems | Javador | Declaration | Console | Agenda Wisw "I' audit views XX Global Data Yiew | Rules Yiew | Working Memory View | Properties

[=)- ™ Object inserted (1) org.drools, examples. HelloWorldE ample$Messagembs 1 76d
=r Activation created: Rule Hello Wiorld m=org. drools. examples . HelloborldExample$Message@bsl 76di 1); message=Helo ‘World(1)
[=-- 4 Activation executed: Rule Hello World m=org.drools, examples, HelloWorldE xamplegMessage@bs 1 76d(1) message=Hello Warld(1)
= Ohject updated (1} org.drools, examples . HelloWorldExampledMessage@bd1 7ad

L B Activation executed; Rule Good Bye message=Goodbyte cruel worldi1)

19.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND
CONFLICT RESOLUTION)

The State example decision set demonstrates how the decision engine uses forward chaining and any
changes to facts in the working memory to resolve execution conflicts for rules in a sequence. The
example focuses on resolving conflicts through salience values or through agenda groups that you can
define in rules.

The following is an overview of the State example:

® Name: state

® Main classes: org.drools.examples.state.StateExampleUsingSalience,
org.drools.examples.state.StateExampleUsingAgendaGroup (in src/main/java)

® Module: drools-examples

® Type: Java application

281

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

® Rule files: org.drools.examples.state.*.drl (in src/main/resources)

® Objective: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of
the decision engine and reacts to changes to that fact. When objects are inserted into working memory,
any rule conditions that become true as a result of the change are scheduled for execution by the
agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

282

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.4. Rule evaluation logic using forward and backward chaining

Evaluate rules

Rules ===~ I [Facts

s)
Done 4—@—1\ Does a new rule match exist?)‘ <

N
N

Does any pattern match some fact?

' ™
@ ‘ Does the rule contain a goal?)
AN /
Backward chaining
4 N\
——————————— »| Is the goal a fact?)
i \ /
|
|
|
i
| 7 ™~
l | Does a matching rule exist for the goal?)
i \ _
|
|
|
|
|
|
|
! Goal has been reached. Mark the matching rule Goal cannot be reached.
| Return TRUE and any condition as a new fact. Return FALSE.
1 matching fact.
|
|
‘ .
| 1
I I
| |
True False
Execute the rule action. > Mark rule match as

evaluated.

$

In the State example, each State class has fields for its name and its current state (see the class
org.drools.examples.state.State). The following states are the two possible states for each object:

e NOTRUN

e FINISHED

State class

public class State {
public static final int NOTRUN = 0;

283

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

public static final int FINISHED = 1;

private final PropertyChangeSupport changes =
new PropertyChangeSupport(this);

private String name;
private int state;

... setters and getters go here...

}

The State example contains two versions of the same example to resolve rule execution conflicts:
e A StateExampleUsingSalience version that resolves conflicts by using rule salience

e A StateExampleUsingAgendaGroups version that resolves conflicts by using rule agenda
groups

Both versions of the state example involve four State objects: A, B, C, and D. Initially, their states are set
to NOTRUN, which is the default value for the constructor that the example uses.

State example using salience

The StateExampleUsingSalience version of the State example uses salience values in rules to resolve
rule execution conflicts. Rules with a higher salience value are given higher priority when ordered in the
activation queue.

The example inserts each State instance into the KIE session and then calls fireAllRules().

Salience State example execution

final State a = new State("A"
final State b = new State("B"
final State ¢ = new State("C"
final State d = new State("D"

)

’

)
);
)
);

3

ksession.insert
ksession.insert
ksession.insert
ksession.insert

)
);
).
)

’

—_ o~~~

a
b
c
d

3

ksession.fireAllIRules();

// Dispose KIE session if stateful (not required if stateless).
ksession.dispose();

To execute the example, run the org.drools.examples.state.StateExampleUsingSalience class as a
Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Salience State example output in the IDE console

A finished
B finished
C finished

284

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

I D finished

Four rules are present.

First, the "Bootstrap" rule fires, setting A to state FINISHED, which then causes B to change its state
to FINISHED. Objects C and D are both dependent on B, causing a conflict that is resolved by the
salience values.

To better understand the execution flow of this example, you can load the audit log file from
target/state.log into your IDE debug view or Audit View, if available (for example, in Window — Show
View in some IDEs).

In this example, the Audit View shows that the assertion of the object A in the state NOTRUN activates
the "Bootstrap" rule, while the assertions of the other objects have no immediate effect.

Figure 19.5. Salience State example Audit View

Problems | Javadoc | Declaration | Search| Console Bytecode Tasks History ‘E] &3 I @ E = O

= ® QObject asserted (1): A[INOTRUN]
= Activation created: Rule Bootstrap a=A[NOTRUN]I(1)
= QObject asserted (2): B[INOTRUN]
" Object asserted (3): CINOTRUN]
" Object asserted (4): D[NOTRUN]
~ & Activation executed: Rule Bootstrap a=A[NCTRUN](1)
~ Object modified (1): A[FINISHED]
= Activation created: Rule A to B b=B[NOTRUM](2)
~ 4 Activation executed: Rule A to B b=B[NOTRUMNI(2)
= Object modified (2): B[FINISHED]
= Activation created: Rule B to C c=C[NOTRUN](3) fI H t
= Activation created: Rule B to D d=D[NOTRUMN](4) C O n IC
~ & Activation executed: Rule B to C c=C[NOTRUN](3)
Object modified (3): C[FINISHED]
~ 4 Activation executed: Rule B to D d=D[NOTRUN](4)
Object modified (4): D[FINISHED]

Rule "Bootstrap" in salience State example

rule "Bootstrap”
when
a : State(name == "A", state == State. NOTRUN)
then
System.out.printin(a.getName() + " finished");
a.setState(State.FINISHED);
end

The execution of the "Bootstrap™ rule changes the state of A to FINISHED, which activates rule "A to
B".

Rule "A to B" in salience State example

285

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

rule "A to B"
when
State(name == "A", state == State.FINISHED)
b : State(name == "B", state == State. NOTRUN)
then
System.out.printin(b.getName() + " finished");
b.setState(State.FINISHED);
end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both rules "B to C"
and "B to D", placing their activations onto the decision engine agenda.

Rules "B to C" and "B to D" in salience State example

rule "B to C"
salience 10
when
State(name == "B", state == State.FINISHED)
c : State(name == "C", state == State.NOTRUN)
then
System.out.printin(c.getName() + " finished");
c.setState(State.FINISHED);
end

rule "B to D"
when
State(name == "B", state == State.FINISHED)
d : State(name == "D", state == State. NOTRUN)
then
System.out.printin(d.getName() + " finished");
d.setState(State.FINISHED);
end

From this point on, both rules may fire and, therefore, the rules are in conflict. The conflict resolution
strategy enables the decision engine agenda to decide which rule to fire. Rule "B to C" has the higher
salience value (10 versus the default salience value of 0), so it fires first, modifying object C to state
FINISHED.

The Audit View in your IDE shows the modification of the State object in the rule "A to B", which results
in two activations being in conflict.

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda. In

this example, the Agenda View shows the breakpoint in the rule "A to B" and the state of the agenda
with the two conflicting rules. Rule "B to D" fires last, modifying object D to state FINISHED.

286

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.6. Salience State example Agenda View
m StateExamplelsingSalience, java 'fl StateExamplel)singSalience drl &3

“rule "&L to BT

when
State (name == "4, state == 3tate.FINIZHED)
b : S3tate(namwe == "E", state == 3tate.NOTEUN)
then
SJystem.out.printlnib.getMName()] + " finizshed™]:
= h.zetitate | 3tate.FINIZHED] ;
¥ end

“rule "B to C©
zalience 10

when

State (name == "EB", state == 3tate.FINIZHED)

c : State(name == "CT, state == State.NOTRUN)
then

SJystem.out.printlnic.getMName() + " finizshed™):

C.get3tate | State.FIMISZHED) :
end

Text Editor | Rete Tree

Console | Tasks '-'-l' Agenda Yiew X

Audit Wiew | Global Data Yiew | Rules Yiew | Warking Memory Wigw

= & iMaIN[focus]= BinaryHeapQueuedgendaGroup (id=1392)
= & [0]= Activation
& ruleMame="E to C"
= & rc=3tate (id=1408]
& FINISHED= 1
& MoTRUN=D
g changes= Propertyhangesuppart (id=1433)
E name="C"
E state=0
= & [1]= Activation
& ruleMame="E to D"
= & c=State {id=1408)
& FINISHED= 1
& MOTRUN=D
g changes= Propertyhangesuppart (id=1433)
E name="C"
E state=0

State example using agenda groups

The StateExampleUsingAgendaGroups version of the State example uses agenda groups in rules to
resolve rule execution conflicts. Agenda groups enable you to partition the decision engine agenda to
provide more execution control over groups of rules. By default, all rules are in the agenda group MAIN.
You can use the agenda-group attribute to specify a different agenda group for the rule.

287

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

In this example, the auto-focus attribute enables rule "B to C" to fire before "B to D"

Rule "B to C" in agenda group State example

rule "B to C"
agenda-group "B to C"
auto-focus true
when
State(name == "B", state == State.FINISHED)
c : State(name == "C", state == State.NOTRUN)
then
System.out.printin(c.getName() + " finished");
c.setState(State.FINISHED);
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

The rule "B to C" calls setFocus() on the agenda group "B to D", enabling its active rules to fire, which
then enables the rule "B to D" to fire.

Rule "B to D" in agenda group State example

rule "B to D"
agenda-group "B to D"
when
State(name == "B", state == State.FINISHED)
d : State(name == "D", state == State. NOTRUN)
then
System.out.printin(d.getName() + " finished");
d.setState(State.FINISHED);
end

To execute the example, run the org.drools.examples.state.StateExampleUsingAgendaGroups class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window (same as the salience
version of the State example):

Agenda group State example output in the IDE console

A finished
B finished
C finished
D finished

Dynamic facts in the State example

Another notable concept in this State example is the use of dynamic facts, based on objects that
implement a PropertyChangeListener object. In order for the decision engine to see and react to
changes of fact properties, the application must notify the decision engine that changes occurred. You

288

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

can configure this communication explicitly in the rules by using the modify statement, or implicitly by
specifying that the facts implement the PropertyChangeSupport interface as defined by the
JavaBeans specification.

This example demonstrates how to use the PropertyChangeSupport interface to avoid the need for
explicit modify statements in the rules. To make use of this interface, ensure that your facts implement
PropertyChangeSupport in the same way that the class org.drools.example.State implements it, and
then use the following code in the DRL rule file to configure the decision engine to listen for property
changes on those facts:

Declaring a dynamic fact

declare type State
@propertyChangeSupport
end

When you use PropertyChangeListener objects, each setter must implement additional code for the
notification. For example, the following setter for state is in the class org.drools.examples:

Setter example with PropertyChangeSupport

public void setState(final int newState) {
int oldState = this.state;
this.state = newState;
this.changes.firePropertyChange("state",
oldState,
newState);

19.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT
RESOLUTION)

The Fibonacci example decision set demonstrates how the decision engine uses recursion to resolve
execution conflicts for rules in a sequence. The example focuses on resolving conflicts through salience
values that you can define in rules.
The following is an overview of the Fibonacci example:

® Name: fibonacci

® Main class: org.drools.examples.fibonacci.FibonacciExample (in src/main/java)

® Module: drools-examples

® Type: Java application

® Rule file: org.drools.examples.fibonacci.Fibonacci.drl (in src/main/resources)

® Objective: Demonstrates recursion and conflict resolution through rule salience
The Fibonacci Numbers form a sequence starting with O and 1. The next Fibonacci number is obtained by
adding the two preceding Fibonacci numbers: O, 1,1, 2, 3, 5, 8,13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, and so on.

The Fibonacci example uses the single fact class Fibonacci with the following two fields:

289

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

® sequence
e value

The sequence field indicates the position of the object in the Fibonacci number sequence. The value
field shows the value of that Fibonacci object for that sequence position, where -1 indicates a value that
still needs to be computed.

Fibonacci class

public static class Fibonacci {
private int sequence;
private long value;

public Fibonacci(final int sequence) {
this.sequence = sequence;
this.value = -1;

}

... setters and getters go here...

}

To execute the example, run the org.drools.examples.fibonacci.FibonacciExample class as a Java
application in your IDE.

After the execution, the following output appears in the IDE console window:

Fibonacci example output in the IDE console

recurse for 50
recurse for 49
recurse for 48
recurse for 47

recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 ==

2 ==

3 ==

4==3

5 ==

6 ==

47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To achieve this behavior in Java, the example inserts a single Fibonacci object with a sequence field of
50. The example then uses a recursive rule to insert the other 49 Fibonacci objects.

290

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example
uses the MVEL dialect modify keyword to enable a block setter action and notify the decision engine of
changes.

Fibonacci example execution

ksession.insert(new Fibonacci(50));
ksession.fireAllIRules();

This example uses the following three rules:

e "Recurse"

e "Bootstrap"

e "Calculate”
The rule "Recurse"” matches each asserted Fibonacci object with a value of -1, creating and asserting a
new Fibonacci object with a sequence of one less than the currently matched object. Each time a
Fibonacci object is added while the one with a sequence field equal to 1 does not exist, the rule re-
matches and fires again. The not conditional element is used to stop the rule matching once you have all
50 Fibonacci objects in memory. The rule also has a salience value because you need to have all 50

Fibonacci objects asserted before you execute the "Bootstrap” rule.

Rule "Recurse"

rule "Recurse"

salience 10
when

f : Fibonacci (value == -1)

not (Fibonacci (sequence == 1))
then

insert(new Fibonacci(f.sequence - 1));
System.out.printin("recurse for " + f.sequence);
end

To better understand the execution flow of this example, you can load the audit log file from
target/fibonacci.log into your IDE debug view or Audit View, if available (for example, in Window —
Show View in some IDEs).

In this example, the Audit View shows the original assertion of the Fibonacci object with a sequence
field of 50, done from Java code. From there on, the Audit View shows the continual recursion of the
rule, where each asserted Fibonacci object causes the "Recurse" rule to become activated and to fire
again.

291

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.7. Rule "Recurse" in Audit View

Problems Javadoc | Dedaration | Search | Console | Error Log | Hiskory ‘i' Audik Views X Properties

= ™ Object asserted (1) Fibonaccifs0/-1)
= Ackivation created; Rule Recurse F=FibonaccifS0/-13(1)
Activation executed: Rule Recurse F=Fibonaccifs0/-13(1]

B Object asserted (2): Fibonacci{49-1)

m
(- 4

Activation executed: Rule Recurse F=Fibonaccif49/-13z]
B Object asserted (3): Fibonacci(4g)-1)

=* Ackivation created: Rule Recurse F=Fibonacci{45/-1(3)
Activation executed: Rule Recurse F=Fibonaccif4d)-1(3)
B Ohject asserted (4): Fibonacci(47)-1)

= Ackivation created: Rule Recurse F=Fibonaccii4?-1304)
Activation executed: Rule Recurse F=Fibonaccif47/-1704]
B Object asserted (5): Fibonacci{4a-1)

=r Ackivation created: Rule Recurse F=Fibonacci{4a/-1(5]
Activation executed: Rule Recurse F=Fibonaccif4a/-135)
B Object asserted (&6): Fibonacci(45)-1)

=* Ackivation created: Rule Recurse F=Fibonacci{45/-1a)
= 4 Activation executed: Rule Recurse F=Fibonacci{45/-1)(6)
[= ™ Object asserted (7): Fibonaccii44,-1)
= Ackivation created: Rule Recurse F=Fibonaccii44,-13(7)

m I il
-4 [0 (- 4

m
(- 4

When a Fibonacci object with a sequence field of 2 is asserted, the "Bootstrap™ rule is matched and
activated along with the "Recurse" rule. Notice the multiple restrictions on field sequence that test for
equality with 1 or 2:

Rule "Bootstrap"

rule "Bootstrap”

when
f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
then
modify (f){ value =11};
System.out.printin(f.sequence + " ==" + f.value);
end

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda.
The "Bootstrap" rule does not fire yet because the "Recurse" rule has a higher salience value.

292

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

‘i' Agenda Wiew X iGlobal Data View | Rules Yiew | Warking Memory Wiew

= & MaIM[focus]= BinaryHeapQueusdgendaGroup (id= 1402}
EI & [III] Ackivation
- & ruleMame= "Recurse"
- & = FibonacciExamplefFibonacc (id=1413)
[1]= Activation
- & ruleMame= "Bookstrap"
- & = FibonacciExamplefFibonacc (id=1413)

When a Fibonacci object with a sequence of 1 is asserted, the "Bootstrap" rule is matched again,
causing two activations for this rule. The "Recurse" rule does not match and activate because the not
conditional element stops the rule matching as soon as a Fibonacci object with a sequence of 1 exists.

Figure 19.9. Rules "Recurse" and "Bootstrap" in Agenda View 2

'i' Agenda Yiew X Global Daka View Rules Yiew | Warking Memory Wigw

= & MAIN[focus]= BinaryHeapQueuedgendaGroup (id=140z2)
EI l [III] Ackivation
- & ruleMame= "Bookstrap"
- & = FibonacciExamplefFibonacci (id=1445)
[1]= Activation
- & ruleMame= "Bookstrap"
- & = FibonacciExamplefFibonacc (id=1413)

293

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have
two Fibonacci objects with values not equal to -1, the "Calculate" rule is able to match.

At this point in the example, nearly 50 Fibonacci objects exist in the working memory. You need to
select a suitable triple to calculate each of their values in turn. If you use three Fibonacci patternsin a
rule without field constraints to confine the possible cross products, the result would be 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect.

The "Calculate" rule uses field constraints to evaluate the three Fibonacci patterns in the correct order.
This technique is called cross-product matching.

The first pattern finds any Fibonacci object with a value !=-1 and binds both the pattern and the field.
The second Fibonacci object does the same thing, but adds an additional field constraint to ensure that
its sequence is greater by one than the Fibonacci object bound to f1. When this rule fires for the first
time, you know that only sequences 1 and 2 have values of 1, and the two constraints ensure that f1
references sequence 1 and that 2 references sequence 2.

The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence one greater
than f2.

At this point in the example, three Fibonacci objects are correctly selected from the available cross
products, and you can calculate the value for the third Fibonacci object that is bound to 3.

Rule "Calculate"

rule "Calculate"
when
// Bind f1 and s1.
f1 : Fibonacci(s1 : sequence, value !=-1)
// Bind f2 and v2, refer to bound variable s1.
f2 : Fibonacci(sequence == (s1 + 1), v2 : value |=-1)
// Bind f3 and s3, alternative reference of f2.sequence.
f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
then
/I Note the various referencing techniques.
modify (f3) { value = f1.value + v2 };
System.out.printin(s3 + " == " + f3.value);
end

The modify statement updates the value of the Fibonacci object bound to 3. This means that you now
have another new Fibonacci object with a value not equal to -1, which allows the "Calculate" rule to re-
match and calculate the next Fibonacci number.

The debug view or Audit View of your IDE shows how the firing of the last "Bootstrap" rule modifies
the Fibonacci object, enabling the "Calculate" rule to match, which then modifies another Fibonacci
object that enables the "Calculate" rule to match again. This process continues until the value is set for
all Fibonacci objects.

294

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.10. Rules in Audit View

Problems | lavadoc | Declaration | Search | Console | Error Log | Hiskory '-'_l' Sudit View X

=l

=l

=l

19.5.

LT T T T T T T T TR TR RO

Ackivation canceled:
Ackivation canceled:
Ackivation canceled:
Ackivation canceled:
Ackivation canceled:

fuckivation canceled

Activation cancelled:

Activation cancelled

Ackivation cancelled:

Activation cancelled

Activation cancelled:

fuckivation canceled

Fule Recurse F=Fibonacci{33/-1(18)
Rule Recurse F=Fibonacci{4/-13{47)
Rule Recurse F=Fibonacci{37/-13(14)
Rule Recurse F=Fibonacci{2Z/-13(Z9)
Rule Recurse F=Fibonacci{S0/-11)

: Rule Recurse F=Fibonacci{10/-13(41}
Ackivation cancelled:

Rule Recurse F=Fibonacci{19/-11(32)
Fule Recurse F=Fibonacci{17/-13(34)

: Rule Recurse F=Fibonacci{ 3/-1{45)

Rule Recurse F=Fibonacci{35/-1{16)

: Rule Recurse F=Fibonacc{z0/-13(31)

Rule Recurse F=Fibonacci{g/-1{43)

: Rule Recurse F=Fibonacci{21/-13(300
Ackivation cancelled:
Activation executed: Rule Bootstrap F=Fibonacci{2)-1)(49)

Rule Recurse F=Fibonacci{36/-11(15)

Object modified (49): Fibonacci(2/1)
= Ackivation created: Rule Calculate F2=Fibonaccizi149); F1=Fibonacci(11)(50); s1=1(507; s3=3(48]); f3=Fibonacci{3/-1(43)

Cbject modified (48): Fibonacci(3/2)
=r Ackivation created: Rule Calculate F2=Fibonacci{3/2)3(458); f1=Fibonacci{2/1){49); s1=2{49); s3=4{477; F3=Fibonacci{4/-1){47}

Cbject modified (47): Fibonacci(4/3)
=r Activation created: Rule Calculate F2=Fibonacci{4/3347); F1=Fibonacci{3/2){48); s1=3(48); s3=5(46); F3=Fibonacci{5/-1){45)

Cbject modified (46): FibonacciS/S)
= Activation created: Rule Calculate F2=Fibonacci{S/5x46); F1=Fibonacci{4/3)47); s1=4{47); s3=05{45); F3=Fibonacci{g/-1){45)

Object modified (45): Fibonacci(s/a)

Properties

Activation executed: Rule Calculate FZ=Fibonacci{Z1)(49}; F1=Fibonacci{1/1){50); s1=1{50); s3=3(4&); F3=Fibonacci{3/-1){45)
Activation executed: Rule Calculate FZ=Fibonaccii3/z)(43); Fl=Fibonacci{Z/1){49); s1=2(49); s3=4(477; F3=Fibonacci{4,-1){47)
Ackivation executed: Rule Calculate F2=Fibonacci(4/3)(47); F1=Fibonacci{3/2)(43); s1=3(48); s3=5(4A); F3=Fibonacci{5/-1){46)

Ackivation executed: Rule Calculate F2=FibonaccifS/S)46%; F1=Fibonacci{4,347); s1=4(47); s3=6(45); F3=Fibonacci{a,-13{45)

PRICING EXAMPLE DECISIONS (DECISION TABLES)

The Pricing example decision set demonstrates how to use a spreadsheet decision table for calculating
the retail cost of an insurance policy in tabular format instead of directly in a DRL file.

The following is an overview of the Pricing example:

Name: decisiontable

Main class: org.drools.examples.decisiontable.PricingRuleDTExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.decisiontable.ExamplePolicyPricing.xls (in

src/main/resources)

Objective: Demonstrates use of spreadsheet decision tables to define rules

Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Decision Manager
projects or upload them to projects in Business Central. Each row in a decision table is a rule, and each
column is a condition, an action, or another rule attribute. After you create and upload your decision
tables into your Red Hat Decision Manager project, the rules you defined are compiled into Drools Rule

Language (DRL) rules as with all other rule assets.

295

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a
discount for a car driver applying for a specific type of insurance policy. The driver's age and history and
the policy type all contribute to calculate the basic premium, and additional rules calculate potential
discounts for which the driver might be eligible.

To execute the example, run the org.drools.examples.decisiontable.PricingRuleDTExample class as
a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code to execute the example follows the typical execution pattern: the rules are loaded, the facts
are inserted, and a stateless KIE session is created. The difference in this example is that the rules are
defined in an ExamplePolicyPricing.xls file instead of a DRL file or other source. The spreadsheet file
is loaded into the decision engine using templates and DRL rules.

Spreadsheet decision table setup
The ExamplePolicyPricing.xls spreadsheet contains two decision tables in the first tab:

e Base pricing rules
e Promotional discount rules

As the example spreadsheet demonstrates, you can use only the first tab of a spreadsheet to create
decision tables, but multiple tables can be within a single tab. Decision tables do not necessarily follow
top-down logic, but are more of a means to capture data resulting in rules. The evaluation of the rules is
not necessarily in the given order, because all of the normal mechanics of the decision engine still apply.
This is why you can have multiple decision tables in the same tab of a spreadsheet.

The decision tables are executed through the corresponding rule template files BasePricing.drt and
PromotionalPricing.drt. These template files reference the decision tables through their template
parameter and directly reference the various headers for the conditions and actions in the decision
tables.

BasePricing.drt rule template file

template header
agel]

profile
priorClaims
policyType

base

reason

package org.drools.examples.decisiontable;
template "Pricing bracket"

age

policyType

base

rule "Pricing bracket_@{row.rowNumber}"
when

296

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Driver(age >= @{age0}, age <= @{age1}
, priorClaims == "@f{priorClaims}"
, locationRiskProfile == "@{profile}"
)
policy: Policy(type == "@{policy Type}")
then
policy.setBasePrice(@{base});
System.out.printin("@{reason}");
end
end template

PromotionalPricing.drt rule template file

template header
age(]
priorClaims
policyType
discount

package org.drools.examples.decisiontable;

template "discounts"
age

priorClaims
policyType

discount

rule "Discounts_@{row.rowNumber}"
when
Driver(age >= @{age0}, age <= @{age1}, priorClaims == "@{priorClaims}")
policy: Policy(type == "@{policy Type}")
then
policy.applyDiscount(@{discount});
end
end template

The rules are executed through the kmodule.xml reference of the KIE Session
DTableWithTemplateKB, which specifically mentions the ExamplePolicyPricing.xls spreadsheet and
is required for successful execution of the rules. This execution method enables you to execute the rules
as a standalone unit (as in this example) or to include the rules in a packaged knowledge JAR (KJAR)
file, so that the spreadsheet is packaged along with the rules for execution.

The following section of the kmodule.xml file is required for the execution of the rules and spreadsheet
to work successfully:

<kbase name="DecisionTableKB" packages="org.drools.examples.decisiontable">
<ksession name="DecisionTableKS" type="stateless"/>
</kbase>

<kbase name="DTableWithTemplateKB" packages="org.drools.examples.decisiontable-template">
<ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.x|s"
template="org/drools/examples/decisiontable-template/BasePricing.drt"
row="3" col="3"/>
<ruleTemplate dtable="org/drools/examples/decisiontable-

297

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

template/ExamplePolicyPricingTemplateData.x|s"
template="org/drools/examples/decisiontable-template/PromotionalPricing.drt"
row="18" col="3"/>
<ksession name="DTableWithTemplateKS"/>
</kbase>

As an alternative to executing the decision tables using rule template files, you can use the
DecisionTableConfiguration object and specify an input spreadsheet as the input type, such as
DecisionTablelnputType.xls:

DecisionTableConfiguration dtableconfiguration =
KnowledgeBuilderFactory.newDecisionTableConfiguration();
dtableconfiguration.setinputType(DecisionTablelnputType.XLS);

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

Resource xIsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xIs",
getClass());
kbuilder.add(xIsRes,
ResourceType.DTABLE,
dtableconfiguration);

The Pricing example uses two fact types:

® Driver

e Policy.
The example sets the default values for both facts in their respective Java classes Driver.java and
Policy.java. The Driver is 30 years old, has had no prior claims, and currently has a risk profile of LOW.

The Policy that the driver is applying foris COMPREHENSIVE.

In any decision table, each row is considered a different rule and each column is a condition or an action.
Each row is evaluated in a decision table unless the agenda is cleared upon execution.

Decision table spreadsheets (XLS or XLSX) require two key areas that define rule data:

® A RuleSet area

® A RuleTable area
The RuleSet area of the spreadsheet defines elements that you want to apply globally to all rules in the
same package (not only the spreadsheet), such as a rule set name or universal rule attributes. The
RuleTable area defines the actual rules (rows) and the conditions, actions, and other rule attributes

(columns) that constitute that rule table within the specified rule set. A decision table spreadsheet can
contain multiple RuleTable areas, but only one RuleSet area.

298

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.11. Decision table configuration

c | D | = F G H

RuleTable Pricing bracket

CONDITION [CONDITION [CONDITION CONDITION ACTION ACTION

policy: Policy

Driver
>=$1, =% lecationfiskProfile priorClaims lype] | System.out. printin“$param’); |
Age Bracket Location risk profile Number of prior claims Policy type applying for Base § AUD Record Reason

The RuleTable area also defines the objects to which the rule attributes apply, in this case Driver and
Policy, followed by constraints on the objects. For example, the Driver object constraint that defines
the Age Bracket column is age >= $1, age <= $2, where the comma-separated range is defined in the

table column values, such as 18,24.

Base pricing rules

The Base pricing rules decision table in the Pricing example evaluates the age, risk profile, number of
claims, and policy type of the driver and produces the base price of the policy based on these
conditions.

Figure 19.12. Base price calculation

d B C D E F G H
9 Base pricing rules Age Bracket Location risk profile Number of prior claims Palicy type applying for Base § AUD Record Reason
10
Low 1 COMPREHENSIVE 450
"
MED FIRE_THEFT 200 Priors not relevant
12
Young safe packaj 18, 24
" package MED o COMPREHENSIVE 300
13
Low FIRE_THEFT 150
14
hlil " TSI e SHERITEETERTE
15
18,24 MED 1 COMPREHENSIVE 700
16 Young risk
18,24 HIGH o COMPREHENSIVE 700 Location risk
17
il e Fas e hailon i
18
25,30 o COMPREHENSIVE 120 Cheapest possible
19
25,30 1 COMPREHENSIVE 300
Mature drivers
20
25,30 2 COMPREHENSIVE 580
21
- e . SITRREARS S Sl

The Driver attributes are defined in the following table columns:

e Age Bracket: The age bracket has a definition for the condition age >=$1, age <=$2, which
defines the condition boundaries for the driver’s age. This condition column highlights the use of
$1 and $2, which is comma delimited in the spreadsheet. You can write these values as 18,24 or
18, 24 and both formats work in the execution of the business rules.

299

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

e |ocation risk profile: The risk profile is a string that the example program passes always as
LOW but can be changed to reflect MED or HIGH.

® Number of prior claims: The number of claims is defined as an integer that the condition
column must exactly equal to trigger the action. The value is not a range, only exact matches.

The Policy of the decision table is used in both the conditions and the actions of the rule and has
attributes defined in the following table columns:

e Policy type applying for: The policy type is a condition that is passed as a string that defines
the type of coverage: COMPREHENSIVE, FIRE_THEFT, or THIRD_PARTY.

e Base $ AUD: The basePrice is defined as an ACTION that sets the price through the constraint
policy.setBasePrice($param); based on the spreadsheet cells corresponding to this value.
When you execute the corresponding DRL rule for this decision table, the then portion of the
rule executes this action statement on the true conditions matching the facts and sets the base
price to the corresponding value.

e Record Reason: When the rule successfully executes, this action generates an output message
to the System.out console reflecting which rule fired. This is later captured in the application
and printed.

The example also uses the first column on the left to categorize rules. This column is for annotation only
and has no affect on rule execution.

Promotional discount rules
The Promotional discount rules decision table in the Pricing example evaluates the age, number of
prior claims, and policy type of the driver to generate a potential discount on the price of the insurance

policy.

Figure 19.13. Discount calculation

29 Promaotional discount rules Age Bracket Mumber of pricr claims Paolicy type applying for Discount %
30 18,24 a COMPREHENSIVE 1
31

16,24 L] FIRE_THEFT 2
ol Rewards for safe drivers 25,30 1 COMPREHENSIVE 5
33

25,30 2 COMPREHENSIVE 1
34

- M

— P

This decision table contains the conditions for the discount for which the driver might be eligible. Similar
to the base price calculation, this table evaluates the Age, Number of prior claims of the driver, and
the Policy type applying for to determine a Discount % rate to be applied. For example, if the driver is
30 years old, has no prior claims, and is applying for a COMPREHENSIVE policy, the driver is given a
discount of 20 percent.

19.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL
VARIABLES, CALLBACKS, AND GUI INTEGRATION)

The Pet Store example decision set demonstrates how to use agenda groups and global variables in
rules and how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in this
case a Swing-based desktop application. The example also demonstrates how to use callbacks to
interact with a running decision engine to update the GUI based on changes in the working memory at
run time.

300

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

The following is an overview of the Pet Store example:
® Name: petstore
® Main class: org.drools.examples.petstore.PetStoreExample (in src/main/java)
® Module: drools-examples
® Type: Java application
® Rule file: org.drools.examples.petstore.PetStore.drl (in src/main/resources)
® Objective: Demonstrates rule agenda groups, global variables, callbacks, and GUI integration

In the Pet Store example, the sample PetStoreExample.java class defines the following principal
classes (in addition to several classes to handle Swing events):

® Petstore contains the main() method.

e PetStoreUl is responsible for creating and displaying the Swing-based GUI. This class contains
several smaller classes, mainly for responding to various GUI events, such as user mouse clicks.

e TableModel holds the table data. This class is essentially a JavaBean that extends the Swing
class AbstractTableModel.

® CheckoutCallback enables the GUI to interact with the rules.

® Ordershow keeps the items that you want to buy.

e Purchase stores details of the order and the products that you are buying.

® Product is a JavaBean containing details of the product available for purchase and its price.

Much of the Java code in this example is either plain JavaBean or Swing based. For more information
about Swing components, see the Java tutorial on Creating a GUI with JFC/Swing.

Rule execution behavior in the Pet Store example

Unlike other example decision sets where the facts are asserted and fired immediately, the Pet Store
example does not execute the rules until more facts are gathered based on user interaction. The
example executes rules through a PetStoreUl object, created by a constructor, that accepts the Vector
object stock for collecting the products. The example then uses an instance of the CheckoutCallback
class containing the rule base that was previously loaded.

Pet Store KIE container and fact execution setup

// KieServices is the factory for all KIE services.
KieServices ks = KieServices.Factory.get();

// Create a KIE container on the class path.
KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.

Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

301

https://docs.oracle.com/javase/tutorial/uiswing/

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

// A callback is responsible for populating the working memory and for firing all rules.
PetStoreUl ui = new PetStoreUl(stock,

new CheckoutCallback(kc));
ui.createAndShowGUI();

The Java code that fires the rules is in the CheckoutCallBack.checkout() method. This method is
triggered when the user clicks Checkout in the Ul.

Rule execution from CheckoutCallBack.checkout()

public String checkout(JFrame frame, List<Product> items) {
Order order = new Order();

// Iterate through list and add to cart.
for (Product p: items) {
order.addltem(new Purchase(order, p));

}

// Add the JFrame to the ApplicationData to allow for user interaction.

// From the KIE container, a KIE session is created based on
// its definition and configuration in the META-INF/kmodule.xml file.
KieSession ksession = kcontainer.newKieSession("PetStoreKS");

ksession.setGlobal("frame", frame);
ksession.setGlobal("textArea", this.output);

ksession.insert(new Product("Gold Fish",5));
ksession.insert(new Product("Fish Tank", 25));
ksession.insert(new Product("Fish Food", 2));

ksession.insert(new Product("Fish Food Sample", 0));
ksession.insert(order);

// Execute rules.
ksession.fireAllRules();

// Return the state of the cart
return order.toString();

The example code passes two elements into the CheckoutCallBack.checkout() method. One element
is the handle for the JFrame Swing component surrounding the output text frame, found at the bottom
of the GUI. The second element is a list of order items, which comes from the TableModel that stores
the information from the Table area at the upper-right section of the GUI.

The for loop transforms the list of order items coming from the GUIl into the Order JavaBean, also
contained in the file PetStoreExample.java.

In this case, the rule is firing in a stateless KIE session because all of the data is stored in Swing
components and is not executed until the user clicks Checkout in the Ul. Each time the user clicks
Checkout, the content of the list is moved from the Swing TableModel into the KIE session working
memory and is then executed with the ksession.fire AllIRules() method.

302

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from
the KieContainer (the example passed in this KieContainer from the CheckoutCallBack class in the
main() method). The next two calls pass in the two objects that hold the global variables in the rules: the
Swing text area and the Swing frame used for writing messages. More inserts put information on
products into the KieSession, as well as the order list. The final call is the standard fireAllRules().

Pet Store rule file imports, global variables, and Java functions

The PetStore.drl file contains the standard package and import statements to make various Java
classes available to the rules. The rule file also includes global variables to be used within the rules,
defined as frame and textArea. The global variables hold references to the Swing components JFrame
and JTextArea components that were previously passed on by the Java code that called the
setGlobal() method. Unlike standard variables in rules, which expire as soon as the rule has fired, global
variables retain their value for the lifetime of the KIE session. This means the contents of these global
variables are available for evaluation on all subsequent rules.

PetStore.drl package, imports, and global variables

package org.drools.examples;

import org.kie.api.runtime.KieRuntime;

import org.drools.examples.petstore.PetStoreExample.Order;
import org.drools.examples.petstore.PetStoreExample.Purchase;
import org.drools.examples.petstore.PetStoreExample.Product;
import java.util. ArrayList;

import javax.swing.JOptionPane;

import javax.swing.JFrame;

global JFrame frame
global javax.swing.JTextArea textArea

The PetStore.drl file also contains two functions that the rules in the file use:

PetStore.drl Java functions

function void doCheckout(JFrame frame, KieRuntime krt) {
Object[] options = {"Yes",
"Noll};

int n = JOptionPane.showOptionDialog(frame,
"Would you like to checkout?",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE,
null,
options,
options[0]);

if (n==0){
krt.getAgenda().getAgendaGroup("checkout").setFocus();

}
}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total)

{

303

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Object[] options = {"Yes",
"Noll};

int n = JOptionPane.showOptionDialog(frame,
"Would you like to buy a tank for your " + total + " fish?",
"Purchase Suggestion",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE,
null,
options,
options[0]);

System.out.print("SUGGESTION: Would you like to buy a tank for your "
+ total + " fish? - ");

if (n==0) {
Purchase purchase = new Purchase(order, fishTank);
krt.insert(purchase);
order.addltem(purchase);
System.out.printin("Yes");
} else {
System.out.printin("No");
}

return true;

The two functions perform the following actions:

e doCheckout() displays a dialog that asks the user if she or he wants to check out. If the user
does, the focus is set to the checkout agenda group, enabling rules in that group to
(potentially) fire.

e requireTank() displays a dialog that asks the user if she or he wants to buy a fish tank. If the user
does, a new fish tank Product is added to the order list in the working memory.

NOTE

For this example, all rules and functions are within the same rule file for efficiency. In a
production environment, you typically separate the rules and functions in different files or
build a static Java method and import the files using the import function, such as import
function my.package.name.hello.

Pet Store rules with agenda groups

Most of the rules in the Pet Store example use agenda groups to control rule execution. Agenda groups
allow you to partition the decision engine agenda to provide more execution control over groups of
rules. By default, all rules are in the agenda group MAIN. You can use the agenda-group attribute to
specify a different agenda group for the rule.

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

The Pet Store example uses the following agenda groups for rules:

304

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

e "init"

e "evaluate"
e "show items"
e "checkout"

For example, the sample rule "Explode Cart” uses the "init" agenda group to ensure that it has the
option to fire and insert shopping cart items into the KIE session working memory:

Rule "Explode Cart"

/I Insert each item in the shopping cart into the working memory.
rule "Explode Cart"
agenda-group "init"
auto-focus true
salience 10
when
$order : Order(grossTotal == -1)
$item : Purchase() from $order.items
then
insert($item);
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders that do not yet have their grossTotal calculated. The execution
loops for each purchase item in that order.

The rule uses the following features related to its agenda group:

e agenda-group "init" defines the name of the agenda group. In this case, only one rule is in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the auto-focus attribute for its chance to fire.

® auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

e kcontext....setFocus() sets the focus to the "show items" and "evaluate” agenda groups,
enabling their rules to fire. In practice, you loop through all items in the order, insert them into
memory, and then fire the other rules after each insertion.

The "show items" agenda group contains only one rule, "Show Items". For each purchase in the order
currently in the KIE session working memory, the rule logs details to the text area at the bottom of the
GUI, based on the textArea variable defined in the rule file.

Rule "Show Items"

rule "Show ltems"
agenda-group "show items"
when
$order : Order()
$p : Purchase(order == $order)

305

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

then
textArea.append($p.product + "\n");
end

The "evaluate" agenda group also gains focus from the "Explode Cart" rule. This agenda group
contains two rules, "Free Fish Food Sample" and "Suggest Tank", which are executed in that order.

Rule "Free Fish Food Sample"

/I Free fish food sample when users buy a goldfish if they did not already buy
// fish food and do not already have a fish food sample.
rule "Free Fish Food Sample"
agenda-group "evaluate"
when
$order : Order()
not ($p : Product(name == "Fish Food") && Purchase(product == $p)) 9
not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p
exists ($p : Product(name == "Gold Fish") && Purchase(product == $p)) ﬂ
$fishFoodSample : Product(name == "Fish Food Sample");
then
System.out.printin("Adding free Fish Food Sample to cart");
purchase = new Purchase($order, $fishFoodSample);
insert(purchase);
$order.addltem(purchase);
end

) O

The rule "Free Fish Food Sample" fires only if all of the following conditions are true:
ﬂ The agenda group "evaluate™ is being evaluated in the rules execution.
9 User does not already have fish food.
9 User does not already have a free fish food sample.

Q User has a goldfish in the order.

If the order facts meet all of these requirements, then a new product is created (Fish Food Sample) and
is added to the order in working memory.

Rule "Suggest Tank"

// Suggest a fish tank if users buy more than five goldfish and
// do not already have a tank.
rule "Suggest Tank"
agenda-group "evaluate"
when
$order : Order()
not ($p : Product(name == "Fish Tank") && Purchase(product == $p)) ﬂ

ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish"))9
$fishTank : Product(name == "Fish Tank")
then
requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);
end

306

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

The rule "Suggest Tank" fires only if the following conditions are true:
ﬂ User does not have a fish tank in the order.

9 User has more than five fish in the order.

When the rule fires, it calls the requireTank() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to buy a fish tank. If the user does, a new fish tank Product is
added to the order list in the working memory. When the rule calls the requireTank() function, the rule
passes the frame global variable so that the function has a handle for the Swing GUI.

The "do checkout" rule in the Pet Store example has no agenda group and no when conditions, so the
rule is always executed and considered part of the default MAIN agenda group.

Rule "do checkout"

rule "do checkout"
when
then
doCheckout(frame, kcontext.getKieRuntime());
end

When the rule fires, it calls the doCheckout() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to check out. If the user does, the focus is set to the
checkout agenda group, enabling rules in that group to (potentially) fire. When the rule calls the
doCheckout() function, the rule passes the frame global variable so that the function has a handle for
the Swing GULI.

NOTE

This example also demonstrates a troubleshooting technique if results are not executing
as you expect: You can remove the conditions from the when statement of a rule and
test the action in the then statement to verify that the action is performed correctly.

The "checkout" agenda group contains three rules for processing the order checkout and applying any
discounts: "Gross Total", "Apply 5% Discount”, and "Apply 10% Discount".

Rules "Gross Total", "Apply 5% Discount”, and "Apply 10% Discount"

rule "Gross Total"
agenda-group "checkout"
when
$order : Order(grossTotal == -1)
Number(total : doubleValue) from accumulate(Purchase($price : product.price),
sum($price))
then
modify($order) { grossTotal = total }
textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount”
agenda-group "checkout"
when
$order : Order(grossTotal >= 10 && <20)

307

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

then
$order.discountedTotal = $order.grossTotal * 0.95;
textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

rule "Apply 10% Discount"
agenda-group "checkout"
when
$order : Order(grossTotal >= 20)
then
$order.discountedTotal = $order.grossTotal * 0.90;
textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

If the user has not already calculated the gross total, the Gross Total accumulates the product prices
into a total, puts this total into the KIE session, and displays it through the Swing JTextArea using the
textArea global variable.

If the gross total is between 10 and 20 (currency units), the "Apply 5% Discount" rule calculates the
discounted total, adds it to the KIE session, and displays it in the text area.

If the gross total is not less than 20, the "Apply 10% Discount” rule calculates the discounted total,
adds it to the KIE session, and displays it in the text area.

Pet Store example execution
Similar to other Red Hat Decision Manager decision examples, you execute the Pet Store example by
running the org.drools.examples.petstore.PetStoreExample class as a Java application in your IDE.

When you execute the Pet Store example, the Pet Store Demo GUI window appears. This window

displays a list of available products (upper left), an empty list of selected products (upper right),
Checkout and Reset buttons (middle), and an empty system messages area (bottom).

308

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.14. Pet Store example GUI after launch

P
< | Pet Store Demo E X
List Tahle
Gold Fish 5.0 Mame | Price
Fish Tank 25.0
Fish Food 2.0
Checkout Reset

The following events occurred in this example to establish this execution behavior:

1. The main() method has run and loaded the rule base but has not yet fired the rules. So far, this is
the only code in connection with rules that has been run.

2. A new PetStoreUl object has been created and given a handle for the rule base, for later use.

3. Various Swing components have performed their functions, and the initial Ul screen is displayed
and waits for user input.

You can click various products from the list to explore the Ul setup:

309

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.15. Explore the Pet Store example GUI

= | Pet Store Demo

FEREEN =)

List Table
\Gold Fish 5.0 Mame Price
Fish Tank 25> Gold Fish 5.0
Fish Food 2.0 Gald Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Checkout Reset

No rules code has been fired yet. The Ul uses Swing code to detect user mouse clicks and add selected

products to the TableModel object for display in the upper-right corner of the Ul. This example
illustrates the Model-View-Controller design pattern.

When you click Checkout, the rules are then fired in the following way:

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for a
user to click Checkout. This inserts the data from the TableModel object (upper-right corner of

the Ul) into the KIE session working memory. The method then fires the rules.

310

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule
loops through all of the products in the cart, ensures that the products are in the working
memory, and then gives the "show ltems™" and "evaluate" agenda groups the option to fire.
The rules in these groups add the contents of the cart to the text area (bottom of the Ul),
evaluate if you are eligible for free fish food, and determine whether to ask if you want to buy a
fish tank.

Figure 19.16. Fish tank qualification

Purchase Suggestion [i_hj

? Would you like to buy a tank for your 6 fish?

Yes Mo

. The "do checkout" rule is the next to fire because no other agenda group currently has focus
and because it is part of the default MAIN agenda group. This rule always calls the
doCheckout() function, which asks you if you want to check out.

. The doCheckout() function sets the focus to the "checkout" agenda group, giving the rules in
that group the option to fire.

. The rules in the "checkout™ agenda group display the contents of the cart and apply the
appropriate discount.

. Swing then waits for user input to either select more products (and cause the rules to fire again)
or to close the UL

31

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.17. Pet Store example GUI after all rules have fired

|£: | Pet Store Demo
List Table
Gold Fish 5.0 Hame Price
Fish Tank 25.0 Gold Fish 2.0
Fish Food 2.0 Gold Fish 5.0
Gaold Fish 5.0
Gaold Fish 5.0
Gaold Fish 50
Gaold Fish 50
Checkout Reset
 |Fish Food Sample 0.0 -
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Fish Tank 25.0
Gold Fish 5.0
Igrnsstntalzﬁﬁ.ﬂ
discountedTotal total=449.5

You can add more System.out calls to demonstrate this flow of events in your IDE console:

System.out output in the IDE console

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

19.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH
MAINTENANCE AND SALIENCE)

312

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

The Honest Politician example decision set demonstrates the concept of truth maintenance with logical
insertions and the use of salience in rules.

The following is an overview of the Honest Politician example:
® Name: honestpolitician

® Main class: org.drools.examples.honestpolitician.HonestPoliticianExample (in
src/main/java)

® Module: drools-examples
® Type: Java application

® Rule file: org.drools.examples.honestpolitician.HonestPolitician.drl (in
src/main/resources)

® Objective: Demonstrates the concept of truth maintenance based on the logical insertion of
facts and the use of salience in rules

The basic premise of the Honest Politician example is that an object can only exist while a statement is
true. A rule consequence can logically insert an object with the insertLogical() method. This means the
object remains in the KIE session working memory as long as the rule that logically inserted it remains
true. When the rule is no longer true, the object is automatically retracted.

In this example, rule execution causes a group of politicians to change from being honest to being
dishonest as a result of a corrupt corporation. As each politician is evaluated, they start out with their
honesty attribute being set to true, but a rule fires that makes the politicians no longer honest. As they
switch their state from being honest to dishonest, they are then removed from the working memory. The
rule salience notifies the decision engine how to prioritize any rules that have a salience defined for
them, otherwise utilizing the default salience value of 0. Rules with a higher salience value are given
higher priority when ordered in the activation queue.

Politician and Hope classes
The sample class Politician in the example is configured for an honest politician. The Politician class is

made up of a String item name and a Boolean item honest:

Politician class

public class Politician {
private String name;
private boolean honest;

The Hope class determines if a Hope object exists. This class has no meaningful members, but is present
in the working memory as long as society has hope.

Hope class

public class Hope {

public Hope() {

}
}

313

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Rule definitions for politician honesty

In the Honest Politician example, when at least one honest politician exists in the working memory, the
"We have an honest Politician" rule logically inserts a new Hope object. As soon as all politicians
become dishonest, the Hope object is automatically retracted. This rule has a salience attribute with a
value of 10 to ensure that it fires before any other rule, because at that stage the "Hope is Dead" rule
is true.

Rule "We have an honest politician”

rule "We have an honest Politician"

salience 10
when
exists(Politician(honest == true))
then
insertLogical(new Hope());
end

As soon as a Hope object exists, the "Hope Lives" rule matches and fires. This rule also has a salience
value of 10 so that it takes priority over the "Corrupt the Honest" rule.

Rule "Hope Lives"

rule "Hope Lives"

salience 10
when
exists(Hope())
then
System.out.printin("Hurrah!!! Democracy Lives");
end

Initially, four honest politicians exist so this rule has four activations, all in conflict. Each rule fires in turn,
corrupting each politician so that they are no longer honest. When all four politicians have been
corrupted, no politicians have the property honest == true. The rule "We have an honest Politician" is
no longer true and the object it logically inserted (due to the last execution of new Hope()) is
automatically retracted.

Rule "Corrupt the Honest"

rule "Corrupt the Honest"
when
politician : Politician(honest == true)
exists(Hope())
then
System.out.printin("I'm an evil corporation and | have corrupted " + politician.getName());
modify (politician) { honest = false };
end

With the Hope object automatically retracted through the truth maintenance system, the conditional
element not applied to Hope is no longer true so that the "Hope is Dead" rule matches and fires.

Rule "Hope is Dead"

rule "Hope is Dead"
when

314

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

not(Hope())
then
System.out.printin("We are all Doomed!!! Democracy is Dead");
end

Example execution and audit trail
In the HonestPoliticianExample.java class, the four politicians with the honest state set to true are
inserted for evaluation against the defined business rules:

HonestPoliticianExample.java class execution

public static void execute(KieContainer kc) {
KieSession ksession = kc.newKieSession("HonestPoliticianKS");

final Politician p1 = new Politician
final Politician p2 = new Politician
final Politician p3 = new Politician
final Politician p4 = new Politician

"President of Umpa Lumpa", true);
"Prime Minster of Cheeseland", true);
"Tsar of Pringapopaloo”, true);
"Omnipotence Om", true);

P —

L]

ksession.insert(p
ksession.insert(p
(p
(p

1)
2);
3);
4)

ksession.insert
ksession.insert ;

ksession.fireAllRules();

ksession.dispose();

To execute the example, run the org.drools.examples.honestpolitician.HonestPoliticianExample
class as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

Hurrah!!l Democracy Lives

I'm an evil corporation and | have corrupted President of Umpa Lumpa
I'm an evil corporation and | have corrupted Prime Minster of Cheeseland
I'm an evil corporation and | have corrupted Tsar of Pringapopaloo

I'm an evil corporation and | have corrupted Omnipotence Om

We are all Doomed!!! Democracy is Dead

The output shows that, while there is at least one honest politician, democracy lives. However, as each
politician is corrupted by some corporation, all politicians become dishonest, and democracy is dead.

To better understand the execution flow of this example, you can modify the
HonestPoliticianExample.java class to include a DebugRuleRuntimeEventListener listener and an
audit logger to view execution details:

HonestPoliticianExample.java class with an audit logger

package org.drools.examples.honestpolitician;

import org.kie.api.KieServices;

315

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

import org.kie.api.event.rule.DebugAgendaEventListener; ﬂ
import org.kie.api.event.rule.DebugRuleRuntimeEventListener;
import org.kie.api.runtime.KieContainer;

import org.kie.api.runtime.KieSession;

public class HonestPoliticianExample {

Jox
* @param args
Y/
public static void main(final String[] args) {
KieServices ks = KieServices.Factory.get();
//ks = KieServices.Factory.get();
KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
System.out.printin(kc.verify().getMessages().toString());
//execute(ke);
execute(ks, ke);

}

public static void execute(KieServices ks, KieContainer kc) { ﬂ
KieSession ksession = kc.newKieSession("HonestPoliticianKS");

final Politician p1 = new Politician
final Politician p2 = new Politician
final Politician p3 = new Politician
final Politician p4 = new Politician

"President of Umpa Lumpa", true);
"Prime Minster of Cheeseland", true);
"Tsar of Pringapopaloo”, true);
"Omnipotence Om", true);

o~ o~~~

ksession.insert(
ksession.insert(
ksession.insert(
ksession.insert(

// The application can also setup listeners 9
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
ks.getLoggers().newFileLogger(ksession, "./target/honestpolitician"); @

ksession.fireAllRules();

ksession.dispose();

Adds to your imports the packages that handle the DebugAgendaEventListener and
DebugRuleRuntimeEventListener

Creates a KieServices Factory and a ks element to produce the logs because this audit log is not
available at the KieContainer level

Modifies the execute method to use both KieServices and KieContainer

o® & o

Modifies the execute method to passin KieServices in addition to the KieContainer

316

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

9 Creates the listeners

Builds the log that can be passed into the debug view or Audit View or your IDE after executing of
the rules

When you run the Honest Politician with this modified logging capability, you can load the audit log file
from target/honestpolitician.log into your IDE debug view or Audit View, if available (for example, in
Window — Show View in some IDEs).

In this example, the Audit View shows the flow of executions, insertions, and retractions as defined in
the example classes and rules:

Figure 19.18. Honest Politician example Audit View

Problems | Javadoc | Declaration | Search | Console | Error Log | Histary "_I' Audit Wiew X Properties

[=) ™ Object inserted (1) org.drools, examples, HonestPoliticianExamplegPoliticiani@coif 1 ec

= Ackivation created: Rule We have an honest Politician

= Activation created: Rule Hope is Dead

Object inserted {23 org.drools, examples, HonestPoliticianExamplegPalitician@ 1 FFaz2f5

Object inserted (33 org.drools, examples, HonestPoliticianExamplegPalitician@as0sf

Ohiject inserted {4): org.droals. examples. HonestPoliticianE xample$Palitician@ 1 7Tha3af

Ackivation executed: Rule We have an honest Politician

 Object inserted (S): org.drooks examples. HonestPolticianExample$Hope@as255: |
= Activation created: Rule Hope Lives
<= Ackivation cancelled: Rule Hope is Dead
= Activation created: Rule Corrupt the Honest politician=org. drools, examples . HonestPoliticianEx ampledPolitician@3S0sh]s)
= Ackivation created: Rule Corrupt the Honest politician=org. drools, examples, HonestPaliticianE xamplegPolitician@c0of 1eci1)
= Ackivation created: Rule Corrupt the Honest politician=org. drools, examples, HonestPaliticianE xamplegPolitician@ 1 7basafi4)
= Activation created: Rule Corrupt the Honest politician=orqg. drools. examples . HonestPoliticianE xamplefPalitician@ 1 FFO2FS2)

Ackivation executed: Rule Hope Lives

Activation executed: Rule Corrupt the Honest palitician=org, droals, examples, HonestPoliticianExample$Politiciani@ 1 7ha3afi(4)
Ohject updated {4): org.drools. examples . HonestPoliticianE xample$Palitician@ 1 7ha3ar

= 4 &ctivation executed: Rule Corrupt the Honest palitician=arg. drools. examples . HonestPoliticianEx amplegPalitician@ 9505k 3)
L
»

M
-4 = n n

Object updated {33 org.drools. examples . HonestPoliticianExampletPolitician@mas0sf
Activation executed: Rule Corrupt the Honest politician=org. drools, examples, HonestPoliticianExamplegPaolitician@ 1 FFzFS(2)
Obiject updated (2): org.drools, examples, HonestPoliticianExamplegPolitician@ 1 FFIZFS
Activation executed: Rule Corrupt the Honest politician=org. drools, examples . HonestPoliticianExampledPaolitician@cOf 1ec{ 1)
Ohbiject updated (13; org.drools, examples, HonestPoliticianExamplegPolitician@cof 1 ec
S W Chiectk removed (5): org.drools.examples . HonestPoliticianE = amplefHopei@a255c

= Activation created: Rule Hope is Dead
Activation executed: Rule Hope is Dead

When the first politician is inserted, two activations occur. The rule "We have an honest Politician" is
activated only one time for the first inserted politician because it uses an exists conditional element,
which matches when at least one politician is inserted. The rule "Hope is Dead" is also activated at this
stage because the Hope object is not yet inserted. The rule "We have an honest Politician" fires first
because it has a higher salience value than the rule "Hope is Dead", and inserts the Hope object
(highlighted in green). The insertion of the Hope object activates the rule "Hope Lives" and
deactivates the rule "Hope is Dead". The insertion also activates the rule "Corrupt the Honest" for
each inserted honest politician. The rule "Hope Lives" is executed and prints "Hurrah!!! Democracy
Lives™.

Next, for each politician, the rule "Corrupt the Honest" fires, printing "I’'m an evil corporation and |
have corrupted X", where Xis the name of the politician, and modifies the politician honesty value to
false. When the last honest politician is corrupted, Hope is automatically retracted by the truth
maintenance system (highlighted in blue). The green highlighted area shows the origin of the currently
selected blue highlighted area. After the Hope fact is retracted, the rule "Hope is dead" fires, printing
"We are all Doomed!!! Democracy is Dead".

317

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

19.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN
MATCHING, CALLBACKS, AND GUI INTEGRATION)

The Sudoku example decision set, based on the popular number puzzle Sudoku, demonstrates how to
use rules in Red Hat Decision Manager to find a solution in a large potential solution space based on
various constraints. This example also shows how to integrate Red Hat Decision Manager rules into a
graphical user interface (GUI), in this case a Swing-based desktop application, and how to use callbacks
to interact with a running decision engine to update the GUI based on changes in the working memory
at run time.

The following is an overview of the Sudoku example:
® Name: sudoku
® Main class: org.drools.examples.sudoku.SudokuExample (in src/main/java)
® Module: drools-examples
® Type: Java application
® Rule files: org.drools.examples.sudoku.*.drl (in src/main/resources)

® Objective: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1to 9 only one time. The
puzzle setter provides a partially completed grid and the puzzle solver’s task is to complete the grid with
these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number, it must be
unique in its particular 3x3 zone, row, and column. This Sudoku example decision set uses Red Hat
Decision Manager rules to solve Sudoku puzzles from a range of difficulty levels, and to attempt to
resolve flawed puzzles that contain invalid entries.

Sudoku example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Sudoku example by
running the org.drools.examples.sudoku.SudokuExample class as a Java application in your IDE.

When you execute the Sudoku example, the Drools Sudoku Example GUI window appears. This
window contains an empty grid, but the program comes with various grids stored internally that you can

load and solve.

Click File = Samples — Simple to load one of the examples. Notice that all buttons are disabled until a
grid is loaded.

318

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.19. Sudoku example GUI after launch

Drools Sudoku Example

File |
Samples * Simple
Open... Medium
Exit Hard 1
Hard 2
Hard 3
Hard 4
IDELIBERATELY BROKEN!
Solve Step Dump

When you load the Simple example, the grid is filled according to the puzzle's initial state.

319

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.20. Sudoku example GUI after loading Simple sample

P Drools Sudoku Example i

56 9 4

G O
Ul
~NUIN O | <OV 00
N 00 OY

oo KO
LYl O (WUl
W
O = U100/

OVl O0ONO

Solve Step Dump

LS ~

Choose from the following options:

e Click Solve to fire the rules defined in the Sudoku example that fill out the remaining values and
that make the buttons inactive again.

320

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

Figure 19.21. Simple sample solved

JTools oUuao Xxdimpie

£

N OY U1 = 0o~ © W|EE
A dwlooN o= 0o u

O 00 =UTWIN BO
~JUTN) WO =4~ 000
= WO 00 U1 LIONN
00 OINON(W U
W= ENOOOIUVTNO
UIN) OO ~J WO = B
O O = 5~ U1jco WIN)

Solve Dump

LS ~

Ln
=
't.
=

e Click Step to see the next digit found by the rule set. The console window in your IDE displays
detailed information about the rules that are executing to solve the step.

Step execution output in the IDE console

single 8 at [0,1]

column elimination due to [1,2]: remove 9 from [4,2]
hidden single 9 at [1,2]

row elimination due to [2,8]: remove 7 from [2,4]
remove 6 from [3,8] due to naked pair at [3,2] and [3,7]
hidden pair in row at [4,6] and [4,4]

® Click Dump to see the state of the grid, with cells showing either the established value or the
remaining possibilities.

Dump execution output in the IDE console

Col:0 Col:1 Col:2 Col:3 Col:4 Col:5 Col:6 Col:7 Col:8
Row 0: 123456789 ---5 --- --- 6 --- --- 8 --- 123456789 --- 1 --- --- 9-—- - 4 ---
123456789
Row 1: --- 9 --- 123456789 123456789 --- 6 --- 123456789 ---5 --- 123456789
123456789 --- 3 ---
Row 2: ---7 --- 123456789 123456789 ---4 --- --- 9 - - 3 --- 123456789 123456789
— 8 —

321

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Row 3: -- 8 - --- Y 7 - 123456789 --- 4 - 123456789 --- 6 - --- 3 5 -
Row 4: 123456789 123456789 --- 3 - - 9 -~ 123456789 --- 6 - - 8 - 123456789
123456789

ROW 5: - 4 - - [5--- 123456789 --- 8 - 123456789 -- 2 - --- CJ—— 1 -
Row 6: - 5 - 123456789 123456789 --- 2 --- --- p— 9 - 123456789 123456789
I A

Row 7: --- 6 --- 123456789 123456789 --- 5 --- 123456789 --- 4 --- 123456789
123456789 --- 9 ---

Row 8: 123456789 ---4 --- --- 9 - - 7 --- 123456789 --- 8 --- --- 3 - - 5---
123456789

The Sudoku example includes a deliberately broken sample file that the rules defined in the example can
resolve.

Click File = Samples - IDELIBERATELY BROKEN! to load the broken sample. The grid starts with
some issues, for example, the value 5 appears two times in the first row, which is not allowed.

Figure 19.22. Broken Sudoku example initial state

P Drools Sudoku Example i
File

5 41 95
6 7 5 1

6 9

=N
N

~ 00 OO
WO
W
= U1
U
00

Solve Step Dump

LS ~

Click Solve to apply the solving rules to this invalid grid. The associated solving rules in the Sudoku
example detect the issues in the sample and attempts to solve the puzzle as far as possible. This
process does not complete and leaves some cells empty.

The solving rule activity is displayed in the IDE console window:

Detected issues in the broken sample

322

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row 0
cell [6,0]: 8 has a duplicate in col 0
cell [4,0]: 8 has a duplicate in col 0
Validation complete.

Figure 19.23. Broken sample solution attempt

P Drools 5udo xample -
File

£

~B=00 00 [NOYUT
W oY OUTI= NI~ ~O00
UINHNO (WO

O WINEROICYUT
OdbB| OUl=00W
O0/= U1OY W [O N B
N O = U100 WO
~01 [O~dOY| O
OO N (NBEUT

Solve Dump

LS ~

un
=
f
-

The sample Sudoku files labeled Hard are more complex and the solving rules might not be able to solve
them. The unsuccessful solution attempt is displayed in the IDE console window:

Hard sample unresolved

Validation complete.

Sorry - can't solve this grid.

The rules that work to solve the broken sample implement standard solving techniques based on the
sets of values that are still candidates for a cell. For example, if a set contains a single value, then this is
the value for the cell. For a single occurrence of a value in one of the groups of nine cells, the rules insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination of
this value from all other cells in any of the groups the cell belongs to and the value is retracted.

Other rules in the example reduce the permissible values for some cells. The rules "naked pair",
"hidden pair in row", "hidden pair in column", and "hidden pair in square" eliminate possibilities but

won-~

do not establish solutions. The rules "X-wings in rows", " X-wings in columns"", "intersection removal

323

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

row"”, and "intersection removal column" perform more sophisticated eliminations.

Sudoku example classes
The package org.drools.examples.sudoku.swing contains the following core set of classes that
implement a framework for Sudoku puzzles:

The SudokuGridModel class defines an interface that is implemented to store a Sudoku puzzle
as a 9x9 grid of Cell objects.

The SudokuGridView class is a Swing component that can visualize any implementation of the
SudokuGridModel class.

The SudokuGridEvent and SudokuGridListener classes communicate state changes between
the model and the view. Events are fired when a cell value is resolved or changed.

The SudokuGridSamples class provides partially filled Sudoku puzzles for demonstration
purposes.

NOTE

This package does not have any dependencies on Red Hat Decision Manager libraries.

The package org.drools.examples.sudoku contains the following core set of classes that implement
the elementary Cell object and its various aggregations:

The CellFile class, with subtypes CellRow, CellCol, and CellSqr, all of which are subtypes of the
CellGroup class.

The Cell and CellGroup subclasses of SetOfNine, which provides a property free with the type
Set<Integer>. For a Cell class, the set represents the individual candidate set. Fora CellGroup
class, the set is the union of all candidate sets of its cells (the set of digits that still need to be
allocated).

In the Sudoku example are 81 Cell and 27 CellGroup objects and a linkage provided by the Cell
properties cellRow, cellCol, and cellSqr, and by the CellGroup property cells (a list of Cell
objects). With these components, you can write rules that detect the specific situations that
permit the allocation of a value to a cell or the elimination of a value from some candidate set.

The Setting class is used to trigger the operations that accompany the allocation of a value. The
presence of a Setting fact is used in all rules that detect a new situation in order to avoid
reactions to inconsistent intermediary states.

The Stepping class is used in a low priority rule to execute an emergency halt whena "Step"
does not terminate regularly. This behavior indicates that the program cannot solve the puzzle.

The main class org.drools.examples.sudoku.SudokuExample implements a Java application
combining all of these components.

Sudoku validation rules (validate.drl)

The validate.drl file in the Sudoku example contains validation rules that detect duplicate numbers in
cell groups. They are combined in a "validate" agenda group that enables the rules to be explicitly
activated after a user loads the puzzle.

The when conditions of the three rules "duplicate in cell ..." all function in the following ways:

324

The first condition in the rule locates a cell with an allocated value.

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

® The second condition in the rule pulls in any of the three cell groups to which the cell belongs.

® The final condition finds a cell (other than the first one) with the same value as the first cell and
in the same row, column, or square, depending on the rule.

Rules "duplicate in cell ..."

rule "duplicate in cell row"
when
$c: Cell($v: value !=null)
$cr: CellRow(cells contains $c)
exists Cell(this != $c, value == $v, cellRow == $cr)
then
System.out.printin("cell " + $c.toString() + " has a duplicate in row " + $cr.getNumber());
end

rule "duplicate in cell col"
when
$c: Cell($v: value !=null)
$cc: CellCol(cells contains $c)
exists Cell(this != $c, value == $v, cellCol == $cc)
then
System.out.printin("cell " + $c.toString() + " has a duplicate in col " + $cc.getNumber());
end

rule "duplicate in cell sqr"
when
$c: Cell($v: value !=null)
$cs: CellSqr(cells contains $c)
exists Cell(this != $c, value == $v, cellSqr == $cs)
then
System.out.printin("cell " + $c.toString() + " has duplicate in its square of nine.");
end

The rule "terminate group" is the last to fire. This rule prints a message and stops the sequence.

Rule "terminate group”

rule "terminate group"
salience -100
when
then
System.out.printin("Validation complete.");
drools.halt();
end

Sudoku solving rules (sudoku.drl)

The sudoku.drl file in the Sudoku example contains three types of rules: one group handles the
allocation of a number to a cell, another group detects feasible allocations, and the third group
eliminates values from candidate sets.

The rules "set a value", "eliminate a value from Cell", and "retract setting” depend on the presence
of a Setting object. The first rule handles the assignment to the cell and the operations for removing the
value from the free sets of the three groups of the cell. This group also reduces a counter that, when
zero, returns control to the Java application that has called fireUntilHalt().

325

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

The purpose of the rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are
related to the newly assigned cell. Finally, when all eliminations have been made, the rule "retract
setting” retracts the triggering Setting fact.

Rules "set a value", "eliminate a value from a Cell", and "retract setting"

/I A Setting object is inserted to define the value of a Cell.
/I Rule for updating the cell and all cell groups that contain it
rule "set a value"
when
/I A Setting with row and column number, and a value
$s: Setting($rn: rowNo, $cn: colNo, $v: value)

/I A matching Cell, with no value set
$c: Cell(rowNo == $rn, colNo == $cn, value == null,
$er: cellRow, $cc: cellCol, $cs: cellSqr)

/I Count down
$ctr: Counter($count: count)
then

/I Modify the Cell by setting its value.
modify($c){ setValue($v) }
/I System.out.printin("set cell " + $c.toString());
modify($cr){ blockValue($v) }
modify($cc){ blockValue($v) }
modify($cs){ blockValue($v) }
modify($ctr){ setCount($count - 1)}

end

/I Rule for removing a value from all cells that are siblings
//'in one of the three cell groups
rule "eliminate a value from Cell"
when
/I A Setting with row and column number, and a value
$s: Setting($rn: rowNo, $cn: colNo, $v: value)

/I The matching Cell, with the value already set
Cell(rowNo == $rn, colNo == $cn, value == $v, $exCells: exCells)

/I For all Cells that are associated with the updated cell
$c: Cell(free contains $v) from $exCells
then
/I System.out.printin("clear " + $v + " from cell " + $c.posAsString());
/I Modify a related Cell by blocking the assigned value.
modify($c){ blockValue($v) }
end

/I Rule for eliminating the Setting fact
rule "retract setting"
when
/I A Setting with row and column number, and a value
$s: Setting($rn: rowNo, $cn: colNo, $v: value)

/I The matching Cell, with the value already set
$c: Cell(rowNo == $rn, colNo == $cn, value == $v)

326

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

/I This is the negation of the last pattern in the previous rule.
/I Now the Setting fact can be safely retracted.
not($x: Cell(free contains $v)
and
Cell(this == $c, exCells contains $x))
then
/I System.out.printin("done setting cell " + $c.toString());
// Discard the Setter fact.
delete($s);
/I Sudoku.sudoku.consistencyCheck();
end

Two solving rules detect a situation where an allocation of a number to a cell is possible. The rule
"single" fires for a Cell with a candidate set containing a single number. The rule "hidden single" fires
when no cell exists with a single candidate, but when a cell exists containing a candidate, this candidate is
absent from all other cells in one of the three groups to which the cell belongs. Both rules create and
insert a Setting fact.

Rules "single" and "hidden single"

/I Detect a set of candidate values with cardinality 1 for some Cell.
/[This is the value to be set.
rule "single"
when
// Currently no setting underway
not Setting()

// One element in the "free" set
$c: Cell($rn: rowNo, $cn: colNo, freeCount == 1)
then

Integer i = $c.getFreeValue();
if (explain) System.out.printin("single " + i + " at " + $c.posAsString());
/I Insert another Setter fact.
insert(new Setting($rn, $cn, i));

end

/I Detect a set of candidate values with a value that is the only one
/l'in one of its groups. This is the value to be set.
rule "hidden single"

when
/I Currently no setting underway
not Setting()
not Cell(freeCount == 1)

// Some integer
$i: Integer()

/l The "free" set contains this number
$c: Cell($rn: rowNo, $cn: colNo, freeCount > 1, free contains $i)

/' A cell group contains this cell $c.
$cg: CellGroup(cells contains $c)
// No other cell from that group contains $i.
not (Cell(this != $c, free contains $i) from $cg.getCells())
then
if (explain) System.out.printin("hidden single " + $i + " at " + $c.posAsString());

327

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

/I Insert another Setter fact.
insert(new Setting($rn, $cn, $i));
end

Rules from the largest group, either individually or in groups of two or three, implement various solving
techniques used for solving Sudoku puzzles manually.

The rule "naked pair" detects identical candidate sets of size 2in two cells of a group. These two values
may be removed from all other candidate sets of that group.

Rule "naked pair"

/I A "naked pair" is two cells in some cell group with their sets of

/I permissible values being equal with cardinality 2. These two values
/I can be removed from all other candidate lists in the group.

rule "naked pair"

when
// Currently no setting underway
not Setting()
not Cell(freeCount == 1)

/I One cell with two candidates
$c1: Cell(freeCount == 2, $f1: free, $r1: cellRow, $rn1: rowNo, $cni: colNo, $b1: cellSqr)

/I The containing cell group
$cg: CellGroup(freeCount > 2, cells contains $c1)

/I Another cell with two candidates, not the one we already have
$c2: Cell(this = $c1, free == $f1 /*** |, rowNo >= $rn1, colNo >= $cn1 ***/) from $cg.cells

/I Get one of the "naked pair".
Integer($v: intValue) from $c1.getFree()

/I Get some other cell with a candidate equal to one from the pair.
$c3: Cell(this |= $c1 && = $c2, freeCount > 1, free contains $v) from $cg.cells
then
if (explain) System.out.printin("remove " + $v + " from " + $c3.posAsString() + " due to naked pair
at " + $c1.posAsString() + " and " + $c2.posAsString());
// Remove the value.
modify($c3){ blockValue($v) }
end

The three rules "hidden pair in ..." functions similarly to the rule "naked pair". These rules detect a
subset of two numbers in exactly two cells of a group, with neither value occurring in any of the other
cells of the group. This means that all other candidates can be eliminated from the two cells harboring
the hidden pair.

Rules "hidden pairin..."

/I If two cells within the same cell group contain candidate sets with more than
// two values, with two values being in both of them but in none of the other
/I cells, then we have a "hidden pair". We can remove all other candidates from
// these two cells.
rule "hidden pair in row"

when

328

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

/I Currently no setting underway
not Setting()
not Cell(freeCount == 1)

// Establish a pair of Integer facts.
$it1: Integer()
$i2: Integer(this > $i1)

/I Look for a Cell with these two among its candidates. (The upper bound on

// the number of candidates avoids a lot of useless work during startup.)

$c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellRow: cellRow)

/I Get another one from the same row, with the same pair among its candidates.
$c2: Cell(this = $c1, cellRow == $cellRow, freeCount > 2, free contains $i1 && contains $i2)

/I Ascertain that no other cell in the group has one of these two values.
not(Cell(this |= $c1 && != $c2, free contains $i1 || contains $i2) from $cellRow.getCells())
then

if(explain) System.out.printin("hidden pair in row at " + $c1.posAsString() + " and " +
$c2.posAsString());

/I Set the candidate lists of these two Cells to the "hidden pair".

modify($c1){ blockExcept($i1, $i2) }

modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in column"
when
not Setting()
not Cell(freeCount == 1)

$it1: Integer()

$i2: Integer(this > $i1)

$c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellCol: cellCol)

$c2: Cell(this = $c1, cellCol == $cellCol, freeCount > 2, free contains $i1 && contains $i2)

not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellCol.getCells())

then

if (explain) System.out.printin("hidden pair in column at " + $c1.posAsString() + " and " +
$c2.posAsString());

modify($c1){ blockExcept($i1, $i2) }

modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in square"
when
not Setting()
not Cell(freeCount == 1)

$i1: Integer()
$i2: Integer(this > $i1)
$c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellSqr: cellSqr)
$c2: Cell(this = $c1, cellSqr == $cellSqr, freeCount > 2, free contains $i1 && contains $i2)
not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellSqr.getCells())
then

329

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

if (explain) System.out.printin("hidden pair in square " + $c1.posAsString() + "and " +
$c2.posAsString());

modify($c1){ blockExcept($i1, $i2) }

modify($c2){ blockExcept($i1, $i2) }
end

Two rules deal with "X-wings" in rows and columns. When only two possible cells for a value exist in each
of two different rows (or columns) and these candidates lie also in the same columns (or rows), then all
other candidates for this value in the columns (or rows) can be eliminated. When you follow the pattern
sequence in one of these rules, notice how the conditions that are conveniently expressed by words such
as same or only result in patterns with suitable constraints or that are prefixed with not.

Rules "X-wingsin ..."

rule "X-wings in rows"
when
not Setting()
not Cell(freeCount == 1)

$i: Integer()
$cat: Cell(freeCount > 1, free contains $i,
$ra: cellRow, $rano: rowNo, $c1: cellCol, $c1no: colNo)
$cb1: Cell(freeCount > 1, free contains $i,
$rb: cellRow, $rbno: rowNo > $rano, cellCol == $c1)
not(Cell(this |= $cal && != $cb1, free contains $i) from $c1.getCells())

$ca2: Cell(freeCount > 1, free contains $i,
cellRow == $ra, $c2: cellCol, $c2no: colNo > $c1no)
$cb2: Cell(freeCount > 1, free contains $i,
cellRow == $rb, cellCol == $c2)
not(Cell(this |= $ca2 && != $cb2, free contains $i) from $c2.getCells())

$cx: Cell(rowNo == $rano || == $rbno, colNo != $c1no && != $c2no,
freeCount > 1, free contains $i)
then
if (explain) {

System.out.printin("X-wing with " + $i + " in rows " +
$cal.posAsString() + " - " + $cb1.posAsString() +
$ca2.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
}
modify($cx){ blockValue($i) }
end

rule "X-wings in columns"
when
not Setting()
not Cell(freeCount == 1)

$i: Integer()
$cat: Cell(freeCount > 1, free contains $i,
$c1: cellCol, $c1no: colNo, $ra: cellRow, $rano: rowNo)
$ca2: Cell(freeCount > 1, free contains $i,
$c2: cellCol, $c2no: colNo > $c1no, cellRow == $ra)
not(Cell(this |= $cal && != $ca2, free contains $i) from $ra.getCells())

$cb1: Cell(freeCount > 1, free contains $i,

330

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

cellCol == $ct, $rb: cellRow, $rbno: rowNo > $rano)
$cb2: Cell(freeCount > 1, free contains $i,
cellCol == $c2, cellRow == $rb)
not(Cell(this != $cb1 && != $cb2, free contains $i) from $rb.getCells())

$cx: Cell(colNo == $c1no || == $c2no, rowNo != $rano && != $rbno,
freeCount > 1, free contains $i)
then
if (explain) {

System.out.printin("X-wing with " + $i + " in columns " +
$cal.posAsString() + " - " + $ca2.posAsString() +
$cb1.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());

}
modify($cx){ blockValue($i) }
end
The two rules "intersection removal ..." are based on the restricted occurrence of some number within

one square, either in a single row or in a single column. This means that this number must be in one of
those two or three cells of the row or column and can be removed from the candidate sets of all other
cells of the group. The pattern establishes the restricted occurrence and then fires for each cell outside
of the square and within the same cell file.

Rules "intersection removal ..."

rule "intersection removal column”
when
not Setting()
not Cell(freeCount == 1)

$i: Integer()

// Occurs in a Cell

$c: Cell(free contains $i, $cs: cellSqr, $cc: cellCol)

/I Does not occur in another cell of the same square and a different column
not Cell(this != $c, free contains $i, cellSqr == $cs, cellCol = $cc)

/I A cell exists in the same column and another square containing this value.
$cx: Cell(freeCount > 1, free contains $i, cellCol == $cc, cellSqr = $cs)
then
/I Remove the value from that other cell.
if (explain) {
System.out.printin("column elimination due to " + $c.posAsString() +
":remove " + $i + " from " + $cx.posAsString());
}
modify($cx){ blockValue($i) }
end

rule "intersection removal row"
when
not Setting()
not Cell(freeCount == 1)

$i: Integer()

/I Occurs in a Cell

$c: Cell(free contains $i, $cs: cellSqr, $cr: cellRow)

/I Does not occur in another cell of the same square and a different row.
not Cell(this != $c, free contains $i, cellSqr == $cs, cellRow != $cr)

331

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

/I A cell exists in the same row and another square containing this value.
$cx: Cell(freeCount > 1, free contains $i, cellRow == $cr, cellSqr = $cs)
then
// Remove the value from that other cell.
if (explain) {
System.out.printin("row elimination due to " + $c.posAsString() +
":remove " + $i + " from " + $cx.posAsString());
}
modify($cx){ blockValue($i) }
end

These rules are sufficient for many but not all Sudoku puzzles. To solve very difficult grids, the rule set
requires more complex rules. (Ultimately, some puzzles can be solved only by trial and error.)

19.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW
GROUPS AND GUI INTEGRATION)

The Conway's Game of Life example decision set, based on the famous cellular automaton by John
Conway, demonstrates how to use ruleflow groups in rules to control rule execution. The example also
demonstrates how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in
this case a Swing-based implementation of Conway’s Game of Life.

The following is an overview of the Conway’'s Game of Life (Conway) example:

® Name: conway

® Main classes: org.drools.examples.conway.ConwayRuleFlowGroupRun,
org.drools.examples.conway.ConwayAgendaGroupRun (in src/main/java)

® Module: droolsjbpm-integration-examples
® Type: Java application
e Rule files: org.drools.examples.conway.*.drl (in src/main/resources)

® Objective: Demonstrates ruleflow groups and GUI integration

NOTE

The Conway's Game of Life example is separate from most of the other example decision
sets in Red Hat Decision Manager and is located in ~/rhdm-7.9.0-
sources/src/droolsjbpm-integration-$VERSION/droolsjbpm-integration-examples of
the Red Hat Decision Manager 7.9.0 Source Distributionfrom the Red Hat Customer
Portal.

In Conway’s Game of Life, a user interacts with the game by creating an initial configuration or an
advanced pattern with defined properties and then observing how the initial state evolves. The
objective of the game is to show the development of a population, generation by generation. Each
generation results from the preceding one, based on the simultaneous evaluation of all cells.

The following basic rules govern what the next generation looks like:

e |f alive cell has fewer than two live neighbors, it dies of loneliness.

332

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

e |f alive cell has more than three live neighbors, it dies from overcrowding.
® |f a dead cell has exactly three live neighbors, it comes to life.
Any cell that does not meet any of those criteria is left as is for the next generation.

The Conway’s Game of Life example uses Red Hat Decision Manager rules with ruleflow-group
attributes to define the pattern implemented in the game. The example also contains a version of the
decision set that achieves the same behavior using agenda groups. Agenda groups enable you to
partition the decision engine agenda to provide execution control over groups of rules. By default, all
rules are in the agenda group MAIN. You can use the agenda-group attribute to specify a different
agenda group for the rule.

This overview does not explore the version of the Conway example using agenda groups. For more
information about agenda groups, see the Red Hat Decision Manager example decision sets that
specifically address agenda groups.

Conway example execution and interaction

Similar to other Red Hat Decision Manager decision examples, you execute the Conway ruleflow
example by running the org.drools.examples.conway.ConwayRuleFlowGroupRun class as a Java
application in your IDE.

When you execute the Conway example, the Conway’s Game of Life GUI window appears. This window
contains an empty grid, or "arena” where the life simulation takes place. Initially the grid is empty

because no live cells are in the system yet.

Figure 19.24. Conway example GUI after launch

i Conway's Game DF Life = Ellil

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originalhy
cohceived by John Conway in the early 1970's. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the “business rules" that constrain the game.

Select a predefined pattern from the list below or use the mouse
to interactively define a starting orid by clicking on cells in
‘the grid to bring them to life.

Click the “Next Generation™ button to iterate through generations

one at a time or click the “Start™ button ta let the system evolve
itself.

paten:

| Hext Generation | | Start || Clear |

Select a predefined pattern from the Pattern drop-down menu and click Next Generation to click
through each population generation. Each cell is either alive or dead, where live cells contain a green ball.
As the population evolves from the initial pattern, cells live or die relative to neighboring cells, according
to the rules of the game.

333

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.25. Generation evolution in Conway example

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originalhy
cohceived by John Conway in the early 1970's. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the “business rules” that constrain the game,

Select a predefined pattern from the list below or use the mouse
to interactively define a starting grid by clicking on cells in
the grid to bring them to life.

Click the “Next Generation™ button to iterate through generations

one at a time or click the “Start” button to let the system evolve
itself.

Pattern : ’—V

||—|_|_|_|—|_|_|_|—| _ [_ — ji | Next Generation | | Start | | Clear |

Neighbors include not only cells to the left, right, top, and bottom but also cells that are connected
diagonally, so that each cell has a total of eight neighbors. Exceptions are the corner cells, which have
only three neighbors, and the cells along the four borders, with five neighbors each.
You can manually intervene to create or kill cells by clicking the cell.
To run through an evolution automatically from the initial pattern, click Start.
Conway example rules with ruleflow groups
The rules in the ConwayRuleFlowGroupRun example use ruleflow groups to control rule execution. A
ruleflow group is a group of rules associated by the ruleflow-group rule attribute. These rules can only
fire when the group is activated. The group itself can only become active when the elaboration of the
ruleflow diagram reaches the node representing the group.
The Conway example uses the following ruleflow groups for rules:

® 'register neighbor"

e "evaluate"

e '"calculate"

e '"reset calculate”

e "birth"

. 'lkillll

e "kill all"
All of the Cell objects are inserted into the KIE session and the "register ..." rules in the ruleflow group
"register neighbor" are allowed to execute by the ruleflow process. This group of four rules creates

Neighbor relations between some cell and its northeastern, northern, northwestern, and western
neighbors.

334

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

This relation is bidirectional and handles the other four directions. Border cells do not require any special
treatment. These cells are not paired with neighboring cells where there is not any.

By the time all activations have fired for these rules, all cells are related to all their neighboring cells.

Rules "register..."

rule "register north east"
ruleflow-group "register neighbor"
when
$cell: Cell($row : row, $col : col)
$northEast : Cell(row == ($row - 1), col == ($col + 1))
then
insert(new Neighbor($cell, $northEast));
insert(new Neighbor($northEast, $cell));
end

rule "register north"
ruleflow-group "register neighbor"
when
$cell: Cell($row : row, $col : col)
$north : Cell(row == ($row - 1), col == $col)
then
insert(new Neighbor($cell, $north));
insert(new Neighbor($north, $cell));
end

rule "register north west"
ruleflow-group "register neighbor"
when
$cell: Cell($row : row, $col : col)
$northWest : Cell(row == ($row - 1), col == ($col - 1))
then
insert(new Neighbor($cell, $northWest));
insert(new Neighbor($northWest, $cell));
end

rule "register west"
ruleflow-group "register neighbor"
when
$cell: Cell($row : row, $col : col)
$west : Cell(row == $row, col == ($col - 1))
then
insert(new Neighbor($cell, $west));
insert(new Neighbor($west, $cell));
end

After all the cells are inserted, some Java code applies the pattern to the grid, setting certain cells to
Live. Then, when the user clicks Start or Next Generation, the example executes the Generation
ruleflow. This ruleflow manages all changes of cells in each generation cycle.

335

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.26. Generation ruleflow

O—,—{ Calculate }—.—{ Evaluate }—.—{ Rest Calculate |
Start

Y

=
Birth

Kill

End

The ruleflow process enters the "evaluate" ruleflow group and any active rules in the group can fire.
The rules "Kill the ..." and "Give Birth" in this group apply the game rules to birth or kill cells. The
example uses the phase attribute to drive the reasoning of the Cell object by specific groups of rules.
Typically, the phase is tied to a ruleflow group in the ruleflow process definition.

Notice that the example does not change the state of any Cell objects at this point because it must
complete the full evaluation before those changes can be applied. The example sets the cell to a phase
that is either Phase.KILL or Phase.BIRTH, which is used later to control actions applied to the Cell
object.

Rules "Kill the ..." and "Give Birth"

rule "Kill The Lonely"
ruleflow-group "evaluate"
no-loop
when
/I A live cell has fewer than 2 live neighbors.
theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,
phase == Phase.EVALUATE)
then
modify(theCell){
setPhase(Phase.KILL);
}

end

rule "Kill The Overcrowded"

ruleflow-group "evaluate"
no-loop

when
/I A live cell has more than 3 live neighbors.
theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,

phase == Phase.EVALUATE)
then

336

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

modify(theCell){
setPhase(Phase.KILL);
}

end

rule "Give Birth"
ruleflow-group "evaluate"
no-loop
when
/I A dead cell has 3 live neighbors.
theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,
phase == Phase.EVALUATE)
then
modify(theCell){
theCell.setPhase(Phase.BIRTH);
}

end

After all Cell objects in the grid have been evaluated, the example uses the "reset calculate" rule to

clear any activations in the "calculate" ruleflow group. The example then enters a split in the ruleflow

that enables the rules "kill" and "birth" to fire, if the ruleflow group is activated. These rules apply the
state change.

Rules "reset calculate", "kill", and "birth"

rule "reset calculate"
ruleflow-group "reset calculate”
when
then
WorkingMemory wm = drools.getWorkingMemory();
wm.clearRuleFlowGroup("calculate");
end

rule "kill"
ruleflow-group "kill"
no-loop
when
theCell: Cell(phase == Phase.KILL)
then
modify(theCell){
setCellState(CellState.DEAD),
setPhase(Phase.DONE);
}

end

rule "birth"
ruleflow-group "birth"
no-loop
when
theCell: Cell(phase == Phase.BIRTH)
then
modify(theCell){
setCellState(CellState.LIVE),
setPhase(Phase.DONE);
}

end

337

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

At this stage, several Cell objects have been modified with the state changed to either LIVE or DEAD.
When a cell becomes live or dead, the example uses the Neighbor relation in the rules "Calculate ..." to
iterate over all surrounding cells, increasing or decreasing the liveNeighbor count. Any cell that has its
count changed is also set to the EVALUATE phase to make sure it is included in the reasoning during
the evaluation stage of the ruleflow process.

After the live count has been determined and set for all cells, the ruleflow process ends. If the user
initially clicked Start, the decision engine restarts the ruleflow at that point. If the user initially clicked
Next Generation, the user can request another generation.

Rules "Calculate ..."

rule "Calculate Live"
ruleflow-group "calculate"
lock-on-active
when
theCell: Cell(cellState == CellState.LIVE)
Neighbor(cell == theCell, $neighbor : neighbor)
then
modify($neighbor){
setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
setPhase(Phase.EVALUATE);
}

end

rule "Calculate Dead"
ruleflow-group "calculate"
lock-on-active
when
theCell: Cell(cellState == CellState.DEAD)
Neighbor(cell == theCell, $neighbor : neighbor)
then
modify($neighbor){
setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
setPhase(Phase.EVALUATE);

}

end

19.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING
AND RECURSION)

The House of Doom example decision set demonstrates how the decision engine uses backward
chaining and recursion to reach defined goals or subgoals in a hierarchical system.

The following is an overview of the House of Doom example:
® Name: backwardchaining
® Main class: org.drools.examples.backwardchaining.HouseOfDoomMain (in src/main/java)
® Module: drools-examples

® Type: Java application

338

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

e Rule file: org.drools.examples.backwardchaining.BC-Example.drl (in src/main/resources)
® Objective: Demonstrates backward chaining and recursion

A backward-chaining rule system is a goal-driven system that starts with a conclusion that the decision
engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it
searches for subgoals, which are conclusions that complete part of the current goal. The system
continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

In contrast, a forward-chaining rule system is a data-driven system that starts with a fact in the working
memory of the decision engine and reacts to changes to that fact. When objects are inserted into
working memory, any rule conditions that become true as a result of the change are scheduled for
execution by the agenda.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

339

Red Hat Decision Manager 7.9 Developing decision services in Red Hat Decision Manager

Figure 19.27. Rule evaluation logic using forward and backward chaining

Evaluate rules

'é ™
Done 4—@— Does a new rule match exist? /3 <

Does any pattern match some fact?)

)
N/

' N
@ ‘ Does the rule contain a goal?)

Backward chaining

matching fact.

rom-------- 4 Is the goal a fact?

i

|

|

|

| , N
l Does a matching rule exist for the goal?)
| S
i

|

i

|

|

|

i Goal has been reached. Mark the matching rule Goal cannot be reached.
! Return TRUE and any condition as a new fact. Return FALSE.

|

|

|

|

|

|

__

True False
Execute the rule action. . Mark rule match as
—> ¥ evaluated.

$

The House of Doom example uses rules with various types of queries to find the location of rooms and
items within the house. The sample class Location.java contains the item and location elements used
in the example. The sample class HouseOfDoomMain.java inserts the items or rooms in their respective
locations in the house and executes the rules.

Items and locations in HouseOfDoomMain.java class

ksession.insert
ksession.insert
ksession.insert
ksession.insert

new Location("Office", "House"));
new Location("Kitchen", "House")
new Location("Knife", "Kitchen"))

new Location("Cheese", "Kitchen"));

);

3

—_ o~~~

340

CHAPTER 19. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

ksession.insert
ksession.insert
ksession.insert
ksession.insert

new Location("Desk", "Office"));
new Location("Chair", "Office"));
new Location("Computer", "Desk"));
new Location("Drawer", "Desk"));

—_ = =

The example rules rely on backward chaining and recursion to determine the location of all items and
rooms in the house structure.

The following diagram illustrates the structure of the House of Doom and the items and rooms within it:

]

Figure 19.28. House of Doom structure

Location(“Kitchen”, “House”) Location(“Office”, “House”)
Location(“Knife”, “Kitchen”) Location(“Cheese”, “Kitchen”) Location(“Desk”, “Office”) Location(“Chair”, “Office”)
Location(“Drawer”, “Desk”) Location(“Computer”, “Desk”)

To execute the example, run the org.drools.examples.backwardchaining.HouseOfDoomMain class
as a Java applicatio