
Red Hat Data Grid 8.4

Data Grid Performance and Sizing Guide

Plan and size Data Grid deployments

Last Updated: 2024-04-19

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

Plan and size Data Grid deployments

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deployment planning begins with examining Red Hat Data Grid use cases and deciding which
architecture suits your needs. From there you should consider the various performance
considerations and tradeoffs for Data Grid capabilities, such as data durability versus increased
latency. When you get an initial deployment up and running, you are ready to start benchmarking
Data Grid clusters and validating your performance expectations.

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT DATA GRID

DATA GRID DOCUMENTATION

DATA GRID DOWNLOADS

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DATA GRID DEPLOYMENT MODELS AND USE CASES
1.1. DATA GRID DEPLOYMENT MODELS

1.1.1. Platforms and automation tooling
1.2. IN-LINE CACHING
1.3. SIDE CACHING
1.4. DISTRIBUTED MEMORY
1.5. SESSION EXTERNALIZATION
1.6. CROSS-SITE REPLICATION

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING
2.1. PERFORMANCE METRIC CONSIDERATIONS
2.2. HOW TO CALCULATE THE SIZE OF YOUR DATA SET

Data set size in distributed caches
2.2.1. Memory overhead
2.2.2. JVM heap space allocation

2.3. CLUSTERED CACHE MODES
Reads:Writes
Data guarantees
Cluster scaling
Synchronous or asynchronous replication
Number of segments

2.4. STRATEGIES TO MANAGE STALE DATA
2.5. JVM MEMORY MANAGEMENT WITH EVICTION
2.6. JVM HEAP AND OFF-HEAP MEMORY

JVM heap memory
Off-heap memory
2.6.1. Off-heap data storage

2.7. PERSISTENT STORAGE
2.8. CLUSTER SECURITY

Authentication
Encryption
Authorization

2.9. CLIENT LISTENERS
2.10. INDEXING AND QUERYING CACHES

2.10.1. Continuous queries and Data Grid performance
2.11. DATA CONSISTENCY
2.12. NETWORK PARTITIONS AND DEGRADED CLUSTERS

2.12.1. Garbage collection and partition handling
2.13. CLUSTER BACKUPS AND DISASTER RECOVERY

Conflict resolution for Active/Active deployments
2.14. CODE EXECUTION AND DATA PROCESSING

Embedded caches
Remote caches

2.15. CLIENT TRAFFIC

4

5

6

7

8
8
9
9

10
10
11

12

13
13
13
14
14
15
17
17
17
18
18
19

20
20
21
21
21
22
22
23
24
25
25
25
26
27
28
29
30
30
30
31
32
32
32

Table of Contents

1

. .CHAPTER 3. BENCHMARKING DATA GRID ON OPENSHIFT
3.1. BENCHMARKING DATA GRID
3.2. INSTALLING HYPERFOIL
3.3. CREATING A HYPERFOIL CONTROLLER
3.4. RUNNING HYPERFOIL BENCHMARKS
3.5. HYPERFOIL BENCHMARK RESULTS

34
34
34
34
35
37

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

2

Table of Contents

3

RED HAT DATA GRID
Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure

Flexibility to store different objects as key-value pairs.

Grid-based data storage

Designed to distribute and replicate data across clusters.

Elastic scaling

Dynamically adjust the number of nodes to meet demand without service disruption.

Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

4

DATA GRID DOCUMENTATION
Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.4 Documentation

Data Grid 8.4 Component Details

Supported Configurations for Data Grid 8.4

Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

DATA GRID DOCUMENTATION

5

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

6

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DATA GRID DEPLOYMENT MODELS AND USE
CASES

Data Grid offers flexible deployment models that support a variety of use cases.

Drastically improve performance of Red Hat Build of Quarkus, Red Hat JBoss EAP, and Spring
applications.

Ensure service availability and continuity.

Lower operational costs.

1.1. DATA GRID DEPLOYMENT MODELS

Data Grid has two deployment models for caches, remote and embedded. Both deployment models
allow applications to access data with significantly lower latency for read operations and higher
throughput for write operations in comparison with traditional database systems.

Remote caches

Data Grid Server nodes run in a dedicated Java Virtual Machine (JVM). Clients access remote
caches using either Hot Rod, a binary TCP protocol, or REST over HTTP.

Embedded caches

Data Grid runs in the same JVM as your Java application, meaning that data is stored in the memory
space where code is executed.

Red Hat recommends a server/client architecture for the majority of deployments. Time to deployment
is much faster with remote caches because the data layer is separated from business logic. Data Grid
Server also provides monitoring and observability and other built-in capabilities to help you lower
development costs.

Near-caching

Near-caching capabilities allow remote clients to store data locally, which means read-intensive
applications do not need to traverse the network with each call. Near-caching significantly increases
speed of read operations and achieves the same performance as an embedded cache.

Figure 1.1. Remote cache deployment model

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

8

1.1.1. Platforms and automation tooling

Achieving the desired quality of service means providing Data Grid with optimal CPU and RAM
resources. Too few resources downgrades Data Grid performance while using excessive amounts of host
resources can quickly increase costs.

While you benchmark and tune Data Grid clusters to find the right allocation of CPU or RAM, you should
also consider which host platform provides the right kind of automation tooling to scale clusters and
manage resources efficiently.

Bare metal or virtual machine

Couple RHEL, or Microsoft Windows, with Red Hat Ansible to manage Data Grid configuration and poll
services to ensure availability and achieve optimal resource usage.

The Ansible collection for Data Grid , available from the Automation Hub, automates cluster installation
and includes options for Keycloak integration and cross-site replication.

OpenShift

Take advantage of Kubernetes orchestration to automatically provision pods, impose limits on
resources, and automatically scale Data Grid clusters to meet workload demands.

1.2. IN-LINE CACHING

Data Grid handles all application requests for data that resides in persistent storage.

With in-line caches, Data Grid uses cache loaders and cache stores to operate on data in persistent
storage.

Cache loaders provide read-only access to persistent storage.

Cache stores provide read and write access to persistent storage.

Figure 1.2. In-line caches

CHAPTER 1. DATA GRID DEPLOYMENT MODELS AND USE CASES

9

https://github.com/ansible-middleware/infinispan

1.3. SIDE CACHING

Data Grid stores data that applications retrieve from persistent storage, which reduces the number of
read operations to persistent storage and increases response times for subsequent reads.

Figure 1.3. Side caches

With side caches, applications control how data is added to Data Grid clusters from persistent storage.
When an application requests an entry, the following occurs:

1. The read request goes to Data Grid.

2. If the entry is not in the cache, the application requests it from persistent storage.

3. The application puts the entry in the cache.

4. The application retrieves the entry from Data Grid on the next read.

1.4. DISTRIBUTED MEMORY

Data Grid uses consistent hashing techniques to store a fixed number of copies of each entry in the

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

10

Data Grid uses consistent hashing techniques to store a fixed number of copies of each entry in the
cache across the cluster. Distributed caches allow you to scale the data layer linearly, increasing capacity
as nodes join.

Distributed caches add redundancy to Data Grid clusters to provide fault tolerance and durability
guarantees. Data Grid deployments typically configure integration with persistent storage to preserve
cluster state for graceful shutdowns and restore from backup.

Figure 1.4. Distributed caches

1.5. SESSION EXTERNALIZATION

Data Grid can provide external caches for applications built on Red Hat Build of Quarkus, Red Hat JBoss
EAP, Red Hat JBoss Web Server, and Spring. These external caches store HTTP sessions and other data
independently of the application layer.

Externalizing sessions to Data Grid gives you the following benefits:

Elasticity

Eliminate the need for rebalancing operations when scaling applications.

Smaller memory footprints

Storing session data in external caches reduces overall memory requirements for applications.

Figure 1.5. Session externalization

CHAPTER 1. DATA GRID DEPLOYMENT MODELS AND USE CASES

11

Figure 1.5. Session externalization

1.6. CROSS-SITE REPLICATION

Data Grid can back up data between clusters running in geographically dispersed data centers and
across different cloud providers. Cross-site replication provides Data Grid with a global cluster view and:

Guarantees service continuity in the event of outages or disasters.

Presents client applications with a single point of access to data in globally distributed caches.

Figure 1.6. Cross-site replication

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

12

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING
To get the best performance for your Data Grid deployment, you should do the following things:

Calculate the size of your data set.

Determine what type of clustered cache mode best suits your use case and requirements.

Understand performance trade-offs and considerations for Data Grid capabilities that provide
fault tolerance and consistency guarantees.

2.1. PERFORMANCE METRIC CONSIDERATIONS

Data Grid includes so many configurable combinations that determining a single formula for
performance metrics that covers all use cases is not possible.

The purpose of the Data Grid Performance and Sizing Guide document is to provide details about use
cases and architectures that can help you determine requirements for your Data Grid deployment.

Additionally, consider the following inter-related factors that apply to Data Grid:

Available CPU and memory resources in cloud environments

Caches used in parallel

Get, put, query balancing

Peak load and throughput limitations

Querying limitations with data set

Number of entries per cache

Size of cache entries

Given the number of different combinations and unknown external factors, providing a performance
calculation that meets all Data Grid use cases is not possible. You cannot compare one performance
test to another test if any of the previously listed factors are different.

You can run basic performance tests with the Data Grid CLI that collects limited performance metrics.
You can customize the performance test so that the test outputs results that might meet your needs.
Test results provide baseline metrics that can help you determine settings and resources for your Data
Grid caching requirements.

Measure the performance of your current settings and check if they meet your requirements. If your
needs are not met, optimize the settings and then re-measure their performance.

2.2. HOW TO CALCULATE THE SIZE OF YOUR DATA SET

Planning a Data Grid deployment involves calculating the size of your data set then figuring out the
correct number of nodes and amount of RAM to hold the data set.

You can roughly estimate the total size of your data set with this formula:

Data set size = Number of entries * (Average key size + Average value size + Memory overhead)

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

13

NOTE

With remote caches you need to calculate key sizes and value sizes in their marshalled
forms.

Data set size in distributed caches
Distributed caches require some additional calculation to determine the data set size.

In normal operating conditions, distributed caches store a number of copies for each key/value entry
that is equal to the Number of owners that you configure. During cluster rebalancing operations, some
entries have an extra copy, so you should calculate Number of owners + 1 to allow for that scenario.

You can use the following formula to adjust the estimate of your data set size for distributed caches:

Distributed data set size = Data set size * (Number of owners + 1)

Calculating available memory for distributed caches

Distributed caches allow you to increase the data set size either by adding more nodes or by increasing
the amount of available memory per node.

Distributed data set size <= Available memory per node * Minimum number of nodes

Adjusting for node loss tolerance

Even if you plan to have a fixed number of nodes in the cluster, you should take into account the fact
that not all nodes will be in the cluster all the time. Distributed caches tolerate the loss of Number of
owners - 1 nodes without losing data so you can allocate that many extra node in addition to the
minimum number of nodes that you need to fit your data set.

Planned nodes = Minimum number of nodes + Number of owners - 1

Distributed data set size <= Available memory per node * (Planned nodes - Number of owners + 1)

For example, you plan to store one million entries that are 10KB each in size and configure three owners
per entry for availability. If you plan to allocate 4GB of RAM for each node in the cluster, you can then
use the following formula to determine the number of nodes that you need for your data set:

Data set size = 1_000_000 * 10KB = 10GB
Distributed data set size = (3 + 1) * 10GB = 40GB
40GB <= 4GB * Minimum number of nodes
Minimum number of nodes >= 40GB / 4GB = 10
Planned nodes = 10 + 3 - 1 = 12

2.2.1. Memory overhead

Memory overhead is additional memory that Data Grid uses to store entries. An approximate estimate
for memory overhead is 200 bytes per entry in JVM heap memory or 60 bytes per entry in off-heap
memory. It is impossible to determine a precise amount of memory overhead upfront, however, because
the overhead that Data Grid adds per entry depends on several factors. For example, bounding the data
container with eviction results in Data Grid using additional memory to keep track of entries. Likewise
configuring expiration adds timestamps metadata to each entry.

The only way to find any kind of exact amount of memory overhead involves JVM heap dump analysis.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

14

The only way to find any kind of exact amount of memory overhead involves JVM heap dump analysis.
Of course JVM heap dumps provide no information for entries that you store in off-heap memory but
memory overhead is much lower for off-heap memory than JVM heap memory.

Additional memory usage

In addition to the memory overhead that Data Grid imposes per entry, processes such as rebalancing
and indexing can increase overall memory usage. Rebalancing operations for clusters when nodes join
and leave also temporarily require some extra capacity to prevent data loss while replicating entries
between cluster members.

2.2.2. JVM heap space allocation

Determine the volume of memory that you require for your Data Grid deployment, so that you have
enough data storage capacity to meet your needs.

IMPORTANT

Allocating a large memory heap size in combination with setting garbage collection (GC)
times might impact the performance of your Data Grid deployment in the following ways:

If a JVM handles only one thread, the GC might block the thread and reduce the
JVM’s performance. The GC might operate ahead of the deployment. This
asynchronous behavior might cause large GC pauses.

If CPU resources are low and GC operates synchronously with the deployment,
GC might require more frequent runs that can degrade your deployment’s
performance.

The following table outlines two examples of allocating JVM heap space for data storage. These
examples represent safe estimates for deploying a cluster.

Cache operations only, such as read, write, and
delete operations.

Allocate 50% of JVM heap space for data storage

Cache operations and data processing, such as
queries and cache event listeners.

Allocate 33% of JVM heap space for data storage

NOTE

Depending on pattern changes and usage for data storage, you might consider setting a
different percentage for JVM heap space than any of the suggested safe estimates.

Consider setting a safe estimate before you start your Data Grid deployment. After you
start your deployment, check the performance of your JVM and the occupancy of heap
space. You might need to re-adjust JVM heap space when data usage and throughput for
your JVM significantly increases.

The safe estimates were calculated on the assumption that the following common operations were
running inside a JVM. The list is not exhaustive, and you might set one of these safe estimates with the
purpose of performing additional operations.

Data Grid converts objects in serialized form to key-value pairs. Data Grid adds the pairs to

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

15

Data Grid converts objects in serialized form to key-value pairs. Data Grid adds the pairs to
caches and persistent storage.

Data Grid encrypts and decrypts caches from remote connections to clients.

Data Grid performs regular querying of caches to collect data.

Data Grid strategically divides data into segments to ensure efficient distribution of data
among clusters, even during a state transfer operation.

GC performs more frequent garbage collections, because the JVM allocated large volumes of
memory for GC operations.

GC dynamically manages and monitors data objects in JVM heap space to ensure safe removal
of unused objects.

Consider the following factors when allocating JVM heap space for data storage, and when determining
the volume of memory and CPU requirements for your Data Grid deployment:

Clustered cache mode.

Number of segments.

For example, a low number of segments might affect how a server distributes data among
nodes.

Read or write operations.

Rebalancing requirements.

For example, a high number of threads might quickly run in parallel during a state transfer,
but each thread operation might use more memory.

Scaling clusters.

Synchronous or asynchronous replication.

Most notable Data Grid operations that require high CPU resources include rebalancing nodes after
pod restarts, running indexing queries on data, and performing GC operations.

Off-heap storage

Data Grid uses JVM heap representations of objects to process read and write operations on caches or
perform other operations, such as a state transfer operation. You must always allocate some JVM heap
space to Data Grid, even if you store entries in off-heap memory.

The volume of JVM heap memory that Data Grid uses with off-heap storage is much smaller when
compared with storing data in the JVM heap space. The JVM heap memory requirements for off-heap
storage scales with the number of concurrent operations as against the number of stored entries.

Data Grid uses topology caches to provide clients with a cluster view.

If you receive any OutOfMemoryError exceptions from your Data Grid cluster, consider the options:

Disable the state transfer operation, which might results in data loss if a node joins or leaves a
cluster.

Recalculate the JVM heap space by factoring in the key size and the number of nodes and

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

16

Recalculate the JVM heap space by factoring in the key size and the number of nodes and
segments.

Use more nodes to better manage memory consumption for your cluster.

Use a single node, because this might use less memory. However, consider the impact if you
want to scale your cluster to its original size.

2.3. CLUSTERED CACHE MODES

You can configure clustered Data Grid caches as replicated or distributed.

Distributed caches

Maximize capacity by creating fewer copies of each entry across the cluster.

Replicated caches

Provide redundancy by creating a copy of all entries on each node in the cluster.

Reads:Writes
Consider whether your applications perform more write operations or more read operations. In general,
distributed caches offer the best performance for writes while replicated caches offer the best
performance for reads.

To put k1 in a distributed cache on a cluster of three nodes with two owners, Data Grid writes k1 twice.
The same operation in a replicated cache means Data Grid writes k1 three times. The amount of
additional network traffic for each write to a replicated cache is equal to the number of nodes in the
cluster. A replicated cache on a cluster of ten nodes results in a tenfold increase in traffic for writes and
so on. You can minimize traffic by using a UDP stack with multicasting for cluster transport.

To get k1 from a replicated cache, each node can perform the read operation locally. Whereas, to get k1
from a distributed cache, the node that handles the operation might need to retrieve the key from a
different node in the cluster, which results in an extra network hop and increases the time for the read
operation to complete.

Client intelligence and near-caching

Data Grid uses consistent hashing techniques to make Hot Rod clients topology-aware and avoid extra
network hops, which means read operations have the same performance for distributed caches as they
do for replicated caches.

Hot Rod clients can also use near-caching capabilities to keep frequently accessed entries in local
memory and avoid repeated reads.

TIP

Distributed caches are the best choice for most Data Grid Server deployments. You get the best
possible performance for read and write operations along with elasticity for cluster scaling.

Data guarantees
Because each node contains all entries, replicated caches provide more protection against data loss
than distributed caches. On a cluster of three nodes, two nodes can crash and you do not lose data from
a replicated cache.

In that same scenario, a distributed cache with two owners would lose data. To avoid data loss with
distributed caches, you can increase the number of replicas across the cluster by configuring more
owners for each entry with either the owners attribute declaratively or the numOwners() method

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

17

programmatically.

Rebalancing operations when node failure occurs

Rebalancing operations after node failure can impact performance and capacity. When a node leaves
the cluster, Data Grid replicates cache entries among the remaining members to restore the configured
number of owners. This rebalancing operation is temporary, but the increased cluster traffic has a
negative impact on performance. Performance degradation is greater the more nodes leave. The nodes
left in the cluster might not have enough capacity to keep all data in memory when too many nodes
leave.

Cluster scaling
Data Grid clusters scale horizontally as your workloads demand to more efficiently use compute
resources like CPU and memory. To take the most advantage of this elasticity, you should consider how
scaling the number of nodes up or down affects cache capacity.

For replicated caches, each time a node joins the cluster, it receives a complete copy of the data set.
Replicating all entries to each node increases the time it takes for nodes to join and imposes a limit on
overall capacity. Replicated caches can never exceed the amount of memory available to the host. For
example, if the size of your data set is 10 GB, each node must have at least 10 GB of available memory.

For distributed caches, adding more nodes increases capacity because each member of the cluster
stores only a subset of the data. To store 10 GB of data, you can have eight nodes each with 5 GB of
available memory if the number of owners is two, without taking memory overhead into consideration.
Each additional node that joins the cluster increases the capacity of the distributed cache by 5 GB.

The capacity of a distributed cache is not bound by the amount of memory available to underlying hosts.

Synchronous or asynchronous replication
Data Grid can communicate synchronously or asynchronously when primary owners send replication
requests to backup nodes.

Replication mode Effect on performance

Synchronous Synchronous replication helps to keep your data
consistent but adds latency to cluster traffic that
reduces throughput for cache writes.

Asynchronous Asynchronous replication reduces latency and
increases the speed of write operations but leads to
data inconsistency and provides a lower guarantee
against data loss.

With synchronous replication, Data Grid notifies the originating node when replication requests
complete on backup nodes. Data Grid retries the operation if a replication request fails due to a change
to the cluster topology. When replication requests fail due to other errors, Data Grid throws exceptions
for client applications.

With asynchronous replication, Data Grid does not provide any confirmation for replication requests.
This has the same effect for applications as all requests being successful. On the Data Grid cluster,
however, the primary owner has the correct entry and Data Grid replicates it to backup nodes at some
point in the future. In the case that the primary owner crashes then backup nodes might not have a copy
of the entry or they might have an out of date copy.

Cluster topology changes can also lead to data inconsistency with asynchronous replication. For

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

18

example, consider a Data Grid cluster that has multiple primary owners. Due to a network error or some
other issue, one or more of the primary owners leaves the cluster unexpectedly so Data Grid updates
which nodes are the primary owners for which segments. When this occurs, it is theoretically possible for
some nodes to use the old cluster topology and some nodes to use the updated topology. With
asynchronous communication, this might lead to a short time where Data Grid processes replication
requests from the previous topology and applies older values from write operations. However, Data Grid
can detect node crashes and update cluster topology changes quickly enough that this scenario is not
likely to affect many write operations.

Using asynchronous replication does not guarantee improved throughput for writes, because
asynchronous replication limits the number of backup writes that a node can handle at any time to the
number of possible senders (via JGroups per-sender ordering). Synchronous replication allows nodes to
handle more incoming write operations at the same time, which in certain configurations might
compensate for the fact that individual operations take longer to complete, giving you a higher total
throughput.

When a node sends multiple requests to replicate entries, JGroups sends the messages to the rest of
the nodes in the cluster one at a time, which results in there being only one replication request per
originating node. This means that Data Grid nodes can process, in parallel with other write operations,
one write from each other node in the cluster.

Data Grid uses a JGroups flow control protocol in the cluster transport layer to handle replication
requests to backup nodes. If the number of unconfirmed replication requests exceeds the flow control
threshold, set with the max_credits attribute (4MB by default), write operations are blocked on the
originator node. This applies to both synchronous and asynchronous replication.

Number of segments
Data Grid divides data into segments to distribute data evenly across clusters. Even distribution of
segments avoids overloading individual nodes and makes cluster re-balancing operations more efficient.

Data Grid creates 256 hash space segments per cluster by default. For deployments with up to 20
nodes per cluster, this number of segments is ideal and should not change.

For deployments with greater than 20 nodes per cluster, increasing the number of segments increases
the granularity of your data so Data Grid can distribute it across the cluster more efficiently. Use the
following formula to calculate approximately how many segments you should configure:

Number of segments = 20 * Number of nodes

For example, with a cluster of 30 nodes you should configure 600 segments. Adding more segments for
larger clusters is generally a good idea, though, and this formula should provide you with a rough idea of
the number that is right for your deployment.

Changing the number of segments Data Grid creates requires a full cluster restart. If you use persistent
storage you might also need to use the StoreMigrator utility to change the number of segments,
depending on the cache store implementation.

Changing the number of segments can also lead to data corruption so you should do so with caution and
based on metrics that you gather from benchmarking and performance monitoring.

NOTE

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

19

NOTE

Data Grid always segments data that it stores in memory. When you configure cache
stores, Data Grid does not always segment data in persistent storage.

It depends on the cache store implementation but, whenever possible you should enable
segmentation for a cache store. Segmented cache stores improve Data Grid
performance when iterating over data in persistent storage. For example, with RocksDB
and JDBC-string based cache stores, segmentation reduces the number of objects that
Data Grid needs to retrieve from the database.

2.4. STRATEGIES TO MANAGE STALE DATA

If Data Grid is not the primary source of data, embedded and remote caches are stale by nature. While
planning, benchmarking, and tuning your Data Grid deployment, choose the appropriate level of cache
staleness for your applications.

Choose a level that allows you to make the best use of available RAM and avoid cache misses. If Data
Grid does not have the entry in memory, then calls go to the primary store when applications send read
and write requests.

Cache misses increase the latency of reads and writes but, in many cases, calls to the primary store are
more costly than the performance penalty to Data Grid. One example of this is offloading relational
database management systems (RDBMS) to Data Grid clusters. Deploying Data Grid in this way greatly
reduces the financial cost of operating traditional databases so tolerating a higher degree of stale
entries in caches makes sense.

With Data Grid you can configure maximum idle and lifespan values for entries to maintain an
acceptable level of cache staleness.

Expiration

Controls how long Data Grid keeps entries in a cache and takes effect across clusters.

Higher expiration values mean that entries remain in memory for longer, which increases the likelihood
that read operations return stale values. Lower expiration values mean that there are less stale values in
the cache but the likelihood of cache misses is greater.

To carry out expiration, Data Grid creates a reaper from the existing thread pool. The main performance
consideration with the thread is configuring the right interval between expiration runs. Shorter intervals
perform more frequent expiration but use more threads.

Additionally, with maximum idle expiration, you can control how Data Grid updates timestamp metadata
across clusters. Data Grid sends touch commands to coordinate maximum idle expiration across nodes
synchronously or asynchronously. With synchronous replication, you can choose either "sync" or "async"
touch commands depending on whether you prefer consistency or speed.

2.5. JVM MEMORY MANAGEMENT WITH EVICTION

RAM is a costly resource and usually limited in availability. Data Grid lets you manage memory usage to
give priority to frequently used data by removing entries from memory.

Eviction

Controls the amount of data that Data Grid keeps in memory and takes effect for each node.

Eviction bounds Data Grid caches by:

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

20

Total number of entries, a maximum count.

Amount of JVM memory, a maximum size.

IMPORTANT

Data Grid evicts entries on a per-node basis. Because not all nodes evict the same entries
you should use eviction with persistent storage to avoid data inconsistency.

The impact to performance from eviction comes from the additional processing that Data Grid needs to
calculate when the size of a cache reaches the configured threshold.

Eviction can also slow down read operations. For example, if a read operation retrieves an entry from a
cache store, Data Grid brings that entry into memory and then evicts another entry. This eviction
process can include writing the newly evicted entry to the cache store, if using passivation. When this
happens, the read operation does not return the value until the eviction process is complete.

2.6. JVM HEAP AND OFF-HEAP MEMORY

Data Grid stores cache entries in JVM heap memory by default. You can configure Data Grid to use off-
heap storage, which means that your data occupies native memory outside the managed JVM memory
space.

The following diagram is a simplified illustration of the memory space for a JVM process where Data
Grid is running:

Figure 2.1. JVM memory space

JVM heap memory
The heap is divided into young and old generations that help keep referenced Java objects and other
application data in memory. The GC process reclaims space from unreachable objects, running more
frequently on the young generation memory pool.

When Data Grid stores cache entries in JVM heap memory, GC runs can take longer to complete as you
start adding data to your caches. Because GC is an intensive process, longer and more frequent runs can
degrade application performance.

Off-heap memory
Off-heap memory is native available system memory outside JVM memory management. The JVM
memory space diagram shows the Metaspace memory pool that holds class metadata and is allocated
from native memory. The diagram also represents a section of native memory that holds Data Grid

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

21

cache entries.

Off-heap memory:

Uses less memory per entry.

Improves overall JVM performance by avoiding Garbage Collector (GC) runs.

One disadvantage, however, is that JVM heap dumps do not show entries stored in off-heap memory.

2.6.1. Off-heap data storage

When you add entries to off-heap caches, Data Grid dynamically allocates native memory to your data.

Data Grid hashes the serialized byte[] for each key into buckets that are similar to a standard Java
HashMap. Buckets include address pointers that Data Grid uses to locate entries that you store in off-
heap memory.

IMPORTANT

Even though Data Grid stores cache entries in native memory, run-time operations
require JVM heap representations of those objects. For instance, cache.get() operations
read objects into heap memory before returning. Likewise, state transfer operations hold
subsets of objects in heap memory while they take place.

Object equality

Data Grid determines equality of Java objects in off-heap storage using the serialized byte[]
representation of each object instead of the object instance.

Data consistency

Data Grid uses an array of locks to protect off-heap address spaces. The number of locks is twice the
number of cores and then rounded to the nearest power of two. This ensures that there is an even
distribution of ReadWriteLock instances to prevent write operations from blocking read operations.

2.7. PERSISTENT STORAGE

Configuring Data Grid to interact with a persistent data source greatly impacts performance. This
performance penalty comes from the fact that more traditional data sources are inherently slower than
in-memory caches. Read and write operations will always take longer when the call goes outside the
JVM. Depending on how you use cache stores, though, the reduction of Data Grid performance is offset
by the performance boost that in-memory data provides over accessing data in persistent storage.

Configuring Data Grid deployments with persistent storage also gives other benefits, such as allowing
you to preserve state for graceful cluster shutdowns. You can also overflow data from your caches to
persistent storage and gain capacity beyond what is available in memory only. For example, you can have
ten million entries in total while keeping only two million of them in memory.

Data Grid adds key/value pairs to caches and persistent storage in either write-through mode or write-
behind mode. Because these writing modes have different impacts on performance, you must consider
them when planning a Data Grid deployment.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

22

Writing mode Effect on performance

Write-through Data Grid writes data to the cache and persistent
storage simultaneously, which increases consistency
and avoids data loss that can result from node failure.

The downside to write-through mode is that
synchronous writes add latency and decrease
throughput. Cache.put() calls result in application
threads waiting until writes to persistent storage
complete.

Write-behind Data Grid synchronously writes data to the cache but
then adds the modification to a queue so that the
write to persistent storage happens asynchronously,
which decreases consistency but reduces latency of
write operations.

When the cache store cannot handle the number of
write operations, Data Grid delays new writes until
the number of pending write operations goes below
the configured modification queue size, in a similar
way to write-through. If the store is normally fast
enough but latency spikes occur during bursts of
cache writes, you can increase the modification
queue size to contain the bursts and reduce the
latency.

Passivation

Enabling passivation configures Data Grid to write entries to persistent storage only when it evicts them
from memory. Passivation also implies activation. Performing a read or write on a key brings that key
back into memory and removes it from persistent storage. Removing keys from persistent storage
during activation does not block the read or write operation, but it does increase load on the external
store.

Passivation and activation can potentially result in Data Grid performing multiple calls to persistent
storage for a given entry in the cache. For example, if an entry is not available in memory, Data Grid
brings it back into memory which is one read operation and a delete operation to remove it from
persistent storage. Additionally, if the cache has reached the size limit, then Data Grid performs another
write operation to passivate a newly evicted entry.

Pre-loading caches with data

Another aspect of persistent storage that can affect Data Grid cluster performance is pre-loading
caches. This capability populates your caches with data when Data Grid clusters start so they are "warm"
and can handle reads and writes straight away. Pre-loading caches can slow down Data Grid cluster start
times and result in out of memory exceptions if the amount of data in persistent storage is greater than
the amount of available RAM.

2.8. CLUSTER SECURITY

Protecting your data and preventing network intrusion is one of the most important aspect of
deployment planning. Sensitive customer details leaking to the open internet or data breaches that

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

23

allow hackers to publicly expose confidential information have devastating impacts on business
reputation.

With this in mind you need a robust security strategy to authenticate users and encrypt network
communication. But what are the costs to the performance of your Data Grid deployment? How should
you approach these considerations during planning?

Authentication
The performance cost of validating user credentials depends on the mechanism and protocol. Data Grid
validates credentials once per user over Hot Rod while potentially for every request over HTTP.

Table 2.1. Authentication mechanisms

SASL
mechanism

HTTP mechanism Performance impact

PLAIN BASIC While PLAIN and BASIC are the fastest
authentication mechanisms, they are also the least
secure. You should only ever use PLAIN or BASIC
in combination with TLS/SSL encryption.

DIGEST and
SCRAM

DIGEST For both Hot Rod and HTTP requests, the DIGEST
scheme uses MD5 hashing algorithms to hash
credentials so they are not transmitted in plain text. If
you do not enable TLS/SSL encryption then using
DIGEST is overall less resource intensive than
PLAIN or BASIC with encryption but not as secure
because DIGEST is vulnerable to monkey-in-the-
middle (MITM) attacks and other intrusions.

For Hot Rod endpoints, the SCRAM scheme is
similar to DIGEST with extra levels of protection
that increase security but require additional
processing that take longer to complete.

GSSAPI /
GS2-KRB5

SPNEGO A Kerberos server, Key Distribution Center (KDC),
handles authentication and issues tokens to users.
Data Grid performance benefits from the fact that a
separate system handles user authentication
operations. However these mechanisms can lead to
network bottlenecks depending on the performance
of the KDC service itself.

OAUTHBEAR
ER

BEARER_TOKEN Federated identity providers that implement the
OAuth standard for issuing temporary access tokens
to Data Grid users. Users authenticate with an
identity service instead of directly authenticating to
Data Grid, passing the access token as a request
header instead. Compared to handling authentication
directly, there is a lower performance penalty for
Data Grid to validate user access tokens. Similarly to
a KDC, actual performance implications depend on
the quality of service for the identity provider itself.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

24

EXTERNAL CLIENT_CERT You can provide trust stores to Data Grid Server so
that it authenticates inbound connections by
comparing certificates that clients present against
the trust stores.

If the trust store contains only the signing certificate,
which is typically a Certificate Authority (CA), any
client that presents a certificate signed by the CA
can connect to Data Grid. This offers lower security
and is vulnerable to MITM attacks but is faster than
authenticating the public certificate of each client.

If the trust store contains all client certificates in
addition to the signing certificate, only those clients
that present a signed certificate that is present in the
trust store can connect to Data Grid. In this case
Data Grid compares the common Common Name
(CN) from the certificate that the client presents
with the trust store in addition to verifying that the
certificate is signed, adding more overhead.

SASL
mechanism

HTTP mechanism Performance impact

Encryption
Encrypting cluster transport secures data as it passes between nodes and protects your Data Grid
deployment from MITM attacks. Nodes perform TLS/SSL handshakes when joining the cluster which
carries a slight performance penalty and increased latency with additional round trips. However, once
each node establishes a connection it stays up forever assuming connections never go idle.

For remote caches, Data Grid Server can also encrypt network communication with clients. In terms of
performance the effect of TLS/SSL connections between clients and remote caches is the same.
Negotiating secure connections takes longer and requires some additional work but, once the
connections are established latency from encryption is not a concern for Data Grid performance.

Apart from using TLSv1.3, the only means of offsetting performance loss from encryption are to
configure the JVM on which Data Grid runs. For instance using OpenSSL libraries instead of standard
Java encryption provides more efficient handling with results up to 20% faster.

Authorization
Role-based access control (RBAC) lets you restrict operations on data, offering additional security to
your deployments. RBAC is the best way to implement a policy of least privilege for user access to data
distributed across Data Grid clusters. Data Grid users must have a sufficient level of authorization to
read, create, modify, or remove data from caches.

Adding another layer of security to protect your data will always carry a performance cost. Authorization
adds some latency to operations because Data Grid validates each one against an Access Control List
(ACL) before allowing users to manipulate data. However the overall impact to performance from
authorization is much lower than encryption so the cost to benefit generally balances out.

2.9. CLIENT LISTENERS

Client listeners provide notifications whenever data is added, removed, or modified on your Data Grid
cluster.

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

25

As an example, the following implementation triggers an event whenever temperatures change at a
given location:

Adding listeners to Data Grid clusters adds performance considerations for your deployment.

For embedded caches, listeners use the same CPU cores as Data Grid. Listeners that receive many
events and use a lot of CPU to process those events reduce the CPU available to Data Grid and slow
down all other operations.

For remote caches, Data Grid Server uses an internal process to trigger client notifications. Data Grid
Server sends the event from the primary owner node to the node where the listener is registered before
sending it to the client. Data Grid Server also includes a backpressure mechanism that delays write
operations to caches if client listeners process events too slowly.

Filtering listener events

If listeners are invoked on every write operation, Data Grid can generate a high number of events,
creating network traffic both inside the cluster and to external clients. It all depends on how many clients
are registered with each listener, the type of events they trigger, and how data changes on your Data
Grid cluster.

As an example with remote caches, if you have ten clients registered with a listener that emits 10 events,
Data Grid Server sends 100 events in total across the network.

You can provide Data Grid Server with custom filters to reduce traffic to clients. Filters allow Data Grid
Server to first process events and determine whether to forward them to clients.

Continuous queries and listeners

Continuous queries allow you to receive events for matching entries and offers an alternative to
deploying client listeners and filtering listener events. Of course queries have additional processing
costs that you need to take into account but, if you already index caches and perform queries, using a
continuous query instead of a client listener could be worthwhile.

2.10. INDEXING AND QUERYING CACHES

Querying Data Grid caches lets you analyze and filter data to gain real-time insights. As an example,
consider an online game where players compete against each other in some way to score points. If you

@ClientListener
public class TemperatureChangesListener {
 private String location;

 TemperatureChangesListener(String location) {
 this.location = location;
 }

 @ClientCacheEntryCreated
 public void created(ClientCacheEntryCreatedEvent event) {
 if(event.getKey().equals(location)) {
 cache.getAsync(location)
 .whenComplete((temperature, ex) ->
 System.out.printf(">> Location %s Temperature %s", location, temperature));
 }
 }
}

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

26

wanted to implement a leaderboard with the top ten players at any one time, you could create a query to
find out which players have the most points at any one time and limit the result to a maximum of ten as
follows:

The preceding example illustrates the benefit of using queries because it lets you find ten entries that
match a criteria out of potentially millions of cache entries.

In terms of performance impact, though, you should consider the tradeoffs that come with indexing
operations versus query operations. Configuring Data Grid to index caches results in much faster
queries. Without indexes, queries must scroll through all data in the cache, slowing down results by
orders of magnitude depending on the type and amount of data.

There is a measurable loss of performance for writes when indexing is enabled. However, with some
careful planning and a good understanding of what you want to index, you can avoid the worst effects.

The most effective approach is to configure Data Grid to index only the fields that you need. Whether
you store Plain Old Java Objects (POJOs) or use Protobuf schema, the more fields that you annotate,
the longer it takes Data Grid to build the index. If you have a POJO with five fields but you only need to
query two of those fields, do not configure Data Grid to index the three fields you don’t need.

Data Grid gives you several options to tune indexing operations. For instance Data Grid stores indexes
differently to data, saving indexes to disk instead of memory. Data Grid keeps the index synchronized
with the cache using an index writer, whenever an entry is added, modified or deleted. If you enable
indexing and then observe slower writes, and think indexing causes the loss of performance, you can
keep indexes in a memory buffer for longer periods of time before writing to disk. This results in faster
indexing operations, and helps mitigate degradation of write throughput, but consumes more memory.
For most deployments, though, the default indexing configuration is suitable and does not slow down
writes too much.

In some scenarios it might be sensible not to index your caches, such as for write-heavy caches that you
need to query infrequently and don’t need results in milliseconds. It all depends on what you want to
achieve. Faster queries means faster reads but comes at the expense of slower writes that come with
indexing.

You can improve performance of indexed queries by setting properly the maxResults and the hit-
count-accuracy values.

Additional resources

Querying Data Grid caches

2.10.1. Continuous queries and Data Grid performance

Continuous queries provide a constant stream of updates to applications, which can generate a
significant number of events. Data Grid temporarily allocates memory for each event it generates, which
can result in memory pressure and potentially lead to OutOfMemoryError exceptions, especially for
remote caches. For this reason, you should carefully design your continuous queries to avoid any
performance impact.

Data Grid strongly recommends that you limit the scope of your continuous queries to the smallest

QueryFactory queryFactory = Search.getQueryFactory(playersScores);
Query topTenQuery = queryFactory
 .create("from com.redhat.PlayerScore ORDER BY p.score DESC, p.timestamp ASC")
 .maxResults(10);
List<PlayerScore> topTen = topTenQuery.execute().list();

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

27

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/querying_data_grid_caches/

amount of information that you need. To achieve this, you can use projections and predicates. For
example, the following statement provides results about only a subset of fields that match the criteria
rather than the entire entry:

It is also important to ensure that each ContinuousQueryListener you create can quickly process all
received events without blocking threads. To achieve this, you should avoid any cache operations that
generate events unnecessarily.

2.11. DATA CONSISTENCY

Data that resides on a distributed system is vulnerable to errors that can arise from temporary network
outages, system failures, or just simple human error. These external factors are uncontrollable but can
have serious consequences for quality of your data. The effects of data corruption range from lower
customer satisfaction to costly system reconciliation that results in service unavailability.

Data Grid can carry out ACID (atomic, consistent, isolated, durable) transactions to ensure the cache
state is consistent.

Transactions are a sequence of operations that Data Grid caries out as a single operation. Either all write
operations in a transaction complete successfully or they all fail. In this way, the transaction either
modifies the cache state in a consistent way, providing a history of reads and writes, or it does not
modify cache state at all.

The main performance concern for enabling transactions is finding the balance between having a more
consistent data set and increasing latency that degrades write throughput.

Write locks with transactions

Configuring the wrong locking mode can negatively affect the performance of your transactions. The
right locking mode depends on whether your Data Grid deployment has a high or low rate of contention
for keys.

For workloads with low rates of contention, where two or more transactions are not likely to write to the
same key simultaneously, optimistic locking offers the best performance.

Data Grid acquires write locks on keys before transactions commit. If there is contention for keys, the
time it takes to acquire locks can delay commits. Additionally, if Data Grid detects conflicting writes,
then it rolls the transaction back and the application must retry it, increasing latency.

For workloads with high rates of contention, pessimistic locking provides the best performance.

Data Grid acquires write locks on keys when applications access them to ensure no other transaction
can modify the keys. Transaction commits complete in a single phase because keys are already locked.
Pessimistic locking with multiple key transactions results in Data Grid locking keys for longer periods of
time, which can decrease write throughput.

Read isolation

Isolation levels do not impact Data Grid performance considerations except for optimistic locking with
REPEATABLE_READ. With this combination, Data Grid checks for write skews to detect conflicts,
which can result in longer transaction commit phases. Data Grid also uses version metadata to detect
conflicting write operations, which can increase the amount of memory per entry and generate
additional network traffic for the cluster.

SELECT field1, field2 FROM Entity WHERE x AND y

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

28

Transaction recovery and partition handling

If networks become unstable due to partitions or other issues, Data Grid can mark transactions as "in-
doubt". When this happens Data Grid retains write locks that it acquires until the network stabilizes and
the cluster returns to a healthy operational state. In some cases it might be necessary for a system
administrator to manually complete any "in-doubt" transactions.

2.12. NETWORK PARTITIONS AND DEGRADED CLUSTERS

Data Grid clusters can encounter split brain scenarios where subsets of nodes in the cluster become
isolated from each other and communication between nodes becomes disjointed. When this happens,
Data Grid caches in minority partitions enter DEGRADED mode while caches in majority partitions
remain available.

NOTE

Garbage collection (GC) pauses are the most common cause of network partitions. When
GC pauses result in nodes becoming unresponsive, Data Grid clusters can start operating
in a split brain network.

Rather than dealing with network partitions, try to avoid GC pauses by controlling JVM
heap usage and by using a modern, low-pause GC implementation such as Shenandoah
with OpenJDK.

CAP theorem and partition handling strategies

CAP theorem expresses a limitation of distributed, key/value data stores, such as Data Grid. When
network partition events happen, you must choose between consistency or availability while Data Grid
heals the partition and resolves any conflicting entries.

Availability

Allow read and write operations.

Consistency

Deny read and write operations.

Data Grid can also allow reads only while joining clusters back together. This strategy is a more balanced
option of consistency by denying writes to entries and availability by allowing applications to access
(potentially stale) data.

Removing partitions

As part of the process of joining the cluster back together and returning to normal operations, Data Grid
resolves conflicting entries according to a merge policy.

By default Data Grid does not attempt to resolve conflicts on merge which means clusters return to a
healthy state sooner and there is no performance penalty beyond normal cluster rebalancing. However,
in this case, data in the cache is much more likely to be inconsistent.

If you configure a merge policy then it takes much longer for Data Grid to heal partitions. Configuring a
merge policy results in Data Grid retrieving every version of an entry from each cache and then resolving
any conflicts as follows:

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

29

PREFERRED_ALWAYS Data Grid finds the value that exists on the majority
of nodes in the cluster and applies it, which can
restore out of date values.

PREFERRED_NON_NULL Data Grid applies the first non-null value that it finds
on the cluster, which can restore out of date values.

REMOVE_ALL Data Grid removes any entries that have conflicting
values.

2.12.1. Garbage collection and partition handling

Long garbage collection (GC) times can increase the amount of time it takes Data Grid to detect
network partitions. In some cases, GC can cause Data Grid to exceed the maximum time to detect a
split.

Additionally, when merging partitions after a split, Data Grid attempts to confirm all nodes are present in
the cluster. Because no timeout or upper bound applies to the response time from nodes, the operation
to merge the cluster view can be delayed. This can result from network issues as well as long GC times.

Another scenario in which GC can impact performance through partition handling is when GC suspends
the JVM, causing one or more nodes to leave the cluster. When this occurs, and suspended nodes
resume after GC completes, the nodes can have out of date or conflicting cluster topologies.

If a merge policy is configured, Data Grid attempts to resolve conflicts before merging the nodes.
However, the merge policy is used only if the nodes have incompatible consistent hashes. Two
consistent hashes are compatible if they have at least one common owner for each segment or
incompatible if they have no common owner for at least one segment.

When nodes have old, but compatible, consistent hashes, Data Grid ignores the out of date cluster
topology and does not attempt to resolve conflicts. For example, if one node in the cluster is suspended
due to garbage collection (GC), other nodes in the cluster remove it from the consistent hash and
replace it with new owner nodes. If numOwners > 1, the old consistent hash and the new consistent hash
have a common owner for every key, which makes them compatible and allows Data Grid to skip the
conflict resolution process.

2.13. CLUSTER BACKUPS AND DISASTER RECOVERY

Data Grid clusters that perform cross-site replication are typically "symmetrical" in terms of overall CPU
and memory allocation. When you take cross-site replication into account for sizing, the primary concern
is the impact of state transfer operations between clusters.

For example, a Data Grid cluster in NYC goes offline and clients switch to a Data Grid cluster in LON.
When the cluster in NYC comes back online, state transfer occurs from LON to NYC. This operation
prevents stale reads from clients but has a performance penalty for the cluster that receives state
transfer.

You can distribute the increase in processing that state transfer operations require across the cluster.
However the performance impact from state transfer operations depends entirely on the environment
and factors such as the type and size of the data set.

Conflict resolution for Active/Active deployments
Data Grid detects conflicts with concurrent write operations when multiple sites handle client requests,
known as an Active/Active site configuration.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

30

The following example illustrates how concurrent writes result in a conflicting entry for Data Grid
clusters running in the LON and NYC data centers:

 LON NYC

k1=(n/a) 0,0 0,0

k1=2 1,0 --> 1,0 k1=2

k1=3 1,1 <-- 1,1 k1=3

k1=5 2,1 1,2 k1=8

 --> 2,1 (conflict)
(conflict) 1,2 <--

In an Active/Active site configuration, you should never use the synchronous backup strategy because
concurrent writes result in deadlocks and you lose data. With the asynchronous backup strategy
(strategy=async), Data Grid gives you a choice cross-site merge policies for handling concurrent writes.

In terms of performance, merge policies that Data Grid uses to resolve conflicts do require additional
computation but generally do not incur a significant penalty. For instance the default cross-site merge
policy uses a lexicographic comparison, or "string comparison", that only takes a couple of nanoseconds
to complete.

Data Grid also provides a XSiteEntryMergePolicy SPI for cross-site merge policies. If you do configure
Data Grid to resolve conflicts with a custom implementation you should always monitor performance to
gauge any adverse effects.

NOTE

The XSiteEntryMergePolicy SPI invokes all merge policies in the non-blocking thread
pool. If you implement a blocking custom merge policy, it can exhaust the thread pool.

You should delegate complex or blocking policies to a different thread and your
implementation should return a CompletionStage that completes when the merge policy
is done in the other thread.

2.14. CODE EXECUTION AND DATA PROCESSING

One of the benefits of distributed caching is that you can leverage compute resources from each host
to perform large scale data processing more efficiently. By executing your processing logic directly on
Data Grid you spread the workload across multiple JVM instances. Your code also runs in the same
memory space where Data Grid stores your data, meaning that you can iterate over entries much faster.

In terms of performance impact to your Data Grid deployment, that entirely depends on your code
execution. More complex processing operations have higher performance penalties so you should
approach running any code on Data Grid clusters with careful planning. Start out by testing your code
and performing multiple execution runs on a smaller, sample data set. After you gather some metrics you
can start identifying optimizations and understanding what performance implications of the code you’re
running.

One definite consideration is that long running processes can start having a negative impact on normal
read and write operations. So it is imperative that you monitor your deployment over time and
continually assess performance.

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

31

Embedded caches
With embedded caches, Data Grid provides two APIs that let you execute code in the same memory
space as your data.

ClusterExecutor API

Lets you perform any operation with the Cache Manager, including iterating over the entries of one
or more caches, and gives you processing based on Data Grid nodes.

CacheStream API

Lets you perform operations on collections and gives you processing based on data.

If you want to run an operation on a single node, a group of nodes, or all nodes in a certain geographic
region, then you should use clustered execution. If you want to run an operation that guarantees a
correct result for your entire data set, then using distributed streams is a more effective option.

Cluster execution

CacheStream

Additional resources

org.infinispan.manager.ClusterExecutor

org.infinispan.CacheStream

Remote caches
For remote caches, Data Grid provides a ServerTask API that lets you register custom Java
implementations with Data Grid Server and execute tasks programmatically by calling the execute()
method over Hot Rod or by using the Data Grid Command Line Interface (CLI). You can execute tasks
on one Data Grid Server instance only or all server instances in the cluster.

2.15. CLIENT TRAFFIC

When sizing remote Data Grid clusters, you need to calculate the number and size of entries but also the
amount of client traffic. Data Grid needs enough RAM to store your data and enough CPU to handle
client read and write requests in a timely manner.

There are many different factors that affect latency and determine response times. For example, the

ClusterExecutor clusterExecutor = cacheManager.executor();
clusterExecutor.singleNodeSubmission().filterTargets(policy);
for (int i = 0; i < invocations; ++i) {
 clusterExecutor.submitConsumer((cacheManager) -> {
 TransportConfiguration tc =
 cacheManager.getCacheManagerConfiguration().transport();
 return tc.siteId() + tc.rackId() + tc.machineId();
 }, triConsumer).get(10, TimeUnit.SECONDS);
}

Map<Object, String> jbossValues =
cache.entrySet().stream()
 .filter(e -> e.getValue().contains("JBoss"))
 .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

32

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/manager/ClusterExecutor.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/CacheStream.html

size of the key/value pair affects the response time for remote caches. Other factors that affect remote
cache performance include the number of requests per second that the cluster receives, the number of
clients, as well as the ratio of read operations to write operations.

CHAPTER 2. DATA GRID DEPLOYMENT PLANNING

33

CHAPTER 3. BENCHMARKING DATA GRID ON OPENSHIFT
For Data Grid clusters running on OpenShift, Red Hat recommends using Hyperfoil to measure
performance. Hyperfoil is a benchmarking framework that provides accurate performance results for
distributed services.

3.1. BENCHMARKING DATA GRID

After you set up and configure your deployment, start benchmarking your Data Grid cluster to analyze
and measure performance. Benchmarking shows you where limits exist so you can adjust your
environment and tune your Data Grid configuration to get the best performance, which means achieving
the lowest latency and highest throughput possible.

It is worth noting that optimal performance is a continual process, not an ultimate goal. When your
benchmark tests show that your Data Grid deployment has reached a desired level of performance, you
cannot expect those results to be fixed or always valid.

3.2. INSTALLING HYPERFOIL

Set up Hyperfoil on Red Hat OpenShift by creating an operator subscription and downloading the
Hyperfoil distribution that includes the command line interface (CLI).

Procedure

1. Create a Hyperfoil Operator subscription through the OperatorHub in the OpenShift Web
Console.

NOTE

Hyperfoil Operator is available as a Community Operator.

Red Hat does not certify the Hyperfoil Operator and does not provide support
for it in combination with Data Grid. When you install the Hyperfoil Operator you
are prompted to acknowledge a warning about the community version before
you can continue.

2. Download the latest Hyperfoil version from the Hyperfoil release page.

Additional resources

hyperfoil.io

Installing Hyperfoil on OpenShift

3.3. CREATING A HYPERFOIL CONTROLLER

Instantiate a Hyperfoil Controller on Red Hat OpenShift so you can upload and run benchmark tests with
the Hyperfoil Command Line Interface (CLI).

Prerequisites

Create a Hyperfoil Operator subscription.

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

34

https://github.com/Hyperfoil/Hyperfoil/releases/
https://hyperfoil.io
https://hyperfoil.io/userguide/installation/k8s.html

Procedure

1. Define hyperfoil-controller.yaml.

2. Apply the Hyperfoil Controller.

3. Retrieve the route that connects you to the Hyperfoil CLI.

3.4. RUNNING HYPERFOIL BENCHMARKS

Run benchmark tests with Hyperfoil to collect performance data for Data Grid clusters.

Prerequisites

Create a Hyperfoil Operator subscription.

Instantiate a Hyperfoil Controller on Red Hat OpenShift.

Procedure

1. Create a benchmark test.

$ cat > hyperfoil-controller.yaml<<EOF
apiVersion: hyperfoil.io/v1alpha2
kind: Hyperfoil
metadata:
 name: hyperfoil
spec:
 version: latest
EOF

$ oc apply -f hyperfoil-controller.yaml

$ oc get routes

NAME HOST/PORT
hyperfoil hyperfoil-benchmark.apps.example.net

$ cat > hyperfoil-benchmark.yaml<<EOF
name: hotrod-benchmark
hotrod:
 # Replace <USERNAME>:<PASSWORD> with your Data Grid credentials.
 # Replace <SERVICE_HOSTNAME>:<PORT> with the host name and port for Data Grid.
 - uri: hotrod://<USERNAME>:<PASSWORD>@<SERVICE_HOSTNAME>:<PORT>
 caches:
 # Replace <CACHE-NAME> with the name of your Data Grid cache.
 - <CACHE-NAME>
agents:
 agent-1:
 agent-2:
 agent-3:
 agent-4:
 agent-5:
phases:

CHAPTER 3. BENCHMARKING DATA GRID ON OPENSHIFT

35

2. Open the route in any browser to access the Hyperfoil CLI.

3. Upload the benchmark test.

a. Run the upload command.

b. Click Select benchmark file and then navigate to the benchmark test on your file system
and upload it.

4. Run the benchmark test.

- rampupPut:
 increasingRate:
 duration: 10s
 initialUsersPerSec: 100
 targetUsersPerSec: 200
 maxSessions: 300
 scenario: &put
 - putData:
 - randomInt: cacheKey <- 1 .. 40000
 - randomUUID: cacheValue
 - hotrodRequest:
 # Replace <CACHE-NAME> with the name of your Data Grid cache.
 put: <CACHE-NAME>
 key: key-${cacheKey}
 value: value-${cacheValue}
- rampupGet:
 increasingRate:
 duration: 10s
 initialUsersPerSec: 100
 targetUsersPerSec: 200
 maxSessions: 300
 scenario: &get
 - getData:
 - randomInt: cacheKey <- 1 .. 40000
 - hotrodRequest:
 # Replace <CACHE-NAME> with the name of your Data Grid cache.
 get: <CACHE-NAME>
 key: key-${cacheKey}
- doPut:
 constantRate:
 startAfter: rampupPut
 duration: 5m
 usersPerSec: 10000
 maxSessions: 11000
 scenario: *put
- doGet:
 constantRate:
 startAfter: rampupGet
 duration: 5m
 usersPerSec: 40000
 maxSessions: 41000
 scenario: *get
EOF

[hyperfoil]$ upload

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

36

5. Get results of the benchmark test.

3.5. HYPERFOIL BENCHMARK RESULTS

Hyperfoil prints results of the benchmarking run in table format with the stats command.

Table 3.1. Column descriptions

Column Description Value

PHASE For each run, Hyperfoil makes
GET requests and PUT requests
to the Data Grid cluster in two
phases.

Either doGet or doPut

METRIC During both phases of the run,
Hyperfoil collects metrics for each
GET and PUT request.

Either getData or putData

THROUGHPUT Captures the total number of
requests per second.

Number

REQUESTS Captures the total number of
operations during each phase of
the run.

Number

MEAN Captures the average time for
GET or PUT operations to
complete.

Time in milliseconds (ms)

p50 Records the amount of time that
it takes for 50 percent of requests
to complete.

Time in milliseconds (ms)

p90 Records the amount of time that
it takes for 90 percent of requests
to complete.

Time in milliseconds (ms)

p99 Records the amount of time that
it takes for 99 percent of requests
to complete.

Time in milliseconds (ms)

[hyperfoil]$ run hotrod-benchmark

[hyperfoil]$ stats

[hyperfoil]$ stats
Total stats from run <run_id>
PHASE METRIC THROUGHPUT REQUESTS MEAN p50 p90 p99 p99.9 p99.99 TIMEOUTS
ERRORS BLOCKED

CHAPTER 3. BENCHMARKING DATA GRID ON OPENSHIFT

37

p99.9 Records the amount of time that
it takes for 99.9 percent of
requests to complete.

Time in milliseconds (ms)

p99.99 Records the amount of time that
it takes for 99.99 percent of
requests to complete.

Time in milliseconds (ms)

TIMEOUTS Captures the total number of
timeouts that occurred for
operations during each phase of
the run.

Number

ERRORS Captures the total number of
errors that occurred during each
phase of the run.

Number

BLOCKED Captures the total number of
operations that were blocked or
could not complete.

Number

Column Description Value

Red Hat Data Grid 8.4 Data Grid Performance and Sizing Guide

38

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DATA GRID DEPLOYMENT MODELS AND USE CASES
	1.1. DATA GRID DEPLOYMENT MODELS
	1.1.1. Platforms and automation tooling

	1.2. IN-LINE CACHING
	1.3. SIDE CACHING
	1.4. DISTRIBUTED MEMORY
	1.5. SESSION EXTERNALIZATION
	1.6. CROSS-SITE REPLICATION

	CHAPTER 2. DATA GRID DEPLOYMENT PLANNING
	2.1. PERFORMANCE METRIC CONSIDERATIONS
	2.2. HOW TO CALCULATE THE SIZE OF YOUR DATA SET
	Data set size in distributed caches
	2.2.1. Memory overhead
	2.2.2. JVM heap space allocation

	2.3. CLUSTERED CACHE MODES
	Reads:Writes
	Data guarantees
	Cluster scaling
	Synchronous or asynchronous replication
	Number of segments

	2.4. STRATEGIES TO MANAGE STALE DATA
	2.5. JVM MEMORY MANAGEMENT WITH EVICTION
	2.6. JVM HEAP AND OFF-HEAP MEMORY
	JVM heap memory
	Off-heap memory
	2.6.1. Off-heap data storage

	2.7. PERSISTENT STORAGE
	2.8. CLUSTER SECURITY
	Authentication
	Encryption
	Authorization

	2.9. CLIENT LISTENERS
	2.10. INDEXING AND QUERYING CACHES
	2.10.1. Continuous queries and Data Grid performance

	2.11. DATA CONSISTENCY
	2.12. NETWORK PARTITIONS AND DEGRADED CLUSTERS
	2.12.1. Garbage collection and partition handling

	2.13. CLUSTER BACKUPS AND DISASTER RECOVERY
	Conflict resolution for Active/Active deployments

	2.14. CODE EXECUTION AND DATA PROCESSING
	Embedded caches
	Remote caches

	2.15. CLIENT TRAFFIC

	CHAPTER 3. BENCHMARKING DATA GRID ON OPENSHIFT
	3.1. BENCHMARKING DATA GRID
	3.2. INSTALLING HYPERFOIL
	3.3. CREATING A HYPERFOIL CONTROLLER
	3.4. RUNNING HYPERFOIL BENCHMARKS
	3.5. HYPERFOIL BENCHMARK RESULTS

