
Red Hat Data Grid 8.4

Data Grid Cross-Site Replication

Back up data between Data Grid clusters

Last Updated: 2024-04-19

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

Back up data between Data Grid clusters

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Data Grid can form global clusters to replicate data across geographic locations. This guide explains
how to configure backup locations for caches and perform cross-site operations.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT DATA GRID

DATA GRID DOCUMENTATION

DATA GRID DOWNLOADS

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. CROSS-SITE REPLICATION
1.1. CROSS-SITE REPLICATION
1.2. RELAY NODES
1.3. DATA GRID CACHE BACKUPS
1.4. BACKUP STRATEGIES

Synchronous strategy
Asynchronous strategy
Synchronous vs asynchronous backups

1.5. AUTOMATIC OFFLINE PARAMETERS FOR BACKUP LOCATIONS
Backup timeouts
Number of failures
Time to wait

1.6. STATE TRANSFER
Automatic state transfer

1.7. CLIENT CONNECTIONS ACROSS SITES
Active/Passive
Active/Active
Backup strategies and client connections
1.7.1. Concurrent writes and conflicting entries

Backup strategies
Cross-site merge policies

1.8. EXPIRATION WITH CROSS-SITE REPLICATION

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION
2.1. CONFIGURING CLUSTER TRANSPORT FOR CROSS-SITE REPLICATION

JGroups RELAY2 stacks
2.1.1. Custom JGroups RELAY2 stacks

2.2. ADDING BACKUP LOCATIONS TO CACHES
Backup configuration

2.3. BACKING UP TO CACHES WITH DIFFERENT NAMES
Backup for configuration

2.4. CONFIGURING CROSS-SITE STATE TRANSFER
State transfer configuration

2.5. CONFIGURING CONFLICT RESOLUTION ALGORITHMS
Data Grid algorithms
Custom conflict resolution algorithms

2.6. CLEANING TOMBSTONES FOR ASYNCHRONOUS BACKUPS
Tombstone cleanup task configuration

2.7. VERIFYING CROSS-SITE VIEWS
2.8. CONFIGURING HOT ROD CLIENTS FOR CROSS-SITE REPLICATION

CHAPTER 3. PERFORMING CROSS-SITE OPERATIONS WITH THE CLI
3.1. BRINGING BACKUP LOCATIONS OFFLINE AND ONLINE
3.2. CONFIGURING CROSS-SITE STATE TRANSFER MODES
3.3. PUSHING STATE TO BACKUP LOCATIONS

4

5

6

7

8
8
8
9
9
9

10
10
10
10
11

12
13
14
14
14
15
15
16
17
17
17

18
18
18
19
19

20
21
21
22
23
24
24
25
26
26
27
27

29
29
29
30

Table of Contents

1

. .

. .

CHAPTER 4. PERFORMING CROSS-SITE OPERATIONS WITH THE REST API
4.1. GETTING STATUS OF ALL BACKUP LOCATIONS
4.2. GETTING STATUS OF SPECIFIC BACKUP LOCATIONS
4.3. TAKING BACKUP LOCATIONS OFFLINE
4.4. BRINGING BACKUP LOCATIONS ONLINE
4.5. PUSHING STATE TO BACKUP LOCATIONS
4.6. CANCELING STATE TRANSFER
4.7. GETTING STATE TRANSFER STATUS
4.8. CLEARING STATE TRANSFER STATUS
4.9. MODIFYING TAKE OFFLINE CONDITIONS
4.10. CANCELING STATE TRANSFER FROM RECEIVING SITES
4.11. GETTING STATUS OF BACKUP LOCATIONS
4.12. TAKING BACKUP LOCATIONS OFFLINE
4.13. BRINGING BACKUP LOCATIONS ONLINE
4.14. RETRIEVING THE STATE TRANSFER MODE
4.15. SETTING THE STATE TRANSFER MODE
4.16. STARTING STATE TRANSFER
4.17. CANCELING STATE TRANSFER

CHAPTER 5. PERFORMING CROSS-SITE OPERATIONS VIA JMX
5.1. REGISTERING JMX MBEANS

JMX configuration
5.2. PERFORMING CROSS-SITE OPERATIONS WITH JMX CLIENTS
5.3. JMX MBEANS FOR CROSS-SITE REPLICATION

31
31
31
32
32
32
32
32
33
33
34
34
35
35
35
35
35
35

36
36
36
37
37

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

2

Table of Contents

3

RED HAT DATA GRID
Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure

Flexibility to store different objects as key-value pairs.

Grid-based data storage

Designed to distribute and replicate data across clusters.

Elastic scaling

Dynamically adjust the number of nodes to meet demand without service disruption.

Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

4

DATA GRID DOCUMENTATION
Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.4 Documentation

Data Grid 8.4 Component Details

Supported Configurations for Data Grid 8.4

Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

DATA GRID DOCUMENTATION

5

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

6

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. CROSS-SITE REPLICATION
This section explains Data Grid cross-site replication capabilities, including details about relay nodes,
state transfer, and client connections for remote caches.

1.1. CROSS-SITE REPLICATION

Data Grid can back up data between clusters running in geographically dispersed data centers and
across different cloud providers. Cross-site replication provides Data Grid with a global cluster view and:

Guarantees service continuity in the event of outages or disasters.

Presents client applications with a single point of access to data in globally distributed caches.

Figure 1.1. Cross-site replication

1.2. RELAY NODES

Relay nodes are the nodes in Data Grid clusters that are responsible for sending and receiving requests
from backup locations.

If a node is not a relay node, it must forward backup requests to a local relay node. Only relay nodes can
send requests to backup locations.

For optimal performance, you should configure all nodes as relay nodes. This increases the speed of
backup requests because each node in the cluster can backup to remote sites directly without having to
forward backup requests to local relay nodes.

NOTE

Diagrams in this document illustrate Data Grid clusters with one relay node because this
is the default for the JGroups RELAY2 protocol. Likewise, a single relay node is easier to
illustrate because each relay node in a cluster communicates with each relay node in the
remote cluster.

NOTE

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

8

NOTE

JGroups configuration refers to relay nodes as "site master" nodes. Data Grid uses relay
node instead because it is more descriptive and presents a more intuitive choice for our
users.

1.3. DATA GRID CACHE BACKUPS

Data Grid caches include a backups configuration that let you name remote sites as backup locations.

For example, the following diagram shows three caches, "customers", "eu-orders", and "us-orders":

relay
node

In LON, "customers" names NYC as a backup location.

In NYC, "customers" names LON as a backup location.

"eu-orders" and "us-orders" do not have backups and are local to the respective cluster.

1.4. BACKUP STRATEGIES

Data Grid replicates data between clusters at the same time that writes to caches occur. For example, if
a client writes "k1" to LON, Data Grid backs up "k1" to NYC at the same time.

To back up data to a different cluster, Data Grid can use either a synchronous or asynchronous strategy.

Synchronous strategy
When Data Grid replicates data to backup locations, it writes to the cache on the local cluster and the
cache on the remote cluster concurrently. With the synchronous strategy, Data Grid waits for both write
operations to complete before returning.

You can control how Data Grid handles writes to the cache on the local cluster if backup operations fail.
Data Grid can do the following:

Ignore the failed backup and silently continue the write to the local cluster.

Log a warning message or throw an exception and continue the write to the local cluster.

Handle failed backup operations with custom logic.

Synchronous backups also support two-phase commits with caches that participate in optimistic
transactions. The first phase of the backup acquires a lock. The second phase commits the modification.

IMPORTANT

CHAPTER 1. CROSS-SITE REPLICATION

9

IMPORTANT

Two-phase commit with cross-site replication has a significant performance impact
because it requires two round-trips across the network.

Asynchronous strategy
When Data Grid replicates data to backup locations, it does not wait until the operation completes
before writing to the local cache.

Asynchronous backup operations and writes to the local cache are independent of each other. If backup
operations fail, write operations to the local cache continue and no exceptions occur. When this happens
Data Grid also retries the write operation until the remote cluster disconnects from the cross-site view.

Synchronous vs asynchronous backups
Synchronous backups offer the strongest guarantee of data consistency across sites. If strategy=sync,
when cache.put() calls return you know the value is up to date in the local cache and in the backup
locations.

The trade-off for this consistency is performance. Synchronous backups have much greater latency in
comparison to asynchronous backups.

Asynchronous backups, on the other hand, do not add latency to client requests so they have no
performance impact. However, if strategy=async, when cache.put() calls return you cannot be sure of
that the value in the backup location is the same as in the local cache.

1.5. AUTOMATIC OFFLINE PARAMETERS FOR BACKUP LOCATIONS

Operations to replicate data across clusters are resource intensive, using excessive RAM and CPU. To
avoid wasting resources Data Grid can take backup locations offline when they stop accepting requests
after a specific period of time.

Data Grid takes remote sites offline based on the number of failed sequential requests and the time
interval since the first failure. Requests are failed when the target cluster does not have any nodes in the
cross-site view (JGroups bridge) or when a timeout expires before the target cluster acknowledges the
request.

Backup timeouts
Backup configurations include timeout values for operations to replicate data between clusters. If
operations do not complete before the timeout expires, Data Grid records them as failures.

In the following example, operations to replicate data to NYC are recorded as failures if they do not
complete after 10 seconds:

XML

JSON

<distributed-cache>
 <backups>
 <backup site="NYC"
 strategy="ASYNC"
 timeout="10000" />
 </backups>
</distributed-cache>

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

10

YAML

Number of failures
You can specify the number of consecutive failures that can occur before backup locations go offline.

In the following example, if a cluster attempts to replicate data to NYC and five consecutive operations
fail, NYC automatically goes offline:

XML

JSON

{
 "distributed-cache": {
 "backups": {
 "NYC" : {
 "backup" : {
 "strategy" : "ASYNC",
 "timeout" : "10000"
 }
 }
 }
 }
}

distributedCache:
 backups:
 NYC:
 backup:
 strategy: "ASYNC"
 timeout: "10000"

<distributed-cache>
 <backups>
 <backup site="NYC"
 strategy="ASYNC"
 timeout="10000">
 <take-offline after-failures="5"/>
 </backup>
 </backups>
</distributed-cache>

{
 "distributed-cache": {
 "backups": {
 "NYC" : {
 "backup" : {
 "strategy" : "ASYNC",
 "timeout" : "10000",
 "take-offline" : {
 "after-failures" : "5"
 }
 }

CHAPTER 1. CROSS-SITE REPLICATION

11

YAML

Time to wait
You can also specify how long to wait before taking sites offline when backup operations fail. If a backup
request succeeds before the wait time runs out, Data Grid does not take the site offline.

One or two minutes is generally a suitable time to wait before automatically taking backup locations
offline. If the wait period is too short then backup locations go offline too soon. You then need to bring
clusters back online and perform state transfer operations to ensure data is in sync between the
clusters.

A negative or zero value for the number of failures is equivalent to a value of 1. Data Grid uses only a
minimum time to wait to take backup locations offline after a failure occurs, for example:

In the following example, if a cluster attempts to replicate data to NYC and there are more than five
consecutive failures and 15 seconds elapse after the first failed operation, NYC automatically goes
offline:

XML

JSON

 }
 }
 }
}

distributedCache:
 backups:
 NYC:
 backup:
 strategy: "ASYNC"
 timeout: "10000"
 takeOffline:
 afterFailures: "5"

<take-offline after-failures="-1"
 min-wait="10000"/>

<distributed-cache>
 <backups>
 <backup site="NYC"
 strategy="ASYNC"
 timeout="10000">
 <take-offline after-failures="5" min-wait="15000"/>
 </backup>
 </backups>
</distributed-cache>

{
 "distributed-cache": {
 "backups": {
 "NYC" : {

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

12

YAML

1.6. STATE TRANSFER

State transfer is an administrative operation that synchronizes data between sites.

For example, LON goes offline and NYC starts handling client requests. When you bring LON back
online, the Data Grid cluster in LON does not have the same data as the cluster in NYC.

To ensure the data is consistent between LON and NYC, you can push state from NYC to LON.

State transfer is bidirectional. For example, you can push state from NYC to LON or from LON
to NYC.

Pushing state to offline sites brings them back online.

State transfer overwrites only data that exists on both sites, the originating site and the
receiving site. Data Grid does not delete data.
For example, "k2" exists on LON and NYC. "k2" is removed from NYC while LON is offline.
When you bring LON back online, "k2" still exists at that location. If you push state from NYC to
LON, the transfer does not affect "k2" on LON.

TIP

To ensure contents of the cache are identical after state transfer, remove all data from the cache on the
receiving site before pushing state.

Use the clear() method or the clearcache command from the CLI.

State transfer does not overwrite updates to data that occur after you initiate the push.

For example, "k1,v1" exists on LON and NYC. LON goes offline so you push state transfer to

 "backup" : {
 "strategy" : "ASYNC",
 "timeout" : "10000",
 "take-offline" : {
 "after-failures" : "5",
 "min-wait" : "15000"
 }
 }
 }
 }
 }
}

distributedCache:
 backups:
 NYC:
 backup:
 strategy: "ASYNC"
 timeout: "10000"
 takeOffline:
 afterFailures: "5"
 minWait: "15000"

CHAPTER 1. CROSS-SITE REPLICATION

13

For example, "k1,v1" exists on LON and NYC. LON goes offline so you push state transfer to
LON from NYC, which brings LON back online. Before state transfer completes, a client puts
"k1,v2" on LON.

In this case the state transfer from NYC does not overwrite "k1,v2" because that modification
happened after you initiated the push.

Automatic state transfer
By default, you must manually perform cross-site state transfer operations with the CLI or via JMX or
REST.

However, when using the asynchronous backup strategy, Data Grid can automatically perform cross-site
state transfer operations.

When a backup location comes back online, and the network connection is stable, Data Grid initiates
bidirectional state transfer between backup locations. For example, Data Grid simultaneously transfers
state from LON to NYC and NYC to LON.

NOTE

To avoid temporary network disconnects triggering state transfer operations, there are
two conditions that backup locations must meet to go offline. The status of a backup
location must be offline and it must not be included in the cross-site view with JGroups
RELAY2.

The automatic state transfer is also triggered when a cache starts.

In the scenario where LON is starting up, after a cache starts, it sends a notification to NYC. Following
this, NYC starts a unidirectional state transfer to LON.

Additional resources

org.infinispan.Cache.clear()

Using the Data Grid Command Line Interface

Data Grid REST API

1.7. CLIENT CONNECTIONS ACROSS SITES

Clients can write to Data Grid clusters in either an Active/Passive or Active/Active configuration.

Active/Passive
The following diagram illustrates Active/Passive where Data Grid handles client requests from one site
only:

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

14

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/Cache.html#clear()
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/using_the_data_grid_command_line_interface/
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.4/html-single/data_grid_rest_api/

In the preceding image:

1. Client connects to the Data Grid cluster at LON.

2. Client writes "k1" to the cache.

3. The relay node at LON, "n1", sends the request to replicate "k1" to the relay node at NYC, "nA".

With Active/Passive, NYC provides data redundancy. If the Data Grid cluster at LON goes offline for
any reason, clients can start sending requests to NYC. When you bring LON back online you can
synchronize data with NYC and then switch clients back to LON.

Active/Active
The following diagram illustrates Active/Active where Data Grid handles client requests at two sites:

In the preceding image:

1. Client A connects to the Data Grid cluster at LON.

2. Client A writes "k1" to the cache.

3. Client B connects to the Data Grid cluster at NYC.

4. Client B writes "k2" to the cache.

5. Relay nodes at LON and NYC send requests so that "k1" is replicated to NYC and "k2" is
replicated to LON.

With Active/Active both NYC and LON replicate data to remote caches while handling client requests.
If either NYC or LON go offline, clients can start sending requests to the online site. You can then bring
offline sites back online, push state to synchronize data, and switch clients as required.

Backup strategies and client connections

CHAPTER 1. CROSS-SITE REPLICATION

15

IMPORTANT

An asynchronous backup strategy (strategy=async) is recommended with Active/Active
configurations.

If multiple clients attempt to write to the same entry concurrently, and the backup strategy is
synchronous (strategy=sync), then deadlocks occur. However you can use the synchronous backup
strategy with an Active/Passive configuration if both sites access different data sets, in which case there
is no risk of deadlocks from concurrent writes.

1.7.1. Concurrent writes and conflicting entries

Conflicting entries can occur with Active/Active site configurations if clients write to the same entries at
the same time but at different sites.

For example, client A writes to "k1" in LON at the same time that client B writes to "k1" in NYC. In this
case, "k1" has a different value in LON than in NYC. After replication occurs, there is no guarantee which
value for "k1" exists at which site.

To ensure data consistency, Data Grid uses a vector clock algorithm to detect conflicting entries during
backup operations, as in the following illustration:

 LON NYC

k1=(n/a) 0,0 0,0

k1=2 1,0 --> 1,0 k1=2

k1=3 1,1 <-- 1,1 k1=3

k1=5 2,1 1,2 k1=8

 --> 2,1 (conflict)
(conflict) 1,2 <--

Vector clocks are timestamp metadata that increment with each write to an entry. In the preceding
example, 0,0 represents the initial value for the vector clock on "k1".

A client puts "k1=2" in LON and the vector clock is 1,0, which Data Grid replicates to NYC. A client then
puts "k1=3" in NYC and the vector clock updates to 1,1, which Data Grid replicates to LON.

However if a client puts "k1=5" in LON at the same time that a client puts "k1=8" in NYC, Data Grid
detects a conflicting entry because the vector value for "k1" is not strictly greater or less between LON
and NYC.

When it finds conflicting entries, Data Grid uses the Java compareTo(String anotherString) method to
compare site names. To determine which key takes priority, Data Grid selects the site name that is
lexicographically less than the other. Keys from a site named AAA take priority over keys from a site
named AAB and so on.

Following the same example, to resolve the conflict for "k1", Data Grid uses the value for "k1" that
originates from LON. This results in "k1=5" in both LON and NYC after Data Grid resolves the conflict
and replicates the value.

TIP

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

16

TIP

Prepend site names with numbers as a simple way to represent the order of priority for resolving
conflicting entries; for example, 1LON and 2NYC.

Backup strategies
Data Grid performs conflict resolution with the asynchronous backup strategy (strategy=async) only.

You should never use the synchronous backup strategy with an Active/Active configuration. In this
configuration concurrent writes result in deadlocks and you lose data. However you can use the
synchronous backup strategy with an Active/Active configuration if both sites access different data
sets, in which case there is no risk of deadlocks from concurrent writes.

Cross-site merge policies
Data Grid provides an XSiteEntryMergePolicy SPI in addition to cross-site merge policies that
configure Data Grid to do the following:

Always remove conflicting entries.

Apply write operations when write/remove conflicts occur.

Remove entries when write/remove conflicts occur.

Additional resources

XSiteMergePolicy enum lists all merge polices that Data Grid provides

XSiteEntryMergePolicy SPI

java.lang.String#compareTo()

1.8. EXPIRATION WITH CROSS-SITE REPLICATION

Expiration removes cache entries based on time. Data Grid provides two ways to configure expiration
for entries:

Lifespan

The lifespan attribute sets the maximum amount of time that entries can exist. When you set lifespan
with cross-site replication, Data Grid clusters expire entries independently of remote sites.

Maximum idle

The max-idle attribute specifies how long entries can exist based on read or write operations in a given
time period. When you set a max-idle with cross-site replication, Data Grid clusters send touch
commands to coordinate idle timeout values with remote sites.

NOTE

Using maximum idle expiration in cross-site deployments can impact performance
because the additional processing to keep max-idle values synchronized means some
operations take longer to complete.

CHAPTER 1. CROSS-SITE REPLICATION

17

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/xsite/spi/XSiteMergePolicy.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/xsite/spi/XSiteEntryMergePolicy.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE
REPLICATION

Set up cluster transport so Data Grid clusters can discover each other and relay nodes can send
messages for cross-site replication. You can then add backup locations to Data Grid caches.

2.1. CONFIGURING CLUSTER TRANSPORT FOR CROSS-SITE
REPLICATION

Add JGroups RELAY2 to your transport layer so that Data Grid can replicate caches to backup
locations.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the RELAY2 protocol to a JGroups stack.

3. Specify the stack name with the stack attribute for the transport configuration so the Data Grid
cluster uses it.

4. Save and close your Data Grid configuration.

JGroups RELAY2 stacks
The following configuration shows a JGroups RELAY2 stack that:

Uses the default JGroups UDP stack for inter-cluster transport, which refers to communication
between nodes at the local site.

Uses the default JGroups TCP stack for cross-site replication traffic.

Names the local site as LON.

Specifies a maximum of 1000 nodes in the cluster that can send cross-site replication requests.

Specifies the names of all backup locations that participate in cross-site replication.

Additional resources

<infinispan>
 <jgroups>
 <stack name="xsite" extends="udp">
 <relay.RELAY2 xmlns="urn:org:jgroups"
 site="LON"
 max_site_masters="1000"/>
 <remote-sites default-stack="tcp">
 <remote-site name="LON"/>
 <remote-site name="NYC"/>
 </remote-sites>
 </stack>
 </jgroups>
 <cache-container>
 <transport cluster="${cluster.name}" stack="xsite"/>
 </cache-container>
</infinispan>

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

18

Additional resources

JGroups RELAY2 Stacks

Data Grid configuration schema reference

2.1.1. Custom JGroups RELAY2 stacks

You can add custom JGroups RELAY2 stacks to Data Grid clusters to use different transport properties
for cross-site replication. For example, the following configuration uses TCPPING instead of MPING for
discovery and extends the default TCP stack:

Additional resources

JGroups RELAY2

Relaying between multiple sites (RELAY2)

2.2. ADDING BACKUP LOCATIONS TO CACHES

Specify the names of remote sites so Data Grid can replicate data to caches on those clusters.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the backups element to your cache configuration.

3. Specify the name of the remote site as the backup location.
For example, in the LON configuration, specify NYC as the backup.

4. Repeat the preceding steps on each cluster so that each site is a backup for other sites.
For example, if you add LON as a backup for NYC you should also add NYC as a backup for
LON.

5. Save and close your Data Grid configuration.

<infinispan>
 <jgroups>
 <stack name="relay-global" extends="tcp">
 <TCPPING initial_hosts="192.0.2.0[7800]"
 stack.combine="REPLACE"
 stack.position="MPING"/>
 </stack>
 <stack name="xsite" extends="udp">
 <relay.RELAY2 site="LON" xmlns="urn:org:jgroups"
 max_site_masters="10"
 can_become_site_master="true"/>
 <remote-sites default-stack="relay-global">
 <remote-site name="LON"/>
 <remote-site name="NYC"/>
 </remote-sites>
 </stack>
 </jgroups>
</infinispan>

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION

19

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/
http://www.jgroups.org/manual4/index.html#RELAY2
http://www.jgroups.org/manual4/index.html#Relay2Advanced

Backup configuration
The following example shows the "customers" cache configuration for the LON cluster:

XML

JSON

YAML

The following example shows the "customers" cache configuration for the NYC cluster:

XML

JSON

<replicated-cache name="customers">
 <backups>
 <backup site="NYC"
 strategy="ASYNC" />
 </backups>
</replicated-cache>

{
 "replicated-cache": {
 "name": "customers",
 "backups": {
 "NYC": {
 "backup" : {
 "strategy" : "ASYNC"
 }
 }
 }
 }
}

replicatedCache:
 name: "customers"
 backups:
 NYC:
 backup:
 strategy: "ASYNC"

<distributed-cache name="customers">
 <backups>
 <backup site="LON"
 strategy="ASYNC" />
 </backups>
</distributed-cache>

{
 "distributed-cache": {

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

20

YAML

Additional resources

Data Grid configuration schema reference

2.3. BACKING UP TO CACHES WITH DIFFERENT NAMES

Data Grid replicates data between caches that have the same name by default. If you want Data Grid to
replicate between caches with different names, you can explicitly declare the backup for each cache.

Procedure

1. Open your Data Grid configuration for editing.

2. Use backup-for or backupFor to replicate data from a remote site into a cache with a different
name on the local site.

3. Save and close your Data Grid configuration.

Backup for configuration
The following example configures the "eu-customers" cache to receive updates from the "customers"
cache on the LON cluster:

XML

 "name": "customers",
 "backups": {
 "LON": {
 "backup": {
 "strategy": "ASYNC"
 }
 }
 }
 }
}

distributedCache:
 name: "customers"
 backups:
 LON:
 backup:
 strategy: "ASYNC"

<distributed-cache name="eu-customers">
 <backups>
 <backup site="LON"
 strategy="ASYNC" />
 </backups>
 <backup-for remote-cache="customers"
 remote-site="LON" />
</distributed-cache>

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION

21

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/

JSON

YAML

2.4. CONFIGURING CROSS-SITE STATE TRANSFER

Change cross-site state transfer settings to optimize performance and specify whether operations
happen manually or automatically.

Procedure

1. Open your Data Grid configuration for editing.

2. Configure state transfer operations as appropriate.

a. Specify the number of entries to include in each state transfer operation with chunk-size or
chunkSize.

b. Specify the time to wait, in milliseconds, for state transfer operations to complete with
timeout.

c. Set the maximum number of attempts for Data Grid to retry failed state transfers with max-
retries or maxRetries.

d. Specify the time to wait, in milliseconds, between retry attempts with wait-time or
waitTime.

{
 "distributed-cache": {
 "name": "eu-customers",
 "backups": {
 "LON": {
 "backup": {
 "strategy": "ASYNC"
 }
 }
 },
 "backup-for" : {
 "remote-cache" : "customers",
 "remote-site" : "LON"
 }
 }
}

distributedCache:
 name: "eu-customers"
 backups:
 LON:
 backup:
 strategy: "ASYNC"
 backupFor:
 remoteCache: "customers"
 remoteSite: "LON"

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

22

e. Specify if state transfer operations happen automatically or manually with mode.

3. Open your Data Grid configuration for editing.

State transfer configuration

XML

JSON

YAML

<distributed-cache name="eu-customers">
 <backups>
 <backup site="LON"
 strategy="ASYNC">
 <state-transfer chunk-size="600"
 timeout="2400000"
 max-retries="30"
 wait-time="2000"
 mode="AUTO"/>
 </backup>
 </backups>
</distributed-cache>

{
 "distributed-cache": {
 "name": "eu-customers",
 "backups": {
 "LON": {
 "backup": {
 "strategy": "ASYNC",
 "state-transfer": {
 "chunk-size": "600",
 "timeout": "2400000",
 "max-retries": "30",
 "wait-time": "2000",
 "mode": "AUTO"
 }
 }
 }
 }
 }
}

distributedCache:
 name: "eu-customers"
 backups:
 LON:
 backup:
 strategy: "ASYNC"
 stateTransfer:
 chunkSize: "600"

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION

23

2.5. CONFIGURING CONFLICT RESOLUTION ALGORITHMS

Configure Data Grid to use a different algorithm to resolve conflicting entries between backup locations.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify one of the Data Grid algorithms or a custom implementation as the merge policy to
resolve conflicting entries.

3. Save and close your Data Grid configuration for editing.

Data Grid algorithms

TIP

Find all Data Grid algorithms and their descriptions in the org.infinispan.xsite.spi.XSiteMergePolicy
enum.

The following example configuration uses the ALWAYS_REMOVE algorithm that deletes conflicting
entries from both sites:

XML

JSON

YAML

 timeout: "2400000"
 maxRetries: "30"
 waitTime: "2000"
 mode: "AUTO"

<distributed-cache>
 <backups merge-policy="ALWAYS_REMOVE">
 <backup site="LON" strategy="ASYNC"/>
 </backups>
</distributed-cache>

{
 "distributed-cache": {
 "backups": {
 "merge-policy": "ALWAYS_REMOVE",
 "LON": {
 "backup": {
 "strategy": "ASYNC"
 }
 }
 }
 }
}

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

24

Custom conflict resolution algorithms
If you create a custom XSiteEntryMergePolicy implementation, you can specify the fully qualified class
name as the merge policy.

XML

JSON

YAML

Additional resources

org.infinispan.xsite.spi.XSiteEntryMergePolicy

org.infinispan.xsite.spi.XSiteMergePolicy

org.infinispan.xsite.spi.SiteEntry

Data Grid configuration schema reference

distributedCache:
 backups:
 mergePolicy: "ALWAYS_REMOVE"
 LON:
 backup:
 strategy: "ASYNC"

<distributed-cache>
 <backups merge-policy="org.mycompany.MyCustomXSiteEntryMergePolicy">
 <backup site="LON" strategy="ASYNC"/>
 </backups>
</distributed-cache>

{
 "distributed-cache": {
 "backups": {
 "merge-policy": "org.mycompany.MyCustomXSiteEntryMergePolicy",
 "LON": {
 "backup": {
 "strategy": "ASYNC"
 }
 }
 }
 }
}

distributedCache:
 backups:
 mergePolicy: "org.mycompany.MyCustomXSiteEntryMergePolicy"
 LON:
 backup:
 strategy: "ASYNC"

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION

25

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/xsite/spi/XSiteEntryMergePolicy.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/xsite/spi/XSiteMergePolicy.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/xsite/spi/SiteEntry.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/

2.6. CLEANING TOMBSTONES FOR ASYNCHRONOUS BACKUPS

With the asynchronous backup strategy Data Grid stores metadata, known as tombstones, when it
removes keys. Data Grid periodically runs a task to remove these tombstones and reduce excessive
memory usage when backup locations no longer require the metadata. You can configure the frequency
for this task by defining a target size for tombstone maps as well as the maximum delay between task
runs.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify the number of tombstones to store with the tombstone-map-size attribute.
If the number of tombstones increases beyond this number then Data Grid runs the cleanup task
more frequently. Likewise, if the number of tombstones is less than this number then Data Grid
does not run the cleanup task as frequently.

3. Add the max-cleanup-delay attribute and specify the maximum delay, in milliseconds, between
tombstone cleanup tasks.

4. Save the changes to your configuration.

Tombstone cleanup task configuration

XML

JSON

YAML

<distributed-cache>
 <backups tombstone-map-size="512000" max-cleanup-delay="30000">
 <backup site="LON" strategy="ASYNC"/>
 </backups>
</distributed-cache>

{
 "distributed-cache": {
 "backups": {
 "tombstone-map-size": 512000,
 "max-cleanup-delay": 30000,
 "LON": {
 "backup": {
 "strategy": "ASYNC"
 }
 }
 }
 }
}

distributedCache:
 backups:
 tombstoneMapSize: 512000

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

26

Additional resources

Data Grid configuration schema reference

2.7. VERIFYING CROSS-SITE VIEWS

When you set up Data Grid to perform cross-site replication, you should check log files to ensure that
Data Grid clusters have successfully formed cross-site views.

Procedure

1. Open Data Grid log files with any appropriate editor.

2. Check for ISPN000439: Received new x-site view messages.

For example, if a Data Grid cluster in LON has formed a cross-site view with a Data Grid cluster in NYC,
logs include the following messages:

INFO [org.infinispan.XSITE] (jgroups-5,<server-hostname>) ISPN000439: Received new x-site view:
[NYC]
INFO [org.infinispan.XSITE] (jgroups-7,<server-hostname>) ISPN000439: Received new x-site view:
[LON, NYC]

2.8. CONFIGURING HOT ROD CLIENTS FOR CROSS-SITE
REPLICATION

Configure Hot Rod clients to use Data Grid clusters at different sites.

hotrod-client.properties

Servers at the active site
infinispan.client.hotrod.server_list = LON_host1:11222,LON_host2:11222,LON_host3:11222

Servers at the backup site
infinispan.client.hotrod.cluster.NYC =
NYC_hostA:11222,NYC_hostB:11222,NYC_hostC:11222,NYC_hostD:11222

ConfigurationBuilder

TIP

 maxCleanupDelay: 30000
 LON:
 backup:
 strategy: "ASYNC"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServers("LON_host1:11222;LON_host2:11222;LON_host3:11222")
 .addCluster("NYC")

.addClusterNodes("NYC_hostA:11222;NYC_hostB:11222;NYC_hostC:11222;NYC_hostD:11222")

CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION

27

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/configdocs/

TIP

Use the following methods to switch Hot Rod clients to the default cluster or to a cluster at a different
site:

RemoteCacheManager.switchToDefaultCluster()

RemoteCacheManager.switchToCluster(${site.name})

Additional resources

org.infinispan.client.hotrod.configuration package description

org.infinispan.client.hotrod.configuration.ConfigurationBuilder

org.infinispan.client.hotrod.RemoteCacheManager

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

28

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/client/hotrod/configuration/package-summary.html#package.description
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/org/infinispan/client/hotrod/RemoteCacheManager.html#RemoteCacheManager-java.net.URL-

CHAPTER 3. PERFORMING CROSS-SITE OPERATIONS WITH
THE CLI

Use the Data Grid command line interface (CLI) to connect to Data Grid Server clusters, manage sites,
and push state transfer to backup locations.

3.1. BRINGING BACKUP LOCATIONS OFFLINE AND ONLINE

Take backup locations offline manually and bring them back online.

Prerequisites

Create a CLI connection to Data Grid.

Procedure

1. Check if backup locations are online or offline with the site status command:

site status --cache=cacheName --site=NYC

NOTE

--site is an optional argument. If not set, the CLI returns all backup locations.

TIP

Use the --all-caches option to get the backup location status for all caches.

2. Manage backup locations as follows:

Bring backup locations online with the bring-online command:

site bring-online --cache=customers --site=NYC

Take backup locations offline with the take-offline command:

site take-offline --cache=customers --site=NYC

TIP

Use the --all-caches option to bring a backup location online, or take a backup location offline, for all
caches.

For more information and examples, run the help site command.

3.2. CONFIGURING CROSS-SITE STATE TRANSFER MODES

You can configure cross-site state transfer operations to happen automatically when Data Grid detects
that backup locations come online. Alternatively you can use the default mode, which is to manually
perform state transfer.

CHAPTER 3. PERFORMING CROSS-SITE OPERATIONS WITH THE CLI

29

Prerequisites

Create a CLI connection to Data Grid.

Procedure

1. Use the site command to configure state transfer modes, as in the following examples:

Retrieve the current state transfer mode.

site state-transfer-mode get --cache=cacheName --site=NYC

Configure automatic state transfer operations for a cache and backup location.

site state-transfer-mode set --cache=cacheName --site=NYC --mode=AUTO

TIP

Run the help site command for more information and examples.

3.3. PUSHING STATE TO BACKUP LOCATIONS

Transfer cache state to backup locations.

Prerequisites

Create a CLI connection to Data Grid.

Procedure

Use the site push-site-state command to push state transfer, as in the following example:

site push-site-state --cache=cacheName --site=NYC

TIP

Use the --all-caches option to push state transfer for all caches.

For more information and examples, run the help site command.

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

30

CHAPTER 4. PERFORMING CROSS-SITE OPERATIONS WITH
THE REST API

Data Grid Server provides a REST endpoint that exposes methods for performing cross-site operations.

4.1. GETTING STATUS OF ALL BACKUP LOCATIONS

Retrieve the status of all backup locations with GET requests.

GET /rest/v2/caches/{cacheName}/x-site/backups/

Data Grid responds with the status of each backup location in JSON format, as in the following example:

Table 4.1. Returned Status

Value Description

online All nodes in the local cluster have a cross-site view
with the backup location.

offline No nodes in the local cluster have a cross-site view
with the backup location.

mixed Some nodes in the local cluster have a cross-site
view with the backup location, other nodes in the
local cluster do not have a cross-site view. The
response indicates status for each node.

4.2. GETTING STATUS OF SPECIFIC BACKUP LOCATIONS

Retrieve the status of a backup location with GET requests.

GET /rest/v2/caches/{cacheName}/x-site/backups/{siteName}

Data Grid responds with the status of each node in the site in JSON format, as in the following example:

{
 "NYC": {
 "status": "online"
 },
 "LON": {
 "status": "mixed",
 "online": [
 "NodeA"
],
 "offline": [
 "NodeB"
]
 }
}

CHAPTER 4. PERFORMING CROSS-SITE OPERATIONS WITH THE REST API

31

Table 4.2. Returned Status

Value Description

online The node is online.

offline The node is offline.

failed Not possible to retrieve status. The remote cache
could be shutting down or a network error occurred
during the request.

4.3. TAKING BACKUP LOCATIONS OFFLINE

Take backup locations offline with POST requests and the ?action=take-offline parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{siteName}?action=take-offline

4.4. BRINGING BACKUP LOCATIONS ONLINE

Bring backup locations online with the ?action=bring-online parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{siteName}?action=bring-online

4.5. PUSHING STATE TO BACKUP LOCATIONS

Push cache state to a backup location with the ?action=start-push-state parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{siteName}?action=start-push-state

4.6. CANCELING STATE TRANSFER

Cancel state transfer operations with the ?action=cancel-push-state parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state

4.7. GETTING STATE TRANSFER STATUS

Retrieve status of state transfer operations with the ?action=push-state-status parameter.

GET /rest/v2/caches/{cacheName}/x-site/backups?action=push-state-status

Data Grid responds with the status of state transfer for each backup location in JSON format, as in the

{
 "NodeA":"offline",
 "NodeB":"online"
}

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

32

Data Grid responds with the status of state transfer for each backup location in JSON format, as in the
following example:

Table 4.3. Returned status

Value Description

SENDING State transfer to the backup location is in progress.

OK State transfer completed successfully.

ERROR An error occurred with state transfer. Check log files.

CANCELLING State transfer cancellation is in progress.

4.8. CLEARING STATE TRANSFER STATUS

Clear state transfer status for sending sites with the ?action=clear-push-state-status parameter.

POST /rest/v2/caches/{cacheName}/x-site/local?action=clear-push-state-status

4.9. MODIFYING TAKE OFFLINE CONDITIONS

Sites go offline if certain conditions are met. Modify the take offline parameters to control when backup
locations automatically go offline.

Procedure

1. Check configured take offline parameters with GET requests and the take-offline-config
parameter.

GET /rest/v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

The Data Grid response includes after_failures and min_wait fields as follows:

2. Modify take offline parameters in the body of PUT requests.

PUT /rest/v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

If the operation successfully completes, the service returns 204 (No Content).

{
 "NYC":"CANCELED",
 "LON":"OK"
}

{
 "after_failures": 2,
 "min_wait": 1000
}

CHAPTER 4. PERFORMING CROSS-SITE OPERATIONS WITH THE REST API

33

4.10. CANCELING STATE TRANSFER FROM RECEIVING SITES

If the connection between two backup locations breaks, you can cancel state transfer on the site that is
receiving the push.

Cancel state transfer from a remote site and keep the current state of the local cache with the ?
action=cancel-receive-state parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-receive-state

4.11. GETTING STATUS OF BACKUP LOCATIONS

Retrieve the status of all backup locations from Cache Managers with GET requests.

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/

Data Grid responds with status in JSON format, as in the following example:

Table 4.4. Returned status

Value Description

online All nodes in the local cluster have a cross-site view
with the backup location.

offline No nodes in the local cluster have a cross-site view
with the backup location.

mixed Some nodes in the local cluster have a cross-site
view with the backup location, other nodes in the
local cluster do not have a cross-site view. The
response indicates status for each node.

{
 "SFO-3":{
 "status":"online"
 },
 "NYC-2":{
 "status":"mixed",
 "online":[
 "CACHE_1"
],
 "offline":[
 "CACHE_2"
],
 "mixed": [
 "CACHE_3"
]
 }
}

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

34

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{site}

Returns the status for a single backup location.

4.12. TAKING BACKUP LOCATIONS OFFLINE

Take backup locations offline with the ?action=take-offline parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=take-offline

4.13. BRINGING BACKUP LOCATIONS ONLINE

Bring backup locations online with the ?action=bring-online parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=bring-
online

4.14. RETRIEVING THE STATE TRANSFER MODE

Check the state transfer mode with GET requests.

GET /rest/v2/caches/{cacheName}/x-site/backups/{site}/state-transfer-mode

4.15. SETTING THE STATE TRANSFER MODE

Configure the state transfer mode with the ?action=set parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{site}/state-transfer-mode?action=set&mode=
{mode}

4.16. STARTING STATE TRANSFER

Push state of all caches to remote sites with the ?action=start-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=start-push-
state

4.17. CANCELING STATE TRANSFER

Cancel ongoing state transfer operations with the ?action=cancel-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=cancel-
push-state

CHAPTER 4. PERFORMING CROSS-SITE OPERATIONS WITH THE REST API

35

CHAPTER 5. PERFORMING CROSS-SITE OPERATIONS VIA
JMX

Perform cross-site operations such as pushing state transfer and bringing sites online via JMX.

5.1. REGISTERING JMX MBEANS

Data Grid can register JMX MBeans that you can use to collect statistics and perform administrative
operations. You must also enable statistics otherwise Data Grid provides 0 values for all statistic
attributes in JMX MBeans.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the jmx element or object to the cache container and specify true as the value for the
enabled attribute or field.

3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if
required.

4. Save and close your client configuration.

JMX configuration

XML

JSON

YAML

<infinispan>
 <cache-container statistics="true">
 <jmx enabled="true"
 domain="example.com"/>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "statistics" : "true",
 "jmx" : {
 "enabled" : "true",
 "domain" : "example.com"
 }
 }
 }
}

infinispan:
 cacheContainer:

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

36

5.2. PERFORMING CROSS-SITE OPERATIONS WITH JMX CLIENTS

Perform cross-site operations with JMX clients.

Prerequisites

Configure Data Grid to register JMX MBeans

Procedure

1. Connect to Data Grid with any JMX client.

2. Invoke operations from the following MBeans:

XSiteAdmin provides cross-site operations for caches.

GlobalXSiteAdminOperations provides cross-site operations for Cache Managers.
For example, to bring sites back online, invoke bringSiteOnline(siteName).

Additional resources

XSiteAdmin MBean

GlobalXSiteAdminOperations MBean

5.3. JMX MBEANS FOR CROSS-SITE REPLICATION

Data Grid provides JMX MBeans for cross-site replication that let you gather statistics and perform
remote operations.

The org.infinispan:type=Cache component provides the following JMX MBeans:

XSiteAdmin exposes cross-site operations that apply to specific cache instances.

RpcManager provides statistics about network requests for cross-site replication.

AsyncXSiteStatistics provides statistics for asynchronous cross-site replication, including
queue size and number of conflicts.

The org.infinispan:type=CacheManager component includes the following JMX MBean:

GlobalXSiteAdminOperations exposes cross-site operations that apply to all caches in a cache
container.

For details about JMX MBeans along with descriptions of available operations and statistics, see the
Data Grid JMX Components documentation.

Additional resources

Data Grid JMX Components

 statistics: "true"
 jmx:
 enabled: "true"
 domain: "example.com"

CHAPTER 5. PERFORMING CROSS-SITE OPERATIONS VIA JMX

37

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/jmxComponents.html#XSiteAdmin
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/jmxComponents.html#XSiteAdmin
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.4/api/jmxComponents.html

Red Hat Data Grid 8.4 Data Grid Cross-Site Replication

38

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CROSS-SITE REPLICATION
	1.1. CROSS-SITE REPLICATION
	1.2. RELAY NODES
	1.3. DATA GRID CACHE BACKUPS
	1.4. BACKUP STRATEGIES
	Synchronous strategy
	Asynchronous strategy
	Synchronous vs asynchronous backups

	1.5. AUTOMATIC OFFLINE PARAMETERS FOR BACKUP LOCATIONS
	Backup timeouts
	Number of failures
	Time to wait

	1.6. STATE TRANSFER
	Automatic state transfer

	1.7. CLIENT CONNECTIONS ACROSS SITES
	Active/Passive
	Active/Active
	Backup strategies and client connections
	1.7.1. Concurrent writes and conflicting entries
	Backup strategies
	Cross-site merge policies

	1.8. EXPIRATION WITH CROSS-SITE REPLICATION

	CHAPTER 2. CONFIGURING DATA GRID CROSS-SITE REPLICATION
	2.1. CONFIGURING CLUSTER TRANSPORT FOR CROSS-SITE REPLICATION
	JGroups RELAY2 stacks
	2.1.1. Custom JGroups RELAY2 stacks

	2.2. ADDING BACKUP LOCATIONS TO CACHES
	Backup configuration

	2.3. BACKING UP TO CACHES WITH DIFFERENT NAMES
	Backup for configuration

	2.4. CONFIGURING CROSS-SITE STATE TRANSFER
	State transfer configuration

	2.5. CONFIGURING CONFLICT RESOLUTION ALGORITHMS
	Data Grid algorithms
	Custom conflict resolution algorithms

	2.6. CLEANING TOMBSTONES FOR ASYNCHRONOUS BACKUPS
	Tombstone cleanup task configuration

	2.7. VERIFYING CROSS-SITE VIEWS
	2.8. CONFIGURING HOT ROD CLIENTS FOR CROSS-SITE REPLICATION

	CHAPTER 3. PERFORMING CROSS-SITE OPERATIONS WITH THE CLI
	3.1. BRINGING BACKUP LOCATIONS OFFLINE AND ONLINE
	3.2. CONFIGURING CROSS-SITE STATE TRANSFER MODES
	3.3. PUSHING STATE TO BACKUP LOCATIONS

	CHAPTER 4. PERFORMING CROSS-SITE OPERATIONS WITH THE REST API
	4.1. GETTING STATUS OF ALL BACKUP LOCATIONS
	4.2. GETTING STATUS OF SPECIFIC BACKUP LOCATIONS
	4.3. TAKING BACKUP LOCATIONS OFFLINE
	4.4. BRINGING BACKUP LOCATIONS ONLINE
	4.5. PUSHING STATE TO BACKUP LOCATIONS
	4.6. CANCELING STATE TRANSFER
	4.7. GETTING STATE TRANSFER STATUS
	4.8. CLEARING STATE TRANSFER STATUS
	4.9. MODIFYING TAKE OFFLINE CONDITIONS
	4.10. CANCELING STATE TRANSFER FROM RECEIVING SITES
	4.11. GETTING STATUS OF BACKUP LOCATIONS
	4.12. TAKING BACKUP LOCATIONS OFFLINE
	4.13. BRINGING BACKUP LOCATIONS ONLINE
	4.14. RETRIEVING THE STATE TRANSFER MODE
	4.15. SETTING THE STATE TRANSFER MODE
	4.16. STARTING STATE TRANSFER
	4.17. CANCELING STATE TRANSFER

	CHAPTER 5. PERFORMING CROSS-SITE OPERATIONS VIA JMX
	5.1. REGISTERING JMX MBEANS
	JMX configuration

	5.2. PERFORMING CROSS-SITE OPERATIONS WITH JMX CLIENTS
	5.3. JMX MBEANS FOR CROSS-SITE REPLICATION

