
Red Hat Data Grid 8.3

Querying Data Grid Caches

Query your data in Data Grid caches

Last Updated: 2023-11-24

Red Hat Data Grid 8.3 Querying Data Grid Caches

Query your data in Data Grid caches

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Data Grid lets you perform queries with embedded and remote caches to efficiently and quickly
look up values in your data set.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT DATA GRID

DATA GRID DOCUMENTATION

DATA GRID DOWNLOADS

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INDEXING DATA GRID CACHES
1.1. CONFIGURING DATA GRID TO INDEX CACHES

Protobuf messages
Java objects
1.1.1. Index configuration

1.1.1.1. Index storage
1.1.1.2. Index reader
1.1.1.3. Index writer

1.2. INDEXING ANNOTATIONS
Remote caches
Embedded caches

1.3. REBUILDING INDEXES
1.4. NON-INDEXED QUERIES

CHAPTER 2. CREATING ICKLE QUERIES
2.1. ICKLE QUERIES

2.1.1. Pagination
2.1.2. Number of hits
2.1.3. Iteration
2.1.4. Named query parameters
2.1.5. Query execution

2.2. ICKLE QUERY LANGUAGE SYNTAX
2.2.1. Filtering operators
2.2.2. Boolean conditions
2.2.3. Nested conditions
2.2.4. Projections with SELECT statements

Sorting
2.2.5. Grouping and aggregation

Aggregations
Evaluation of queries with grouping and aggregation

2.2.6. DELETE statements
2.3. FULL-TEXT QUERIES

2.3.1. Fuzzy queries
2.3.2. Range queries
2.3.3. Phrase queries
2.3.4. Proximity queries
2.3.5. Wildcard queries
2.3.6. Regular expression queries
2.3.7. Boosting queries

CHAPTER 3. QUERYING REMOTE CACHES
3.1. QUERYING CACHES FROM HOT ROD JAVA CLIENTS
3.2. QUERYING CACHES FROM DATA GRID CONSOLE AND CLI
3.3. USING ANALYZERS WITH REMOTE CACHES

3.3.1. Default analyzer definitions

4

5

6

7

8
8
8
9

10
10
10
10
13
14
14
14
15

16
16
16
16
16
17
17
18
18
19
19

20
20
20
21
21
22
22
22
22
22
23
23
23
23

24
24
27
29
30

Table of Contents

1

. .

. .

. .

3.3.2. Creating custom analyzer definitions

CHAPTER 4. QUERYING EMBEDDED CACHES
4.1. QUERYING EMBEDDED CACHES
4.2. ENTITY MAPPING ANNOTATIONS

@DocumentId
@Transformable keys

4.3. PROGRAMMATICALLY MAPPING ENTITIES

CHAPTER 5. CREATING CONTINUOUS QUERIES
5.1. CONTINUOUS QUERIES

How continuous queries work
5.1.1. Continuous queries and Data Grid performance

5.2. CREATING CONTINUOUS QUERIES
Continuous query example

CHAPTER 6. MONITORING AND TUNING DATA GRID QUERIES
6.1. GETTING QUERY STATISTICS
6.2. TUNING QUERY PERFORMANCE

30

32
32
33
34
34
35

37
37
37
38
38
38

40
40
40

Red Hat Data Grid 8.3 Querying Data Grid Caches

2

Table of Contents

3

RED HAT DATA GRID
Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure

Flexibility to store different objects as key-value pairs.

Grid-based data storage

Designed to distribute and replicate data across clusters.

Elastic scaling

Dynamically adjust the number of nodes to meet demand without service disruption.

Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.3 Querying Data Grid Caches

4

DATA GRID DOCUMENTATION
Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.3 Documentation

Data Grid 8.3 Component Details

Supported Configurations for Data Grid 8.3

Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

DATA GRID DOCUMENTATION

5

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

Red Hat Data Grid 8.3 Querying Data Grid Caches

6

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INDEXING DATA GRID CACHES
Data Grid can create indexes of values in your caches to improve query performance, providing faster
results than non-indexed queries. Indexing also lets you use full-text search capabilities in your queries.

NOTE

Data Grid uses Apache Lucene technology to index values in caches.

1.1. CONFIGURING DATA GRID TO INDEX CACHES

Enable indexing in your cache configuration and specify which entities Data Grid should include when
creating indexes.

You should always configure Data Grid to index caches when using queries. Indexing provides a
significant performance boost to your queries, allowing you to get faster insights into your data.

Procedure

1. Enable indexing in your cache configuration.

TIP

Adding an indexing element to your configuration enables indexing without the need to include
the enabled=true attribute.

For remote caches adding this element also implicitly configures encoding as ProtoStream.

2. Specify the entities to index with the indexed-entity element.

Protobuf messages

Specify the message declared in the schema as the value of the indexed-entity element, for
example:

<distributed-cache>
 <indexing>
 <!-- Indexing configuration goes here. -->
 </indexing>
</distributed-cache>

<distributed-cache>
 <indexing>
 <indexed-entities>
 <indexed-entity>...</indexed-entity>
 </indexed-entities>
 </indexing>
</distributed-cache>

<distributed-cache>
 <indexing>
 <indexed-entities>
 <indexed-entity>org.infinispan.sample.Car</indexed-entity>

Red Hat Data Grid 8.3 Querying Data Grid Caches

8

http://lucene.apache.org/

This configuration indexes the Book message in a schema with the book_sample package
name.

Java objects

Specify the fully qualified name (FQN) of each class that includes the @Indexed annotation.

XML

ConfigurationBuilder

Additional resources

org.infinispan.configuration.cache.IndexingConfigurationBuilder

 <indexed-entity>org.infinispan.sample.Truck</indexed-entity>
 </indexed-entities>
 </indexing>
</distributed-cache>

package book_sample;

/* @Indexed */
message Book {

 /* @Field(store = Store.YES, analyze = Analyze.YES) */
 optional string title = 1;

 /* @Field(store = Store.YES, analyze = Analyze.YES) */
 optional string description = 2;
 optional int32 publicationYear = 3; // no native Date type available in Protobuf

 repeated Author authors = 4;
}

message Author {
 optional string name = 1;
 optional string surname = 2;
}

<distributed-cache>
 <indexing>
 <indexed-entities>
 <indexed-entity>book_sample.Book</indexed-entity>
 </indexed-entities>
 </indexing>
</distributed-cache>

import org.infinispan.configuration.cache.*;

ConfigurationBuilder config=new ConfigurationBuilder();
config.indexing().enable().storage(FILESYSTEM).path("/some/folder").addIndexedEntity(Book.class);

CHAPTER 1. INDEXING DATA GRID CACHES

9

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/IndexingConfigurationBuilder.html

1.1.1. Index configuration

Data Grid configuration controls how indexes are stored and constructed.

1.1.1.1. Index storage

You can configure how Data Grid stores indexes:

On the host file system, which is the default and persists indexes between restarts.

In JVM heap memory, which means that indexes do not survive restarts.
You should store indexes in JVM heap memory only for small datasets.

File system

JVM heap memory

1.1.1.2. Index reader

The index reader is an internal component that provides access to the indexes to perform queries. As
the index content changes, Data Grid needs to refresh the reader so that search results are up to date.
You can configure the refresh interval for the index reader. By default Data Grid reads the index before
each query if the index changed since the last refresh.

1.1.1.3. Index writer

The index writer is an internal component that constructs an index composed of one or more segments
(sub-indexes) that can be merged over time to improve performance. Fewer segments usually means
less overhead during a query because index reader operations need to take into account all segments.

Data Grid uses Apache Lucene internally and indexes entries in two tiers: memory and storage. New
entries go to the memory index first and then, when a flush happens, to the configured index storage.
Periodic commit operations occur that create segments from the previously flushed data and make all
the index changes permanent.

<distributed-cache>
 <indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
 <!-- Indexing configuration goes here. -->
 </indexing>
</distributed-cache>

<distributed-cache>
 <indexing storage="local-heap">
 <!-- Additional indexing configuration goes here. -->
 </indexing>
</distributed-cache>

<distributed-cache>
 <indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
 <!-- Sets an interval of one second for the index reader. -->
 <index-reader refresh-interval="1000"/>
 <!-- Additional indexing configuration goes here. -->
 </indexing>
</distributed-cache>

Red Hat Data Grid 8.3 Querying Data Grid Caches

10

NOTE

The index-writer configuration is optional. The defaults should work for most cases and
custom configurations should only be used to tune performance.

Table 1.1. Index writer configuration attributes

Attribute Description

commit-interval Amount of time, in milliseconds, that index changes
that are buffered in memory are flushed to the index
storage and a commit is performed. Because
operation is costly, small values should be avoided.
The default is 1000 ms (1 second).

max-buffered-entries Maximum number of entries that can be buffered in-
memory before they are flushed to the index storage.
Large values result in faster indexing but use more
memory. When used in combination with the ram-
buffer-size attribute, a flush occurs for whichever
event happens first.

ram-buffer-size Maximum amount of memory that can be used for
buffering added entries and deletions before they
are flushed to the index storage. Large values result
in faster indexing but use more memory. For faster
indexing performance you should set this attribute
instead of max-buffered-entries. When used in
combination with the max-buffered-entries
attribute, a flush occurs for whichever event happens
first.

thread-pool-size Number of threads that execute write operations to
the index.

<distributed-cache>
 <indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
 <index-writer commit-interval="2000"
 low-level-trace="false"
 max-buffered-entries="32"
 queue-count="1"
 queue-size="10000"
 ram-buffer-size="400"
 thread-pool-size="2">
 <index-merge calibrate-by-deletes="true"
 factor="3"
 max-entries="2000"
 min-size="10"
 max-size="20"/>
 </index-writer>
 <!-- Additional indexing configuration goes here. -->
 </indexing>
</distributed-cache>

CHAPTER 1. INDEXING DATA GRID CACHES

11

queue-count Number of internal queues to use for each indexed
type. Each queue holds a batch of modifications that
is applied to the index and queues are processed in
parallel. Increasing the number of queues will lead to
an increase of indexing throughput, but only if the
bottleneck is CPU. For optimum results, do not set a
value for queue-count that is larger than the value
for thread-pool-size.

queue-size Maximum number of elements each queue can hold.
Increasing the queue-size value increases the
amount of memory that is used during indexing
operations. Setting a value that is too small can block
indexing operations.

low-level-trace Enables low-level trace information for indexing
operations. Enabling this attribute substantially
degrades performance. You should use this low-level
tracing only as a last resource for troubleshooting.

Attribute Description

To configure how Data Grid merges index segments, you use the index-merge sub-element.

Table 1.2. Index merge configuration attributes

Attribute Description

max-entries Maximum number of entries that an index segment
can have before merging. Segments with more than
this number of entries are not merged. Smaller values
perform better on frequently changing indexes,
larger values provide better search performance if
the index does not change often.

factor Number of segments that are merged at once. With
smaller values, merging happens more often, which
uses more resources, but the total number of
segments will be lower on average, increasing search
performance. Larger values (greater than 10) are
best for heavy writing scenarios.

min-size Minimum target size of segments, in MB, for
background merges. Segments smaller than this size
are merged more aggressively. Setting a value that is
too large might result in expensive merge operations,
even though they are less frequent.

Red Hat Data Grid 8.3 Querying Data Grid Caches

12

max-size Maximum size of segments, in MB, for background
merges. Segments larger than this size are never
merged in the background. Settings this to a lower
value helps reduce memory requirements and avoids
some merging operations at the cost of optimal
search speed. This attribute is ignored when
forcefully merging an index and max-forced-size
applies instead.

max-forced-size Maximum size of segments, in MB, for forced merges
and overrides the max-size attribute. Set this to the
same value as max-size or lower. However setting
the value too low degrades search performance
because documents are deleted.

calibrate-by-deletes Whether the number of deleted entries in an index
should be taken into account when counting the
entries in the segment. Setting false will lead to
more frequent merges caused by max-entries, but
will more aggressively merge segments with many
deleted documents, improving query performance.

Attribute Description

Additional resources

Data Grid configuration schema reference

1.2. INDEXING ANNOTATIONS

When you enable indexing in caches, you configure Data Grid to create indexes. You also need to
provide Data Grid with a structured representation of the entities in your caches so it can actually index
them.

There are two annotations that control the entities and fields that Data Grid indexes:

@Indexed

Indicates entities, or Protobuf message types, that Data Grid indexes.

@Field

Indicates fields that Data Grid indexes and has the following attributes:

Attribute Description Values

index Controls if Data Grid includes
fields in indexes.

Index.YES or Index.NO

store Allows Data Grid to store fields in
indexes so you can use them for
projections.

Store.YES or Store.NO. Use
Store.YES and set sortable =
true for fields that need to be
used for sorting.

CHAPTER 1. INDEXING DATA GRID CACHES

13

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/

analyze Includes fields in full-text
searches.

Analyze.NO or specifies an
analyzer definition

Attribute Description Values

Remote caches
You can provide Data Grid with indexing annotations for remote caches in two ways:

Annotate your Java classes directly with @ProtoDoc("@Indexed") and
@ProtoDoc("@Field(…)").
You then generate Protobuf schema, .proto files, before uploading them to Data Grid Server.

Annotate Protobuf schema directly with @Indexed and @Field(…).
You then upload your Protobuf schema to Data Grid Server.
For example, the following schema uses the @Field annotation:

By including store = Store.YES and sortable = true in the @Field annotation, you can use the
street field for sorting queries without encountering warning messages or unexpected results.

Embedded caches
For embedded caches, you add indexing annotations to your Java classes according to how Data Grid
stores your entries.

Use the @Indexed and @Field annotations, along with other Hibernate Search annotations such as
@FullTextField.

1.3. REBUILDING INDEXES

Rebuilding an index reconstructs it from the data stored in the cache. You should rebuild indexes when
you change things like the definitions of indexed types or analyzers. Likewise, you can rebuild indexes
after you delete them for whatever reason.

IMPORTANT

Rebuilding indexes can take a long time to complete because the process takes place for
all data in the grid. While the rebuild operation is in progress, queries might also return
fewer results.

Procedure

Rebuild indexes in one of the following ways:

Call the reindexCache() method to programmatically rebuild an index from a Hot Rod Java
client:

/**
 * @Field(analyze = Analyze.YES, store = Store.YES, sortable = true)
 */
required string street = 1;

remoteCacheManager.administration().reindexCache("MyCache");

Red Hat Data Grid 8.3 Querying Data Grid Caches

14

TIP

For remote caches you can also rebuild indexes from Data Grid Console.

Call the index.run() method to rebuild indexes for embedded caches as follows:

1.4. NON-INDEXED QUERIES

Data Grid recommends indexing caches for the best performance for queries. However you can query
caches that are non-indexed.

For embedded caches, you can perform non-indexed queries on Plain Old Java Objects
(POJOs).

For remote caches, you must use ProtoStream encoding with the application/x-protostream
media type to perform non-indexed queries.

Indexer indexer = Search.getIndexer(cache);
CompletionStage<Void> future = index.run();

CHAPTER 1. INDEXING DATA GRID CACHES

15

CHAPTER 2. CREATING ICKLE QUERIES
Data Grid provides an Ickle query language that lets you create relational and full-text queries.

2.1. ICKLE QUERIES

To use the API, first obtain a QueryFactory to the cache and then call the .create() method, passing in
the string to use in the query. Each QueryFactory instance is bound to the same Cache instance as the
Search, but it is otherwise a stateless and thread-safe object that can be used for creating multiple
queries in parallel.

For instance:

NOTE

A query will always target a single entity type and is evaluated over the contents of a
single cache. Running a query over multiple caches or creating queries that target several
entity types (joins) is not supported.

Executing the query and fetching the results is as simple as invoking the execute() method of the Query
object. Once executed, calling execute() on the same instance will re-execute the query.

2.1.1. Pagination

You can limit the number of returned results by using the Query.maxResults(int maxResults). This can
be used in conjunction with Query.startOffset(long startOffset) to achieve pagination of the result set.

2.1.2. Number of hits

The QueryResult object has the .hitCount() method to return the total number of results of the query,
regardless of any pagination parameter. The hit count is only available for indexed queries for
performance reasons.

2.1.3. Iteration

The Query object has the .iterator() method to obtain the results lazily. It returns an instance of

// Remote Query, using protobuf
QueryFactory qf = org.infinispan.client.hotrod.Search.getQueryFactory(remoteCache);
Query<Transaction> q = qf.create("from sample_bank_account.Transaction where amount > 20");

// Embedded Query using Java Objects
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);
Query<Transaction> q = qf.create("from org.infinispan.sample.Book where price > 20");

// Execute the query
QueryResult<Book> queryResult = q.execute();

// sorted by year and match all books that have "clustering" in their title
// and return the third page of 10 results
Query<Book> query = queryFactory.create("FROM org.infinispan.sample.Book WHERE title like
'%clustering%' ORDER BY year").startOffset(20).maxResults(10)

Red Hat Data Grid 8.3 Querying Data Grid Caches

16

The Query object has the .iterator() method to obtain the results lazily. It returns an instance of
CloseableIterator that must be closed after usage.

NOTE

The iteration support for Remote Queries is currently limited, as it will first fetch all
entries to the client before iterating.

2.1.4. Named query parameters

Instead of building a new Query object for every execution it is possible to include named parameters in
the query which can be substituted with actual values before execution. This allows a query to be defined
once and be efficiently executed many times. Parameters can only be used on the right-hand side of an
operator and are defined when the query is created by supplying an object produced by the
org.infinispan.query.dsl.Expression.param(String paramName) method to the operator instead of
the usual constant value. Once the parameters have been defined they can be set by invoking either
Query.setParameter(parameterName, value) or Query.setParameters(parameterMap) as shown in
the examples below.

Alternatively, you can supply a map of actual parameter values to set multiple parameters at once:

Setting multiple named parameters at once

NOTE

A significant portion of the query parsing, validation and execution planning effort is
performed during the first execution of a query with parameters. This effort is not
repeated during subsequent executions leading to better performance compared to a
similar query using constant values instead of query parameters.

2.1.5. Query execution

The Query API provides two methods for executing Ickle queries on a cache:

Query.execute() runs a SELECT statement and returns a result.

QueryFactory queryFactory = Search.getQueryFactory(cache);
// Defining a query to search for various authors and publication years
Query<Book> query = queryFactory.create("SELECT title FROM org.infinispan.sample.Book WHERE
author = :authorName AND publicationYear = :publicationYear").build();

// Set actual parameter values
query.setParameter("authorName", "Doe");
query.setParameter("publicationYear", 2010);

// Execute the query
List<Book> found = query.execute().list();

Map<String, Object> parameterMap = new HashMap<>();
parameterMap.put("authorName", "Doe");
parameterMap.put("publicationYear", 2010);

query.setParameters(parameterMap);

CHAPTER 2. CREATING ICKLE QUERIES

17

Query.executeStatement() runs a DELETE statement and modifies data.

NOTE

You should always invoke executeStatement() to modify data and invoke execute() to
get the result of a query.

Additional resources

org.infinispan.query.dsl.Query.execute()

org.infinispan.query.dsl.Query.executeStatement()

2.2. ICKLE QUERY LANGUAGE SYNTAX

The Ickle query language is subset of the JPQL query language, with some extensions for full-text.

The parser syntax has some notable rules:

Whitespace is not significant.

Wildcards are not supported in field names.

A field name or path must always be specified, as there is no default field.

&& and || are accepted instead of AND or OR in both full-text and JPA predicates.

! may be used instead of NOT.

A missing boolean operator is interpreted as OR.

String terms must be enclosed with either single or double quotes.

Fuzziness and boosting are not accepted in arbitrary order; fuzziness always comes first.

!= is accepted instead of <>.

Boosting cannot be applied to >,>=,<,<= operators. Ranges may be used to achieve the same
result.

2.2.1. Filtering operators

Ickle support many filtering operators that can be used for both indexed and non-indexed fields.

Operator Description Example

in Checks that the left operand is
equal to one of the elements from
the Collection of values given as
argument.

FROM Book WHERE isbn IN
('ZZ', 'X1234')

Red Hat Data Grid 8.3 Querying Data Grid Caches

18

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/query/dsl/Query.html#execute()
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/query/dsl/Query.html#executeStatement()
https://en.wikipedia.org/wiki/Java_Persistence_Query_Language

like Checks that the left argument
(which is expected to be a String)
matches a wildcard pattern that
follows the JPA rules.

FROM Book WHERE title
LIKE '%Java%'

= Checks that the left argument is
an exact match of the given value.

FROM Book WHERE name =
'Programming Java'

!= Checks that the left argument is
different from the given value.

FROM Book WHERE
language != 'English'

> Checks that the left argument is
greater than the given value.

FROM Book WHERE price >
20

>= Checks that the left argument is
greater than or equal to the given
value.

FROM Book WHERE price >=
20

< Checks that the left argument is
less than the given value.

FROM Book WHERE year <
2020

<= Checks that the left argument is
less than or equal to the given
value.

FROM Book WHERE price ⇐
50

between Checks that the left argument is
between the given range limits.

FROM Book WHERE price
BETWEEN 50 AND 100

Operator Description Example

2.2.2. Boolean conditions

Combining multiple attribute conditions with logical conjunction (and) and disjunction (or) operators in
order to create more complex conditions is demonstrated in the following example. The well known
operator precedence rule for boolean operators applies here, so the order of the operators is irrelevant.
Here and operator still has higher priority than or even though or was invoked first.

Boolean negation has highest precedence among logical operators and applies only to the next simple
attribute condition.

2.2.3. Nested conditions

match all books that have "Data Grid" in their title
or have an author named "Manik" and their description contains "clustering"

FROM org.infinispan.sample.Book WHERE title LIKE '%Data Grid%' OR author.name = 'Manik' AND
description like '%clustering%'

match all books that do not have "Data Grid" in their title and are authored by "Manik"
FROM org.infinispan.sample.Book WHERE title != 'Data Grid' AND author.name = 'Manik'

CHAPTER 2. CREATING ICKLE QUERIES

19

Changing the precedence of logical operators is achieved with parenthesis:

2.2.4. Projections with SELECT statements

In some use cases returning the whole domain object is overkill if only a small subset of the attributes are
actually used by the application, especially if the domain entity has embedded entities. The query
language allows you to specify a subset of attributes (or attribute paths) to return - the projection. If
projections are used then the QueryResult.list() will not return the whole domain entity but will return a
List of Object[], each slot in the array corresponding to a projected attribute.

Sorting
Ordering the results based on one or more attributes or attribute paths is done with the ORDER BY
clause. If multiple sorting criteria are specified, then the order will dictate their precedence.

2.2.5. Grouping and aggregation

Data Grid has the ability to group query results according to a set of grouping fields and construct
aggregations of the results from each group by applying an aggregation function to the set of values
that fall into each group. Grouping and aggregation can only be applied to projection queries (queries
with one or more field in the SELECT clause).

The supported aggregations are: avg, sum, count, max, and min.

The set of grouping fields is specified with the GROUP BY clause and the order used for defining
grouping fields is not relevant. All fields selected in the projection must either be grouping fields or else
they must be aggregated using one of the grouping functions described below. A projection field can be
aggregated and used for grouping at the same time. A query that selects only grouping fields but no
aggregation fields is legal. Example: Grouping Books by author and counting them.

NOTE

A projection query in which all selected fields have an aggregation function applied and no
fields are used for grouping is allowed. In this case the aggregations will be computed
globally as if there was a single global group.

match all books that have an author named "Manik" and their title contains
"Data Grid" or their description contains "clustering"
FROM org.infinispan.sample.Book WHERE author.name = 'Manik' AND (title like '%Data Grid%' OR
description like '% clustering%')

match all books that have "Data Grid" in their title or description
and return only their title and publication year
SELECT title, publicationYear FROM org.infinispan.sample.Book WHERE title like '%Data Grid%' OR
description like '%Data Grid%'

match all books that have "Data Grid" in their title or description
and return them sorted by the publication year and title
FROM org.infinispan.sample.Book WHERE title like '%Data Grid%' ORDER BY publicationYear
DESC, title ASC

SELECT author, COUNT(title) FROM org.infinispan.sample.Book WHERE title LIKE '%engine%'
GROUP BY author

Red Hat Data Grid 8.3 Querying Data Grid Caches

20

Aggregations
You can apply the following aggregation functions to a field:

Table 2.1. Index merge attributes

Aggregation function Description

avg() Computes the average of a set of numbers.
Accepted values are primitive numbers and instances
of java.lang.Number. The result is represented as
java.lang.Double. If there are no non-null values
the result is null instead.

count() Counts the number of non-null rows and returns a
java.lang.Long. If there are no non-null values the
result is 0 instead.

max() Returns the greatest value found. Accepted values
must be instances of java.lang.Comparable. If
there are no non-null values the result is null instead.

min() Returns the smallest value found. Accepted values
must be instances of java.lang.Comparable. If
there are no non-null values the result is null instead.

sum() Computes the sum of a set of Numbers. If there are
no non-null values the result is null instead. The
following table indicates the return type based on the
specified field.

Table 2.2. Table sum return type

Field Type Return Type

Integral (other than BigInteger) Long

Float or Double Double

BigInteger BigInteger

BigDecimal BigDecimal

Evaluation of queries with grouping and aggregation
Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed in two
stages: before and after the grouping operation. All filter conditions defined before invoking the
groupBy() method will be applied before the grouping operation is performed, directly to the cache
entries (not to the final projection). These filter conditions can reference any fields of the queried entity
type, and are meant to restrict the data set that is going to be the input for the grouping stage. All filter
conditions defined after invoking the groupBy() method will be applied to the projection that results
from the projection and grouping operation. These filter conditions can either reference any of the
groupBy() fields or aggregated fields. Referencing aggregated fields that are not specified in the select

CHAPTER 2. CREATING ICKLE QUERIES

21

clause is allowed; however, referencing non-aggregated and non-grouping fields is forbidden. Filtering in
this phase will reduce the amount of groups based on their properties. Sorting can also be specified
similar to usual queries. The ordering operation is performed after the grouping operation and can
reference any of the groupBy() fields or aggregated fields.

2.2.6. DELETE statements

You can delete entities from Data Grid caches with the following syntax:

Reference only single entities with <entityName>. DELETE queries cannot use joins.

WHERE conditions are optional.

DELETE queries cannot use any of the following:

Projections with SELECT statements

Grouping and aggregation

ORDER BY clauses

TIP

Invoke the Query.executeStatement() method to execute DELETE statements.

Additional resources

org.infinispan.query.dsl.Query.executeStatement()

2.3. FULL-TEXT QUERIES

You can perform full-text searches with the Ickle query language.

2.3.1. Fuzzy queries

To execute a fuzzy query add ~ along with an integer, representing the distance from the term used,
after the term. For instance

2.3.2. Range queries

To execute a range query define the given boundaries within a pair of braces, as seen in the following
example:

2.3.3. Phrase queries

A group of words can be searched by surrounding them in quotation marks, as seen in the following

DELETE FROM <entityName> [WHERE condition]

FROM sample_bank_account.Transaction WHERE description : 'cofee'~2

FROM sample_bank_account.Transaction WHERE amount : [20 to 50]

Red Hat Data Grid 8.3 Querying Data Grid Caches

22

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/query/dsl/Query.html#executeStatement()

A group of words can be searched by surrounding them in quotation marks, as seen in the following
example:

2.3.4. Proximity queries

To execute a proximity query, finding two terms within a specific distance, add a ~ along with the
distance after the phrase. For instance, the following example will find the words canceling and fee
provided they are not more than 3 words apart:

2.3.5. Wildcard queries

To search for "text" or "test", use the ? single-character wildcard search:

To search for "test", "tests", or "tester", use the * multi-character wildcard search:

2.3.6. Regular expression queries

Regular expression queries can be performed by specifying a pattern between /. Ickle uses Lucene’s
regular expression syntax, so to search for the words moat or boat the following could be used:

2.3.7. Boosting queries

Terms can be boosted by adding a ^ after the term to increase their relevance in a given query, the
higher the boost factor the more relevant the term will be. For instance to search for titles containing
beer and wine with a higher relevance on beer, by a factor of 3, the following could be used:

FROM sample_bank_account.Transaction WHERE description : 'bus fare'

FROM sample_bank_account.Transaction WHERE description : 'canceling fee'~3

FROM sample_bank_account.Transaction where description : 'te?t'

FROM sample_bank_account.Transaction where description : 'test*'

FROM sample_library.Book where title : /[mb]oat/

FROM sample_library.Book WHERE title : beer^3 OR wine

CHAPTER 2. CREATING ICKLE QUERIES

23

CHAPTER 3. QUERYING REMOTE CACHES
You can index and query remote caches on Data Grid Server.

3.1. QUERYING CACHES FROM HOT ROD JAVA CLIENTS

Data Grid lets you programmatically query remote caches from Java clients through the Hot Rod
endpoint. This procedure explains how to index query a remote cache that stores Book instances.

Prerequisites

Add the ProtoStream processor to your pom.xml.

Data Grid provides this processor for the @ProtoField and @ProtoDoc annotations so you can
generate Protobuf schemas and perform queries.

Procedure

1. Add indexing annotations to your class, as in the following example:

Book.java

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-bom</artifactId>
 <version>${version.infinispan}</version>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.infinispan.protostream</groupId>
 <artifactId>protostream-processor</artifactId>
 <scope>provided</scope>
 </dependency>
</dependencies>

import org.infinispan.protostream.annotations.ProtoDoc;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

@ProtoDoc("@Indexed")
public class Book {

 @ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store = Store.NO)")
 @ProtoField(number = 1)
 final String title;

 @ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store = Store.NO)")
 @ProtoField(number = 2)

Red Hat Data Grid 8.3 Querying Data Grid Caches

24

2. Implement the SerializationContextInitializer interface in a new class and then add the
@AutoProtoSchemaBuilder annotation.

a. Reference the class that includes the @ProtoField and @ProtoDoc annotations with the
includeClasses parameter.

b. Define a name for the Protobuf schema that you generate and filesystem path with the
schemaFileName and schemaFilePath parameters.

c. Specify the package name for the Protobuf schema with the schemaPackageName
parameter.

RemoteQueryInitializer.java

3. Compile your project.
The code examples in this procedure generate a proto/book.proto schema and an
RemoteQueryInitializerImpl.java implementation of the annotated Book class.

Next steps

Create a remote cache that configures Data Grid to index your entities. For example, the following
remote cache indexes the Book entity in the book.proto schema that you generated in the previous
step:

 final String description;

 @ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store = Store.NO)")
 @ProtoField(number = 3, defaultValue = "0")
 final int publicationYear;

 @ProtoFactory
 Book(String title, String description, int publicationYear) {
 this.title = title;
 this.description = description;
 this.publicationYear = publicationYear;
 }
 // public Getter methods omitted for brevity
}

import org.infinispan.protostream.SerializationContextInitializer;
import org.infinispan.protostream.annotations.AutoProtoSchemaBuilder;

@AutoProtoSchemaBuilder(
 includeClasses = {
 Book.class
 },
 schemaFileName = "book.proto",
 schemaFilePath = "proto/",
 schemaPackageName = "book_sample")
public interface RemoteQueryInitializer extends SerializationContextInitializer {
}

<replicated-cache name="books">
 <indexing>
 <indexed-entities>

CHAPTER 3. QUERYING REMOTE CACHES

25

The following RemoteQuery class does the following:

Registers the RemoteQueryInitializerImpl serialization context with a Hot Rod Java client.

Registers the Protobuf schema, book.proto, with Data Grid Server.

Adds two Book instances to the remote cache.

Performs a full-text query that matches books by keywords in the title.

RemoteQuery.java

 <indexed-entity>book_sample.Book</indexed-entity>
 </indexed-entities>
 </indexing>
</replicated-cache>

package org.infinispan;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;

import org.infinispan.client.hotrod.RemoteCache;
import org.infinispan.client.hotrod.RemoteCacheManager;
import org.infinispan.client.hotrod.Search;
import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.query.dsl.Query;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.remote.client.ProtobufMetadataManagerConstants;

public class RemoteQuery {

 public static void main(String[] args) throws Exception {
 ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
 // RemoteQueryInitializerImpl is generated
 clientBuilder.addServer().host("127.0.0.1").port(11222)
 .security().authentication().username("user").password("user")
 .addContextInitializers(new RemoteQueryInitializerImpl());

 RemoteCacheManager remoteCacheManager = new
RemoteCacheManager(clientBuilder.build());

 // Grab the generated protobuf schema and registers in the server.
 Path proto = Paths.get(RemoteQuery.class.getClassLoader()
 .getResource("proto/book.proto").toURI());
 String protoBufCacheName =
ProtobufMetadataManagerConstants.PROTOBUF_METADATA_CACHE_NAME;
 remoteCacheManager.getCache(protoBufCacheName).put("book.proto", Files.readString(proto));

 // Obtain the 'books' remote cache
 RemoteCache<Object, Object> remoteCache = remoteCacheManager.getCache("books");

 // Add some Books
 Book book1 = new Book("Infinispan in Action", "Learn Infinispan with using it", 2015);

Red Hat Data Grid 8.3 Querying Data Grid Caches

26

Additional resources

Marshalling and Encoding Data for more information about creating serialization contexts and
registering Protobuf schema.

ProtoStream annotations for more information about the @ProtoField, @ProtoDoc, and
@AutoProtoSchemaBuilder annotations.

3.2. QUERYING CACHES FROM DATA GRID CONSOLE AND CLI

Data Grid Console and the Data Grid Command Line Interface (CLI) let you query indexed and non-
indexed remote caches. You can also use any HTTP client to index and query caches via the REST API.

This procedure explains how to index and query a remote cache that stores Person instances.

Prerequisites

Have at least one running Data Grid Server instance.

Have Data Grid credentials with create permissions.

Procedure

1. Add indexing annotations to your Protobuf schema, as in the following example:

 Book book2 = new Book("Cloud-Native Applications with Java and Quarkus", "Build robust and
reliable cloud applications", 2019);

 remoteCache.put(1, book1);
 remoteCache.put(2, book2);

 // Execute a full-text query
 QueryFactory queryFactory = Search.getQueryFactory(remoteCache);
 Query<Book> query = queryFactory.create("FROM book_sample.Book WHERE title:'java'");

 List<Book> list = query.execute().list(); // Voila! We have our book back from the cache!
 }
}

package org.infinispan.example;

/* @Indexed */
message Person {
 /* @Field(index=Index.YES, store = Store.NO, analyze = Analyze.NO) */
 optional int32 id = 1;

 /* @Field(index=Index.YES, store = Store.YES, analyze = Analyze.NO) */
 required string name = 2;

 /* @Field(index=Index.YES, store = Store.YES, analyze = Analyze.NO) */
 required string surname = 3;

 /* @Field(index=Index.YES, store = Store.YES, analyze = Analyze.NO) */

CHAPTER 3. QUERYING REMOTE CACHES

27

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/#protostream-annotations_marshalling

From the Data Grid CLI, use the schema command with the --upload= argument as follows:

schema --upload=person.proto person.proto

2. Create a cache named people that uses ProtoStream encoding and configures Data Grid to
index entities declared in your Protobuf schema.
The following cache indexes the Person entity from the previous step:

From the CLI, use the create cache command with the --file= argument as follows:

create cache --file=people.xml people

3. Add entries to the cache.
To query a remote cache, it needs to contain some data. For this example procedure, create
entries that use the following JSON values:

PersonOne

PersonTwo

PersonThree

 optional int32 age = 6;

}

<distributed-cache name="people">
 <encoding media-type="application/x-protostream"/>
 <indexing>
 <indexed-entities>
 <indexed-entity>org.infinispan.example.Person</indexed-entity>
 </indexed-entities>
 </indexing>
</distributed-cache>

{
 "_type":"org.infinispan.example.Person",
 "id":1,
 "name":"Person",
 "surname":"One",
 "age":44
}

{
 "_type":"org.infinispan.example.Person",
 "id":2,
 "name":"Person",
 "surname":"Two",
 "age":27
}

{
 "_type":"org.infinispan.example.Person",

Red Hat Data Grid 8.3 Querying Data Grid Caches

28

From the CLI, use the put command with the --file= argument to add each entry, as follows:

put --encoding=application/json --file=personone.json personone

TIP

From Data Grid Console, you must select Custom Type for the Value content type field when
you add values in JSON format with custom types .

4. Query your remote cache.
From the CLI, use the query command from the context of the remote cache.

query "from org.infinispan.example.Person p WHERE p.name='Person' ORDER BY p.age
ASC"

The query returns all entries with a name that matches Person by age in ascending order.

Additional resources

Data Grid REST API

3.3. USING ANALYZERS WITH REMOTE CACHES

Analyzers convert input data into terms that you can index and query. You specify analyzer definitions
with the @Field annotation in your Java classes or directly in Protobuf schema.

Procedure

1. Include the Analyze.YES attribute to indicate that the property is analyzed.

2. Specify the analyzer definition with the @Analyzer annotation.

Protobuf schema

Java classes

 "id":3,
 "name":"Person",
 "surname":"Three",
 "age":35
}

/* @Indexed */
message TestEntity {

 /* @Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition =
"keyword")) */
 optional string id = 1;

 /* @Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition = "simple"))
*/
 optional string name = 2;
}

CHAPTER 3. QUERYING REMOTE CACHES

29

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_rest_api/

Java classes

3.3.1. Default analyzer definitions

Data Grid provides a set of default analyzer definitions.

Definition Description

standard Splits text fields into tokens, treating whitespace and
punctuation as delimiters.

simple Tokenizes input streams by delimiting at non-letters
and then converting all letters to lowercase
characters. Whitespace and non-letters are
discarded.

whitespace Splits text streams on whitespace and returns
sequences of non-whitespace characters as tokens.

keyword Treats entire text fields as single tokens.

stemmer Stems English words using the Snowball Porter filter.

ngram Generates n-gram tokens that are 3 grams in size by
default.

filename Splits text fields into larger size tokens than the
standard analyzer, treating whitespace as a
delimiter and converts all letters to lowercase
characters.

These analyzer definitions are based on Apache Lucene and are provided "as-is". For more information
about tokenizers, filters, and CharFilters, see the appropriate Lucene documentation.

3.3.2. Creating custom analyzer definitions

Create custom analyzer definitions and add them to your Data Grid Server installations.

Prerequisites

Stop Data Grid Server if it is running.

@ProtoDoc("@Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition =
\"keyword\"))")
@ProtoField(1)
final String id;

@ProtoDoc("@Field(store = Store.YES, analyze = Analyze.YES, analyzer = @Analyzer(definition =
\"simple\"))")
@ProtoField(2)
final String description;

Red Hat Data Grid 8.3 Querying Data Grid Caches

30

Data Grid Server loads classes at startup only.

Procedure

1. Implement the ProgrammaticSearchMappingProvider API.

2. Package your implementation in a JAR with the fully qualified class (FQN) in the following file:

META-INF/services/org.infinispan.query.spi.ProgrammaticSearchMappingProvider

3. Copy your JAR file to the server/lib directory of your Data Grid Server installation.

4. Start Data Grid Server.

ProgrammaticSearchMappingProvider example

import org.apache.lucene.analysis.core.LowerCaseFilterFactory;
import org.apache.lucene.analysis.core.StopFilterFactory;
import org.apache.lucene.analysis.standard.StandardFilterFactory;
import org.apache.lucene.analysis.standard.StandardTokenizerFactory;
import org.hibernate.search.cfg.SearchMapping;
import org.infinispan.Cache;
import org.infinispan.query.spi.ProgrammaticSearchMappingProvider;

public final class MyAnalyzerProvider implements ProgrammaticSearchMappingProvider {

 @Override
 public void defineMappings(Cache cache, SearchMapping searchMapping) {
 searchMapping
 .analyzerDef("standard-with-stop", StandardTokenizerFactory.class)
 .filter(StandardFilterFactory.class)
 .filter(LowerCaseFilterFactory.class)
 .filter(StopFilterFactory.class);
 }
}

CHAPTER 3. QUERYING REMOTE CACHES

31

CHAPTER 4. QUERYING EMBEDDED CACHES
Use embedded queries when you add Data Grid as a library to custom applications.

Protobuf mapping is not required with embedded queries. Indexing and querying are both done on top
of Java objects.

4.1. QUERYING EMBEDDED CACHES

This section explains how to query an embedded cache using an example cache named "books" that
stores indexed Book instances.

In this example, each Book instance defines which properties are indexed and specifies some advanced
indexing options with Hibernate Search annotations as follows:

Book.java

Author.java

package org.infinispan.sample;

import java.time.LocalDate;
import java.util.HashSet;
import java.util.Set;

import org.hibernate.search.mapper.pojo.mapping.definition.annotation.*;

// Annotate values with @Indexed to add them to indexes
// Annotate each fields according to how you want to index it
@Indexed
public class Book {
 @FullTextField
 String title;

 @FullTextField
 String description;

 @KeywordField
 String isbn;

 @GenericField
 LocalDate publicationDate;

 @IndexedEmbedded
 Set<Author> authors = new HashSet<Author>();
}

package org.infinispan.sample;

import org.hibernate.search.mapper.pojo.mapping.definition.annotation.FullTextField;

public class Author {
 @FullTextField
 String name;

Red Hat Data Grid 8.3 Querying Data Grid Caches

32

Procedure

1. Configure Data Grid to index the "books" cache and specify org.infinispan.sample.Book as
the entity to index.

2. Obtain the cache.

3. Perform queries for fields in the Book instances that are stored in the Data Grid cache, as in the
following example:

4.2. ENTITY MAPPING ANNOTATIONS

Add annotations to your Java classes to map your entities to indexes.

 @FullTextField
 String surname;
}

<distributed-cache name="books">
 <indexing path="${user.home}/index">
 <indexed-entities>
 <indexed-entity>org.infinispan.sample.Book</indexed-entity>
 </indexed-entities>
 </indexing>
</distributed-cache>

import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.manager.EmbeddedCacheManager;

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan.xml");
Cache<String, Book> cache = manager.getCache("books");

// Get the query factory from the cache
QueryFactory queryFactory = org.infinispan.query.Search.getQueryFactory(cache);

// Create an Ickle query that performs a full-text search using the ':' operator on the 'title' and
'authors.name' fields
// You can perform full-text search only on indexed caches
Query<Book> fullTextQuery = queryFactory.create("FROM org.infinispan.sample.Book b
WHERE b.title:'infinispan' AND b.authors.name:'sanne'");

// Use the '=' operator to query fields in caches that are indexed or not
// Non full-text operators apply only to fields that are not analyzed
Query<Book> exactMatchQuery=queryFactory.create("FROM org.infinispan.sample.Book b
WHERE b.isbn = '12345678' AND b.authors.name : 'sanne'");

// You can use full-text and non-full text operators in the same query
Query<Book> query=queryFactory.create("FROM org.infinispan.sample.Book b where
b.authors.name : 'Stephen' and b.description : (+'dark' -'tower')");

// Get the results
List<Book> found=query.execute().list();

CHAPTER 4. QUERYING EMBEDDED CACHES

33

Hibernate Search API

Data Grid uses the Hibernate Search API to define fine grained configuration for indexing at entity
level. This configuration includes which fields are annotated, which analyzers should be used, how to map
nested objects, and so on.

The following sections provide information that applies to entity mapping annotations for use with Data
Grid.

For complete detail about these annotations, you should refer to the Hibernate Search manual.

@DocumentId
Unlike Hibernate Search, using @DocumentId to mark a field as identifier does not apply to Data Grid
values; in Data Grid the identifier for all @Indexed objects is the key used to store the value. You can
still customize how the key is indexed using a combination of @Transformable , custom types and
custom FieldBridge implementations.

@Transformable keys
The key for each value needs to be indexed as well, and the key instance must be transformed in a
String. Data Grid includes some default transformation routines to encode common primitives, but to
use a custom key you must provide an implementation of org.infinispan.query.Transformer .

Registering a key Transformer via annotations

You can annotate your key class with org.infinispan.query.Transformable and your custom
transformer implementation will be picked up automatically:

Registering a key Transformer via the cache indexing configuration

Use the key-transformers xml element in both embedded and server config:

@Transformable(transformer = CustomTransformer.class)
public class CustomKey {
 ...
}

public class CustomTransformer implements Transformer {
 @Override
 public Object fromString(String s) {
 ...
 return new CustomKey(...);
 }

 @Override
 public String toString(Object customType) {
 CustomKey ck = (CustomKey) customType;
 return ...
 }
}

<replicated-cache name="test">
 <indexing auto-config="true">
 <key-transformers>
 <key-transformer key="com.mycompany.CustomKey"
 transformer="com.mycompany.CustomTransformer"/>

Red Hat Data Grid 8.3 Querying Data Grid Caches

34

http://hibernate.org/search/
https://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/#mapper-orm-mapping

Alternatively, use the Java configuration API (embedded mode):

4.3. PROGRAMMATICALLY MAPPING ENTITIES

You can programmatically map entities to the index as an alternative to annotating Java classes.

In the following example we map an object Author which is to be stored in the grid and made searchable
on two properties:

 </key-transformers>
 </indexing>
</replicated-cache>

 ConfigurationBuilder builder = ...
 builder.indexing().enable()
 .addKeyTransformer(CustomKey.class, CustomTransformer.class);

import org.apache.lucene.search.Query;
import org.hibernate.search.cfg.Environment;
import org.hibernate.search.cfg.SearchMapping;
import org.hibernate.search.query.dsl.QueryBuilder;
import org.infinispan.Cache;
import org.infinispan.configuration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.configuration.cache.Index;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.query.CacheQuery;
import org.infinispan.query.Search;
import org.infinispan.query.SearchManager;

import java.io.IOException;
import java.lang.annotation.ElementType;
import java.util.Properties;

SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
 .property("name", ElementType.METHOD).field()
 .property("surname", ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]");

Configuration infinispanConfiguration = new ConfigurationBuilder()
 .indexing().index(Index.NONE)
 .withProperties(properties)
 .build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);

CHAPTER 4. QUERYING EMBEDDED CACHES

35

QueryBuilder qb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = qb.keyword().onField("name").matching("Manik").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);
assert cq.getResultSize() == 1;

Red Hat Data Grid 8.3 Querying Data Grid Caches

36

CHAPTER 5. CREATING CONTINUOUS QUERIES
Applications can register listeners to receive continual updates about cache entries that match query
filters.

5.1. CONTINUOUS QUERIES

Continuous queries provide applications with real-time notifications about data in Data Grid caches that
are filtered by queries. When entries match the query Data Grid sends the updated data to any listeners,
which provides a stream of events instead of applications having to execute the query.

Continuous queries can notify applications about incoming matches, for values that have joined the set;
updated matches, for matching values that were modified and continue to match; and outgoing
matches, for values that have left the set.

For example, continuous queries can notify applications about all:

Persons with an age between 18 and 25, assuming the Person entity has an age property and is
updated by the user application.

Transactions for dollar amounts larger than $2000.

Times where the lap speed of F1 racers were less than 1:45.00 seconds, assuming the cache
contains Lap entries and that laps are entered during the race.

NOTE

Continuous queries can use all query capabilities except for grouping, aggregation, and
sorting operations.

How continuous queries work
Continuous queries notify client listeners with the following events:

Join

A cache entry matches the query.

Update

A cache entry that matches the query is updated and still matches the query.

Leave

A cache entry no longer matches the query.

When a client registers a continuous query listener it immediately receives Join events for any entries
that match the query. Client listeners receive subsequent events each time a cache operation modifies
entries that match the query.

Data Grid determines when to send Join, Update, or Leave events to client listeners as follows:

If the query on both the old and new value does not match, Data Grid does not sent an event.

If the query on the old value does not match but the new value does, Data Grid sends a Join
event.

If the query on both the old and new values match, Data Grid sends an Update event.

If the query on the old value matches but the new value does not, Data Grid sends a Leave

CHAPTER 5. CREATING CONTINUOUS QUERIES

37

If the query on the old value matches but the new value does not, Data Grid sends a Leave
event.

If the query on the old value matches and the entry is then deleted or it expires, Data Grid sends
a Leave event.

5.1.1. Continuous queries and Data Grid performance

Continuous queries provide a constant stream of updates to applications, which can generate a
significant number of events. Data Grid temporarily allocates memory for each event it generates, which
can result in memory pressure and potentially lead to OutOfMemoryError exceptions, especially for
remote caches. For this reason, you should carefully design your continuous queries to avoid any
performance impact.

Data Grid strongly recommends that you limit the scope of your continuous queries to the smallest
amount of information that you need. To achieve this, you can use projections and predicates. For
example, the following statement provides results about only a subset of fields that match the criteria
rather than the entire entry:

It is also important to ensure that each ContinuousQueryListener you create can quickly process all
received events without blocking threads. To achieve this, you should avoid any cache operations that
generate events unnecessarily.

5.2. CREATING CONTINUOUS QUERIES

You can create continuous queries for remote and embedded caches.

Procedure

1. Create a Query object.

2. Obtain the ContinuousQuery object of your cache by calling the appropriate method:

Remote caches:
org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V> cache)

Embedded caches: org.infinispan.query.Search.getContinuousQuery(Cache<K, V>
cache)

3. Register the query and a ContinuousQueryListener object as follows:

4. When you no longer need the continuous query, remove the listener as follows:

Continuous query example
The following code example demonstrates a simple continuous query with an embedded cache.

In this example, the listener receives notifications when any Person instances under the age of 21 are
added to the cache. Those Person instances are also added to the "matches" map. When the entries are

SELECT field1, field2 FROM Entity WHERE x AND y

continuousQuery.addContinuousQueryListener(query, listener);

continuousQuery.removeContinuousQueryListener(listener);

Red Hat Data Grid 8.3 Querying Data Grid Caches

38

removed from the cache or their age becomes greater than or equal to 21, they are removed from
"matches" map.

Registering a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;
import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.dsl.Query;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

[...]

// We have a cache of Person objects.
Cache<Integer, Person> cache = ...

// Create a ContinuousQuery instance on the cache.
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define a query.
// In this example, we search for Person instances under 21 years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);
Query query = queryFactory.create("FROM Person p WHERE p.age < 21");

final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQueryListener.
ContinuousQueryListener<Integer, Person> listener = new ContinuousQueryListener<Integer,
Person>() {
 @Override
 public void resultJoining(Integer key, Person value) {
 matches.put(key, value);
 }

 @Override
 public void resultUpdated(Integer key, Person value) {
 // We do not process this event.
 }

 @Override
 public void resultLeaving(Integer key) {
 matches.remove(key);
 }
};

// Add the listener and the query.
continuousQuery.addContinuousQueryListener(query, listener);

[...]

// Remove the listener to stop receiving notifications.
continuousQuery.removeContinuousQueryListener(listener);

CHAPTER 5. CREATING CONTINUOUS QUERIES

39

CHAPTER 6. MONITORING AND TUNING DATA GRID QUERIES
Data Grid exposes statistics for queries and provides attributes that you can adjust to improve query
performance.

6.1. GETTING QUERY STATISTICS

Collect statistics to gather information about performance of your indexes and queries, including
information such as the types of indexes and average time for queries to complete.

Procedure

Do one of the following:

Invoke the getSearchStatistics() or getClusteredSearchStatistics() methods for embedded
caches.

Use GET requests to obtain statistics for remote caches from the REST API.

Embedded caches

Remote caches

GET /v2/caches/{cacheName}/search/stats

6.2. TUNING QUERY PERFORMANCE

Use the following guidelines to help you improve the performance of indexing operations and queries.

Checking index usage statistics

Queries against partially indexed caches return slower results. For instance, if some fields in a schema
are not annotated then the resulting index does not include those fields.

Start tuning query performance by checking the time it takes for each type of query to run. If your
queries seem to be slow, you should make sure that queries are using the indexes for caches and that all
entities and field mappings are indexed.

Adjusting the commit interval for indexes

Indexing can degrade write throughput for Data Grid clusters. The commit-interval attribute defines
the interval, in milliseconds, between which index changes that are buffered in memory are flushed to
the index storage and a commit is performed.

This operation is costly so you should avoid configuring an interval that is too small. The default is 1000
ms (1 second).

// Statistics for the local cluster member
SearchStatistics statistics = Search.getSearchStatistics(cache);

// Consolidated statistics for the whole cluster
CompletionStage<SearchStatisticsSnapshot> statistics =
Search.getClusteredSearchStatistics(cache)

Red Hat Data Grid 8.3 Querying Data Grid Caches

40

Adjusting the refresh interval for queries

The refresh-interval attribute defines the interval, in milliseconds, between which the index reader is
refreshed.

The default value is 0, which returns data in queries as soon as it is written to a cache.

A value greater than 0 results in some stale query results but substantially increases throughput,
especially in write-heavy scenarios. If you do not need data returned in queries as soon as it is written,
you should adjust the refresh interval to improve query performance.

CHAPTER 6. MONITORING AND TUNING DATA GRID QUERIES

41

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INDEXING DATA GRID CACHES
	1.1. CONFIGURING DATA GRID TO INDEX CACHES
	Protobuf messages
	Java objects
	1.1.1. Index configuration
	1.1.1.1. Index storage
	1.1.1.2. Index reader
	1.1.1.3. Index writer

	1.2. INDEXING ANNOTATIONS
	Remote caches
	Embedded caches

	1.3. REBUILDING INDEXES
	1.4. NON-INDEXED QUERIES

	CHAPTER 2. CREATING ICKLE QUERIES
	2.1. ICKLE QUERIES
	2.1.1. Pagination
	2.1.2. Number of hits
	2.1.3. Iteration
	2.1.4. Named query parameters
	2.1.5. Query execution

	2.2. ICKLE QUERY LANGUAGE SYNTAX
	2.2.1. Filtering operators
	2.2.2. Boolean conditions
	2.2.3. Nested conditions
	2.2.4. Projections with SELECT statements
	Sorting

	2.2.5. Grouping and aggregation
	Aggregations
	Evaluation of queries with grouping and aggregation

	2.2.6. DELETE statements

	2.3. FULL-TEXT QUERIES
	2.3.1. Fuzzy queries
	2.3.2. Range queries
	2.3.3. Phrase queries
	2.3.4. Proximity queries
	2.3.5. Wildcard queries
	2.3.6. Regular expression queries
	2.3.7. Boosting queries

	CHAPTER 3. QUERYING REMOTE CACHES
	3.1. QUERYING CACHES FROM HOT ROD JAVA CLIENTS
	3.2. QUERYING CACHES FROM DATA GRID CONSOLE AND CLI
	3.3. USING ANALYZERS WITH REMOTE CACHES
	3.3.1. Default analyzer definitions
	3.3.2. Creating custom analyzer definitions

	CHAPTER 4. QUERYING EMBEDDED CACHES
	4.1. QUERYING EMBEDDED CACHES
	4.2. ENTITY MAPPING ANNOTATIONS
	@DocumentId
	@Transformable keys

	4.3. PROGRAMMATICALLY MAPPING ENTITIES

	CHAPTER 5. CREATING CONTINUOUS QUERIES
	5.1. CONTINUOUS QUERIES
	How continuous queries work
	5.1.1. Continuous queries and Data Grid performance

	5.2. CREATING CONTINUOUS QUERIES
	Continuous query example

	CHAPTER 6. MONITORING AND TUNING DATA GRID QUERIES
	6.1. GETTING QUERY STATISTICS
	6.2. TUNING QUERY PERFORMANCE

