
Red Hat Data Grid 8.3

Migrating to Data Grid 8

Migrate deployments and applications to Data Grid 8

Last Updated: 2023-11-24

Red Hat Data Grid 8.3 Migrating to Data Grid 8

Migrate deployments and applications to Data Grid 8

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Migrate to Red Hat Data Grid 8 from a previous version. This guide provides detailed information
about changes between these versions in addition to an overview of architectural differences for
Data Grid 8 deployments.

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT DATA GRID

DATA GRID DOCUMENTATION

DATA GRID DOWNLOADS

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DATA GRID 8
1.1. MIGRATION TO DATA GRID 8
1.2. MIGRATION PATHS
1.3. COMPONENT DOWNLOADS

Maven repository
Data Grid Server
Modules for JBoss EAP
Tomcat session client
Hot Rod Node.js client
Source code

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS
2.1. DATA GRID SERVER 8
2.2. DATA GRID SERVER CONFIGURATION

Dynamic configuration
Static configuration

Cache container configuration
Server configuration

2.3. CHANGES TO THE DATA GRID SERVER 8.2 CONFIGURATION SCHEMA
Security authorization
Client trust stores
Endpoint connectors
Modified elements and attributes
New elements and attributes
Deprecated elements and attributes
Removed elements and attributes

2.4. CHANGES TO THE DATA GRID SERVER 8.3 CONFIGURATION SCHEMA
Schema changes
Modified elements and attributes
New elements and attributes
Deprecated elements and attributes
Removed elements and attributes

2.5. DATA GRID SERVER ENDPOINT AND NETWORK CONFIGURATION
2.5.1. Interfaces

Data Grid Server 7.x network interface configuration
Data Grid Server 8 network interface configuration

2.5.2. Socket bindings
Data Grid Server 7.x socket binding configuration
Data Grid Server 8 single port configuration

2.5.3. Endpoints
Data Grid Server 7.x endpoint subsystem
Data Grid Server 8 endpoint configuration

2.6. DATA GRID SERVER SECURITY
2.6.1. Security realms

6

7

8

9

10
10
10
10
11
11

12
12
12
12

13
13
13
13
14
14
15
16
16
17
17
18
18
18
18
18
18
19
19
19
19
19

20
20
20
20
20
21
21
21
21
22
22

Table of Contents

1

. .

Supported security realms
2.6.2. Server identities
2.6.3. Endpoint authentication mechanisms

Hot Rod SASL authentication mechanisms
HTTP (REST) authentication mechanisms

2.6.4. Authenticating EAP applications
2.6.5. Logging

Access logs
2.7. SEPARATING DATA GRID SERVER ENDPOINTS
2.8. DATA GRID SERVER SHARED DATASOURCES
2.9. DATA GRID SERVER JMX AND METRICS
2.10. DATA GRID SERVER CHEATSHEET

Starting server instances
Starting the CLI
Creating users
Stopping server instances
Listing available command options
7.x to 8 reference

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION
3.1. DATA GRID CACHE CONFIGURATION

3.1.1. Cache encoding
3.1.2. Cache health status
3.1.3. Changes to the Data Grid 8.1 configuration schema

New and modified elements and attributes
Deprecated elements and attributes
Removed elements and attributes

3.1.4. Changes to the Data Grid 8.2 configuration schema
Modified elements and attributes
New elements and attributes
Deprecated elements and attributes
Removed elements and attributes

3.1.5. Changes to the Data Grid 8.3 configuration schema
Schema changes
Modified elements and attributes
New elements and attributes
Deprecated elements and attributes
Removed elements and attributes

3.2. EVICTION CONFIGURATION
3.2.1. Storage types

Changes in Data Grid 8
Object storage in Data Grid 8
Off-heap storage in Data Grid 8

Off-heap address count
Binary storage in Data Grid 8

3.2.2. Eviction threshold
Eviction based on total number of entries
Eviction based on maximum amount of memory

3.2.3. Eviction strategies
Eviction algorithms

3.2.4. Eviction configuration comparison
Object storage and evict on number of entries

7.2 to 8.0

22
23
23
23
25
25
25
26
26
28
29
29
29
30
30
30
30
30

32
32
33
33
34
34
34
35
35
35
35
36
36
36
36
36
36
37
37
37
37
38
38
38
38
38
39
39
39
39
40
40
40
40

Red Hat Data Grid 8.3 Migrating to Data Grid 8

2

. .

8.1
Object storage and evict on amount of memory

7.2 to 8.0
8.1

Binary storage and evict on number of entries
7.2 to 8.0
8.1

Binary storage and evict on amount of memory
7.2 to 8.0
8.1

Off-heap storage and evict on number of entries
7.2 to 8.0
8.1

Off-heap storage and evict on amount of memory
7.2 to 8.0
8.1

3.3. EXPIRATION CONFIGURATION
3.4. PERSISTENT CACHE STORES

Persistence SPI
Custom cache stores
Segmented cache stores
Single file cache stores
JDBC cache stores

JDBC connection factories
Segmentation

Write-behind
Removed cache stores and loaders
Cache store migrator
3.4.1. File-based cache stores default to soft index

3.4.1.1. Declarative configuration
3.4.1.2. Programmatic configuration
3.4.1.3. Using single file cache stores with Data Grid 8.3

3.5. DATA GRID CLUSTER TRANSPORT
3.5.1. Transport security
3.5.2. Retransmission requests

3.6. DATA GRID AUTHORIZATION
Roles and Permissions

cache manager permissions
Cache permissions

Cache manager authorization
Implicit cache authorization

CHAPTER 4. MIGRATING TO DATA GRID 8 APIS
4.1. REST API

4.1.1. REST API changes in 8.3
Re-indexing caches
Rolling upgrade operations

4.2. QUERY API
Indexing Data Grid caches

Enabling indexing in Data Grid 8
Querying values in caches
4.2.1. Query API changes in 8.2

Query statistics

40
40
40
41
41
41
41
41
41
41
41
41
41
41
41
41

42
42
42
43
43
43
43
43
44
44
44
44
44
45
45
45
46
47
47
48
48
48
49
51
52

53
53
53
53
53
53
54
54
55
55
55

Table of Contents

3

. .

. .

. .

Indexing Data Grid caches
Index manager
Index reader and writer
Index storage
Adapting index properties

Hibernate and Lucene annotations
4.2.2. Query API changes in 8.3

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8
5.1. MARSHALLING IN DATA GRID 8

5.1.1. ProtoStream marshalling
Nested ProtoStream annotations
Marshalling with Data Grid Server
Cache stores and ProtoStream

5.1.2. Alternative marshaller implementations
Deserialization Allow List
JBoss marshalling

5.2. MIGRATING APPLICATIONS TO THE AUTOPROTOSCHEMABUILDER ANNOTATION
5.2.1. Basic MessageMarshaller implementation

Migrated to the AutoProtoSchemaBuilder annotation
Important observations

5.2.2. MessageMarshaller implementation with custom types
Migrated code with an adapter class
Migrated code without an adapter class

CHAPTER 6. MIGRATING DATA GRID CLUSTERS ON RED HAT OPENSHIFT
6.1. DATA GRID ON OPENSHIFT

Creating Data Grid Services
Creating Cache service nodes in 7.3
Creating Data Grid service nodes in 7.3
Creating services in Data Grid 8

6.1.1. Container storage
6.1.2. Data Grid CLI
6.1.3. Data Grid console
6.1.4. Customizing Data Grid
6.1.5. Deployment configuration templates

6.2. DATA GRID 8.2 ON OPENSHIFT
Prometheus ServiceMonitor

6.3. DATA GRID 8.3 ON OPENSHIFT

CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES
7.1. CACHE STORE MIGRATOR
7.2. GETTING THE CACHE STORE MIGRATOR
7.3. CONFIGURING THE CACHE STORE MIGRATOR

7.3.1. Configuration properties for the cache store migrator
7.4. MIGRATING DATA GRID CACHE STORES

56
56
56
57
58
58
59

60
60
60
60
61
61
61
61

62
62
63
64
65
65
66
67

70
70
70
70
70
70
71
71
71
71
71
71
71
72

73
73
73
74
75
79

Red Hat Data Grid 8.3 Migrating to Data Grid 8

4

Table of Contents

5

RED HAT DATA GRID
Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure

Flexibility to store different objects as key-value pairs.

Grid-based data storage

Designed to distribute and replicate data across clusters.

Elastic scaling

Dynamically adjust the number of nodes to meet demand without service disruption.

Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

6

DATA GRID DOCUMENTATION
Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.3 Documentation

Data Grid 8.3 Component Details

Supported Configurations for Data Grid 8.3

Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

DATA GRID DOCUMENTATION

7

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

8

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

9

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DATA GRID 8
Start the journey of migration to Data Grid 8 with a brief overview and a look at some of the basics.

1.1. MIGRATION TO DATA GRID 8

Data Grid 8 introduces significant changes from previous Data Grid versions, including a whole new
architecture for server deployments.

While this makes certain aspects of migration more challenging for existing environments, the Data Grid
team believe that these changes benefit users by reducing deployment complexity and administrative
overhead.

In comparison to previous versions, migration to Data Grid 8 means you gain:

Cloud-native design built for container platforms.

Lighter memory footprint and less overall resource usage.

Faster start times.

Increased security through smaller attack surface.

Better integration with Red Hat technologies and solutions.

And Data Grid 8 continues to give you the best possible in-memory datastorage capabilities built from
tried and trusted, open-source technology.

1.2. MIGRATION PATHS

This documentation focuses on Data Grid 7.3 to Data Grid 8 migration but is still applicable for 7.x
versions, starting from 7.0.1.

If you are planning a migration from Data Grid 6, this document might not capture everything you need.
You should contact Red Hat support for advice specific to your deployment before migrating.

As always, please let us know if we can help you by improving this documentation.

1.3. COMPONENT DOWNLOADS

To start using Data Grid 8, you either:

Download components from the Red Hat customer portal if you are installing Data Grid on bare
metal or other host environment.

Create an Data Grid Operator subscription if you are running on OpenShift.

This following information describes the available component downloads for bare metal deployments,
which are different to previous versions of Data Grid.

Also see:

Data Grid on OpenShift Migration

Data Grid 8 Supported Configurations

Red Hat Data Grid 8.3 Migrating to Data Grid 8

10

https://access.redhat.com/articles/4933371

1

2

3

4

5

6

Maven repository
Data Grid 8 no longer provides separate downloads from the Red Hat customer portal for the following
components:

Data Grid core libraries to create embedded caches in custom applications, referred to as
"Library Mode" in previous versions.

Hot Rod Java client.

Utilities such as StoreMigrator.

Instead of making these components available as downloads, Data Grid provides Java artifacts through
a Maven repository. This change means that you can use Maven to centrally manage dependencies,
which provides better control over dependencies across projects.

You can download the Data Grid Maven repository from the customer portal or pull Data Grid
dependencies from the public Red Hat Enterprise Maven repository. Instructions for both methods are
available in the Data Grid documentation.

Configuring the Data Grid Maven Repository

Data Grid Server
Data Grid Server is distributed as an archive that you can download and extract to host file systems.

The archive distribution contains the following top-level folders:

Scripts to start and manage Data Grid Server as well as the Data Grid Command Line Interface
(CLI).

Boot libraries.

Resources to help you configure and run Data Grid Server.

Run-time libraries for Data Grid Server. Note that this folder is intended for internal code only, not
custom code libraries.

Root directory for Data Grid Server instances.

Static resources for Data Grid Console.

The server folder is the root directory for Data Grid Server instances and contains subdirectories for
custom code libraries, configuration files, and data.

You can find more information about the filesystem and contents of the distributions in the Data Grid
Server Guide.

Data Grid Server Filesystem

├── bin 1
├── boot 2
├── docs 3
├── lib 4
├── server 5
└── static 6

CHAPTER 1. DATA GRID 8

11

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_developer_guide/#mvn
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/#server_directory_structure

Data Grid Server README

Modules for JBoss EAP
You can use the modules for Red Hat JBoss EAP (EAP) to embed Data Grid caching functionality in
your EAP applications.

IMPORTANT

In EAP 7.4 applications can directly handle the infinispan subsystem without the need to
separately install Data Grid modules. After EAP 7.4 GA is released, Data Grid will no
longer provide EAP modules for download.

Red Hat still offers support if you want to build and use your own Data Grid modules. However, Red Hat
recommends that you use Data Grid APIs directly with EAP 7.4 because modules:

Cannot use centrally managed Data Grid configuration that is shared across EAP applications.
To use modules, you need to store configuration inside the application JAR or WAR.

Often result in Java classloading issues that require debugging and additional overhead to
implement.

You can find more information about the EAP modules that Data Grid provides in the Data Grid
Developer Guide.

Data Grid Modules for Red Hat JBoss EAP

Tomcat session client
The Tomcat session client lets you externalize HTTP sessions from JBoss Web Server (JWS)
applications to Data Grid via the Apache Tomcat org.apache.catalina.Manager interface.

Externalizing HTTP Sessions from JBoss Web Server (JWS) to Data Grid

Hot Rod Node.js client
The Hot Rod Node.js client is a reference JavaScript implementation for use with Data Grid Server
clusters.

Hot Rod Node.js Client API

Source code
Uncompiled source code for each Data Grid release.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

12

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/#server_readme
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_developer_guide/#ispn_modules
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_developer_guide/#tom_session
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/node/index.html

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS
Review the details in this section to plan and prepare a successful migration of Data Grid Server.

2.1. DATA GRID SERVER 8

Data Grid Server 8 is:

Designed for modern system architectures.

Built for containerized platforms.

Optimized for native image compilation with Quarkus.

The transition to a cloud-native architecture means that Data Grid Server 8 is no longer based on Red
Hat JBoss Enterprise Application Platform (EAP). Instead Data Grid Server 8 is based on the Netty
project’s client/server framework.

This change affects migration from previous versions because many of the facilities that integration with
EAP provided are no longer relevant to Data Grid 8 or have changed.

For instance, while complexity of server configuration is greatly reduced in comparison to previous
releases, you do need to adapt your existing configuration to a new schema. Data Grid 8 also provides
more of a convention for server configuration than in previous versions where it was possible to achieve
much more granular configuration. Additionally Data Grid Server no longer leverages Domain Mode to
centrally manage configuration.

The Data Grid team acknowledge that these configuration changes place additional effort on our
customers to migrate their existing clusters to Data Grid 8.

We believe that it is better to use container orchestration platforms, such as Red Hat OpenShift, to
provision and administer Data Grid clusters along with automation engines, such as Red Hat Ansible, to
manage Data Grid configuration. These technologies offer greater flexibility in that they are more
generic and suitable for multiple disparate systems, rather than solutions that are more specific to Data
Grid.

In terms of migration to Data Grid 8, it is worth noting that solutions like Red Hat Ansible are helpful with
large-scale configuration deployment. However, that tooling might not necessarily aid the actual
migration of your existing Data Grid configuration.

2.2. DATA GRID SERVER CONFIGURATION

Data Grid provides a scalable data layer that lets you intelligently and efficiently utilize available
computing resources. To achieve this with Data Grid Server deployments, configuration is separated
into two layers: dynamic and static.

Dynamic configuration
Dynamic configuration is mutable, changing at runtime as you create caches and add and remove nodes
to and from the cluster.

After you deploy your Data Grid Server cluster, you create caches through the Data Grid CLI, Data Grid
Console, or Hot Rod and REST endpoints. Data Grid Server permanently stores those caches as part of
the cluster state that is distributed across nodes. Each joining node receives the complete cluster state
that Data Grid Server automatically synchronizes across all nodes as changes occur.

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

13

https://netty.io/index.html

Static configuration
Static configuration is immutable, remaining unchanged at runtime.

You define static configuration when setting up underlying mechanisms such as cluster transport,
authentication and encryption, shared datasources, and so on.

By default Data Grid Server uses $RHDG_HOME/server/conf/infinispan.xml for static configuration.

The root element of the configuration is infinispan and declares two base schema:

The urn:infinispan:config schema validates configuration for core Infinispan capabilities such
as the cache container.

The urn:infinispan:server schema validates configuration for Data Grid Server.

Cache container configuration
You use the cache-container element to configure the CacheManager interface that provides
mechanisms to manage cache lifecycles:

The cache-container element can also hold the following configuration elements:

security for the cache manager.

metrics for MicroProfile compatible metrics.

jmx for JMX monitoring and administration.

IMPORTANT

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:13.0 https://infinispan.org/schemas/infinispan-config-
13.0.xsd
 urn:infinispan:server:13.0 https://infinispan.org/schemas/infinispan-server-13.0.xsd"
 xmlns="urn:infinispan:config:13.0"
 xmlns:server="urn:infinispan:server:13.0">

<!-- Creates a cache manager named "default" that exports statistics. -->
<cache-container name="default"
 statistics="true">
 <!-- Defines cluster transport properties, including the cluster name. -->
 <!-- Uses the default TCP stack for inter-cluster communication. -->
 <transport cluster="${infinispan.cluster.name}"
 stack="${infinispan.cluster.stack:tcp}"
 node-name="${infinispan.node.name:}"/>
</cache-container>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

14

IMPORTANT

In previous versions, you could define multiple cache-container elements in your Data
Grid configuration to expose cache containers on different endpoints.

In Data Grid 8 you must not configure multiple cache containers because the Data Grid
CLI and Console can handle only one cache manager per cluster. However you can
change the name of the cache container to something more meaningful to your
environment than "default", if necessary.

You should use separate Data Grid clusters to achieve multitenancy to ensure that cache
managers do not interfere with each other.

Server configuration
You use the server element to configure underlying Data Grid Server mechanisms:

<server>
 <interfaces>
 <interface name="public"> 1
 <inet-address value="${infinispan.bind.address:127.0.0.1}"/> 2
 </interface>
 </interfaces>

 <socket-bindings default-interface="public" 3
 port-offset="${infinispan.socket.binding.port-offset:0}"> 4
 <socket-binding name="default" 5
 port="${infinispan.bind.port:11222}"/> 6
 <socket-binding name="memcached" port="11221"/> 7
 </socket-bindings>

 <security>
 <security-realms> 8
 <security-realm name="default"> 9
 <server-identities> 10
 <ssl>
 <keystore path="application.keystore" 11
 keystore-password="password"
 alias="server"
 key-password="password"
 generate-self-signed-certificate-host="localhost"/>
 </ssl>
 </server-identities>
 <properties-realm groups-attribute="Roles"> 12
 <user-properties path="users.properties" 13
 relative-to="infinispan.server.config.path"
 plain-text="true"/> 14
 <group-properties path="groups.properties" 15
 relative-to="infinispan.server.config.path" />
 </properties-realm>
 </security-realm>
 </security-realms>
 </security>

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Creates an interface named "public" that makes the server available on your network.

Uses the 127.0.0.1 loopback address for the public interface.

Binds the public interface to the network ports where Data Grid Server endpoints listen for
incoming client connections.

Specifies an offset of 0 for network ports.

Creates a socket binding named "default".

Specifies port 11222 for the socket binding.

Creates a socket binding for the Memcached connector at port 11221.

Defines security realms that protect endpoints from network intrusion.

Creates a security realm named "default".

Configures SSL/TLS keystores for identity verification.

Specifies the keystore that contains server certificates.

Configures the "default" security realm to use properties files to define users and groups that map
users to roles.

Names the properties file that contains Data Grid users.

Specifies that contents of the users.properties file are stored as plain text.

Names the properties file that maps Data Grid users to roles.

Configures endpoints with Hot Rod and REST connectors.

This example shows implicit hotrod-connector and rest-connector elements, which is the default
from Data Grid 8.2.
Data Grid Server configuration in 8.0 and 8.1 use explicitly declared Hot Rod and REST connectors.

Additional resources

Data Grid Server Guide

Data Grid Server Reference

2.3. CHANGES TO THE DATA GRID SERVER 8.2 CONFIGURATION
SCHEMA

In previous 7.x versions there was no separate schema for Data Grid Server. This topic lists changes to
the Data Grid Server configuration schema between 8.1 and 8.2.

Security authorization

As of Data Grid 8.2, the server configuration enables authorization by default to restrict user access

 <endpoints socket-binding="default" security-realm="default" /> 16

</server>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

16

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/#server_reference

1

1

2

As of Data Grid 8.2, the server configuration enables authorization by default to restrict user access
based on roles and permissions.

Enables authorization for server administration and management and the cache manager lifecycle.
You can remove the authorization element to disable security authorization.

Client trust stores
As of Data Grid 8.2, you can add client trust stores to the server identity configuration and use the
truststore-realm element to verify certificates.

8.1

8.2

Specifies a trust store that holds client certificates.

If you include the truststore-realm element in the server configuration, the trust store must
contain public certificates for all clients. If you do not include the truststore-realm element, the
trust store needs only a certificate chain.

Endpoint connectors
As of Data Grid 8.2, the hotrod-connector and rest-connector elements are implicitly set in the default
endpoints configuration.

<cache-container name="default" statistics="true">
 <transport cluster="${infinispan.cluster.name:cluster}"
 stack="${infinispan.cluster.stack:tcp}"
 node-name="${infinispan.node.name:}"/>
 <security>
 <authorization/> 1
 </security>
</cache-container>

<security-realm name="default">
 <server-identities>
 <ssl>
 <keystore path="server.pfx"
 keystore-password="password" alias="server"/>
 </ssl>
 </server-identities>
 <truststore-realm path="trust.pfx" password="secret"/>
</security-realm>

<security-realm name="default">
 <server-identities>
 <ssl>
 <keystore path="server.pfx"
 keystore-password="password" alias="server"/>
 <truststore path="trust.pfx" password="secret"/> 1
 </ssl>
 </server-identities>
 <truststore-realm/> 2
</security-realm>

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

17

Modified elements and attributes

path, provider, keystore-password, and relative-to attributes are removed from the
truststore-realm element.

name attribute is added to the truststore-realm element.

New elements and attributes

credential-stores child element added to the security element.
The credential-stores element also contains the credential-store, clear-text-credential, and
credential-reference child elements.
The following is included in the server configuration by default:

ip-filter, accept, and reject child elements added to the endpoints element.

security-realm attribute added to the hotrod-connector and rest-connector elements.

cache-max-size and cache-lifespan added to the security-realm element to configure the
size of the identities cache and lifespan of entries.

truststore child element added to the ssl element for specifying trust stores to validate client
certificates.

Deprecated elements and attributes
The following elements and attributes are now deprecated:

security-realm attribute on the authentication element.

security-realm attribute on the encryption element.

Removed elements and attributes
No elements or attributes are removed in Data Grid 8.2.

2.4. CHANGES TO THE DATA GRID SERVER 8.3 CONFIGURATION
SCHEMA

This topic lists changes to the Data Grid Server configuration schema between 8.2 and 8.3.

Schema changes

endpoints element in the urn:infinispan:server namespace is no longer a repeating element
but a wrapper for 0 or more endpoint elements.

Data Grid Server 8.2

<endpoints socket-binding="default" security-realm="default"/>

<credential-stores>
 <credential-store name="credentials" path="credentials.pfx">
 <clear-text-credential clear-text="secret"/>
 </credential-store>
</credential-stores>

<endpoints socket-binding="default" security-realm="default">

Red Hat Data Grid 8.3 Migrating to Data Grid 8

18

Data Grid Server 8.3

Modified elements and attributes
No elements or attributes are modified in Data Grid 8.3.

New elements and attributes

endpoint element with the socket-binding and security-realm allow you to define multiple
endpoint configurations contained within the endpoints element.

security-realm-distributed element to combine multiple security realms.

default-realm attribute for the security-realm element specifies a default security realm, which
is the first security realm declared unless you specify a different realm.

name attribute for the security-realm element to logically separate multiple realms of the
same type.

network-prefix-override attribute on the hotrod-connector element configures whether to
use the netmask that the host system provides for interfaces or override with netmasks that
follow IANA private address conventions.

policy attribute on the sasl element to list policies that filter the available set of mechanisms.

client-ssl-context attribute on the ldap-realm element to specify a realm that provides a trust
store to validate clients for SSL/TLS connections.

Deprecated elements and attributes
The following elements and attributes are now deprecated:

name attribute for the regex-principal-transformer element is now ignored.

keystore-password attribute on the keystore element for an TLS/SSL server identity is
deprecated. Use the password attribute instead.

Removed elements and attributes
No elements or attributes are removed in Data Grid 8.3.

2.5. DATA GRID SERVER ENDPOINT AND NETWORK CONFIGURATION

This section describes Data Grid Server endpoint and network configuration when migrating from

 <hotrod-connector name="hotrod"/>
 <rest-connector name="rest"/>
</endpoints>

<endpoints>
 <endpoint socket-binding="public" security-realm="application-realm" admin="false">
 <hotrod-connector/>
 <rest-connector/>
 </endpoint>
 <endpoint socket-binding="private" security-realm="management-realm">
 <hotrod-connector/>
 <rest-connector/>
 </endpoint>
</endpoints>

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

19

This section describes Data Grid Server endpoint and network configuration when migrating from
previous versions.

Data Grid 8 simplifies server endpoint configuration by using a single network interface and port to
expose endpoints on the network.

2.5.1. Interfaces

Interfaces bind expose endpoints to network locations.

Data Grid Server 7.x network interface configuration
In Data Grid 7.x, the server configuration used different interfaces to separate administrative and
management access from cache access.

Data Grid Server 8 network interface configuration
In Data Grid 8, there is one network interface for all client connections for administrative and
management access as well as cache access.

2.5.2. Socket bindings

Socket bindings map network interfaces to ports where endpoints listen for client connections.

Data Grid Server 7.x socket binding configuration
In Data Grid 7.x, the server configuration used unique ports for management and administration, such as
9990 for the Management Console and port 9999 for the native management protocol. Older versions
also used unique ports for each endpoint, such as 11222 for external Hot Rod access and 8080 for
REST.

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

<interfaces>
 <interface name="public">
 <inet-address value="${infinispan.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

<socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 <socket-binding name="management-http" interface="management"
port="${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management"
port="${jboss.management.https.port:9993}"/>
 <socket-binding name="hotrod" port="11222"/>
 <socket-binding name="hotrod-internal" port="11223"/>
 <socket-binding name="hotrod-multi-tenancy" port="11224"/>
 <socket-binding name="memcached" port="11211"/>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

20

Data Grid Server 8 single port configuration
Data Grid 8 uses a single port to handle all connections to the server. Hot Rod clients, REST clients, Data
Grid CLI, and Data Grid Console all use port 11222.

2.5.3. Endpoints

Endpoints listen for remote client connections and handle requests over protocols such as Hot Rod and
HTTP (REST).

NOTE

Data Grid CLI uses the REST endpoint for all cache and administrative operations.

Data Grid Server 7.x endpoint subsystem
In Data Grid 7.x, the endpoint subsystem let you configure connectors for Hot Rod and REST endpoints.

Data Grid Server 8 endpoint configuration
Data Grid 8 replaces the endpoint subsystem with an endpoints element. The hotrod-connector and
rest-connector configuration elements and attributes are the same as previous versions.

As of Data Grid 8.2, the default endpoints configuration uses implicit Hot Rod and REST connectors as
follows:

Data Grid Server 8.0 to 8.2

As of Data Grid Server 8.3 you configure endpoints with security realms and Hot Rod or REST

 <socket-binding name="rest" port="8080"/>
 ...
</socket-binding-group>

<socket-bindings default-interface="public"
 port-offset="${infinispan.socket.binding.port-offset:0}">
 <socket-binding name="default" port="${infinispan.bind.port:11222}"/>
 <socket-binding name="memcached" port="11221"/>
</socket-bindings>

<subsystem xmlns="urn:infinispan:server:endpoint:9.4">
 <hotrod-connector socket-binding="hotrod" cache-container="local">
 <topology-state-transfer lazy-retrieval="false" lock-timeout="1000" replication-timeout="5000"/>
 </hotrod-connector>
 <rest-connector socket-binding="rest" cache-container="local">
 <authentication security-realm="ApplicationRealm" auth-method="BASIC"/>
 </rest-connector>
</subsystem>

<endpoints socket-binding="default" security-realm="default"/>

<endpoints socket-binding="default" security-realm="default">
 <hotrod-connector name="hotrod"/>
 <rest-connector name="rest"/>
</endpoints>

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

21

As of Data Grid Server 8.3 you configure endpoints with security realms and Hot Rod or REST
connectors with endpoint elements. The endpoints element is now a wrapper for multiple endpoint
configurations.

Data Grid Server 8.3 and later

Additional resources

Data Grid Server Guide

2.6. DATA GRID SERVER SECURITY

Data Grid Server security configures authentication and encryption to prevent network attack and
safeguard data.

2.6.1. Security realms

In Data Grid 8 security realms provide implicit configuration options that mean you do not need to
provide as many settings as in previous versions. For example, if you define a Kerberos realm, you get
Kerberos features. If you add a truststore, you get certificate authentication.

In Data Grid 7.x, there were two default security realms:

ManagementRealm secures the Management API.

ApplicationRealm secures endpoints and remote client connections.

Data Grid 8, on the other hand, provides a security element that lets you define multiple different
security realms that you can use for Hot Rod and REST endpoints:

Supported security realms

Property realms use property files, users.properties and groups.properties, to define users
and groups that can access Data Grid.

LDAP realms connect to LDAP servers, such as OpenLDAP, Red Hat Directory Server, Apache
Directory Server, or Microsoft Active Directory, to authenticate users and obtain membership
information.

Trust store realms use keystores that contain the public certificates of all clients that are

<endpoints>
 <endpoint socket-binding="public" security-realm="application-realm" admin="false">
 <hotrod-connector/>
 <rest-connector/>
 </endpoint>
 <endpoint socket-binding="private" security-realm="management-realm">
 <hotrod-connector/>
 <rest-connector/>
 </endpoint>
</endpoints>

<security>
 <security-realms>
 ...
 </security-realms>
</security>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

22

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/

Trust store realms use keystores that contain the public certificates of all clients that are
allowed to access Data Grid.

Token realms use external services to validate tokens and require providers that are compatible
with RFC-7662 (OAuth2 Token Introspection) such as Red Hat SSO.

2.6.2. Server identities

Server identities use certificate chains to prove Data Grid Server identities to remote clients.

Data Grid 8 uses the same configuration to define SSL identities as in previous versions with some
usability improvements.

If a security realm contains an SSL identity, Data Grid automatically enables encryption for
endpoints that use that security realm.

For test and development environments, Data Grid includes a generate-self-signed-
certificate-host attribute that automatically generates a keystore at startup.

2.6.3. Endpoint authentication mechanisms

Hot Rod and REST endpoints use SASL or HTTP mechanisms to authenticate client connections.

Data Grid 8 uses the same authentication element for hotrod-connector and rest-connector
configuration as in Data Grid 7.x and earlier.

One key difference with previous versions is that Data Grid 8 supports additional authentication
mechanisms for endpoints.

Hot Rod SASL authentication mechanisms

Hot Rod clients now use SCRAM-SHA-512 as the default authentication mechanism instead of

<security-realm name="default">
 <server-identities>
 <ssl>
 <keystore path="..."
 relative-to="..."
 keystore-password="..."
 alias="..."
 key-password="..."
 generate-self-signed-certificate-host="..."/>
 </ssl>
 </server-identities>
 ...
<security-realm>

<hotrod-connector name="hotrod">
 <authentication>
 <sasl mechanisms="..." server-name="..."/>
 </authentication>
</hotrod-connector>
<rest-connector name="rest">
 <authentication>
 <mechanisms="..." server-principal="..."/>
 </authentication>
</rest-connector>

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

23

Hot Rod clients now use SCRAM-SHA-512 as the default authentication mechanism instead of
DIGEST-MD5.

NOTE

If you use property security realms, you must use the PLAIN authentication mechanism.

Authentication mechanism Description Related details

PLAIN Uses credentials in plain-text
format. You should use PLAIN
authentication with encrypted
connections only.

Similar to the Basic HTTP
mechanism.

DIGEST-* Uses hashing algorithms and
nonce values. Hot Rod connectors
support DIGEST-MD5,
DIGEST-SHA, DIGEST-SHA-
256, DIGEST-SHA-384, and
DIGEST-SHA-512 hashing
algorithms, in order of strength.

Similar to the Digest HTTP
mechanism.

SCRAM-* Uses salt values in addition to
hashing algorithms and nonce
values. Hot Rod connectors
support SCRAM-SHA, SCRAM-
SHA-256, SCRAM-SHA-384,
and SCRAM-SHA-512 hashing
algorithms, in order of strength.

Similar to the Digest HTTP
mechanism.

GSSAPI Uses Kerberos tickets and
requires a Kerberos Domain
Controller. You must add a
corresponding kerberos server
identity in the realm configuration.
In most cases, you also specify an
ldap-realm to provide user
membership information.

Similar to the SPNEGO HTTP
mechanism.

GS2-KRB5 Uses Kerberos tickets and
requires a Kerberos Domain
Controller. You must add a
corresponding kerberos server
identity in the realm configuration.
In most cases, you also specify an
ldap-realm to provide user
membership information.

Similar to the SPNEGO HTTP
mechanism.

EXTERNAL Uses client certificates. Similar to the CLIENT_CERT
HTTP mechanism.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

24

OAUTHBEARER Uses OAuth tokens and requires a
token-realm configuration.

Similar to the BEARER_TOKEN
HTTP mechanism.

Authentication mechanism Description Related details

HTTP (REST) authentication mechanisms

Authentication mechanism Description Related details

BASIC Uses credentials in plain-text
format. You should use BASIC
authentication with encrypted
connections only.

Corresponds to the Basic HTTP
authentication scheme and is
similar to the PLAIN SASL
mechanism.

DIGEST Uses hashing algorithms and
nonce values. REST connectors
support SHA-512, SHA-256 and
MD5 hashing algorithms.

Corresponds to the Digest HTTP
authentication scheme and is
similar to DIGEST-* SASL
mechanisms.

SPNEGO Uses Kerberos tickets and
requires a Kerberos Domain
Controller. You must add a
corresponding kerberos server
identity in the realm configuration.
In most cases, you also specify an
ldap-realm to provide user
membership information.

Corresponds to the Negotiate
HTTP authentication scheme and
is similar to the GSSAPI and
GS2-KRB5 SASL mechanisms.

BEARER_TOKEN Uses OAuth tokens and requires a
token-realm configuration.

Corresponds to the Bearer HTTP
authentication scheme and is
similar to OAUTHBEARER
SASL mechanism.

CLIENT_CERT Uses client certificates. Similar to the EXTERNAL SASL
mechanism.

2.6.4. Authenticating EAP applications

You can now add credentials to hotrod-client.properties on your EAP application classpath to
authenticate with Data Grid through:

Remote cache containers (remote-cache-container)

Remote stores (remote-store)

EAP modules

2.6.5. Logging

Data Grid uses Apache Log4j2 instead of the logging subsystem in previous versions that was based on

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

25

Data Grid uses Apache Log4j2 instead of the logging subsystem in previous versions that was based on
JBossLogManager.

By default, Data Grid writes log messages to the following directory:
$RHDG_HOME/${infinispan.server.root}/log

server.log is the default log file.

Access logs
In previous versions Data Grid included a logger to audit security logs for the caches:

Data Grid 8 no longer provides this audit logger.

However you can use the logging categories for the Hot Rod and REST endpoints:

org.infinispan.HOTROD_ACCESS_LOG

org.infinispan.REST_ACCESS_LOG

Additional resources

Data Grid Server Guide

2.7. SEPARATING DATA GRID SERVER ENDPOINTS

When migrating from previous versions, you can create different network locations for Data Grid
endpoints to match your existing configuration. However, because Data Grid architecture has changed
and now uses a single port for all client connections, not all options in previous versions are available.

IMPORTANT

Administration tools such as the Data Grid CLI and Console use the REST API. You
cannot remove the REST API from your endpoint configuration without disabling the
Data Grid CLI and Console. Likewise you cannot separate the REST endpoint to use
different ports or socket bindings for cache access and administrative access.

Procedure

1. Define separate network interfaces for REST and Hot Rod endpoints.
For example, define a "public" interface to expose the Hot Rod endpoint externally and a
"private" interface to expose the REST endpoint on an network location that has restricted
access.

This configuration creates:

<authorization audit-logger="org.infinispan.security.impl.DefaultAuditLogger">

<interfaces>
 <interface name="public">
 <inet-address value="${infinispan.bind.address:198.51.100.0}"/>
 </interface>
 <interface name="private">
 <inet-address value="${infinispan.bind.address:192.0.2.0}"/>
 </interface>
</interfaces>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

26

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/

A "public" interface with the 198.51.100.0 IP address.

A "private" interface with the 192.0.2.0 IP address.

2. Configure separate socket bindings for the endpoints, as in the following example:

This example:

Sets the "private" interface as the default for socket bindings.

Creates a "default" socket binding that uses port 8080.

Creates a "hotrod" socket binding that uses the "public" interface and port 11222.

3. Create separate security realms for the endpoints, for example:

This example:

Configures a trust store security realm.

Configures a Kerberos security realm.

<socket-bindings default-interface="private"
 port-offset="${infinispan.socket.binding.port-offset:0}">
 <socket-binding name="default"
 port="${infinispan.bind.port:8080}"/>
 <socket-binding name="hotrod"
 interface="public"
 port="11222"/>
</socket-bindings>

<security>
 <security-realms>
 <security-realm name="truststore">
 <server-identities>
 <ssl>
 <keystore path="server.p12"
 relative-to="infinispan.server.config.path"
 keystore-password="secret"
 alias="server"/>
 </ssl>
 </server-identities>
 <truststore-realm path="trust.p12"
 relative-to="infinispan.server.config.path"
 keystore-password="secret"/>
 </security-realm>
 <security-realm name="kerberos">
 <server-identities>
 <kerberos keytab-path="http.keytab"
 principal="HTTP/localhost@INFINISPAN.ORG"
 required="true"/>
 </server-identities>
 </security-realm>
 </security-realms>
</security>

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

27

4. Configure endpoints as follows:

5. Start Data Grid Server.
Logs contain the following messages that indicate the network locations where endpoints
accept client connections:

Next steps

1. Access Data Grid Console from any browser at http://192.0.2.0:8080

2. Configure the Data Grid CLI to connect at the custom location, for example:

2.8. DATA GRID SERVER SHARED DATASOURCES

Data Grid 7.x JDBC cache stores can use a PooledConnectionFactory to obtain database connections.

Data Grid 8 lets you create managed datasources in the server configuration to optimize connection
pooling and performance for database connections with JDBC cache stores.

Datasource configurations are composed of two sections:

connection factory that defines how to connect to the database.

connection pool that defines how to pool and reuse connections and is based on Agroal.

You first define the datasource connection factory and connection pool in the server configuration and
then add it to your JDBC cache store configuration.

For more information on migrating JDBC cache stores, see the Migrating Cache Stores section in this
document.

Additional resources

Data Grid Server Guide

<endpoints>
 <endpoint socket-binding="default"
 security-realm="kerberos">
 <hotrod-connector/>
 <rest-connector/>
 </endpoint>
 <endpoint socket-binding="hotrod"
 security-realm="truststore">
 <hotrod-connector/>
 <rest-connector/>
 </endpoint>
</endpoints>

[org.infinispan.SERVER] ISPN080004: Protocol HotRod listening on 198.51.100.0:11222
[org.infinispan.SERVER] ISPN080004: Protocol SINGLE_PORT listening on 192.0.2.0:8080
[org.infinispan.SERVER] ISPN080034: Server '<hostname>' listening on http://192.0.2.0:8080

$ bin/cli.sh -c http://192.0.2.0:8080

Red Hat Data Grid 8.3 Migrating to Data Grid 8

28

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/

1

2

1

2.9. DATA GRID SERVER JMX AND METRICS

Data Grid 8 exposes metrics via both JMX and a /metrics endpoint for integration with metrics tooling
such as Prometheus.

The /metrics endpoint provides:

Gauges that return values, such as JVM uptime or average number of seconds for cache
operations.

Histograms that show how long read, write, and remove operations take, in percentiles.

In previous versions, Prometheus metrics were collected by an agent that mapped JMX metrics instead
of being supported natively.

Previous versions of Data Grid also used the JBoss Operations Network (JON) plug-in to obtain
metrics and perform operations. Data Grid 8 no longer uses the JON plug-in.

Data Grid 8 separates JMX and Prometheus metrics into cache manager and cache level
configurations.

Enables statistics for the cache manager. This is the default.

Exports JMX MBeans, which includes all statistics and operations.

Enables statistics for the cache.

Additional resources

Data Grid Server Guide

2.10. DATA GRID SERVER CHEATSHEET

Use the following commands and examples as a quick reference for working with Data Grid Server.

Starting server instances

Linux

Microsoft Windows

<cache-container name="default"
 statistics="true"> 1
 <jmx enabled="true" /> 2
</cache-container>

<distributed-cache name="mycache" statistics="true" /> 1

$ bin/server.sh

$ bin\server.bat

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

29

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/

Starting the CLI

Linux

Microsoft Windows

Creating users

Linux

Microsoft Windows

Stopping server instances

Single server instances

Entire clusters

Listing available command options
Use the -h flag to list available command options for running servers.

Linux

Microsoft Windows

7.x to 8 reference

7.x 8.x

./standalone.sh -c clustered.xml ./server.sh

./standalone.sh ./server.sh -c infinispan-local.xml

$ bin/cli.sh

$ bin\cli.bat

$ bin/cli.sh user create myuser -p "qwer1234!"

$ bin\cli.bat user create myuser -p "qwer1234!"

[//containers/default]> shutdown server $hostname

[//containers/default]> shutdown cluster

$ bin/server.sh -h

$ bin\server.bat -h

Red Hat Data Grid 8.3 Migrating to Data Grid 8

30

-
Djboss.default.multicast.address=234.99.54.2
0

-Djgroups.mcast_addr=234.99.54.20

-Djboss.bind.address=172.18.1.13 -Djgroups.bind.address=172.18.1.13

-Djboss.default.jgroups.stack=udp -j udp

7.x 8.x

Additional resources

Data Grid Server Guide

CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS

31

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/

1

1

2

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION
Find changes to Data Grid configuration that affect migration to Data Grid 8.

3.1. DATA GRID CACHE CONFIGURATION

Data Grid 8 provides empty cache containers by default. When you start Data Grid, it instantiates a
cache manager so you can create caches at runtime.

However, in comparison with previous versions, there is no "default" cache out of the box.

In Data Grid 8, caches that you create through the CacheContainerAdmin API are permanent to
ensure that they survive cluster restarts.

Permanent caches

AdminFlag.PERMANENT is enabled by default to ensure that caches survive restarts.

You do not need to set this flag when you create caches. However, you must separately add persistent
storage to Data Grid for data to survive restarts, for example:

Volatile caches

Sets the VOLATILE flag so caches are lost when Data Grid restarts.

Returns a cache named "myTemporaryCache" or creates one using the DIST_SYNC template.

Data Grid 8 provides cache templates for server installations that you can use to create caches with
recommended settings.

You can get a list of available cache templates as follows:

Use Tab auto-completion with the CLI:

[//containers/default]> create cache --template=

Use the REST API:

.administration()
 .withFlags(AdminFlag.PERMANENT) 1
 .getOrCreateCache("myPermanentCache", "org.infinispan.DIST_SYNC");

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addSingleFileStore()
 .location("/tmp/myDataStore")
 .maxEntries(5000);

.administration()
 .withFlags(AdminFlag.VOLATILE) 1
 .getOrCreateCache("myTemporaryCache", "org.infinispan.DIST_SYNC"); 2

Red Hat Data Grid 8.3 Migrating to Data Grid 8

32

GET 127.0.0.1:11222/rest/v2/cache-managers/default/cache-configs/templates

3.1.1. Cache encoding

When you create remote caches you should configure the MediaType for keys and values. Configuring
the MediaType guarantees the storage format for your data.

To encode caches, you specify the MediaType in your configuration. Unless you have others
requirements, you should use ProtoStream, which stores your data in a language-neutral, backwards
compatible format.

<encoding media-type="application/x-protostream"/>

Distributed cache configuration with encoding

If you do not encode remote caches, Data Grid Server logs the following message:

WARN (main) [org.infinispan.encoding.impl.StorageConfigurationManager] ISPN000599:
Configuration for cache 'mycache' does not define the encoding for keys or values. If you use
operations that require data conversion or queries, you should configure the cache with a specific
MediaType for keys or values.

In a future version, cache encoding will be required for operations where data conversion takes place; for
example, cache indexing and searching the data container, remote task execution, reading and writing
data in different formats from the Hot Rod and REST endpoints, as well as using remote filters,
converters, and listeners.

3.1.2. Cache health status

Data Grid 7.x includes a Health Check API that returns health status of the cluster as well as caches
within it.

Data Grid 8 also provides a Health API. For embedded and server installations, you can access the
Health API via JMX with the following MBean:

org.infinispan:type=CacheManager,name="default",component=CacheContainerHealth

Data Grid Server also exposes the Health API through the REST endpoint and the Data Grid Console.

Table 3.1. Health Status

7.x 8.x Description

<infinispan>
 <cache-container>
 <distributed-cache name="myCache" mode="SYNC">
 <encoding media-type="application/x-protostream"/>
 ...
 </distributed-cache>
 </cache-container>
</infinispan>

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

33

HEALTHY HEALTHY Indicates a cache is operating as
expected.

Rebalancing HEALTHY_REBALANCING Indicates a cache is in the
rebalancing state but otherwise
operating as expected.

Unhealthy DEGRADED Indicates a cache is not operating
as expected and possibly requires
troubleshooting.

N/A FAILED Added in 8.2 to indicate that a
cache could not start with the
supplied configuration.

7.x 8.x Description

Additional resources

Configuring Data Grid Caches

3.1.3. Changes to the Data Grid 8.1 configuration schema

This topic lists changes to the Data Grid configuration schema between 8.0 and 8.1.

New and modified elements and attributes

stack adds support for inline JGroups stack definitions.

stack.combine and stack.position attributes let you override and modify JGroups stack
definitions.

metrics lets you configure how Data Grid exports metrics that are compatible with the Eclipse
MicroProfile Metrics API.

context-initializer lets you specify a SerializationContextInitializer implementation that
initializes a Protostream-based marshaller for user types.

key-transformers lets you register transformers that convert custom keys to String for indexing
with Lucene.

statistics now defaults to "false".

Deprecated elements and attributes
The following elements and attributes are now deprecated:

address-count attribute for the off-heap element.

protocol attribute for the transaction element.

duplicate-domains attribute for the jmx element.

advanced-externalizer

Red Hat Data Grid 8.3 Migrating to Data Grid 8

34

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/configuring_data_grid_caches/

custom-interceptors

state-transfer-executor

transaction-protocol

Removed elements and attributes
The following elements and attributes were deprecated in a previous release and are now removed:

deadlock-detection-spin

compatibility

write-skew

versioning

data-container

eviction

eviction-thread-policy

3.1.4. Changes to the Data Grid 8.2 configuration schema

This topic lists changes to the Data Grid configuration schema between 8.1 and 8.2.

Modified elements and attributes

white-list changes to allow-list

role is now a sub-element of roles for defined user roles and permissions for security
authorization.

context-initializer is updated for automatic SerializationContextInitializer registration.
If your configuration does not contain context-initializer elements then the
java.util.ServiceLoader mechanism automatically discovers all SerializationContextInitializer
implementations on the classpath and loads them.

Default value of the minOccurs attribute changes from 0 to 1 for the indexed-entity element.

New elements and attributes

property attribute added to the transport element that lets you pass name/value transport
properties.

cache-size and cache-timeout attributes added to the security element to configure the size
and timeout for the Access Control List (ACL) cache.

index-reader, index-writer, and index-merge child elements added to the indexing element.

storage attribute added to the indexing element that specifies index storage options.

path attribute added to the indexing element that specifies a directory when using file system
storage for the index.

bias-acquisition attribute added to the scattered-cache element that controls when nodes
can acquire a bias on an entry.

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

35

bias-lifespan attribute added to the scattered-cache element that specifies, in milliseconds,
how long nodes can keep an acquired bias.

merge-policy attribute added to the backups element that specifies an algorithm for resolving
conflicts with cross-site replication.

mode attribute added to the state-transfer child element for the backup.
The mode attribute configures whether cross-site replication state transfer happens manually
or automatically.

INSERT_ABOVE, INSERT_BEFORE, and INSERT_BELOW attributes added to the
stack.combine attribute for extending JGroups stacks with inheritance.

Deprecated elements and attributes
No elements or attributes are deprecated in Data Grid 8.2.

Removed elements and attributes
No elements or attributes are removed in Data Grid 8.2.

3.1.5. Changes to the Data Grid 8.3 configuration schema

This topic lists changes to the Data Grid configuration schema between 8.2 and 8.3.

Schema changes

urn:infinispan:config:store:soft-index namespace is no longer available.

Modified elements and attributes

file-store element in the urn:infinispan:config namespace defaults to using soft-index file
cache stores.

single-file-store element is included in the urn:infinispan:config namespace but is now
deprecated.

New elements and attributes

index and data elements are now available to configure how Data Grid stores indexes and data
for file-based cache stores with the file-store element.

open-files-limit and compaction-threshold attributes for the file-store element.

cluster attribute added to the remote-sites and remote-site elements that lets you define
global cluster names for cross-site communication.

NOTE

Global cluster names that you specify with the cluster attribute must be the
same at all sites.

accurate-size attribute added to the metrics element to enable calculations of the data set
with the currentNumberOfEntries statistic.

IMPORTANT

Red Hat Data Grid 8.3 Migrating to Data Grid 8

36

IMPORTANT

As of Data Grid 8.3 the currentNumberOfEntries statistic returns a value of -1
by default because it is an expensive operation to perform.

touch attribute added to the expiration element that controls how timestamps get updated for
entries in clustered caches with maximum idle expiration. The default value is SYNC and the
attribute applies only to caches that use synchronous replication. Timestamps are updated
asynchronously for caches that use asynchronous replication.

lifespan attribute added to the strong-counter for attaching expiration values, in milliseconds.
The default value is -1 which means strong consistent counters never expire.

NOTE

The lifespan attribute for strong counters is currently available as a Technology
Preview.

Deprecated elements and attributes
The following elements and attributes are now deprecated:

single-file-store element.

max-entries and path attributes for the file-store element.

Removed elements and attributes
The following elements and attributes are no longer available in the Data Grid schema:

remote-command-executor attribute for the transport element.

capacity attribute for the distributed-cache element.

3.2. EVICTION CONFIGURATION

Data Grid 8 simplifies eviction configuration in comparison with previous versions. However, eviction
configuration has undergone numerous changes across different Data Grid versions, which means
migration might not be straightforward.

NOTE

As of Data Grid 7.2, the memory element replaces the eviction element in the
configuration. This section refers to eviction configuration with the memory element
only. For information on migrating configuration that uses the eviction element, refer to
the Data Grid 7.2 documentation.

3.2.1. Storage types

Data Grid lets you control how to store entries in memory, with the following options:

Store objects in JVM heap memory.

Store bytes in native memory (off-heap).

Store bytes in JVM heap memory.

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

37

Changes in Data Grid 8
In previous 7.x versions, and 8.0, you use object, binary, and off-heap elements to configure the storage
type.

Starting with Data Grid 8.1, you use a storage attribute to store objects in JVM heap memory or as
bytes in off-heap memory.

To store bytes in JVM heap memory, you use the encoding element to specify a binary storage format
for your data.

Data Grid 7.x Data Grid 8

<memory><object /></memory> <memory />

<memory><off-heap /></memory> <memory storage="OFF_HEAP" />

<memory><binary /></memory> <encoding media-type="… " />

Object storage in Data Grid 8
By default, Data Grid 8.1 uses object storage (JVM heap):

You can also configure storage="HEAP" explicitly to store data as objects in JVM heap memory:

Off-heap storage in Data Grid 8
Set "OFF_HEAP" as the value of the storage attribute to store data as bytes in native memory:

Off-heap address count
In previous versions, the address-count attribute for offheap lets you specify the number of pointers
that are available in the hash map to avoid collisions. With Data Grid 8.1, address-count is no longer
used and off-heap memory is dynamically re-sized to avoid collisions.

Binary storage in Data Grid 8
Specify a binary storage format for cache entries with the encoding element:

<distributed-cache>
 <memory />
</distributed-cache>

<distributed-cache>
 <memory storage="HEAP" />
</distributed-cache>

<distributed-cache>
 <memory storage="OFF_HEAP" />
</distributed-cache>

<distributed-cache>
 <!--Configure MediaType for entries with binary formats.-->
 <encoding media-type="application/x-protostream"/>
 <memory ... />
</distributed-cache>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

38

NOTE

As a result of this change, Data Grid no longer stores primitives and String mixed with
byte[], but stores only byte[].

3.2.2. Eviction threshold

Eviction lets Data Grid control the size of the data container by removing entries when the container
becomes larger than a configured threshold.

In Data Grid 7.x and 8.0, you specify two eviction types that define the maximum limit for entries in the
cache:

COUNT measures the number of entries in the cache.

MEMORY measures the amount of memory that all entries in the cache take up.

Depending on the configuration you set, when either the count or the total amount of memory exceeds
the maximum, Data Grid removes unused entries.

Data Grid 7.x and 8.0 also use the size attribute that defines the size of the data container as a long.
Depending on the storage type you configure, eviction occurs either when the number of entries or
amount of memory exceeds the value of the size attribute.

With Data Grid 8.1, the size attribute is deprecated along with COUNT and MEMORY. Instead, you
configure the maximum size of the data container in one of two ways:

Total number of entries with the max-count attribute.

Maximum amount of memory, in bytes, with the max-size attribute.

Eviction based on total number of entries

Eviction based on maximum amount of memory

3.2.3. Eviction strategies

Eviction strategies control how Data Grid performs eviction.

Data Grid 7.x and 8.0 let you set one of the following eviction strategies with the strategy attribute:

Strategy Description

NONE Data Grid does not evict entries. This is the default
setting unless you configure eviction.

<distributed-cache>
 <memory max-count="..." />
</distributed-cache>

<distributed-cache>
 <memory max-size="..." />
</distributed-cache>

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

39

REMOVE Data Grid removes entries from memory so that the
cache does not exceed the configured size. This is
the default setting when you configure eviction.

MANUAL Data Grid does not perform eviction. Eviction takes
place manually by invoking the evict() method from
the Cache API.

EXCEPTION Data Grid does not write new entries to the cache if
doing so would exceed the configured size. Instead
of writing new entries to the cache, Data Grid throws
a ContainerFullException.

Strategy Description

With Data Grid 8.1, you can use the same strategies as in previous versions. However, the strategy
attribute is replaced with the when-full attribute.

Eviction algorithms
With Data Grid 7.2, the ability to configure eviction algorithms was deprecated along with the Low Inter-
Reference Recency Set (LIRS).

From version 7.2 onwards, Data Grid includes the Caffeine caching library that implements a variation of
the Least Frequently Used (LFU) cache replacement algorithm known as TinyLFU. For off-heap
storage, Data Grid uses a custom implementation of the Least Recently Used (LRU) algorithm.

3.2.4. Eviction configuration comparison

Compare eviction configuration between different Data Grid versions.

Object storage and evict on number of entries
7.2 to 8.0

8.1

Object storage and evict on amount of memory
7.2 to 8.0

<distributed-cache>
 <memory when-full="<eviction_strategy>" />
</distributed-cache>

<memory>
 <object size="1000000" eviction="COUNT" strategy="REMOVE"/>
</memory>

<memory max-count="1MB" when-full="REMOVE"/>

<memory>
 <object size="1000000" eviction="MEMORY" strategy="MANUAL"/>
</memory>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

40

8.1

Binary storage and evict on number of entries
7.2 to 8.0

8.1

Binary storage and evict on amount of memory
7.2 to 8.0

8.1

Off-heap storage and evict on number of entries
7.2 to 8.0

8.1

Off-heap storage and evict on amount of memory
7.2 to 8.0

8.1

Additional resources

<memory max-size="1MB" when-full="MANUAL"/>

<memory>
 <binary size="500000000" eviction="MEMORY" strategy="EXCEPTION"/>
</memory>

<cache>
 <encoding media-type="application/x-protostream"/>
 <memory max-size="500 MB" when-full="EXCEPTION"/>
</cache>

<memory>
 <binary size="500000000" eviction="COUNT" strategy="MANUAL"/>
</memory>

<memory max-count="500 MB" when-full="MANUAL"/>

<memory>
 <off-heap size="10000000" eviction="COUNT"/>
</memory>

<memory storage="OFF_HEAP" max-count="10MB"/>

<memory>
 <off-heap size="1000000000" eviction="MEMORY"/>
</memory>

<memory storage="OFF_HEAP" max-size="1GB"/>

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

41

Configuring Data Grid caches

New eviction policy TinyLFU since RHDG 7.3 (Red Hat Knowledgebase)

Product Documentation for Data Grid 7.2

3.3. EXPIRATION CONFIGURATION

Expiration removes entries from caches based on their lifespan or maximum idle time.

When migrating your configuration from Data Grid 7.x to 8, there are no changes that you need to make
for expiration. The configuration remains the same:

Lifespan expiration

Max-idle expiration

For Data Grid 7.2 and earlier, using max-idle with clustered caches had technical limitations that
resulted in performance degradation.

As of Data Grid 7.3, Data Grid sends touch commands to all owners in clustered caches when client read
entries that have max-idle expiration values. This ensures that the entries have the same relative
access time across the cluster.

Data Grid 8 sends the same touch commands for max-idle expiration across clusters. However there
are some technical considerations you should take into account before you start using max-idle. Refer
to Configuring Data Grid caches to read more about how expiration works and to review how the touch
commands affect performance with clustered caches.

Additional resources

Configuring Data Grid caches

3.4. PERSISTENT CACHE STORES

In comparison with Data Grid 7.x, there are some changes to cache store configuration in Data Grid 8.

Persistence SPI
Data Grid 8.1 introduces the NonBlockingStore interface for cache stores. The NonBlockingStore SPI
exposes methods that must never block the invoking thread.

Cache stores that connect Data Grid to persistent data sources implement the NonBlockingStore
interface.

For custom cache store implementations that use blocking operations, Data Grid provides a
BlockingManager utility class to handle those operations.

The introduction of the NonBlockingStore interface deprecates the following interfaces:

CacheLoader

<expiration lifespan="1000" />

<expiration max-idle="1000" interval="120000" />

Red Hat Data Grid 8.3 Migrating to Data Grid 8

42

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/configuring_data_grid_caches/
https://access.redhat.com/solutions/4447911
https://access.redhat.com/documentation/en-us/red_hat_data_grid/7.2/
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/configuring_data_grid_caches/

CacheWriter

AdvancedCacheLoader

AdvancedCacheWriter

Custom cache stores
Data Grid 8 lets you configure custom cache stores with the store element as in previous versions.

The following changes apply:

The singleton attribute is removed. Use shared=true instead.

The segmented attribute is added and defaults to true.

Segmented cache stores
As of Data Grid 8, cache store configuration defaults to segmented="true" and applies to the following
cache store elements:

store

file-store

string-keyed-jdbc-store

jpa-store

remote-store

rocksdb-store

soft-index-file-store

Single file cache stores
The relative-to attribute for Single File cache stores is removed in Data Grid 8. If your cache store
configuration includes this attribute, Data Grid ignores it and uses only the path attribute to configure
store location.

JDBC cache stores
JDBC cache stores must include an xlmns namespace declaration, which was not required in some Data
Grid 7.x versions.

JDBC connection factories
Data Grid 7.x JDBC cache stores can use the following ConnectionFactory implementations to obtain
a database connection:

ManagedConnectionFactory

SimpleConnectionFactory

PooledConnectionFactory

<persistence>
 <string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0" shared="true">
 ...
</persistence>

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

43

Data Grid 8 now use connections factories based on Agroal, which is the same as Red Hat JBoss EAP, to
connect to databases. It is no longer possible to use c3p0.properties and hikari.properties files.

NOTE

As of Data Grid 8.3 JDBC connection factories are part of the
org.infinispan.persistence.jdbc.common.configuration package.

Segmentation
JDBC String-Based cache store configuration that enables segmentation, which is now the default,
must include the segmentColumnName and segmentColumnType parameters, as in the following
programmatic examples:

MySQL Example

PostgreSQL Example

Write-behind
The thread-pool-size attribute for Write-Behind mode is removed in Data Grid 8.

Removed cache stores and loaders
Data Grid 7.3 deprecates the following cache stores and loaders that are no longer available in Data
Grid 8:

Cassandra Cache Store

REST Cache Store

LevelDB Cache Store

CLI Cache Loader

Cache store migrator
Cache stores in previous versions of Data Grid store data in a binary format that is not compatible with
Data Grid 8.

Use the StoreMigrator utility to migrate data in persistent cache stores to Data Grid 8.

3.4.1. File-based cache stores default to soft index

Including file-store persistence in cache configuration now creates a soft index file-based cache store,

builder.table()
 .tableNamePrefix("ISPN")
 .idColumnName("ID_COLUMN").idColumnType(“VARCHAR(255)”)
 .dataColumnName("DATA_COLUMN").dataColumnType(“VARBINARY(1000)”)
 .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType(“BIGINT”)
 .segmentColumnName("SEGMENT_COLUMN").segmentColumnType("INTEGER")

builder.table()
 .tableNamePrefix("ISPN")
 .idColumnName("ID_COLUMN").idColumnType(“VARCHAR(255)”)
 .dataColumnName("DATA_COLUMN").dataColumnType(“BYTEA”)
 .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT”)
 .segmentColumnName("SEGMENT_COLUMN").segmentColumnType("INTEGER");

Red Hat Data Grid 8.3 Migrating to Data Grid 8

44

Including file-store persistence in cache configuration now creates a soft index file-based cache store,
SoftIndexFileStore, instead of a single-file cache store, SingleFileStore. In Data Grid 8.2 and earlier,
SingleFileStore was the default for file-based cache stores.

If you are migrating or upgrading to Data Grid 8.3 from a previous version, and your caches include any
configuration with the soft-index-file-store element, you should convert that configuration to use the
file-store element instead.

3.4.1.1. Declarative configuration

Data Grid 8.2 and earlier

Data Grid 8.3 and later

3.4.1.2. Programmatic configuration

Data Grid 8.2 and earlier

Data Grid 8.3 and later

3.4.1.3. Using single file cache stores with Data Grid 8.3

You can configure SingleFileStore cache stores with Data Grid 8.3 or later but Red Hat does not
recommend doing so. You should use SoftIndexFileStore cache stores because they offer better
scalability.

<persistence>
 <soft-index-file-store xmlns="urn:infinispan:config:soft-index:12.1">
 <index path="testCache/index" />
 <data path="testCache/data" />
 </soft-index-file-store>
</persistence>

<persistence>
 <file-store>
 <index path="testCache/index" />
 <data path="testCache/data" />
 </file-store>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addStore(SoftIndexFileStoreConfigurationBuilder.class)
 .indexLocation("testCache/index");
 .dataLocation("testCache/data")

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addSoftIndexFileStore()
 .indexLocation("testCache/index")
 .dataLocation("testCache/data");

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

45

Declarative

Programmatic

3.5. DATA GRID CLUSTER TRANSPORT

Data Grid uses JGroups technology to handle communication between clustered nodes.

JGroups stack configuration elements and attributes have not significantly changed from previous Data
Grid versions.

As in previous versions, Data Grid provides preconfigured JGroups stacks that you can use as a starting
point for building custom cluster transport configuration optimized for your network requirements.
Likewise, Data Grid provides the ability to add JGroups stacks defined in external XML files to your
infinispan.xml.

Data Grid 8 has brought usability improvements to make cluster transport configuration easier:

Inline stacks let you configure JGroups stacks directly within infinispan.xml using the jgroups
element.

Declare JGroups schemas within infinispan.xml .

Preconfigured JGroups stacks for UDP and TCP protocols.

Inheritance attributes that let you extend JGroups stacks to adjust specific protocols and
properties.

<persistence passivation="false">
 <single-file-store shared="false"
 preload="true"
 fetch-state="true"
 read-only="false"/>
</persistence>

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addSingleFileStore();

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:13.0 https://infinispan.org/schemas/infinispan-config-
13.0.xsd
 urn:infinispan:server:13.0 https://infinispan.org/schemas/infinispan-server-13.0.xsd
 urn:org:jgroups http://www.jgroups.org/schema/jgroups-4.2.xsd" 1
 xmlns="urn:infinispan:config:13.0"
 xmlns:server="urn:infinispan:server:13.0">

 <jgroups> 2
 <stack name="xsite" extends="udp"> 3
 <relay.RELAY2 site="LON" xmlns="urn:org:jgroups"/>
 <remote-sites default-stack="tcp">
 <remote-site name="LON"/>
 <remote-site name="NYC"/>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

46

1

2

3

Declares the JGroups 4.2 schema within infinispan.xml.

Adds a JGroups element to contain custom stack definitions.

Defines a JGroups protocol stack for cross-site replication.

3.5.1. Transport security

As in previous versions, Data Grid 8 uses the JGroups SYM_ENCRYPT and ASYM_ENCRYPT protocols
to encrypt cluster communication.

As of Data Grid you can also use a security realm that includes a keystore and trust store as a TLS server
identity to secure cluster transport, for example:

Node authentication

In Data Grid 7.x, the JGroups SASL protocol enables nodes to authenticate against security realms in
both embedded and remote server installations.

As of Data Grid 8, it is not possible to configure node authentication against security realms. Likewise
Data Grid 8 does not recommend using the JGroups AUTH protocol for authenticating clustered nodes.

However, with embedded Data Grid installations, JGroups cluster transport includes a SASL
configuration as part of the jgroups element. As in previous versions, the SASL configuration relies on
JAAS notions, such as CallbackHandlers, to obtain certain information necessary for node
authentication.

3.5.2. Retransmission requests

Data Grid 8.2 changes the configuration for retransmission requests for the UNICAST3 and NAKACK2
protocols in the default JGroups stacks, as follows:

The value of the xmit_interval property is increased from 100 milliseconds to 200 milliseconds.

The max_xmit_req_size property now sets a maximum of 500 messages per re-transmission
request, instead of a maximum of 8500 with UDP or 64000 with TCP.

As part of your migration to Data Grid 8 you should adapt any custom JGroups stack configuration to
use these recommended settings.

Additional resources

Data Grid Server Guide

 </remote-sites>
 </stack>
 </jgroups>

 <cache-container ...>
 ...
</infinispan>

<cache-container>
 <transport server:security-realm="tls-transport"/>
</cache-container>

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

47

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/

Using Embedded Data Grid Caches

Data Grid Security Guide

3.6. DATA GRID AUTHORIZATION

Data Grid uses role-based access control (RBAC) to restrict access to data and cluster encryption to
secure communication between nodes.

Roles and Permissions
Data Grid 8.2 provides a set of default users and permissions that you can use for RBAC, with the
following changes:

ClusterRoleMapper is the default mechanism that Data Grid uses to associate security
principals to authorization roles.

A new MONITOR permission allows user access to Data Grid statistics.

A new CREATE permission that users need to create and delete resources such as caches and
counters.

NOTE

CREATE replaces the ___schema_manager and ___script_manager roles
that users required to create and remove Protobuf schema and server scripts in
Data Grid 8.1 and earlier.

When migrating to Data Grid 8.2, you should assign the deployer role to users
who had the ___schema_manager and ___script_manager roles in Data Grid
8.1 or earlier. Use the command line interface (CLI) as follows:

cache manager permissions

Table 3.2. Data Grid 8.1

Permission Function Description

CONFIGURATION defineConfiguration Defines new cache configurations.

LISTEN addListener Registers listeners against a
cache manager.

LIFECYCLE stop Stops the cache manager.

ALL - Includes all cache manager
permissions.

Table 3.3. Data Grid 8.2

[//containers/default]> user roles grant --roles=deployer <user>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

48

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/embedding_data_grid_in_java_applications/
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_security_guide/

Permission Function Description

CONFIGURATION defineConfiguration Defines new cache configurations.

LISTEN addListener Registers listeners against a
cache manager.

LIFECYCLE stop Stops the cache manager.

CREATE createCache, removeCache Create and remove container
resources such as caches,
counters, schemas, and scripts.

MONITOR getStats Allows access to JMX statistics
and the metrics endpoint.

ALL - Includes all cache manager
permissions.

Cache permissions

Table 3.4. Data Grid 8.1

Permission Function Description

READ get, contains Retrieves entries from a cache.

WRITE put, putIfAbsent, replace,
remove, evict

Writes, replaces, removes, evicts
data in a cache.

EXEC distexec, streams Allows code execution against a
cache.

LISTEN addListener Registers listeners against a
cache.

BULK_READ keySet, values, entrySet,
query

Executes bulk retrieve operations.

BULK_WRITE clear, putAll Executes bulk write operations.

LIFECYCLE start, stop Starts and stops a cache.

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

49

ADMIN getVersion, addInterceptor*,
removeInterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager,
evict, getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContai
ner, setAvailability,
getDataContainer, getStats,
getXAResource

Allows access to underlying
components and internal
structures.

ALL - Includes all cache permissions.

ALL_READ - Combines the READ and
BULK_READ permissions.

ALL_WRITE - Combines the WRITE and
BULK_WRITE permissions.

Permission Function Description

Table 3.5. Data Grid 8.2

Permission Function Description

READ get, contains Retrieves entries from a cache.

WRITE put, putIfAbsent, replace,
remove, evict

Writes, replaces, removes, evicts
data in a cache.

EXEC distexec, streams Allows code execution against a
cache.

LISTEN addListener Registers listeners against a
cache.

BULK_READ keySet, values, entrySet,
query

Executes bulk retrieve operations.

BULK_WRITE clear, putAll Executes bulk write operations.

LIFECYCLE start, stop Starts and stops a cache.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

50

1

ADMIN getVersion, addInterceptor*,
removeInterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager,
evict, getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContai
ner, setAvailability,
getDataContainer, getStats,
getXAResource

Allows access to underlying
components and internal
structures.

MONITOR getStats Allows access to JMX statistics
and the metrics endpoint.

ALL - Includes all cache permissions.

ALL_READ - Combines the READ and
BULK_READ permissions.

ALL_WRITE - Combines the WRITE and
BULK_WRITE permissions.

Permission Function Description

Cache manager authorization
As of Data Grid 8.2, you can include the authorization element in the cache-container security
configuration as follows:

Enables security authorization for the cache manager with default roles and permissions.

You can also define global authorization configuration as follows:

<infinispan>
 <cache-container name="secured">
 <security>
 <authorization/> 1
 </security>
 </cache-container>
</infinispan>

<infinispan>
 <cache-container default-cache="secured" name="secured">
 <security>
 <authorization> 1

CHAPTER 3. MIGRATING DATA GRID CONFIGURATION

51

1

2

3

1

Requires user permission to control the cache manager lifecycle.

Specifies an implementation of PrincipalRoleMapper that maps Principals to roles.

Defines a set of roles and associated permissions.

Implicit cache authorization
Data Grid 8 improves usability by allowing caches to inherit authorization configuration from the cache-
container so you do not need to explicitly configure roles and permissions for each cache.

Uses roles and permissions defined in the cache container.

As of Data Grid 8.2, including the authorization element in the configuration uses the default roles
and permissions to restrict access to that cache unless you define a set of custom global
permissions.

Additional resources

Data Grid Security Guide

 <identity-role-mapper /> 2
 <role name="admin" permissions="ALL" /> 3
 <role name="reader" permissions="READ" />
 <role name="writer" permissions="WRITE" />
 <role name="supervisor" permissions="READ WRITE EXEC"/>
 </authorization>
 </security>
 </cache-container>
</infinispan>

<local-cache name="secured">
 <security>
 <authorization/> 1
 </security>
</local-cache>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

52

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_security_guide/

CHAPTER 4. MIGRATING TO DATA GRID 8 APIS
Find changes to Data Grid APIs that affect migration to Data Grid 8.

API deprecations and removals

In addition to details in this section, you should also review API deprecations and removals.

See Data Grid Deprecated Features and Functionality (Red Hat Knowledgebase).

4.1. REST API

Data Grid 7.x used REST API v1 which is replaced with REST API v2 in Data Grid 8.

The default context path for REST API v2 is <server_hostname>:11222/rest/v2/. You must update any
clients or scripts to use REST API v2.

The performAsync header was also removed from the REST endpoint. Clients that perform async
operations with the REST endpoint should manage the request and response on their side to avoid
blocking.

REST operations PUT, POST and DELETE methods now return status 204 (No content) instead of 200
if the request does not return resources.

Additional resources

Data Grid REST API

4.1.1. REST API changes in 8.3

Data Grid 8.3 includes the following changes to the REST API:

Re-indexing caches
The mass-index operation to re-index Data Grid caches is now deprecated. Update your clients to use
reindex instead, as in the following example:

/v2/caches/<cacheName>/search/indexes?action=reindex

Rolling upgrade operations
The following operation is now deprecated:

POST /v2/caches/<cacheName>?action=disconnect-source

Use the source-connection operation instead:

DELETE /v2/caches/<cacheName>/rolling-upgrade/source-connection

4.2. QUERY API

Data Grid 8 brings an updated Query API that is easier to use and has a lighter design. You get more
efficient query performance with better results when searching across values in distributed caches, in
comparison with Data Grid 7.x.

NOTE

CHAPTER 4. MIGRATING TO DATA GRID 8 APIS

53

https://access.redhat.com/articles/5643591
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_rest_api/

NOTE

Because the Data Grid 8 Query API has gone through considerable refactoring, there are
several features and functional resources that are now deprecated.

This topic focuses on changes that you need to make to your configuration when
migrating from a previous version. Those changes should include planning to remove all
deprecated interfaces, methods, or other configuration.

See the Data Grid Deprecations and Removals (Red Hat Knowledgebase) for the
complete list of deprecated features and functionality.

Indexing Data Grid caches
The Data Grid Lucene Directory, the InfinispanIndexManager and AffinityIndexManager index
managers, and the Infinispan Directory provider for Hibernate Search are deprecated in 8.0 and
removed in 8.1.

The auto-config attribute is deprecated in 8.1 and planned for removal.

The index() method that configures the index mode configuration is deprecated. When you enable
indexing in your configuration, Data Grid automatically chooses the best way to manage indexing.

IMPORTANT

Several indexing configuration values are no longer supported and result in fatal
configuration errors if you include them.

You should make the following changes to your configuration:

Change .indexing().index(Index.NONE) to indexing().enabled(false)

Change all other enum values as follows: indexing().enabled(true)

Declaratively, you do not need to specify enabled="true" if your configuration contains other indexing
configuration elements. However, you must call the enabled() method if you programmatically
configure indexing. Likewise Data Grid configuration in JSON format must explicitly enable indexing, for
example:

Indexed types

You must declare all indexed types in the indexing configuration or Data Grid logs warning messages
when undeclared types are used with indexed caches. This requirement applies to both Java classes and
Protobuf types.

Enabling indexing in Data Grid 8

Declaratively

"indexing": {
 "enabled": "true"
 ...
 },

<distributed-cache name="my-cache">
 <indexing>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

54

https://access.redhat.com/articles/5643591

Programmatically

Querying values in caches
The org.infinispan.query.SearchManager interface is deprecated in Data Grid 8 and no longer
supports Lucene and Hibernate Search native objects.

Removed methods

.getQuery() methods that take Lucene Queries. Use the alternative methods that take Ickle
queries from the org.infinispan.query.Search entry point instead.
Likewise it is no longer possible to specify multiple target entities classes when calling
.getQuery(). The Ickle query string provides entities instead.

.buildQueryBuilderForClass() that builds Hibernate Search queries directly. Use Ickle queries
instead.

The org.infinispan.query.CacheQuery interface is also deprecated. You should obtain the
org.infinispan.query.dsl.Query interface from the Search.getQueryFactory() method instead.

Note that instances of org.infinispan.query.dsl.Query no longer cache query results and allow queries
to be re-executed when calling methods such as list().

Entity mappings

You must now annotate fields that require sorting with @SortableField in all cases.

Additional resources

Data Grid Query API

Data Grid Deprecations and Removals

4.2.1. Query API changes in 8.2

Data Grid upgrades Hibernate and Apache Lucene libraries to improve performance and functionality
for the Query API. As part of this upgrade, Data Grid introduces new indexing capabilities and removes
several Hibernate and Lucene annotations.

Query statistics
Data Grid 8.2 exposes statistics for queries and indexes only if you enable statistics declaratively in the
cache configuration as follows:

 <indexed-entities>
 <indexed-entity>com.acme.query.test.Car</indexed-entity>
 <indexed-entity>com.acme.query.test.Truck</indexed-entity>
 </indexed-entities>
 </indexing>
</distributed-cache>

import org.infinispan.configuration.cache.*;

ConfigurationBuilder config=new ConfigurationBuilder();
config.indexing().enable().addIndexedEntity(Car.class).addIndexedEntity(Truck.class);

CHAPTER 4. MIGRATING TO DATA GRID 8 APIS

55

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/query/package-summary.html
https://access.redhat.com/articles/5643591

Enabling statistics for queries and indexes through JMX is no longer possible.

Indexing Data Grid caches

Declaring indexed types

Data Grid 8.1 allowed undeclared types in the indexing configuration. As of Data Grid 8.2, you must
declare all indexed types in the configuration. This requirement applies to both Java classes and
Protobuf types. See the 8.1 migration details for more information on declaring indexed types.

Index manager
Data Grid 8.2 uses near-real-time as the default index manager and no longer requires configuration.

Data Grid 8.1:

Data Grid 8.2:

Index reader and writer
Data Grid 8.2 introduces an index reader and an index writer, both of which are internal components for
creating indexes.

To adapt your configuration, you should:

1. Remove indexing configuration that uses the property element or .addProperty() method.

2. Configure indexing behavior in one of the following ways:

Declaratively: Add the <index-reader> and <index-writer> elements.

Programmatically: Add the builder.indexing().reader() and builder.indexing().writer()
methods.

Reader refresh

Use the refresh-interval attribute added in 8.2 to configure the refresh period for the index reader.

Data Grid 8.1:

Data Grid 8.2:

<replicated-cache name="myReplicatedCache" statistics="true">
 <!-- Cache configuration goes here. -->
</replicated-cache>

<indexing>
 <property name="default.indexmanager">near-real-time</property>
</indexing>

<indexing enabled="true"/>

<indexing>
 <property name="default.reader.async_refresh_period_ms">1000</property>
</indexing>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

56

Writer commit interval

Use the commit-interval attribute added in 8.2 to configure the interval at which the index writer
commits to index storage. In Data Grid 8.2 indexing is asynchronous by default and the
default.worker.execution property is no longer used.

Data Grid 8.1:

Data Grid 8.2:

Lucene index tuning properties

Data Grid 8.2 adds a ram-buffer-size attribute and an index-merge element with factor and max-size
attributes that replace properties for tuning indexes.

Data Grid 8.1:

Data Grid 8.2:

Index storage
Data Grid 8.2 includes a storage attribute that replaces the property element configuration in previous
versions. The storage attribute lets you configure whether to store indexes in JVM heap or on the host
file system.

File system storage

Data Grid 8.1:

<indexing>
 <index-reader refresh-interval="1000"/>
</indexing>

<indexing>
 <property name="default.worker.execution">async</property>
 <property name="default.index_flush_interval">500</property>
</indexing>

<indexing>
 <index-writer commit-interval="500"/>
</indexing>

<indexing>
 <property name="default.indexwriter.merge_factor">30</property>
 <property name="default.indexwriter.merge_max_size">1024</property>
 <property name="default.indexwriter.ram_buffer_size">256</property>
</indexing>

<indexing>
 <index-writer ram-buffer-size="256">
 <index-merge factor="30" max-size="1024"/>
 </index-writer>
</indexing>

<indexing>

CHAPTER 4. MIGRATING TO DATA GRID 8 APIS

57

Data Grid 8.2:

JVM heap storage

Data Grid 8.1:

Data Grid 8.2:

Adapting index properties
When migrating your indexing configuration to Data Grid 8.2, you should also make the following
changes:

Remove the lucene_version property.

IMPORTANT

Do not use indexes that you created with older Lucene versions with Data Grid
8.2.

After you adapt your indexing configuration, you should rebuild the index when
you start Data Grid for the first time to complete the migration to Data Grid 8.2.

Remove the default.sharding_strategy.nbr_of_shards property.
This property is deprecated without a replacement.

Remove the infinispan.query.lucene.max-boolean-clauses property.
As of Data Grid 8.2 you should set this as a JVM property.

Hibernate and Lucene annotations
For information about migrating Hibernate and Lucene annotations, such as @Field, @Indexed,
@SortableField, and others, refer to the Annotation mapping section of the Hibernate Search Migration
Guide.

Additional resources

Data Grid Query API

Data Grid Deprecations and Removals

Hibernate Search Migration Guide: Annotation mapping

 <property name="default.directory_provider">filesystem</property>
 <property name="default.indexBase">${java.io.tmpdir}/baseDir</property>
</indexing>

<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir"/>

<indexing>
 <property name="default.directory_provider">local-heap</property>
</indexing>

<indexing storage="local-heap">
</indexing>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

58

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/query/package-summary.html
https://access.redhat.com/articles/5643591
https://docs.jboss.org/hibernate/search/6.0/migration/html_single/#mapping-annotation

4.2.2. Query API changes in 8.3

Data Grid 8.3 removes the IndexedQueryMode parameter. Data Grid automatically detects the optimal
mode for querying caches and ignored this optional parameter in earlier versions.

Additional resources

Querying Data Grid Caches

Data Grid Query API

Data Grid Deprecations and Removals

CHAPTER 4. MIGRATING TO DATA GRID 8 APIS

59

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/querying_data_grid_caches/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/query/package-summary.html
https://access.redhat.com/articles/5643591

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8

5.1. MARSHALLING IN DATA GRID 8

Marshalling capabilities are significantly refactored in Data Grid 8 to isolate internal objects and user
objects.

Because Data Grid now handles marshalling of internal classes, you no longer need to handle those
internal classes when configuring marshallers with embedded or remote caches.

5.1.1. ProtoStream marshalling

By default, Data Grid 8 uses the ProtoStream API to marshall data as Protocol Buffers, a language-
neutral, backwards compatible format.

Protobuf encoding is a schema-defined format that is now a default standard for many applications and
allows greater flexibility when transcoding data in comparison with JBoss Marshalling, which was the
default in Data Grid 7.

Because the ProtoStream marshaller is based on the Protobuf format, Data Grid can convert to other
encodings without first converting to a Java object. When using JBoss Marshalling, it is necessary to
convert keys and values to Java objects before converting to any other format.

As part of your migration to Data Grid 8, you should start using ProtoStream marshalling for your Java
classes.

From a high-level, to use the ProtoStream marshaller, you generate SerializationContextInitializer
implementations with the ProtoStream processor. First, you add @Proto annotations to your Java
classes and then use a ProtoStream processor that Data Grid provides to generate serialization
contexts that contain:

.proto schemas that provide a structured representation of your Java objects as Protobuf
message types.

Marshaller implementations to encode your Java objects to Protobuf format.

Depending on whether you use embedded or remote caches, Data Grid can automatically register your
SerializationContextInitializer implementations.

Nested ProtoStream annotations
Data Grid 8.2 upgrades to ProtoStream 4.4.0.Final, which requires migration in some cases.

In previous versions, the ProtoStream API did not correctly nest message types with the result that the
messages were generated as top-level only.

If you have Protobuf-encoded entries in persistent cache stores, you should modify your Java classes so
that ProtoStream annotations are at top-level. This ensures that the nesting in your persisted messages
matches the nesting in your Java classes, otherwise data incompatibility issues can occur.

For example, if you have nested Java classes such as the following:

class OuterClass {
 class InnerClass {
 @ProtoField(1)
 int someMethod() {

Red Hat Data Grid 8.3 Migrating to Data Grid 8

60

You should adapt the classes so that InnerClass is no longer a child of OuterClass:

Marshalling with Data Grid Server
You should use only Protobuf encoding for remote caches in combination with the ProtoStream
marshaller for any custom types.

Other marshaller implementations, such as JBoss marshalling, require you to use different cache
encodings that are not compatible with the Data Grid CLI, Data Grid Console, or with Ickle queries.

Cache stores and ProtoStream
In Data Grid 7.x, data that you persist to a cache store is not compatible with the ProtoStream
marshaller in Data Grid 8. You must use the StoreMigrator utility to migrate data from any Data Grid 7.x
cache store to a Data Grid 8 cache store.

5.1.2. Alternative marshaller implementations

Data Grid does provide alternative marshaller implementations to ProtoStream help ease migration
from older versions. You should use those alternative marshallers only as an interim solution while you
migrate to ProtoStream marshalling.

NOTE

For new projects Red Hat strongly recommends you use only ProtoStream marshalling to
avoid any issues with future upgrades or migrations.

Deserialization Allow List
In keeping with Red Hat’s commitment to using inclusive language the term "white list" has been
changed to "allow list" for configuring serialization of your Java classes.

Data Grid 8.1

Data Grid 8.2

 }
 }
}

class InnerClass {
 @ProtoField(1)
 int someMethod() {
 }
}

<cache-container>
 <serialization>
 <white-list>
 <class>org.infinispan.test.data.Person</class>
 <regex>org.infinispan.test.data.*</regex>
 </white-list>
 </serialization>
</cache-container>

<cache-container>
 <serialization>

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8

61

JBoss marshalling
In Data Grid 7, JBoss Marshalling is the default marshaller. In Data Grid 8, ProtoStream marshalling is
the default.

NOTE

You should use JavaSerializationMarshaller instead of JBoss Marshalling if you have a
client requirement to use Java serialization.

If you must use JBoss Marshalling as a temporary solution during migration to Data Grid 8, do the
following:

Embedded caches

1. Add the infinispan-jboss-marshalling dependency to your classpath.

2. Configure Data Grid to use the JBossUserMarshaller, for example:

3. Add your classes to the list of classes that Data Grid allows for deserialization.

Remote caches

Data Grid Server does not support JBoss Marshalling and the GenericJBossMarshaller is no longer
automatically configured if the infinispan-jboss-marshalling module is on the classpath.

You must configure Hot Rod Java clients to use JBoss Marshalling as follows:

RemoteCacheManager

hotrod-client.properties

infinispan.client.hotrod.marshaller = GenericJBossMarshaller

Additional resources

Cache Encoding and Marshalling

5.2. MIGRATING APPLICATIONS TO THE
AUTOPROTOSCHEMABUILDER ANNOTATION

Previous versions of Data Grid use the MessageMarshaller interface in the ProtoStream API to
configure marshalling.

 <allow-list>
 <class>org.infinispan.test.data.Person</class>
 <regex>org.infinispan.test.data.*</regex>
 </allow-list>
 </serialization>
</cache-container>

<serialization marshaller="org.infinispan.jboss.marshalling.core.JBossUserMarshaller"/>

.marshaller("org.infinispan.jboss.marshalling.commons.GenericJBossMarshaller");

Red Hat Data Grid 8.3 Migrating to Data Grid 8

62

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/

Both the MessageMarshaller API and the ProtoSchemaBuilder annotation are deprecated as of Data
Grid 8.1.1, which corresponds to ProtoStream 4.3.4.

Using the MessageMarshaller interface involves either:

Manually creating Protobuf schema.

Adding the ProtoSchemaBuilder annotation to Java classes and then generating Protobuf
schema.

However, these techniques for configuring ProtoStream marshalling are not as efficient and reliable as
the AutoProtoSchemaBuilder annotation, which is available starting with Data Grid 8.1.1. Simply add the
AutoProtoSchemaBuilder annotation to your Java classes and to generate
SerializationContextInitializer implementations that include Protobuf schema and associated
marshallers.

Red Hat recommends that you start using the AutoProtoSchemaBuilder annotation to get the best
results from the ProtoStream marshaller.

The following code examples demonstrate how you can migrate applications from the
MessageMarshaller API to the AutoProtoSchemaBuilder annotation.

5.2.1. Basic MessageMarshaller implementation

This example contains some fields that use non-default types. The text field has a different order and
the fixed32 field conflicts with the generated Protobuf schema type because the code generator uses
int type by default.

SimpleEntry.java

SimpleEntryMarshaller.java

public class SimpleEntry {

 private String description;
 private Collection<String> text;
 private int intDefault;
 private Integer fixed32;

 // public Getter, Setter, equals and HashCode methods omitted for brevity
}

import org.infinispan.protostream.MessageMarshaller;

public class SimpleEntryMarshaller implements MessageMarshaller<SimpleEntry> {

 @Override
 public void writeTo(ProtoStreamWriter writer, SimpleEntry testEntry) throws IOException {
 writer.writeString("description", testEntry.getDescription());
 writer.writeInt("intDefault", testEntry.getIntDefault());
 writer.writeInt("fix32", testEntry.getFixed32());
 writer.writeCollection("text", testEntry.getText(), String.class);
 }

 @Override

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8

63

Resulting Protobuf schema

Migrated to the AutoProtoSchemaBuilder annotation

SimpleEntry.java

 public SimpleEntry readFrom(MessageMarshaller.ProtoStreamReader reader) throws IOException {
 SimpleEntry x = new SimpleEntry();

 x.setDescription(reader.readString("description"));
 x.setIntDefault(reader.readInt("intDefault"));
 x.setFixed32(reader.readInt("fix32"));
 x.setText(reader.readCollection("text", new LinkedList<String>(), String.class));

 return x;
 }
}

syntax = "proto2";

package example;

message SimpleEntry {
 required string description = 1;
 optional int32 intDefault = 2;
 optional fixed32 fix32 = 3;
 repeated string text = 4;
}

import org.infinispan.protostream.annotations.ProtoField;
import org.infinispan.protostream.descriptors.Type;

public class SimpleEntry {

 private String description;
 private Collection<String> text;
 private int intDefault;
 private Integer fixed32;

 @ProtoField(number = 1)
 public String getDescription() {...}

 @ProtoField(number = 4, collectionImplementation = LinkedList.class)
 public Collection<String> getText() {...}

 @ProtoField(number = 2, defaultValue = "0")
 public int getIntDefault() {...}

 @ProtoField(number = 3, type = Type.FIXED32)
 public Integer getFixed32() {...}

 // public Getter, Setter, equals and HashCode methods and convenient constructors omitted for
brevity
}

Red Hat Data Grid 8.3 Migrating to Data Grid 8

64

SimpleEntryInitializer.java

Important observations

Field 2 is defined as int which the ProtoStream marshaller in previous versions did not check.

Because the Java int field is not nullable the ProtoStream processor will fail.
The Java int field must be required or initialized with a defaultValue.
From a Java application perspective, the int field is initialized with "0" so you can use
defaultValue without any impact as any put operation will set it. Change to required is not a
problem from the stored data perspective if always present, but it might cause issues for
different clients.

Field 3 must be explicitly set to Type.FIXED32 for compatibility.

The text collection must be set in the correct order for the resulting Protobuf schema.

IMPORTANT

The order of the text collection in your Protobuf schema must be the same before and
after migration. Likewise, you must set the fixed32 type during migration.

If not, client applications might throw the following exception and fail to start:

Exception (ISPN004034: Unable to unmarshall bytes)

In other cases, you might observe incomplete or inaccurate results in your cached data.

5.2.2. MessageMarshaller implementation with custom types

This section provides an example migration for a MessageMarshaller implementation that contains
fields that ProtoStream does not natively handle.

The following example uses the BigInteger class but applies to any class, even a Data Grid adapter or a
custom class.

NOTE

The BigInteger class is immutable so does not have a no-argument constructor.

CustomTypeEntry.java

import org.infinispan.protostream.GeneratedSchema;
import org.infinispan.protostream.annotations.AutoProtoSchemaBuilder;

@AutoProtoSchemaBuilder(includeClasses = { SimpleEntry.class }, schemaFileName =
"simple.proto", schemaFilePath = "proto", schemaPackageName = "example")
public interface SimpleEntryInitializer extends GeneratedSchema {
}

import java.math.BigInteger;

public class CustomTypeEntry {

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8

65

CustomTypeEntryMarshaller.java

CustomTypeEntry.proto

Migrated code with an adapter class
You can use the ProtoAdapter annotation to marshall a CustomType class in a way that generates
Protobuf schema that is compatible with Protobuf schema that you created with MessageMarshaller
implementations.

With this approach, you:

Must not add annotations to the CustomTypeEntry class.

Create a CustomTypeEntryAdapter class that uses the @ProtoAdapter annotation to control
how the Protobuf schema and marshaller is generated.

Include the CustomTypeEntryAdapter class with the @AutoProtoSchemaBuilder annotation.

NOTE

 final String description;
 final BigInteger bigInt;

 // public Getter, Setter, equals and HashCode methods and convenient constructors omitted for
brevity
}

import org.infinispan.protostream.MessageMarshaller;

public class CustomTypeEntryMarshaller implements MessageMarshaller<CustomTypeEntry> {

 @Override
 public void writeTo(ProtoStreamWriter writer, CustomTypeEntry testEntry) throws IOException {
 writer.writeString("description", testEntry.description);
 writer.writeString("bigInt", testEntry.bigInt.toString());
 }

 @Override
 public CustomTypeEntry readFrom(MessageMarshaller.ProtoStreamReader reader) throws
IOException {
 final String desc = reader.readString("description");
 final BigInteger bInt = new BigInteger(reader.readString("bigInt"));

 return new CustomTypeEntry(desc, bInt);
 }
}

syntax = "proto2";

package example;

message CustomTypeEntry {
 required string description = 1;
 required string bigInt = 2;
}

Red Hat Data Grid 8.3 Migrating to Data Grid 8

66

NOTE

Because the AutoProtoSchemaBuilder annotation does not reference the
CustomTypeEntry class, any annotations contained in that class are ignored.

The following example shows the CustomTypeEntryAdapter class that contains ProtoStream
annotations for the CustomTypeEntry class:

CustomTypeEntryAdapter.java

The following example shows the SerializationContextInitializer with AutoProtoSchemaBuilder
annotations that reference the CustomTypeEntryAdapter class:

CustomTypeEntryInitializer.java

Migrated code without an adapter class
Instead of creating an adapter class, you can add ProtoStream annotations directly to the
CustomTypeEntry class.

IMPORTANT

import java.math.BigInteger;

import org.infinispan.protostream.annotations.ProtoAdapter;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

@ProtoAdapter(CustomTypeEntry.class)
public class CustomTypeEntryAdapter {

 @ProtoFactory
 public CustomTypeEntry create(String description, String bigInt) {
 return new CustomTypeEntry(description, new BigInteger(bigInt));
 }

 @ProtoField(number = 1, required = true)
 public String getDescription(CustomTypeEntry t) {
 return t.description;
 }

 @ProtoField(number = 2, required = true)
 public String getBigInt(CustomTypeEntry t) {
 return t.bigInt.toString();
 }
}

import org.infinispan.protostream.GeneratedSchema;
import org.infinispan.protostream.annotations.AutoProtoSchemaBuilder;

@AutoProtoSchemaBuilder(includeClasses = { CustomTypeEntryAdapter.class },
 schemaFileName = "custom.proto",
 schemaFilePath = "proto",
 schemaPackageName = "example")
public interface CustomTypeAdapterInitializer extends GeneratedSchema { }

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8

67

IMPORTANT

In this example, the generated Protobuf schema is not compatible with data in caches
that was added via the MessageMarshaller interface because the BigInteger is a
separate message. Even if the adapter field writes the same String, it is not possible to
unmarshall the data.

The following example shows the CustomTypeEntry class that directly contains ProtoStream
annotations:

CustomTypeEntry.java

The following example shows the SerializationContextInitializer with AutoProtoSchemaBuilder
annotations that reference the CustomTypeEntry and BigIntegerAdapter classes:

CustomTypeEntryInitializer.java

When you generate the Protobuf schema from the preceding SerializationContextInitializer
implementation, it results in the following Protobuf schema:

CustomTypeEntry.proto

import java.math.BigInteger;

public class CustomTypeEntry {

 @ProtoField(number = 1)
 final String description;
 @ProtoField(number = 2)
 final BigInteger bigInt;

 @ProtoFactory
 public CustomTypeEntry(String description, BigInteger bigInt) {
 this.description = description;
 this.bigInt = bigInt;
 }

 // public Getter, Setter, equals and HashCode methods and convenient constructors omitted for
brevity
}

import org.infinispan.protostream.GeneratedSchema;
import org.infinispan.protostream.annotations.AutoProtoSchemaBuilder;
import org.infinispan.protostream.types.java.math.BigIntegerAdapter;

@AutoProtoSchemaBuilder(includeClasses = { CustomTypeEntry.class,
 BigIntegerAdapter.class },
 schemaFileName = "customtype.proto",
 schemaFilePath = "proto",
 schemaPackageName = "example")
public interface CustomTypeInitializer extends GeneratedSchema { }

syntax = "proto2";

Red Hat Data Grid 8.3 Migrating to Data Grid 8

68

package example;

message BigInteger {
 optional bytes bytes = 1;
}

message CustomTypeEntry {
 optional string description = 1;
 optional BigInteger bigInt = 2;
}

CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8

69

CHAPTER 6. MIGRATING DATA GRID CLUSTERS ON RED HAT
OPENSHIFT

Review migration details for Data Grid clusters running on Red Hat OpenShift.

6.1. DATA GRID ON OPENSHIFT

Data Grid 8 introduces Data Grid Operator that provides operational intelligence and reduces
management complexity for deploying Data Grid on OpenShift.

Red Hat supports Data Grid 8 on OpenShift only through Data Grid Operator subscriptions.

With Data Grid 8, Data Grid Operator handles most configuration for Data Grid clusters, including
authentication, client keystores, external network access, and logging.

Creating Data Grid Services
Data Grid 7.3 introduced the Cache service and Data Grid service for creating Data Grid clusters on
OpenShift.

To create these services in Data Grid 7.3, you import the service templates, if necessary, and then use
template parameters and environment variables to configure the services.

Creating Cache service nodes in 7.3

$ oc new-app cache-service \
 -p APPLICATION_USER=${USERNAME} \
 -p APPLICATION_PASSWORD=${PASSWORD} \
 -p NUMBER_OF_INSTANCES=3 \
 -p REPLICATION_FACTOR=2

Creating Data Grid service nodes in 7.3

$ oc new-app datagrid-service \
 -p APPLICATION_USER=${USERNAME} \
 -p APPLICATION_PASSWORD=${PASSWORD} \
 -p NUMBER_OF_INSTANCES=3
 -e AB_PROMETHEUS_ENABLE=true

Creating services in Data Grid 8

1. Create an Data Grid Operator subscription.

2. Create an Infinispan Custom Resource (CR) to instantiate and configure Data Grid clusters.

The spec.service.type field specifies whether you create Cache service or Data Grid service

apiVersion: infinispan.org/v1
kind: Infinispan
metadata:
 name: example-infinispan
spec:
 replicas: 2
 service:
 type: Cache 1

Red Hat Data Grid 8.3 Migrating to Data Grid 8

70

1 The spec.service.type field specifies whether you create Cache service or Data Grid service
nodes.

6.1.1. Container storage

Data Grid 7.3 services use storage volumes mounted at /opt/datagrid/standalone/data.

Data Grid 8 services use persistent volume claims mounted at /opt/infinispan/server/data.

6.1.2. Data Grid CLI

Data Grid 7.3 let you access the CLI through remote shells only. Changes that you made to via the Data
Grid 7.3 CLI were bound to the pod and did not survive restarts. With Data Grid 8 you can use the CLI as
a fully functional mechanism for performing administrative operations with clusters on OpenShift or
manipulating data.

6.1.3. Data Grid console

Data Grid 7.3 did not support the console on OpenShift. With Data Grid 8 you can use the console to
monitor clusters running on OpenShift, perform administrative operations, and create caches remotely.

6.1.4. Customizing Data Grid

Data Grid 7.3 let you use the Source-to-Image (S2I) process and ConfigMap API to customize Data
Grid server images running on OpenShift.

In Data Grid 8, Red Hat does not support customization of any Data Grid images from the Red Hat
Container Registry.

Data Grid Operator handles the deployment and management of Data Grid 8 clusters on OpenShift.

As a result it is not possible to use custom:

Discovery protocols

Encryption mechanisms (SYM_ENCRYPT or ASYM_ENCRYPT)

Persistent datasources

In Data Grid 8.0 and 8.1, Data Grid Operator does not allow you to deploy custom code such as JAR files
or other artefacts. In Data Grid 8.2, you can use a persistent volume claim (PVC) to make custom code
available to Data Grid clusters.

6.1.5. Deployment configuration templates

The deployment configuration templates, and environment variables, that were available in Data Grid 7.3
are removed in Data Grid 8.

6.2. DATA GRID 8.2 ON OPENSHIFT

This topic describes details for migrating from Data Grid 8.1 to 8.2 with Data Grid Operator.

Prometheus ServiceMonitor

You no longer need to create a ServiceMonitor for Prometheus to scrape Data Grid metrics. Enable

CHAPTER 6. MIGRATING DATA GRID CLUSTERS ON RED HAT OPENSHIFT

71

You no longer need to create a ServiceMonitor for Prometheus to scrape Data Grid metrics. Enable
monitoring for user-defined projects on OpenShift Container Platform and Data Grid Operator
automatically detects when the Prometheus Operator is installed then creates a ServiceMonitor.

6.3. DATA GRID 8.3 ON OPENSHIFT

There are no migration requirements for Data Grid 8.3 deployments with Data Grid Operator.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

72

CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES
Data Grid provides a Java utility for migrating persisted data between cache stores.

In the case of upgrading Data Grid, functional differences between major versions do not allow
backwards compatibility between cache stores. You can use StoreMigrator to convert your data so that
it is compatible with the target version.

For example, upgrading to Data Grid 8.0 changes the default marshaller to Protostream. In previous
Data Grid versions, cache stores use a binary format that is not compatible with the changes to
marshalling. This means that Data Grid 8.0 cannot read from cache stores with previous Data Grid
versions.

In other cases Data Grid versions deprecate or remove cache store implementations, such as JDBC
Mixed and Binary stores. You can use StoreMigrator in these cases to convert to different cache store
implementations.

7.1. CACHE STORE MIGRATOR

Data Grid provides the StoreMigrator.java utility that recreates data for the latest Data Grid cache
store implementations.

StoreMigrator takes a cache store from a previous version of Data Grid as source and uses a cache
store implementation as target.

When you run StoreMigrator, it creates the target cache with the cache store type that you define using
the EmbeddedCacheManager interface. StoreMigrator then loads entries from the source store into
memory and then puts them into the target cache.

StoreMigrator also lets you migrate data from one type of cache store to another. For example, you can
migrate from a JDBC string-based cache store to a RocksDB cache store.

IMPORTANT

StoreMigrator cannot migrate data from segmented cache stores to:

Non-segmented cache store.

Segmented cache stores that have a different number of segments.

7.2. GETTING THE CACHE STORE MIGRATOR

StoreMigrator is available as part of the Data Grid tools library, infinispan-tools, and is included in the
Maven repository.

Procedure

Configure your pom.xml for StoreMigrator as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES

73

7.3. CONFIGURING THE CACHE STORE MIGRATOR

Set properties for source and target cache stores in a migrator.properties file.

Procedure

1. Create a migrator.properties file.

2. Configure the source cache store in migrator.properties.

a. Prepend all configuration properties with source. as in the following example:

source.type=SOFT_INDEX_FILE_STORE
source.cache_name=myCache
source.location=/path/to/source/sifs
source.version=<version>

 <modelVersion>4.0.0</modelVersion>

 <groupId>org.infinispan.example</groupId>
 <artifactId>jdbc-migrator-example</artifactId>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-tools</artifactId>
 </dependency>
 <!-- Additional dependencies -->
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <mainClass>org.infinispan.tools.store.migrator.StoreMigrator</mainClass>
 <arguments>
 <argument>path/to/migrator.properties</argument>
 </arguments>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat Data Grid 8.3 Migrating to Data Grid 8

74

3. Configure the target cache store in migrator.properties.

a. Prepend all configuration properties with target. as in the following example:

target.type=SINGLE_FILE_STORE
target.cache_name=myCache
target.location=/path/to/target/sfs.dat

7.3.1. Configuration properties for the cache store migrator

Configure source and target cache stores in a StoreMigrator properties.

Table 7.1. Cache Store Type Property

Property Description Required/Optional

type Specifies the type of cache store
type for a source or target.

.type=JDBC_STRING

.type=JDBC_BINARY

.type=JDBC_MIXED

.type=LEVELDB

.type=ROCKSDB

.type=SINGLE_FILE_STORE

.type=SOFT_INDEX_FILE_ST
ORE

.type=JDBC_MIXED

Required

Table 7.2. Common Properties

Property Description Example Value Required/Optional

cache_name Names the cache that
the store backs.

.cache_name=myCa
che

Required

CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES

75

segment_count Specifies the number of
segments for target
cache stores that can
use segmentation.

The number of
segments must match
clustering.hash.num
Segments in the Data
Grid configuration.

In other words, the
number of segments for
a cache store must
match the number of
segments for the
corresponding cache. If
the number of segments
is not the same, Data
Grid cannot read data
from the cache store.

.segment_count=256 Optional

Property Description Example Value Required/Optional

Table 7.3. JDBC Properties

Property Description Required/Optional

dialect Specifies the dialect of the
underlying database.

Required

version Specifies the marshaller version
for source cache stores.
Set one of the following values:

* 8 for Data Grid 7.2.x

* 9 for Data Grid 7.3.x

* 10 for Data Grid 8.0.x

* 11 for Data Grid 8.1.x

* 12 for Data Grid 8.2.x

* 13 for Data Grid 8.3.x

Required for source stores only.

marshaller.class Specifies a custom marshaller
class.

Required if using custom
marshallers.

Red Hat Data Grid 8.3 Migrating to Data Grid 8

76

marshaller.externalizers Specifies a comma-separated list
of custom
AdvancedExternalizer
implementations to load in this
format: [id]:<Externalizer
class>

Optional

connection_pool.connection
_url

Specifies the JDBC connection
URL.

Required

connection_pool.driver_clas
s

Specifies the class of the JDBC
driver.

Required

connection_pool.username Specifies a database username. Required

connection_pool.password Specifies a password for the
database username.

Required

db.major_version Sets the database major version. Optional

db.minor_version Sets the database minor version. Optional

db.disable_upsert Disables database upsert. Optional

db.disable_indexing Specifies if table indexes are
created.

Optional

table.string.table_name_prefi
x

Specifies additional prefixes for
the table name.

Optional

table.string.
<id|data|timestamp>.name

Specifies the column name. Required

table.string.
<id|data|timestamp>.type

Specifies the column type. Required

key_to_string_mapper Specifies the
TwoWayKey2StringMapper
class.

Optional

Property Description Required/Optional

NOTE

CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES

77

NOTE

To migrate from Binary cache stores in older Data Grid versions, change table.string.* to
table.binary.* in the following properties:

source.table.binary.table_name_prefix

source.table.binary.<id\|data\|timestamp>.name

source.table.binary.<id\|data\|timestamp>.type

Example configuration for migrating to a JDBC String-Based cache store
target.type=STRING
target.cache_name=myCache
target.dialect=POSTGRES
target.marshaller.class=org.example.CustomMarshaller
target.marshaller.externalizers=25:Externalizer1,org.example.Externalizer2
target.connection_pool.connection_url=jdbc:postgresql:postgres
target.connection_pool.driver_class=org.postrgesql.Driver
target.connection_pool.username=postgres
target.connection_pool.password=redhat
target.db.major_version=9
target.db.minor_version=5
target.db.disable_upsert=false
target.db.disable_indexing=false
target.table.string.table_name_prefix=tablePrefix
target.table.string.id.name=id_column
target.table.string.data.name=datum_column
target.table.string.timestamp.name=timestamp_column
target.table.string.id.type=VARCHAR
target.table.string.data.type=bytea
target.table.string.timestamp.type=BIGINT
target.key_to_string_mapper=org.infinispan.persistence.keymappers.
DefaultTwoWayKey2StringMapper

Table 7.4. RocksDB Properties

Property Description Required/Optional

location Sets the database directory. Required

compression Specifies the compression type to
use.

Optional

Example configuration for migrating from a RocksDB cache store.
source.type=ROCKSDB
source.cache_name=myCache
source.location=/path/to/rocksdb/database
source.compression=SNAPPY

Table 7.5. SingleFileStore Properties

Red Hat Data Grid 8.3 Migrating to Data Grid 8

78

Property Description Required/Optional

location Sets the directory that contains
the cache store .dat file.

Required

Example configuration for migrating to a Single File cache store.
target.type=SINGLE_FILE_STORE
target.cache_name=myCache
target.location=/path/to/sfs.dat

Table 7.6. SoftIndexFileStore Properties

Property Description Value

Required/Optional location Sets the database directory.

Required index_location Sets the database index directory.

Example configuration for migrating to a Soft-Index File cache store.
target.type=SOFT_INDEX_FILE_STORE
target.cache_name=myCache
target.location=path/to/sifs/database
target.location=path/to/sifs/index

7.4. MIGRATING DATA GRID CACHE STORES

Run StoreMigrator to migrate data from one cache store to another.

Prerequisites

Get infinispan-tools.jar.

Create a migrator.properties file that configures the source and target cache stores.

Procedure

If you build infinispan-tools.jar from source, do the following:

1. Add infinispan-tools.jar and dependencies for your source and target databases, such as
JDBC drivers, to your classpath.

2. Specify migrator.properties file as an argument for StoreMigrator.

If you pull infinispan-tools.jar from the Maven repository, run the following command:
mvn exec:java

CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES

79

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DATA GRID 8
	1.1. MIGRATION TO DATA GRID 8
	1.2. MIGRATION PATHS
	1.3. COMPONENT DOWNLOADS
	Maven repository
	Data Grid Server
	Modules for JBoss EAP
	Tomcat session client
	Hot Rod Node.js client
	Source code

	CHAPTER 2. MIGRATING DATA GRID SERVER DEPLOYMENTS
	2.1. DATA GRID SERVER 8
	2.2. DATA GRID SERVER CONFIGURATION
	Dynamic configuration
	Static configuration
	Cache container configuration
	Server configuration

	2.3. CHANGES TO THE DATA GRID SERVER 8.2 CONFIGURATION SCHEMA
	Security authorization
	Client trust stores
	Endpoint connectors
	Modified elements and attributes
	New elements and attributes
	Deprecated elements and attributes
	Removed elements and attributes

	2.4. CHANGES TO THE DATA GRID SERVER 8.3 CONFIGURATION SCHEMA
	Schema changes
	Modified elements and attributes
	New elements and attributes
	Deprecated elements and attributes
	Removed elements and attributes

	2.5. DATA GRID SERVER ENDPOINT AND NETWORK CONFIGURATION
	2.5.1. Interfaces
	Data Grid Server 7.x network interface configuration
	Data Grid Server 8 network interface configuration

	2.5.2. Socket bindings
	Data Grid Server 7.x socket binding configuration
	Data Grid Server 8 single port configuration

	2.5.3. Endpoints
	Data Grid Server 7.x endpoint subsystem
	Data Grid Server 8 endpoint configuration

	2.6. DATA GRID SERVER SECURITY
	2.6.1. Security realms
	Supported security realms

	2.6.2. Server identities
	2.6.3. Endpoint authentication mechanisms
	Hot Rod SASL authentication mechanisms
	HTTP (REST) authentication mechanisms

	2.6.4. Authenticating EAP applications
	2.6.5. Logging
	Access logs

	2.7. SEPARATING DATA GRID SERVER ENDPOINTS
	2.8. DATA GRID SERVER SHARED DATASOURCES
	2.9. DATA GRID SERVER JMX AND METRICS
	2.10. DATA GRID SERVER CHEATSHEET
	Starting server instances
	Starting the CLI
	Creating users
	Stopping server instances
	Listing available command options
	7.x to 8 reference

	CHAPTER 3. MIGRATING DATA GRID CONFIGURATION
	3.1. DATA GRID CACHE CONFIGURATION
	3.1.1. Cache encoding
	3.1.2. Cache health status
	3.1.3. Changes to the Data Grid 8.1 configuration schema
	New and modified elements and attributes
	Deprecated elements and attributes
	Removed elements and attributes

	3.1.4. Changes to the Data Grid 8.2 configuration schema
	Modified elements and attributes
	New elements and attributes
	Deprecated elements and attributes
	Removed elements and attributes

	3.1.5. Changes to the Data Grid 8.3 configuration schema
	Schema changes
	Modified elements and attributes
	New elements and attributes
	Deprecated elements and attributes
	Removed elements and attributes

	3.2. EVICTION CONFIGURATION
	3.2.1. Storage types
	Changes in Data Grid 8
	Object storage in Data Grid 8
	Off-heap storage in Data Grid 8
	Binary storage in Data Grid 8

	3.2.2. Eviction threshold
	Eviction based on total number of entries
	Eviction based on maximum amount of memory

	3.2.3. Eviction strategies
	Eviction algorithms

	3.2.4. Eviction configuration comparison
	Object storage and evict on number of entries
	Object storage and evict on amount of memory
	Binary storage and evict on number of entries
	Binary storage and evict on amount of memory
	Off-heap storage and evict on number of entries
	Off-heap storage and evict on amount of memory

	3.3. EXPIRATION CONFIGURATION
	3.4. PERSISTENT CACHE STORES
	Persistence SPI
	Custom cache stores
	Segmented cache stores
	Single file cache stores
	JDBC cache stores
	JDBC connection factories
	Segmentation

	Write-behind
	Removed cache stores and loaders
	Cache store migrator
	3.4.1. File-based cache stores default to soft index
	3.4.1.1. Declarative configuration
	3.4.1.2. Programmatic configuration
	3.4.1.3. Using single file cache stores with Data Grid 8.3

	3.5. DATA GRID CLUSTER TRANSPORT
	3.5.1. Transport security
	3.5.2. Retransmission requests

	3.6. DATA GRID AUTHORIZATION
	Roles and Permissions
	cache manager permissions
	Cache permissions

	Cache manager authorization
	Implicit cache authorization

	CHAPTER 4. MIGRATING TO DATA GRID 8 APIS
	4.1. REST API
	4.1.1. REST API changes in 8.3
	Re-indexing caches
	Rolling upgrade operations

	4.2. QUERY API
	Indexing Data Grid caches
	Enabling indexing in Data Grid 8

	Querying values in caches
	4.2.1. Query API changes in 8.2
	Query statistics
	Indexing Data Grid caches
	Hibernate and Lucene annotations

	4.2.2. Query API changes in 8.3

	CHAPTER 5. MIGRATING APPLICATIONS TO DATA GRID 8
	5.1. MARSHALLING IN DATA GRID 8
	5.1.1. ProtoStream marshalling
	Nested ProtoStream annotations
	Marshalling with Data Grid Server
	Cache stores and ProtoStream

	5.1.2. Alternative marshaller implementations
	Deserialization Allow List
	JBoss marshalling

	5.2. MIGRATING APPLICATIONS TO THE AUTOPROTOSCHEMABUILDER ANNOTATION
	5.2.1. Basic MessageMarshaller implementation
	Migrated to the AutoProtoSchemaBuilder annotation
	Important observations

	5.2.2. MessageMarshaller implementation with custom types
	Migrated code with an adapter class
	Migrated code without an adapter class

	CHAPTER 6. MIGRATING DATA GRID CLUSTERS ON RED HAT OPENSHIFT
	6.1. DATA GRID ON OPENSHIFT
	Creating Data Grid Services
	Creating Cache service nodes in 7.3
	Creating Data Grid service nodes in 7.3
	Creating services in Data Grid 8

	6.1.1. Container storage
	6.1.2. Data Grid CLI
	6.1.3. Data Grid console
	6.1.4. Customizing Data Grid
	6.1.5. Deployment configuration templates

	6.2. DATA GRID 8.2 ON OPENSHIFT
	Prometheus ServiceMonitor

	6.3. DATA GRID 8.3 ON OPENSHIFT

	CHAPTER 7. MIGRATING DATA BETWEEN CACHE STORES
	7.1. CACHE STORE MIGRATOR
	7.2. GETTING THE CACHE STORE MIGRATOR
	7.3. CONFIGURING THE CACHE STORE MIGRATOR
	7.3.1. Configuration properties for the cache store migrator

	7.4. MIGRATING DATA GRID CACHE STORES

