
Red Hat Data Grid 8.3

Configuring Data Grid Caches

Configure Data Grid caches to customize your deployment

Last Updated: 2023-11-24

Red Hat Data Grid 8.3 Configuring Data Grid Caches

Configure Data Grid caches to customize your deployment

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure Data Grid deployments to use features and capabilities that suit your business
requirements.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

RED HAT DATA GRID

DATA GRID DOCUMENTATION

DATA GRID DOWNLOADS

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. DATA GRID CACHES
1.1. CACHE API
1.2. CACHE MANAGERS
1.3. CACHE MODES

1.3.1. Comparison of cache modes
1.4. LOCAL CACHES

Local cache configuration
1.4.1. Simple caches

Simple cache configuration

CHAPTER 2. CLUSTERED CACHES
2.1. REPLICATED CACHES
2.2. DISTRIBUTED CACHES

2.2.1. Read consistency
2.2.2. Key ownership

Hashing configuration
2.2.3. Capacity factors

2.2.3.1. Zero capacity nodes
Zero capacity node configuration

2.2.4. Level one (L1) caches
L1 caching performance
L1 cache configuration

2.2.5. Server hinting
Server hinting configuration

2.2.6. Key affinity service
Lifecycle
Topology changes

2.2.7. Grouping API
Advanced API

2.3. INVALIDATION CACHES
2.4. SCATTERED CACHES
2.5. ASYNCHRONOUS REPLICATION

Asynchronous API
2.5.1. Return values with asynchronous replication

2.6. CONFIGURING INITIAL CLUSTER SIZE
Initial cluster size configuration

CHAPTER 3. DATA GRID CACHE CONFIGURATION
3.1. DECLARATIVE CACHE CONFIGURATION

3.1.1. Cache configuration
Distributed caches
Replicated caches
Multiple caches

3.2. ADDING CACHE TEMPLATES
Cache template example

6

7

8

9

10
10
10
10
11

12
12
12
13

14
14
15
16
17
18
19
19
19

20
20
20
21
21
22
23
23
23
25
25
27
28
28
28
29
29

31
31
31
32
34
35
38
38

Table of Contents

1

. .

. .

. .

3.2.1. Creating caches from templates
Cache configuration inherited from a template

3.2.2. Cache template inheritance
Template inheritance example

3.2.3. Cache template wildcards
Template wildcard example

3.2.4. Cache templates from multiple XML files
3.3. CREATING REMOTE CACHES

3.3.1. Default Cache Manager
Default Cache Manager configuration

3.3.2. Creating caches with Data Grid Console
3.3.3. Creating remote caches with the Data Grid CLI
3.3.4. Creating remote caches from Hot Rod clients
3.3.5. Creating remote caches with the REST API

3.4. CREATING EMBEDDED CACHES
3.4.1. Adding Data Grid to your project
3.4.2. Configuring embedded caches

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING
4.1. CONFIGURING DATA GRID METRICS

Metrics configuration
4.2. REGISTERING JMX MBEANS

JMX configuration
4.2.1. Enabling JMX remote ports
4.2.2. Data Grid MBeans
4.2.3. Registering MBeans in custom MBean servers

JMX MBean server lookup configuration

CHAPTER 5. CONFIGURING JVM MEMORY USAGE
5.1. DEFAULT MEMORY CONFIGURATION
5.2. EVICTION AND EXPIRATION
5.3. EVICTION WITH DATA GRID CACHES

5.3.1. Eviction strategies
5.3.2. Configuring maximum count eviction

Maximum count eviction
5.3.3. Configuring maximum size eviction

Maximum size eviction
5.3.4. Manual eviction
5.3.5. Passivation with eviction

5.4. EXPIRATION WITH LIFESPAN AND MAXIMUM IDLE
5.4.1. How expiration works
5.4.2. Expiration reaper
5.4.3. Maximum idle and clustered caches
5.4.4. Configuring lifespan and maximum idle times for caches

Expiration for Data Grid caches
5.4.5. Configuring lifespan and maximum idle times per entry

5.5. JVM HEAP AND OFF-HEAP MEMORY
JVM heap memory
Off-heap memory
5.5.1. Off-heap data storage
5.5.2. Configuring off-heap memory

Off-heap storage

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

39
39
40
40
41
41

42
43
43
44
45
45
46
47
47
47
47

49
49
49
50
50
51
52
52
53

54
54
54
55
55
56
56
57
57
58
59
60
61
61

62
62
62
63
64
64
64
65
65
65

67

Red Hat Data Grid 8.3 Configuring Data Grid Caches

2

6.1. PASSIVATION
6.1.1. How passivation works

6.2. WRITE-THROUGH CACHE STORES
Write-through configuration

6.3. WRITE-BEHIND CACHE STORES
Write-behind configuration
Failing silently

6.4. SEGMENTED CACHE STORES
6.5. SHARED CACHE STORES
6.6. TRANSACTIONS WITH PERSISTENT CACHE STORES
6.7. GLOBAL PERSISTENT LOCATION

Remote caches
Embedded caches
6.7.1. Configuring the global persistent location

Global persistent location configuration
6.8. FILE-BASED CACHE STORES

Soft-Index File Stores
Single File Cache Stores
6.8.1. Configuring file-based cache stores

File-based cache store configuration
6.8.2. Configuring single file cache stores

Single file cache store configuration
6.9. JDBC CONNECTION FACTORIES

Connection pools
Managed datasources
Simple connections
6.9.1. Configuring managed datasources

Managed datasource configuration
6.9.1.1. Configuring caches with JNDI names

JNDI name in cache configuration
6.9.1.2. Connection pool tuning properties

6.9.2. Configuring JDBC connection pools with Agroal properties
6.10. SQL CACHE STORES

6.10.1. Data types for keys and values
6.10.1.1. Composite keys and values

Composite values
Composite keys and values

6.10.1.2. Embedded keys
6.10.1.3. SQL types to Protobuf types

6.10.2. Loading Data Grid caches from database tables
SQL table store configuration

6.10.3. Using SQL queries to load data and perform operations
6.10.3.1. SQL query store configuration

SQL statements
Protobuf schemas
Cache configuration

6.10.4. SQL cache store troubleshooting
6.11. JDBC STRING-BASED CACHE STORES

6.11.1. Configuring JDBC string-based cache stores
JDBC string-based cache store configuration

6.12. ROCKSDB CACHE STORES
RocksDB cache store configuration

6.13. REMOTE CACHE STORES

67
67
68
69
69
69
71
71
71
72
72
72
73
73
74
75
75
76
76
77
78
78
79
79
80
81

82
83
85
85
87
87
89
89
90
90
90
91
91

92
93
95
97
97
97
98

100
101
101
102
104
106
107

Table of Contents

3

. .

. .

Remote cache store configuration
6.14. JPA CACHE STORES

JPA cache store configuration
Configuration parameters
6.14.1. JPA cache store example

6.15. CLUSTER CACHE LOADERS
Cluster cache loader configuration

6.16. CREATING CUSTOM CACHE STORE IMPLEMENTATIONS
6.16.1. Data Grid Persistence SPI
6.16.2. Creating cache stores
6.16.3. Examples of custom cache store configuration
6.16.4. Deploying custom cache stores

6.17. MIGRATING DATA BETWEEN CACHE STORES
6.17.1. Cache store migrator
6.17.2. Getting the cache store migrator
6.17.3. Configuring the cache store migrator

6.17.3.1. Configuration properties for the cache store migrator
6.17.4. Migrating Data Grid cache stores

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS
7.1. SPLIT CLUSTERS AND NETWORK PARTITIONS

7.1.1. Data consistency in a split cluster
7.2. CACHE AVAILABILITY AND DEGRADED MODE

7.2.1. Degraded cache recovery example
7.2.2. Verifying cache availability during network partitions
7.2.3. Making caches available

7.3. CONFIGURING PARTITION HANDLING
Partition handling configuration

7.4. PARTITION HANDLING STRATEGIES
7.5. MERGE POLICIES
7.6. CONFIGURING CUSTOM MERGE POLICIES

Custom merge policy configuration
7.7. MANUALLY MERGING PARTITIONS IN EMBEDDED CACHES

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS
8.1. SECURITY AUTHORIZATION

8.1.1. User roles and permissions
8.1.2. Permissions

8.1.2.1. Cache Manager permissions
8.1.2.2. Cache permissions

8.1.3. Role mappers
8.1.3.1. Cluster role mappers
8.1.3.2. Identity role mappers
8.1.3.3. CommonName role mappers
8.1.3.4. Custom role mappers

8.2. ACCESS CONTROL LIST (ACL) CACHE
8.3. CUSTOMIZING ROLES AND PERMISSIONS

Custom roles and permissions configuration
8.4. CONFIGURING CACHES WITH SECURITY AUTHORIZATION

Authorization configuration
Custom roles and permissions

8.5. DISABLING SECURITY AUTHORIZATION

107
109
109
110
110
112
112
113
113
114
114
115
115
115
116
117
117
121

123
123
123
124
125
125
126
127
127
128
129
129
130
131

133
133
133
134
134
135
136
136
136
137
137
137
138
138
140
140
141
141

Red Hat Data Grid 8.3 Configuring Data Grid Caches

4

Table of Contents

5

RED HAT DATA GRID
Data Grid is a high-performance, distributed in-memory data store.

Schemaless data structure

Flexibility to store different objects as key-value pairs.

Grid-based data storage

Designed to distribute and replicate data across clusters.

Elastic scaling

Dynamically adjust the number of nodes to meet demand without service disruption.

Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

6

DATA GRID DOCUMENTATION
Documentation for Data Grid is available on the Red Hat customer portal.

Data Grid 8.3 Documentation

Data Grid 8.3 Component Details

Supported Configurations for Data Grid 8.3

Data Grid 8 Feature Support

Data Grid Deprecated Features and Functionality

DATA GRID DOCUMENTATION

7

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3
https://access.redhat.com/articles/4933371
https://access.redhat.com/articles/4933551
https://access.redhat.com/articles/5637681
https://access.redhat.com/articles/5643591

DATA GRID DOWNLOADS
Access the Data Grid Software Downloads on the Red Hat customer portal.

NOTE

You must have a Red Hat account to access and download Data Grid software.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

8

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid&downloadType=distributions

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

9

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. DATA GRID CACHES
Data Grid caches provide flexible, in-memory data stores that you can configure to suit use cases such
as:

Boosting application performance with high-speed local caches.

Optimizing databases by decreasing the volume of write operations.

Providing resiliency and durability for consistent data across clusters.

1.1. CACHE API

Cache<K,V> is the central interface for Data Grid and extends java.util.concurrent.ConcurrentMap.

Cache entries are highly concurrent data structures in key:value format that support a wide and
configurable range of data types, from simple strings to much more complex objects.

1.2. CACHE MANAGERS

The CacheManager API is the starting point for interacting with Data Grid caches. Cache managers
control cache lifecycle; creating, modifying, and deleting cache instances.

Data Grid provides two CacheManager implementations:

EmbeddedCacheManager

Entry point for caches when running Data Grid inside the same Java Virtual Machine (JVM) as the
client application.

RemoteCacheManager

Entry point for caches when running Data Grid Server in its own JVM. When you instantiate a
RemoteCacheManager it establishes a persistent TCP connection to Data Grid Server through the
Hot Rod endpoint.

NOTE

Both embedded and remote CacheManager implementations share some methods and
properties. However, semantic differences do exist between EmbeddedCacheManager
and RemoteCacheManager.

1.3. CACHE MODES

TIP

Data Grid cache managers can create and control multiple caches that use different modes. For
example, you can use the same cache manager for local caches, distributed caches, and caches with
invalidation mode.

Local

Data Grid runs as a single node and never replicates read or write operations on cache entries.

Replicated

Data Grid replicates all cache entries on all nodes in a cluster and performs local read operations

Red Hat Data Grid 8.3 Configuring Data Grid Caches

10

Data Grid replicates all cache entries on all nodes in a cluster and performs local read operations
only.

Distributed

Data Grid replicates cache entries on a subset of nodes in a cluster and assigns entries to fixed owner
nodes.
Data Grid requests read operations from owner nodes to ensure it returns the correct value.

Invalidation

Data Grid evicts stale data from all nodes whenever operations modify entries in the cache. Data
Grid performs local read operations only.

Scattered

Data Grid stores cache entries across a subset of nodes.
By default Data Grid assigns a primary owner and a backup owner to each cache entry in scattered
caches.
Data Grid assigns primary owners in the same way as with distributed caches, while backup owners
are always the nodes that initiate the write operations.
Data Grid requests read operations from at least one owner node to ensure it returns the correct
value.

1.3.1. Comparison of cache modes

The cache mode that you should choose depends on the qualities and guarantees you need for your
data.

The following table summarizes the primary differences between cache modes:

Cache
mode

Clustered? Read
performan

ce

Write
performan

ce

Capacity Availability Capabilitie
s

Local No High (local) High (local) Single node Single node Complete

Simple No Highest
(local)

Highest
(local)

Single node Single node Partial: no
transaction

s,
persistence

, or
indexing.

Invalidation Yes High (local) Low (all
nodes, no

data)

Single node Single node Partial: no
indexing.

Replicated Yes High (local) Lowest (all
nodes)

Smallest node All nodes Complete

Distributed Yes Medium
(owners)

Medium
(owner
nodes)

Sum of all
nodes capacity
divided by the

number of
owners.

Owner
nodes

Complete

CHAPTER 1. DATA GRID CACHES

11

Scattered Yes Medium
(primary)

Higher
(single
RPC)

Sum of all
nodes capacity

divided by 2.

Owner
nodes

Partial: no
transaction

s.

Cache
mode

Clustered? Read
performan

ce

Write
performan

ce

Capacity Availability Capabilitie
s

1.4. LOCAL CACHES

Data Grid offers a local cache mode that is similar to a ConcurrentHashMap.

Caches offer more capabilities than simple maps, including write-through and write-behind to persistent
storage as well as management capabilities such as eviction and expiration.

The Data Grid Cache API extends the ConcurrentMap API in Java, making it easy to migrate from a
map to a Data Grid cache.

Local cache configuration

XML

JSON

YAML

1.4.1. Simple caches

A simple cache is a type of local cache that disables support for the following capabilities:

<local-cache name="mycache"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
</local-cache>

{
 "local-cache": {
 "name": "mycache",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 }
 }
}

localCache:
 name: "mycache"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

12

Transactions and invocation batching

Persistent storage

Custom interceptors

Indexing

Transcoding

However, you can use other Data Grid capabilities with simple caches such as expiration, eviction,
statistics, and security features. If you configure a capability that is not compatible with a simple cache,
Data Grid throws an exception.

Simple cache configuration

XML

JSON

YAML

<local-cache simple-cache="true" />

{
 "local-cache" : {
 "simple-cache" : "true"
 }
}

localCache:
 simpleCache: "true"

CHAPTER 1. DATA GRID CACHES

13

CHAPTER 2. CLUSTERED CACHES
You can create embedded and remote caches on Data Grid clusters that replicate data across nodes.

2.1. REPLICATED CACHES

Data Grid replicates all entries in the cache to all nodes in the cluster. Each node can perform read
operations locally.

Replicated caches provide a quick and easy way to share state across a cluster, but is suitable for
clusters of less than ten nodes. Because the number of replication requests scales linearly with the
number of nodes in the cluster, using replicated caches with larger clusters reduces performance.
However you can use UDP multicasting for replication requests to improve performance.

Each key has a primary owner, which serializes data container updates in order to provide consistency.

Figure 2.1. Replicated cache

Synchronous or asynchronous replication

Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

Transactions

If transactions are enabled, write operations are not replicated through the primary owner.

With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes. During
transaction commit, the originator broadcasts a one-phase prepare message and an unlock message
(optional). Either the one-phase prepare or the unlock message is fire-and-forget.

With optimistic locking, the originator broadcasts a prepare message, a commit message, and an unlock

Red Hat Data Grid 8.3 Configuring Data Grid Caches

14

With optimistic locking, the originator broadcasts a prepare message, a commit message, and an unlock
message (optional). Again, either the one-phase prepare or the unlock message is fire-and-forget.

2.2. DISTRIBUTED CACHES

Data Grid attempts to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows distributed caches to scale linearly, storing more data as nodes are added to
the cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we say
that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to
server or network failures.

Data Grid splits the owners of a key into one primary owner, which coordinates writes to the key, and
zero or more backup owners.

The following diagram shows a write operation that a client sends to a backup owner. In this case the
backup node forwards the write to the primary owner, which then replicates the write to the backup.

Figure 2.2. Cluster replication

Figure 2.3. Distributed cache

CHAPTER 2. CLUSTERED CACHES

15

Figure 2.3. Distributed cache

Read operations

Read operations request the value from the primary owner. If the primary owner does not respond in a
reasonable amount of time, Data Grid requests the value from the backup owners as well.

A read operation may require 0 messages if the key is present in the local cache, or up to 2 *
numOwners messages if all the owners are slow.

Write operations

Write operations result in at most 2 * numOwners messages. One message from the originator to the
primary owner and numOwners - 1 messages from the primary to the backup nodes along with the
corresponding acknowledgment messages.

NOTE

Cache topology changes may cause retries and additional messages for both read and
write operations.

Synchronous or asynchronous replication

Asynchronous replication is not recommended because it can lose updates. In addition to losing updates,
asynchronous distributed caches can also see a stale value when a thread writes to a key and then
immediately reads the same key.

Transactions

Transactional distributed caches send lock/prepare/commit/unlock messages to the affected nodes
only, meaning all nodes that own at least one key affected by the transaction. As an optimization, if the
transaction writes to a single key and the originator is the primary owner of the key, lock messages are
not replicated.

2.2.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. For transactional caches, they

Red Hat Data Grid 8.3 Configuring Data Grid Caches

16

Even with synchronous replication, distributed caches are not linearizable. For transactional caches, they
do not support serialization/snapshot isolation.

For example, a thread is carrying out a single put request:

But another thread might see the values in a different order:

The reason is that read can return the value from any owner, depending on how fast the primary owner
replies. The write is not atomic across all the owners. In fact, the primary commits the update only after
it receives a confirmation from the backup. While the primary is waiting for the confirmation message
from the backup, reads from the backup will see the new value, but reads from the primary will see the
old one.

2.2.2. Key ownership

Distributed caches split entries into a fixed number of segments and assign each segment to a list of
owner nodes. Replicated caches do the same, with the exception that every node is an owner.

The first node in the list of owners is the primary owner. The other nodes in the list are backup owners.
When the cache topology changes, because a node joins or leaves the cluster, the segment ownership
table is broadcast to every node. This allows nodes to locate keys without making multicast requests or
maintaining metadata for each key.

The numSegments property configures the number of segments available. However, the number of
segments cannot change unless the cluster is restarted.

Likewise the key-to-segment mapping cannot change. Keys must always map to the same segments
regardless of cluster topology changes. It is important that the key-to-segment mapping evenly
distributes the number of segments allocated to each node while minimizing the number of segments
that must move when the cluster topology changes.

Consistent hash factory implementation Description

SyncConsistentHashFactory Uses an algorithm based on consistent hashing.
Selected by default when server hinting is disabled.

This implementation always assigns keys to the same
nodes in every cache as long as the cluster is
symmetric. In other words, all caches run on all nodes.
This implementation does have some negative points
in that the load distribution is slightly uneven. It also
moves more segments than strictly necessary on a
join or leave.

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

cache.get(k) -> v2
cache.get(k) -> v1

CHAPTER 2. CLUSTERED CACHES

17

http://en.wikipedia.org/wiki/Consistent_hashing

TopologyAwareSyncConsistentHashFactory Equivalent to SyncConsistentHashFactory but
used with server hinting to distribute data across the
topology so that backed up copies of data are stored
on different nodes in the topology than the primary
owners. This is the default consistent hashing
implementation with server hinting.

DefaultConsistentHashFactory Achieves a more even distribution than
SyncConsistentHashFactory, but with one
disadvantage. The order in which nodes join the
cluster determines which nodes own which
segments. As a result, keys might be assigned to
different nodes in different caches.

TopologyAwareConsistentHashFactory Equivalent to DefaultConsistentHashFactory
but used with server hinting to distribute data across
the topology so that backed up copies of data are
stored on different nodes in the topology than the
primary owners.

ReplicatedConsistentHashFactory Used internally to implement replicated caches. You
should never explicitly select this algorithm in a
distributed cache.

Consistent hash factory implementation Description

Hashing configuration
You can configure ConsistentHashFactory implementations, including custom ones, with embedded
caches only.

XML

ConfigurationBuilder

Additional resources

<distributed-cache name="distributedCache"
 owners="2"
 segments="100"
 capacity-factor="2" />

Configuration c = new ConfigurationBuilder()
 .clustering()
 .cacheMode(CacheMode.DIST_SYNC)
 .hash()
 .numOwners(2)
 .numSegments(100)
 .capacityFactor(2)
 .build();

Red Hat Data Grid 8.3 Configuring Data Grid Caches

18

KeyPartitioner

2.2.3. Capacity factors

Capacity factors allocate the number of segments based on resources available to each node in the
cluster.

The capacity factor for a node applies to segments for which that node is both the primary owner and
backup owner. In other words, the capacity factor specifies is the total capacity that a node has in
comparison to other nodes in the cluster.

The default value is 1 which means that all nodes in the cluster have an equal capacity and Data Grid
allocates the same number of segments to all nodes in the cluster.

However, if nodes have different amounts of memory available to them, you can configure the capacity
factor so that the Data Grid hashing algorithm assigns each node a number of segments weighted by its
capacity.

The value for the capacity factor configuration must be a positive number and can be a fraction such as
1.5. You can also configure a capacity factor of 0 but is recommended only for nodes that join the cluster
temporarily and should use the zero capacity configuration instead.

2.2.3.1. Zero capacity nodes

You can configure nodes where the capacity factor is 0 for every cache, user defined caches, and
internal caches. When defining a zero capacity node, the node does not hold any data.

Zero capacity node configuration

XML

JSON

YAML

ConfigurationBuilder

<infinispan>
 <cache-container zero-capacity-node="true" />
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "zero-capacity-node" : "true"
 }
 }
}

infinispan:
 cacheContainer:
 zeroCapacityNode: "true"

CHAPTER 2. CLUSTERED CACHES

19

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/distribution/ch/KeyPartitioner.html

2.2.4. Level one (L1) caches

Data Grid nodes create local replicas when they retrieve entries from another node in the cluster. L1
caches avoid repeatedly looking up entries on primary owner nodes and adds performance.

The following diagram illustrates how L1 caches work:

Figure 2.4. L1 cache

In the "L1 cache" diagram:

1. A client invokes cache.get() to read an entry for which another node in the cluster is the primary
owner.

2. The originator node forwards the read operation to the primary owner.

3. The primary owner returns the key/value entry.

4. The originator node creates a local copy.

5. Subsequent cache.get() invocations return the local entry instead of forwarding to the primary
owner.

L1 caching performance
Enabling L1 improves performance for read operations but requires primary owner nodes to broadcast
invalidation messages when entries are modified. This ensures that Data Grid removes any out of date
replicas across the cluster. However this also decreases performance of write operations and increases
memory usage, reducing overall capacity of caches.

NOTE

Data Grid evicts and expires local replicas, or L1 entries, like any other cache entry.

L1 cache configuration

XML

new GlobalConfigurationBuilder().zeroCapacityNode(true);

<distributed-cache l1-lifespan="5000"
 l1-cleanup-interval="60000">
</distributed-cache>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

20

JSON

YAML

ConfigurationBuilder

2.2.5. Server hinting

Server hinting increases availability of data in distributed caches by replicating entries across as many
servers, racks, and data centers as possible.

NOTE

Server hinting applies only to distributed caches.

When Data Grid distributes the copies of your data, it follows the order of precedence: site, rack,
machine, and node. All of the configuration attributes are optional. For example, when you specify only
the rack IDs, then Data Grid distributes the copies across different racks and nodes.

Server hinting can impact cluster rebalancing operations by moving more segments than necessary if
the number of segments for the cache is too low.

TIP

An alternative for clusters in multiple data centers is cross-site replication.

Server hinting configuration

XML

{
 "distributed-cache": {
 "l1-lifespan": "5000",
 "l1-cleanup-interval": "60000"
 }
}

distributedCache:
 l1Lifespan: "5000"
 l1-cleanup-interval: "60000"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC)
 .l1()
 .lifespan(5000, TimeUnit.MILLISECONDS)
 .cleanupTaskFrequency(60000, TimeUnit.MILLISECONDS);

<cache-container>
 <transport cluster="MyCluster"
 machine="LinuxServer01"

CHAPTER 2. CLUSTERED CACHES

21

JSON

YAML

GlobalConfigurationBuilder

Additional resources

org.infinispan.configuration.global.TransportConfigurationBuilder

2.2.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no easy way
to reverse the computation and generate a key that maps to a particular node. However, Data Grid can
generate a sequence of (pseudo-)random keys, see what their primary owner is, and hand them out to
the application when it needs a key mapping to a particular node.

Following code snippet depicts how a reference to this service can be obtained and used.

 rack="Rack01"
 site="US-WestCoast"/>
</cache-container>

{
 "infinispan" : {
 "cache-container" : {
 "transport" : {
 "cluster" : "MyCluster",
 "machine" : "LinuxServer01",
 "rack" : "Rack01",
 "site" : "US-WestCoast"
 }
 }
 }
}

cacheContainer:
 transport:
 cluster: "MyCluster"
 machine: "LinuxServer01"
 rack: "Rack01"
 site: "US-WestCoast"

GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder()
 .transport()
 .clusterName("MyCluster")
 .machineId("LinuxServer01")
 .rackId("Rack01")
 .siteId("US-WestCoast");

// 1. Obtain a reference to a cache
Cache cache = ...

Red Hat Data Grid 8.3 Configuring Data Grid Caches

22

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/global/TransportConfigurationBuilder.html

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle
KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the caller’s
thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with which it
was registered is shutdown.

Topology changes
When the cache topology changes, the ownership of the keys generated by the KeyAffinityService
might change. The key affinity service keep tracks of these topology changes and doesn’t return keys
that would currently map to a different node, but it won’t do anything about keys generated earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should not rely
on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same address
to always be located together. Collocation of keys is only provided by the Grouping API.

2.2.7. Grouping API

Complementary to the Key affinity service, the Grouping API allows you to co-locate a group of entries
on the same nodes, but without being able to select the actual nodes.

By default, the segment of a key is computed using the key’s hashCode(). If you use the Grouping API,
Data Grid will compute the segment of the group and use that as the segment of the key.

When the Grouping API is in use, it is important that every node can still compute the owners of every

Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory.newLocalKeyAffinityService(
 cache,
 new RndKeyGenerator(),
 Executors.newSingleThreadExecutor(),
 100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

public interface Lifecycle {
 void start();
 void stop();
}

CHAPTER 2. CLUSTERED CACHES

23

key without contacting other nodes. For this reason, the group cannot be specified manually. The group
can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by an external
function).

To use the Grouping API, you must enable groups.

If you have control of the key class (you can alter the class definition, it’s not part of an unmodifiable
library), then we recommend using an intrinsic group. The intrinsic group is specified by adding the
@Group annotation to a method, for example:

NOTE

The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal concern
to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving the
value computed by the previous one. If the key class also has a @Group annotation, the first Grouper

Configuration c = new ConfigurationBuilder()
 .clustering().hash().groups().enabled()
 .build();

<distributed-cache>
 <groups enabled="true"/>
</distributed-cache>

class User {
 ...
 String office;
 ...

 public int hashCode() {
 // Defines the hash for the key, normally used to determine location
 ...
 }

 // Override the location by specifying a group
 // All keys in the same group end up with the same owners
 @Group
 public String getOffice() {
 return office;
 }
 }
}

public interface Grouper<T> {
 String computeGroup(T key, String group);

 Class<T> getKeyType();
}

Red Hat Data Grid 8.3 Configuring Data Grid Caches

24

will receive the group computed by the annotated method. This allows you even greater control over the
group when using an intrinsic group.

Example Grouper implementation

Grouper implementations must be registered explicitly in the cache configuration. If you are configuring
Data Grid programmatically:

Or, if you are using XML:

Advanced API
AdvancedCache has two group-specific methods:

getGroup(groupName) retrieves all keys in the cache that belong to a group.

removeGroup(groupName) removes all the keys in the cache that belong to a group.

Both methods iterate over the entire data container and store (if present), so they can be slow when a
cache contains lots of small groups.

2.3. INVALIDATION CACHES

You can use Data Grid in invalidation mode to optimize systems that perform high volumes of read

public class KXGrouper implements Grouper<String> {

 // The pattern requires a String key, of length 2, where the first character is
 // "k" and the second character is a digit. We take that digit, and perform
 // modular arithmetic on it to assign it to group "0" or group "1".
 private static Pattern kPattern = Pattern.compile("(^k)(<a>\\d)$");

 public String computeGroup(String key, String group) {
 Matcher matcher = kPattern.matcher(key);
 if (matcher.matches()) {
 String g = Integer.parseInt(matcher.group(2)) % 2 + "";
 return g;
 } else {
 return null;
 }
 }

 public Class<String> getKeyType() {
 return String.class;
 }
}

Configuration c = new ConfigurationBuilder()
 .clustering().hash().groups().enabled().addGrouper(new KXGrouper())
 .build();

<distributed-cache>
 <groups enabled="true">
 <grouper class="com.example.KXGrouper" />
 </groups>
</distributed-cache>

CHAPTER 2. CLUSTERED CACHES

25

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/AdvancedCache.html#getGroup-java.lang.String-
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/AdvancedCache.html#removeGroup-java.lang.String-

You can use Data Grid in invalidation mode to optimize systems that perform high volumes of read
operations. A good example is to use invalidation to prevent lots of database writes when state changes
occur.

This cache mode only makes sense if you have another, permanent store for your data such as a
database and are only using Data Grid as an optimization in a read-heavy system, to prevent hitting the
database for every read. If a cache is configured for invalidation, every time data is changed in a cache,
other caches in the cluster receive a message informing them that their data is now stale and should be
removed from memory and from any local store.

Figure 2.5. Invalidation cache

Sometimes the application reads a value from the external store and wants to write it to the local cache,
without removing it from the other nodes. To do this, it must call Cache.putForExternalRead(key,
value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the shared
store, and it would remove the stale values from the other nodes' memory. The benefit of this is twofold:
network traffic is minimized as invalidation messages are very small compared to replicating the entire
value, and also other caches in the cluster look up modified data in a lazy manner, only when needed.

IMPORTANT

Never use invalidation mode with a local, non-shared, cache store. The invalidation
message will not remove entries in the local store, and some nodes will keep seeing the
stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When
ClusterLoader is enabled, read operations that do not find the key on the local node will request it from
all the other nodes first, and store it in memory locally. In certain situation it will store stale values, so
only use it if you have a high tolerance for stale values.

Synchronous or asynchronous replication

When synchronous, a write blocks until all nodes in the cluster have evicted the stale value. When

Red Hat Data Grid 8.3 Configuring Data Grid Caches

26

When synchronous, a write blocks until all nodes in the cluster have evicted the stale value. When
asynchronous, the originator broadcasts invalidation messages but does not wait for responses. That
means other nodes still see the stale value for a while after the write completed on the originator.

Transactions

Transactions can be used to batch the invalidation messages. Transactions acquire the key lock on the
primary owner.

With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes. During
transaction commit, the originator broadcasts a one-phase prepare message (optionally fire-and-
forget) which invalidates all affected keys and releases the locks.

With optimistic locking, the originator broadcasts a prepare message, a commit message, and an unlock
message (optional). Either the one-phase prepare or the unlock message is fire-and-forget, and the last
message always releases the locks.

2.4. SCATTERED CACHES

Scattered caches are very similar to distributed caches as they allow linear scaling of the cluster.
Scattered caches allow single node failure by maintaining two copies of the data (numOwners=2).
Unlike distributed caches, the location of data is not fixed; while we use the same Consistent Hash
algorithm to locate the primary owner, the backup copy is stored on the node that wrote the data last
time. When the write originates on the primary owner, backup copy is stored on any other node (the
exact location of this copy is not important).

This has the advantage of single Remote Procedure Call (RPC) for any write (distributed caches require
one or two RPCs), but reads have to always target the primary owner. That results in faster writes but
possibly slower reads, and therefore this mode is more suitable for write-intensive applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to remove
out-of-date backup copies, invalidation messages are broadcast in the cluster, which generates some
overhead. This lowers the performance of scattered caches in clusters with a large number of nodes.

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the backups
and find out the last written backup copy. This process results in more network traffic during state
transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site IDs on the transport level
the cluster cannot be resilient to more than one failure on the same machine/rack/site.

NOTE

You cannot use scattered caches with transactions or asynchronous replication.

The cache is configured in a similar way as the other cache modes, here is an example of declarative
configuration:

Scattered mode is not exposed in the server configuration as the server is usually accessed through the

<scattered-cache name="scatteredCache" />

Configuration c = new ConfigurationBuilder()
 .clustering().cacheMode(CacheMode.SCATTERED_SYNC)
 .build();

CHAPTER 2. CLUSTERED CACHES

27

Hot Rod protocol. The protocol automatically selects primary owner for the writes and therefore the
write (in distributed mode with two owner) requires single RPC inside the cluster, too. Therefore,
scattered cache would not bring the performance benefit.

2.5. ASYNCHRONOUS REPLICATION

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-
cache/> element.

With asynchronous communications, the originator node does not receive any acknowledgement from
the other nodes about the status of the operation, so there is no way to check if it succeeded on other
nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies in
the data, and the results are hard to reason about. Nevertheless, sometimes speed is more important
than consistency, and the option is available for those cases.

Asynchronous API
The Asynchronous API allows you to use synchronous communications, but without blocking the user
thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread calls
cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node and
v2 on another.

2.5.1. Return values with asynchronous replication

Because the Cache interface extends java.util.Map, write methods like put(key, value) and
remove(key) return the previous value by default.

In some cases, the return value may not be correct:

1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE,
Flag.SKIP_REMOTE_LOOKUP, or Flag.SKIP_CACHE_LOAD.

2. When the cache is configured with unreliable-return-values="true".

3. When using asynchronous communications.

4. When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make Data Grid retry the write operations, and a retried operation’s
return value is not reliable.

Transactional caches return the correct previous value in cases 3 and 4. However, transactional caches
also have a gotcha: in distributed mode, the read-committed isolation level is implemented as
repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
 Integer v1 = cache.get(k);
 // Increment the value

Red Hat Data Grid 8.3 Configuring Data Grid Caches

28

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/

The correct way to implement this is to use
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get(k).

In caches with optimistic locking, writes can also return stale previous values. Write skew checks can
avoid stale previous values.

2.6. CONFIGURING INITIAL CLUSTER SIZE

Data Grid handles cluster topology changes dynamically. This means that nodes do not need to wait for
other nodes to join the cluster before Data Grid initializes the caches.

If your applications require a specific number of nodes in the cluster before caches start, you can
configure the initial cluster size as part of the transport.

Procedure

1. Open your Data Grid configuration for editing.

2. Set the minimum number of nodes required before caches start with the initial-cluster-size
attribute or initialClusterSize() method.

3. Set the timeout, in milliseconds, after which the cache manager does not start with the initial-
cluster-timeout attribute or initialClusterTimeout() method.

4. Save and close your Data Grid configuration.

Initial cluster size configuration

XML

JSON

 Integer v2 = cache.put(k, v1 + 1);
 if (Objects.equals(v1, v2) {
 // success
 } else {
 // retry
 }
} finally {
 tm.commit();
}

<infinispan>
 <cache-container>
 <transport initial-cluster-size="4"
 initial-cluster-timeout="30000" />
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "transport" : {
 "initial-cluster-size" : "4",

CHAPTER 2. CLUSTERED CACHES

29

YAML

ConfigurationBuilder

 "initial-cluster-timeout" : "30000"
 }
 }
 }
}

infinispan:
 cacheContainer:
 transport:
 initialClusterSize: "4"
 initialClusterTimeout: "30000"

GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
 .transport()
 .initialClusterSize(4)
 .initialClusterTimeout(30000, TimeUnit.MILLISECONDS);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

30

CHAPTER 3. DATA GRID CACHE CONFIGURATION
Cache configuration controls how Data Grid stores your data.

As part of your cache configuration, you declare the cache mode you want to use. For instance, you can
configure Data Grid clusters to use replicated caches or distributed caches.

Your configuration also defines the characteristics of your caches and enables the Data Grid capabilities
that you want to use when handling data. For instance, you can configure how Data Grid encodes entries
in your caches, whether replication requests happen synchronously or asynchronously between nodes, if
entries are mortal or immortal, and so on.

3.1. DECLARATIVE CACHE CONFIGURATION

You can configure caches declaratively, in XML or JSON format, according to the Data Grid schema.

Declarative cache configuration has the following advantages over programmatic configuration:

Portability

Define each configuration in a standalone file that you can use to create embedded and remote
caches.
You can also use declarative configuration to create caches with Data Grid Operator for clusters
running on OpenShift.

Simplicity

Keep markup languages separate to programming languages.
For example, to create remote caches it is generally better to not add complex XML directly to Java
code.

NOTE

Data Grid Server configuration extends infinispan.xml to include cluster transport
mechanisms, security realms, and endpoint configuration. If you declare caches as part of
your Data Grid Server configuration you should use management tooling, such as Ansible
or Chef, to keep it synchronized across the cluster.

To dynamically synchronize remote caches across Data Grid clusters, create them at
runtime.

3.1.1. Cache configuration

You can create declarative cache configuration in XML, JSON, and YAML format.

All declarative caches must conform to the Data Grid schema. Configuration in JSON format must
follow the structure of an XML configuration, elements correspond to objects and attributes correspond
to fields.

IMPORTANT

Data Grid restricts characters to a maximum of 255 for a cache name or a cache template
name. If you exceed this character limit, the Data Grid server might abruptly stop without
issuing an exception message. Write succinct cache names and cache template names.

IMPORTANT

CHAPTER 3. DATA GRID CACHE CONFIGURATION

31

IMPORTANT

A file system might set a limitation for the length of a file name, so ensure that a cache’s
name does not exceed this limitation. If a cache name exceeds a file system’s naming
limitation, general operations or initialing operations towards that cache might fail. Write
succinct cache names and cache template names.

Distributed caches

XML

JSON

<distributed-cache owners="2"
 segments="256"
 capacity-factor="1.0"
 l1-lifespan="5000"
 mode="SYNC"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
 <locking isolation="REPEATABLE_READ"/>
 <transaction mode="FULL_XA"
 locking="OPTIMISTIC"/>
 <expiration lifespan="5000"
 max-idle="1000" />
 <memory max-count="1000000"
 when-full="REMOVE"/>
 <indexing enabled="true"
 storage="local-heap">
 <index-reader refresh-interval="1000"/>
 </indexing>
 <partition-handling when-split="ALLOW_READ_WRITES"
 merge-policy="PREFERRED_NON_NULL"/>
 <persistence passivation="false">
 <!-- Persistent storage configuration. -->
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "mode": "SYNC",
 "owners": "2",
 "segments": "256",
 "capacity-factor": "1.0",
 "l1-lifespan": "5000",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 },
 "locking": {
 "isolation": "REPEATABLE_READ"
 },
 "transaction": {
 "mode": "FULL_XA",

Red Hat Data Grid 8.3 Configuring Data Grid Caches

32

YAML

 "locking": "OPTIMISTIC"
 },
 "expiration" : {
 "lifespan" : "5000",
 "max-idle" : "1000"
 },
 "memory": {
 "max-count": "1000000",
 "when-full": "REMOVE"
 },
 "indexing" : {
 "enabled" : true,
 "storage" : "local-heap",
 "index-reader" : {
 "refresh-interval" : "1000"
 }
 },
 "partition-handling" : {
 "when-split" : "ALLOW_READ_WRITES",
 "merge-policy" : "PREFERRED_NON_NULL"
 },
 "persistence" : {
 "passivation" : false
 }
 }
}

distributedCache:
 mode: "SYNC"
 owners: "2"
 segments: "256"
 capacityFactor: "1.0"
 l1Lifespan: "5000"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"
 locking:
 isolation: "REPEATABLE_READ"
 transaction:
 mode: "FULL_XA"
 locking: "OPTIMISTIC"
 expiration:
 lifespan: "5000"
 maxIdle: "1000"
 memory:
 maxCount: "1000000"
 whenFull: "REMOVE"
 indexing:
 enabled: "true"
 storage: "local-heap"
 indexReader:
 refreshInterval: "1000"
 partitionHandling:

CHAPTER 3. DATA GRID CACHE CONFIGURATION

33

Replicated caches

XML

JSON

 whenSplit: "ALLOW_READ_WRITES"
 mergePolicy: "PREFERRED_NON_NULL"
 persistence:
 passivation: "false"
 # Persistent storage configuration.

<replicated-cache segments="256"
 mode="SYNC"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
 <locking isolation="REPEATABLE_READ"/>
 <transaction mode="FULL_XA"
 locking="OPTIMISTIC"/>
 <expiration lifespan="5000"
 max-idle="1000" />
 <memory max-count="1000000"
 when-full="REMOVE"/>
 <indexing enabled="true"
 storage="local-heap">
 <index-reader refresh-interval="1000"/>
 </indexing>
 <partition-handling when-split="ALLOW_READ_WRITES"
 merge-policy="PREFERRED_NON_NULL"/>
 <persistence passivation="false">
 <!-- Persistent storage configuration. -->
 </persistence>
</replicated-cache>

{
 "replicated-cache": {
 "mode": "SYNC",
 "segments": "256",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 },
 "locking": {
 "isolation": "REPEATABLE_READ"
 },
 "transaction": {
 "mode": "FULL_XA",
 "locking": "OPTIMISTIC"
 },
 "expiration" : {
 "lifespan" : "5000",
 "max-idle" : "1000"
 },
 "memory": {

Red Hat Data Grid 8.3 Configuring Data Grid Caches

34

YAML

Multiple caches

XML

 "max-count": "1000000",
 "when-full": "REMOVE"
 },
 "indexing" : {
 "enabled" : true,
 "storage" : "local-heap",
 "index-reader" : {
 "refresh-interval" : "1000"
 }
 },
 "partition-handling" : {
 "when-split" : "ALLOW_READ_WRITES",
 "merge-policy" : "PREFERRED_NON_NULL"
 },
 "persistence" : {
 "passivation" : false
 }
 }
}

replicatedCache:
 mode: "SYNC"
 segments: "256"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"
 locking:
 isolation: "REPEATABLE_READ"
 transaction:
 mode: "FULL_XA"
 locking: "OPTIMISTIC"
 expiration:
 lifespan: "5000"
 maxIdle: "1000"
 memory:
 maxCount: "1000000"
 whenFull: "REMOVE"
 indexing:
 enabled: "true"
 storage: "local-heap"
 indexReader:
 refreshInterval: "1000"
 partitionHandling:
 whenSplit: "ALLOW_READ_WRITES"
 mergePolicy: "PREFERRED_NON_NULL"
 persistence:
 passivation: "false"
 # Persistent storage configuration.

CHAPTER 3. DATA GRID CACHE CONFIGURATION

35

YAML

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:13.0 https://infinispan.org/schemas/infinispan-config-
13.0.xsd
 urn:infinispan:server:13.0 https://infinispan.org/schemas/infinispan-server-13.0.xsd"
 xmlns="urn:infinispan:config:13.0"
 xmlns:server="urn:infinispan:server:13.0">
 <cache-container name="default"
 statistics="true">
 <distributed-cache name="mycacheone"
 mode="ASYNC"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
 <expiration lifespan="300000"/>
 <memory max-size="400MB"
 when-full="REMOVE"/>
 </distributed-cache>
 <distributed-cache name="mycachetwo"
 mode="SYNC"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
 <expiration lifespan="300000"/>
 <memory max-size="400MB"
 when-full="REMOVE"/>
 </distributed-cache>
 </cache-container>
</infinispan>

infinispan:
 cacheContainer:
 name: "default"
 statistics: "true"
 caches:
 mycacheone:
 distributedCache:
 mode: "ASYNC"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"
 expiration:
 lifespan: "300000"
 memory:
 maxSize: "400MB"
 whenFull: "REMOVE"
 mycachetwo:
 distributedCache:
 mode: "SYNC"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"
 expiration:
 lifespan: "300000"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

36

JSON

Additional resources

Data Grid configuration schema reference

infinispan-config-13.0.xsd

 memory:
 maxSize: "400MB"
 whenFull: "REMOVE"

{
 "infinispan" : {
 "cache-container" : {
 "name" : "default",
 "statistics" : "true",
 "caches" : {
 "mycacheone" : {
 "distributed-cache" : {
 "mode": "ASYNC",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 },
 "expiration" : {
 "lifespan" : "300000"
 },
 "memory": {
 "max-size": "400MB",
 "when-full": "REMOVE"
 }
 }
 },
 "mycachetwo" : {
 "distributed-cache" : {
 "mode": "SYNC",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 },
 "expiration" : {
 "lifespan" : "300000"
 },
 "memory": {
 "max-size": "400MB",
 "when-full": "REMOVE"
 }
 }
 }
 }
 }
 }
}

CHAPTER 3. DATA GRID CACHE CONFIGURATION

37

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/
http://infinispan.org/schemas/infinispan-config-13.0.xsd

3.2. ADDING CACHE TEMPLATES

The Data Grid schema includes *-cache-configuration elements that you can use to create templates.
You can then create caches on demand, using the same configuration multiple times.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the cache configuration with the appropriate *-cache-configuration element or object to
the cache manager.

3. Save and close your Data Grid configuration.

Cache template example

XML

JSON

<infinispan>
 <cache-container>
 <distributed-cache-configuration name="my-dist-template"
 mode="SYNC"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
 <memory max-count="1000000"
 when-full="REMOVE"/>
 <expiration lifespan="5000"
 max-idle="1000"/>
 </distributed-cache-configuration>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "distributed-cache-configuration" : {
 "name" : "my-dist-template",
 "mode": "SYNC",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 },
 "expiration" : {
 "lifespan" : "5000",
 "max-idle" : "1000"
 },
 "memory": {
 "max-count": "1000000",
 "when-full": "REMOVE"
 }
 }

Red Hat Data Grid 8.3 Configuring Data Grid Caches

38

YAML

3.2.1. Creating caches from templates

Create caches from configuration templates.

TIP

Templates for remote caches are available from the Cache templates menu in Data Grid Console.

Prerequisites

Add at least one cache template to the cache manager.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify the template from which the cache inherits with the configuration attribute or field.

3. Save and close your Data Grid configuration.

Cache configuration inherited from a template

XML

JSON

 }
 }
}

infinispan:
 cacheContainer:
 distributedCacheConfiguration:
 name: "my-dist-template"
 mode: "SYNC"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"
 expiration:
 lifespan: "5000"
 maxIdle: "1000"
 memory:
 maxCount: "1000000"
 whenFull: "REMOVE"

<distributed-cache configuration="my-dist-template" />

{
 "distributed-cache": {
 "configuration": "my-dist-template"

CHAPTER 3. DATA GRID CACHE CONFIGURATION

39

YAML

3.2.2. Cache template inheritance

Cache configuration templates can inherit from other templates to extend and override settings.

Cache template inheritance is hierarchical. For a child configuration template to inherit from a parent,
you must include it after the parent template.

Additionally, template inheritance is additive for elements that have multiple values. A cache that
inherits from another template merges the values from that template, which can override properties.

Template inheritance example

XML

JSON

 }
}

distributedCache:
 configuration: "my-dist-template"

<infinispan>
 <cache-container>
 <distributed-cache-configuration name="base-template">
 <expiration lifespan="5000"/>
 </distributed-cache-configuration>
 <distributed-cache-configuration name="extended-template"
 configuration="base-template">
 <encoding media-type="application/x-protostream"/>
 <expiration lifespan="10000"
 max-idle="1000"/>
 </distributed-cache-configuration>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "caches" : {
 "base-template" : {
 "distributed-cache-configuration" : {
 "expiration" : {
 "lifespan" : "5000"
 }
 }
 },
 "extended-template" : {
 "distributed-cache-configuration" : {
 "configuration" : "base-template",
 "encoding": {

Red Hat Data Grid 8.3 Configuring Data Grid Caches

40

YAML

3.2.3. Cache template wildcards

You can add wildcards to cache configuration template names. If you then create caches where the
name matches the wildcard, Data Grid applies the configuration template.

NOTE

Data Grid throws exceptions if cache names match more than one wildcard.

Template wildcard example

XML

 "media-type": "application/x-protostream"
 },
 "expiration" : {
 "lifespan" : "10000",
 "max-idle" : "1000"
 }
 }
 }
 }
 }
 }
}

infinispan:
 cacheContainer:
 caches:
 base-template:
 distributedCacheConfiguration:
 expiration:
 lifespan: "5000"
 extended-template:
 distributedCacheConfiguration:
 configuration: "base-template"
 encoding:
 mediaType: "application/x-protostream"
 expiration:
 lifespan: "10000"
 maxIdle: "1000"

<infinispan>
 <cache-container>
 <distributed-cache-configuration name="async-dist-cache-*"
 mode="ASYNC"
 statistics="true">
 <encoding media-type="application/x-protostream"/>
 </distributed-cache-configuration>
 </cache-container>
</infinispan>

CHAPTER 3. DATA GRID CACHE CONFIGURATION

41

JSON

YAML

Using the preceding example, if you create a cache named "async-dist-cache-prod" then Data Grid uses
the configuration from the async-dist-cache-* template.

3.2.4. Cache templates from multiple XML files

Split cache configuration templates into multiple XML files for granular flexibility and reference them
with XML inclusions (XInclude).

NOTE

Data Grid provides minimal support for the XInclude specification. This means you cannot
use the xpointer attribute, the xi:fallback element, text processing, or content
negotiation.

You must also add the xmlns:xi="http://www.w3.org/2001/XInclude" namespace to
infinispan.xml to use XInclude.

Xinclude cache template

{
 "infinispan" : {
 "cache-container" : {
 "distributed-cache-configuration" : {
 "name" : "async-dist-cache-*",
 "mode": "ASYNC",
 "statistics": "true",
 "encoding": {
 "media-type": "application/x-protostream"
 }
 }
 }
 }
}

infinispan:
 cacheContainer:
 distributedCacheConfiguration:
 name: "async-dist-cache-*"
 mode: "ASYNC"
 statistics: "true"
 encoding:
 mediaType: "application/x-protostream"

<infinispan xmlns:xi="http://www.w3.org/2001/XInclude">
 <cache-container default-cache="cache-1">
 <!-- References files that contain cache configuration templates. -->
 <xi:include href="distributed-cache-template.xml" />

Red Hat Data Grid 8.3 Configuring Data Grid Caches

42

Data Grid also provides an infinispan-config-fragment-13.0.xsd schema that you can use with
configuration fragments.

Configuration fragment schema

Additional resources

XInclude specification

3.3. CREATING REMOTE CACHES

When you create remote caches at runtime, Data Grid Server synchronizes your configuration across
the cluster so that all nodes have a copy. For this reason you should always create remote caches
dynamically with the following mechanisms:

Data Grid Console

Data Grid Command Line Interface (CLI)

Hot Rod or HTTP clients

3.3.1. Default Cache Manager

Data Grid Server provides a default Cache Manager that controls the lifecycle of remote caches.
Starting Data Grid Server automatically instantiates the Cache Manager so you can create and delete
remote caches and other resources like Protobuf schema.

After you start Data Grid Server and add user credentials, you can view details about the Cache Manager
and get cluster information from Data Grid Console.

Open 127.0.0.1:11222 in any browser.

You can also get information about the Cache Manager through the Command Line Interface (CLI) or
REST API:

CLI

Run the describe command in the default container.

[//containers/default]> describe

REST

Open 127.0.0.1:11222/rest/v2/cache-managers/default/ in any browser.

 <xi:include href="replicated-cache-template.xml" />
 </cache-container>
</infinispan>

<local-cache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:13.0 https://infinispan.org/schemas/infinispan-
config-fragment-13.0.xsd"
 xmlns="urn:infinispan:config:13.0"
 name="mycache"/>

CHAPTER 3. DATA GRID CACHE CONFIGURATION

43

https://www.w3.org/TR/xinclude/

Default Cache Manager configuration

XML

JSON

YAML

<infinispan>
 <!-- Creates a Cache Manager named "default" and enables metrics. -->
 <cache-container name="default"
 statistics="true">
 <!-- Adds cluster transport that uses the default JGroups TCP stack. -->
 <transport cluster="${infinispan.cluster.name:cluster}"
 stack="${infinispan.cluster.stack:tcp}"
 node-name="${infinispan.node.name:}"/>
 <!-- Requires user permission to access caches and perform operations. -->
 <security>
 <authorization/>
 </security>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "jgroups" : {
 "transport" : "org.infinispan.remoting.transport.jgroups.JGroupsTransport"
 },
 "cache-container" : {
 "name" : "default",
 "statistics" : "true",
 "transport" : {
 "cluster" : "cluster",
 "node-name" : "",
 "stack" : "tcp"
 },
 "security" : {
 "authorization" : {}
 }
 }
 }
}

infinispan:
 jgroups:
 transport: "org.infinispan.remoting.transport.jgroups.JGroupsTransport"
 cacheContainer:
 name: "default"
 statistics: "true"
 transport:
 cluster: "cluster"
 nodeName: ""

Red Hat Data Grid 8.3 Configuring Data Grid Caches

44

3.3.2. Creating caches with Data Grid Console

Use Data Grid Console to create remote caches in an intuitive visual interface from any web browser.

Prerequisites

Create a Data Grid user with admin permissions.

Start at least one Data Grid Server instance.

Have a Data Grid cache configuration.

Procedure

1. Open 127.0.0.1:11222/console/ in any browser.

2. Select Create Cache and follow the steps as Data Grid Console guides you through the
process.

3.3.3. Creating remote caches with the Data Grid CLI

Use the Data Grid Command Line Interface (CLI) to add remote caches on Data Grid Server.

Prerequisites

Create a Data Grid user with admin permissions.

Start at least one Data Grid Server instance.

Have a Data Grid cache configuration.

Procedure

1. Start the CLI and enter your credentials when prompted.

bin/cli.sh

2. Use the create cache command to create remote caches.
For example, create a cache named "mycache" from a file named mycache.xml as follows:

create cache --file=mycache.xml mycache

Verification

1. List all remote caches with the ls command.

ls caches
mycache

 stack: "tcp"
 security:
 authorization: ~

CHAPTER 3. DATA GRID CACHE CONFIGURATION

45

2. View cache configuration with the describe command.

describe caches/mycache

3.3.4. Creating remote caches from Hot Rod clients

Use the Data Grid Hot Rod API to create remote caches on Data Grid Server from Java, C++, .NET/C#,
JS clients and more.

This procedure shows you how to use Hot Rod Java clients that create remote caches on first access.
You can find code examples for other Hot Rod clients in the Data Grid Tutorials.

Prerequisites

Create a Data Grid user with admin permissions.

Start at least one Data Grid Server instance.

Have a Data Grid cache configuration.

Procedure

Invoke the remoteCache() method as part of your the ConfigurationBuilder.

Set the configuration or configuration_uri properties in the hotrod-client.properties file on
your classpath.

ConfigurationBuilder

hotrod-client.properties

infinispan.client.hotrod.cache.another-cache.configuration=<distributed-cache name=\"another-
cache\"/>
infinispan.client.hotrod.cache.[my.other.cache].configuration_uri=file:///path/to/infinispan.xml

IMPORTANT

If the name of your remote cache contains the . character, you must enclose it in square
brackets when using hotrod-client.properties files.

Additional resources

Hot Rod Client Configuration

org.infinispan.client.hotrod.configuration.RemoteCacheConfigurationBuilder

File file = new File("path/to/infinispan.xml")
ConfigurationBuilder builder = new ConfigurationBuilder();
builder.remoteCache("another-cache")
 .configuration("<distributed-cache name=\"another-cache\"/>");
builder.remoteCache("my.other.cache")
 .configurationURI(file.toURI());

Red Hat Data Grid 8.3 Configuring Data Grid Caches

46

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_code_tutorials/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/client/hotrod/configuration/package-summary.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/client/hotrod/configuration/RemoteCacheConfigurationBuilder.html

3.3.5. Creating remote caches with the REST API

Use the Data Grid REST API to create remote caches on Data Grid Server from any suitable HTTP
client.

Prerequisites

Create a Data Grid user with admin permissions.

Start at least one Data Grid Server instance.

Have a Data Grid cache configuration.

Procedure

Invoke POST requests to /rest/v2/caches/<cache_name> with cache configuration in the
payload.

Additional resources

Creating and Managing Caches with the REST API

3.4. CREATING EMBEDDED CACHES

Data Grid provides an EmbeddedCacheManager API that lets you control both the Cache Manager
and embedded cache lifecycles programmatically.

3.4.1. Adding Data Grid to your project

Add Data Grid to your project to create embedded caches in your applications.

Prerequisites

Configure your project to get Data Grid artifacts from the Maven repository.

Procedure

Add the infinispan-core artifact as a dependency in your pom.xml as follows:

3.4.2. Configuring embedded caches

Data Grid provides a GlobalConfigurationBuilder API that controls the cache manager and a
ConfigurationBuilder API that configures embedded caches.

Prerequisites

<dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-core</artifactId>
 </dependency>
</dependencies>

CHAPTER 3. DATA GRID CACHE CONFIGURATION

47

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_rest_api/#rest_v2_cache_operations

Add the infinispan-core artifact as a dependency in your pom.xml.

Procedure

1. Initialize the default cache manager so you can add embedded caches.

2. Add at least one embedded cache with the ConfigurationBuilder API.

3. Invoke the getOrCreateCache() method that either creates embedded caches on all nodes in
the cluster or returns caches that already exist.

Additional resources

EmbeddedCacheManager

EmbeddedCacheManager Configuration

org.infinispan.configuration.global.GlobalConfiguration

org.infinispan.configuration.cache.ConfigurationBuilder

// Set up a clustered cache manager.
GlobalConfigurationBuilder global = GlobalConfigurationBuilder.defaultClusteredBuilder();
// Initialize the default cache manager.
DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());
// Create a distributed cache with synchronous replication.
ConfigurationBuilder builder = new ConfigurationBuilder();
 builder.clustering().cacheMode(CacheMode.DIST_SYNC);
// Obtain a volatile cache.
Cache<String, String> cache =
cacheManager.administration().withFlags(CacheContainerAdmin.AdminFlag.VOLATILE).getOrCreateC
ache("myCache", builder.build());

Red Hat Data Grid 8.3 Configuring Data Grid Caches

48

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/manager/EmbeddedCacheManager.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/global/package-summary.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/global/GlobalConfiguration.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/ConfigurationBuilder.html

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID
STATISTICS AND JMX MONITORING

Data Grid can provide Cache Manager and cache statistics as well as export JMX MBeans.

4.1. CONFIGURING DATA GRID METRICS

Data Grid generates metrics that are compatible with the MicroProfile Metrics API.

Gauges provide values such as the average number of nanoseconds for write operations or JVM
uptime.

Histograms provide details about operation execution times such as read, write, and remove
times.

By default, Data Grid generates gauges when you enable statistics but you can also configure it to
generate histograms.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the metrics element or object to the cache container.

3. Enable or disable gauges with the gauges attribute or field.

4. Enable or disable histograms with the histograms attribute or field.

5. Save and close your client configuration.

Metrics configuration

XML

JSON

<infinispan>
 <cache-container statistics="true">
 <metrics gauges="true"
 histograms="true" />
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "statistics" : "true",
 "metrics" : {
 "gauges" : "true",
 "histograms" : "true"
 }

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING

49

YAML

Additional resources

Eclipse MicroProfile Metrics

4.2. REGISTERING JMX MBEANS

Data Grid can register JMX MBeans that you can use to collect statistics and perform administrative
operations. You must also enable statistics otherwise Data Grid provides 0 values for all statistic
attributes in JMX MBeans.

Procedure

1. Open your Data Grid configuration for editing.

2. Add the jmx element or object to the cache container and specify true as the value for the
enabled attribute or field.

3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if
required.

4. Save and close your client configuration.

JMX configuration

XML

JSON

 }
 }
}

infinispan:
 cacheContainer:
 statistics: "true"
 metrics:
 gauges: "true"
 histograms: "true"

<infinispan>
 <cache-container statistics="true">
 <jmx enabled="true"
 domain="example.com"/>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "statistics" : "true",

Red Hat Data Grid 8.3 Configuring Data Grid Caches

50

https://github.com/eclipse/microprofile-metrics/blob/master/README.adoc

YAML

4.2.1. Enabling JMX remote ports

Provide unique remote JMX ports to expose Data Grid MBeans through connections in JMXServiceURL
format.

You can enable remote JMX ports using one of the following approaches:

Enable remote JMX ports that require authentication to one of the Data Grid Server security
realms.

Enable remote JMX ports manually using the standard Java management configuration
options.

Prerequisites

For remote JMX with authentication, define user roles using the default security realm. Users
must have controlRole with read/write access or the monitorRole with read-only access to
access any JMX resources.

Procedure

Start Data Grid Server with a remote JMX port enabled using one of the following ways:

Enable remote JMX through port 9999.

bin/server.sh --jmx 9999

WARNING

Using remote JMX with SSL disabled is not intended for production
environments.

 "jmx" : {
 "enabled" : "true",
 "domain" : "example.com"
 }
 }
 }
}

infinispan:
 cacheContainer:
 statistics: "true"
 jmx:
 enabled: "true"
 domain: "example.com"



CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING

51

Pass the following system properties to Data Grid Server at startup.

bin/server.sh -Dcom.sun.management.jmxremote.port=9999 -
Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.ssl=false

WARNING

Enabling remote JMX with no authentication or SSL is not secure and not
recommended in any environment. Disabling authentication and SSL allows
unauthorized users to connect to your server and access the data hosted
there.

Additional resources

Creating security realms

4.2.2. Data Grid MBeans

Data Grid exposes JMX MBeans that represent manageable resources.

org.infinispan:type=Cache

Attributes and operations available for cache instances.

org.infinispan:type=CacheManager

Attributes and operations available for cache managers, including Data Grid cache and cluster health
statistics.

For a complete list of available JMX MBeans along with descriptions and available operations and
attributes, see the Data Grid JMX Components documentation.

Additional resources

Data Grid JMX Components

4.2.3. Registering MBeans in custom MBean servers

Data Grid includes an MBeanServerLookup interface that you can use to register MBeans in custom
MBeanServer instances.

Prerequisites

Create an implementation of MBeanServerLookup so that the getMBeanServer() method
returns the custom MBeanServer instance.

Configure Data Grid to register JMX MBeans.

Procedure



Red Hat Data Grid 8.3 Configuring Data Grid Caches

52

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_server_guide/#creating-security-realms_security-realms
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/jmxComponents.html

1. Open your Data Grid configuration for editing.

2. Add the mbean-server-lookup attribute or field to the JMX configuration for the cache
manager.

3. Specify fully qualified name (FQN) of your MBeanServerLookup implementation.

4. Save and close your client configuration.

JMX MBean server lookup configuration

XML

JSON

YAML

<infinispan>
 <cache-container statistics="true">
 <jmx enabled="true"
 domain="example.com"
 mbean-server-lookup="com.example.MyMBeanServerLookup"/>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "statistics" : "true",
 "jmx" : {
 "enabled" : "true",
 "domain" : "example.com",
 "mbean-server-lookup" : "com.example.MyMBeanServerLookup"
 }
 }
 }
}

infinispan:
 cacheContainer:
 statistics: "true"
 jmx:
 enabled: "true"
 domain: "example.com"
 mbeanServerLookup: "com.example.MyMBeanServerLookup"

CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING

53

CHAPTER 5. CONFIGURING JVM MEMORY USAGE
Control how Data Grid stores data in JVM memory by:

Managing JVM memory usage with eviction that automatically removes data from caches.

Adding lifespan and maximum idle times to expire entries and prevent stale data.

Configuring Data Grid to store data in off-heap, native memory.

5.1. DEFAULT MEMORY CONFIGURATION

By default Data Grid stores cache entries as objects in the JVM heap. Over time, as applications add
entries, the size of caches can exceed the amount of memory that is available to the JVM. Likewise, if
Data Grid is not the primary data store, then entries become out of date which means your caches
contain stale data.

XML

JSON

YAML

5.2. EVICTION AND EXPIRATION

Eviction and expiration are two strategies for cleaning the data container by removing old, unused
entries. Although eviction and expiration are similar, they have some important differences.

✓ Eviction lets Data Grid control the size of the data container by removing entries when the
container becomes larger than a configured threshold.

✓ Expiration limits the amount of time entries can exist. Data Grid uses a scheduler to
periodically remove expired entries. Entries that are expired but not yet removed are
immediately removed on access; in this case get() calls for expired entries return "null" values.

✓ Eviction is local to Data Grid nodes.

<distributed-cache>
 <memory storage="HEAP"/>
</distributed-cache>

{
 "distributed-cache": {
 "memory" : {
 "storage": "HEAP"
 }
 }
}

distributedCache:
 memory:
 storage: "HEAP"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

54

✓ Expiration takes place across Data Grid clusters.

✓ You can use eviction and expiration together or independently of each other.

✓ You can configure eviction and expiration declaratively in infinispan.xml to apply cache-
wide defaults for entries.

✓ You can explicitly define expiration settings for specific entries but you cannot define eviction
on a per-entry basis.

✓ You can manually evict entries and manually trigger expiration.

5.3. EVICTION WITH DATA GRID CACHES

Eviction lets you control the size of the data container by removing entries from memory in one of two
ways:

Total number of entries (max-count).

Maximum amount of memory (max-size).

Eviction drops one entry from the data container at a time and is local to the node on which it occurs.

IMPORTANT

Eviction removes entries from memory but not from persistent cache stores. To ensure
that entries remain available after Data Grid evicts them, and to prevent inconsistencies
with your data, you should configure persistent storage.

When you configure memory, Data Grid approximates the current memory usage of the data container.
When entries are added or modified, Data Grid compares the current memory usage of the data
container to the maximum size. If the size exceeds the maximum, Data Grid performs eviction.

Eviction happens immediately in the thread that adds an entry that exceeds the maximum size.

5.3.1. Eviction strategies

When you configure Data Grid eviction you specify:

The maximum size of the data container.

A strategy for removing entries when the cache reaches the threshold.

You can either perform eviction manually or configure Data Grid to do one of the following:

Remove old entries to make space for new ones.

Throw ContainerFullException and prevent new entries from being created.
The exception eviction strategy works only with transactional caches that use 2 phase commits;
not with 1 phase commits or synchronization optimizations.

Refer to the schema reference for more details about the eviction strategies.

NOTE

CHAPTER 5. CONFIGURING JVM MEMORY USAGE

55

NOTE

Data Grid includes the Caffeine caching library that implements a variation of the Least
Frequently Used (LFU) cache replacement algorithm known as TinyLFU. For off-heap
storage, Data Grid uses a custom implementation of the Least Recently Used (LRU)
algorithm.

Additional resources

Caffeine

Data Grid configuration schema reference

5.3.2. Configuring maximum count eviction

Limit the size of Data Grid caches to a total number of entries.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify the total number of entries that caches can contain before Data Grid performs eviction
with either the max-count attribute or maxCount() method.

3. Set one of the following as the eviction strategy to control how Data Grid removes entries with
the when-full attribute or whenFull() method.

REMOVE Data Grid performs eviction. This is the default strategy.

MANUAL You perform eviction manually for embedded caches.

EXCEPTION Data Grid throws an exception instead of evicting entries.

4. Save and close your Data Grid configuration.

Maximum count eviction
In the following example, Data Grid removes an entry when the cache contains a total of 500 entries and
a new entry is created:

XML

JSON

<distributed-cache>
 <memory max-count="500" when-full="REMOVE"/>
</distributed-cache>

{
 "distributed-cache" : {
 "memory" : {
 "max-count" : "500",
 "when-full" : "REMOVE"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

56

https://github.com/ben-manes/caffeine
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/

YAML

ConfigurationBuilder

Additional resources

Data Grid configuration schema reference

org.infinispan.configuration.cache.MemoryConfigurationBuilder

5.3.3. Configuring maximum size eviction

Limit the size of Data Grid caches to a maximum amount of memory.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify application/x-protostream as the media type for cache encoding.
You must specify a binary media type to use maximum size eviction.

3. Configure the maximum amount of memory, in bytes, that caches can use before Data Grid
performs eviction with the max-size attribute or maxSize() method.

4. Optionally specify a byte unit of measurement.
The default is B (bytes). Refer to the configuration schema for supported units.

5. Set one of the following as the eviction strategy to control how Data Grid removes entries with
either the when-full attribute or whenFull() method.

REMOVE Data Grid performs eviction. This is the default strategy.

MANUAL You perform eviction manually for embedded caches.

EXCEPTION Data Grid throws an exception instead of evicting entries.

6. Save and close your Data Grid configuration.

Maximum size eviction
In the following example, Data Grid removes an entry when the size of the cache reaches 1.5 GB
(gigabytes) and a new entry is created:

 }
 }
}

distributedCache:
 memory:
 maxCount: "500"
 whenFull: "REMOVE"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.memory().maxCount(500).whenFull(EvictionStrategy.REMOVE);

CHAPTER 5. CONFIGURING JVM MEMORY USAGE

57

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html

XML

JSON

YAML

ConfigurationBuilder

Additional resources

Data Grid configuration schema reference

org.infinispan.configuration.cache.EncodingConfiguration

org.infinispan.configuration.cache.MemoryConfigurationBuilder

Cache Encoding and Marshalling

5.3.4. Manual eviction

If you choose the manual eviction strategy, Data Grid does not perform eviction. You must do so
manually with the evict() method.

<distributed-cache>
 <encoding media-type="application/x-protostream"/>
 <memory max-size="1.5GB" when-full="REMOVE"/>
</distributed-cache>

{
 "distributed-cache" : {
 "encoding" : {
 "media-type" : "application/x-protostream"
 },
 "memory" : {
 "max-size" : "1.5GB",
 "when-full" : "REMOVE"
 }
 }
}

distributedCache:
 encoding:
 mediaType: "application/x-protostream"
 memory:
 maxSize: "1.5GB"
 whenFull: "REMOVE"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.encoding().mediaType("application/x-protostream")
 .memory()
 .maxSize("1.5GB")
 .whenFull(EvictionStrategy.REMOVE);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

58

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/EncodingConfiguration.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/

You should use manual eviction with embedded caches only. For remote caches, you should always
configure Data Grid with the REMOVE or EXCEPTION eviction strategy.

NOTE

This configuration prevents a warning message when you enable passivation but do not
configure eviction.

XML

JSON

YAML

ConfigurationBuilder

5.3.5. Passivation with eviction

Passivation persists data to cache stores when Data Grid evicts entries. You should always enable
eviction if you enable passivation, as in the following examples:

XML

<distributed-cache>
 <memory max-count="500" when-full="MANUAL"/>
</distributed-cache>

{
 "distributed-cache" : {
 "memory" : {
 "max-count" : "500",
 "when-full" : "MANUAL"
 }
 }
 }

distributedCache:
 memory:
 maxCount: "500"
 whenFull: "MANUAL"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.encoding().mediaType("application/x-protostream")
 .memory()
 .maxSize("1.5GB")
 .whenFull(EvictionStrategy.REMOVE);

<distributed-cache>
 <persistence passivation="true">
 <!-- Persistent storage configuration. -->

CHAPTER 5. CONFIGURING JVM MEMORY USAGE

59

JSON

YAML

ConfigurationBuilder

5.4. EXPIRATION WITH LIFESPAN AND MAXIMUM IDLE

Expiration configures Data Grid to remove entries from caches when they reach one of the following
time limits:

Lifespan

Sets the maximum amount of time that entries can exist.

Maximum idle

Specifies how long entries can remain idle. If operations do not occur for entries, they become idle.

IMPORTANT

Maximum idle expiration does not currently support caches with persistent storage.

NOTE

If you use expiration and eviction with the EXCEPTION eviction strategy, entries that are
expired, but not yet removed from the cache, count towards the size of the data
container.

 </persistence>
 <memory max-count="100"/>
</distributed-cache>

{
 "distributed-cache": {
 "memory" : {
 "max-count" : "100"
 },
 "persistence" : {
 "passivation" : true
 }
 }
}

distributedCache:
 memory:
 maxCount: "100"
 persistence:
 passivation: "true"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.memory().maxCount(100);
builder.persistence().passivation(true); //Persistent storage configuration

Red Hat Data Grid 8.3 Configuring Data Grid Caches

60

5.4.1. How expiration works

When you configure expiration, Data Grid stores keys with metadata that determines when entries
expire.

Lifespan uses a creation timestamp and the value for the lifespan configuration property.

Maximum idle uses a last used timestamp and the value for the max-idle configuration
property.

Data Grid checks if lifespan or maximum idle metadata is set and then compares the values with the
current time.

If (creation + lifespan < currentTime) or (lastUsed + maxIdle < currentTime) then Data Grid detects
that the entry is expired.

Expiration occurs whenever entries are accessed or found by the expiration reaper.

For example, k1 reaches the maximum idle time and a client makes a Cache.get(k1) request. In this case,
Data Grid detects that the entry is expired and removes it from the data container. The Cache.get(k1)
request returns null.

Data Grid also expires entries from cache stores, but only with lifespan expiration. Maximum idle
expiration does not work with cache stores. In the case of cache loaders, Data Grid cannot expire entries
because loaders can only read from external storage.

NOTE

Data Grid adds expiration metadata as long primitive data types to cache entries. This
can increase the size of keys by as much as 32 bytes.

5.4.2. Expiration reaper

Data Grid uses a reaper thread that runs periodically to detect and remove expired entries. The
expiration reaper ensures that expired entries that are no longer accessed are removed.

The Data Grid ExpirationManager interface handles the expiration reaper and exposes the
processExpiration() method.

In some cases, you can disable the expiration reaper and manually expire entries by calling
processExpiration(); for instance, if you are using local cache mode with a custom application where a
maintenance thread runs periodically.

IMPORTANT

If you use clustered cache modes, you should never disable the expiration reaper.

Data Grid always uses the expiration reaper when using cache stores. In this case you
cannot disable it.

Additional resources

org.infinispan.configuration.cache.ExpirationConfigurationBuilder

org.infinispan.expiration.ExpirationManager

CHAPTER 5. CONFIGURING JVM MEMORY USAGE

61

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/ExpirationConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/expiration/ExpirationManager.html

5.4.3. Maximum idle and clustered caches

Because maximum idle expiration relies on the last access time for cache entries, it has some limitations
with clustered cache modes.

With lifespan expiration, the creation time for cache entries provides a value that is consistent across
clustered caches. For example, the creation time for k1 is always the same on all nodes.

For maximum idle expiration with clustered caches, last access time for entries is not always the same
on all nodes. To ensure that entries have the same relative access times across clusters, Data Grid sends
touch commands to all owners when keys are accessed.

The touch commands that Data Grid send have the following considerations:

Cache.get() requests do not return until all touch commands complete. This synchronous
behavior increases latency of client requests.

The touch command also updates the "recently accessed" metadata for cache entries on all
owners, which Data Grid uses for eviction.

With scattered cache mode, Data Grid sends touch commands to all nodes, not just primary and
backup owners.

Additional information

Maximum idle expiration does not work with invalidation mode.

Iteration across a clustered cache can return expired entries that have exceeded the maximum
idle time limit. This behavior ensures performance because no remote invocations are
performed during the iteration. Also note that iteration does not refresh any expired entries.

5.4.4. Configuring lifespan and maximum idle times for caches

Set lifespan and maximum idle times for all entries in a cache.

Procedure

1. Open your Data Grid configuration for editing.

2. Specify the amount of time, in milliseconds, that entries can stay in the cache with the lifespan
attribute or lifespan() method.

3. Specify the amount of time, in milliseconds, that entries can remain idle after last access with
the max-idle attribute or maxIdle() method.

4. Save and close your Data Grid configuration.

Expiration for Data Grid caches
In the following example, Data Grid expires all cache entries after 5 seconds or 1 second after the last
access time, whichever happens first:

XML

Red Hat Data Grid 8.3 Configuring Data Grid Caches

62

JSON

YAML

ConfigurationBuilder

5.4.5. Configuring lifespan and maximum idle times per entry

Specify lifespan and maximum idle times for individual entries. When you add lifespan and maximum idle
times to entries, those values take priority over expiration configuration for caches.

NOTE

When you explicitly define lifespan and maximum idle time values for cache entries, Data
Grid replicates those values across the cluster along with the cache entries. Likewise,
Data Grid writes expiration values along with the entries to persistent storage.

Procedure

For remote caches, you can add lifespan and maximum idle times to entries interactively with
the Data Grid Console.
With the Data Grid Command Line Interface (CLI), use the --max-idle= and --ttl= arguments
with the put command.

For both remote and embedded caches, you can add lifespan and maximum idle times with
cache.put() invocations.

<replicated-cache>
 <expiration lifespan="5000" max-idle="1000" />
</replicated-cache>

{
 "replicated-cache" : {
 "expiration" : {
 "lifespan" : "5000",
 "max-idle" : "1000"
 }
 }
}

replicatedCache:
 expiration:
 lifespan: "5000"
 maxIdle: "1000"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.expiration().lifespan(5000, TimeUnit.MILLISECONDS)
 .maxIdle(1000, TimeUnit.MILLISECONDS);

//Lifespan of 5 seconds.
//Maximum idle time of 1 second.

CHAPTER 5. CONFIGURING JVM MEMORY USAGE

63

Additional resources

org.infinispan.configuration.cache.ExpirationConfigurationBuilder

org.infinispan.expiration.ExpirationManager

5.5. JVM HEAP AND OFF-HEAP MEMORY

Data Grid stores cache entries in JVM heap memory by default. You can configure Data Grid to use off-
heap storage, which means that your data occupies native memory outside the managed JVM memory
space.

The following diagram is a simplified illustration of the memory space for a JVM process where Data
Grid is running:

Figure 5.1. JVM memory space

JVM heap memory
The heap is divided into young and old generations that help keep referenced Java objects and other
application data in memory. The GC process reclaims space from unreachable objects, running more
frequently on the young generation memory pool.

When Data Grid stores cache entries in JVM heap memory, GC runs can take longer to complete as you
start adding data to your caches. Because GC is an intensive process, longer and more frequent runs can
degrade application performance.

Off-heap memory
Off-heap memory is native available system memory outside JVM memory management. The JVM
memory space diagram shows the Metaspace memory pool that holds class metadata and is allocated
from native memory. The diagram also represents a section of native memory that holds Data Grid
cache entries.

Off-heap memory:

Uses less memory per entry.

cache.put("hello", "world", 5, TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

//Lifespan is disabled with a value of -1.
//Maximum idle time of 1 second.
cache.put("hello", "world", -1, TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

64

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/ExpirationConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/expiration/ExpirationManager.html

Improves overall JVM performance by avoiding Garbage Collector (GC) runs.

One disadvantage, however, is that JVM heap dumps do not show entries stored in off-heap memory.

5.5.1. Off-heap data storage

When you add entries to off-heap caches, Data Grid dynamically allocates native memory to your data.

Data Grid hashes the serialized byte[] for each key into buckets that are similar to a standard Java
HashMap. Buckets include address pointers that Data Grid uses to locate entries that you store in off-
heap memory.

IMPORTANT

Even though Data Grid stores cache entries in native memory, run-time operations
require JVM heap representations of those objects. For instance, cache.get() operations
read objects into heap memory before returning. Likewise, state transfer operations hold
subsets of objects in heap memory while they take place.

Object equality

Data Grid determines equality of Java objects in off-heap storage using the serialized byte[]
representation of each object instead of the object instance.

Data consistency

Data Grid uses an array of locks to protect off-heap address spaces. The number of locks is twice the
number of cores and then rounded to the nearest power of two. This ensures that there is an even
distribution of ReadWriteLock instances to prevent write operations from blocking read operations.

5.5.2. Configuring off-heap memory

Configure Data Grid to store cache entries in native memory outside the JVM heap space.

Procedure

1. Open your Data Grid configuration for editing.

2. Set OFF_HEAP as the value for the storage attribute or storage() method.

3. Set a boundary for the size of the cache by configuring eviction.

4. Save and close your Data Grid configuration.

Off-heap storage
Data Grid stores cache entries as bytes in native memory. Eviction happens when there are 100 entries in
the data container and Data Grid gets a request to create a new entry:

XML

<replicated-cache>
 <memory storage="OFF_HEAP" max-count="500"/>
</replicated-cache>

CHAPTER 5. CONFIGURING JVM MEMORY USAGE

65

JSON

YAML

ConfigurationBuilder

Additional resources

Data Grid configuration schema reference

org.infinispan.configuration.cache.MemoryConfigurationBuilder

{
 "replicated-cache" : {
 "memory" : {
 "storage" : "OBJECT",
 "max-count" : "500"
 }
 }
}

replicatedCache:
 memory:
 storage: "OFF_HEAP"
 maxCount: "500"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.memory().storage(StorageType.OFF_HEAP).maxCount(500);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

66

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/MemoryConfigurationBuilder.html

CHAPTER 6. CONFIGURING PERSISTENT STORAGE
Data Grid uses cache stores and loaders to interact with persistent storage.

Durability

Adding cache stores allows you to persist data to non-volatile storage so it survives restarts.

Write-through caching

Configuring Data Grid as a caching layer in front of persistent storage simplifies data access for
applications because Data Grid handles all interactions with the external storage.

Data overflow

Using eviction and passivation techniques ensures that Data Grid keeps only frequently used data in-
memory and writes older entries to persistent storage.

6.1. PASSIVATION

Passivation configures Data Grid to write entries to cache stores when it evicts those entries from
memory. In this way, passivation ensures that only a single copy of an entry is maintained, either in-
memory or in a cache store, which prevents unnecessary and potentially expensive writes to persistent
storage.

Activation is the process of restoring entries to memory from the cache store when there is an attempt
to access passivated entries. For this reason, when you enable passivation, you must configure cache
stores that implement both CacheWriter and CacheLoader interfaces so they can write and load
entries from persistent storage.

When Data Grid evicts an entry from the cache, it notifies cache listeners that the entry is passivated
then stores the entry in the cache store. When Data Grid gets an access request for an evicted entry, it
lazily loads the entry from the cache store into memory and then notifies cache listeners that the entry
is activated.

NOTE

Passivation uses the first cache loader in the Data Grid configuration and ignores
all others.

Passivation is not supported with:

Transactional stores. Passivation writes and removes entries from the store
outside the scope of the actual Data Grid commit boundaries.

Shared stores. Shared cache stores require entries to always exist in the
store for other owners. For this reason, passivation is not supported because
entries cannot be removed.

If you enable passivation with transactional stores or shared stores, Data Grid throws an
exception.

6.1.1. How passivation works

Passivation disabled

Writes to data in memory result in writes to persistent storage.

If Data Grid evicts data from memory, then data in persistent storage includes entries that are evicted

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

67

If Data Grid evicts data from memory, then data in persistent storage includes entries that are evicted
from memory. In this way persistent storage is a superset of the in-memory cache.

If you do not configure eviction, then data in persistent storage provides a copy of data in memory.

Passivation enabled

Data Grid adds data to persistent storage only when it evicts data from memory.

When Data Grid activates entries, it restores data in memory and deletes data from persistent storage.
In this way, data in memory and data in persistent storage form separate subsets of the entire data set,
with no intersection between the two.

NOTE

Entries in persistent storage can become stale when using shared cache stores. This
occurs because Data Grid does not delete passivated entries from shared cache stores
when they are activated.

Values are updated in memory but previously passivated entries remain in persistent
storage with out of date values.

The following table shows data in memory and in persistent storage after a series of operations:

Operation Passivation disabled Passivation enabled Passivation enabled
with shared cache store

Insert k1. Memory: k1
Disk: k1

Memory: k1
Disk: -

Memory: k1
Disk: -

Insert k2. Memory: k1, k2
Disk: k1, k2

Memory: k1, k2
Disk: -

Memory: k1, k2
Disk: -

Eviction thread runs and
evicts k1.

Memory: k2
Disk: k1, k2

Memory: k2
Disk: k1

Memory: k2
Disk: k1

Read k1. Memory: k1, k2
Disk: k1, k2

Memory: k1, k2
Disk: -

Memory: k1, k2
Disk: k1

Eviction thread runs and
evicts k2.

Memory: k1
Disk: k1, k2

Memory: k1
Disk: k2

Memory: k1
Disk: k1, k2

Remove k2. Memory: k1
Disk: k1

Memory: k1
Disk: -

Memory: k1
Disk: k1

6.2. WRITE-THROUGH CACHE STORES

Write-through is a cache writing mode where writes to memory and writes to cache stores are
synchronous. When a client application updates a cache entry, in most cases by invoking Cache.put(),
Data Grid does not return the call until it updates the cache store. This cache writing mode results in
updates to the cache store concluding within the boundaries of the client thread.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

68

The primary advantage of write-through mode is that the cache and cache store are updated
simultaneously, which ensures that the cache store is always consistent with the cache.

However, write-through mode can potentially decrease performance because the need to access and
update cache stores directly adds latency to cache operations.

Write-through configuration
Data Grid uses write-through mode unless you explicitly add write-behind configuration to your caches.
There is no separate element or method for configuring write-through mode.

For example, the following configuration adds a file-based store to the cache that implicitly uses write-
through mode:

6.3. WRITE-BEHIND CACHE STORES

Write-behind is a cache writing mode where writes to memory are synchronous and writes to cache
stores are asynchronous.

When clients send write requests, Data Grid adds those operations to a modification queue. Data Grid
processes operations as they join the queue so that the calling thread is not blocked and the operation
completes immediately.

If the number of write operations in the modification queue increases beyond the size of the queue, Data
Grid adds those additional operations to the queue. However, those operations do not complete until
Data Grid processes operations that are already in the queue.

For example, calling Cache.putAsync returns immediately and the Stage also completes immediately if
the modification queue is not full. If the modification queue is full, or if Data Grid is currently processing a
batch of write operations, then Cache.putAsync returns immediately and the Stage completes later.

Write-behind mode provides a performance advantage over write-through mode because cache
operations do not need to wait for updates to the underlying cache store to complete. However, data in
the cache store remains inconsistent with data in the cache until the modification queue is processed.
For this reason, write-behind mode is suitable for cache stores with low latency, such as unshared and
local file-based cache stores, where the time between the write to the cache and the write to the cache
store is as small as possible.

Write-behind configuration

XML

<distributed-cache>
 <persistence passivation="false">
 <file-store fetch-state="true">
 <index path="path/to/index" />
 <data path="path/to/data" />
 </file-store>
 </persistence>
</distributed-cache>

<distributed-cache>
 <persistence>
 <table-jdbc-store xmlns="urn:infinispan:config:store:sql:13.0"
 dialect="H2"
 shared="true"

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

69

JSON

YAML

ConfigurationBuilder

 table-name="books">
 <connection-pool connection-url="jdbc:h2:mem:infinispan"
 username="sa"
 password="changeme"
 driver="org.h2.Driver"/>
 <write-behind modification-queue-size="2048"
 fail-silently="true"/>
 </table-jdbc-store>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence" : {
 "table-jdbc-store": {
 "dialect": "H2",
 "shared": "true",
 "table-name": "books",
 "connection-pool": {
 "connection-url": "jdbc:h2:mem:infinispan",
 "driver": "org.h2.Driver",
 "username": "sa",
 "password": "changeme"
 },
 "write-behind" : {
 "modification-queue-size" : "2048",
 "fail-silently" : true
 }
 }
 }
 }
}

distributedCache:
 persistence:
 tableJdbcStore:
 dialect: "H2"
 shared: "true"
 tableName: "books"
 connectionPool:
 connectionUrl: "jdbc:h2:mem:infinispan"
 driver: "org.h2.Driver"
 username: "sa"
 password: "changeme"
 writeBehind:
 modificationQueueSize: "2048"
 failSilently: "true"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

70

Failing silently
Write-behind configuration includes a fail-silently parameter that controls what happens when either
the cache store is unavailable or the modification queue is full.

If fail-silently="true" then Data Grid logs WARN messages and rejects write operations.

If fail-silently="false" then Data Grid throws exceptions if it detects the cache store is
unavailable during a write operation. Likewise if the modification queue becomes full, Data Grid
throws an exception.
In some cases, data loss can occur if Data Grid restarts and write operations exist in the
modification queue. For example the cache store goes offline but, during the time it takes to
detect that the cache store is unavailable, write operations are added to the modification queue
because it is not full. If Data Grid restarts or otherwise becomes unavailable before the cache
store comes back online, then the write operations in the modification queue are lost because
they were not persisted.

6.4. SEGMENTED CACHE STORES

Cache stores can organize data into hash space segments to which keys map.

Segmented stores increase read performance for bulk operations; for example, streaming over data
(Cache.size, Cache.entrySet.stream), pre-loading the cache, and doing state transfer operations.

However, segmented stores can also result in loss of performance for write operations. This
performance loss applies particularly to batch write operations that can take place with transactions or
write-behind stores. For this reason, you should evaluate the overhead for write operations before you
enable segmented stores. The performance gain for bulk read operations might not be acceptable if
there is a significant performance loss for write operations.

IMPORTANT

The number of segments you configure for cache stores must match the number of
segments you define in the Data Grid configuration with the
clustering.hash.numSegments parameter.

If you change the numSegments parameter in the configuration after you add a
segmented cache store, Data Grid cannot read data from that cache store.

6.5. SHARED CACHE STORES

Data Grid cache stores can be local to a given node or shared across all nodes in the cluster. By default,
cache stores are local (shared="false").

Local cache stores are unique to each node; for example, a file-based cache store that persists
data to the host filesystem.
Local cache stores can fetch state and purge on startup to avoid loading stale entries from
persistent storage.

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
 .async()
 .modificationQueueSize(2048)
 .failSilently(true);

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

71

Shared cache stores allow multiple nodes to use the same persistent storage; for example, a
JDBC cache store that allows multiple nodes to access the same database.
Shared cache stores ensure that only the primary owner write to persistent storage, instead of
backup nodes performing write operations for every modification.

IMPORTANT

Never configure shared cache stores to fetch state and purge on startup. Fetching state
with shared cache stores results in performance issues and longer cluster start times.
Purging deletes data, which is not typically the desired behavior for persistent storage.

Local cache store

Shared cache store

Additional resources

Data Grid Configuration Schema

6.6. TRANSACTIONS WITH PERSISTENT CACHE STORES

Data Grid supports transactional operations with JDBC-based cache stores only. To configure caches
as transactional, you set transactional=true to keep data in persistent storage synchronized with data
in memory.

For all other cache stores, Data Grid does not enlist cache loaders in transactional operations. This can
result in data inconsistency if transactions succeed in modifying data in memory but do not completely
apply changes to data in the cache store. In these cases manual recovery is not possible with cache
stores.

6.7. GLOBAL PERSISTENT LOCATION

Data Grid preserves global state so that it can restore cluster topology and cached data after restart.

Remote caches
Data Grid Server saves cluster state to the $RHDG_HOME/server/data directory.

IMPORTANT

<persistence>
 <store shared="false"
 fetch-state="true"
 purge="true"/>
</persistence>

<persistence>
 <store shared="true"
 fetch-state="false"
 purge="false"/>
</persistence>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

72

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/

IMPORTANT

You should never delete or modify the server/data directory or its content. Data Grid
restores cluster state from this directory when you restart your server instances.

Changing the default configuration or directly modifying the server/data directory can
cause unexpected behavior and lead to data loss.

Embedded caches
Data Grid defaults to the user.dir system property as the global persistent location. In most cases this is
the directory where your application starts.

For clustered embedded caches, such as replicated or distributed, you should always enable and
configure a global persistent location to restore cluster topology.

You should never configure an absolute path for a file-based cache store that is outside the global
persistent location. If you do, Data Grid writes the following exception to logs:

ISPN000558: "The store location 'foo' is not a child of the global persistent location 'bar'"

6.7.1. Configuring the global persistent location

Enable and configure the location where Data Grid stores global state for clustered embedded caches.

NOTE

Data Grid Server enables global persistence and configures a default location. You should
not disable global persistence or change the default configuration for remote caches.

Prerequisites

Add Data Grid to your project.

Procedure

1. Enable global state in one of the following ways:

Add the global-state element to your Data Grid configuration.

Call the globalState().enable() methods in the GlobalConfigurationBuilder API.

2. Define whether the global persistent location is unique to each node or shared between the
cluster.

Location type Configuration

Unique to each node persistent-location element or
persistentLocation() method

Shared between the cluster shared-persistent-location element or
sharedPersistentLocation(String) method

3. Set the path where Data Grid stores cluster state.

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

73

For example, file-based cache stores the path is a directory on the host filesystem.

Values can be:

Absolute and contain the full location including the root.

Relative to a root location.

4. If you specify a relative value for the path, you must also specify a system property that resolves
to a root location.
For example, on a Linux host system you set global/state as the path. You also set the my.data
property that resolves to the /opt/data root location. In this case Data Grid uses
/opt/data/global/state as the global persistent location.

Global persistent location configuration

XML

JSON

YAML

GlobalConfigurationBuilder

<infinispan>
 <cache-container>
 <global-state>
 <persistent-location path="global/state" relative-to="my.data"/>
 </global-state>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "global-state": {
 "persistent-location" : {
 "path" : "global/state",
 "relative-to" : "my.data"
 }
 }
 }
 }
}

cacheContainer:
 globalState:
 persistentLocation:
 path: "global/state"
 relativeTo : "my.data"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

74

Additional resources

Data Grid configuration schema

org.infinispan.configuration.global.GlobalStateConfiguration

6.8. FILE-BASED CACHE STORES

File-based cache stores provide persistent storage on the local host filesystem where Data Grid is
running. For clustered caches, file-based cache stores are unique to each Data Grid node.

WARNING

Never use filesystem-based cache stores on shared file systems, such as an NFS or
Samba share, because they do not provide file locking capabilities and data
corruption can occur.

Additionally if you attempt to use transactional caches with shared file systems,
unrecoverable failures can happen when writing to files during the commit phase.

Soft-Index File Stores
SoftIndexFileStore is the default implementation for file-based cache stores and stores data in a set of
append-only files.

When append-only files:

Reach their maximum size, Data Grid creates a new file and starts writing to it.

Reach the compaction threshold of less than 50% usage, Data Grid overwrites the entries to a
new file and then deletes the old file.

B+ trees

To improve performance, append-only files in a SoftIndexFileStore are indexed using a B+ Tree that
can be stored both on disk and in memory. The in-memory index uses Java soft references to ensure it
can be rebuilt if removed by Garbage Collection (GC) then requested again.

Because SoftIndexFileStore uses Java soft references to keep indexes in memory, it helps prevent out-
of-memory exceptions. GC removes indexes before they consume too much memory while still falling
back to disk.

You can configure any number of B+ trees with the segments attribute on the index element
declaratively or with the indexSegments() method programmatically. By default Data Grid creates up
to 16 B+ trees, which means there can be up to 16 indexes. Having multiple indexes prevents bottlenecks

new GlobalConfigurationBuilder().globalState()
 .enable()
 .persistentLocation("global/state", "my.data");



CHAPTER 6. CONFIGURING PERSISTENT STORAGE

75

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/global/GlobalStateConfiguration.html

from concurrent writes to an index and reduces the number of entries that Data Grid needs to keep in
memory. As it iterates over a soft-index file store, Data Grid reads all entries in an index at the same
time.

Each entry in the B+ tree is a node. By default, the size of each node is limited to 4096 bytes.
SoftIndexFileStore throws an exception if keys are longer after serialization occurs.

Segmentation

Soft-index file stores are always segmented.

NOTE

The AdvancedStore.purgeExpired() method is not implemented in SoftIndexFileStore.

Single File Cache Stores

NOTE

Single file cache stores are now deprecated and planned for removal.

Single File cache stores, SingleFileStore, persist data to file. Data Grid also maintains an in-memory
index of keys while keys and values are stored in the file.

Because SingleFileStore keeps an in-memory index of keys and the location of values, it requires
additional memory, depending on the key size and the number of keys. For this reason, SingleFileStore
is not recommended for use cases where the keys are larger or there can be a larger number of them.

In some cases, SingleFileStore can also become fragmented. If the size of values continually increases,
available space in the single file is not used but the entry is appended to the end of the file. Available
space in the file is used only if an entry can fit within it. Likewise, if you remove all entries from memory,
the single file store does not decrease in size or become defragmented.

Segmentation

Single file cache stores are segmented by default with a separate instance per segment, which results in
multiple directories. Each directory is a number that represents the segment to which the data maps.

6.8.1. Configuring file-based cache stores

Add file-based cache stores to Data Grid to persist data on the host filesystem.

Prerequisites

Enable global state and configure a global persistent location if you are configuring embedded
caches.

Procedure

1. Add the persistence element to your cache configuration.

2. Optionally specify true as the value for the passivation attribute to write to the file-based
cache store only when data is evicted from memory.

3. Include the file-store element and configure attributes as appropriate.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

76

4. Specify false as the value for the shared attribute.
File-based cache stores should always be unique to each Data Grid instance. If you want to use
the same persistent across a cluster, configure shared storage such as a JDBC string-based
cache store .

5. Configure the index and data elements to specify the location where Data Grid creates indexes
and stores data.

6. Include the write-behind element if you want to configure the cache store with write-behind
mode.

File-based cache store configuration

XML

JSON

YAML

<distributed-cache>
 <persistence passivation="true">
 <file-store shared="false">
 <data path="data"/>
 <index path="index"/>
 <write-behind modification-queue-size="2048" />
 </file-store>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "passivation": true,
 "file-store" : {
 "shared": false,
 "data": {
 "path": "data"
 },
 "index": {
 "path": "index"
 },
 "write-behind": {
 "modification-queue-size": "2048"
 }
 }
 }
 }
}

distributedCache:
 persistence:
 passivation: "true"
 fileStore:

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

77

ConfigurationBuilder

6.8.2. Configuring single file cache stores

If required, you can configure Data Grid to create single file stores.

IMPORTANT

Single file stores are deprecated. You should use soft-index file stores for better
performance and data consistency in comparison with single file stores.

Prerequisites

Enable global state and configure a global persistent location if you are configuring embedded
caches.

Procedure

1. Add the persistence element to your cache configuration.

2. Optionally specify true as the value for the passivation attribute to write to the file-based
cache store only when data is evicted from memory.

3. Include the single-file-store element.

4. Specify false as the value for the shared attribute.

5. Configure any other attributes as appropriate.

6. Include the write-behind element to configure the cache store as write behind instead of as
write through.

Single file cache store configuration

XML

 shared: "false"
 data:
 path: "data"
 index:
 path: "index"
 writeBehind:
 modificationQueueSize: "2048"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().passivation(true)
 .addSoftIndexFileStore()
 .shared(false)
 .dataLocation("data")
 .indexLocation("index")
 .modificationQueueSize(2048);

<distributed-cache>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

78

JSON

YAML

ConfigurationBuilder

6.9. JDBC CONNECTION FACTORIES

Data Grid provides different ConnectionFactory implementations that allow you to connect to
databases. You use JDBC connections with SQL cache stores and JDBC string-based caches stores.

Connection pools
Connection pools are suitable for standalone Data Grid deployments and are based on Agroal.

XML

 <persistence passivation="true">
 <single-file-store shared="false"
 preload="true"
 fetch-state="true"/>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence" : {
 "passivation" : true,
 "single-file-store" : {
 "shared" : false,
 "preload" : true,
 "fetch-state" : true
 }
 }
 }
}

distributedCache:
 persistence:
 passivation: "true"
 singleFileStore:
 shared: "false"
 preload: "true"
 fetchState: "true"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().passivation(true)
 .addStore(SingleFileStoreConfigurationBuilder.class)
 .shared(false)
 .preload(true)
 .fetchPersistentState(true);

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

79

JSON

YAML

ConfigurationBuilder

Managed datasources
Datasource connections are suitable for managed environments such as application servers.

XML

<distributed-cache>
 <persistence>
 <connection-pool connection-url="jdbc:h2:mem:infinispan;DB_CLOSE_DELAY=-1"
 username="sa"
 password="changeme"
 driver="org.h2.Driver"/>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "connection-pool": {
 "connection-url": "jdbc:h2:mem:infinispan_string_based",
 "driver": "org.h2.Driver",
 "username": "sa",
 "password": "changeme"
 }
 }
 }
}

distributedCache:
 persistence:
 connectionPool:
 connectionUrl: "jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1"
 driver: org.h2.Driver
 username: sa
 password: changeme

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
 .connectionPool()
 .connectionUrl("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")
 .username("sa")
 .driverClass("org.h2.Driver");

<distributed-cache>
 <persistence>
 <data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />

Red Hat Data Grid 8.3 Configuring Data Grid Caches

80

JSON

YAML

ConfigurationBuilder

Simple connections
Simple connection factories create database connections on a per invocation basis and are intended for
use with test or development environments only.

XML

JSON

 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "data-source": {
 "jndi-url": "java:/StringStoreWithManagedConnectionTest/DS"
 }
 }
 }
}

distributedCache:
 persistence:
 dataSource:
 jndiUrl: "java:/StringStoreWithManagedConnectionTest/DS"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
 .dataSource()
 .jndiUrl("java:/StringStoreWithManagedConnectionTest/DS");

<distributed-cache>
 <persistence>
 <simple-connection connection-url="jdbc:h2://localhost"
 username="sa"
 password="changeme"
 driver="org.h2.Driver"/>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "simple-connection": {
 "connection-url": "jdbc:h2://localhost",

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

81

YAML

ConfigurationBuilder

Additional resources

PooledConnectionFactoryConfigurationBuilder

ManagedConnectionFactoryConfigurationBuilder

SimpleConnectionFactoryConfigurationBuilder

6.9.1. Configuring managed datasources

Create managed datasources as part of your Data Grid Server configuration to optimize connection
pooling and performance for JDBC database connections. You can then specify the JDNI name of the
managed datasources in your caches, which centralizes JDBC connection configuration for your
deployment.

Prerequisites

Copy database drivers to the server/lib directory in your Data Grid Server installation.

Procedure

1. Open your Data Grid Server configuration for editing.

2. Add a new data-source to the data-sources section.

 "driver": "org.h2.Driver",
 "username": "sa",
 "password": "changeme"
 }
 }
 }
}

distributedCache:
 persistence:
 simpleConnection:
 connectionUrl: "jdbc:h2://localhost"
 driver: org.h2.Driver
 username: sa
 password: changeme

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
 .simpleConnection()
 .connectionUrl("jdbc:h2://localhost")
 .driverClass("org.h2.Driver")
 .username("admin")
 .password("changeme");

Red Hat Data Grid 8.3 Configuring Data Grid Caches

82

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/configuration/PooledConnectionFactoryConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/configuration/ManagedConnectionFactoryConfigurationBuilder.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/configuration/SimpleConnectionFactoryConfigurationBuilder.html

3. Uniquely identify the datasource with the name attribute or field.

4. Specify a JNDI name for the datasource with the jndi-name attribute or field.

TIP

You use the JNDI name to specify the datasource in your JDBC cache store configuration.

5. Set true as the value of the statistics attribute or field to enable statistics for the datasource
through the /metrics endpoint.

6. Provide JDBC driver details that define how to connect to the datasource in the connection-
factory section.

a. Specify the name of the database driver with the driver attribute or field.

b. Specify the JDBC connection url with the url attribute or field.

c. Specify credentials with the username and password attributes or fields.

d. Provide any other configuration as appropriate.

7. Define how Data Grid Server nodes pool and reuse connections with connection pool tuning
properties in the connection-pool section.

8. Save the changes to your configuration.

Verification

Use the Data Grid Command Line Interface (CLI) to test the datasource connection, as follows:

1. Start a CLI session.

bin/cli.sh

2. List all datasources and confirm the one you created is available.

server datasource ls

3. Test a datasource connection.

server datasource test my-datasource

Managed datasource configuration

XML

<server xmlns="urn:infinispan:server:13.0">
 <data-sources>
 <!-- Defines a unique name for the datasource and JNDI name that you
 reference in JDBC cache store configuration.
 Enables statistics for the datasource, if required. -->
 <data-source name="ds"
 jndi-name="jdbc/postgres"
 statistics="true">

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

83

JSON

YAML

 <!-- Specifies the JDBC driver that creates connections. -->
 <connection-factory driver="org.postgresql.Driver"
 url="jdbc:postgresql://localhost:5432/postgres"
 username="postgres"
 password="changeme">
 <!-- Sets optional JDBC driver-specific connection properties. -->
 <connection-property name="name">value</connection-property>
 </connection-factory>
 <!-- Defines connection pool tuning properties. -->
 <connection-pool initial-size="1"
 max-size="10"
 min-size="3"
 background-validation="1000"
 idle-removal="1"
 blocking-timeout="1000"
 leak-detection="10000"/>
 </data-source>
 </data-sources>
</server>

{
 "server": {
 "data-sources": [{
 "name": "ds",
 "jndi-name": "jdbc/postgres",
 "statistics": true,
 "connection-factory": {
 "driver": "org.postgresql.Driver",
 "url": "jdbc:postgresql://localhost:5432/postgres",
 "username": "postgres",
 "password": "changeme",
 "connection-properties": {
 "name": "value"
 }
 },
 "connection-pool": {
 "initial-size": 1,
 "max-size": 10,
 "min-size": 3,
 "background-validation": 1000,
 "idle-removal": 1,
 "blocking-timeout": 1000,
 "leak-detection": 10000
 }
 }]
 }
}

server:
 dataSources:

Red Hat Data Grid 8.3 Configuring Data Grid Caches

84

6.9.1.1. Configuring caches with JNDI names

When you add a managed datasource to Data Grid Server you can add the JNDI name to a JDBC-based
cache store configuration.

Prerequisites

Configure Data Grid Server with a managed datasource.

Procedure

1. Open your cache configuration for editing.

2. Add the data-source element or field to the JDBC-based cache store configuration.

3. Specify the JNDI name of the managed datasource as the value of the jndi-url attribute.

4. Configure the JDBC-based cache stores as appropriate.

5. Save the changes to your configuration.

JNDI name in cache configuration

XML

 - name: ds
 jndiName: 'jdbc/postgres'
 statistics: true
 connectionFactory:
 driver: "org.postgresql.Driver"
 url: "jdbc:postgresql://localhost:5432/postgres"
 username: "postgres"
 password: "changeme"
 connectionProperties:
 name: value
 connectionPool:
 initialSize: 1
 maxSize: 10
 minSize: 3
 backgroundValidation: 1000
 idleRemoval: 1
 blockingTimeout: 1000
 leakDetection: 10000

<distributed-cache>
 <persistence>
 <jdbc:string-keyed-jdbc-store>
 <!-- Specifies the JNDI name of a managed datasource on Data Grid Server. -->
 <jdbc:data-source jndi-url="jdbc/postgres"/>
 <jdbc:string-keyed-table drop-on-exit="true" create-on-start="true" prefix="TBL">
 <jdbc:id-column name="ID" type="VARCHAR(255)"/>
 <jdbc:data-column name="DATA" type="BYTEA"/>
 <jdbc:timestamp-column name="TS" type="BIGINT"/>
 <jdbc:segment-column name="S" type="INT"/>
 </jdbc:string-keyed-table>

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

85

JSON

YAML

 </jdbc:string-keyed-jdbc-store>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "string-keyed-jdbc-store": {
 "data-source": {
 "jndi-url": "jdbc/postgres"
 },
 "string-keyed-table": {
 "prefix": "TBL",
 "drop-on-exit": true,
 "create-on-start": true,
 "id-column": {
 "name": "ID",
 "type": "VARCHAR(255)"
 },
 "data-column": {
 "name": "DATA",
 "type": "BYTEA"
 },
 "timestamp-column": {
 "name": "TS",
 "type": "BIGINT"
 },
 "segment-column": {
 "name": "S",
 "type": "INT"
 }
 }
 }
 }
 }
}

distributedCache:
 persistence:
 stringKeyedJdbcStore:
 dataSource:
 jndi-url: "jdbc/postgres"
 stringKeyedTable:
 prefix: "TBL"
 dropOnExit: true
 createOnStart: true
 idColumn:
 name: "ID"
 type: "VARCHAR(255)"
 dataColumn:

Red Hat Data Grid 8.3 Configuring Data Grid Caches

86

6.9.1.2. Connection pool tuning properties

You can tune JDBC connection pools for managed datasources in your Data Grid Server configuration.

Property Description

initial-size Initial number of connections the pool should hold.

max-size Maximum number of connections in the pool.

min-size Minimum number of connections the pool should
hold.

blocking-timeout Maximum time in milliseconds to block while waiting
for a connection before throwing an exception. This
will never throw an exception if creating a new
connection takes an inordinately long period of time.
Default is 0 meaning that a call will wait indefinitely.

background-validation Time in milliseconds between background validation
runs. A duration of 0 means that this feature is
disabled.

validate-on-acquisition Connections idle for longer than this time, specified
in milliseconds, are validated before being acquired
(foreground validation). A duration of 0 means that
this feature is disabled.

idle-removal Time in minutes a connection has to be idle before it
can be removed.

leak-detection Time in milliseconds a connection has to be held
before a leak warning.

6.9.2. Configuring JDBC connection pools with Agroal properties

You can use a properties file to configure pooled connection factories for JDBC string-based cache
stores.

Procedure

1. Specify JDBC connection pool configuration with org.infinispan.agroal.* properties, as in the

 name: "DATA"
 type: "BYTEA"
 timestampColumn:
 name: "TS"
 type: "BIGINT"
 segmentColumn:
 name: "S"
 type: "INT"

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

87

1. Specify JDBC connection pool configuration with org.infinispan.agroal.* properties, as in the
following example:

2. Configure Data Grid to use your properties file with the properties-file attribute or the
PooledConnectionFactoryConfiguration.propertyFile() method.

XML

JSON

YAML

ConfigurationBuilder

Additional resources

Agroal

org.infinispan.agroal.metricsEnabled=false

org.infinispan.agroal.minSize=10
org.infinispan.agroal.maxSize=100
org.infinispan.agroal.initialSize=20
org.infinispan.agroal.acquisitionTimeout_s=1
org.infinispan.agroal.validationTimeout_m=1
org.infinispan.agroal.leakTimeout_s=10
org.infinispan.agroal.reapTimeout_m=10

org.infinispan.agroal.metricsEnabled=false
org.infinispan.agroal.autoCommit=true
org.infinispan.agroal.jdbcTransactionIsolation=READ_COMMITTED
org.infinispan.agroal.jdbcUrl=jdbc:h2:mem:PooledConnectionFactoryTest;DB_CLOSE_DELAY
=-1
org.infinispan.agroal.driverClassName=org.h2.Driver.class
org.infinispan.agroal.principal=sa
org.infinispan.agroal.credential=sa

<connection-pool properties-file="path/to/agroal.properties"/>

"persistence": {
 "connection-pool": {
 "properties-file": "path/to/agroal.properties"
 }
}

persistence:
 connectionPool:
 propertiesFile: path/to/agroal.properties

.connectionPool().propertyFile("path/to/agroal.properties")

Red Hat Data Grid 8.3 Configuring Data Grid Caches

88

https://agroal.github.io/

6.10. SQL CACHE STORES

SQL cache stores let you load Data Grid caches from existing database tables. Data Grid offers two
types of SQL cache store:

Table

Data Grid loads entries from a single database table.

Query

Data Grid uses SQL queries to load entries from single or multiple database tables, including from
sub-columns within those tables, and perform insert, update, and delete operations.

TIP

Visit the code tutorials to try a SQL cache store in action. See the Persistence code tutorial with remote
caches.

Both SQL table and query stores:

Allow read and write operations to persistent storage.

Can be read-only and act as a cache loader.

Support keys and values that correspond to a single database column or a composite of multiple
database columns.
For composite keys and values, you must provide Data Grid with Protobuf schema (.proto files)
that describe the keys and values. With Data Grid Server you can add schema through the Data
Grid Console or Command Line Interface (CLI) with the schema command.

NOTE

SQL cache stores do not support expiration or segmentation.

Additional resources

DatabaseType Enum lists supported database dialects

Data Grid SQL store configuration reference

6.10.1. Data types for keys and values

Data Grid loads keys and values from columns in database tables via SQL cache stores, automatically
using the appropriate data types. The following CREATE statement adds a table named "books" that
has two columns, isbn and title:

Database table with two columns

When you use this table with a SQL cache store, Data Grid adds an entry to the cache using the isbn

CREATE TABLE books (
 isbn NUMBER(13),
 title varchar(120)
 PRIMARY KEY(isbn)
);

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

89

https://github.com/redhat-developer/redhat-datagrid-tutorials/tree/RHDG_8.3.0/infinispan-remote/persistence
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/DatabaseType.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-sql-config-13.0.html

When you use this table with a SQL cache store, Data Grid adds an entry to the cache using the isbn
column as the key and the title column as the value.

Additional resources

Data Grid SQL store configuration reference

6.10.1.1. Composite keys and values

You can use SQL stores with database tables that contain composite primary keys or composite values.

To use composite keys or values, you must provide Data Grid with Protobuf schema that describe the
data types. You must also add schema configuration to your SQL store and specify the message names
for keys and values.

TIP

Data Grid recommends generating Protobuf schema with the ProtoStream processor. You can then
upload your Protobuf schema for remote caches through the Data Grid Console, CLI, or REST API.

Composite values
The following database table holds a composite value of the title and author columns:

Data Grid adds an entry to the cache using the isbn column as the key. For the value, Data Grid requires
a Protobuf schema that maps the title column and the author columns:

Composite keys and values
The following database table holds a composite primary key and a composite value, with two columns
each:

For both the key and the value, Data Grid requires a Protobuf schema that maps the columns to keys
and values:

CREATE TABLE books (
 isbn NUMBER(13),
 title varchar(120),
 author varchar(80)
 PRIMARY KEY(isbn)
);

package library;

message books_value {
 optional string title = 1;
 optional string author = 2;
}

CREATE TABLE books (
 isbn NUMBER(13),
 reprint INT,
 title varchar(120),
 author varchar(80)
 PRIMARY KEY(isbn, reprint)
);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

90

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-sql-config-13.0.html

Additional resources

Cache encoding and marshalling: Generate Protobuf schema and register them with Data Grid

Data Grid SQL store configuration reference

6.10.1.2. Embedded keys

Protobuf schema can include keys within values, as in the following example:

Protobuf schema with an embedded key

To use embedded keys, you must include the embedded-key="true" attribute or embeddedKey(true)
method in your SQL store configuration.

6.10.1.3. SQL types to Protobuf types

The following table contains default mappings of SQL data types to Protobuf data types:

SQL type Protobuf type

int4 int32

int8 int64

float4 float

package library;

message books_key {
 required string isbn = 1;
 required int32 reprint = 2;
}

message books_value {
 optional string title = 1;
 optional string author = 2;
}

package library;

message books_key {
 required string isbn = 1;
 required int32 reprint = 2;
}

message books_value {
 required string isbn = 1;
 required string reprint = 2;
 optional string title = 3;
 optional string author = 4;
}

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

91

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-sql-config-13.0.html

float8 double

numeric double

bool bool

char string

varchar string

text, tinytext, mediumtext, longtext string

bytea, tinyblob, blob, mediumblob, longblob bytes

SQL type Protobuf type

Additional resources

Cache encoding and marshalling

6.10.2. Loading Data Grid caches from database tables

Add a SQL table cache store to your configuration if you want Data Grid to load data from a database
table. When it connects to the database, Data Grid uses metadata from the table to detect column
names and data types. Data Grid also automatically determines which columns in the database are part
of the primary key.

Prerequisites

Have JDBC connection details.
You can add JDBC connection factories directly to your cache configuration.
For remote caches in production environments, you should add managed datasources to Data
Grid Server configuration and specify the JNDI name in the cache configuration.

Generate Protobuf schema for any composite keys or composite values and register your
schemas with Data Grid.

TIP

Data Grid recommends generating Protobuf schema with the ProtoStream processor. For
remote caches, you can register your schemas by adding them through the Data Grid Console,
CLI, or REST API.

Procedure

1. Add database drivers to your Data Grid deployment.

Remote caches: Copy database drivers to the server/lib directory in your Data Grid Server
installation.

Embedded caches: Add the infinispan-cachestore-sql dependency to your pom file.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

92

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/

2. Open your Data Grid configuration for editing.

3. Add a SQL table cache store.

Declarative

Programmatic

4. Specify the database dialect with either dialect="" or dialect(), for example dialect="H2" or
dialect="postgres".

5. Configure the SQL cache store with the properties you require, for example:

To use the same cache store across your cluster, set shared="true" or shared(true).

To create a read only cache store, set read-only="true" or .ignoreModifications(true).

6. Name the database table that loads the cache with table-name="<database_table_name>" or
table.name("<database_table_name>").

7. Add the schema element or the .schemaJdbcConfigurationBuilder() method and add
Protobuf schema configuration for composite keys or values.

a. Specify the package name with the package attribute or package() method.

b. Specify composite values with the message-name attribute or messageName() method.

c. Specify composite keys with the key-message-name attribute or keyMessageName()
method.

d. Set a value of true for the embedded-key attribute or embeddedKey() method if your
schema includes keys within values.

8. Save the changes to your configuration.

SQL table store configuration
The following example loads a distributed cache from a database table named "books" using composite
values defined in a Protobuf schema:

XML

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cachestore-sql</artifactId>
</dependency>

table-jdbc-store xmlns="urn:infinispan:config:store:sql:13.0"

persistence().addStore(TableJdbcStoreConfigurationBuilder.class)

<distributed-cache>
 <persistence>
 <table-jdbc-store xmlns="urn:infinispan:config:store:sql:13.0"
 dialect="H2"

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

93

JSON

YAML

ConfigurationBuilder

Additional resources

Cache encoding and marshalling: Generate Protobuf schema and register them with Data Grid

 shared="true"
 table-name="books">
 <schema message-name="books_value"
 package="library"/>
 </table-jdbc-store>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "table-jdbc-store": {
 "dialect": "H2",
 "shared": "true",
 "table-name": "books",
 "schema": {
 "message-name": "books_value",
 "package": "library"
 }
 }
 }
 }
}

distributedCache:
 persistence:
 tableJdbcStore:
 dialect: "H2"
 shared: "true"
 tableName: "books"
 schema:
 messageName: "books_value"
 package: "library"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(TableJdbcStoreConfigurationBuilder.class)
 .dialect(DatabaseType.H2)
 .shared("true")
 .tableName("books")
 .schemaJdbcConfigurationBuilder()
 .messageName("books_value")
 .packageName("library");

Red Hat Data Grid 8.3 Configuring Data Grid Caches

94

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/

Persistence code tutorial with remote caches

JDBC connection factories

DatabaseType Enum lists supported database dialects

Data Grid SQL store configuration reference

6.10.3. Using SQL queries to load data and perform operations

SQL query cache stores let you load caches from multiple database tables, including from sub-columns
in database tables, and perform insert, update, and delete operations.

Prerequisites

Have JDBC connection details.
You can add JDBC connection factories directly to your cache configuration.
For remote caches in production environments, you should add managed datasources to Data
Grid Server configuration and specify the JNDI name in the cache configuration.

Generate Protobuf schema for any composite keys or composite values and register your
schemas with Data Grid.

TIP

Data Grid recommends generating Protobuf schema with the ProtoStream processor. For
remote caches, you can register your schemas by adding them through the Data Grid Console,
CLI, or REST API.

Procedure

1. Add database drivers to your Data Grid deployment.

Remote caches: Copy database drivers to the server/lib directory in your Data Grid Server
installation.

Embedded caches: Add the infinispan-cachestore-sql dependency to your pom file and
make sure database drivers are on your application classpath.

2. Open your Data Grid configuration for editing.

3. Add a SQL query cache store.

Declarative

Programmatic

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cachestore-sql</artifactId>
</dependency>

query-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0"

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

95

https://github.com/redhat-developer/redhat-datagrid-tutorials/tree/RHDG_8.3.0/infinispan-remote/persistence
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/configuring_data_grid_caches/#jdbc-connection-factories_persistence
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/DatabaseType.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-sql-config-13.0.html

4. Specify the database dialect with either dialect="" or dialect(), for example dialect="H2" or
dialect="postgres".

5. Configure the SQL cache store with the properties you require, for example:

To use the same cache store across your cluster, set shared="true" or shared(true).

To create a read only cache store, set read-only="true" or .ignoreModifications(true).

6. Define SQL query statements that load caches with data and modify database tables with the
queries element or the queries() method.

Query statement Description

SELECT Loads a single entry into caches. You can use
wildcards but must specify parameters for keys.
You can use labelled expressions.

SELECT ALL Loads multiple entries into caches. You can use
the * wildcard if the number of columns returned
match the key and value columns. You can use
labelled expressions.

SIZE Counts the number of entries in the cache.

DELETE Deletes a single entry from the cache.

DELETE ALL Deletes all entries from the cache.

UPSERT Modifies entries in the cache.

NOTE

DELETE, DELETE ALL, and UPSERT statements do not apply to read only
cache stores but are required if cache stores allow modifications.

Parameters in DELETE statements must match parameters in SELECT
statements exactly.

Variables in UPSERT statements must have the same number of uniquely named
variables that SELECT and SELECT ALL statements return. For example, if
SELECT returns foo and bar this statement must take only :foo and :bar as
variables. However you can apply the same named variable more than once in a
statement.

SQL queries can include JOIN, ON, and any other clauses that the database
supports.

7. Add the schema element or the .schemaJdbcConfigurationBuilder() method and add
Protobuf schema configuration for composite keys or values.

a. Specify the package name with the package attribute or package() method.

persistence().addStore(QueriesJdbcStoreConfigurationBuilder.class)

Red Hat Data Grid 8.3 Configuring Data Grid Caches

96

a. Specify the package name with the package attribute or package() method.

b. Specify composite values with the message-name attribute or messageName() method.

c. Specify composite keys with the key-message-name attribute or keyMessageName()
method.

d. Set a value of true for the embedded-key attribute or embeddedKey() method if your
schema includes keys within values.

8. Save the changes to your configuration.

Additional resources

Cache encoding and marshalling: Generate Protobuf schema and register them with Data Grid

Persistence code tutorial with remote caches

JDBC connection factories

DatabaseType Enum lists supported database dialects

Data Grid SQL store configuration reference

6.10.3.1. SQL query store configuration

This section provides an example configuration for a SQL query cache store that loads a distributed
cache with data from two database tables: "person" and "address".

SQL statements
SQL data definition language (DDL) statements for the "person" and "address" tables are as follows:

SQL statement for the "person" table

SQL statement for the "address" table

Protobuf schemas

CREATE TABLE Person (
 name VARCHAR(255) NOT NULL,
 picture VARBINARY(255),
 sex VARCHAR(255),
 birthdate TIMESTAMP,
 accepted_tos BOOLEAN,
 notused VARCHAR(255),
 PRIMARY KEY (name)
);

CREATE TABLE Address (
 name VARCHAR(255) NOT NULL,
 street VARCHAR(255),
 city VARCHAR(255),
 zip INT,
 PRIMARY KEY (name)
);

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

97

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/
https://github.com/redhat-developer/redhat-datagrid-tutorials/tree/RHDG_8.3.0/infinispan-remote/persistence
https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/configuring_data_grid_caches/#jdbc-connection-factories_persistence
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/DatabaseType.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-sql-config-13.0.html

Protobuf schema for the "person" and "address" tables are as follows:

Protobuf schema for the "person" table

Protobuf schema for the "address" table

Cache configuration
The following example loads a distributed cache from the "person" and "address" tables using a SQL
query that includes a JOIN clause:

XML

package com.example

enum Sex {
 FEMALE = 1;
 MALE = 2;
}

message Person {
 optional string name = 1;
 optional Address address = 2;
 optional bytes picture = 3;
 optional Sex sex = 4;
 optional fixed64 birthDate = 5 [default = 0];
 optional bool accepted_tos = 6 [default = false];
}

package com.example

message Address {
 optional string street = 1;
 optional string city = 2 [default = "San Jose"];
 optional int32 zip = 3 [default = 0];
}

<distributed-cache>
 <persistence>
 <query-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0"
 dialect="POSTGRES"
 shared="true">
 <queries key-columns="name">
 <select-single>SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street,
t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name WHERE t1.name =
:name</select-single>
 <select-all>SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street, t2.city,
t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name</select-all>
 <delete-single>DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM Address
t2 where t2.name = :name</delete-single>
 <delete-all>DELETE FROM Person; DELETE FROM Address</delete-all>
 <upsert>INSERT INTO Person (name, picture, sex, birthdate, accepted_tos) VALUES (:name,
:picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name, street, city, zip) VALUES
(:name, :street, :city, :zip)</upsert>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

98

JSON

YAML

 <size>SELECT COUNT(*) FROM Person</size>
 </queries>
 <schema message-name="Person"
 package="com.example"
 embedded-key="true"/>
 </query-jdbc-store>
 </persistence>
<distributed-cache>

{
 "distributed-cache": {
 "persistence": {
 "query-jdbc-store": {
 "dialect": "POSTGRES",
 "shared": "true",
 "key-columns": "name",
 "queries": {
 "select-single": "SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street,
t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name WHERE t1.name = :name",
 "select-all": "SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street, t2.city,
t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name",
 "delete-single": "DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM
Address t2 where t2.name = :name",
 "delete-all": "DELETE FROM Person; DELETE FROM Address",
 "upsert": "INSERT INTO Person (name, picture, sex, birthdate, accepted_tos) VALUES
(:name, :picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name, street, city, zip)
VALUES (:name, :street, :city, :zip)",
 "size": "SELECT COUNT(*) FROM Person"
 },
 "schema": {
 "message-name": "Person",
 "package": "com.example",
 "embedded-key": "true"
 }
 }
 }
 }
}

distributedCache:
 persistence:
 queryJdbcStore:
 dialect: "POSTGRES"
 shared: "true"
 keyColumns: "name"
 queries:
 selectSingle: "SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street,
t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name WHERE t1.name = :name"
 selectAll: "SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street, t2.city,
t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name"

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

99

ConfigurationBuilder

Additional resources

Data Grid SQL store configuration reference

6.10.4. SQL cache store troubleshooting

Find out about common issues and errors with SQL cache stores and how to troubleshoot them.

ISPN008064: No primary keys found for table <table_name>, check case sensitivity

Data Grid logs this message in the following cases:

The database table does not exist.

The database table name is case sensitive and needs to be either all lower case or all upper case,
depending on the database provider.

The database table does not have any primary keys defined.

 deleteSingle: "DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM Address t2
where t2.name = :name"
 deleteAll: "DELETE FROM Person; DELETE FROM Address"
 upsert: "INSERT INTO Person (name, picture, sex, birthdate, accepted_tos) VALUES (:name,
:picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name, street, city, zip) VALUES
(:name, :street, :city, :zip)"
 size: "SELECT COUNT(*) FROM Person"
 schema:
 messageName: "Person"
 package: "com.example"
 embeddedKey: "true"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(QueriesJdbcStoreConfigurationBuilder.class)
 .dialect(DatabaseType.POSTGRES)
 .shared("true")
 .keyColumns("name")
 .queriesJdbcConfigurationBuilder()
 .select("SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street, t2.city,
t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name WHERE t1.name = :name")
 .selectAll("SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos, t2.street, t2.city,
t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name")
 .delete("DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM Address t2
where t2.name = :name")
 .deleteAll("DELETE FROM Person; DELETE FROM Address")
 .upsert("INSERT INTO Person (name, picture, sex, birthdate, accepted_tos) VALUES (:name,
:picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name, street, city, zip) VALUES
(:name, :street, :city, :zip)")
 .size("SELECT COUNT(*) FROM Person")
 .schemaJdbcConfigurationBuilder()
 .messageName("Person")
 .packageName("com.example")
 .embeddedKey(true);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

100

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-sql-config-13.0.html

To resolve this issue you should:

1. Check your SQL cache store configuration and ensure that you specify the name of an existing
table.

2. Ensure that the database table name conforms to an case sensitivity requirements.

3. Ensure that your database tables have primary keys that uniquely identify the appropriate rows.

6.11. JDBC STRING-BASED CACHE STORES

JDBC String-Based cache stores, JdbcStringBasedStore, use JDBC drivers to load and store values in
the underlying database.

JDBC String-Based cache stores:

Store each entry in its own row in the table to increase throughput for concurrent loads.

Use a simple one-to-one mapping that maps each key to a String object using the key-to-
string-mapper interface.
Data Grid provides a default implementation, DefaultTwoWayKey2StringMapper, that handles
primitive types.

In addition to the data table used to store cache entries, the store also creates a _META table for
storing metadata. This table is used to ensure that any existing database content is compatible with the
current Data Grid version and configuration.

NOTE

By default Data Grid shares are not stored, which means that all nodes in the cluster write
to the underlying store on each update. If you want operations to write to the underlying
database once only, you must configure JDBC store as shared.

Segmentation

JdbcStringBasedStore uses segmentation by default and requires a column in the database table to
represent the segments to which entries belong.

Additional resources

DatabaseType Enum lists supported database dialects

6.11.1. Configuring JDBC string-based cache stores

Configure Data Grid caches with JDBC string-based cache stores that can connect to databases.

Prerequisites

Remote caches: Copy database drivers to the server/lib directory in your Data Grid Server
installation.

Embedded caches: Add the infinispan-cachestore-jdbc dependency to your pom file.

<dependency>
 <groupId>org.infinispan</groupId>

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

101

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jdbc/common/DatabaseType.html

Procedure

1. Create a JDBC string-based cache store configuration in one of the following ways:

Declaratively, add the persistence element or field then add string-keyed-jdbc-store with
the following schema namespace:

Programmatically, add the following methods to your ConfigurationBuilder:

2. Specify the dialect of the database with either the dialect attribute or the dialect() method.

3. Configure any properties for the JDBC string-based cache store as appropriate.
For example, specify if the cache store is shared with multiple cache instances with either the
shared attribute or the shared() method.

4. Add a JDBC connection factory so that Data Grid can connect to the database.

5. Add a database table that stores cache entries.

JDBC string-based cache store configuration

XML

JSON

 <artifactId>infinispan-cachestore-jdbc</artifactId>
</dependency>

xmlns="urn:infinispan:config:store:jdbc:13.0"

persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

<distributed-cache>
 <persistence>
 <string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0"
 dialect="H2">
 <connection-pool connection-url="jdbc:h2:mem:infinispan"
 username="sa"
 password="changeme"
 driver="org.h2.Driver"/>
 <string-keyed-table create-on-start="true"
 prefix="ISPN_STRING_TABLE">
 <id-column name="ID_COLUMN"
 type="VARCHAR(255)" />
 <data-column name="DATA_COLUMN"
 type="BINARY" />
 <timestamp-column name="TIMESTAMP_COLUMN"
 type="BIGINT" />
 <segment-column name="SEGMENT_COLUMN"
 type="INT"/>
 </string-keyed-table>
 </string-keyed-jdbc-store>
 </persistence>
</distributed-cache>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

102

YAML

{
 "distributed-cache": {
 "persistence": {
 "string-keyed-jdbc-store": {
 "dialect": "H2",
 "string-keyed-table": {
 "prefix": "ISPN_STRING_TABLE",
 "create-on-start": true,
 "id-column": {
 "name": "ID_COLUMN",
 "type": "VARCHAR(255)"
 },
 "data-column": {
 "name": "DATA_COLUMN",
 "type": "BINARY"
 },
 "timestamp-column": {
 "name": "TIMESTAMP_COLUMN",
 "type": "BIGINT"
 },
 "segment-column": {
 "name": "SEGMENT_COLUMN",
 "type": "INT"
 }
 },
 "connection-pool": {
 "connection-url": "jdbc:h2:mem:infinispan",
 "driver": "org.h2.Driver",
 "username": "sa",
 "password": "changeme"
 }
 }
 }
 }
}

distributedCache:
 persistence:
 stringKeyedJdbcStore:
 dialect: "H2"
 stringKeyedTable:
 prefix: "ISPN_STRING_TABLE"
 createOnStart: true
 idColumn:
 name: "ID_COLUMN"
 type: "VARCHAR(255)"
 dataColumn:
 name: "DATA_COLUMN"
 type: "BINARY"
 timestampColumn:
 name: "TIMESTAMP_COLUMN"
 type: "BIGINT"
 segmentColumn:

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

103

ConfigurationBuilder

Additional resources

JDBC connection factories

6.12. ROCKSDB CACHE STORES

RocksDB provides key-value filesystem-based storage with high performance and reliability for highly
concurrent environments.

RocksDB cache stores, RocksDBStore, use two databases. One database provides a primary cache
store for data in memory; the other database holds entries that Data Grid expires from memory.

Table 6.1. Configuration parameters

Parameter Description

location Specifies the path to the RocksDB database that
provides the primary cache store. If you do not set
the location, it is automatically created. Note that the
path must be relative to the global persistent
location.

 name: "SEGMENT_COLUMN"
 type: "INT"
 connectionPool:
 connectionUrl: "jdbc:h2:mem:infinispan"
 driver: "org.h2.Driver"
 username: "sa"
 password: "changeme"

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)
 .dialect(DatabaseType.H2)
 .table()
 .dropOnExit(true)
 .createOnStart(true)
 .tableNamePrefix("ISPN_STRING_TABLE")
 .idColumnName("ID_COLUMN").idColumnType("VARCHAR(255)")
 .dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
 .timestampColumnName("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
 .segmentColumnName("SEGMENT_COLUMN").segmentColumnType("INT")
 .connectionPool()
 .connectionUrl("jdbc:h2:mem:infinispan")
 .username("sa")
 .password("changeme")
 .driverClass("org.h2.Driver");

Red Hat Data Grid 8.3 Configuring Data Grid Caches

104

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/configuring_data_grid_caches/#jdbc-connection-factories_persistence

expiredLocation Specifies the path to the RocksDB database that
provides the cache store for expired data. If you do
not set the location, it is automatically created. Note
that the path must be relative to the global persistent
location.

expiryQueueSize Sets the size of the in-memory queue for expiring
entries. When the queue reaches the size, Data Grid
flushes the expired into the RocksDB cache store.

clearThreshold Sets the maximum number of entries before deleting
and re-initializing (re-init) the RocksDB database.
For smaller size cache stores, iterating through all
entries and removing each one individually can
provide a faster method.

Parameter Description

Tuning parameters

You can also specify the following RocksDB tuning parameters:

compressionType

blockSize

cacheSize

Configuration properties

Optionally set properties in the configuration as follows:

Prefix properties with database to adjust and tune RocksDB databases.

Prefix properties with data to configure the column families in which RocksDB stores your data.

<property name="database.max_background_compactions">2</property>
<property name="data.write_buffer_size">64MB</property>
<property
name="data.compression_per_level">kNoCompression:kNoCompression:kNoCompression:kSnappyCo
mpression:kZSTD:kZSTD</property>

Segmentation

RocksDBStore supports segmentation and creates a separate column family per segment. Segmented
RocksDB cache stores improve lookup performance and iteration but slightly lower performance of
write operations.

NOTE

You should not configure more than a few hundred segments. RocksDB is not designed
to have an unlimited number of column families. Too many segments also significantly
increases cache store start time.

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

105

RocksDB cache store configuration

XML

JSON

YAML

ConfigurationBuilder

ConfigurationBuilder with properties

<local-cache>
 <persistence>
 <rocksdb-store xmlns="urn:infinispan:config:store:rocksdb:13.0"
 path="rocksdb/data">
 <expiration path="rocksdb/expired"/>
 </rocksdb-store>
 </persistence>
</local-cache>

{
 "local-cache": {
 "persistence": {
 "rocksdb-store": {
 "path": "rocksdb/data",
 "expiration": {
 "path": "rocksdb/expired"
 }
 }
 }
 }
}

localCache:
 persistence:
 rocksdbStore:
 path: "rocksdb/data"
 expiration:
 path: "rocksdb/expired"

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(RocksDBStoreConfigurationBuilder.class)
 .build();
EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

Properties props = new Properties();
props.put("database.max_background_compactions", "2");

Red Hat Data Grid 8.3 Configuring Data Grid Caches

106

Reference

RocksDB cache store configuration schema

RocksDBStore

RocksDBStoreConfiguration

rocksdb.org

RocksDB Tuning Guide

6.13. REMOTE CACHE STORES

Remote cache stores, RemoteStore, use the Hot Rod protocol to store data on Data Grid clusters.

NOTE

If you configure remote cache stores as shared you cannot preload data. In other words if
shared="true" in your configuration then you must set preload="false".

Segmentation

RemoteStore supports segmentation and can publish keys and entries by segment, which makes bulk
operations more efficient. However, segmentation is available only with Data Grid Hot Rod protocol
version 2.3 or later.

WARNING

When you enable segmentation for RemoteStore, it uses the number of segments
that you define in your Data Grid server configuration.

If the source cache is segmented and uses a different number of segments than
RemoteStore, then incorrect values are returned for bulk operations. In this case,
you should disable segmentation for RemoteStore.

Remote cache store configuration

XML

props.put("data.write_buffer_size", "512MB");

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(RocksDBStoreConfigurationBuilder.class)
 .location("rocksdb/data")
 .expiredLocation("rocksdb/expired")
 .properties(props)
 .build();



CHAPTER 6. CONFIGURING PERSISTENT STORAGE

107

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-rocksdb-config-13.0.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/rocksdb/RocksDBStore.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/rocksdb/configuration/RocksDBStoreConfiguration.html
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

JSON

YAML

ConfigurationBuilder

<distributed-cache>
 <persistence>
 <remote-store xmlns="urn:infinispan:config:store:remote:13.0"
 cache="mycache"
 raw-values="true">
 <remote-server host="one"
 port="12111" />
 <remote-server host="two" />
 <connection-pool max-active="10"
 exhausted-action="CREATE_NEW" />
 </remote-store>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "remote-store": {
 "cache": "mycache",
 "raw-values": "true",
 "remote-server": [
 {
 "host": "one",
 "port": "12111"
 },
 {
 "host": "two"
 }
],
 "connection-pool": {
 "max-active": "10",
 "exhausted-action": "CREATE_NEW"
 }
 }
 }
}

distributedCache:
 remoteStore:
 cache: "mycache"
 rawValues: "true"
 remoteServer:
 - host: "one"
 port: "12111"
 - host: "two"
 connectionPool:
 maxActive: "10"
 exhaustedAction: "CREATE_NEW"

Red Hat Data Grid 8.3 Configuring Data Grid Caches

108

Reference

Remote cache store configuration schema

RemoteStore

RemoteStoreConfigurationBuilder

6.14. JPA CACHE STORES

JPA (Java Persistence API) cache stores, JpaStore, use formal schema to persist data.

Other applications can then read from persistent storage to load data from Data Grid. However, other
applications should not use persistent storage concurrently with Data Grid.

When using JPA cache stores, you should take the following into consideration:

Keys should be the ID of the entity. Values should be the entity object.

Only a single @Id or @EmbeddedId annotation is allowed.

Auto-generated IDs with the @GeneratedValue annotation are not supported.

All entries are stored as immortal.

JPA cache stores do not support segmentation.

NOTE

You should use JPA cache stores with embedded Data Grid caches only.

JPA cache store configuration

XML

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence().addStore(RemoteStoreConfigurationBuilder.class)
 .fetchPersistentState(false)
 .ignoreModifications(false)
 .purgeOnStartup(false)
 .remoteCacheName("mycache")
 .rawValues(true)
.addServer()
 .host("one").port(12111)
 .addServer()
 .host("two")
 .connectionPool()
 .maxActive(10)
 .exhaustedAction(ExhaustedAction.CREATE_NEW)
 .async().enable();

<local-cache name="vehicleCache">
 <persistence passivation="false">
 <jpa-store xmlns="urn:infinispan:config:store:jpa:13.0"

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

109

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-remote-config-13.0.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/remote/RemoteStore.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/remote/configuration/RemoteStoreConfigurationBuilder.html

ConfigurationBuilder

Configuration parameters

Declarative Programmatic Description

persistence-unit persistenceUnitName Specifies the JPA persistence unit
name in the JPA configuration
file, persistence.xml, that
contains the JPA entity class.

entity-class entityClass Specifies the fully qualified JPA
entity class name that is expected
to be stored in this cache. Only
one class is allowed.

Additional resources

JPA cache store configuration schema

JpaStore

JpaStoreConfiguration

6.14.1. JPA cache store example

This section provides an example for using JPA cache stores.

Prerequistes

Configure Data Grid to marshall your JPA entities.

Procedure

1. Define a persistence unit "myPersistenceUnit" in persistence.xml.

 persistence-unit="org.infinispan.persistence.jpa.configurationTest"
 entity-class="org.infinispan.persistence.jpa.entity.Vehicle">
 />
 </persistence>
</local-cache>

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(JpaStoreConfigurationBuilder.class)
 .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
 .entityClass(User.class)
 .build();

<persistence-unit name="myPersistenceUnit">
 <!-- Persistence configuration goes here. -->
</persistence-unit>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

110

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-cachestore-jpa-config-13.0.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jpa/JpaStore.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/jpa/configuration/JpaStoreConfiguration.html

2. Create a user entity class.

3. Configure a cache named "usersCache" with a JPA cache store.
Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put
data into the cache, the data would be persisted into the database based on JPA configuration.

Caches that use a JPA cache store can store one type of data only, as in the following
example:

The @EmbeddedId annotation allows you to use composite keys, as in the following
example:

@Entity
public class User implements Serializable {
 @Id
 private String username;
 private String firstName;
 private String lastName;

 ...
}

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()
 .addStore(JpaStoreConfigurationBuilder.class)
 .persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
 .entityClass(User.class)
 .build();
cacheManager.defineCache("usersCache", cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

Cache<String, User> usersCache = cacheManager.getCache("myJPACache");
// Cache is configured for the User entity class
usersCache.put("username", new User());
// Cannot configure caches to use another entity class with JPA cache stores
Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache");
teachersCache.put(1, new Teacher());
// The put request does not work for the Teacher entity class

@Entity
public class Vehicle implements Serializable {
 @EmbeddedId
 private VehicleId id;
 private String color; ...
}

@Embeddable
public class VehicleId implements Serializable
{
 private String state;

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

111

Additional resources

Cache Encoding and Marshalling

6.15. CLUSTER CACHE LOADERS

ClusterCacheLoader retrieves data from other Data Grid cluster members but does not persist data. In
other words, ClusterCacheLoader is not a cache store.

WARNING

ClusterLoader is deprecated and planned for removal in a future version.

ClusterCacheLoader provides a non-blocking partial alternative to state transfer.
ClusterCacheLoader fetches keys from other nodes on demand if those keys are not available on the
local node, which is similar to lazily loading cache content.

The following points also apply to ClusterCacheLoader:

Preloading does not take effect (preload=true).

Fetching persistent state is not supported (fetch-state=true).

Segmentation is not supported.

Cluster cache loader configuration

XML

JSON

 private String licensePlate;
 ...
}



<distributed-cache>
 <persistence>
 <cluster-loader preload="true" remote-timeout="500"/>
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence" : {
 "cluster-loader" : {
 "preload" : true,
 "remote-timeout" : "500"
 }

Red Hat Data Grid 8.3 Configuring Data Grid Caches

112

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/cache_encoding_and_marshalling/

YAML

ConfigurationBuilder

Additional resources

Data Grid configuration schema

ClusterLoader

ClusterLoaderConfiguration

6.16. CREATING CUSTOM CACHE STORE IMPLEMENTATIONS

You can create custom cache stores through the Data Grid persistent SPI.

6.16.1. Data Grid Persistence SPI

The Data Grid Service Provider Interface (SPI) enables read and write operations to external storage
through the NonBlockingStore interface and has the following features:

Portability across JCache-compliant vendors

Data Grid maintains compatibility between the NonBlockingStore interface and the JSR-107
JCache specification by using an adapter that handles blocking code.

Simplified transaction integration

Data Grid automatically handles locking so your implementations do not need to coordinate
concurrent access to persistent stores. Depending on the locking mode you use, concurrent writes to
the same key generally do not occur. However, you should expect operations on the persistent
storage to originate from multiple threads and create implementations to tolerate this behavior.

Parallel iteration

Data Grid lets you iterate over entries in persistent stores with multiple threads in parallel.

Reduced serialization resulting in less CPU usage

Data Grid exposes stored entries in a serialized format that can be transmitted remotely. For this
reason, Data Grid does not need to deserialize entries that it retrieves from persistent storage and
then serialize again when writing to the wire.

 }
 }
}

distributedCache:
 persistence:
 clusterLoader:
 preload: "true"
 remoteTimeout: "500"

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()
 .addClusterLoader()
 .remoteCallTimeout(500);

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

113

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/infinispan-config-13.0.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/cluster/ClusterLoader.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/configuration/cache/ClusterLoaderConfiguration.html

Additional resources

Persistence SPI

NonBlockingStore

JSR-107

6.16.2. Creating cache stores

Create custom cache stores with implementations of the NonBlockingStore API.

Procedure

1. Implement the appropriate Data Grid persistent SPIs.

2. Annotate your store class with the @ConfiguredBy annotation if it has a custom configuration.

3. Create a custom cache store configuration and builder if desired.

a. Extend AbstractStoreConfiguration and AbstractStoreConfigurationBuilder.

b. Optionally add the following annotations to your store Configuration class to ensure that
your custom configuration builder parses your cache store configuration from XML:

@ConfigurationFor

@BuiltBy
If you do not add these annotations, then CustomStoreConfigurationBuilder parses
the common store attributes defined in AbstractStoreConfiguration and any
additional elements are ignored.

NOTE

If a configuration does not declare the @ConfigurationFor annotation, a
warning message is logged when Data Grid initializes the cache.

6.16.3. Examples of custom cache store configuration

The following are examples show how to configure Data Grid with custom cache store implementations:

XML

JSON

<distributed-cache>
 <persistence>
 <store class="org.infinispan.persistence.example.MyInMemoryStore" />
 </persistence>
</distributed-cache>

{
 "distributed-cache": {
 "persistence" : {

Red Hat Data Grid 8.3 Configuring Data Grid Caches

114

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/spi/package-summary.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/persistence/spi/NonBlockingStore.html
http://jcp.org/en/jsr/detail?id=107

YAML

ConfigurationBuilder

6.16.4. Deploying custom cache stores

To use your cache store implementation with Data Grid Server, you must provide it with a JAR file.

Prerequisites

Stop Data Grid Server if it is running.
Data Grid loads JAR files at startup only.

Procedure

1. Package your custom cache store implementation in a JAR file.

2. Add your JAR file to the server/lib directory of your Data Grid Server installation.

6.17. MIGRATING DATA BETWEEN CACHE STORES

Data Grid provides a utility to migrate data from one cache store to another.

6.17.1. Cache store migrator

Data Grid provides the StoreMigrator.java utility that recreates data for the latest Data Grid cache
store implementations.

StoreMigrator takes a cache store from a previous version of Data Grid as source and uses a cache
store implementation as target.

When you run StoreMigrator, it creates the target cache with the cache store type that you define using
the EmbeddedCacheManager interface. StoreMigrator then loads entries from the source store into
memory and then puts them into the target cache.

StoreMigrator also lets you migrate data from one type of cache store to another. For example, you can

 "store" : {
 "class" : "org.infinispan.persistence.example.MyInMemoryStore"
 }
 }
 }
}

distributedCache:
 persistence:
 store:
 class: "org.infinispan.persistence.example.MyInMemoryStore"

Configuration config = new ConfigurationBuilder()
 .persistence()
 .addStore(CustomStoreConfigurationBuilder.class)
 .build();

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

115

StoreMigrator also lets you migrate data from one type of cache store to another. For example, you can
migrate from a JDBC string-based cache store to a RocksDB cache store.

IMPORTANT

StoreMigrator cannot migrate data from segmented cache stores to:

Non-segmented cache store.

Segmented cache stores that have a different number of segments.

6.17.2. Getting the cache store migrator

StoreMigrator is available as part of the Data Grid tools library, infinispan-tools, and is included in the
Maven repository.

Procedure

Configure your pom.xml for StoreMigrator as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.infinispan.example</groupId>
 <artifactId>jdbc-migrator-example</artifactId>
 <version>1.0-SNAPSHOT</version>

 <dependencies>
 <dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-tools</artifactId>
 </dependency>
 <!-- Additional dependencies -->
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.2.1</version>
 <executions>
 <execution>
 <goals>
 <goal>java</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <mainClass>org.infinispan.tools.store.migrator.StoreMigrator</mainClass>
 <arguments>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

116

6.17.3. Configuring the cache store migrator

Set properties for source and target cache stores in a migrator.properties file.

Procedure

1. Create a migrator.properties file.

2. Configure the source cache store in migrator.properties.

a. Prepend all configuration properties with source. as in the following example:

source.type=SOFT_INDEX_FILE_STORE
source.cache_name=myCache
source.location=/path/to/source/sifs
source.version=<version>

3. Configure the target cache store in migrator.properties.

a. Prepend all configuration properties with target. as in the following example:

target.type=SINGLE_FILE_STORE
target.cache_name=myCache
target.location=/path/to/target/sfs.dat

6.17.3.1. Configuration properties for the cache store migrator

Configure source and target cache stores in a StoreMigrator properties.

Table 6.2. Cache Store Type Property

Property Description Required/Optional

 <argument>path/to/migrator.properties</argument>
 </arguments>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

117

type Specifies the type of cache store
type for a source or target.

.type=JDBC_STRING

.type=JDBC_BINARY

.type=JDBC_MIXED

.type=LEVELDB

.type=ROCKSDB

.type=SINGLE_FILE_STORE

.type=SOFT_INDEX_FILE_ST
ORE

.type=JDBC_MIXED

Required

Property Description Required/Optional

Table 6.3. Common Properties

Property Description Example Value Required/Optional

cache_name Names the cache that
the store backs.

.cache_name=myCa
che

Required

segment_count Specifies the number of
segments for target
cache stores that can
use segmentation.

The number of
segments must match
clustering.hash.num
Segments in the Data
Grid configuration.

In other words, the
number of segments for
a cache store must
match the number of
segments for the
corresponding cache. If
the number of segments
is not the same, Data
Grid cannot read data
from the cache store.

.segment_count=256 Optional

Table 6.4. JDBC Properties

Red Hat Data Grid 8.3 Configuring Data Grid Caches

118

Property Description Required/Optional

dialect Specifies the dialect of the
underlying database.

Required

version Specifies the marshaller version
for source cache stores.
Set one of the following values:

* 8 for Data Grid 7.2.x

* 9 for Data Grid 7.3.x

* 10 for Data Grid 8.0.x

* 11 for Data Grid 8.1.x

* 12 for Data Grid 8.2.x

* 13 for Data Grid 8.3.x

Required for source stores only.

marshaller.class Specifies a custom marshaller
class.

Required if using custom
marshallers.

marshaller.externalizers Specifies a comma-separated list
of custom
AdvancedExternalizer
implementations to load in this
format: [id]:<Externalizer
class>

Optional

connection_pool.connection
_url

Specifies the JDBC connection
URL.

Required

connection_pool.driver_clas
s

Specifies the class of the JDBC
driver.

Required

connection_pool.username Specifies a database username. Required

connection_pool.password Specifies a password for the
database username.

Required

db.major_version Sets the database major version. Optional

db.minor_version Sets the database minor version. Optional

db.disable_upsert Disables database upsert. Optional

db.disable_indexing Specifies if table indexes are
created.

Optional

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

119

table.string.table_name_prefi
x

Specifies additional prefixes for
the table name.

Optional

table.string.
<id|data|timestamp>.name

Specifies the column name. Required

table.string.
<id|data|timestamp>.type

Specifies the column type. Required

key_to_string_mapper Specifies the
TwoWayKey2StringMapper
class.

Optional

Property Description Required/Optional

NOTE

To migrate from Binary cache stores in older Data Grid versions, change table.string.* to
table.binary.* in the following properties:

source.table.binary.table_name_prefix

source.table.binary.<id\|data\|timestamp>.name

source.table.binary.<id\|data\|timestamp>.type

Example configuration for migrating to a JDBC String-Based cache store
target.type=STRING
target.cache_name=myCache
target.dialect=POSTGRES
target.marshaller.class=org.example.CustomMarshaller
target.marshaller.externalizers=25:Externalizer1,org.example.Externalizer2
target.connection_pool.connection_url=jdbc:postgresql:postgres
target.connection_pool.driver_class=org.postrgesql.Driver
target.connection_pool.username=postgres
target.connection_pool.password=redhat
target.db.major_version=9
target.db.minor_version=5
target.db.disable_upsert=false
target.db.disable_indexing=false
target.table.string.table_name_prefix=tablePrefix
target.table.string.id.name=id_column
target.table.string.data.name=datum_column
target.table.string.timestamp.name=timestamp_column
target.table.string.id.type=VARCHAR
target.table.string.data.type=bytea
target.table.string.timestamp.type=BIGINT
target.key_to_string_mapper=org.infinispan.persistence.keymappers.
DefaultTwoWayKey2StringMapper

Table 6.5. RocksDB Properties

Red Hat Data Grid 8.3 Configuring Data Grid Caches

120

Property Description Required/Optional

location Sets the database directory. Required

compression Specifies the compression type to
use.

Optional

Example configuration for migrating from a RocksDB cache store.
source.type=ROCKSDB
source.cache_name=myCache
source.location=/path/to/rocksdb/database
source.compression=SNAPPY

Table 6.6. SingleFileStore Properties

Property Description Required/Optional

location Sets the directory that contains
the cache store .dat file.

Required

Example configuration for migrating to a Single File cache store.
target.type=SINGLE_FILE_STORE
target.cache_name=myCache
target.location=/path/to/sfs.dat

Table 6.7. SoftIndexFileStore Properties

Property Description Value

Required/Optional location Sets the database directory.

Required index_location Sets the database index directory.

Example configuration for migrating to a Soft-Index File cache store.
target.type=SOFT_INDEX_FILE_STORE
target.cache_name=myCache
target.location=path/to/sifs/database
target.location=path/to/sifs/index

6.17.4. Migrating Data Grid cache stores

Run StoreMigrator to migrate data from one cache store to another.

Prerequisites

Get infinispan-tools.jar.

Create a migrator.properties file that configures the source and target cache stores.

CHAPTER 6. CONFIGURING PERSISTENT STORAGE

121

Procedure

If you build infinispan-tools.jar from source, do the following:

1. Add infinispan-tools.jar and dependencies for your source and target databases, such as
JDBC drivers, to your classpath.

2. Specify migrator.properties file as an argument for StoreMigrator.

If you pull infinispan-tools.jar from the Maven repository, run the following command:
mvn exec:java

Red Hat Data Grid 8.3 Configuring Data Grid Caches

122

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE
NETWORK PARTITIONS

Data Grid clusters can split into network partitions in which subsets of nodes become isolated from each
other. This condition results in loss of availability or consistency for clustered caches. Data Grid
automatically detects crashed nodes and resolves conflicts to merge caches back together.

7.1. SPLIT CLUSTERS AND NETWORK PARTITIONS

Network partitions are the result of error conditions in the running environment, such as when a network
router crashes. When a cluster splits into partitions, nodes create a JGroups cluster view that includes
only the nodes in that partition. This condition means that nodes in one partition can operate
independently of nodes in the other partition.

Detecting a split

To automatically detect network partitions, Data Grid uses the FD_ALL protocol in the default JGroups
stack to determine when nodes leave the cluster abruptly.

NOTE

Data Grid cannot detect what causes nodes to leave abruptly. This can happen not only
when there is a network failure but also for other reasons, such as when Garbage
Collection (GC) pauses the JVM.

Data Grid suspects that nodes have crashed after the following number of milliseconds:

FD_ALL.timeout + FD_ALL.interval + VERIFY_SUSPECT.timeout +
GMS.view_ack_collection_timeout

When it detects that the cluster is split into network partitions, Data Grid uses a strategy for handling
cache operations. Depending on your application requirements Data Grid can:

Allow read and/or write operations for availability

Deny read and write operations for consistency

Merging partitions together

To fix a split cluster, Data Grid merges the partitions back together. During the merge, Data Grid uses
the .equals() method for values of cache entries to determine if any conflicts exist. To resolve any
conflicts between replicas it finds on partitions, Data Grid uses a merge policy that you can configure.

7.1.1. Data consistency in a split cluster

Network outages or errors that cause Data Grid clusters to split into partitions can result in data loss or
consistency issues regardless of any handling strategy or merge policy.

Between the split and detection

If a write operation takes place on a node that is in a minor partition when a split occurs, and before Data
Grid detects the split, that value is lost when Data Grid transfers state to that minor partition during the
merge.

In the event that all partitions are in the DEGRADED mode that value is not lost because no state

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS

123

transfer occurs but the entry can have an inconsistent value. For transactional caches write operations
that are in progress when the split occurs can be committed on some nodes and rolled back on other
nodes, which also results in inconsistent values.

During the split and the time that Data Grid detects it, it is possible to get stale reads from a cache in a
minor partition that has not yet entered DEGRADED mode.

During the merge

When Data Grid starts removing partitions nodes reconnect to the cluster with a series of merge events.
Before this merge process completes it is possible that write operations on transactional caches
succeed on some nodes but not others, which can potentially result in stale reads until the entries are
updated.

7.2. CACHE AVAILABILITY AND DEGRADED MODE

To preserve data consistency, Data Grid can put caches into DEGRADED mode if you configure them
to use either the DENY_READ_WRITES or ALLOW_READS partition handling strategy.

Data Grid puts caches in a partition into DEGRADED mode when the following conditions are true:

At least one segment has lost all owners.
This happens when a number of nodes equal to or greater than the number of owners for a
distributed cache have left the cluster.

There is not a majority of nodes in the partition.
A majority of nodes is any number greater than half the total number of nodes in the cluster
from the most recent stable topology, which was the last time a cluster rebalancing operation
completed successfully.

When caches are in DEGRADED mode, Data Grid:

Allows read and write operations only if all replicas of an entry reside in the same partition.

Denies read and write operations and throws an AvailabilityException if the partition does not
include all replicas of an entry.

NOTE

With the ALLOW_READS strategy, Data Grid allows read operations on caches
in DEGRADED mode.

DEGRADED mode guarantees consistency by ensuring that write operations do not take place for the
same key in different partitions. Additionally DEGRADED mode prevents stale read operations that
happen when a key is updated in one partition but read in another partition.

If all partitions are in DEGRADED mode then the cache becomes available again after merge only if the
cluster contains a majority of nodes from the most recent stable topology and there is at least one
replica of each entry. When the cluster has at least one replica of each entry, no keys are lost and Data
Grid can create new replicas based on the number of owners during cluster rebalancing.

In some cases a cache in one partition can remain available while entering DEGRADED mode in another
partition. When this happens the available partition continues cache operations as normal and Data Grid
attempts to rebalance data across those nodes. To merge the cache together Data Grid always
transfers state from the available partition to the partition in DEGRADED mode.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

124

7.2.1. Degraded cache recovery example

This topic illustrates how Data Grid recovers from split clusters with caches that use the
DENY_READ_WRITES partition handling strategy.

As an example, a Data Grid cluster has four nodes and includes a distributed cache with two replicas for
each entry (owners=2). There are four entries in the cache, k1, k2, k3 and k4.

With the DENY_READ_WRITES strategy, if the cluster splits into partitions, Data Grid allows cache
operations only if all replicas of an entry are in the same partition.

In the following diagram, while the cache is split into partitions, Data Grid allows read and write
operations for k1 on partition 1 and k4 on partition 2. Because there is only one replica for k2 and k3 on
either partition 1 or partition 2, Data Grid denies read and write operations for those entries.

When network conditions allow the nodes to re-join the same cluster view, Data Grid merges the
partitions without state transfer and restores normal cache operations.

7.2.2. Verifying cache availability during network partitions

Determine if caches on Data Grid clusters are in AVAILABLE mode or DEGRADED mode during a

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS

125

Determine if caches on Data Grid clusters are in AVAILABLE mode or DEGRADED mode during a
network partition.

When Data Grid clusters split into partitions, nodes in those partitions can enter DEGRADED mode to
guarantee data consistency. In DEGRADED mode clusters do not allow cache operations resulting in
loss of availability.

Procedure

Verify availability of clustered caches in network partitions in one of the following ways:

Check Data Grid logs for ISPN100011 messages that indicate if the cluster is available or if at
least one cache is in DEGRADED mode.

Get the availability of remote caches through the Data Grid Console or with the REST API.

Open the Data Grid Console in any browser, select the Data Container tab, and then locate
the availability status in the Health column.

Retrieve cache health from the REST API.

GET /rest/v2/cache-managers/<cacheManagerName>/health

Programmatically retrieve the availability of embedded caches with the getAvailability()
method in the AdvancedCache API.

Additional resources

REST API: Getting cluster health

org.infinispan.AdvancedCache.getAvailability

Enum AvailabilityMode

7.2.3. Making caches available

Make caches available for read and write operations by forcing them out of DEGRADED mode.

IMPORTANT

You should force clusters out of DEGRADED mode only if your deployment can tolerate
data loss and inconsistency.

Procedure

Make caches available in one of the following ways:

Change the availability of remote caches with the REST API.

POST /v2/caches/<cacheName>?action=set-availability&availability=AVAILABLE

Programmatically change the availability of embedded caches with the AdvancedCache API.

AdvancedCache ac = cache.getAdvancedCache();
// Retrieve cache availability
boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;

Red Hat Data Grid 8.3 Configuring Data Grid Caches

126

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_rest_api/#rest_v2_cache_manager_health
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/AdvancedCache.html#getAvailability()
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/partitionhandling/AvailabilityMode.html

Additional resources

REST API: Setting cache availability

org.infinispan.AdvancedCache

7.3. CONFIGURING PARTITION HANDLING

Configure Data Grid to use a partition handling strategy and merge policy so it can resolve split clusters
when network issues occur. By default Data Grid uses a strategy that provides availability at the cost of
lowering consistency guarantees for your data. When a cluster splits due to a network partition clients
can continue to perform read and write operations on caches.

If you require consistency over availability, you can configure Data Grid to deny read and write
operations while the cluster is split into partitions. Alternatively you can allow read operations and deny
write operations. You can also specify custom merge policy implementations that configure Data Grid to
resolve splits with custom logic tailored to your requirements.

Prerequisites

Have a Data Grid cluster where you can create either a replicated or distributed cache.

NOTE

Partition handling configuration applies only to replicated and distributed caches.

Procedure

1. Open your Data Grid configuration for editing.

2. Add partition handling configuration to your cache with either the partition-handling element
or partitionHandling() method.

3. Specify a strategy for Data Grid to use when the cluster splits into partitions with the when-
split attribute or whenSplit() method.
The default partition handling strategy is ALLOW_READ_WRITES so caches remain availabile.
If your use case requires data consistency over cache availability, specify the
DENY_READ_WRITES strategy.

4. Specify a policy that Data Grid uses to resolve conflicting entries when merging partitions with
the merge-policy attribute or mergePolicy() method.
By default Data Grid does not resolve conflicts on merge.

5. Save the changes to your Data Grid configuration.

Partition handling configuration

XML

// Make the cache available
if (!available) {
 ac.setAvailability(AvailabilityMode.AVAILABLE);
}

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS

127

https://access.redhat.com/documentation/en-us/red_hat_data_grid/8.3/html-single/data_grid_rest_api/#rest_v2_caches_set_availability
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/AdvancedCache.html

JSON

YAML

ConfigurationBuilder

7.4. PARTITION HANDLING STRATEGIES

Partition handling strategies control if Data Grid allows read and write operations when a cluster is split.
The strategy you configure determines whether you get cache availability or data consistency.

Table 7.1. Partition handling strategies

Strategy Description Availability or consistency

ALLOW_READ_WRITES Data Grid allows read and write
operations on caches while a
cluster is split into network
partitions. Nodes in each partition
remain available and function
independently of each other. This
is the default partition handling
strategy.

Availability

<distributed-cache>
 <partition-handling when-split="DENY_READ_WRITES"
 merge-policy="PREFERRED_ALWAYS"/>
</distributed-cache>

{
 "distributed-cache": {
 "partition-handling" : {
 "when-split": "DENY_READ_WRITES",
 "merge-policy": "PREFERRED_ALWAYS"
 }
 }
}

distributedCache:
 partitionHandling:
 whenSplit: DENY_READ_WRITES
 mergePolicy: PREFERRED_ALWAYS

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC)
 .partitionHandling()
 .whenSplit(PartitionHandling.DENY_READ_WRITES)
 .mergePolicy(MergePolicy.PREFERRED_NON_NULL);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

128

DENY_READ_WRITES Data Grid allows read and write
operations only if all replicas of an
entry are in the partition. If a
partition does not include all
replicas of an entry, Data Grid
prevents cache operations for
that entry.

Consistency

ALLOW_READS Data Grid allows read operations
for entries and prevents write
operations unless the partition
includes all replicas of an entry.

Consistency with read availability

Strategy Description Availability or consistency

7.5. MERGE POLICIES

Merge policies control how Data Grid resolves conflicts between replicas when bringing cluster partitions
together. You can use one of the merge policies that Data Grid provides or you can create a custom
implementation of the EntryMergePolicy API.

Table 7.2. Data Grid merge policies

Merge policy Description Considerations

NONE Data Grid does not resolve
conflicts when merging split
clusters. This is the default merge
policy.

Nodes drop segments for which
they are not the primary owner,
which can result in data loss.

PREFERRED_ALWAYS Data Grid finds the value that
exists on the majority of nodes in
the cluster and uses it to resolve
conflicts.

Data Grid could use stale values
to resolve conflicts. Even if an
entry is available the majority of
nodes, the last update could
happen on the minority partition.

PREFERRED_NON_NULL Data Grid uses the first non-null
value that it finds on the cluster
to resolve conflicts.

Data Grid could restore deleted
entries.

REMOVE_ALL Data Grid removes any conflicting
entries from the cache.

Results in loss of any entries that
have different values when
merging split clusters.

7.6. CONFIGURING CUSTOM MERGE POLICIES

Configure Data Grid to use custom implementations of the EntryMergePolicy API when handling
network partitions.

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS

129

Prerequisites

Implement the EntryMergePolicy API.

Procedure

1. Deploy your merge policy implementation to Data Grid Server if you use remote caches.

a. Package your classes as a JAR file that includes a META-
INF/services/org.infinispan.conflict.EntryMergePolicy file that contains the fully
qualified class name of your merge policy.

List implementations of EntryMergePolicy with the full qualified class name
org.example.CustomMergePolicy

b. Add the JAR file to the server/lib directory.

2. Open your Data Grid configuration for editing.

3. Configure cache encoding with the encoding element or encoding() method as appropriate.
For remote caches, if you use only object metadata for comparison when merging entries then
you can use application/x-protostream as the media type. In this case Data Grid returns entries
to the EntryMergePolicy as byte[].

If you require the object itself when merging conflicts then you should configure caches with the
application/x-java-object media type. In this case you must deploy the relevant ProtoStream
marshallers to Data Grid Server so it can perform byte[] to object transformations if clients use
Protobuf encoding.

4. Specify your custom merge policy with the merge-policy attribute or mergePolicy() method as
part of the partition handling configuration.

5. Save your changes.

Custom merge policy configuration

XML

JSON

public class CustomMergePolicy implements EntryMergePolicy<String, String> {

 @Override
 public CacheEntry<String, String> merge(CacheEntry<String, String> preferredEntry,
List<CacheEntry<String, String>> otherEntries) {
 // Decide which entry resolves the conflict

 return the_solved_CacheEntry;
 }

<distributed-cache name="mycache">
 <partition-handling when-split="DENY_READ_WRITES"
 merge-policy="org.example.CustomMergePolicy"/>
</distributed-cache>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

130

YAML

ConfigurationBuilder

Additional resources

org.infinispan.conflict.EntryMergePolicy

7.7. MANUALLY MERGING PARTITIONS IN EMBEDDED CACHES

Detect and resolve conflicting entries to manually merge embedded caches after network partitions
occur.

Procedure

Retrieve the ConflictManager from the EmbeddedCacheManager to detect and resolve
conflicting entries in a cache, as in the following example:

{
 "distributed-cache": {
 "partition-handling" : {
 "when-split": "DENY_READ_WRITES",
 "merge-policy": "org.example.CustomMergePolicy"
 }
 }
}

distributedCache:
 partitionHandling:
 whenSplit: DENY_READ_WRITES
 mergePolicy: org.example.CustomMergePolicy

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC)
 .partitionHandling()
 .whenSplit(PartitionHandling.DENY_READ_WRITES)
 .mergePolicy(new CustomMergePolicy());

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");
Cache<Integer, String> cache = manager.getCache("testCache");
ConflictManager<Integer, String> crm =
ConflictManagerFactory.get(cache.getAdvancedCache());

// Get all versions of a key
Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache
Stream<Map<Address, CacheEntry<Integer, String>>> conflicts = crm.getConflicts();
conflicts.forEach(map -> {
 CacheEntry<Integer, String> entry = map.values().iterator().next();
 Object conflictKey = entry.getKey();
 cache.remove(conflictKey);

CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS

131

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/conflict/EntryMergePolicy.html

NOTE

Although the ConflictManager::getConflicts stream is processed per entry, the
underlying spliterator lazily loads cache entries on a per segment basis.

});

// Detect and then resolve conflicts using the configured EntryMergePolicy
crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance
crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);

Red Hat Data Grid 8.3 Configuring Data Grid Caches

132

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS
Authorization is a security feature that requires users to have certain permissions before they can
access caches or interact with Data Grid resources. You assign roles to users that provide different
levels of permissions, from read-only access to full, super user privileges.

8.1. SECURITY AUTHORIZATION

Data Grid authorization secures your deployment by restricting user access.

User applications or clients must belong to a role that is assigned with sufficient permissions before they
can perform operations on Cache Managers or caches.

For example, you configure authorization on a specific cache instance so that invoking Cache.get()
requires an identity to be assigned a role with read permission while Cache.put() requires a role with
write permission.

In this scenario, if a user application or client with the io role attempts to write an entry, Data Grid denies
the request and throws a security exception. If a user application or client with the writer role sends a
write request, Data Grid validates authorization and issues a token for subsequent operations.

Identities

Identities are security Principals of type java.security.Principal. Subjects, implemented with the
javax.security.auth.Subject class, represent a group of security Principals. In other words, a Subject
represents a user and all groups to which it belongs.

Identities to roles

Data Grid uses role mappers so that security principals correspond to roles, which you assign one or
more permissions.

The following image illustrates how security principals correspond to roles:

8.1.1. User roles and permissions

Data Grid includes a default set of roles that grant users with permissions to access data and interact
with Data Grid resources.

ClusterRoleMapper is the default mechanism that Data Grid uses to associate security principals to
authorization roles.

IMPORTANT

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS

133

IMPORTANT

ClusterRoleMapper matches principal names to role names. A user named admin gets
admin permissions automatically, a user named deployer gets deployer permissions, and
so on.

Role Permissions Description

admin ALL Superuser with all permissions
including control of the Cache
Manager lifecycle.

deployer ALL_READ, ALL_WRITE, LISTEN,
EXEC, MONITOR, CREATE

Can create and delete Data Grid
resources in addition to
application permissions.

application ALL_READ, ALL_WRITE, LISTEN,
EXEC, MONITOR

Has read and write access to Data
Grid resources in addition to
observer permissions. Can also
listen to events and execute
server tasks and scripts.

observer ALL_READ, MONITOR Has read access to Data Grid
resources in addition to monitor
permissions.

monitor MONITOR Can view statistics via JMX and
the metrics endpoint.

Reference

org.infinispan.security.AuthorizationPermission Enumeration

Data Grid configuration schema reference

8.1.2. Permissions

Authorization roles have different permissions with varying levels of access to Data Grid. Permissions let
you restrict user access to both Cache Managers and caches.

8.1.2.1. Cache Manager permissions

Permission Function Description

CONFIGURATION defineConfiguration Defines new cache configurations.

LISTEN addListener Registers listeners against a
Cache Manager.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

134

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/

LIFECYCLE stop Stops the Cache Manager.

CREATE createCache, removeCache Create and remove container
resources such as caches,
counters, schemas, and scripts.

MONITOR getStats Allows access to JMX statistics
and the metrics endpoint.

ALL - Includes all Cache Manager
permissions.

Permission Function Description

8.1.2.2. Cache permissions

Permission Function Description

READ get, contains Retrieves entries from a cache.

WRITE put, putIfAbsent, replace,
remove, evict

Writes, replaces, removes, evicts
data in a cache.

EXEC distexec, streams Allows code execution against a
cache.

LISTEN addListener Registers listeners against a
cache.

BULK_READ keySet, values, entrySet,
query

Executes bulk retrieve operations.

BULK_WRITE clear, putAll Executes bulk write operations.

LIFECYCLE start, stop Starts and stops a cache.

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS

135

ADMIN getVersion, addInterceptor*,
removeInterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager,
evict, getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContai
ner, setAvailability,
getDataContainer, getStats,
getXAResource

Allows access to underlying
components and internal
structures.

MONITOR getStats Allows access to JMX statistics
and the metrics endpoint.

ALL - Includes all cache permissions.

ALL_READ - Combines the READ and
BULK_READ permissions.

ALL_WRITE - Combines the WRITE and
BULK_WRITE permissions.

Permission Function Description

Additional resources

Data Grid Security API

8.1.3. Role mappers

Data Grid includes a PrincipalRoleMapper API that maps security Principals in a Subject to
authorization roles that you can assign to users.

8.1.3.1. Cluster role mappers

ClusterRoleMapper uses a persistent replicated cache to dynamically store principal-to-role mappings
for the default roles and permissions.

By default uses the Principal name as the role name and implements
org.infinispan.security.MutableRoleMapper which exposes methods to change role mappings at
runtime.

Java class: org.infinispan.security.mappers.ClusterRoleMapper

Declarative configuration: <cluster-role-mapper />

8.1.3.2. Identity role mappers

Red Hat Data Grid 8.3 Configuring Data Grid Caches

136

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/security/package-summary.html

IdentityRoleMapper uses the Principal name as the role name.

Java class: org.infinispan.security.mappers.IdentityRoleMapper

Declarative configuration: <identity-role-mapper />

8.1.3.3. CommonName role mappers

CommonNameRoleMapper uses the Common Name (CN) as the role name if the Principal name is a
Distinguished Name (DN).

For example this DN, cn=managers,ou=people,dc=example,dc=com, maps to the managers role.

Java class: org.infinispan.security.mappers.CommonRoleMapper

Declarative configuration: <common-name-role-mapper />

8.1.3.4. Custom role mappers

Custom role mappers are implementations of org.infinispan.security.PrincipalRoleMapper.

Declarative configuration: <custom-role-mapper class="my.custom.RoleMapper" />

Additional resources

Data Grid Security API

org.infinispan.security.PrincipalRoleMapper

8.2. ACCESS CONTROL LIST (ACL) CACHE

Data Grid caches roles that you grant to users internally for optimal performance. Whenever you grant
or deny roles to users, Data Grid flushes the ACL cache to ensure user permissions are applied correctly.

If necessary, you can disable the ACL cache or configure it with the cache-size and cache-timeout
attributes.

XML

JSON

<infinispan>
 <cache-container name="acl-cache-configuration">
 <security cache-size="1000"
 cache-timeout="300000">
 <authorization/>
 </security>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "name" : "acl-cache-configuration",

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS

137

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/security/package-summary.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/api/org/infinispan/security/PrincipalRoleMapper.html

YAML

Additional resources

Data Grid configuration schema reference

8.3. CUSTOMIZING ROLES AND PERMISSIONS

You can customize authorization settings in your Data Grid configuration to use role mappers with
different combinations of roles and permissions.

Procedure

1. Declare a role mapper and a set of custom roles and permissions in the Cache Manager
configuration.

2. Configure authorization for caches to restrict access based on user roles.

Custom roles and permissions configuration

XML

 "security" : {
 "cache-size" : "1000",
 "cache-timeout" : "300000",
 "authorization" : {}
 }
 }
 }
}

infinispan:
 cacheContainer:
 name: "acl-cache-configuration"
 security:
 cache-size: "1000"
 cache-timeout: "300000"
 authorization: ~

<infinispan>
 <cache-container name="custom-authorization">
 <security>
 <authorization>
 <!-- Declare a role mapper that associates a security principal
 to each role. -->
 <identity-role-mapper />
 <!-- Specify user roles and corresponding permissions. -->
 <role name="admin" permissions="ALL" />
 <role name="reader" permissions="READ" />
 <role name="writer" permissions="WRITE" />
 <role name="supervisor" permissions="READ WRITE EXEC"/>
 </authorization>

Red Hat Data Grid 8.3 Configuring Data Grid Caches

138

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/8.3/configdocs/

JSON

YAML

 </security>
 </cache-container>
</infinispan>

{
 "infinispan" : {
 "cache-container" : {
 "name" : "custom-authorization",
 "security" : {
 "authorization" : {
 "identity-role-mapper" : null,
 "roles" : {
 "reader" : {
 "role" : {
 "permissions" : "READ"
 }
 },
 "admin" : {
 "role" : {
 "permissions" : "ALL"
 }
 },
 "writer" : {
 "role" : {
 "permissions" : "WRITE"
 }
 },
 "supervisor" : {
 "role" : {
 "permissions" : "READ WRITE EXEC"
 }
 }
 }
 }
 }
 }
 }
}

infinispan:
 cacheContainer:
 name: "custom-authorization"
 security:
 authorization:
 identityRoleMapper: "null"
 roles:
 reader:
 role:
 permissions:
 - "READ"

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS

139

8.4. CONFIGURING CACHES WITH SECURITY AUTHORIZATION

Use authorization in your cache configuration to restrict user access. Before they can read or write
cache entries, or create and delete caches, users must have a role with a sufficient level of permission.

Prerequisites

Ensure the authorization element is included in the security section of the cache-container
configuration.
Data Grid enables security authorization in the Cache Manager by default and provides a global
set of roles and permissions for caches.

If necessary, declare custom roles and permissions in the Cache Manager configuration.

Procedure

1. Open your cache configuration for editing.

2. Add the authorization element to caches to restrict user access based on their roles and
permissions.

3. Save the changes to your configuration.

Authorization configuration
The following configuration shows how to use implicit authorization configuration with default roles and
permissions:

XML

JSON

 admin:
 role:
 permissions:
 - "ALL"
 writer:
 role:
 permissions:
 - "WRITE"
 supervisor:
 role:
 permissions:
 - "READ"
 - "WRITE"
 - "EXEC"

<distributed-cache>
 <security>
 <!-- Inherit authorization settings from the cache-container. --> <authorization/>
 </security>
</distributed-cache>

{

Red Hat Data Grid 8.3 Configuring Data Grid Caches

140

YAML

Custom roles and permissions

XML

JSON

YAML

8.5. DISABLING SECURITY AUTHORIZATION

In local development environments you can disable authorization so that users do not need roles and

 "distributed-cache": {
 "security": {
 "authorization": {
 "enabled": true
 }
 }
 }
}

distributedCache:
 security:
 authorization:
 enabled: true

<distributed-cache>
 <security>
 <authorization roles="admin supervisor"/>
 </security>
</distributed-cache>

{
 "distributed-cache": {
 "security": {
 "authorization": {
 "enabled": true,
 "roles": ["admin","supervisor"]
 }
 }
 }
}

distributedCache:
 security:
 authorization:
 enabled: true
 roles: ["admin","supervisor"]

CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS

141

In local development environments you can disable authorization so that users do not need roles and
permissions. Disabling security authorization means that any user can access data and interact with Data
Grid resources.

Procedure

1. Open your Data Grid configuration for editing.

2. Remove any authorization elements from the security configuration for the Cache Manager.

3. Remove any authorization configuration from your caches.

4. Save the changes to your configuration.

Red Hat Data Grid 8.3 Configuring Data Grid Caches

142

	Table of Contents
	RED HAT DATA GRID
	DATA GRID DOCUMENTATION
	DATA GRID DOWNLOADS
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. DATA GRID CACHES
	1.1. CACHE API
	1.2. CACHE MANAGERS
	1.3. CACHE MODES
	1.3.1. Comparison of cache modes

	1.4. LOCAL CACHES
	Local cache configuration
	1.4.1. Simple caches
	Simple cache configuration

	CHAPTER 2. CLUSTERED CACHES
	2.1. REPLICATED CACHES
	2.2. DISTRIBUTED CACHES
	2.2.1. Read consistency
	2.2.2. Key ownership
	Hashing configuration

	2.2.3. Capacity factors
	2.2.3.1. Zero capacity nodes

	2.2.4. Level one (L1) caches
	L1 caching performance
	L1 cache configuration

	2.2.5. Server hinting
	Server hinting configuration

	2.2.6. Key affinity service
	Lifecycle
	Topology changes

	2.2.7. Grouping API
	Advanced API

	2.3. INVALIDATION CACHES
	2.4. SCATTERED CACHES
	2.5. ASYNCHRONOUS REPLICATION
	Asynchronous API
	2.5.1. Return values with asynchronous replication

	2.6. CONFIGURING INITIAL CLUSTER SIZE
	Initial cluster size configuration

	CHAPTER 3. DATA GRID CACHE CONFIGURATION
	3.1. DECLARATIVE CACHE CONFIGURATION
	3.1.1. Cache configuration
	Distributed caches
	Replicated caches
	Multiple caches

	3.2. ADDING CACHE TEMPLATES
	Cache template example
	3.2.1. Creating caches from templates
	Cache configuration inherited from a template

	3.2.2. Cache template inheritance
	Template inheritance example

	3.2.3. Cache template wildcards
	Template wildcard example

	3.2.4. Cache templates from multiple XML files

	3.3. CREATING REMOTE CACHES
	3.3.1. Default Cache Manager
	Default Cache Manager configuration

	3.3.2. Creating caches with Data Grid Console
	3.3.3. Creating remote caches with the Data Grid CLI
	3.3.4. Creating remote caches from Hot Rod clients
	3.3.5. Creating remote caches with the REST API

	3.4. CREATING EMBEDDED CACHES
	3.4.1. Adding Data Grid to your project
	3.4.2. Configuring embedded caches

	CHAPTER 4. ENABLING AND CONFIGURING DATA GRID STATISTICS AND JMX MONITORING
	4.1. CONFIGURING DATA GRID METRICS
	Metrics configuration

	4.2. REGISTERING JMX MBEANS
	JMX configuration
	4.2.1. Enabling JMX remote ports
	4.2.2. Data Grid MBeans
	4.2.3. Registering MBeans in custom MBean servers
	JMX MBean server lookup configuration

	CHAPTER 5. CONFIGURING JVM MEMORY USAGE
	5.1. DEFAULT MEMORY CONFIGURATION
	5.2. EVICTION AND EXPIRATION
	5.3. EVICTION WITH DATA GRID CACHES
	5.3.1. Eviction strategies
	5.3.2. Configuring maximum count eviction
	Maximum count eviction

	5.3.3. Configuring maximum size eviction
	Maximum size eviction

	5.3.4. Manual eviction
	5.3.5. Passivation with eviction

	5.4. EXPIRATION WITH LIFESPAN AND MAXIMUM IDLE
	5.4.1. How expiration works
	5.4.2. Expiration reaper
	5.4.3. Maximum idle and clustered caches
	5.4.4. Configuring lifespan and maximum idle times for caches
	Expiration for Data Grid caches

	5.4.5. Configuring lifespan and maximum idle times per entry

	5.5. JVM HEAP AND OFF-HEAP MEMORY
	JVM heap memory
	Off-heap memory
	5.5.1. Off-heap data storage
	5.5.2. Configuring off-heap memory
	Off-heap storage

	CHAPTER 6. CONFIGURING PERSISTENT STORAGE
	6.1. PASSIVATION
	6.1.1. How passivation works

	6.2. WRITE-THROUGH CACHE STORES
	Write-through configuration

	6.3. WRITE-BEHIND CACHE STORES
	Write-behind configuration
	Failing silently

	6.4. SEGMENTED CACHE STORES
	6.5. SHARED CACHE STORES
	6.6. TRANSACTIONS WITH PERSISTENT CACHE STORES
	6.7. GLOBAL PERSISTENT LOCATION
	Remote caches
	Embedded caches
	6.7.1. Configuring the global persistent location
	Global persistent location configuration

	6.8. FILE-BASED CACHE STORES
	Soft-Index File Stores
	Single File Cache Stores
	6.8.1. Configuring file-based cache stores
	File-based cache store configuration

	6.8.2. Configuring single file cache stores
	Single file cache store configuration

	6.9. JDBC CONNECTION FACTORIES
	Connection pools
	Managed datasources
	Simple connections
	6.9.1. Configuring managed datasources
	Managed datasource configuration
	6.9.1.1. Configuring caches with JNDI names
	6.9.1.2. Connection pool tuning properties

	6.9.2. Configuring JDBC connection pools with Agroal properties

	6.10. SQL CACHE STORES
	6.10.1. Data types for keys and values
	6.10.1.1. Composite keys and values
	6.10.1.2. Embedded keys
	6.10.1.3. SQL types to Protobuf types

	6.10.2. Loading Data Grid caches from database tables
	SQL table store configuration

	6.10.3. Using SQL queries to load data and perform operations
	6.10.3.1. SQL query store configuration

	6.10.4. SQL cache store troubleshooting

	6.11. JDBC STRING-BASED CACHE STORES
	6.11.1. Configuring JDBC string-based cache stores
	JDBC string-based cache store configuration

	6.12. ROCKSDB CACHE STORES
	RocksDB cache store configuration

	6.13. REMOTE CACHE STORES
	Remote cache store configuration

	6.14. JPA CACHE STORES
	JPA cache store configuration
	Configuration parameters
	6.14.1. JPA cache store example

	6.15. CLUSTER CACHE LOADERS
	Cluster cache loader configuration

	6.16. CREATING CUSTOM CACHE STORE IMPLEMENTATIONS
	6.16.1. Data Grid Persistence SPI
	6.16.2. Creating cache stores
	6.16.3. Examples of custom cache store configuration
	6.16.4. Deploying custom cache stores

	6.17. MIGRATING DATA BETWEEN CACHE STORES
	6.17.1. Cache store migrator
	6.17.2. Getting the cache store migrator
	6.17.3. Configuring the cache store migrator
	6.17.3.1. Configuration properties for the cache store migrator

	6.17.4. Migrating Data Grid cache stores

	CHAPTER 7. CONFIGURING DATA GRID TO HANDLE NETWORK PARTITIONS
	7.1. SPLIT CLUSTERS AND NETWORK PARTITIONS
	7.1.1. Data consistency in a split cluster

	7.2. CACHE AVAILABILITY AND DEGRADED MODE
	7.2.1. Degraded cache recovery example
	7.2.2. Verifying cache availability during network partitions
	7.2.3. Making caches available

	7.3. CONFIGURING PARTITION HANDLING
	Partition handling configuration

	7.4. PARTITION HANDLING STRATEGIES
	7.5. MERGE POLICIES
	7.6. CONFIGURING CUSTOM MERGE POLICIES
	Custom merge policy configuration

	7.7. MANUALLY MERGING PARTITIONS IN EMBEDDED CACHES

	CHAPTER 8. CONFIGURING USER ROLES AND PERMISSIONS
	8.1. SECURITY AUTHORIZATION
	8.1.1. User roles and permissions
	8.1.2. Permissions
	8.1.2.1. Cache Manager permissions
	8.1.2.2. Cache permissions

	8.1.3. Role mappers
	8.1.3.1. Cluster role mappers
	8.1.3.2. Identity role mappers
	8.1.3.3. CommonName role mappers
	8.1.3.4. Custom role mappers

	8.2. ACCESS CONTROL LIST (ACL) CACHE
	8.3. CUSTOMIZING ROLES AND PERMISSIONS
	Custom roles and permissions configuration

	8.4. CONFIGURING CACHES WITH SECURITY AUTHORIZATION
	Authorization configuration
	Custom roles and permissions

	8.5. DISABLING SECURITY AUTHORIZATION

