& RedHat

Red Hat JBoss Data Grid 7.2

Data Grid for OpenShift

Developing and deploying Red Hat JBoss Data Grid for OpenShift

Last Updated: 2019-06-10

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

Developing and deploying Red Hat JBoss Data Grid for OpenShift

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Develop, test, and deploy JBoss Data Grid on Red Hat OpenShift.

Table of Contents

Table of Contents

CHAPTER L. INTRODUGCTION ittt ittt ittt ettt et eett et et enaneeaneeeaneennseeaneeeaneennneennes 4
1.1. THE JBOSS DATA GRID FOR OPENSHIFT IMAGE 4
1.2. JBOSS DATA GRID DOCUMENTATION 4
1.3. VERSION INFORMATION 4

CHAPTER 2. AUTHENTICATING WITH THE RED HAT CONTAINER CATALOGcciiiiiiiiiiiieeennn 6
2.1.SETTING UP AUTHENTICATION WITH SERVICE ACCOUNT TOKENS 6

2.1.1. Adding Tokens to Pull Secrets 6

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOROPENSHIFT 8

3.1. IMPORTING JBOSS DATA GRID FOR OPENSHIFT IMAGE TEMPLATES 8

3.1.1. Working with the JBoss Data Grid for OpenShift Image 9
3.1.1.1. Viewing Information about the JBoss Data Grid for OpenShift Image 9
3.1.1.2. Importing the JBoss Data Grid for OpenShift Image 10
3.1.2. Importing OpenShift Secrets 10
3.2. CONFIGURING JBOSS DATA GRID FOR OPENSHIFT DEPLOYMENTS 10
3.2.1. Getting Started with Image Configuration 10
3.2.2. Setting Parameters on the Command Line n
3.2.2.1. Instantiating the Template 12
3.2.2.2. Listing Environment Variables 12
3.2.2.3. Changing Environment Variables 13
3.2.3. Modifying JBoss Data Grid for OpenShift Image Templates 13
3.2.3.1. Exporting the Template 13
3.2.3.2. Modifying the Template 14
3.2.3.3. Importing and Instantiating the Modified Template 15

3.3. INVOKING CACHE OPERATIONS THROUGH THE REST ENDPOINT 15
3.3.1. Creating a Project and Instantiate a Template 15
3.3.2. Examining Deployed Services 16
3.3.3. Invoking a Get Operation on the Cache 16
3.3.4. Inserting and Retrieving an Entry in the Cache 17
3.3.5. Deleting the Entry from the Cache 17

CHAPTER 4. CONFIGURING CLUSTERINGtiitttittiiteiettiteeiteaneeeaneenaneennneeaneenns 18
4.1. CONFIGURING THE KUBERNETES DISCOVERY MECHANISM 18
4.2. CONFIGURING THE DNS DISCOVERY MECHANISM 19

CHAPTER 5. SECURING NETWORK TRAFFIC ..ttt t ittt i et eeieeeaneennneenneenn, 20
5.1. ENCRYPTING CLIENT TO SERVER COMMUNICATION 20
5.2. ENCRYPTING TRAFFIC BETWEEN CLUSTERED SERVERS 21

5.2.1. Setting Up Symmetric Encryption 21
5.2.2. Setting Up Asymmetric Encryption 22

CHAPTER 6. CONFIGURING PERSISTENT DATASOURCES ... ittt iii i aieenneenn, 23

6.1. CONFIGURING INTERNAL DATASOURCES 23
6.1.1. Single Datasource Example 23
6.1.2. Multiple Datasource Example 24

6.2. CONFIGURING EXTERNAL DATASOURCES 24

CHAPTER 7. MANAGING RED HAT JBOSS DATAGRIDFOROPENSHIFToitiiiiiiiiiiiiiinnnenn, 26

CHAPTER 8. BUILDING RED HAT JBOSS DATAGRID FOROPENSHIFTIMAGES ciiiiiiiiiinns, 27
8.1. USING THE JBOSS DATA GRID FOR OPENSHIFT IMAGE SOURCE-TO-IMAGE (S21) PROCESS 27
8.2. USING A MODIFIED JBOSS DATA GRID FOR OPENSHIFT IMAGE 27

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

8.3. BINARY BUILDS

CHAPTER 9. DEPLOYING JBOSS DATA GRID FOR OPENSHIFT WITH CUSTOM CONFIGURATION FILES
9.1.SETTING UP THE CONFIGURATION FILES AND CUSTOM TEMPLATE
9.2. CREATING DEPLOYMENTS WITH CUSTOM CONFIGURATION

CHAPTER 10. UPGRADING RED HAT JBOSS DATA GRID FOR OPENSHIFT BETWEEN RELEASES

CHAPTER 11. DEPLOYING AN EAP INFINISPAN APPLICATION WITH THE JBOSS DATA GRID FOR
OPENSHIF T IMAGE . i i i i i et et ettt ca e,

.1 IMPORTING THE LATEST EAP AND JBOSS DATA GRID FOR OPENSHIFT IMAGE STREAMS AND
TEMPLATES

11.1.1. Log In with Administrator Access
1.1.2. Importing the EAP Images
11.1.3. Creating the JBoss Data Grid for OpenShift Image Resources
11.2. CREATING A PROJECT
11.3. DEPLOYING THE JBOSS DATA GRID 7.2 SERVER
11.4. DEPLOYING A BINARY BUILD OF EAP 6.4 / EAP 7.1 CARMART APPLICATION

CHAPTER 12. ENVIRONMENT VARIABLESt ettt ettt eeenneeeannn,
12.1. IMAGE INFORMATION
12.2. CONTAINER CONFIGURATION
12.3. CACHE CONFIGURATION
12.3.1. Cache Container Security Configuration
12.3.2. Cache Specific Configuration
12.4. ENDPOINT CONFIGURATION
12.4.1. Exposed Ports
12.5. DATASOURCE CONFIGURATION
12.6. SECURITY DOMAIN CONFIGURATION

CHAPTER 13, REFERENCE ..o i i i i e i it ai et
13.1. ARTIFACT REPOSITORY MIRRORS
13.2. JBOSS DATA GRID FOR OPENSHIFT LOGS

28

29
30

32

33

33
33
33
33
33
33
34

38
38
38
39
40
40
46
47
48
50

Table of Contents

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 1. INTRODUCTION

Red Hat JBoss Data Grid is available as a containerized image that you can deploy and use in OpenShift.

1.1. THE JBOSS DATA GRID FOR OPENSHIFT IMAGE

If you have deployed JBoss Data Grid on other platforms, as either a server or embedded library, you
should note some differences with the Red Hat JBoss Data Grid for OpenShift image.

® The JBoss Data Grid Management Console is not available in OpenShift.
® The JBoss Data Grid Management CLI is accessible only in the pod where the application runs.
® |ibrary mode is not supported.

® Only JDBC is supported as a cache store.

1.2. JBOSS DATA GRID DOCUMENTATION

Red Hat Data Grid documentation is available on the Red Hat Customer Portal.

1.3. VERSION INFORMATION

Find new features, enhancements, and bug fixes for JBoss Data Grid for OpenShift.

Red Hat Software Update Description Image Version

RHBA-2018:1831 Initial release of JBoss Data Grid 1.0
for OpenShift 7.2.

RHBA-2018:2383 Errata fix for CVE-2018-10897. 1.0

RHBA-2018:2558 Cumulative patch for JBoss Data 11
Grid 7.2.2.

RHEA-2018:2730 Cumulative patch that adds 1.2

support for:
- Conflict resolution parameters.

- Red Hat terms-based registry
(registry.redhat.io).

RHBA-2018:2736 Cumulative patch for JBoss Data 1.2
Grid 7.2.3 that includes OpenJDK
CVEs from RHSA-2018:2943.

https://access.redhat.com/documentation/en/red-hat-jboss-data-grid/
https://access.redhat.com/errata/RHBA-2018:1831
https://access.redhat.com/errata/RHBA-2018:2383
https://access.redhat.com/errata/RHBA-2018:2558
https://access.redhat.com/errata/RHEA-2018:2730
https://access.redhat.com/errata/RHBA-2018:2736
https://access.redhat.com/errata/RHSA-2018:2943

CHAPTER 1. INTRODUCTION

Red Hat Software Update Description Image Version

RHEA-2018:3585 Cumulative patch that adds 1.3
support for:

- Custom configuration with
JBoss Data Grid for OpenShift
images.

- JGroups ASYM_ENCRYPT
protocol.

RHBA-2019:0293 Patch that fixes systemd CVEs 1.3
from RHSA-2019:0049.

RHBA-2019:40142 Patch that fixes systemd CVEs 1.3
from RHSA-2019:0368.

https://access.redhat.com/errata/RHEA-2018:3585
https://access.redhat.com/errata/RHBA-2019:0293
https://access.redhat.com/errata/RHSA-2019:0049
https://access.redhat.com/errata/RHBA-2019:40142
https://access.redhat.com/errata/RHSA-2019:0368

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 2. AUTHENTICATING WITH THE RED HAT
CONTAINER CATALOG

The Red Hat Container Catalog, registry.redhat.io, requires authentication to access JBoss Data Grid for
OpenShift images and resources.

You can use the following authentication mechanisms:

Credentials

The username and password for your Red Hat customer account. These credentials let you pull
resources from registry.redhat.io from a single host with the docker login command. You can also
use these credentials to create service accounts and generate authentication tokens.

Registry Service Account Token

A randomly generated string that you use to authenticate multiple systems.
From a high level, do the following to get an authentication token:

1. Login to registry.redhat.io.
2. Create a new Registry Service Accountif necessary.

3. Generate tokens as required.

21.SETTING UP AUTHENTICATION WITH SERVICE ACCOUNT TOKENS
After you generate a service account token, do the following to set up authentication:

1. Navigate to your registry service account.

2. Select the Docker Login tab and copy the command.

3. Run the docker login command on each host system that pulls from registry.redhat.io.

4. Verify the token is added to the Docker configuration file.
$ cat ~/.docker/config.json
"registry.redhat.io": {

"auth": "MTEWMDkx..."
}

2.1.1. Adding Tokens to Pull Secrets

To pull secured container images that are not available on the internal registry for OpenShift Container
Platform, create a pull secret from your Docker configuration file and add it to your service account as
follows:

1. Login to OpenShift.
I $ oc login -u username -p password

2. Select your working project.

CHAPTER 2. AUTHENTICATING WITH THE RED HAT CONTAINER CATALOG

I $ oc project myproject
3. Create the pull secret.

$ oc create secret generic pull-secret-name \
--from-file=.dockerconfigjson=path/to/.docker/config.json \
--type=kubernetes.io/dockerconfigjson

4. Link the pull secret to your service account. This step lets you pull images from the secure
registry to the pod.

I $ oc secrets link default pull-secret-name --for=pull
5. Mount the secret in the pod so that you can pull build images.
I $ oc secrets link builder pull-secret-name

For more information, including troubleshooting procedures, see Red Hat Container Registry
Authentication.

https://access.redhat.com/RegistryAuthentication

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA
GRID FOR OPENSHIFT

JBoss Data Grid provides an JBoss Data Grid for OpenShift image stream and set of templates to help
you quickly get up and running with JBoss Data Grid deployments on Red Hat OpenShift.

datagrid72-image-stream

Image stream for JBoss Data Grid.
datagrid72-basic

Run JBoss Data Grid for OpenShift without the need to create OpenShift Secrets.
datagrid72-https

Run JBoss Data Grid for OpenShift with an HTTPS route to securely access caches. Requires a JKS
keystore in an OpenShift secret.

datagrid72-mysq|l

Run JBoss Data Grid for OpenShift with a MySQL database as an ephemeral cache store. Requires a
JKS keystore in an OpenShift secret.

datagrid72-mysql-persistent

Run JBoss Data Grid for OpenShift with a MySQL database as a persistent cache store. Requires a
JKS keystore in an OpenShift secret.

datagrid72-postgresq|

Run JBoss Data Grid for OpenShift with a PostgreSQL database as an ephemeral cache store.
Requires a JKS keystore in an OpenShift secret.

datagrid72-postgresql-persistent

Run JBoss Data Grid for OpenShift with a PostgreSQL database as a persistent cache store.
Requires a JKS keystore in an OpenShift secret.

datagrid72-partition

Run JBoss Data Grid for OpenShift with a partitioned data directory that preserves metadata for
cache entries when the pod restarts. Requires the DATAGRID_SPLIT environment variable. See
Configuration Environment Variables.

3.1. IMPORTING JBOSS DATA GRID FOR OPENSHIFT IMAGE
TEMPLATES

The first step to using the JBoss Data Grid for OpenShift image templates is to import them into
OpenShift as follows:

1. On your master host(s), log in as a cluster administrator or a user with project administrator
access to the openshift namespace.

I $ oc login -u system:admin
2. Import a specific template or all templates.
® Import a specific template:
$ oc create -n openshift -f \

https://raw.githubusercontent.com/jboss-container-images/jboss-datagrid-7-openshift-
image/1.3/templates/datagrid72-mysql.json

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOR OPENSHIFT

® |mport all templates:

$ for resource in datagrid72-image-stream.json \
datagrid72-basic.json \
datagrid72-https.json \
datagrid72-mysql-persistent.json \
datagrid72-mysql.json \
datagrid72-partition.json \
datagrid72-postgresql.json \
datagrid72-postgresql-persistent.json

do
oc create -n openshift -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-datagrid-7-openshift-

image/1.3/templates/${resource}

done

TIP

Use the oc create command to import a new template. Use the oc replace --force
command to overwrite an existing template.

3. Verify the templates are available on OpenShift.

I $ oc get templates -n openshift | grep datagrid72

3.1.1. Working with the JBoss Data Grid for OpenShift Image

Importing the JBoss Data Grid for OpenShift image templates also imports the jboss-datagrid72-
openshiftimage. When you create a new application from a template, or instantiate a template, you
deploy the image in a pod that uses the configuration settings from the template.

In this way, the jposs-datagrid72-openshift image is a general purpose build of JBoss Data Grid. Each
template configures the image for specific purposes.

3.1.1.1. Viewing Information about the JBoss Data Grid for OpenShift Image

Run the following command after you import the image templates to view the available image streams
for JBoss Data Grid for OpenShift:

I $ oc get is -n openshift | grep datagrid

The oc get command shows the jboss-datagrid72-openshift image stream is available in the
openshift namespace. This image stream defines the JBoss Data Grid container image as an available
resource for creating deployments.

Run the following command to view information about the jboss-datagrid72-openshift image stream:

I $ oc describe is jboss-datagrid72-openshift -n openshift

The oc describe command shows the tags for the jboss-datagrid72-openshift image stream as well as
the location for the container image in the registry.

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

3.1.1.2. Importing the JBoss Data Grid for OpenShift Image

You can optionally import the JBoss Data Grid for OpenShift image into the openshift namespace
separately to the templates.

To import the JBoss Data Grid for OpenShift image, run the following command:

I $ oc -n openshift import-image jboss-datagrid72-openshift:1.3

NOTE

JBoss Data Grid for OpenShift templates use the global openshift namespace as the
default for the jboss-datagrid72-openshift image stream. You can set the
IMAGE_STREAM_NAMESPACE environment variable to import templates in a different
namespace or project. However you must also ensure that an image stream is available in
that namespace.

3.1.2. Importing OpenShift Secrets

You must import or create OpenShift secrets that contain HTTPS and JGroups keystores before you
can instantiate templates that require authentication.

JBoss Data Grid for OpenShift provides an example HTTPS and JGroups keystore that you can import
as an OpenShift secret. However, this secret is intended for evaluation purposes only. You should not

use it in production environments.

Do the following to import the example secret into your project namespace:

$ oc create \
-f https://raw.githubusercontent.com/jboss-openshift/application-templates/master/secrets/datagrid-
app-secret.json

For more information about creating secrets to secure network traffic, see Securing Network Traffic.

3.2. CONFIGURING JBOSS DATA GRID FOR OPENSHIFT
DEPLOYMENTS

You configure JBoss Data Grid for OpenShift deployments with environment variables that you can set:
® on the command line when you create new applications from templates.

® intemplates that you import into OpenShift projects. You can then create pre-configured
deployments from those templates.

You can also set environment variables through the OpenShift Web Console. See the relevant
OpenShift documentation.

3.2.1. Getting Started with Image Configuration

Run the following command to show the datagrid72-basic template:

I $ oc describe template datagrid72-basic -n openshift

10

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOR OPENSHIFT

The output of the oc describe command shows information about the template as well as the
parameters that are set in the template. When you instantiate the datagrid72-basic template, those
parameters configure the following objects:

e Service defines a logical set of pods and access policies.
® Route exposes services externally to pods.

e Deployment Configuration configures triggers and replicas for the replication controller; also
configures pod templates that contain exposed ports for services, environment variables for the
image, and so on.

As an example, the output of the oc describe command shows the following template parameters that
set credentials and name caches:

Parameters:

Name: USERNAME

Display Name: Username
Description: Data Grid username.
Required: false

Value: <none>

Name: PASSWORD

Display Name: Password

Description: Password for the Data Grid user.
Required: false

Value: <none>

Name: CACHE_NAMES

Display Name: Cache Names

Description: Comma-separated list of caches to create.
Required: false

Value: <none>

The output of the oc describe command shows the services, routes, and deployment configuration that
the datagrid72-basic template configures:

Objects:
Service ${APPLICATION_NAME}
Service ${APPLICATION_NAME}-memcached
Service ${APPLICATION_NAME}-hotrod
Service ${APPLICATION_NAME}-ping
Route ${APPLICATION_NAME}
DeploymentConfig ${APPLICATION_NAME}

When you instantiate the datagrid72-basic template, the launch script sets those parameters as
environment variables for the image in the deployment configuration.

3.2.2. Setting Parameters on the Command Line

Learn how to set parameters for JBoss Data Grid deployments on the command line.

Complete the following steps to:

1

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

® |nstantiate the datagrid72-basic template to create a new JBoss Data Grid for OpenShift
deployment.

® Set parameters that:

o Define credentials to access the cache over HTTPS and Hot Rod.
o Create a cache named mycache.

o Configure the cache to start eagerly.

3.2.2.1. Instantiating the Template

1. Create a new project.

I $ oc new-project datagrid-env --display-name="Setting Environment Variables"

2. Deploy a new application with the datagrid72-basic template. Use the -e option to pass
parameter and value pairs.

a. Specify a username: -e USERNAME=developer

b. Specify a password: -e PASSWORD=<value>
The password cannot be the same as the username or root, admin, or, administrator. It
must contain at least 8 characters, 1alphabetic character(s), 1 digit(s), and 1 non-
alphanumeric symbol(s).

c. Create a cache named 'mycache”:-e CACHE_NAMES=mycache

d. Configure the cache to start eagerly: -e MYCACHE_CACHE_START=EAGER

$ oc new-app --template=datagrid72-basic --name=rhdg \
-e USERNAME=developer -e PASSWORD="*******\
-e CACHE_NAMES=mycache -e MYCACHE_CACHE_START=EAGER

3. Check the application status.

I $ oc status

3.2.2.2. Listing Environment Variables

1. Retrieve the available pods in the project.

$ oc get pods
NAME READY STATUS RESTARTS AGE
datagrid-app-1-<id> 0/1 Running 1 im

datagrid-app-1-deploy 1/1 Running 0 im

2. List environment variables for the pod named datagrid-app-1-<id>. Where <id> is a randomly
generated string such as 67q5h.

$ oc env pods/datagrid-app-1-<id> --list

12

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOR OPENSHIFT

pods datagrid-app-1-<id>, container datagrid-app
CACHE_NAMES=mycache
MYCACHE_CACHE_START=EAGER
PASSWORD=********

USERNAME=developer

3.2.2.3. Changing Environment Variables

1. Change the deployment configuration so that the cache starts lazily.
I $ oc env dc/datagrid-app -e MYCACHE_CACHE_START=LAZY

This command triggers the replication controller to deploys a new version of the application.

2. Retrieve the updated list of pods.
$ oc get pods
NAME READY STATUS RESTARTS AGE

datagrid-app-2-<id> 0/1 Running 0 58s
datagrid-app-2-deploy 1/1 Running 0 59s

3. List environment variables for the pod named datagrid-app-2-<id>.
$ oc env pods/datagrid-app-2-<id> --list
pods datagrid-app-2-<id>, container datagrid-app
CACHE_NAMES=mycache
MYCACHE_CACHE_START=LAZY

PASSWORD=********
USERNAME=developer

3.2.3. Modifying JBoss Data Grid for OpenShift Image Templates
Learn how to set parameters for JBoss Data Grid deployments in reusable image templates.
Complete the following steps to:

e Export the datagrid72-basic template from Red Hat OpenShift.

e Modify the datagrid72-basic template to set parameters that:

o Define credentials to access the cache over HTTPS and Hot Rod.
o Create a cache named mycache.
o Configure the cache to start eagerly.

® Import the modified template and instantiate it.

3.2.3.1. Exporting the Template

13

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

1. On your master host(s), log in as a cluster administrator or a user with project administrator
access to the openshift namespace.

I $ oc login -u system:admin

2. Export the datagrid72-basic template to a file named datagrid72-extended.

TIP

You can export templates with any filename to your home (~/) directory.
I $ oc export template datagrid72-basic -n openshift > datagrid72-extended

3.2.3.2. Modifying the Template

1. Open the exported datagrid72-extended file with any text editor.

TIP

Templates define the deployment configuration in yaml or json format.

2. In the labels section, change the template label to datagrid72-extended.

labels:
template: datagrid72-extended
3. In the metadata section, change the template name to datagrid72-extended.

metadata:
name: datagrid72-extended

4. In the parameters section, add values for the USERNAME, PASSWORD, CACHE_NAMES, and
<CACHE_NAME>_CACHE_START environment variables.

parameters:

- description: Data Grid username.
displayName: Username
name: USERNAME
value: developer

- description: Password for the Data Grid user.
displayName: Password
name: PASSWORD
Value: *kkkkkkk

- description: Comma-separated list of caches to configure.
displayName: Cache Names
name: CACHE_NAMES
value: mycache

- description: Configures the cache to start eagerly or lazily.
displayName: Cache Start

14

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOR OPENSHIFT

name: MYCACHE_CACHE_START
required: false
value: EAGER

5. Add an 'env' definition for the <CACHE_NAME>_ CACHE_START environment variable to the
deployment configuration.

spec:
containers:
-env:
-name: MYCACHE_CACHE_START
value: ${MYCACHE_CACHE_START}

6. Save and close the datagrid72-extended file.

3.2.3.3. Importing and Instantiating the Modified Template

Import the modified template into the openshift namespace.

I $ oc create -n openshift -f datagrid72-extended

After you import the modified template, instantiate it and then list environment variables for the
deployed pod.

$ oc new-app --template=datagrid72-extended

$ oc status

$ oc get pods

$ oc env pods/datagrid-app-1-<id> --list

pods datagrid-app-1-<id>, container datagrid-app
CACHE_NAMES=mycache
MYCACHE_CACHE_START=EAGER

PASSWORD=********
USERNAME=developer

3.3. INVOKING CACHE OPERATIONS THROUGH THE REST ENDPOINT

JBoss Data Grid provides a REST endpoint through which you can invoke cache operations using
standard HTTP methods. The REST endpoint is available by default without the need for configuration.

Complete the following steps to:
® Create a new project and instantiate the datagrid72-basic template.

® |nvoke cache operations with the HTTP GET, POST, and DELETE methods.

3.3.1. Creating a Project and Instantiate a Template

1. Login to OpenShift.

15

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

I $ oc login -u developer
2. Create a new project.

I $ $ oc new-project datagrid --display-name="RHDG REST Example"
3. Instantiate the datagrid72-basic template.

I $ oc new-app --template=datagrid72-basic --name=rhdg

3.3.2. Examining Deployed Services

1. View the deployment status.
I $ oc status

The oc status command shows a datagrid-app HTTP service.

In project RHDG REST Example (datagrid) on server https://192.0.2.0:8443

http://datagrid-app-datagrid.192.0.2.0.nip.io (svc/datagrid-app)
dc/datagrid-app deploys openshift/jboss-datagrid72-openshift:1.3
deployment

2. Show details about the datagrid-app route.
I $ oc describe route datagrid-app

The oc describe route command shows the route where the HTTP service is exposed.

Name: datagrid-app
Namespace: datagrid
Created: 4 minutes ago
Labels: app=rhdg
application=datagrid-app
template=datagrid72-basic
Xpaas=<version>
Description: Route for application's HTTP service.
Annotations: openshift.io/generated-by=0penShiftNewApp
openshift.io/host.generated=true
Requested Host: datagrid-app-datagrid.192.0.2.0.nip.io
exposed on router router 4 minutes ago

3. Note the hostname and IP address for the route. In the following command examples, you must
substitute 192.0.2.0 with the correct IP address for your route to the REST endpoint.

3.3.3.Invoking a Get Operation on the Cache

1. Attempt to get a value for a key named a from a cache named default.

$ curl -i -H "Accept:application/json" \
http://rhdgroute-datagrid.192.0.2.0.nip.io/rest/default/a

16

CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOR OPENSHIFT

The key named a does not exist in the cache named default. As a result, you getan HTTP 404
error.

HTTP/1.1 404 Not Found
content-length: 0
Set-Cookie: 3abf86065a054efa9e7658b871f83223=b78127f864341eb60be6916d847b8b06;

path=/; HttpOnly
Cache-control: private

3.3.4. Inserting and Retrieving an Entry in the Cache

1. Insert a JSON formatted entry in a key named a into the cache named default.

$ curl -X POST -i -H "Content-type:application/json" \
-d "{\"name\":\"Red Hat Data Grid\"}" \
http://rhdgroute-datagrid.192.0.2.0.nip.io/rest/default/a

2. Get the value of the key that you inserted.

$ curl -i -H "Accept:application/json" \
http://rhdgroute-datagrid.192.0.2.0.nip.io/rest/default/a

You getan HTTP 200 response that contains the key value you set.

HTTP/1.1 200 OK

etag: 1187661430

last-modified: <time-stamp>

content-type: application/json

content-length: 34

Set-Cookie: 3abf86065a054efa9e7658b871f83223=b78127f864341eb60be6916d847b8b06;

path=/; HttpOnly
Cache-control: private

"(\"name\":\"Red Hat Data Grid\"}"

3.3.5. Deleting the Entry from the Cache

1. Delete the key named a.

$ curl -X DELETE -i \
http://rhdgroute-datagrid.192.0.2.0.nip.io/rest/default/a

2. Attempt to retrieve the key value again.

$ curl -i -H "Accept:application/json" \
http://rhdgroute-datagrid.192.0.2.0.nip.io/rest/default/a

You getan HTTP 404 error because you deleted the key.

17

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 4. CONFIGURING CLUSTERING

The JBoss Data Grid for OpenShift images can use either the Kubernetes or DNS discovery
mechanisms for clustering. These discovery mechanisms enable images to automatically join clusters.

By default, DNS is pre-configured in the JBoss Data Grid for OpenShift image templates. If you want to

use Kubernetes as the discovery mechanism, or if you plan to build and deploy a custom image, you must
configure cluster discovery.

NOTE

JBoss Data Grid does not support removing images from an active cluster.

4.1. CONFIGURING THE KUBERNETES DISCOVERY MECHANISM

To configure the Kubernetes discovery mechanism for clustering, do the following:

1. Set openshift. KUBE_PING as the value for the JGROUPS_PING_PROTOCOL environment
variable.

I JGROUPS_PING_PROTOCOL=openshift. KUBE_PING

2. Specify the OpenShift project name as the value for the
OPENSHIFT_KUBE_PING_NAMESPACE environment variable. If you do not set this variable,
the server behaves like a single-node cluster.

I OPENSHIFT_KUBE_PING_NAMESPACE=PROJECT_NAME

3. Specify the label that is set at the service level as the value for the
OPENSHIFT_KUBE_PING_LABELS environment variable. If you do not set this variable, pods
outside the application but in the same namespace attempt to join.

I OPENSHIFT_KUBE_PING_LABELS=app=APP_NAME

4. Grant authorization to the service account the pod is running under so that it can access the
Kubernetes REST API. You grant this authorization using the OpenShift CLI, as follows:
Granting authorization for the default service account in the myproject namespace:

I oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc project
-q)

Granting authorization for eap-service-account in the myproject namespace:
oc policy add-role-to-user view system:serviceaccount:$(oc project -q):eap-service-account -
n $(oc project -q)

5. Ensure port 8888 is defined as a ping port on the pod container, as follows:

ports:
- containerPort: 8888
name: ping
protocol: TCP

18

CHAPTER 4. CONFIGURING CLUSTERING

4.2. CONFIGURING THE DNS DISCOVERY MECHANISM

To configure the DNS discovery mechanism for clustering, do the following:

1. Set openshift.DNS_PING as the value for the JGROUPS_PING_PROTOCOL environment
variable.

I JGROUPS_PING_PROTOCOL=openshift. DNS_PING

2. Specify the name of the ping service for the cluster as the value for the
OPENSHIFT_DNS_PING_SERVICE_NAME environment variable.

I OPENSHIFT_DNS_PING_SERVICE_NAME=PING_SERVICE_NAME

3. Specify the port number where the ping service is exposed as the value for the
OPENSHIFT_DNS_PING_SERVICE_PORT environment variable. The default value is 8888.

I OPENSHIFT_DNS_PING_SERVICE_PORT=PING_PORT

4. Define a ping service that exposes the ping port, as in the following example:

apiVersion: vi
kind: Service
spec:
clusterlP: None
ports:
- hame: ping
port: 8888
protocol: TCP
targetPort: 8888
selector: deploymentConfig=datagrid-app
metadata:
annotations:
description: The JGroups ping port for clustering.
service.alpha.kubernetes.io/tolerate-unready-endpoints: 'true’

IMPORTANT
You should configure clusterlP: None so that the service is headless. Likewise,

the ping port must be named and include the
service.alpha.kubernetes.io/tolerate-unready-endpoints: 'true' annotation.

19

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 5. SECURING NETWORK TRAFFIC

Encrypt client to server and server to server traffic to secure network communication.

5.1. ENCRYPTING CLIENT TO SERVER COMMUNICATION

JBoss Data Grid for OpenShift uses JKS keystores that contain credentials and certificates to secure
client-to-server traffic.

To encrypt client to server communication, do the following:

20

1. Create a JKS keystore (.jks) to encrypt traffic.

You can use OpenSSL and the Java keytool to generate a JKS keystore. When you generate a
TLS certificate for the keystore, specify the domain name for the deployment.

IMPORTANT

Production environments should aways use TLS certificates signed by a verified
certificate authority (CA).

. Deploy the JKS keystore to OpenShift as a secret.

a. Login as the developer user.
I $ oc login -u developer

b. Create a secret for the JKS keystore. For example, to create a secret named jdg-https-
secret from a keystore named jdg-https.jks, do the following:

I $ oc create secret generic jdg-https-secret --from-file=jdg-https.jks

c. Link the secret to the service account for your deployment. For example, to link a secret
named jdg-https-secret to the default service account, do the following:

I $ oc secrets link default jdg-https-secret

. Configure your deployment to use the JKS keystore with these environment variables:

HOSTNAME_HTTP

Specifies the HTTP service route for the deployment. Required only if you are using a JBoss
Data Grid for OpenShift template.

HOSTNAME_HTTPS

Sets the HTTPS service route for the deployment. Required only if you are using a JBoss
Data Grid for OpenShift template.

HTTPS_SECRET

Matches the OpenShift secret for the keystore. Required only if you are using a JBoss Data
Grid for OpenShift template.

HTTPS_KEYSTORE
Specifies the JKS keystore for encrypting server to client traffic.
HTTPS_NAME

CHAPTER 5. SECURING NETWORK TRAFFIC

Matches the username for the keystore.
HTTPS_PASSWORD

Matches the keystore password.
HTTPS_KEYSTORE_DIR

Specifies the directory that contains the JKS keystore. You do not need to set this
environment variable if you are using a JBoss Data Grid for OpenShift template. The
templates set this environment variable by default.

TIP

Use the HOTROD_ENCRYPTION environment variable to configure the Hot Rod connector
to use encryption. See Endpoint Configuration.

5.2. ENCRYPTING TRAFFIC BETWEEN CLUSTERED SERVERS

JBoss Data Grid for OpenShift uses JGroups technology to secure traffic between clustered servers
with the following options:

Authentication

Uses the JGroups AUTH protocol that requires nodes to authenticate with a password when joining
the cluster.

You configure authentication with the JGROUPS_CLUSTER_PASSWORD environment variable.
This environment variable sets a password for nodes to use when joining the cluster. The password
must be the same across the cluster.

Symmetric encryption

Uses the JGroups SYM_ENCRYPT protocol to secure traffic with a JGroups keystore (.jeceks). This
is the default encryption protocol.
The JGroups AUTH protocol is optional with symmetric encryption.

The JGroups keystore contains credentials that each node in the cluster uses to secure
communication.

Asymmetric encryption

Uses the JGroups ASYM_ENCRYPT protocol to secure traffic with public/private key encryption.
The JGroups AUTH protocol is required with asymmetric encryption.

The coordinator node generates a secret key. When a node joins the cluster, it requests the secret
key from the coordinator and provides its public key. The coordinator encrypts the secret key with
the public key and returns it to the node. The node then decrypts and installs the secret so that it
can securely communicate with other nodes in the cluster.

5.2.1. Setting Up Symmetric Encryption
To use symmetric encryption, do the following:

1. Create a JGroups keystore (.jeeks) that contains credentials to encrypt traffic.
You can use the Java keytool to generate a JGroups keystore.

21

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

2. Deploy the JGroups keystore to OpenShift as a secret.

a. Login as the developer user.
I $ oc login -u developer

b. Create a secret for the JGroups keystore. For example, to create a secret named jgroups-
secret from a keystore named jgroups.jceks, do the following:

I $ oc create secret generic jgroups-secret --from-file=jgroups.jceks

c. Link the secret to the default service account.

I $ oc secrets link default jgroups-secret

3. Configure your deployment to use the JGroups keystore with these environment variables:

JGROUPS_ENCRYPT_KEYSTORE

Specifes the JGroups keystore for encrypting cluster traffic.
JGROUPS_ENCRYPT_SECRET

Matches the OpenShift secret for the keystore.
JGROUPS_ENCRYPT_NAME

Matches the username for the keystore.
JGROUPS_ENCRYPT_PASSWORD

Matches the keystore password.
JGROUPS_ENCRYPT_KEYSTORE_DIR

Specifies the directory where the JGroups keystore resides. You do not need to set this
environment variable if you are using a JBoss Data Grid for OpenShift template. The
templates set this environment variable by default.

4. If required, set a password for nodes to use when joining the cluster. with the
JGROUPS_CLUSTER_PASSWORD environment variable.

5.2.2. Setting Up Asymmetric Encryption
To use asymmetric encryption, do the following:
1. Configure authentication with the JGROUPS_CLUSTER_PASSWORD environment variable.

2. Set the value of the JGROUPS_ENCRYPT_PROTOCOL environment variable to
ASYM_ENCRYPT.

22

CHAPTER 6. CONFIGURING PERSISTENT DATASOURCES

CHAPTER 6. CONFIGURING PERSISTENT DATASOURCES

JBoss Data Grid lets you persist data stored in the cache to a datasource. There are two types of
datasources for Red Hat JBoss Data Grid for OpenShift:

® |nternal datasources that run on OpenShift. These datasources are available through the Red
Hat Container Registry and do not require you to configure additional environment files.

NOTE

Internal datasources include PostgreSQL, MySQL, and MongoDB. However, Red
Hat JBoss Data Grid for OpenShift currently supports PostgreSQL and MySQL
only.

® External datasources that do not run on OpenShift. You must configure these external
datasources with environment files that you add to OpenShift Secrets.

6.1. CONFIGURING INTERNAL DATASOURCES

The DB_SERVICE_PREFIX_MAPPING environment variable defines JNDI mappings for internal
datasources.

You can define multiple JNDI mappings as comma-separated values for the
DB_SERVICE_PREFIX_MAPPING environment variable. When you run the JBoss Data Grid for
OpenShift image, the launch script creates a separate datasource for each JNDI mapping. The JBoss
Data Grid for OpenShift then automatically discovers each datasource.
To define a JNDI mapping, specify a value for the environment variable in the following format:
<poolname>-<database_type>=<PREFIX>

® <poolname> is the pool-name attribute for the datasource. Use any alphanumeric value that is

meaningful and easy to identify. The value cannot contain special characters. Likewise, the value

must contain lowercase characters only.

e <database_type> specifies the database driver to use. The value must contain lowercase
characters only.

NOTE

Only mysql and postgresql are supported values for <database_type>.

® <PREFIX> is used for the names of environment variables that configure the datasource.

6.1.1. Single Datasource Example

If you specify test-postgresql=TEST as the value for the DB_SERVICE_PREFIX_MAPPING
environment variable, it creates a datasource with the following name:

java:jboss/datasources/test_postgresql/
You must use the TEST_ prefix when specifying other environment variables for the datasource. For

example, to set the username and password, use TEST_USERNAME and TEST_PASSWORD as the
environment variables.

23

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

6.1.2. Multiple Datasource Example

If you specify cloud-postgresql=CLOUD,test-mysq/=TEST_MYSQL as the value for the
DB_SERVICE_PREFIX_MAPPING environment variable, it creates two datasources with the following
names:

® java;jboss/datasources/test mysql

® java:jboss/datasources/cloud_postgresql
When specifying other environment variables for the datasources, you must use the TEST_MYSQL
prefix to configure the MySQL datasource. For example, use TEST_MYSQL_USERNAME as the

environment variable to specify the username.

Similarly, you must use the CLOUD_ prefix to configure the PostgreSQL datasource. For example, use
CLOUD_USERNAME as the environment variable to specify the username.

6.2. CONFIGURING EXTERNAL DATASOURCES

To use an external datasource, you define a custom image template and then use the Source-to-Image
(S21) build tool to create an image. S2l is a framework that takes application source code as an input and
produces a new image that runs the assembled application as output.

The following high-level steps provide an overview of the process:

1. Specify the CUSTOM_INSTALL_DIRECTORIES environment variable in the image template
JSON. This variable defines the location where S2| artifacts reside, as in the following example:

{
"name": "CUSTOM_INSTALL_DIRECTORIES",

"value": "extensions/*"

2. Create an install.sh script in that directory. This script installs the modules and drivers for the
external datasource in the image.
The following is an example install.sh script:

#!/bin/bash

Import the common functions for installing modules and configuring drivers
source /usr/local/s2i/install-common.sh

Directory where this script is located
injected_dir=%$1

Install the modules for the datasource
install_modules ${injected_dir}/modules

Configure the drivers for the datasource
configure_drivers ${injected_dir}/drivers.properties

3. Include a modules subdirectory that contains a module.xml file and the driver for the
datasource. The resulting image uses the module to load classes and define dependencies.

24

CHAPTER 6. CONFIGURING PERSISTENT DATASOURCES

As an example, you plan to use Derby as an external datasource. You need to obtain a driver such
as derby-10.12.1.1.jar and place it in the following directory:
modules/org/apache/derby/main/

In the same directory, you also need to create a module.xml file that defines the driver as a
resource and declares dependencies.

The following is an example module.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<module xmIns="urn:jboss:module:1.3" name="org.apache.derby">
<resources>
<resource-root path="derby-10.12.1.1.jar"/>
<resource-root path="derbyclient-10.12.1.1.jar"/>
</resources>

<dependencies>

<module name="javax.api"/>

<module name="javax.transaction.api"/>
</dependencies>
</module>

4. Define the driver configuration properties in a drivers.property environment variable file.
The following is an example drivers.property file:

#DRIVERS
DRIVERS=DERBY

DERBY_DRIVER_NAME=derby

DERBY_DRIVER_MODULE=org.apache.derby
DERBY_DRIVER_CLASS=org.apache.derby.jdbc.EmbeddedDriver
DERBY_XA_DATASOURCE_CLASS=org.apache.derby.jdbc.EmbeddedXADataSource

5. After you build and deploy the image, specify environment variables for the datasource.
The following example shows a datasource definition with the DATASOURCES environment
variable:

Set a unique prefix for the datasource
DATASOURCES=ACCOUNTS_DERBY

Specify other environment variables using the prefix
ACCOUNTS_DERBY_DATABASE=accounts
ACCOUNTS_DERBY_JNDI=java:/accounts-ds
ACCOUNTS_DERBY_DRIVER=derby
ACCOUNTS_DERBY_JTA=true
ACCOUNTS_DERBY_NONXA=false
ACCOUNTS_DERBY_USERNAME=username
ACCOUNTS_DERBY_PASSWORD=password
ACCOUNTS_DERBY_XA_CONNECTION_PROPERTY_DatabaseName=/opt/eap/standalone
/data/databases/derby/accounts

#_ HOST and _PORT are required but not used
ACCOUNTS_ORACLE_HOST=dummy
ACCOUNTS_ORACLE_PORT=1527

25

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 7. MANAGING RED HAT JBOSS DATA GRID FOR
OPENSHIFT

A major difference in managing an JBoss Data Grid for OpenShift image is that there is no Management

Console exposed for the JBoss Data Grid installation inside the image. Because images are intended to

be immutable, with modifications being written to a non-persistent file system, the Management
Console is not exposed.

However, the JBoss Data Grid Management CLI (UDG_HOME/bin/cli.sh) is still accessible from within
the container for troubleshooting purposes.

1. First open a remote shell session to the running pod:

I $ oc rsh <pod_name>

2. Then run the following from the remote shell session to launch the JBoss Data Grid
Management CLI:

I $ /opt/datagrid/bin/cli.sh

' WARNING
A Any configuration changes made using the JBoss Data Grid Management CLI on a

running container will be lost when the container restarts.

Making configuration changes to the JBoss Data Grid instance inside the JBoss Data Grid for

OpenShift image is different from the process you may be used to for a regular release of JBoss Data
Grid.

26

CHAPTER 8. BUILDING RED HAT JBOSS DATA GRID FOR OPENSHIFT IMAGES

CHAPTER 8. BUILDING RED HAT JBOSS DATA GRID FOR
OPENSHIFT IMAGES

The JBoss Data Grid images were automatically created during the installation of OpenShift along with
the other default image streams and templates.

You can change the JBoss Data Grid configuration in the image using the S2I process or by using a
modified JBoss Data Grid for OpenShift image.

8.1. USING THE JBOSS DATA GRID FOR OPENSHIFT IMAGE SOURCE-
TO-IMAGE (S21) PROCESS

The recommended method to run and configure the JBoss Data Grid for OpenShift image is to use the
OpenShift S2I process together with the application template parameters and environment variables.

The S2I process for the JBoss Data Grid for OpenShift image works as follows:

1. If there is a pom.xml file in the source repository, a Maven build is triggered with the contents of
$MAVEN_ARGS environment variable.

2. By default the package goal is used with the openshift profile, including the system properties
for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo.redhatga).

3. The results of a successful Maven build are copied to JDG_HOME/standalone/deployments.
This includes all JAR files from the directory within the source repository specified by
$ARTIFACT_DIR environment variable. The default value of $ARTIFACT_DIR is the target

directory.

® Any JAR, WAR, and EAR in the deployments source repository directory are copied to the
JDG_HOME/standalone/deployments directory.

The JBoss Data Grid server supports only JAR deployments, which can include custom filters and
converters. The JBoss Data Grid server does not support WAR and EAR deployments.

e Allfiles in the configuration source repository directory are copied to
JDG_HOME/standalone/configuration.

NOTE

If you want to use a custom JBoss Data Grid configuration file, it should be
named clustered-openshift.xml.

1. All files in the modules source repository directory are copied to JDG_HOME/modules.

Refer to the Artifact Repository Mirrors section for additional guidance on how to instruct the S2I
process to utilize the custom Maven artifacts repository mirror.

8.2. USING A MODIFIED JBOSS DATA GRID FOR OPENSHIFT IMAGE

An alternative method is to make changes to the image, and then use that modified image in OpenShift.

27

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/installation-and-configuration#install-config-imagestreams-templates

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

The JBoss Data Grid configuration file that OpenShift uses inside the JBoss Data Grid for OpenShift
image is JDG_HOME/standalone/configuration/clustered-openshift.xml, and the JBoss Data Grid
startup script is JDG_HOME/bin/openshift-launch.sh.

You can run the JBoss Data Grid for OpenShift image in Docker, make the required configuration
changes using the JBoss Data Grid Management CLI (JDG_HOME/bin/jboss-cli.sh), and then commit
the changed container as a new image. You can then use that modified image in OpenShift.

IMPORTANT

It is recommended that you do not replace the OpenShift placeholders in the JBoss Data
Grid for OpenShift image configuration file, as they are used to automatically configure
services (such as messaging, datastores, HTTPS) during a container's deployment. These
configuration values are intended to be set using environment variables.

8.3. BINARY BUILDS
To deploy existing applications on OpenShift, you can use the binary source capability.

See Example Workflow: Deploying binary build of EAP 6.4 / EAP 7.1 Infinispan application together with
JBoss Data Grid for OpenShift image for an end-to-end example of a binary build.

28

https://docs.openshift.com/container-platform/latest/dev_guide/builds/build_inputs.html#binary-source

CHAPTER 9. DEPLOYING JBOSS DATA GRID FOR OPENSHIFT WITH CUSTOM CONFIGURATION FILES

CHAPTER 9. DEPLOYING JBOSS DATA GRID FOR OPENSHIFT
WITH CUSTOM CONFIGURATION FILES

You can use the OpenShift ConfigMap API to create a deployment that uses custom configuration
instead of using the source-to-image (S2l) build process.

NOTE

® Changes to the configuration via ConfigMap do not cause pods to redeploy
automatically. You must manually redeploy pods if you update standalone.xml.

® JBoss Data Grid for OpenShift deployments that you create with custom

configuration files do not support shared persistent volumes that you configure
with the DATAGRID_SPLIT environment variable.

9.1. SETTING UP THE CONFIGURATION FILES AND CUSTOM
TEMPLATE

Create a ConfigMap that contains your configuration files and mount it to a specific directory as follows:

1. Mount your configuration files, the ConfigMap content, in the following directory:
/opt/datagrid/standalone/configuration/user

At a minimum, this directory must contain standalone.xml to configure JBoss Data Grid. This
directory can also contain logging.properties, application-role.properties, and other
properties files that are available with the JBoss Data Grid distribution.

Note the following requirements for your custom configuration:

® You must explicitly define all cache and endpoint configuration in standalone.xml. You
cannot use environment variables to configure caches or endpoints after you create a
deployment.

® Your cache container must be named clustered so that the default ReadinessProbe works.

<cache-container name="clustered">

</cache-container>

® To encrypt client to server traffic, you must configure the server identity in standalone.xml.
You cannot use environment variables to configure HTTPS after you create a deployment.

2. Create a custom template for your JBoss Data Grid for OpenShift deployment.

a. Ensure that the template exposes the required ports and services.

b. Set the USER_CONFIG_MAP environment variable to a value of true.

29

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

TIP

Add placeholders to your custom standalone.xml if you want to make environment variables available in
your deployment.

For example, the following is a placeholder for the JGROUPS_PING_PROTOCOL:
I <|-- #JGROUPS_PING_PROTOCOL## -->

Refer to clustered-openshift.xml to review the default XML file for JBoss Data Grid for OpenShift. This
file contains all the available placeholders.

You can find examples for deployments with custom configuration in the following files:
® Example standalone.xml

® Example Configuration Template

9.2. CREATING DEPLOYMENTS WITH CUSTOM CONFIGURATION
To deploy JBoss Data Grid for OpenShift with a custom configuration, do the following:

1. On your master host(s), log in as a cluster administrator or a user with project administrator
access to the openshift namespace.

I $ oc login -u system:admin
2. Import your custom template into the openshift namespace.
I $ oc create -n openshift -f path/to/template.yaml

3. Create a ConfigMap from the directory where your custom configuration resides.

® To create a ConfigMap with standalone.xml only, do the following:

I $ oc create configmap datagrid-config --from-file=./standalone.xml

® To create a ConfigMap with standalone.xml and other configuration files, do the following:

$ oc create configmap datagrid-config \
--from-file=path/to/configuration

Where path/to/configuration is the local directory that contains the configuration files.

The ConfigMap name should match the name that you specify in your custom template.
The example template uses the name datagrid-config.

4. Deploy JBoss Data Grid for OpenShift with your custom configuration.
I $ oc new-app user-config

The application name should match the name that you specify in your custom template. The
example template uses the name user-config.

30

https://github.com/jboss-container-images/jboss-datagrid-7-openshift-image/blob/datagrid72/modules/datagrid/72/configuration/added/clustered-openshift.xml
https://github.com/jboss-container-images/jboss-datagrid-7-openshift-image/blob/1.3/docs/examples/user-configuration/standalone.xml
https://github.com/jboss-container-images/jboss-datagrid-7-openshift-image/blob/1.3/docs/examples/user-configuration/user-config-template.yaml

CHAPTER 9. DEPLOYING JBOSS DATA GRID FOR OPENSHIFT WITH CUSTOM CONFIGURATION FILES

When you deploy JBoss Data Grid for OpenShift, the configuration files are copied to the
/opt/datagrid/standalone/configuration directory for the application.

31

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 10. UPGRADING RED HAT JBOSS DATA GRID FOR
OPENSHIFT BETWEEN RELEASES

Rolling upgrades of JBoss Data Grid allow you to upgrade a cluster from one version to a new version
without experiencing any downtime.

For complete details on rolling upgrades with JBoss Data Grid, see Rolling Upgrades in the JBoss Data
Grid documentation.

IMPORTANT

As of 7.2, JBoss Data Grid supports rolling upgrades using Hot Rod only. In earlier
releases, JBoss Data Grid allowed you to perform rolling upgrades using the REST
interface.

Additionally, JBoss Data Grid supports rolling upgrades using Hot Rod from version 6.6.2
and later. If you plan to perform a rolling upgrade from a version earlier than 6.6.2, you
must first upgrade to JBoss Data Grid 6.6.2.

32

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/7.2/html-single/Administration_and_Configuration_Guide/index.html#rolling_upgrades-1

PTER11. DEPLOYING AN EAP INFINISPAN APPLICATION WITH THE JBOSS DATA GRID FOR OPENSHIFT IMAGE

CHAPTER 1. DEPLOYING AN EAP INFINISPAN APPLICATION
WITH THE JBOSS DATA GRID FOR OPENSHIFT IMAGE

Complete the steps in this tutorial to see how you can deploy an EAP Infinispan application with the
JBoss Data Grid for OpenShift image.

This tutorial uses CarMart quickstart to deploy EAP 6.4 / EAP 7.1 Infinispan application that accesses a
remote JBoss Data Grid server running in the same OpenShift project.

11.1. IMPORTING THE LATEST EAP AND JBOSS DATA GRID FOR
OPENSHIFT IMAGE STREAMS AND TEMPLATES

EAP and JBoss Data Grid for OpenShift images are pulled on demand from the Red Hat Registry. As a
first step, import the EAP and JBoss Data Grid for OpenShift image streams and templates into the
namespace of your OpenShift project.

11.1.1. Log In with Administrator Access

Importing EAP image streams and templates requires administration privileges in the openshift
namespace (global project). On your master host(s), you must log in as a cluster administrator or a user
with project administrator access to the openshift namespace.

For example, log in with the default system:admin user on the master as follows:
I $ oc login -u system:admin

11.1.2. Importing the EAP Images

To import EAP 6.4, run the following command:

I $ oc -n openshift import-image jboss-eap64-openshift:1.8

To import EAP 7.1, run the following command:

I $ oc -n openshift import-image jboss-eap71-openshift:1.2

11.1.3. Creating the JBoss Data Grid for OpenShift Image Resources

Import the image and templates into Red Hat OpenShift. See Importing Image Templates.

11.2. CREATING A PROJECT

Create a new project as follows:

I $ oc new-project jdg-bin-demo

11.3. DEPLOYING THE JBOSS DATA GRID 7.2 SERVER

Deploy the server and specify the following:

33

https://github.com/jboss-openshift/openshift-quickstarts/tree/master/datagrid/carmart

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

e carcache-hotrod as the name of application,
® A Hot Rod based connector, and

e carcache as the name of the Infinispan cache to configure.

$ oc new-app --name=carcache-hotrod \
--image-stream=jboss-datagrid72-openshift:1.3 \

-e INFINISPAN_CONNECTORS=hotrod \

-e CACHE_NAMES=carcache \

-e HOTROD_SERVICE_NAME=carcache-hotrod \

-e HOTROD_AUTHENTICATION=true \

-e USERNAME-=jdguser \

-e PASSWORD=P@ssword1

--> Found image d83b4b2 (3 months old) in image stream "openshift/jboss-datagrid72-
openshift" under tag "latest" for "jboss-datagrid72-openshift"

JBoss Data Grid 7.2

Provides a scalable in-memory distributed database designed for fast access to large
volumes of data.

Tags: datagrid, java, jboss, xpaas

* This image will be deployed in deployment config "carcache"

* Ports 11211/tcp, 11222/tcp, 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service

"carcache"
* Other containers can access this service through the hostname "carcache"

--> Creating resources ...
deploymentconfig "carcache" created
service "carcache" created

--> Success
Run 'oc status' to view your app.

11.4. DEPLOYING A BINARY BUILD OF EAP 6.4 / EAP 7.1 CARMART
APPLICATION

34

1. Clone the source code.
I $ git clone https://github.com/jboss-openshift/openshift-quickstarts.git

2. Configure the Red Hat JBoss Middleware Maven repository .

3. Build the datagrid/carmart application.

I $ cd openshift-quickstarts/datagrid71/carmart/

$ mvn clean package -Premote-jbossas,openshift
[INFO] Scanning for projects...

[INFO]
[INFO]
[INFO] Building JBoss JDG Quickstart: carmart 1.2.0.Final
[INFO]

https://github.com/jboss-openshift/openshift-quickstarts.git
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/development_guide/#use_the_maven_repository
https://access.redhat.com/maven-repository

PTER 1. DEPLOYING AN EAP INFINISPAN APPLICATION WITH THE JBOSS DATA GRID FOR OPENSHIFT IMAGE

[INFO] Building war: /tmp/openshift-quickstarts/datagrid/carmart/target/ROOT.war
[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFQO] Total time: 3.360 s

[INFO] Finished at: 2017-06-27T19:11:46+02:00
[INFO] Final Memory: 34M/310M

[INFO]

4. Verify the directory structure on the local file system.
Application archives in the deployments/ subdirectory of the main binary build directory are
copied directly to the deployments folder of the image being built on OpenShift. For the

application to deploy, the directory hierarchy that contains the web application data must be
correctly structured.

However, the carmart application already includes the correct directory structure after building:

$1s
deployments pom.xml README.md README-openshift.nd README-tomcat.md src
target

$ Is deployments
ROOT.war

NOTE

The location of the standard deployments directory depends on the underlying base
image that was used to deploy the application.

Table 11.1. Standard Location of the Deployments Directory

Name of the Underlying Base Image(s) Standard Location of the Deployments Directory
EAP for OpenShift 6.4 and 7.1 $JBOSS_HOME/standalone/deployments

Java S2I for OpenShift /deployments

JWS for OpenShift $JWS_HOME/webapps

5. ldentify the image stream for the EAP 6.4 / EAP 7.1image.
$ oc get is -n openshift | grep eap | cut -d ' ' -f 1
jooss-eap64-openshift
jooss-eap71-openshift

6. Create new binary build, specifying image stream and application name.
$ oc new-build --binary=true \

--image-stream=jboss-eap64-openshift:1.8 \
--name=eap-app

35

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

36

--> Found image 8fbf0f7 (2 months old) in image stream "openshift/jposs-eap64-openshift”
under tag "latest" for "jposs-eap64-openshift”

JBoss EAP 6.4

Platform for building and running JavaEE applications on JBoss EAP 6.4
Tags: builder, javaee, eap, eap6

* A source build using binary input will be created
* The resulting image will be pushed to image stream "eap-app:latest”
* A binary build was created, use 'start-build --from-dir' to trigger a new build

--> Creating resources with label build=eap-app ...
imagestream "eap-app" created
buildconfig "eap-app" created

--> Success

NOTE

Specify jboss-eap71-openshift as the image stream name in the preceding
command to use EAP 7.1image for the application.

7. Start the binary build. Instruct the oc executable to use the main directory of the binary build
from the previous step as the directory that contains binary input for the OpenShift build.

$ oc start-build eap-app --from-dir=deployments/ --follow

Uploading directory "deployments" as binary input for the build ...

build "eap-app-1" started

Receiving source from STDIN as archive ...

Copying all war artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all ear artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all rar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all jar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...

Copying all war artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
''nome/jboss/source/deployments/jboss-carmart.war' ->
'Jopt/eap/standalone/deployments/jboss-carmart.war’

Copying all ear artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Copying all rar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Copying all jar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...

Pushing image 172.30.82.129:5000/jdg-bin-demo/eap-app:latest ...

Pushed 0/7 layers, 1% complete

Pushed 1/7 layers, 17% complete

Pushed 2/7 layers, 31% complete

Pushed 3/7 layers, 46% complete

Pushed 4/7 layers, 81% complete

Pushed 5/7 layers, 84% complete

PTER 1. DEPLOYING AN EAP INFINISPAN APPLICATION WITH THE JBOSS DATA GRID FOR OPENSHIFT IMAGE

Pushed 6/7 layers, 99% complete
Pushed 7/7 layers, 100% complete
Push successful

8. Create a new OpenShift application based on the build.

$ oc new-app eap-app
--> Found image ee25340 (3 minutes old) in image stream "jdg-bin-demo/eap-app" under tag
"latest" for "eap-app”

jdg-bin-demo/eap-app-1:4bab3f63

Platform for building and running JavaEE applications on JBoss EAP 6.4
Tags: builder, javaee, eap, eap6

* This image will be deployed in deployment config "eap-app”
* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "eap-app"
* Other containers can access this service through the hostname "eap-app"

--> Creating resources ...
deploymentconfig "eap-app" created
service "eap-app" created

--> Success
Run 'oc status' to view your app.

9. Expose the service as route.

$ oc get svc -0 name
service/carcache
service/eap-app

$ oc get route
No resources found.
route "eap-app" exposed

I $ oc expose svc/eap-app

$ oc get route

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

eap-app eap-app-jdg-bin-demo.openshift.example.com eap-app 8080-tcp
None

10. Access the application.

Access the CarMart application in your browser using the URL http://eap-app-jdg-bin-
demo.openshift.example.com/. You can view and remove existing cars from the Home tab or
add new cars from the New car tab.

37

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

CHAPTER 12. ENVIRONMENT VARIABLES

You configure Red Hat JBoss Data Grid for OpenShift deployments with environment variables.

12.1. IMAGE INFORMATION

The following environment variables provide information about the image. You should not modify these
environment variables.

JBOSS_DATAGRID_VERSION

Displays the version of Red Hat JBoss Data Grid on which the container is based.
JBOSS_HOME

Displays the directory that contains the distribution: /opt/datagrid.
JBOSS_IMAGE_NAME

Displays the name of the image.
JBOSS_IMAGE_RELEASE

Displays the image release label.
JBOSS_IMAGE_VERSION

Displays the image version.
JBOSS_MODULES_SYSTEM_PKGS

Lists JBoss system modules.
JBOSS_PRODUCT

Displays the product label: datagrid.
LAUNCH_JBOSS_IN_BACKGROUND

Allows graceful shutdowns.

12.2. CONTAINER CONFIGURATION

Configure containers with the following environment variables:

USERNAME

Sets the name for the JBoss Data Grid user.
PASSWORD

Sets the password for the JBoss Data Grid user.
DATAGRID_SPLIT

Determines if the data directory for each node should be split in a mesh. The value is true or false
(default).

If you set the value to true, you must also configure a persistent volume mounted on
/opt/datagrid/standalone/partitioned_data.

NOTE

Use the datagrid72-partition template to deploy an example application that
preserves cache metadata between restarts. Ensure that the
${APPLICATION_NAME}-datagrid-claim persistent volume claim is available and
that the ${APPLICATION_NAME}-datagrid-pvol persistent volume is mounted on
/opt/datagrid/standalone/partitioned_data.

38

CHAPTER 12. ENVIRONMENT VARIABLES

JAVA_OPTS_APPEND

Appends options to the JAVA_OPTS environment variable on startup.
For example, JAVA_OPTS_APPEND=-Dfoo=bar

JGROUPS_CLUSTER_PASSWORD

Matches the password for accessing JGroups configuration. It must be the same across the cluster.
By default, the image uses the value for the OPENSHIFT_KUBE_PING_LABELS variable; however,
JBoss application templates generate random values.

See Securing Network Traffic for information about using JGroups keystores to encrypt cluster
communication.

OPENSHIFT_KUBE_PING_LABELS

Specifies the clustering labels selector.
For example, OPENSHIFT_KUBE_PING_LABELS=application=eap-app

OPENSHIFT_KUBE_PING_NAMESPACE
Specifies the clustering project namespace.
TRANSPORT_LOCK_TIMEOUT

Sets the time to wait to acquire a distributed lock. The default value is 240000.

JBoss Data Grid uses a distributed lock to maintain a coherent transaction log during state transfer
or rehashing, which means that only one cache can perform state transfer or rehashing at a time. This
constraint is in place because more than one cache could be involved in a transaction.

12.3. CACHE CONFIGURATION

Configure caches with the following environemnt variables:

CACHE_NAMES

Defines cache instances in your configuration.
If you do not specify cache names, the launch script adds configuration for caches named default
and memcached. The default cache configuration is a distributed-cache in SYNC mode.

TIP

Give each cache instance in your configuration a unique name. Use underscore characters (_) and
descriptive labels to help you distinguish between cache instances. This ensures that you do not have
conflicts when applying cache-specific configuration.

For example, CACHE_NAMES=addressbook, addressbook_indexed

CACHE_CONTAINER_START

Configures how the cache container starts. Specify one of the following:

® LAZY Starts the cache container when requested by a service or deployment. This is the
default.

® EAGER Starts the cache container when the server starts.

CACHE_CONTAINER_STATISTICS

39

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

Configures the cache container to collect statistics. The value is true (default) or false. You can set
the value to false to improve performance.

DEFAULT_CACHE

Sets the default cache for the cache container.

12.3.1. Cache Container Security Configuration

Configure security for the cache container with the following environment variables:

CONTAINER_SECURITY_CUSTOM_ROLE_MAPPER_CLASS

Specifies the class of the custom principal to role mapper.

For example,
CONTAINER_SECURITY_CUSTOM_ROLE_MAPPER_CLASS=com.acme.CustomRoleMapper

CONTAINER_SECURITY_ROLE_MAPPER

Sets a role mapper for this cache container with the following values:

® identity-role-mapper Uses the Principal name as the role name. This is the default role
mapper if you do not specify one and use the CONTAINER_SECURITY_ROLES
environment variable to define role names.

® common-name-role-mapper Uses the Common Name (CN) as the role name if the
Principal name is a Distinguished Name (DN). For example, the DN
cn=managers,ou=people,dc=zexample,dc=com is mapped to the manager role name.

® cluster-role-mapper Uses the ClusterRegistry to store Principal name to role mappings.

® custom-role-mapper Takes the fully-qualified class name of an implementation of the
org.infinispan.security.impl.PrincipalRoleMapper interface.
For more information see Role Mapping in the Developer Guide.

CONTAINER_SECURITY_ROLES

Defines role names and assigns permissions to them.
For example, CONTAINER_SECURITY_ROLES=admin=ALL, reader=READ, writer=WRITE

12.3.2. Cache Specific Configuration

You can control behavior for each cache in your configuration with these environment variables.

To set an environment variable, you specify the cache name as a prefix for the variable.

IMPORTANT

You must specify the cache name as a prefix in capital letters (all caps) otherwise the
configuration does not take effect.

For example, you create two separate cache instances: MyCache and MYCACHE. You
then set MyCache_CACHE_TYPE-=replicated to configure the MyCache instance. This
configuration does not take effect. However, if you set
MYCACHE_CACHE_TYPE=replicated the configuration takes effect for both the
MyCache and MYCACHE instances.

40

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#role_mapping

CHAPTER 12. ENVIRONMENT VARIABLES

<CACHE_NAME>_CACHE_TYPE

Determines whether this cache should be distributed or replicated. You can specify either
distributed (default) or replicated.

<CACHE_NAME>_CACHE_START

Configures how the cache starts. Specify one of the following:

® | AZY Starts the cache when requested by a service or deployment. This is the default.

® EAGER Starts the cache when the server starts.

<CACHE_NAME>_CACHE_BATCHING
Enables invocation batching for this cache. The value is true or false (default).
<CACHE_NAME>_CACHE_STATISTICS

Configures the cache to collect statistics. The value is true (default) or false. You can set the value
to false to improve performance.

<CACHE_NAME>_CACHE_MODE

Sets the clustered cache mode. Specify one of the following:

® ASYNC for asynchronous operations.

® SYNC for synchronous operations.

<CACHE_NAME>_CACHE_QUEUE_SIZE

Sets the threshold at which the replication queue is flushed when the cache isin ASYNC mode. The
default value is O (flushing is disabled).

<CACHE_NAME>_CACHE_QUEUE_FLUSH_INTERVAL

Specifies the wakeup time, in milliseconds, for the thread that flushes the replication queue in
ASYNC mode. The default value is 10.

<CACHE_NAME>_CACHE_REMOTE_TIMEOUT

Specifies the timeout, in milliseconds, to wait for acknowledgement when making remote calls in
SYNC mode. If the timeout is reached, the remote call is aborted and an exception is thrown. The
default value is 177500.

<CACHE_NAME>_CACHE_OWNERS
Specifies the number of cluster-wide replicas for each cache entry. The default value is 2.
<CACHE_NAME>_CACHE_SEGMENTS

Specifies the number of hash space segments per cluster. The recommended value is 10 * cluster
size. The default value is 80.

<CACHE_NAME>_CACHE_L1_LIFESPAN

Specifies the maximum lifespan, in milliseconds, of an entry placed in the L1 cache. The default value
is O (L1is disabled).

<CACHE_NAME>_CACHE_MEMORY_EVICTION_TYPE

Defines the maximum limit for entries in the cache. You can set the following values:

® COUNT Measures the number of entries in the cache. When the count exceeds the
maximum, JBoss Data Grid evicts unused entries.

® MEMORY Measures the amount of memory that all entries in the cache take up. When the
total amount of memory exceeds the maximum, JBoss Data Grid evicts unused entries.

41

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

<CACHE_NAME>_CACHE_MEMORY_STORAGE_TYPE

Defines how JBoss Data Grid stores entries in the cache. You can set the following values:

Storage Type Description Eviction Type Policy

object Stores entries as COUNT TinyLFU
objects in the Java
heap. This is the default
storage type.

binary Stores entries as COUNT or MEMORY TinyLFU
bytes[] in the Java
heap.

off-heap Stores entries as COUNT or MEMORY LRU

bytes[] in native
memory outside the
Java.

<CACHE_NAME>_CACHE_MEMORY_EVICTION_SIZE

Configures the size of the cache before eviction starts. Set the value to a number greater than zero.

® For COUNT, the size is the maximum number of entries the cache can hold before eviction
starts.

o For MEMORY, the size is the maximum number of bytes the cache can take from memory
before eviction starts. For example, a value of 10000000000 is 10 GB.
Try different cache sizes to determine the optimal setting. A cache size that is too large can
cause JBoss Data Grid to run out of memory. At the same time, a cache size that is too small
wastes available memory.

NOTE

L

If you configure a JDBC store, passivation is automatically enabled when you
set the eviction size to a value that is greater than zero.

<CACHE_NAME>_CACHE_MEMORY_EVICTION_STRATEGY

Controls how JBoss Data Grid performs eviction. You can set the following values:

Strategy Description

NONE JBoss Data Grid does not evict entries. This is the
default setting unless you configure eviction.

REMOVE JBoss Data Grid removes entries from memory so
that the cache does not exceed the configured size.
This is the default setting when you configure
eviction.

42

CHAPTER 12. ENVIRONMENT VARIABLES

Strategy Description

MANUAL JBoss Data Grid does not perform eviction.
Eviction takes place manually by invoking the
evict() method from the Cache API.

EXCEPTION JBoss Data Grid does not write new entries to the
cache if doing so would exceed the configured size.
Instead of writing new entries to the cache, JBoss
Data Grid throws a ContainerFullException.

<CACHE_NAME>_CACHE_MEMORY_OFF_HEAP_ADDRESS_COUNT

Specifies the number of pointers that are available in the hash map to prevent collisions when using
OFFHEAP storage. Preventing collisions in the hash map improves performance.

Set the value to a number that is greater than the number of cache entries. By default address-
count is 2720, or 1048576. The parameter is always rounded up to a power of 2.

<CACHE_NAME>_CACHE_EXPIRATION_LIFESPAN

Specifies the maximum lifespan, in milliseconds, of a cache entry, after which the entry is expired
cluster-wide. The default value is -1 (entries never expire).

<CACHE_NAME>_CACHE_EXPIRATION_MAX_IDLE

Specifies the maximum idle time, in milliseconds, that cache entries are maintained in the cache. If
the idle time is exceeded, then the entry is expired cluster-wide. The default value is -1 (expiration is
disabled).

<CACHE_NAME>_CACHE_EXPIRATION_INTERVAL

Specifies the interval, in milliseconds, between runs to purge expired entries from memory and any
cache stores. The default value is 5000. Set -1 to disable expiration.

<CACHE_NAME>_JDBC_STORE_TYPE

Sets the type of JDBC store to configure. You can set the following values:
® string

® binary

<CACHE_NAME>_JDBC_STORE_DATASOURCE

Defines the jndiname of the datasource.
For example,
<CACHE_NAME>_JDBC_STORE_DATASOURCE-=java:jboss/datasources/ExampleDS

<CACHE_NAME>_KEYED_TABLE_PREFIX

Defines the prefix prepended to the cache name used when composing the name of the cache entry
table. The defaule value is ispn_entry.

<CACHE_NAME>_CACHE_INDEX

Sets the indexing mode of the cache. You can set the following values:

® NONE This is the default.

43

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

e | OCAL

e ALL

<CACHE_NAME>_INDEXING_PROPERTIES

Specifies a comma-separated list of properties to pass to the indexing system.
For example, <CACHE_NAME>_INDEXING_PROPERTIES=default.directory_provider=ram

<CACHE_NAME>_CACHE_SECURITY_AUTHORIZATION_ENABLED
Enables authorization checks for this cache. The value is true or false (default).
<CACHE_NAME>_CACHE_SECURITY_AUTHORIZATION_ROLES

Sets the roles required to access this cache.

For example, <CACHE_NAME>_CACHE_SECURITY_AUTHORIZATION_ROLES=admin, reader,
writer

<CACHE_NAME>_CACHE_PARTITION_HANDLING_ENABLED

Configures the cache to enter degraded mode if it loses too many nodes. The value is true (default)
or false.

Deprecated: The CACHE_PARTITION_HANDLING_ENABLED environment variable is deprecated.

Use CACHE_PARTITION_HANDLING_WHEN_SPLIT and CACHE_PARTITION_MERGE_POLICY
instead.

To achieve the same configuration as

e CACHE_PARTITION_HANDLING_ENABLED-=false, do not set environment variables so
that default values take effect as follows:

<CACHE_NAME>_CACHE_PARTITION_HANDLING_WHEN_SPLIT=ALLOW_READ_W
RITES

<CACHE_NAME> CACHE_PARTITION_MERGE_POLICY=NONE
e CACHE_PARTITION_HANDLING_ENABLED=true, set environment variables as follows:

<CACHE_NAME>_CACHE_PARTITION_HANDLING_WHEN_SPLIT=DENY_READ_WRI
TES

<CACHE_NAME>_CACHE_PARTITION_MERGE_POLICY=NONE

<CACHE_NAME>_CACHE_PARTITION_HANDLING_WHEN_SPLIT

Configures the strategy for handling partitions between nodes in a cluster when network events
isolate nodes from each other. Partitions function as independent clusters until JBoss Data Grid
merges cache entries to re-form a single cluster. You can set the following values:

Partition Handling Strategy Description

ALLOW_READ_WRITES

Nodes from any partition can read or write cache
entries. This is the default value.

44

CHAPTER 12. ENVIRONMENT VARIABLES

Partition Handling Strategy Description

DENY_READ_WRITES Nodes enter degraded mode if:

* One or more hash space segments in the
partition have no owners. The OWners are the
number of cluster-wide replicas for cache entries.

* The partition has less than half the nodes from
the most recent stable cluster topology.

In degraded mode, only nodes in the same partition
can read or write cache entries. All owners, or
copies, for a cache entry must exist on the same
partition, otherwise the read or write operation fails
with an AvailabilityException.

ALLOW_READS Nodes enter degraded mode similarly to the
DENY_READ_WRITES strategy. Nodes from any
partition can read cache entries.

In degraded mode, only nodes in the same partition
can write cache entries. All owners, or copies, for a
cache entry must exist on the same partition,
otherwise the write operation fails with an
AvailabilityException.

For more information, see Handling Network Partitions in the Administration and Configuration
Guide.

<CACHE_NAME>_CACHE_PARTITION_MERGE_POLICY

Configures how JBoss Data Grid resolves conflicts between cache entries when merging partitions.
You can set the following values:

Merge Policy Description

NONE Do not resolve conflicts when merging partitions.
This is the default value.

PREFERRED_ALWAYS Always use the preferredEntry. The
preferredEntry is the primary replica of a cache
entry that resides in the partition that contains the
most nodes. If the number of nodes is equal
between partitions, the preferredEntry is the
cache entry that resides in the partition with the
highest topology ID, which means that topology is
more recent.

45

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#handling_network_partitions_split_brain

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

Merge Policy Description

PREFERRED_NON_NULL Use the preferredEntry if it has a value (non-
null). If the preferredEntry does not have a value,
use the first entry defined in otherEntries.

REMOVE_ALL Remove entries (key and value) from the cache if
conflicts exist.

<CACHE_NAME>_STATE_TRANSFER_TIMEOUT

Sets the amount of time, in milliseconds, to wait for other cache instances in the cluster to transfer
state to the cache. If other cache instances do not transfer state before the timeout occurs, the
application throws an exception and aborts startup. The default value is 240000 (4 minutes).

You must use a custom template to set this environment variable. It does not take effect if you set
the state transfer timeout in the default JBoss Data Grid for OpenShift templates.

12.4. ENDPOINT CONFIGURATION

Clients can access JBoss Data Grid via REST, Hot Rod, and Memcached endpoints that you define in
the cache configuration.

Clients that run in the same project as JBoss Data Grid for OpenShift can access the cache via Hot Rod
and receive a full cluster view. These clients can also use consistent hashing capabilities.

However, when clients run in a different project to JBoss Data Grid for OpenShift, they need to access
the JBoss Data Grid cluster using an OpenShift service that exposes the HotRod endpoint externally.
Depending on your network configuration, clients might not have access to some pods and must use
BASIC client intelligence. In these cases, clients might require extra network hops to access data, which
can increase network latency.

External access to clients running in OpenShift requires routes with passthrough encryption termination.
Clients must also use BASIC client intelligence and the fully qualified domain name as a TLS/SNI host
name. Alternatively, you can expose the JBoss Data Grid cluster behind a Load Balancer service that is
externally available.

Configure endpoints with the following environment variables:

INFINISPAN_CONNECTORS

Defines a comma-separated list of connectors to configure. Defaults to hotrod, memcached, rest. If
authorization or authentication is enabled on the cache then you should remove memcached
because this protocol is inherently insecure.

MEMCACHED_CACHE

Sets the cache name for the Memcached connector. Defaults to memcached if you do not specify a
cache name with the CACHE_NAMES environment variable.

HOTROD_SERVICE_NAME

Defines the name of the {openshiftshort} service for the external Hot Rod connector.
The external hotrod connector is available only if you define this environment variable.

46

CHAPTER 12. ENVIRONMENT VARIABLES

For example, if you set HOTROD_SERVICE_NAME=DATAGRID_APP_HOTROD the Hot Rod
external connector returns DATAGRID_APP_HOTROD:11333.

HOTROD_AUTHENTICATION

Configures the hotrod-connectors with authentication in the ApplicationRealm. The value is true
or false (default).

HOTROD_ENCRYPTION

Configures the hotrod-connectors with encryption in the ApplicationRealm. The value is true or
false (default).

If you enable this environment variable, you must also set environment variables to encrypt client to
server communication. See Securing Network Traffic.

ENCRYPTION_REQUIRE_SSL_CLIENT_AUTH
Specifies if client certificate authentication is required. The value is true or false (default).
REST_SECURITY_DOMAIN

Specifies the security domain to use for authentication and authorization purposes. The default
value is none (no authentication).

REST_STORE_AS_STRING

Specifies if JBoss Data Grid saves entries as Java strings when written to the cache via the REST API.
The value is true or false (default).

Set the value to true if you are upgrading the image from a previous version and plan to read
persisted cache entries.

NOTE

JBoss Data Grid version 7.1and earlier:When you write entries to the cache through
the REST endpoint, JBoss Data Grid stores them as Java strings.

JBoss Data Grid version 7.2 and later: JBoss Data Grid stores cache entries as
bytes[] to enable data interoperability between clients and protocols.

If you upgrade JBoss Data Grid for OpenShift images from an previous version to
version 7.2, JBoss Data Grid returns null values when you attempt to read cache
entries that are persisted to a data store. To resolve the null values, set
REST_STORE_AS_STRING=true.

12.4.1. Exposed Ports

JBoss Data Grid for OpenShift exposes endpoints on the following ports by default:

Port Number Protocol Use

8080 TCP HTTP Access

8443 TCP HTTPS Access

8778 TCP Remote JMX Access

47

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

Port Number Protocol Use

n2n TCP Memcached Access

1222 TCP Internal Hotrod Access

1333 TCP External Hotrod Access
NOTE

From the same OpenShift namespace, the Hot Rod endpoint is accessible at
${pod_IP_address}:11222.

If you set the HOTROD_SERVICE_NAME environment variable, the Hot Rod external
connector returns ${service_name}:11333 for the endpoint.

12.5. DATASOURCE CONFIGURATION

You can configure datasources with the following environment variables:

DB_SERVICE_PREFIX_MAPPING

Defines a comma-separated list of datasources to configure.
For example, DB_SERVICE_PREFIX_MAPPING=test-mysql=TEST_MYSQL. See Configuring
Persistent Datasources for more information.

<NAME>_<DATABASE_TYPE>_SERVICE_HOST

Defines the database server hostname or IP for the datasource connection_url property.
For example, <NAME>_<DATABASE_TYPE>_SERVICE_HOST=192.0.2.0

<NAME>_<DATABASE_TYPE>_SERVICE_PORT

Defines the database server port.
<PREFIX>_USERNAME

Defines the user for the datasource.
<PREFIX>_PASSWORD

Defines the password for the datasource.
<PREFIX>_DATABASE

Defines the database name for the datasource.
For example, <PREFIX>_DATABASE=myDatabase.

<PREFIX>_DRIVER

Defines Java database driver for the datasource.
For example, <PREFIX>_DRIVER=postgresq|l

<PREFIX>_BACKGROUND_VALIDATION

Specifies if a background thread validates database connections before they are used. The value is
true or false (default). By default, the <validate-on-match> method is enabled.

<PREFIX>_BACKGROUND_VALIDATION_MILLIS

48

CHAPTER 12. ENVIRONMENT VARIABLES

Specifies how often validation occurs, in milliseconds, if you set the
<PREFIX>_BACKGROUND_VALIDATION environment variable to true. The default value is 10000.

<PREFIX>_CONNECTION_CHECKER

Specifies a connection checker class that validates connections to the database.
For example,
<PREFIX>_CONNECTION_CHECKER=o0rg.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQL

<PREFIX>_EXCEPTION_SORTER

Specifies the exception sorter class that detects and cleans up after fatal database connection
exceptions.

For example,
<PREFIX>_EXCEPTION_SORTER=org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionS

<PREFIX>_JNDI

Defines the JNDI name for the datasource.

Defaults to java:jboss/datasources/<name>_<database_type>. The launch script automatically
generates the value from the DB_SERVICE_PREFIX_MAPPING environment variable.

For example, <PREFIX>_JNDI=java:jboss/datasources/test-postgresql

<PREFIX>_JTA

Defines the Java Transaction API (JTA) option for non-XA datasources. The value is true (default)
or false.

<PREFIX>_MAX_POOL_SIZE
Defines the maximum pool size for the datasource.
<PREFIX>_MIN_POOL_SIZE
Defines the minimum pool size for the datasource.
<PREFIX>_NONXA
Defines the datasource as a non-XA datasource. The value is true or false (default).
<PREFIX>_TX_ISOLATION

Defines the java.sgl.Connection transaction isolation level for the database.
For example, <PREFIX>_TX_ISOLATION=TRANSACTION_READ_UNCOMMITTED

<PREFIX>_URL

Defines the connection URL for a non-XA datasource.

If you do not specify a connection URL, the launch script automatically generates it from other
environment variables as follows: url="jdbc:${DRIVER}://${HOST}:${PORT}/${DATABASE}".

However, the launch script constructs the correct connection URLs only for internal datasources
such as PostgreSQL and MySQL. If you use any other non-XA datasource you must specify the
connection URL.

For example, <PREFIX>_URL=jdbc:postgresql://localhost:5432/postgresdb

<PREFIX>_XA_CONNECTION_PROPERTY_<PROPERTY_NAME>

Defines connection properties for an XA datasource.
Consult the appropriate driver documentation for your datasource to find which XA properties you
can set on the connection.

49

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

For example,
<PREFIX>_XA_CONNECTION_PROPERTY_DatabaseName=/opt/eap/standalone/data/databases

This example adds the following to the configuration:

<xa-datasource-property
name="DatabaseName">/opt/eap/standalone/data/databases/db/accounts</xa-datasource-
property>

12.6. SECURITY DOMAIN CONFIGURATION

Use the following environment variables to customize the security domain for the container:

SECDOMAIN_NAME

Defines additional security domains.
For example: SECDOMAIN_NAME=myDomain

SECDOMAIN_PASSWORD_STACKING

Enables the password staking module and sets the useFirstPass option. The value is true or false
(default).

SECDOMAIN_LOGIN_MODULE

Specifies a login module to use. The default value is UsersRoles
SECDOMAIN_USERS_PROPERTIES

Specifies the properties file that contains user definitions. The default value is users.properties.
SECDOMAIN_ROLES_PROPERTIES

Specifies the properties file that contains role definitions. The default value is roles.properties.

50

CHAPTER 13. REFERENCE

CHAPTER 13. REFERENCE

13.1. ARTIFACT REPOSITORY MIRRORS

A repository in Maven holds build artifacts and dependencies of various types (all the project jars, library
jar, plugins or any other project specific artifacts). It also specifies locations from where to download
artifacts from, while performing the S2I build. Besides using central repositories, it is a common practice
for organizations to deploy a local custom repository (mirror).
Benefits of using a mirror are:

® Availability of a synchronized mirror, which is geographically closer and faster.

® Ability to have greater control over the repository content.

® Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

® |mproved build times.
Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http;//10.0.0.1:8080/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build

configuration of the application as follows:

1. ldentify the name of the build configuration to apply MAVEN_MIRROR_URL variable against:

oc get bc -0 name
buildconfig/jdg

2. Update build configuration of jdg with a MAVEN_MIRROR_URL environment variable

oc env bc/jdg MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "jdg" updated

3. Verify the setting

oc env bc/jdg --list
buildconfigs jdg
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule new build of the application

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

13.2. JBOSS DATA GRID FOR OPENSHIFT LOGS

51

Red Hat JBoss Data Grid 7.2 Data Grid for OpenShift

In addition to viewing the OpenShift logs, you can troubleshoot a running JBoss Data Grid for
OpenShift Image container by viewing its logs. These are outputted to the container’s standard out, and

are accessible with the following command:
I $ oc logs -f <pod_name> <container_name>
NOTE

By default, the OpenShift JBoss Data Grid for OpenShift Image does not have a file log
handler configured. Logs are only sent to the container’s standard out.

52

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. THE JBOSS DATA GRID FOR OPENSHIFT IMAGE
	1.2. JBOSS DATA GRID DOCUMENTATION
	1.3. VERSION INFORMATION

	CHAPTER 2. AUTHENTICATING WITH THE RED HAT CONTAINER CATALOG
	2.1. SETTING UP AUTHENTICATION WITH SERVICE ACCOUNT TOKENS
	2.1.1. Adding Tokens to Pull Secrets

	CHAPTER 3. GETTING STARTED WITH RED HAT JBOSS DATA GRID FOR OPENSHIFT
	3.1. IMPORTING JBOSS DATA GRID FOR OPENSHIFT IMAGE TEMPLATES
	3.1.1. Working with the JBoss Data Grid for OpenShift Image
	3.1.1.1. Viewing Information about the JBoss Data Grid for OpenShift Image
	3.1.1.2. Importing the JBoss Data Grid for OpenShift Image

	3.1.2. Importing OpenShift Secrets

	3.2. CONFIGURING JBOSS DATA GRID FOR OPENSHIFT DEPLOYMENTS
	3.2.1. Getting Started with Image Configuration
	3.2.2. Setting Parameters on the Command Line
	3.2.2.1. Instantiating the Template
	3.2.2.2. Listing Environment Variables
	3.2.2.3. Changing Environment Variables

	3.2.3. Modifying JBoss Data Grid for OpenShift Image Templates
	3.2.3.1. Exporting the Template
	3.2.3.2. Modifying the Template
	3.2.3.3. Importing and Instantiating the Modified Template

	3.3. INVOKING CACHE OPERATIONS THROUGH THE REST ENDPOINT
	3.3.1. Creating a Project and Instantiate a Template
	3.3.2. Examining Deployed Services
	3.3.3. Invoking a Get Operation on the Cache
	3.3.4. Inserting and Retrieving an Entry in the Cache
	3.3.5. Deleting the Entry from the Cache

	CHAPTER 4. CONFIGURING CLUSTERING
	4.1. CONFIGURING THE KUBERNETES DISCOVERY MECHANISM
	4.2. CONFIGURING THE DNS DISCOVERY MECHANISM

	CHAPTER 5. SECURING NETWORK TRAFFIC
	5.1. ENCRYPTING CLIENT TO SERVER COMMUNICATION
	5.2. ENCRYPTING TRAFFIC BETWEEN CLUSTERED SERVERS
	5.2.1. Setting Up Symmetric Encryption
	5.2.2. Setting Up Asymmetric Encryption

	CHAPTER 6. CONFIGURING PERSISTENT DATASOURCES
	6.1. CONFIGURING INTERNAL DATASOURCES
	6.1.1. Single Datasource Example
	6.1.2. Multiple Datasource Example

	6.2. CONFIGURING EXTERNAL DATASOURCES

	CHAPTER 7. MANAGING RED HAT JBOSS DATA GRID FOR OPENSHIFT
	CHAPTER 8. BUILDING RED HAT JBOSS DATA GRID FOR OPENSHIFT IMAGES
	8.1. USING THE JBOSS DATA GRID FOR OPENSHIFT IMAGE SOURCE-TO-IMAGE (S2I) PROCESS
	8.2. USING A MODIFIED JBOSS DATA GRID FOR OPENSHIFT IMAGE
	8.3. BINARY BUILDS

	CHAPTER 9. DEPLOYING JBOSS DATA GRID FOR OPENSHIFT WITH CUSTOM CONFIGURATION FILES
	9.1. SETTING UP THE CONFIGURATION FILES AND CUSTOM TEMPLATE
	9.2. CREATING DEPLOYMENTS WITH CUSTOM CONFIGURATION

	CHAPTER 10. UPGRADING RED HAT JBOSS DATA GRID FOR OPENSHIFT BETWEEN RELEASES
	CHAPTER 11. DEPLOYING AN EAP INFINISPAN APPLICATION WITH THE JBOSS DATA GRID FOR OPENSHIFT IMAGE
	11.1. IMPORTING THE LATEST EAP AND JBOSS DATA GRID FOR OPENSHIFT IMAGE STREAMS AND TEMPLATES
	11.1.1. Log In with Administrator Access
	11.1.2. Importing the EAP Images
	11.1.3. Creating the JBoss Data Grid for OpenShift Image Resources

	11.2. CREATING A PROJECT
	11.3. DEPLOYING THE JBOSS DATA GRID 7.2 SERVER
	11.4. DEPLOYING A BINARY BUILD OF EAP 6.4 / EAP 7.1 CARMART APPLICATION

	CHAPTER 12. ENVIRONMENT VARIABLES
	12.1. IMAGE INFORMATION
	12.2. CONTAINER CONFIGURATION
	12.3. CACHE CONFIGURATION
	12.3.1. Cache Container Security Configuration
	12.3.2. Cache Specific Configuration

	12.4. ENDPOINT CONFIGURATION
	12.4.1. Exposed Ports

	12.5. DATASOURCE CONFIGURATION
	12.6. SECURITY DOMAIN CONFIGURATION

	CHAPTER 13. REFERENCE
	13.1. ARTIFACT REPOSITORY MIRRORS
	13.2. JBOSS DATA GRID FOR OPENSHIFT LOGS

