
Red Hat CodeReady Workspaces 2.1

End-user Guide

Using Red Hat CodeReady Workspaces 2.1

Last Updated: 2020-07-02

Red Hat CodeReady Workspaces 2.1 End-user Guide

Using Red Hat CodeReady Workspaces 2.1

Supriya Takkhi

Robert Kratky
rkratky@redhat.com

Michal Maléř
mmaler@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Yana Hontyk
yhontyk@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for users using Red Hat CodeReady Workspaces.

. .

. .

. .

Table of Contents

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD
1.1. LOGGING IN TO CODEREADY WORKSPACES ON OPENSHIFT FOR THE FIRST TIME USING OAUTH
1.2. LOGGING IN TO CODEREADY WORKSPACES ON OPENSHIFT FOR THE FIRST TIME REGISTERING AS A
NEW USER
1.3. FINDING CODEREADY WORKSPACES CLUSTER URL USING THE OPENSHIFT 4 CLI

CHAPTER 2. CHE-THEIA IDE BASICS
2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA

2.1.1. Che-Theia task types
2.1.2. Running and debugging
2.1.3. Editing a task and launch configuration

2.2. VERSION CONTROL
2.2.1. Managing Git configuration: identity
2.2.2. Accessing a Git repository using HTTPS
2.2.3. Accessing a Git repository using a generated SSH key pair

2.2.3.1. Generating an SSH key using the CodeReady Workspaces command palette
2.2.3.2. Adding the associated public key to a repository or account on GitHub
2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

2.2.4. Managing pull requests using the GitHub PR plug-in
2.2.4.1. Using the GitHub Pull Requests plug-in
2.2.4.2. Creating a new pull request

2.3. CHE-THEIA TROUBLESHOOTING

CHAPTER 3. WORKSPACES OVERVIEW
3.1. CONFIGURING A WORKSPACE USING A DEVFILE

3.1.1. What is a devfile
3.1.2. Disambiguation between stacks and devfiles
3.1.3. Creating a workspace from the default branch of a Git repository
3.1.4. Creating a workspace from a feature branch of a Git repository
3.1.5. Creating a workspace from a publicly accessible standalone devfile using HTTP
3.1.6. Overriding devfile values using factory parameters
3.1.7. Creating a workspace using crwctl and a local devfile

3.2. MAKING A WORKSPACE PORTABLE USING A DEVFILE
3.2.1. What is a devfile
3.2.2. A minimal devfile
3.2.3. Generating workspace names
3.2.4. Writing a devfile for a project

3.2.4.1. Preparing a minimal devfile
3.2.4.2. Specifying multiple projects in a devfile

3.2.5. Devfile reference
3.2.5.1. Adding projects to a devfile

3.2.5.1.1. Project-source type: git
3.2.5.1.2. Project-source type: zip
3.2.5.1.3. Project clone-path parameter: clonePath

3.2.5.2. Adding components to a devfile
3.2.5.2.1. Component type: cheEditor
3.2.5.2.2. Component type: chePlugin
3.2.5.2.3. Specifying an alternative component registry
3.2.5.2.4. Specifying a component by linking to its descriptor
3.2.5.2.5. Tuning chePlugin component configuration
3.2.5.2.6. Component type: kubernetes
3.2.5.2.7. Overriding container entrypoints

6
6

6
7

8
8
9

10
13
13
13
15
16
16
16
17
17
17
17
18

19
20
20
21
21
21
22
22
25
26
26
26
27
27
27
28
29
29
29
30
30
31
31
31
31
32
32
32
33

Table of Contents

1

3.2.5.2.8. Overriding container environment variables
3.2.5.2.9. Specifying mount-source option
3.2.5.2.10. Component type: dockerimage

3.2.5.2.10.1. Mounting project sources
3.2.5.2.10.2. Container Entrypoint

3.2.5.2.11. Persistent Storage
3.2.5.2.12. Specifying container memory limit for components
3.2.5.2.13. Specifying container memory request for components
3.2.5.2.14. Specifying container CPU limit for components
3.2.5.2.15. Specifying container CPU request for components
3.2.5.2.16. Environment variables
3.2.5.2.17. Endpoints
3.2.5.2.18. OpenShift resources

3.2.5.3. Adding commands to a devfile
3.2.5.3.1. CodeReady Workspaces-specific commands
3.2.5.3.2. Editor-specific commands
3.2.5.3.3. Command preview URL

3.2.5.3.3.1. Setting the default way of opening preview URLs
3.2.5.4. Devfile attributes

3.2.5.4.1. Attribute: editorFree
3.2.5.4.2. Attribute: persistVolumes (ephemeral mode)

3.2.6. Objects supported in Red Hat CodeReady Workspaces 2.1
3.3. CONVERTING A CODEREADY WORKSPACES 1.X WORKSPACE TO A DEVFILE

3.3.1. Comparing CodeReady Workspaces 1.x workspace configuration to a devfile
3.3.2. Converting a CodeReady Workspaces 1.x workspace to a basic devfile
3.3.3. Accessing a CodeReady Workspaces 1.x workspace configuration

3.4. CREATING AND CONFIGURING A NEW CODEREADY WORKSPACES 2.1 WORKSPACE
3.4.1. Creating a new workspace from the dashboard
3.4.2. Adding projects to your workspace
3.4.3. Configuring the workspace and adding tools

3.4.3.1. Adding plug-ins
3.4.3.2. Defining the workspace editor
3.4.3.3. Defining specific container images
3.4.3.4. Adding commands to your workspace

3.5. IMPORTING A OPENSHIFT APPLICATION INTO A WORKSPACE
3.5.1. Including a OpenShift application in a workspace devfile definition
3.5.2. Adding a OpenShift application to an existing workspace using the dashboard
3.5.3. Generating a devfile from an existing OpenShift application

3.6. REMOTELY ACCESSING WORKSPACES
3.6.1. Remotely accessing workspaces using the OpenShift command-line tool
3.6.2. Downloading and uploading a file to a workspace using the command-line interface

3.7. CREATING A WORKSPACE FROM CODE SAMPLE
3.7.1. Creating a workspace from Get Started view of User Dashboard
3.7.2. Creating a workspace from Custom Workspace view of User Dashboard
3.7.3. Changing the configuration of an existing workspace
3.7.4. Running an existing workspace from the User Dashboard

3.7.4.1. Running an existing workspace from the User Dashboard with the Run button
3.7.4.2. Running an existing workspace from the User Dashboard using the Open button
3.7.4.3. Running an existing workspace from the User Dashboard using the Recent Workspaces

3.8. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF A PROJECT
3.8.1. Importing from the Dashboard into an existing workspace

3.8.1.1. Editing an existing repository
3.8.1.2. Editing the commands after importing a project

34
34
34
35
35
35
36
37
37
38
38
39
42
45
45
46
47
47
48
48
48
48
49
50
53
55
56
56
58
59
59
60
61

64
67
67
69
70
71
71
73
74
74
76
77
79
79
80
80
81

82
82
82

Red Hat CodeReady Workspaces 2.1 End-user Guide

2

. .

. .

. .

3.8.2. Importing to a running workspace using the Git: Clone command
3.8.3. Importing to a running workspace with git clone in a terminal

3.9. CONFIGURING WORKSPACE EXPOSURE STRATEGIES
3.9.1. Workspace exposure strategies

3.9.1.1. Multi-host strategy
3.9.2. Security considerations

3.9.2.1. JSON web token (JWT) proxy
3.9.2.2. Secured plug-ins and editors
3.9.2.3. Secured container-image components
3.9.2.4. Cross-site request forgery attacks
3.9.2.5. Phishing attacks

3.10. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT VARIABLE INTO A WORKSPACE CONTAINER

3.10.1. Mounting a secret as a file into a workspace container
3.10.2. Mounting a secret as an environment variable into a workspace container
3.10.3. The use of annotations in the process of mounting a secret into a workspace container

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS
4.1. WHAT IS A CHE-THEIA PLUG-IN

4.1.1. Features and benefits of Che-Theia plug-ins
4.1.2. Che-Theia plug-in concept in detail

4.1.2.1. Client-side and server-side Che-Theia plug-ins
4.1.2.2. Che-Theia plug-in APIs
4.1.2.3. Che-Theia plug-in capabilities
4.1.2.4. VS Code extensions and Eclipse Theia plug-ins

4.1.3. Che-Theia plug-in metadata
4.1.4. Che-Theia plug-in lifecycle
4.1.5. Embedded and remote Che-Theia plug-ins

4.1.5.1. Embedded (or local) plug-ins
4.1.5.2. Remote plug-ins
4.1.5.3. Comparison matrix

4.1.6. Remote plug-in endpoint
4.1.6.1. Defining a launch remote plug-in endpoint using Dockerfile

4.1.6.1.1. Using a wrapper script
4.1.6.2. Defining a launch remote plug-in endpoint in a meta.yaml file

4.2. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES
4.3. USING A VISUAL STUDIO CODE EXTENSION IN CODEREADY WORKSPACES

4.3.1. Publishing a VS Code extension into the CodeReady Workspaces plug-in registry
4.3.1.1. Writing a meta.yaml file and adding it to a plug-in registry

4.3.2. Adding a plug-in registry VS Code extension to a workspace
4.3.2.1. Adding a VS Code extension using the CodeReady Workspaces Plugins panel
4.3.2.2. Adding a VS Code extension using the workspace configuration

4.3.3. Choosing the sidecar image
4.3.4. Verifying the VS Code extension API compatibility level

4.4. ADDING TOOLS TO CODEREADY WORKSPACES AFTER CREATING A WORKSPACE
4.4.1. Additional tools in the CodeReady Workspaces workspace
4.4.2. Adding language support plug-in to the CodeReady Workspaces workspace

CHAPTER 5. CONFIGURING OAUTH AUTHORIZATION
5.1. CONFIGURING GITHUB OAUTH
5.2. CONFIGURING OPENSHIFT OAUTH

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
6.1. USING MAVEN ARTIFACT REPOSITORIES

84
85
85
86
86
86
86
87
87
87
87

87
88
90
92

94
95
95
95
96
96
96
97
97
101

103
103
104
105
106
106
107
108
109
110
110
110
112
112
113
114
115
116
116
116

119
119
119

121
121

Table of Contents

3

. .

. .

6.1.1. Defining repositories in settings.xml
6.1.2. Defining Maven settings.xml file across workspaces
6.1.3. Using self-signed certificates in Java projects

6.2. USING GRADLE ARTIFACT REPOSITORIES
6.2.1. Downloading different versions of Gradle
6.2.2. Configuring global Gradle repositories
6.2.3. Using self-signed certificates in Java projects

6.3. USING PYTHON ARTIFACT REPOSITORIES
6.3.1. Configuring Python to use a non-standard registry
6.3.2. Using self-signed certificates in Python projects

6.4. USING GO ARTIFACT REPOSITORIES
6.4.1. Configuring Go to use a non-standard-registry
6.4.2. Using self-signed certificates in Go projects

6.5. USING NUGET ARTIFACT REPOSITORIES
6.5.1. Configuring NuGet to use a non-standard artifact repository
6.5.2. Using self-signed certificates in NuGet projects

6.6. USING NPM ARTIFACT REPOSITORIES

CHAPTER 7. TROUBLESHOOTING FOR CODEREADY WORKSPACES END USERS
7.1. RESTARTING A CODEREADY WORKSPACES WORKSPACE IN DEBUG MODE AFTER START FAILURE
7.2. STARTING A CODEREADY WORKSPACES WORKSPACE IN DEBUG MODE

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW
8.1. FEATURES OF OPENSHIFT CONNECTOR
8.2. INSTALLING OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
8.3. AUTHENTICATING WITH OPENSHIFT CONNECTOR FROM CODEREADY WORKSPACES
8.4. CREATING COMPONENTS WITH OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
8.5. CONNECTING SOURCE CODE FROM GITHUB TO AN OPENSHIFT COMPONENT USING OPENSHIFT
CONNECTOR

121
123
124
126
126
126
127
128
128
128
129
129
130
130
130
131
132

133
133
134

136
136
137
137
139

140

Red Hat CodeReady Workspaces 2.1 End-user Guide

4

Table of Contents

5

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING
THE DASHBOARD

The Dashboard is accessible on your cluster from a URL like http://<che-instance>.<IP-
address>.mycluster.mycompany.com/dashboard/. This section describes how to access this URL on
OpenShift.

1.1. LOGGING IN TO CODEREADY WORKSPACES ON OPENSHIFT FOR
THE FIRST TIME USING OAUTH

This section describes how to log in to CodeReady Workspaces on OpenShift for the first time using
OAuth.

Prerequisites

Contact the administrator of the OpenShift instance to obtain the Red Hat CodeReady
Workspaces URL.

Procedure

1. Navigate to the Red Hat CodeReady Workspaces URL to display the Red Hat CodeReady
Workspaces login page.

2. Choose the OpenShift OAuth option.

3. The Authorize Access page is displayed.

4. Click on the Allow selected permissions button.

5. Update the account information: specify the Username, Email, First name and Last name
fields and click the Submit button.

Validation steps

The browser displays the Red Hat CodeReady Workspaces Dashboard.

1.2. LOGGING IN TO CODEREADY WORKSPACES ON OPENSHIFT FOR
THE FIRST TIME REGISTERING AS A NEW USER

This section describes how to log in to CodeReady Workspaces on OpenShift for the first time
registering as a new user.

Prerequisites

Contact the administrator of the OpenShift instance to obtain the Red Hat CodeReady
Workspaces URL.

Procedure

1. Navigate to the Red Hat CodeReady Workspaces URL to display the Red Hat CodeReady
Workspaces login page.

2. Choose the Register as a new user option.

Red Hat CodeReady Workspaces 2.1 End-user Guide

6

3. Update the account information: specify the Username, Email, First name and Last name
field and click the Submit button.

Validation steps

The browser displays the Red Hat CodeReady Workspaces Dashboard.

1.3. FINDING CODEREADY WORKSPACES CLUSTER URL USING THE
OPENSHIFT 4 CLI

This section describes how to obtain the CodeReady Workspaces cluster URL using the OpenShift 4 CLI
(command line interface). The URL can be retrieved from the OpenShift logs or from the checluster
Custom Resource.

Prerequisites

An instance of Red Hat CodeReady Workspaces running on OpenShift.

User is located in a CodeReady Workspaces installation namespace.

Procedure

1. To retrieve the CodeReady Workspaces cluster URL from the checluster CR (Custom
Resource), run:

$ oc get checluster --output jsonpath='{.items[0].status.cheURL}'

2. Alternatively, to retrieve the CodeReady Workspaces cluster URL from the OpenShift logs, run:

$ oc logs --tail=10 `(oc get pods -o name | grep operator)` | \
 grep "available at" | \
 awk -F'available at: ' '{print $2}' | sed 's/"//'

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD

7

CHAPTER 2. CHE-THEIA IDE BASICS
This section describes basics workflows and commands for Che-Theia: the native integrated
development environment for Red Hat CodeReady Workspaces.

Defining custom commands for Che-Theia

Version Control

Troubleshooting

2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA

The Che-Theia IDE allows users to define custom commands in a devfile that are then available when
working in a workspace.

The following is an example of the commands section of a devfile.

commands:
- name: theia:build
 actions:
 - type: exec
 component: che-dev
 command: >
 yarn
 workdir: /projects/theia
- name: run
 actions:
 - type: vscode-task
 referenceContent: |
 {
 "version": "2.0.0",
 "tasks":
 [
 {
 "label": "theia:watch",
 "type": "shell",
 "options": {"cwd": "/projects/theia"},
 "command": "yarn",
 "args": ["watch"]
 }
]
 }
- name: debug
 actions:
 - type: vscode-launch
 referenceContent: |
 {
 "version": "0.2.0",
 "configurations": [
 {
 "type": "node",
 "request": "attach",
 "name": "Attach by Process ID",
 "processId": "${command:PickProcess}"

Red Hat CodeReady Workspaces 2.1 End-user Guide

8

CodeReady Workspaces commands

theia:build

The exec type implies that the CodeReady Workspaces runner is used for command
execution. The user can specify the component in whose container the command is
executed.

The command field contains the command line for execution.

The workdir is the working directory in which the command is executed.

Visual Studio Code (VS Code) tasks

run

The type is vscode-task.

For this type of command, the referenceContent field must contain content with task
configurations in the VS Code format.

For more information about VS Code tasks, see the Task section on the Visual Studio User
Guide page.

VS Code launch configurations

debug

The type is vscode-launch.

It contains the launch configurations in the VS Code format.

For more information about VS Code launch configurations, see the Debugging section on
the Visual Studio documentation page .

For a list of available tasks and launch configurations, see the tasks.json and the launch.json
configuration files in the /workspace/.theia directory where the configuration from the devfile is
exported to.

2.1.1. Che-Theia task types

Two types of tasks exist in a devfile: tasks in the VS Code format and CodeReady Workspaces
commands. Tasks from the devfile are copied to the configuration file when the workspace is started.
Depending on the type of the task, the task is then available for running:

CodeReady Workspaces commands: From the Terminal → Run Task menu in the configured
tasks section, or from the My Workspace panel

Tasks in the VS Code format: From the Run Tasks menu

To run the task definitions provided by plug-ins, select the Terminal → Run Task menu option. The
tasks are placed in the detected tasks section.

 }
]
 }

CHAPTER 2. CHE-THEIA IDE BASICS

9

https://code.visualstudio.com/docs/editor/tasks
https://code.visualstudio.com/docs/editor/debugging#_launch-configurations

2.1.2. Running and debugging

Che-Theia supports the Debug Adapter Protocol. This protocol defines a generic way for how a
development tool can communicate with a debugger. It means Che-Theia works with all
implementations.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

Procedure

To debug an application:

1. Click Debug → Add Configuration to add debugging or launch configuration to the project.

2. From the pop-up menu, select the appropriate configuration for the application that you want
to debug.

Red Hat CodeReady Workspaces 2.1 End-user Guide

10

https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/implementors/adapters/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

3. Update the configuration by modifying or adding attributes.

4. Breakpoints can be toggled by clicking the editor margin.

CHAPTER 2. CHE-THEIA IDE BASICS

11

5. Open the context menu of the breakpoint to add conditions.

6. To start debugging, click View → Debug.

7. In the Debug view, select the configuration and press F5 to debug the application. Or, start the
application without debugging by pressing Ctrl+F5.

Red Hat CodeReady Workspaces 2.1 End-user Guide

12

2.1.3. Editing a task and launch configuration

Procedure

To customize the configuration file:

1. Edit the tasks.json or launch.json configuration files.

2. Add new definitions to the configuration file or modify the existing ones.

NOTE

The changes are stored in the configuration file.

3. To customize the task configuration provided by plug-ins, select the Terminal → Configure
TasksS menu option, and choose the task to configure. The configuration is then copied to the
tasks.json file and is available for editing.

2.2. VERSION CONTROL

Red Hat CodeReady Workspaces natively supports the VS Code SCM model . By default, Red Hat
CodeReady Workspaces includes the native VS Code Git extension as a Source Code Management
(SCM) provider.

2.2.1. Managing Git configuration: identity

The first thing to do before starting to use Git is to set a user name and email address. This is important
because every Git commit uses this information.

Prerequisites

The Visual Studio Code Git extension installed.

Procedure

To configure Git identity using the CodeReady Workspaces user interface, go to in Preferences.

1. Open File > Settings > Open Preferences:

CHAPTER 2. CHE-THEIA IDE BASICS

13

https://code.visualstudio.com/docs/editor/versioncontrol#_scm-providers
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support

2. In the opened window, navigate to the Git section, and find:

 user.name
 user.email

And configure the identity.

To configure Git identity using the command line, open the terminal of the Che-Theia container.

1. Navigate to the My Workspace view, and open Plugins > theia-ide… > New terminal:

Red Hat CodeReady Workspaces 2.1 End-user Guide

14

2. Execute the following commands:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Che-Theia permanently stores this information and restores it on future workspace starts.

2.2.2. Accessing a Git repository using HTTPS

Prerequisites

Git is installed. Install Git if needed by following Getting Started - Installing Git .

Procedure

To clone a repository using HTTPS:

1. Use the clone command provided by the Visual Studio Code Git extension.

CHAPTER 2. CHE-THEIA IDE BASICS

15

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://code.visualstudio.com/docs/editor/versioncontrol#_cloning-a-repository

Alternatively, use the native Git commands in the terminal to clone a project.

1. Navigate to destination folder using the cd command.

2. Use git clone to clone a repository:

$ git clone <link>

Red Hat CodeReady Workspaces supports git self-signed SSL certificates. See Deploying Red
Hat CodeReady Workspaces with support for git repositories with self-signed certificates to
learn more.

2.2.3. Accessing a Git repository using a generated SSH key pair

2.2.3.1. Generating an SSH key using the CodeReady Workspaces command palette

The following section describes a generation of an SSH key using the CodeReady Workspaces command
palette and its further use in Git provider communication. This SSH key restricts permissions for the
specific Git provider; therefore, the user has to create a unique SSH key for each Git provider in use.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of Red Hat CodeReady
Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady Workspaces
'quick-starts'.

An existing workspace defined on this instance of CodeReady Workspaces Creating a
workspace from user dashboard.

Personal GitHub account or other Git provider account created.

Procedure

A common SSH key pair that works with all the Git providers is present by default. To start using it, add
the public key to the Git provider.

1. Generate an SSH key pair that only works with a particular Git provider:

In the CodeReady Workspaces IDE, press F1 to open the Command Palette, or navigate to
View → Find Command in the top menu.
The command palette can be also activated by pressing Ctrl+Shift+p (or Cmd+Shift+p on
macOS).

Search for SSH: generate key pair for particular host by entering generate into the search
box and pressing Enter once filled.

Provide the hostname for the SSH key pair such as, for example, github.com.
The SSH key pair is generated.

2. Click the View button and copy the public key from the editor and add it to the Git provider.
Because of this action, the user can now use another command from the command palette:
Clone git repository by providing an SSH secured URL.

2.2.3.2. Adding the associated public key to a repository or account on GitHub

Red Hat CodeReady Workspaces 2.1 End-user Guide

16

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/advanced-configuration-options_crw#deploying-codeready-workspaces-with-support-for-git-repositories-with-self-signed-certificates_advanced-configuration-options
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://help.github.com/en/articles/types-of-github-accounts

To add the associated public key to a repository or account on GitHub:

1. Navigate to github.com.

2. Click the drop-down arrow next to the user icon in the upper right corner of the window.

3. Click Settings → SSH and GPG keys and then click the New SSH key button.

4. In the Title field, type a title for the key, and in the Key field, paste the public key copied from
CodeReady Workspaces.

5. Click the Add SSH key button.

2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

To add the associated public key to a Git repository or account on GitLab:

1. Navigate to gitlab.com.

2. Click the user icon in the upper right corner of the window.

3. Click Settings → SSH Keys.

4. In the Title field, type a title for the key and in the Key field, paste the public key copied from
CodeReady Workspaces.

5. Click the Add key button.

2.2.4. Managing pull requests using the GitHub PR plug-in

To manage GitHub pull requests, the VS Code GitHub Pull Request plug-in is available in the list of
plug-ins of the workspace.

2.2.4.1. Using the GitHub Pull Requests plug-in

Prerequisites

GitHub OAuth is configured. See Configuring GitHub OAuth.

Procedure

1. Authenticate by running the GitHub authenticate command.

2. You will be redirected to GitHub to authorize CodeReady Workspaces.

3. When CodeReady Workspaces is authorized, refresh the browser page where CodeReady
Workspaces is running to update the plug-in with the GitHub token.

Alternatively, manually fetch the GitHub token and paste it to the plug-in by running the GitHub Pull
Requests: Manually Provide Authentication Response command.

2.2.4.2. Creating a new pull request

1. Open the GitHub repository. To be able to execute remote operations, the repository must
have a remote with an SSH URL.

CHAPTER 2. CHE-THEIA IDE BASICS

17

https://github.com
https://gitlab.com
https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line

2. Checkout a new branch and make changes that you want to publish.

3. Run the GitHub Pull Requests: Create Pull Request command.

2.3. CHE-THEIA TROUBLESHOOTING

This section describes some of the most frequent issues with the Che-Theia IDE.

Che-Theia shows a notification with the following message: Plugin runtime crashed unexpectedly,
all plugins are not working, please reload the page. Probably there is not enough memory for the
plugins.

This means that one of the Che-Theia plug-ins that are running in the Che-Theia IDE container
requires more memory than the container has. To fix this problem, increase the amount of memory
for the Che-Theia IDE container:

1. Navigate to the CodeReady Workspaces Dashboard.

2. Select the workspace in which the problem happened.

3. Switch to the Devfile tab.

4. In the components section of the devfile, find a component of the cheEditor type.

5. Add a new property, memoryLimit: 1024M (or increase the value if it already exists).

6. Save changes and restart the workspace.

Additional resources

Asking the community for help: Mattermost channel dedicated to Red Hat CodeReady
Workspaces.

Reporting a bug: Red Hat CodeReady Workspaces repository issues .

Red Hat CodeReady Workspaces 2.1 End-user Guide

18

https://mattermost.eclipse.org/eclipse/channels/eclipse-che
https://github.com/eclipse/che

CHAPTER 3. WORKSPACES OVERVIEW
Red Hat CodeReady Workspaces provides developer workspaces with everything needed to a code,
build, test, run, and debug applications. To allow that, the developer workspaces provide four main
components:

1. The source code of a project.

2. A web-based IDE.

3. Tool dependencies, needed by developers to work on a project

4. Application runtime: a replica of the environment where the application runs in production

Pods manage each component of a CodeReady Workspaces workspace. Therefore, everything running
in a CodeReady Workspaces workspace is running inside containers. This makes a CodeReady
Workspaces workspace highly portable.

The embedded browser-based IDE is the point of access for everything running in a CodeReady
Workspaces workspace. This makes a CodeReady Workspaces workspace easily shareable.

IMPORTANT

By default, it is possible to run only one workspace at a time. To change the default value,
see: {link-limits-for-user-workspaces}.

Table 3.1. Features and benefits

Features Traditional IDE workspaces Red Hat CodeReady
Workspaces workspaces

Configuration and installation
required

Yes. No.

Embedded tools Partial. IDE plug-ins need
configuration. Dependencies
need installation and
configuration. Example: JDK,
Maven, Node.

Yes. Plug-ins provide their
dependencies.

Application runtime provided No. Developers have to manage
that separately.

Yes. Application runtime is
replicated in the workspace.

Shareable No. Or not easily Yes. Developer workspaces are
shareable with a URL.

Versionable No Yes. Devfiles exist with project
source code.

Accessible from anywhere No. Installation is needed. Yes. Only requires a browser.

To start a CodeReady Workspaces workspace, following options are available:

CHAPTER 3. WORKSPACES OVERVIEW

19

Creating and configuring a new workspace using the Dashboard

Configuring a workspace using a devfile

Use the Dashboard to discover CodeReady Workspaces 2.1:

Creating a workspace from code sample

Creating a workspace by importing source code of a project

Use a devfile as the preferred way to start a CodeReady Workspaces 2.1 workspace:

Making a workspace portable using a devfile

Converting a CodeReady Workspaces 1.x workspace to a devfile

Importing a OpenShift application into a workspace

Use the browser-based IDE as the preferred way to interact with a CodeReady Workspaces 2.1
workspace. For an alternative way to interact with a CodeReady Workspaces 2.1 workspace, see:
Remotely accessing workspaces.

3.1. CONFIGURING A WORKSPACE USING A DEVFILE

To quickly and easily configure a CodeReady Workspaces workspace, use a devfile. For an introduction
to devfiles and instructions for their use, see the instructions in this section.

3.1.1. What is a devfile

A devfile is a file that describes and define a development environment:

the source code

the development components (browser IDE tools and application runtimes)

a list of pre-defined commands

projects to clone

Devfiles are YAML files that CodeReady Workspaces consumes and transforms into a cloud workspace
composed of multiple containers. The devfile can be saved in the root folder of a Git repository, a
feature branch of a Git repository, a publicly accessible destination, or as a separate, locally stored
artifact.

When creating a workspace, CodeReady Workspaces uses that definition to initiate everything and run
all the containers for the required tools and application runtimes. CodeReady Workspaces also mounts
file-system volumes to make source code available to the workspace.

Devfiles can be versioned with the project source code. When there is a need for a workspace to fix an
old maintenance branch, the project devfile provides a definition of the workspace with the tools and
the exact dependencies to start working on the old branch. Use it to instantiate workspaces on demand.

CodeReady Workspaces maintains the devfile up-to-date with the tools used in the workspace:

Projects of the workspace (path, Git location, branch)

Commands to perform daily tasks (build, run, test, debug)

Red Hat CodeReady Workspaces 2.1 End-user Guide

20

Runtime environment (container images to run the application)

Che-Theia plug-ins with tools, IDE features, and helpers that a developer would use in the
workspace (Git, Java support, SonarLint, Pull Request)

3.1.2. Disambiguation between stacks and devfiles

This section describes differences between stacks in CodeReady Workspaces 2.0 and devfiles in
CodeReady Workspaces 2.1

Starting with CodeReady Workspaces 2.1:

A stack is a pre-configured CodeReady Workspaces workspace.

A devfile is a configuration YAML file that CodeReady Workspaces consumes and transforms in
a cloud workspace composed of multiple containers.

In CodeReady Workspaces 2.0, stacks were defined by a stacks.json file that was included with the che
server. In contrast, in CodeReady Workspaces 2.1, the stacks.json file does not exist. Instead, a stack is
defined in the devfile registry, which is a separate service. Every single devfile in the registry
corresponds to a stack.

Note that in CodeReady Workspaces 2.0, stacks and workspaces were defined using two different
formats. However, with CodeReady Workspaces 2.1, the devfile format is used to define both the stacks
and the workspaces. Nevertheless, a user opening the user dashboard does not notice any difference: in
CodeReady Workspaces 2.1, a list of stacks is still present to choose from as a starting point to create a
workspace.

3.1.3. Creating a workspace from the default branch of a Git repository

A CodeReady Workspaces workspace can be created by pointing to a devfile that is stored in a Git
source repository. The CodeReady Workspaces instance then uses the discovered devfile.yaml file to
build a workspace using the /f?url= API.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

The devfile.yaml file in the root folder of a Git repository available over HTTPS. See Making a
workspace portable using a devfile for detailed information about creating and using devfiles.

Procedure

Run the workspace by opening the following URL: https://codeready-<openshift_deployment_name>.
<domain_name>/f?url=https://<GitRepository>

Example

https://che.openshift.io/f?url=https://github.com/eclipse/che

3.1.4. Creating a workspace from a feature branch of a Git repository

A CodeReady Workspaces workspace can be created by pointing to devfile that is stored in a Git source

CHAPTER 3. WORKSPACES OVERVIEW

21

https://github.com/eclipse/che/blob/master/devfile.yaml
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

A CodeReady Workspaces workspace can be created by pointing to devfile that is stored in a Git source
repository on a feature branch of the user’s choice. The CodeReady Workspaces instance then uses the
discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

The devfile.yaml file in the root folder of a Git repository on a specific branch of the user’s
choice available over HTTPS. See Making a workspace portable using a devfile for detailed
information about creating and using devfiles.

Procedure

Execute the workspace by opening the following URL: https://codeready-
<openshift_deployment_name>.<domain_name>/f?url=<GitHubBranch>

Example

Use following URL format to open an experimental quarkus-quickstarts branch hosted on
che.openshift.io.

https://che.openshift.io/f?url=https://github.com/maxandersen/quarkus-quickstarts/tree/che

3.1.5. Creating a workspace from a publicly accessible standalone devfile using HTTP

A workspace can be created using a devfile, the URL of which is pointing to the raw content of the
devfile. The CodeReady Workspaces instance then uses the discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

The publicly-accessible standalone devfile.yaml file. See Making a workspace portable using a
Devfile for detailed information about creating and using devfiles.

Procedure

1. Execute the workspace by opening the following URL: {prod-fun}/f?
url=https://<yourhosturl>/devfile.yaml

Example

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml

3.1.6. Overriding devfile values using factory parameters

Values in the following sections of a remote devfile can be overridden using specially constructed
additional factory parameters:

Red Hat CodeReady Workspaces 2.1 End-user Guide

22

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://github.com/quarkusio/quarkus-quickstarts
https://che.openshift.io
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

apiVersion

metadata

projects

attributes

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

A publicly accessible standalone devfile.yaml file. See Making a workspace portable using a
Devfile for detailed information about creating and using devfiles.

Procedure

1. Open the workspace by navigating to the following URL: https://codeready-
<openshift_deployment_name>.<domain_name>/f?
url=https://<hostURL>/devfile.yaml&override.<parameter.path>=<value>

Example of overriding the generateName property

Consider the following initial devfile:

apiVersion: 1.0.0
metadata:
 generateName: golang-
projects:
...

To add or override generateName value, the following factory URL can be used:

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml&override.metadata.generateName=myprefix

The resulting workspace will have the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: myprefix
projects:
...

Example of overriding project source branch property

Consider the following initial devfile:

apiVersion: 1.0.0

CHAPTER 3. WORKSPACES OVERVIEW

23

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

metadata:
 generateName: java-mysql-
projects:
 - name: web-java-spring-petclinic
 source:
 type: git
 location: "https://github.com/spring-projects/spring-petclinic.git"
...

To add or override source branch value, the following factory URL can be used:

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml&override.projects.web-java-spring-
petclinic.source.branch=1.0.x

The resulting workspace will have the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: java-mysql-
projects:
 - name: web-java-spring-petclinic
 source:
 type: git
 location: "https://github.com/spring-projects/spring-petclinic.git"
 branch: 1.0.x
...

Example of overriding or creating an attribute value

Consider the following initial devfile:

apiVersion: 1.0.0
metadata:
 generateName: golang-
attributes:
 persistVolumes: false
projects:
...

To add or override persistVolumes attribute value, the following factory URL can be used:

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml&override.attributes.persistVolumes=true

The resulting workspace will have the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: golang-

Red Hat CodeReady Workspaces 2.1 End-user Guide

24

attributes:
 persistVolumes: true
projects:
...

When overriding attributes, everything that follows the attributes keyword treat as an attribute name,
so it’s possible to use dot-separated names:

https://che.openshift.io/f?
url=https://gist.githubusercontent.com/themr0c/ef8e59a162748a8be07e900b6401e6a8/raw/8802c2074
3cde712bbc822521463359a60d1f7a9/devfile.yaml&override.attributes.dot.name.format.attribute=true

The resulting workspace will have the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: golang-
attributes:
 dot.name.format.attribute: true
projects:
...

3.1.7. Creating a workspace using crwctl and a local devfile

A CodeReady Workspaces workspace can be created by pointing the crwctl tool to a locally stored
devfile. The CodeReady Workspaces instance then uses the discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

The CodeReady Workspaces CLI management tool. See the CodeReady Workspaces 2.1
Installation GuideInstalling the crwctl management tool.

The devfile is available on the local filesystem in the current working directory. See Making a
workspace portable using a Devfile for detailed information about creating and using devfiles.

Example

Download the devfile.yaml file from the GitHub repository to the current working directory.

Procedure

1. Run a workspace from a devfile using the workspace:start parameter with the crwctl tool as
follows:

$ crwctl workspace:start --devfile=devfile.yaml

Additional resources

Making a workspace portable using a Devfile

CHAPTER 3. WORKSPACES OVERVIEW

25

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://github.com/eclipse/che/blob/master/devfile.yaml

3.2. MAKING A WORKSPACE PORTABLE USING A DEVFILE

To transfer a configured CodeReady Workspaces workspace, create and export the devfile of the
workspace and load the devfile on a different host to initialize a new instance of the workspace. For
detailed instructions on how to create such a devfile, see below.

3.2.1. What is a devfile

A devfile is a file that describes and define a development environment:

the source code

the development components (browser IDE tools and application runtimes)

a list of pre-defined commands

projects to clone

Devfiles are YAML files that CodeReady Workspaces consumes and transforms into a cloud workspace
composed of multiple containers. The devfile can be saved in the root folder of a Git repository, a
feature branch of a Git repository, a publicly accessible destination, or as a separate, locally stored
artifact.

When creating a workspace, CodeReady Workspaces uses that definition to initiate everything and run
all the containers for the required tools and application runtimes. CodeReady Workspaces also mounts
file-system volumes to make source code available to the workspace.

Devfiles can be versioned with the project source code. When there is a need for a workspace to fix an
old maintenance branch, the project devfile provides a definition of the workspace with the tools and
the exact dependencies to start working on the old branch. Use it to instantiate workspaces on demand.

CodeReady Workspaces maintains the devfile up-to-date with the tools used in the workspace:

Projects of the workspace (path, Git location, branch)

Commands to perform daily tasks (build, run, test, debug)

Runtime environment (container images to run the application)

Che-Theia plug-ins with tools, IDE features, and helpers that a developer would use in the
workspace (Git, Java support, SonarLint, Pull Request)

3.2.2. A minimal devfile

The following is the minimum content required in a devfile.yaml file:

apiVersion

metadata name

For a complete devfile example, see Red Hat CodeReady Workspaces in CodeReady Workspaces
devfile.yaml.

apiVersion: 1.0.0
metadata:
 name: che-in-che-out

Red Hat CodeReady Workspaces 2.1 End-user Guide

26

https://redhat-developer.github.io/devfile/devfile#apiversion
https://redhat-developer.github.io/devfile/devfile#metadata
https://github.com/eclipse/che/blob/master/devfile.yaml

NAME OR GENERATENAME MUST BE DEFINED

Both name and generateName are optional parameters, but at least one of them must
be defined. See Section 3.2.3, “Generating workspace names”.

3.2.3. Generating workspace names

To specify a prefix for automatically generated workspace names, set the generateName parameter in
the devfile.yaml file:

The workspace name will be in the <generateName>YYYYY format (for example, che-2y7kp). Y is
random [a-z0-9] character.

The following naming rules apply when creating workspaces:

When name is defined, it is used as the workspace name: <name>

When only generateName is defined, it is used as the base of the generated name:
<generateName>YYYYY

NOTE

For workspaces created using a factory, defining name or generateName has the same
effect. The defined value is used as the name prefix: <name>YYYYY or
<generateName>YYYYY. When both generateName and name are defined,
generateName takes precedence.

3.2.4. Writing a devfile for a project

This section describes how to create a minimal devfile for your project and how to include more than one
projects in a devfile.

3.2.4.1. Preparing a minimal devfile

A minimal devfile sufficient to run a workspace consists of the following parts:

Specification version

Name

Example of a minimal devfile with no project

Without any further configuration, a workspace with the default editor is launched along with its default
plug-ins, which are configured on the CodeReady Workspaces Server. Che-Theia is configured as the
default editor along with the CodeReady Workspaces Machine Exec plug-in. When launching a

apiVersion: 1.0.0
metadata:
 generateName: che-

apiVersion: 1.0.0
metadata:
 name: minimal-workspace

CHAPTER 3. WORKSPACES OVERVIEW

27

workspace within a Git repository using a factory, the project from the given repository and branch is be
created by default. The project name then matches the repository name.

Add the following parts for a more functional workspace:

List of components: Development components and user runtimes

List of projects: Source code repositories

List of commands: Actions to manage the workspace components, such as running the
development tools, starting the runtime environments, and others

Example of a minimal devfile with a project

3.2.4.2. Specifying multiple projects in a devfile

A single devfile can specify multiple projects. For each project, specify the type of the source
repository, its location, and, optionally, the directory the project is cloned to.

Example of a devfile with two projects

In the preceding example, there are two projects defined, frontend and backend. Each project is
located in its own repository. The backend project has a specific requirement to be cloned into the
src/github.com/acmecorp/backend/ directory under the source root (implicitly defined by the
CodeReady Workspaces runtime) while the frontend project will be cloned into the frontend/ directory
under the source root.

Additional resources

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/spring-projects/spring-petclinic.git'
components:
 - type: chePlugin
 id: redhat/java/latest

apiVersion: 1.0.0
metadata:
 name: example-devfile
projects:
- name: frontend
 source:
 type: git
 location: https://github.com/acmecorp/frontend.git
- name: backend
 clonePath: src/github.com/acmecorp/backend
 source:
 type: git
 location: https://github.com/acmecorp/backend.git

Red Hat CodeReady Workspaces 2.1 End-user Guide

28

For a detailed explanation of all devfile component assignments and possible values, see:

Specification repository

Detailed json-schema documentation

These sample devfiles are a good source of inspiration:

Sample devfiles for Red Hat CodeReady Workspaces workspaces used by default in the user
interface.

Sample devfiles for Red Hat CodeReady Workspaces workspaces from Red Hat Developer
program.

3.2.5. Devfile reference

This section contains devfile reference and instructions on how to use the various elements that
devfiles consist of.

3.2.5.1. Adding projects to a devfile

Usually a devfile contains one or more projects. A workspace is created to develop those projects.
Projects are added in the projects section of devfiles.

Each project in a single devfile must have:

Unique name

Source specified

Project source consists of two mandatory values: type and location.

type

The kind of project-source provider.

location

The URL of project source.

CodeReady Workspaces supports the following project types:

git

Projects with sources in Git. The location points to a clone link.

github

Same as git but for projects hosted on GitHub only. Use git for projects that do not use GitHub-
specific features.

zip

Projects with sources in a ZIP archive. Location points to a ZIP file.

3.2.5.1.1. Project-source type: git

source:
 type: git
 location: https://github.com/eclipse/che.git
 startPoint: master 1

CHAPTER 3. WORKSPACES OVERVIEW

29

https://github.com/redhat-developer/devfile
https://redhat-developer.github.io/devfile/devfile
https://github.com/eclipse/che-devfile-registry/tree/master/devfiles
https://github.com/redhat-developer/devfile/tree/master/samples
https://github.com/

1

2

startPoint is the general value for tag, commitId, and branch. The startPoint, tag, commitId, and
branch parameters are mutually exclusive. When more than one is supplied, the following order is
used: startPoint, tag, commitId, branch.

sparseCheckoutDir the template for the sparse checkout Git feature. This is useful when only a
part of a project (typically only a single directory) is needed.

Example 3.1. sparseCheckoutDir parameter settings

Set to /my-module/ to create only the root my-module directory (and its content).

Omit the leading slash (my-module/) to create all my-module directories that exist in the
project. Including, for example, /addons/my-module/.
The trailing slash indicates that only directories with the given name (including their content)
are created.

Use wildcards to specify more than one directory name. For example, setting module-*
checks out all directories of the given project that start with module-.

For more information, see Sparse checkout in Git documentation .

3.2.5.1.2. Project-source type: zip

3.2.5.1.3. Project clone-path parameter: clonePath

The clonePath parameter specifies the path into which the project is to be cloned. The path must be
relative to the /projects/ directory, and it cannot leave the /projects/ directory. The default value is the
project name.

Example devfile with projects

 tag: 7.2.0
 commitId: 36fe587
 branch: master
 sparseCheckoutDir: wsmaster 2

source:
 type: zip
 location: http://host.net/path/project-src.zip

apiVersion: 1.0.0
metadata:
 name: my-project-dev
projects:
 - name: my-project-resourse
 clonePath: resources/my-project
 source:
 type: zip
 location: http://host.net/path/project-res.zip
 - name: my-project
 source:

Red Hat CodeReady Workspaces 2.1 End-user Guide

30

https://git-scm.com/docs/git-read-tree#_sparse_checkout

3.2.5.2. Adding components to a devfile

Each component in a single devfile must have a unique name.

3.2.5.2.1. Component type: cheEditor

Describes the editor used in the workspace by defining its id. A devfile can only contain one component
of the cheEditor type.

When cheEditor is missing, a default editor is provided along with its default plug-ins. The default plug-
ins are also provided for an explicitly defined editor with the same id as the default one (even if it is a
different version). Che-Theia is configured as default editor along with the CodeReady Workspaces
Machine Exec plug-in.

To specify that a workspace requires no editor, use the editorFree:true attribute in the devfile
attributes.

3.2.5.2.2. Component type: chePlugin

Describes plug-ins in a workspace by defining their id. It is allowed to have several chePlugin
components.

Both types above use an ID, which is slash-separated publisher, name and version of plug-in from the
CodeReady Workspaces Plug-in registry.

List of available CodeReady Workspaces plug-ins and more information about registry can be found in
the CodeReady Workspaces plug-in registry GitHub repository.

3.2.5.2.3. Specifying an alternative component registry

To specify an alternative registry for the cheEditor and chePlugin component types, use the
registryUrl parameter:

 type: git
 location: https://github.com/my-org/project.git
 branch: develop

components:
 - alias: theia-editor
 type: cheEditor
 id: eclipse/che-theia/next

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1

 components:
 - alias: exec-plugin
 type: chePlugin
 registryUrl: https://my-customregistry.com
 id: eclipse/che-machine-exec-plugin/0.0.1

CHAPTER 3. WORKSPACES OVERVIEW

31

https://github.com/eclipse/che-plugin-registry

3.2.5.2.4. Specifying a component by linking to its descriptor

An alternative way of specifying cheEditor or chePlugin, instead of using the editor or plug-in id (and
optionally an alternative registry), is to provide a direct link to the component descriptor (typically
named meta.yaml) by using the reference field:

NOTE

It is impossible to mix the id and reference fields in a single component definition; they
are mutually exclusive.

3.2.5.2.5. Tuning chePlugin component configuration

A chePlugin component may need to be precisely tuned, and in such case, component preferences can
be used. The example shows how to configure JVM using plug-in preferences.

Preferences may also be specified as an array:

3.2.5.2.6. Component type: kubernetes

A complex component type that allows to apply configuration from a list of OpenShift components.

The content can be provided through the reference attribute, which points to the file with the
component content.

Alternatively, to post a devfile with such components to REST API, the contents of the OpenShift list
can be embedded into the devfile using the referenceContent field:

 components:
 - alias: exec-plugin
 type: chePlugin
 reference: https://raw.githubusercontent.com.../plugin/1.0.1/meta.yaml

 id: redhat/java/0.38.0
 type: chePlugin
 preferences:
 java.jdt.ls.vmargs: '-noverify -Xmx1G -XX:+UseG1GC -XX:+UseStringDeduplication'

 id: redhat/java/0.38.0
 type: chePlugin
 preferences:
 go.lintFlags: ["--enable-all", "--new"]

 components:
 - alias: mysql
 type: kubernetes
 reference: petclinic.yaml
 selector:
 app.kubernetes.io/name: mysql
 app.kubernetes.io/component: database
 app.kubernetes.io/part-of: petclinic

 components:

Red Hat CodeReady Workspaces 2.1 End-user Guide

32

3.2.5.2.7. Overriding container entrypoints

As with the understood by OpenShift).

There can be more containers in the list (contained in Pods or Pod templates of deployments). To
select which containers to apply the entrypoint changes to.

The entrypoints can be defined as follows:

The entrypoints list contains constraints for picking the containers along with the command and args
parameters to apply to them. In the example above, the constraint is parentName: mysqlServer, which
will cause the command to be applied to all containers defined in any parent object called mysqlServer.
The parent object is assumed to be a top level object in the list defined in the referenced file, which is
app-deployment.yaml in the example above.

Other types of constraints (and their combinations) are possible:

containerName

the name of the container

parentName

the name of the parent object that (indirectly) contains the containers to override

parentSelector

the set of labels the parent object needs to have

A combination of these constraints can be used to precisely locate the containers inside the referenced
OpenShift list.

 - alias: mysql
 type: kubernetes
 reference: petclinic.yaml
 referenceContent: |
 kind: List
 items:
 -
 apiVersion: v1
 kind: Pod
 metadata:
 name: ws
 spec:
 containers:
 ... etc

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 entrypoints:
 - parentName: mysqlServer
 command: ['sleep']
 args: ['infinity']
 - parentSelector:
 app: prometheus
 args: ['-f', '/opt/app/prometheus-config.yaml']

CHAPTER 3. WORKSPACES OVERVIEW

33

3.2.5.2.8. Overriding container environment variables

To provision or override entrypoints in a OpenShift or OpensShift component, configure it in the
following way:

This is useful for temporary content or without access to editing the referenced content. The specified
environment variables are provisioned into each init container and containers inside all Pods and
Deployments.

3.2.5.2.9. Specifying mount-source option

To specify a project sources directory mount into container(s), use the mountSources parameter:

If enabled, project sources mounts will be applied to every container of the given component. This
parameter is also applicable for chePlugin type components.

3.2.5.2.10. Component type: dockerimage

A component type that allows to define a container image-based configuration of a container in a
workspace. A devfile can only contain one component of the dockerimage type. The dockerimage
type of component brings in custom tools into the workspace. The component is identified by its image.

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 env:
 - name: ENV_VAR
 value: value

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 mountSources: true

 components:
 - alias: maven
 type: dockerimage
 image: eclipe/maven-jdk8:latest
 volumes:
 - name: mavenrepo
 containerPath: /root/.m2
 env:
 - name: ENV_VAR
 value: value
 endpoints:
 - name: maven-server
 port: 3101
 attributes:
 protocol: http
 secure: 'true'
 public: 'true'
 discoverable: 'false'

Red Hat CodeReady Workspaces 2.1 End-user Guide

34

Example of a minimal dockerimage component

It specifies the type of the component, dockerimage and the image attribute names the image to be
used for the component using the usual Docker naming conventions, that is, the above type attribute is
equal to docker.io/library/golang:latest.

A dockerimage component has many features that enable augmenting the image with additional
resources and information needed for meaningful integration of the tool provided by the image with
Red Hat CodeReady Workspaces.

3.2.5.2.10.1. Mounting project sources

For the dockerimage component to have access to the project sources, you must set the
mountSources attribute to true.

The sources is mounted on a location stored in the CHE_PROJECTS_ROOT environment variable that
is made available in the running container of the image. This location defaults to /projects.

3.2.5.2.10.2. Container Entrypoint

The command attribute of the dockerimage along with other arguments, is used to modify the
entrypoint command of the container created from the image. In Red Hat CodeReady Workspaces the
container is needed to run indefinitely so that you can connect to it and execute arbitrary commands in
it at any time. Because the availability of the sleep command and the support for the infinity argument
for it is different and depends on the base image used in the particular images, CodeReady Workspaces
cannot insert this behavior automatically on its own. However, you can take advantage of this feature to,
for example, start necessary servers with modified configurations, etc.

3.2.5.2.11. Persistent Storage

Components of any type can specify the custom volumes to be mounted on specific locations within the

 memoryLimit: 1536M
 command: ['tail']
 args: ['-f', '/dev/null']

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
type: dockerimage
image: golang
memoryLimit: 512Mi
command: ['sleep', 'infinity']

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
type: dockerimage
image: golang
memoryLimit: 512Mi
mountSources: true
command: ['sleep', 'infinity']

CHAPTER 3. WORKSPACES OVERVIEW

35

Components of any type can specify the custom volumes to be mounted on specific locations within the
image. Note that the volume names are shared across all components and therefore this mechanism can
also be used to share file systems between components.

Example specifying volumes for dockerimage type:

Example specifying volumes for cheEditor/chePlugin type:

Example specifying volumes for kubernetes/openshift type:

3.2.5.2.12. Specifying container memory limit for components

To specify a container(s) memory limit for dockerimage, chePlugin, cheEditor, use the memoryLimit
parameter:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 volumes:
 - name: cache
 containerPath: /.cache

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next
 env:
 - name: HOME
 value: $(CHE_PROJECTS_ROOT)
 volumes:
 - name: cache
 containerPath: /.cache

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: openshift
 alias: mongo
 reference: mongo-db.yaml
 volumes:
 - name: mongo-persistent-storage
 containerPath: /data/db

 components:

Red Hat CodeReady Workspaces 2.1 End-user Guide

36

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, RAM limits can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults will be applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__MEMORY__LIMIT__MB system property).

3.2.5.2.13. Specifying container memory request for components

To specify a container(s) memory request for chePlugin or cheEditor, use the memoryRequest
parameter:

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, RAM requests can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults are applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__MEMORY__REQUEST__MB system property).

3.2.5.2.14. Specifying container CPU limit for components

To specify a container(s) CPU limit for chePlugin, cheEditor or dockerimage use the cpuLimit
parameter:

This limit will be applied to every container of the given component.

 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1
 memoryLimit: 1Gi
 - type: dockerimage
 image: eclipe/maven-jdk8:latest
 memoryLimit: 512M

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1
 memoryLimit: 1Gi
 memoryRequest: 512M
 - type: dockerimage
 image: eclipe/maven-jdk8:latest
 memoryLimit: 512M
 memoryRequest: 256M

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1
 cpuLimit: 1.5
 - type: dockerimage
 image: eclipe/maven-jdk8:latest
 cpuLimit: 750m

CHAPTER 3. WORKSPACES OVERVIEW

37

For the cheEditor and chePlugin component types, CPU limits can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults are applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__CPU__LIMIT__CORES system property).

3.2.5.2.15. Specifying container CPU request for components

To specify a container(s) CPU request for chePlugin, cheEditor or dockerimage use the cpuRequest
parameter:

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, CPU requests can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults are applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__CPU__REQUEST__CORES system property).

3.2.5.2.16. Environment variables

Red Hat CodeReady Workspaces allows you to configure Docker containers by modifying the
environment variables available in component’s configuration. Environment variables are supported by
the following component types: dockerimage, chePlugin, cheEditor, kubernetes, openshift. In case
component has multiple containers, environment variables will be provisioned to each container.

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/0.0.1
 cpuLimit: 1.5
 cpuRequest: 0.225
 - type: dockerimage
 image: eclipe/maven-jdk8:latest
 cpuLimit: 750m
 cpuRequest: 450m

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next
 memoryLimit: 2Gi

Red Hat CodeReady Workspaces 2.1 End-user Guide

38

NOTE

The variable expansion works between the environment variables, and it uses the
OpenShift convention for the variable references.

The predefined variables are available for use in custom definitions.

The following environment variables are pre-set by the CodeReady Workspaces server:

CHE_PROJECTS_ROOT: The location of the projects directory (note that if the component
does not mount the sources, the projects will not be accessible).

CHE_WORKSPACE_LOGS_ROOT__DIR: The location of the logs common to all the
components. If the component chooses to put logs into this directory, the log files are
accessible from all other components.

CHE_API_INTERNAL: The URL to the CodeReady Workspaces server API endpoint used for
communication with the CodeReady Workspaces server.

CHE_WORKSPACE_ID: The ID of the current workspace.

CHE_WORKSPACE_NAME: The name of the current workspace.

CHE_WORKSPACE_NAMESPACE: The CodeReady Workspaces namespace of the current
workspace. This environment variable is the name of the user or organization that the
workspace belongs to. Note that this is different from the OpenShift namespace or OpenShift
project to which the workspace is deployed.

CHE_MACHINE_TOKEN: The token used to authenticate the request against the CodeReady
Workspaces server.

CHE_MACHINE_AUTH_SIGNATUREPUBLICKEY: The public key used to secure the
communication with the CodeReady Workspaces server.

CHE_MACHINE_AUTH_SIGNATURE__ALGORITHM: The encryption algorithm used in the
secured communication with the CodeReady Workspaces server.

A devfiles may only need the CHE_PROJECTS_ROOT environment variable to locate the cloned
projects in the component’s container. More advanced devfiles might use the
CHE_WORKSPACE_LOGS_ROOT__DIR environment variable to read the logs (for example as part of
a devfile command). The environment variables used to securely access the CodeReady Workspaces
server are mostly out of scope for devfiles and are present only for advanced use cases that are usually
handled by the CodeReady Workspaces plug-ins.

3.2.5.2.17. Endpoints

Components of any type can specify the endpoints that the Docker image exposes. These endpoints
can be made accessible to the users if the CodeReady Workspaces cluster is running using a OpenShift
ingress or an OpenShift route and to the other components within the workspace. You can create an
endpoint for your application or database, if your application or database server is listening on a port and
you want to be able to directly interact with it yourself or you want other components to interact with it.

 env:
 - name: HOME
 value: $(CHE_PROJECTS_ROOT)

CHAPTER 3. WORKSPACES OVERVIEW

39

Endpoints have several properties as shown in the following example:

Here, there are two Docker images, each defining a single endpoint. Endpoint is an accessible port that
can be made accessible inside the workspace or also publicly (example, from the UI). Each endpoint has
a name and port, which is the port on which certain server running inside the container is listening. The
following are a few attributes that you can set on the endpoint:

discoverable: If an endpoint is discoverable, it means that it can be accessed using its name as
the host name within the workspace containers (in the OpenShift parlance, a service is created
for it with the provided name). 55

public: The endpoint will be accessible outside of the workspace, too (such endpoint can be

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - name: GOCACHE
 value: /tmp/go-cache
 endpoints:
 - name: web
 port: 8080
 attributes:
 discoverable: false
 public: true
 protocol: http
 - type: dockerimage
 image: postgres
 memoryLimit: 512Mi
 env:
 - name: POSTGRES_USER
 value: user
 - name: POSTGRES_PASSWORD
 value: password
 - name: POSTGRES_DB
 value: database
 endpoints:
 - name: postgres
 port: 5432
 attributes:
 discoverable: true
 public: false

Red Hat CodeReady Workspaces 2.1 End-user Guide

40

public: The endpoint will be accessible outside of the workspace, too (such endpoint can be
accessed from the CodeReady Workspaces user interface). Such endpoints are publicized
always on port 80 or 443 (depending on whether tls is enabled in CodeReady Workspaces).

protocol: For public endpoints the protocol is a hint to the UI on how to construct the URL for
the endpoint access. Typical values are http, https, ws, wss.

secure: A boolean (defaulting to false) specifying whether the endpoint is put behind a JWT
proxy requiring a JWT workspace token to grant access. The JWT proxy is deployed in the same
Pod as the server and assumes the server listens solely on the local loopback interface, such as
127.0.0.1.

WARNING

Listening on any other interface than the local loopback poses a security
risk because such server is accessible without the JWT authentication
within the cluster network on the corresponding IP addresses.

path: The URL of the endpoint.

unsecuredPaths: A comma-separated list of endpoint paths that are to stay unsecured even if
the secure attribute is set to true.

cookiesAuthEnabled: When set to true (the default is false), the JWT workspace token is
automatically fetched and included in a workspace-specific cookie to allow requests to pass
through the JWT proxy.

WARNING

This setting potentially allows a CSRF attack when used in conjunction with
a server using POST requests.

When starting a new server within a component, CodeReady Workspaces autodetects this, and the UI
offers to automatically expose this port as a public port. This is useful for debugging a web application,
for example. It is impossible to do this for servers that autostart with the container (for example, a
database server). For such components, specify the endpoints explicitly.

Example specifying endpoints for kubernetes/openshift and chePlugin/cheEditor types:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next

CHAPTER 3. WORKSPACES OVERVIEW

41

https://en.wikipedia.org/wiki/Cross-site_request_forgery

3.2.5.2.18. OpenShift resources

Complex deployments can be described using OpenShift resource lists that can be referenced in the
devfile. This makes them a part of the workspace.

IMPORTANT

 endpoints:
 - name: 'theia-extra-endpoint'
 port: 8880
 attributes:
 discoverable: true
 public: true

 - type: chePlugin
 id: redhat/php/latest
 memoryLimit: 1Gi
 endpoints:
 - name: 'php-endpoint'
 port: 7777

 - type: chePlugin
 alias: theia-editor
 id: eclipse/che-theia/next
 endpoints:
 - name: 'theia-extra-endpoint'
 port: 8880
 attributes:
 discoverable: true
 public: true

 - type: openshift
 alias: webapp
 reference: webapp.yaml
 endpoints:
 - name: 'web'
 port: 8080
 attributes:
 discoverable: false
 public: true
 protocol: http

 - type: openshift
 alias: mongo
 reference: mongo-db.yaml
 endpoints:
 - name: 'mongo-db'
 port: 27017
 attributes:
 discoverable: true
 public: false

Red Hat CodeReady Workspaces 2.1 End-user Guide

42

IMPORTANT

Because a CodeReady Workspaces workspace is internally represented as a
single deployment, all resources from the OpenShift list are merged into that
single deployment.

Be careful when designing such lists because this can result in name conflicts and
other problems.

Only the following subset of the OpenShift objects are supported: deployments,
pods, services, persistent volume claims, secrets, and config maps.
Kubernetes Ingresses are ignored, but OpenShift routes are supported. A
workspace created from a devfile using any other object types fails to start.

When running CodeReady Workspaces on a OpenShift cluster, only OpenShift
lists are supported. When running CodeReady Workspaces on an OpenShift
cluster, both OpenShift lists are supported.

The preceding component references a file that is relative to the location of the devfile itself. Meaning,
this devfile is only loadable by a CodeReady Workspaces factory to which you supply the location of the
devfile and therefore it is able to figure out the location of the referenced OpenShift resource list.

The following is an example of the postgres.yaml file.

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: kubernetes
 reference: ../relative/path/postgres.yaml

apiVersion: v1
kind: List
items:
-
 apiVersion: v1
 kind: Deployment
 metadata:
 name: postgres
 labels:
 app: postgres
 spec:
 template:
 metadata:
 name: postgres
 app:
 name: postgres
 spec:
 containers:

CHAPTER 3. WORKSPACES OVERVIEW

43

For a basic example of a devfile with an associated OpenShift list, see web-nodejs-with-db-sample on
redhat-developer GitHub.

If you use generic or large resource lists from which you will only need a subset of resources, you can
select particular resources from the list using a selector (which, as the usual OpenShift selectors, works
on the labels of the resources in the list).

 - image: postgres
 name: postgres
 ports:
 - name: postgres
 containerPort: 5432
 volumeMounts:
 - name: pg-storage
 mountPath: /var/lib/postgresql/data
 volumes:
 - name: pg-storage
 persistentVolumeClaim:
 claimName: pg-storage
-
 apiVersion: v1
 kind: Service
 metadata:
 name: postgres
 labels:
 app: postgres
 name: postgres
 spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 app: postgres
-
 apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: pg-storage
 labels:
 app: postgres
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git

Red Hat CodeReady Workspaces 2.1 End-user Guide

44

https://github.com/redhat-developer/devfile/tree/master/samples/web-nodejs-with-db-sample

Additionally, it is also possible to modify the entrypoints (command and arguments) of the containers
present in the resource list. For details of the advanced use case, see the reference (TODO: link).

3.2.5.3. Adding commands to a devfile

A devfile allows to specify commands to be available for execution in a workspace. Every command can
contain a subset of actions, which are related to a specific component in whose container it will be
executed.

You can use commands to automate the workspace. You can define commands for building and testing
your code, or cleaning the database.

The following are two kinds of commands:

CodeReady Workspaces specific commands: You have full control over what component
executes the command.

Editor specific commands: You can use the editor-specific command definitions (example:
tasks.json and launch.json in Che-Theia, which is equivalent to how these files work in VS
Code).

3.2.5.3.1. CodeReady Workspaces-specific commands

Each CodeReady Workspaces-specific command features:

An action attribute that is a command to execute.

A component attribute that specifies the container in which to execute the command.

The commands are run using the default shell in the container.

components:
 - type: kubernetes
 reference: ../relative/path/postgres.yaml
 selector:
 app: postgres

 commands:
 - name: build
 actions:
 - type: exec
 component: mysql
 command: mvn clean
 workdir: /projects/spring-petclinic

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:

CHAPTER 3. WORKSPACES OVERVIEW

45

+

NOTE

If a component to be used in a command must have an alias. This alias is used to
reference the component in the command definition. Example: alias: go-cli in
the component definition and component: go-cli in the command definition.
This ensures that Red Hat CodeReady Workspaces can find the correct container
to run the command in.

A command can have only one action.

3.2.5.3.2. Editor-specific commands

If the editor in the workspace supports it, the devfile can specify additional configuration in the editor-
specific format. This is dependent on the integration code present in the workspace editor itself and so
is not a generic mechanism. However, the default Che-Theia editor within Red Hat CodeReady
Workspaces is equipped to understand the tasks.json and launch.json files provided in the devfile.

 - type: dockerimage
 image: golang
 alias: go-cli
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - name: GOCACHE
 value: /tmp/go-cache
commands:
 - name: compile and run
 actions:
 - type: exec
 component: go-cli
 command: “go get -d && go run main.go”
 workdir: “${CHE_PROJECTS_ROOT}/src/github.com/acme/my-go-project”

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
commands:
 - name: tasks
 actions:
 - type: vscode-task
 referenceContent: >
 {
 "version": "2.0.0",
 "tasks": [

Red Hat CodeReady Workspaces 2.1 End-user Guide

46

1

2

This example shows association of a tasks.json file with a devfile. Notice the vscode-task type that
instructs the Che-Theia editor to interpret this command as a tasks definition and referenceContent
attribute that contains the contents of the file itself. You can also save this file separately from the
devfile and use reference attribute to specify a relative or absolute URL to it.

In addition to the vscode-task commands, the Che-Theia editor understands vscode-launch type
using which you can specify the launch configurations.

3.2.5.3.3. Command preview URL

It is possible to specify a preview URL for commands that expose web UI. This URL is offered for
opening when the command is executed.

TCP port where the application listens. Mandatory parameter.

The path part of the URL to the UI. Optional parameter. The default is root (/).

The example above opens http://__<server-domain>__/myweb, where <server-domain> is the URL to
the dynamically created OpenShift Ingress or OpenShift Route.

3.2.5.3.3.1. Setting the default way of opening preview URLs

By default, a notification that asks the user about the URL opening preference is displayed.

To specify the preferred way of previewing a service URL:

1. Open CodeReady Workspaces preferences in File → Settings → Open Preferences and find
che.task.preview.notifications in the CodeReady Workspaces section.

2. Choose from the list of possible values:

on — enables a notification for asking the user about the URL opening preferences

alwaysPreview — the preview URL opens automatically in the Preview panel as soon as a
task is running

alwaysGoTo — the preview URL opens automatically in a separate browser tab as soon as a

 {
 "label": "create test file",
 "type": "shell",
 "command": "touch ${workspaceFolder}/test.file"
 }
]
 }

commands:
 - name: tasks
 previewUrl:
 port: 8080 1
 path: /myweb 2
 actions:
 - type: exec
 component: go-cli
 command: "go run webserver.go"
 workdir: ${CHE_PROJECTS_ROOT}/webserver

CHAPTER 3. WORKSPACES OVERVIEW

47

alwaysGoTo — the preview URL opens automatically in a separate browser tab as soon as a
task is running

off — disables opening the preview URL (automatically and with a notification)

3.2.5.4. Devfile attributes

Devfile attributes can be used to configure various features.

3.2.5.4.1. Attribute: editorFree

When an editor is not specified in a devfile, a default is provided. When no editor is needed, use the
editorFree attribute. The default value of false means that the devfile requests the provisioning of the
default editor.

Example of a devfile without an editor

3.2.5.4.2. Attribute: persistVolumes (ephemeral mode)

By default, volumes and PVCs specified in a devfile are bound to a host folder to persist data even after
a container restart. To disable data persistence to make the workspace faster, such as when the volume
back end is slow, modify the persistVolumes attribute in the devfile. The default value is true. Set to
false to use emptyDir for configured volumes and PVC.

Example of a devfile with ephemeral mode enabled

3.2.6. Objects supported in Red Hat CodeReady Workspaces 2.1

The following table lists the objects that are partially supported in Red Hat CodeReady Workspaces 2.1:

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
components:
 - alias: myApp
 type: kubernetes
 local: my-app.yaml
attributes:
 editorFree: true

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/che-samples/web-java-spring-petclinic.git'
attributes:
 persistVolumes: false

Red Hat CodeReady Workspaces 2.1 End-user Guide

48

Object API OpenShi
ft Infra

OpenShi
ft Infra

Notes

Pod OpenShi
ft

Yes Yes -

Deploy
ment

OpenShi
ft

Yes Yes -

ConfigM
ap

OpenShi
ft

Yes Yes -

PVC OpenShi
ft

Yes Yes -

Secret OpenShi
ft

Yes Yes -

Service OpenShi
ft

Yes Yes -

Ingress OpenShi
ft

Yes No Minishift allows you to create Ingress and it works when the
host is specified (OpenShift creates a route for it). But, the
loadBalancer IP is not provisioned. To add Ingress support
for the OpenShift infrastructure node, generate routes
based on the provided Ingress.

Route OpenShi
ft

No Yes The OpenShift recipe must be made compatible with the
OpenShift Infrastructure and, instead of the provided route,
generate Ingress.

Templat
e

OpenShi
ft

Yes Yes The OpenShift API does not support templates. A
workspace with a template in the recipe starts successfully
and the default parameters are resolved.

Additional resources

Devfile specifications

3.3. CONVERTING A CODEREADY WORKSPACES 1.X WORKSPACE TO
A DEVFILE

This section describes how to manually convert a CodeReady Workspaces 1.x workspace configuration to
a CodeReady Workspaces 2.x devfile. The following are the benefits of using a devfile:

Using a portable file that works with any installation of CodeReady Workspaces; nothing needs
to be changed on the server to start a workspace.

Configuration can be stored in project repository and automatically used by CodeReady
Workspaces to start a workspace. To start a workspace, specify a devfile using the following
format: <che-instance-domain>/f?url=path, for example:

CHAPTER 3. WORKSPACES OVERVIEW

49

https://redhat-developer.github.io/devfile/devfile

https://che.openshift.io/f?url=https://raw.githubusercontent.com/redhat-
developer/devfile/master/getting-started/vertx/devfile.yaml

This creates and starts a new workspace based on the devfile defined in the URL attribute.

A human-readable YAML format for all content.

3.3.1. Comparing CodeReady Workspaces 1.x workspace configuration to a devfile

Below, there is a comparison of a CodeReady Workspaces 1.x workspace configuration and a
CodeReady Workspaces 2.x devfile. Both are Java Vert.x stacks with a default project and default
settings:

CodeReady Workspaces 1.x configuration file

{
 "defaultEnv": "default",
 "environments": {
 "default": {
 "machines": {
 "dev-machine": {
 "attributes": {
 "memoryLimitBytes": "2147483648"
 },
 "servers": {
 "8080/tcp": {
 "attributes": {},
 "port": "8080",
 "protocol": "http"
 }
 },
 "volumes": {},
 "installers": [
 "com.redhat.oc-login",
 "com.redhat.bayesian.lsp",
 "org.eclipse.che.ls.java",
 "org.eclipse.che.ws-agent",
 "org.eclipse.che.exec",
 "org.eclipse.che.terminal"
],
 "env": {}
 }
 },
 "recipe": {
 "type": "dockerimage",
 "content": "quay.io/openshiftio/che-vertx"
 }
 }
 },
 "projects": [
 {
 "links": [],
 "name": "vertx-http-booster",
 "attributes": {
 "language": [

Red Hat CodeReady Workspaces 2.1 End-user Guide

50

https://github.com/redhat-developer/devfile/blob/master/getting-started/vertx/devfile.yaml

 "java"
]
 },
 "type": "maven",
 "source": {
 "location": "https://github.com/openshiftio-vertx-boosters/vertx-http-booster",
 "type": "git",
 "parameters": {}
 },
 "path": "/vertx-http-booster",
 "description": "HTTP Vert.x Booster",
 "problems": [],
 "mixins": []
 }
],
 "name": "wksp-jhwp",
 "commands": [
 {
 "commandLine": "scl enable rh-maven33 'mvn compile vertx:debug -f ${current.project.path} -
Dvertx.disableDnsResolver=true'",
 "name": "debug",
 "attributes": {
 "goal": "Debug",
 "previewUrl": "${server.8080/tcp}"
 },
 "type": "custom"
 },
 {
 "commandLine": "scl enable rh-maven33 'mvn compile vertx:run -f ${current.project.path} -
Dvertx.disableDnsResolver=true'",
 "name": "run",
 "attributes": {
 "goal": "Run",
 "previewUrl": "${server.8080/tcp}"
 },
 "type": "custom"
 },
 {
 "commandLine": "scl enable rh-maven33 'mvn clean install -f ${current.project.path}'",
 "name": "build",
 "attributes": {
 "goal": "Build",
 "previewUrl": ""
 },
 "type": "mvn"
 },
 {
 "commandLine": "mvn -Duser.home=${HOME} -f ${CHE_PROJECTS_ROOT}/vertx-http-booster
clean package",
 "name": "vertx-http-booster:build",
 "attributes": {
 "goal": "Build",
 "previewUrl": ""
 },
 "type": "mvn"
 },

CHAPTER 3. WORKSPACES OVERVIEW

51

CodeReady Workspaces 2.x devfile

 {
 "commandLine": "mvn -Duser.home=${HOME} -f ${CHE_PROJECTS_ROOT}/vertx-http-booster
vertx:run",
 "name": "vertx-http-booster:run",
 "attributes": {
 "goal": "Run",
 "previewUrl": "${server.8080/tcp}"
 },
 "type": "mvn"
 }
],
 "links": []
}

metadata:
 name: testing-workspace
projects:
 - name: java-web-vertx
 source:
 location: 'https://github.com/che-samples/web-java-vertx'
 type: git
components:
 - id: redhat/java/latest
 type: chePlugin
 - mountSources: true
 endpoints:
 - name: 8080/tcp
 port: 8080
 memoryLimit: 512Mi
 type: dockerimage
 volumes:
 - name: m2
 containerPath: /home/user/.m2
 alias: maven
 image: 'quay.io/eclipse/che-java8-maven:nightly'
apiVersion: 1.0.0
commands:
 - name: maven build
 actions:
 - workdir: '${CHE_PROJECTS_ROOT}/java-web-vertx'
 type: exec
 command: 'mvn -Duser.home=${HOME} clean install'
 component: maven
 - name: run app
 actions:
 - workdir: '${CHE_PROJECTS_ROOT}/java-web-vertx'
 type: exec
 command: >
 JDBC_URL=jdbc:h2:/tmp/db \

 java -jar -Xdebug
 -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005 \

 ./target/*fat.jar

Red Hat CodeReady Workspaces 2.1 End-user Guide

52

3.3.2. Converting a CodeReady Workspaces 1.x workspace to a basic devfile

This section describes how to convert a CodeReady Workspaces 1.x workspace to a devfile. The result is
a basic CodeReady Workspaces 2.x devfile that can be used for further workspace creation.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

To convert a CodeReady Workspaces 1.x workspace to a devfile:

1. Open a CodeReady Workspaces 1.x configuration file to identify which CodeReady Workspaces
1.x stack is used in the workspace. Below, there is a detailed guide for Section 3.3.3, “Accessing a
CodeReady Workspaces 1.x workspace configuration”.

2. Create a new workspace from the CodeReady Workspaces 2.x devfile that corresponds to the
CodeReady Workspaces 1.x stack.

Table 3.2. CodeReady Workspaces 1.x stacks and their corresponding CodeReady
Workspaces 2.x devfiles

CodeReady Workspaces 1.x stacks CodeReady Workspaces 2.x devfile

Apache Camel based projects,
Apache Camel based projects on CodeReady
Workspaces 2.x

Apache Camel based on Spring Boot

.NET,

.NET Core with Che-Theia IDE
.NET Core

 component: maven
 - name: Debug remote java application
 actions:
 - referenceContent: |
 {
 "version": "0.2.0",
 "configurations": [
 {
 "type": "java",
 "name": "Debug (Attach) - Remote",
 "request": "attach",
 "hostName": "localhost",
 "port": 5005
 }]
 }
 type: vscode-launch

CHAPTER 3. WORKSPACES OVERVIEW

53

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

Go,
CentOS Go,
Go with Che-Theia IDE

Go

Java Gradle Java Gradle

Blank,
Java,
Java-MySQL,
Red Hat CodeReady Workspaces,
Java CentOS

Java Maven

Node,
CentOS Node.js

Node.js Express Web Application

Python,
Python with Che-Theia IDE

Python

Eclipse Vert.x Java Vert.x

PHP PHP Simple

Spring Boot Java Spring Boot

CodeReady Workspaces 1.x stacks CodeReady Workspaces 2.x devfile

a. By default, the example project is added to the workspace. To remove the default project,
click the Remove button:

b. To import a custom project that was used in CodeReady Workspaces 1.x workspace, click
the Add or Import Project and select Git or GitHub option:

c. Various commands can be added to devfiles of imported projects, for example, run, build,
and test. The commands are then accessible from the IDE when a workspace is started.
Custom commands and other devfile components can be added in the Devfile
configuration.

d. Click the Create & Proceed Editing button.

Red Hat CodeReady Workspaces 2.1 End-user Guide

54

Select the Devfile tab to update the configuration. Machine servers in CodeReady
Workspaces 1.x workspaces can be specified as components endpoints in a Devfile and
CodeReady Workspaces 1.x installers as components of the chePlugin type. See the
Devfile specification for detailed information about the supported properties and attributes.

e. Once the Devfile configuration is completed, click the Open button to start a newly created
CodeReady Workspaces 2.x workspace.

3.3.3. Accessing a CodeReady Workspaces 1.x workspace configuration

CodeReady Workspaces 1.x workspace configuration is not supported in CodeReady Workspaces 2.x,
but it can be accessed for converting it to a devfile.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

To access the CodeReady Workspaces 1.x workspace configuration:

1. In the Dashboard, click the Workspaces menu to open the workspaces list and locate the
workspace to migrate to CodeReady Workspaces 2.x.

2. In the Actions column, click the Configure workspace icon. The raw workspace configuration is
available under the Config tab.

CHAPTER 3. WORKSPACES OVERVIEW

55

https://redhat-developer.github.io/devfile/devfile
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

3.4. CREATING AND CONFIGURING A NEW CODEREADY
WORKSPACES 2.1 WORKSPACE

3.4.1. Creating a new workspace from the dashboard

This procedure describes how to create and edit a new CodeReady Workspaces devfile using the
Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

Procedure

To edit the devfile:

1. In the Workspaces window, click the Add Workspace button.

2. In the SELECT STACK list, select one of the default stacks.

Red Hat CodeReady Workspaces 2.1 End-user Guide

56

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

3. Click the Create & Proceed Editing button. The Workspaces → Configs page is shown.

4. Change the workspace name and click the Devfile tab.

CHAPTER 3. WORKSPACES OVERVIEW

57

5. Delete all the components and commands in the devfile to get an empty devfile.

3.4.2. Adding projects to your workspace

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

To add a project to your workspace:

Red Hat CodeReady Workspaces 2.1 End-user Guide

58

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

1. Click the Projects tab, and then click the Add Project button.

2. Select the type of the project. Choose from: Samples, Blank, Git, GitHub, or Zip.

3. Specify the required details for the project type that you selected, and click the Add button.

4. To add another project to the workspace, click the Add Project button.

5. After configuring the project for the workspace, check the change in the devfile, which is the
configuration file of the workspace, by opening the Devfile tab.

3.4.3. Configuring the workspace and adding tools

3.4.3.1. Adding plug-ins

CodeReady Workspaces 2.1 plug-ins replace CodeReady Workspaces 2.0 installers. The following table
lists the CodeReady Workspaces 2.1 plug-ins that have replaced CodeReady Workspaces 2.0 installers.

Table 3.3. CodeReady Workspaces 2.1 plug-ins that have replaced CodeReady Workspaces 2.0
installers

CodeReady Workspaces 2.0 installer CodeReady Workspaces 2.1 plug-in

org.eclipse.che.ws-agent Deprecated and not necessary

org.eclipse.che.terminal Deprecated and not necessary anymore-

org.eclipse.che.exec CodeReady Workspaces machine-exec Service

org.eclipse.che.ls.java Language Support for Java

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat

CHAPTER 3. WORKSPACES OVERVIEW

59

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

To add plug-ins to your workspace:

1. Click the Plugins tab.

2. Enable the plug-in that you want to add and click the Save button.

3.4.3.2. Defining the workspace editor

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

To define the editor to use with the workspace:

1. Click the Editors tab.

NOTE

The recommended editor for CodeReady Workspaces 2.1 is Che-Theia.

2. Enable the editor to add and click the Save button.

3. Click the Devfile tab to view the changes.

Red Hat CodeReady Workspaces 2.1 End-user Guide

60

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

3.4.3.3. Defining specific container images

Procedure

To add a new container image:

1. Copy the following section from the devfile into components:

2. When using type: kubernetes or type: openshift, you must:

Use separate recipe files.

NOTE

To use separate recipe files, the paths can be relative or absolute. For
example:

Alternatively, add the content as referenceContent (the referenceContent field replaces
the CodeReady Workspaces 2.0 recipe content).

- mountSources: true
 command:
 - sleep
 args:
 - infinity
 memoryLimit: 1Gi
 alias: maven3-jdk11
 type: dockerimage
 endpoints:
 - name: 8080/tcp
 port: 8080
 volumes:
 - name: projects
 containerPath: /projects
 image: 'maven:3.6.0-jdk-11'

...
 type: kubernetes
 reference: deploy_k8s.yaml
...

...
 type: openshift
 reference: deploy_openshift.yaml
...

CHAPTER 3. WORKSPACES OVERVIEW

61

3. Add a CodeReady Workspaces 2.0 recipe content to the CodeReady Workspaces 2.1 devfile as
referenceContent:

a. Click the Containers tab (Workspace → Details → Containers).

b. Copy the CodeReady Workspaces 2.0 recipe, and paste it into the separate CodeReady
Workspaces 2.1 component as a referenceContent.

c. Set the type from the original CodeReady Workspaces 2.0 configuration. The following is an
example of the resulting file:

 type: kubernetes
 referenceContent: |
 apiVersion: v1
 kind: Pod
 metadata:
 name: ws
 spec:
 containers:
 -
 image: 'rhche/centos_jdk8:latest'
 name: dev
 resources:
 limits:
 memory: 512Mi

Red Hat CodeReady Workspaces 2.1 End-user Guide

62

4. Copy the required fields from the old workspace (image, volumes, endpoints). For example:

Table 3.4. Сhe 6 and Сhe 7 equivalence table

CodeReady Workspaces 2.0 workspace
configuration

CodeReady Workspaces 2.1 workspace devfile

environments['defaultEnv'].machines['tar
get'].servers

components[n].endpoints

environments['defaultEnv'].machines['ma
chineName'].volumes

components[n].volumes

environments['defaultEnv'].recipe.type components[n].type

environments['defaultEnv'].recipe.conten
t

components[n].image

5. Change the memoryLimit and alias variables, if needed. Here, the field alias is used to set a

CHAPTER 3. WORKSPACES OVERVIEW

63

5. Change the memoryLimit and alias variables, if needed. Here, the field alias is used to set a
name for the component. It is generated automatically from the image field, if not set.

6. Change the memoryLimit, memoryRequest, or both fields to specify the RAM required for the
component.

7. Open the Devfile tab to see the changes.

8. Repeat the steps to add additional container images.

3.4.3.4. Adding commands to your workspace

The following is a comparison between workspace configuration commands in CodeReady Workspaces
2.0 (Figure 1) and CodeReady Workspaces 2.1 (Figure 2):

Figure 3.1. An example of the Workspace configuration commands in CodeReady Workspaces 2.0

 image: 'maven:3.6.0-jdk-11'
 alias: maven3-jdk11

 alias: maven3-jdk11
 memoryLimit: 256M
 memoryRequest: 128M

Red Hat CodeReady Workspaces 2.1 End-user Guide

64

Figure 3.1. An example of the Workspace configuration commands in CodeReady Workspaces 2.0

Figure 3.2. An example of the Workspace configuration commands in CodeReady Workspaces 2.1

Table 3.5. Сhe 6 and Сhe 7 equivalence table

CodeReady Workspaces 2.0 workspace
configuration

CodeReady Workspaces 2.1 workspace devfile

environments['defaultEnv'].commands[n].na
me

commands[n].name

environments['defaultEnv'].commands[n].act
ions.command

components[n].commandLine

Procedure

To define commands to your workspace, edit the workspace devfile:

1. Add (or replace) the commands section with the first command. Change the name and the
command fields from the original workspace configuration (see the preceding equivalence
table).

commands:
 - name: build
 actions:
 - type: exec
 command: mvn clean install

CHAPTER 3. WORKSPACES OVERVIEW

65

2. Copy the following YAML code into the commands section to add a new command. Change
the name and the command fields from the original workspace configuration (see the
preceding equivalence table).

3. Optionally, add the component field into actions. This indicates the component alias where the
command will be performed.

4. Repeat step 2 to add more commands to the devfile.

5. Click the Devfile tab to view the changes.

6. Save changes and start the new CodeReady Workspaces 2.1 workspace.

 - name: build and run
 actions:
 - type: exec
 command: mvn clean install && java -jar

Red Hat CodeReady Workspaces 2.1 End-user Guide

66

3.5. IMPORTING A OPENSHIFT APPLICATION INTO A WORKSPACE

This section describes how to import a OpenShift application into a CodeReady Workspaces workspace.

For demonstration purposes, the section uses a sample OpenShift application having the following two
Pods:

A Node.js application specified by this nodejs-app.yaml

A MongoDB Pod specified by this mongo-db.yaml

To run the application on a OpenShift cluster:

$ node=https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-
db-sample/nodejs-app.yaml && \
mongo=https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-
db-sample/mongo-db.yaml && \
oc apply -f ${mongo} && \
oc apply -f ${node}

To deploy a new instance of this application in a CodeReady Workspaces workspace, use one of the
following three scenarios:

Starting from scratch: Writing a new devfile

Modifying an existing workspace: Using the Dashboard user interface

From a running application: Generating a devfile with crwctl

3.5.1. Including a OpenShift application in a workspace devfile definition

This procedure demonstrates how to define the CodeReady Workspaces 2.1 workspace devfile by
OpenShift application.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat

CHAPTER 3. WORKSPACES OVERVIEW

67

https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-db-sample/nodejs-app.yaml
https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-db-sample/mongo-db.yaml

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

crwctl management tool is installed. See the CodeReady Workspaces 2.1 Installation
GuideInstalling the crwctl management tool

The devfile format is used to define a CodeReady Workspaces workspace, and its format is described in
the Making a workspace portable using a devfile section. The following is an example of the simplest
devfile:

Only the name (minimal-workspace) is specified. After the CodeReady Workspaces server processes
this devfile, the devfile is converted to a minimal CodeReady Workspaces workspace that only has the
default editor (Che-Theia) and the default editor plug-ins (example: the terminal).

Use the OpenShift type of components in the devfile to add OpenShift applications to a workspace.

For example, the user can embed the NodeJS-Mongo application in the minimal-workspace defined in
this paragraph by adding a components section.

Note that the sleep infinity command is added as the entrypoint of the Node.js application. This
prevents the application from starting at the workspace start phase. It allows the user to start it when
needed for testing or debugging purposes.

To make it easier for a developer to test the application, add the commands in the devfile:

apiVersion: 1.0.0
metadata:
 name: minimal-workspace

apiVersion: 1.0.0
metadata:
 name: minimal-workspace
components:
 - type: kubernetes
 reference: https://raw.githubusercontent.com/.../mongo-db.yaml
 - alias: nodejs-app
 type: kubernetes
 reference: https://raw.githubusercontent.com/.../nodejs-app.yaml
 entrypoints:
 - command: ['sleep']
 args: ['infinity']

apiVersion: 1.0.0
metadata:
 name: minimal-workspace
components:
 - type: kubernetes
 reference: https://raw.githubusercontent.com/.../mongo-db.yaml
 - alias: nodejs-app
 type: kubernetes
 reference: https://raw.githubusercontent.com/.../nodejs-app.yaml
 entrypoints:
 - command: ['sleep']
 args: ['infinity']
commands:

Red Hat CodeReady Workspaces 2.1 End-user Guide

68

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

Use this devfile to create and start a workspace with the crwctl command:

$ crwctl worspace:start --devfile <devfile-path>

The run command added to the devfile is available as a task in Che-Theia from the command palette.
When executed, the command starts the Node.JS application.

3.5.2. Adding a OpenShift application to an existing workspace using the dashboard

This procedure demonstrates how to modify an existing workspace and import the OpenShift
application using the newly created devfile.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

1. After the creation of a workspace, use the Workspace menu and then the Configure
workspace icon to manage the workspace.

2. To modify the workspace details, use the Devfile tab. The workspace details are displayed in
this tab in the devfile format.

 - name: run
 actions:
 - type: exec
 component: nodejs-app
 command: cd ${CHE_PROJECTS_ROOT}/nodejs-mongo-app/EmployeeDB/ && npm install &&
sed -i -- ''s/localhost/mongo/g'' app.js && node app.js

CHAPTER 3. WORKSPACES OVERVIEW

69

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

3. To add a OpenShift component, use the Devfile editor on the dashboard.

4. For the changes to take effect, save the devfile and restart the CodeReady Workspaces
workspace.

3.5.3. Generating a devfile from an existing OpenShift application

This procedure demonstrates how to generate a devfile from an existing OpenShift application using the
crwctl tool.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

crwctl management tool is installed. See the CodeReady Workspaces 2.1 Installation
GuideInstalling the crwctl management tool

Procedure

1. Use the crwctl devfile:generate command to generate a devfile:

$ crwctl devfile:generate

The user can also use the crwctl devfile:generate command to generate a devfile from, for
example, the NodeJS-MongoDB application.
The following example generates a devfile that includes the NodeJS component:

$ crwctl devfile:generate --selector="app=nodejs"
apiVersion: 1.0.0
metadata:
 name: crwctl-generated

Red Hat CodeReady Workspaces 2.1 End-user Guide

70

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

components:
 - type: kubernetes
 alias: app=nodejs
 referenceContent: |
 kind: List
 apiVersion: v1
 metadata:
 name: app=nodejs
 items:
 - apiVersion: apps/v1
 kind: Deployment
 metadata:
 labels:
 app: nodejs
 name: web
(...)

The Node.js application YAML definition is included in the devfile, inline, using the
referenceContent attribute.

To include support for a language, use the --language parameter:

$ crwctl devfile:generate --selector="app=nodejs" --language="typescript"
apiVersion: 1.0.0
metadata:
 name: crwctl-generated
components:
 - type: kubernetes
 alias: app=nodejs
 referenceContent: |
 kind: List
 apiVersion: v1
(...)
 - type: chePlugin
 alias: typescript-ls
 id: che-incubator/typescript/latest

2. Use the generated devfile to start a CodeReady Workspaces workspace with crwctl.

3.6. REMOTELY ACCESSING WORKSPACES

This section describes how to remotely access CodeReady Workspaces workspaces outside of the
browser.

CodeReady Workspaces workspaces exist as containers and are, by default, modified from a browser
window. In addition to this, there are the following methods of interacting with a CodeReady
Workspaces workspace:

Opening a command line in the workspace container using the OpenShift command-line tool,
kubectl

Uploading and downloading files using the kubectl tool

3.6.1. Remotely accessing workspaces using the OpenShift command-line tool

To access CodeReady Workspaces workspaces remotely using OpenShift command-line tool (kubectl),

CHAPTER 3. WORKSPACES OVERVIEW

71

To access CodeReady Workspaces workspaces remotely using OpenShift command-line tool (kubectl),
follow the instructions in this section.

NOTE

The kubectl tool is used in this section to open a shell and manage files in a CodeReady
Workspaces workspace. Alternatively, it is possible to use the oc OpenShift command-
line tool.

Prerequisites

The kubectl binary file from the OpenShift website.

Verify the installation of kubectl using the oc version command:

$ oc version
Client Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.0",
GitCommit:"e8462b5b5dc2584fdcd18e6bcfe9f1e4d970a529", GitTreeState:"clean",
BuildDate:"2019-06-19T16:40:16Z", GoVersion:"go1.12.5", Compiler:"gc",
Platform:"darwin/amd64"}
Server Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.0",
GitCommit:"e8462b5b5dc2584fdcd18e6bcfe9f1e4d970a529", GitTreeState:"clean",
BuildDate:"2019-06-19T16:32:14Z", GoVersion:"go1.12.5", Compiler:"gc",
Platform:"linux/amd64"}

For versions 1.5.0 or higher, proceed with the steps in this section.

Procedure

1. Use the exec command to open a remote shell.

2. To find the name of the OpenShift namespace and the Pod that runs the CodeReady
Workspaces workspace:

$ oc get pod -l che.workspace_id --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
che workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4 4/4 Running 0
6m4s

In the example above, the Pod name is workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4, and
the namespace is codeready.

1. To find the name of the container:

$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ oc get pod ${POD} -o custom-columns=CONTAINERS:.spec.containers[*].name
CONTAINERS
maven,che-machine-execpau,theia-ide6dj,vscode-javaw92

2. When you have the namespace, pod name, and the name of the container, use the kubectl
command to open a remote shell:

$ NAMESPACE=che

Red Hat CodeReady Workspaces 2.1 End-user Guide

72

https://kubernetes.io/docs/tasks/tools/install-kubectl/

$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc exec -ti -n ${NAMESPACE} ${POD} -c ${CONTAINER} bash
user@workspace7b2wemdf3hx7s3ln $

3. From the container, execute the build and run commands (as if from the CodeReady
Workspaces workspace terminal):

user@workspace7b2wemdf3hx7s3ln $ mvn clean install
[INFO] Scanning for projects...
(...)

Additional resources

For more about kubectl, see the OpenShift documentation.

3.6.2. Downloading and uploading a file to a workspace using the command-line
interface

This procedure describes how to use the kubectl tool to download or upload files remotely from or to an
Red Hat CodeReady Workspaces workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

Remote access to the CodeReady Workspaces workspace you intend to modify. For
instructions see Section 3.6.1, “Remotely accessing workspaces using the OpenShift command-
line tool”.

The kubectl binary file from the OpenShift website.

Verify the installation of kubectl using the oc version command:

Procedure

To download a local file named downloadme.txt from a workspace container to the current
home directory of the user, use the following in the CodeReady Workspaces remote shell.

$ REMOTE_FILE_PATH=/projects/downloadme.txt
$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc cp ${NAMESPACE}/${POD}:${REMOTE_FILE_PATH} ~/downloadme.txt -c
${CONTAINER}

To upload a local file named uploadme.txt to a workspace container in the /projects directory:

$ LOCAL_FILE_PATH=./uploadme.txt
$ NAMESPACE=che
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4

CHAPTER 3. WORKSPACES OVERVIEW

73

https://kubernetes.io/docs/reference/kubectl/overview/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

$ CONTAINER=maven
$ oc cp ${LOCAL_FILE_PATH} ${NAMESPACE}/${POD}:/projects -c ${CONTAINER}

Using the preceding steps, the user can also download and upload directories.

3.7. CREATING A WORKSPACE FROM CODE SAMPLE

Every stack includes a sample codebase, which is defined by the devfile of the stack. This section
explains how to create a workspace from this code sample in a sequence of three procedures.

1. Creating a workspace from the user dashboard:

a. Using the Get Started view.

b. Using the Custom Workspace view.

2. Changing the configuration of the workspace to add code sample.

3. Running an existing workspace from the user dashboard .

For more information about devfiles, see Configuring a CodeReady Workspaces workspace using a
devfile.

3.7.1. Creating a workspace from Get Started view of User Dashboard

This section describes how to create a workspace from the User Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady Workspaces
using the Dashboard.

2. In the left navigation panel, go to Get Started.

3. Click the Get Started tab.

4. In the gallery, there is list of samples that may be used to build and run projects.

Red Hat CodeReady Workspaces 2.1 End-user Guide

74

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

CHANGING RESOURCE LIMITS

Changing the memory requirements is only possible from the devfile.

5. Start the workspace: click the chosen stack card.

NEW WORKSPACE NAME

CHAPTER 3. WORKSPACES OVERVIEW

75

NEW WORKSPACE NAME

Workspace name can be auto-generated based on the underlying devfile of the stack.
Generated names always consist of the devfile metadata.generateName property as the
prefix and four random characters.

3.7.2. Creating a workspace from Custom Workspace view of User Dashboard

This section describes how to create a workspace from the User Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady Workspaces
using the Dashboard.

2. In the left navigation panel, go to Get Started.

3. Click the Custom Workspace tab.

4. Define a Name for the workspace.

NEW WORKSPACE NAME

Workspace name can be auto-generated based on the underlying devfile of the
stack. Generated names always consist of the devfile metadata.generateName
property as the prefix and four random characters.

5. In the Devfile section, select the devfile template that will be used to build and run projects.

CHANGING RESOURCE LIMITS

Changing the memory requirements is only possible from the devfile.

6. Start the workspace: click the Create & Open button at the bottom of the form:

Red Hat CodeReady Workspaces 2.1 End-user Guide

76

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

3.7.3. Changing the configuration of an existing workspace

This section describes how to change the configuration of an existing workspace from the User
Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady Workspaces
using the dashboard.

2. In the left navigation panel, go to Workspaces.

3. Click the name of a workspace to navigate to the configuration overview page.

4. Click the Overview tab and execute following actions:

Change the Workspace name.

Toggle Ephemeral mode.

Export the workspace configuration to a file or private cloud.

Delete the workspace.

5. In the Projects section, choose the projects to integrate in the workspace.

CHAPTER 3. WORKSPACES OVERVIEW

77

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

a. Click the Add Project button and do one of the following:

i. Enter the project Git repository URL to integrate in the workspace:

ii. Connect your GitHub account and select projects to integrate:

b. Click the Add button.

6. In the Plugins section, choose the plug-ins to integrate in the workspace.

EXAMPLE

Start with a generic Java-based stack, then add support for Node.js or Python.

7. In the Editors section, choose the editors to integrate in the workspace. The CodeReady
Workspaces 2.1 editor is based on Che-Theia.

EXAMPLE: SWITCH TO THE CODEREADY WORKSPACES 1.X EDITOR

To switch to the CodeReady Workspaces 1.x editor, select the GWT IDE.

8. From the Devfile tab, edit YAML configuration of the workspace. See the Devfile reference.

EXAMPLE: ADD COMMANDS

Red Hat CodeReady Workspaces 2.1 End-user Guide

78

EXAMPLE: ADD COMMANDS

EXAMPLE: ADD A PROJECT

To add a project into the workspace, add or edit the following section:

3.7.4. Running an existing workspace from the User Dashboard

This section describes how to run an existing workspace from the User Dashboard.

3.7.4.1. Running an existing workspace from the User Dashboard with the Run button

This section describes how to run an existing workspace from the User Dashboard using the Run button.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady Workspaces
using the dashboard.

projects:
 - name: che
 source:
 type: git
 location: 'https://github.com/eclipse/che.git'

CHAPTER 3. WORKSPACES OVERVIEW

79

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

2. In the left navigation panel, navigate to Workspaces.

3. Click on the name of a non-running workspace to navigate to the overview page.

4. Click on the Run button in the top right corner of the page.

5. The workspace is started.

6. The browser does not navigates to the workspace.

3.7.4.2. Running an existing workspace from the User Dashboard using the Open button

This section describes how to run an existing workspace from the User Dashboard using the Open
button.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady Workspaces
using the dashboard.

2. In the left navigation panel, navigate to Workspaces.

3. Click on the name of a non-running workspace to navigate to the overview page.

4. Click on the Open button in the top right corner of the page.

5. The workspace is started.

6. The browser navigates to the workspace.

3.7.4.3. Running an existing workspace from the User Dashboard using the Recent
Workspaces

This section describes how to run an existing workspace from the User Dashboard using the Recent
Workspaces.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

Red Hat CodeReady Workspaces 2.1 End-user Guide

80

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

1. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady Workspaces
using the dashboard.

2. In the left navigation panel, in the Recent Workspaces section, right-click the name of a non-
running workspace and click Run in the contextual menu to start it.

3.8. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF
A PROJECT

This section describes how to create a new workspace to edit an existing codebase.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace with plug-ins related to your development environment defined on this
instance of Red Hat CodeReady Workspaces Creating a workspace from user dashboard .

There are two ways to do that before starting a workspace:

Select a stack from the Dashboard, then change the devfile to include your project

Add a devfile to a git repository and start the workspace using crwctl or a factory

To create a new workspace to edit an existing codebase, use one of the following three methods after
you have started the workspace:

CHAPTER 3. WORKSPACES OVERVIEW

81

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

Import from the Dashboard into an existing workspace

Import to a running workspace using the git clone command

Import to a running workspace using git clone in a terminal

3.8.1. Importing from the Dashboard into an existing workspace

1. Import the project. There are at least two ways to import a project using the Dashboard.

From the Dashboard, select Workspaces, then select your workspace by clicking on its
name. This will link you to the workspace’s Overview tab.

Or, use the gear icon. This will link to the Devfile tab where you can enter your own YAML
configuration.

2. Click the Projects tab.

3. Click Add Project. You can then import project by a repository Git URL or from GitHub.

NOTE

You can add a project to a non-running workspace, but you must start the workspace to
delete it.

3.8.1.1. Editing an existing repository

To edit an existing repository:

1. Choose the Git project or zip file, and CodeReady Workspaces will load it into your workspace.

2. To open the workspace, click the Open button.

3.8.1.2. Editing the commands after importing a project

After you have a project in your workspace, you can add commands to it. Adding commands to your

Red Hat CodeReady Workspaces 2.1 End-user Guide

82

After you have a project in your workspace, you can add commands to it. Adding commands to your
projects allows you to run, debug, or launch your application in a browser.

To add commands to the project:

1. Open the workspace configuration in the Dashboard, then select the Devfile tab.

2. Open the workspace.

3. To run a command, select Terminal > Run Task from the main menu.

4. To configure commands, select Terminal > Configure Tasks from the main menu.

CHAPTER 3. WORKSPACES OVERVIEW

83

3.8.2. Importing to a running workspace using the Git: Clone command

To import to a running workspace using the Git: Clone command:

1. Start a workspace, then use the Git: Clone command from the command palette or the
Welcome screen to import a project to a running workspace.

2. Open the command palette using F1 or CTRL-SHIFT-P, or from the link in the Welcome screen.

3. Enter the path to the project you want to clone.

Red Hat CodeReady Workspaces 2.1 End-user Guide

84

3.8.3. Importing to a running workspace with git clone in a terminal

In addition to the approaches above, you can also start a workspace, open a Terminal, and type git
clone to pull code.

NOTE

Importing or deleting workspace projects in the terminal does not update the workspace
configuration, and the change is not reflected in the Project and Devfile tabs in the
dashboard.

Similarly, if you add a project using the Dashboard, then delete it with rm -fr myproject, it
may still appear in the Projects or Devfile tab.

3.9. CONFIGURING WORKSPACE EXPOSURE STRATEGIES

The following section describes how to configure workspace exposure strategies of a CodeReady
Workspaces server and ensure that applications running inside are not vulnerable to outside attacks.

The workspace exposure strategy is configured per CodeReady Workspaces server, using the
che.infra.kubernetes.server_strategy configuration property or the
CHE_INFRA_KUBERNETES_SERVER__STRATEGY environment variable.

The supported values for che.infra.kubernetes.server_strategy are:

multi-host

For the multi-host strategy, set the che.infra.kubernetes.ingress.domain (or the
CHE_INFRA_KUBERNETES_INGRESS_DOMAIN environment variable) configuration property to the
domain name that will host workspace component subdomains.

CHAPTER 3. WORKSPACES OVERVIEW

85

3.9.1. Workspace exposure strategies

Specific components of workspaces need to be made accessible outside of the OpenShift cluster. This
is typically the user interface of the workspace’s IDE, but it can also be the web UI of the application
being developed. This enables developers to interact with the application during the development
process.

CodeReady Workspaces supports three ways to make workspace components available to the users,
also referred to as strategies:

multi-host strategy

The strategies define whether new subdomains are created for components of the workspace, and what
hosts these components are available on.

3.9.1.1. Multi-host strategy

With this strategy, each workspace component is assigned a new subdomain of the main domain
configured for the CodeReady Workspaces server. On OpenShift, this is the only possible strategy, and
manual configuration of the workspace exposure strategy is therefore always ignored.

This strategy is the easiest to understand from the perspective of component deployment because any
paths present in the URL to the component are received as they are by the component.

On a CodeReady Workspaces server secured using the Transport Layer Security (TLS) protocol,
creating new subdomains for each component of each workspace requires a wildcard certificate to be
available for all such subdomains for the CodeReady Workspaces deployment to be practical.

3.9.2. Security considerations

This section explains the security impact of using different CodeReady Workspaces workspace exposure
strategies.

All the security-related considerations in this section are only applicable to CodeReady Workspaces in
multiuser mode. The single user mode does not impose any security restrictions.

3.9.2.1. JSON web token (JWT) proxy

All CodeReady Workspaces plug-ins, editors, and components can require authentication of the user
accessing them. This authentication is performed using a JSON web token (JWT) proxy that functions
as a reverse proxy of the corresponding component, based on its configuration, and performs the
authentication on behalf of the component.

The authentication uses a redirect to a special page on the CodeReady Workspaces server that
propagates the workspace and user-specific authentication token (workspace access token) back to
the originally requested page.

The JWT proxy accepts the workspace access token from the following places in the incoming requests,
in the following order:

1. The token query parameter

2. The Authorization header in the bearer-token format

3. The access_token cookie

Red Hat CodeReady Workspaces 2.1 End-user Guide

86

3.9.2.2. Secured plug-ins and editors

CodeReady Workspaces users do not need to secure workspace plug-ins and workspace editors (such
as Che-Theia). This is because the JWT proxy authentication is transparent to the user and is governed
by the plug-in or editor definition in their meta.yaml descriptors.

3.9.2.3. Secured container-image components

Container-image components can define custom endpoints for which the devfile author can require
CodeReady Workspaces-provided authentication, if needed. This authentication is configured using two
optional attributes of the endpoint:

secure - A boolean attribute that instructs the CodeReady Workspaces server to put the JWT
proxy in front of the endpoint. Such endpoints have to be provided with the workspace access
token in one of the several ways explained in Section 3.9.2.1, “JSON web token (JWT) proxy” .
The default value of the attribute is false.

cookiesAuthEnabled - A boolean attribute that instructs the CodeReady Workspaces server
to automatically redirect the unauthenticated requests for current user authentication as
described in Section 3.9.2.1, “JSON web token (JWT) proxy” . Setting this attribute to true has
security consequences because it makes Cross-site request forgery (CSRF) attacks possible.
The default value of the attribute is false.

3.9.2.4. Cross-site request forgery attacks

Cookie-based authentication can make an application secured by a JWT proxy prone to Cross-site
request forgery (CSRF) attacks. See the Cross-site request forgery Wikipedia page and other
resources to ensure your application is not vulnerable.

3.9.2.5. Phishing attacks

An attacker who is able to create an Ingress or route inside the cluster with the workspace that shares
the host with some services behind a JWT proxy, the attacker may be able to create a service and a
specially forged Ingress object. When such a service or Ingress is accessed by a legitimate user that was
previously authenticated with a workspace, it can lead to the attacker stealing the workspace access
token from the cookies sent by the legitimate user’s browser to the forged URL. To eliminate this attack
vector, configure OpenShift to disallow setting the host of an Ingress.

3.10. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT
VARIABLE INTO A WORKSPACE CONTAINER

Secrets are OpenShift objects that store sensitive data such as user names, passwords, authentication
tokens, and configurations in an encrypted form.

Users can mount a secret that contains sensitive data in a workspace container. This reapplies the stored
data from the secret automatically for every newly created workspace. As a result, the user does not
have to provide these credentials and configuration settings manually.

The following section describes how to automatically mount a OpenShift secret in a workspace
container and create permanent mount points for components such as:

Maven configuration, the settings.xml file

SSH key pairs

CHAPTER 3. WORKSPACES OVERVIEW

87

https://en.wikipedia.org/wiki/Cross-site_request_forgery

AWS authorization tokens

A OpenShift secret can be mounted into a workspace container as:

A file - This creates automatically mounted Maven settings that will be applied to every new
workspace with Maven capabilities.

An environment variable - This uses SSH key pairs and AWS authorization tokens for automatic
authentication.

NOTE

SSH key pairs can also be mounted as a file, but this format is primarily aimed at
the settings of the Maven configuration.

The mounting process uses the standard OpenShift mounting mechanism, but it requires additional
annotations and labeling for a proper bound of a secret with the required CodeReady Workspaces
workspace container.

3.10.1. Mounting a secret as a file into a workspace container

WARNING

Red Hat CodeReady Workspaces uses OpenShift VolumeMount subPath feature
to mount files into containers. This is supported and enabled by default since
OpenShift v1.15 and OpenShift 4.

This section describes how to mount a secret from the user’s namespace as a file in single-workspace or
multiple-workspace containers of CodeReady Workspaces.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

Procedure

1. Create a new OpenShift secret in the OpenShift namespace where a CodeReady Workspaces
workspace will be created.

The labels of the secret that is about to be created must match the set of labels configured
in che.workspace.provision.secret.labels property of CodeReady Workspaces. The
default labels are:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: workspace-secret:

NOTE

Red Hat CodeReady Workspaces 2.1 End-user Guide

88

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

NOTE

Note that the following example describes variations in the usage of the
target-container annotation in versions 2.1 and 2.2 of Red Hat CodeReady
Workspaces.

Example:

Annotations must indicate the given secret is mounted as a file, provide the mount path,
and, optionally, specify the name of the container in which the secret is mounted. If there is
no target-container annotation, the secret will be mounted into all user containers of the
CodeReady Workspaces workspace, but this is applicable only for the CodeReady
Workspaces version 2.1.

Since the CodeReady Workspaces version 2.2, the target-container annotation is
deprecated and automount-workspace-secret annotation with Boolean values is
introduced. Its purpose is to define the default secret mounting behavior, with the ability to
be overridden in a devfile. The true value enables the automatic mounting into all
workspace containers. In contrast, the false value disables the mounting process until it is
explicitly requested in a devfile component using the automountWorkspaceSecrets:true
property.

Data of the Kubernetes secret may contain several items, whose names must match the

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/target-container: maven
 che.eclipse.org/mount-path: /home/user/.m2/
 che.eclipse.org/mount-as: file
 labels:
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: true
 che.eclipse.org/mount-path: /home/user/.m2/
 che.eclipse.org/mount-as: file
 labels:
...

CHAPTER 3. WORKSPACES OVERVIEW

89

Data of the Kubernetes secret may contain several items, whose names must match the
desired file name mounted into the container.

This results in a file named settings.xml being mounted at the /home/user/.m2/ path of all
workspace containers.

The secret-s mount path can be overridden for specific components of the workspace using
devfile. To change mount path, an additional volume should be declared in a component of
the devfile, with name matching overridden secret name, and desired mount path.

Note that for this kind of overrides, components must declare an alias to be able to
distinguish containers which belong to them and apply override path exclusively for those
containers.

3.10.2. Mounting a secret as an environment variable into a workspace container

The following section describes how to mount a OpenShift secret from the user’s namespace as an
environment variable, or variables, into single-workspace or multiple-workspace containers of
CodeReady Workspaces.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

Procedure

1. Create a new OpenShift secret in the k8s namespace where a CodeReady Workspaces

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: true
 che.eclipse.org/mount-path: /home/user/.m2/
 che.eclipse.org/mount-as: file
data:
 settings.xml: <base64 encoded data content here>

apiVersion: 1.0.0
metadata:
 ...
components:
 - type: dockerimage
 alias: maven
 image: maven:3.11
 volumes:
 - name: <secret-name>
 containerPath: /my/new/path
 ...

Red Hat CodeReady Workspaces 2.1 End-user Guide

90

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

1. Create a new OpenShift secret in the k8s namespace where a CodeReady Workspaces
workspace will be created.

The labels of the secret that is about to be created must match the set of labels configured
in che.workspace.provision.secret.labels property of CodeReady Workspaces. By
default, it is a set of two labels:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: workspace-secret:

NOTE

Note that the following example describes variations in the usage of the
target-container annotation in versions 2.1 and 2.2 of Red Hat CodeReady
Workspaces.

Example:

Annotations must indicate the given secret is mounted as a file, provide the mount path,
and, optionally, specify the name of the container in which the secret is mounted. If there is
no target-container annotation, the secret will be mounted into all user containers of the
CodeReady Workspaces workspace, but this is applicable only for the CodeReady
Workspaces version 2.1.

Since the CodeReady Workspaces version 2.2, the target-container annotation is
deprecated and automount-workspace-secret annotation with Boolean values is
introduced. Its purpose is to define the default secret mounting behavior, with the ability to
be overridden in a devfile. The true value enables the automatic mounting into all
workspace containers. In contrast, the false value disables the mounting process until it is
explicitly requested in a devfile component using the automountWorkspaceSecrets:true
property.

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/target-container: maven
 che.eclipse.org/mount-path: /home/user/.m2/
 che.eclipse.org/mount-as: file
 labels:
...

apiVersion: v1
kind: Secret

CHAPTER 3. WORKSPACES OVERVIEW

91

Data of the Kubernetes secret may contain several items, whose names must match the
desired file name mounted into the container.

This results in a file named settings.xml being mounted at the /home/user/.m2/ path of all
workspace containers.

The secret-s mount path can be overridden for specific components of the workspace using
devfile. To change mount path, an additional volume should be declared in a component of
the devfile, with name matching overridden secret name, and desired mount path.

Note that for this kind of overrides, components must declare an alias to be able to
distinguish containers which belong to them and apply override path exclusively for those
containers.

3.10.3. The use of annotations in the process of mounting a secret into a workspace
container

OpenShift annotations and labels are tools used by libraries, tools, and other clients, to attach arbitrary
non-identifying metadata to OpenShift native objects.

metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: true
 che.eclipse.org/mount-path: /home/user/.m2/
 che.eclipse.org/mount-as: file
 labels:
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: true
 che.eclipse.org/mount-path: /home/user/.m2/
 che.eclipse.org/mount-as: file
data:
 settings.xml: <base64 encoded data content here>

apiVersion: 1.0.0
metadata:
 ...
components:
 - type: dockerimage
 alias: maven
 image: maven:3.11
 volumes:
 - name: <secret-name>
 containerPath: /my/new/path
 ...

Red Hat CodeReady Workspaces 2.1 End-user Guide

92

Labels select objects and connect them to a collection that satisfies certain conditions, where
annotations are used for non-identifying information that is not used by OpenShift objects internally.

This section describes OpenShift annotation values used in the process of OpenShift secret mounting in
a CodeReady Workspaces workspace.

Annotations must contain items that help identify the proper mounting configuration. These items are:

che.eclipse.org/target-container: Valid till the version 2.1. The name of the mounting
container. If the name is not defined, the secret mounts into all user’s containers of the
CodeReady Workspaces workspace.

che.eclipse.org/automount-workspace-secret: Introduced in the version 2.2.. The main
mount selector. When set to true, the secret mounts into all user’s containers of the CodeReady
Workspaces workspace. When set to false, the secret does not mount into containers by
default. The value of this attribute can be overridden in devfile components, using the
automountWorkspaceSecrets boolean property that gives more flexibility to workspace
owners. This property requires an alias to be defined for the component that uses it.

che.eclipse.org/env-name: The name of the environment variable that is used to mount a
secret.

che.eclipse.org/mount-as: This item describes if a secret will be mounted as an environmental
variable or a file. Options: env or file.

che.eclipse.org/<mykeyName>-env-name: FOO_ENV: The name of the environment variable
used when data contains multiple items. mykeyName is used as an example.

CHAPTER 3. WORKSPACES OVERVIEW

93

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS
Red Hat CodeReady Workspaces is an extensible and customizable developer-workspaces platform.

There are three different ways to extend Red Hat CodeReady Workspaces:

Alternative IDEs provide specialized tools for Red Hat CodeReady Workspaces. For example, a
Jupyter notebook for data analysis. Alternate IDEs can be based on Eclipse Theia or any other
web IDE. The default IDE in Red Hat CodeReady Workspaces is Che-Theia.

Che-Theia plug-ins add capabilities to the Che-Theia IDE. They rely on plug-in APIs that are
compatible with Visual Studio Code. The plug-ins are isolated from the IDE itself. They can be
packaged as files or as containers to provide their own dependencies.

Stacks are pre-configured CodeReady Workspaces workspaces with a dedicated set of tools,
which cover different developer personas. For example, it is possible to pre-configure a
workbench for a tester with only the tools needed for their purposes.

Figure 4.1. CodeReady Workspaces extensibility

Extending Red Hat CodeReady Workspaces can be done entirely using Red Hat CodeReady
Workspaces. Since version 7, Red Hat CodeReady Workspaces provides a self-hosting mode.

What is a Che-Theia plug-in

Using alternative IDEs in CodeReady Workspaces

Using a Visual Studio Code extension in CodeReady Workspaces

Red Hat CodeReady Workspaces 2.1 End-user Guide

94

4.1. WHAT IS A CHE-THEIA PLUG-IN

A Che-Theia plug-in is an extension of the development environment isolated from the IDE. Plug-ins
can be packaged as files or containers to provide their own dependencies.

Extending Che-Theia using plug-ins can enable the following capabilities:

Language support: Extend the supported languages by relying on the Language Server
Protocol.

Debuggers: Extend debugging capabilities with the Debug Adapter Protocol.

Development Tools: Integrate your favorite linters, and as testing and performance tools.

Menus, panels, and commands: Add your own items to the IDE components.

Themes: Build custom themes, extend the UI, or customize icon themes.

Snippets, formatters, and syntax highlighting: Enhance comfort of use with supported
programming languages.

Keybindings: Add new keymaps and popular keybindings to make the environment feel natural.

4.1.1. Features and benefits of Che-Theia plug-ins

Features Description Benefits

Fast Loading Plug-ins are loaded at runtime
and are already compiled. IDE is
loading the plug-in code.

Avoid any compilation time. Avoid
post-installation steps.

Secure Loading Plug-ins are loaded separately
from the IDE. The IDE stays
always in a usable state.

Plug-ins do not break the whole
IDE if it has bugs. Handle network
issue.

Tools Dependencies Dependencies for the plug-in are
packaged with the plug-in in its
own container.

No-installation for tools.
Dependencies running into
container.

Code Isolation Guarantee that plug-ins cannot
block the main functions of the
IDE like opening a file or typing

Plug-ins are running into separate
threads. Avoid dependencies
mismatch.

VS Code Extension
Compatibility

Extend the capabilities of the IDE
with existing VS Code Extensions.

Target multiple platform. Allow
easy discovery of Visual Studio
Code Extension with required
installation.

4.1.2. Che-Theia plug-in concept in detail

Red Hat CodeReady Workspaces provides a default web IDE for workspaces: Che-Theia. It is based on
Eclipse Theia. It is a slightly different version than the plain Eclipse Theia one because there are
functionalities that have been added based on the nature of the Red Hat CodeReady Workspaces

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

95

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/debug-adapter-protocol/

workspaces. This version of Eclipse Theia for CodeReady Workspaces is called Che-Theia .

You can extend the IDE provided with Red Hat CodeReady Workspaces by building a Che-Theia plug-
in. Che-Theia plug-ins are compatible with any other Eclipse Theia-based IDE.

4.1.2.1. Client-side and server-side Che-Theia plug-ins

The Che-Theia editor plug-ins let you add languages, debuggers, and tools to your installation to
support your development workflow. Plug-ins run when the editor completes loading. If a Che-Theia
plug-in fails, the main Che-Theia editor continues to work.

Che-Theia plug-ins run either on the client side or on the server side. This is a scheme of the client and
server-side plug-in concept:

Figure 4.2. Client and server-side Che-Theia plug-ins

The same Che-Theia plug-in API is exposed to plug-ins running on the client side (Web Worker) or the
server side (Node.js).

4.1.2.2. Che-Theia plug-in APIs

For the purpose of providing tool isolation and easy extensibility in Red Hat CodeReady Workspaces,
the Che-Theia IDE has a set of plug-in APIs. The APIs are compatible with Visual Studio Code extension
APIs. Usually, Che-Theia can run VS Code extensions as its own plug-ins.

When developing a plug-in that depends on or interacts with components of CodeReady Workspaces
workspaces (containers, preferences, factories), use the CodeReady Workspaces APIs embedded in
Che-Theia.

4.1.2.3. Che-Theia plug-in capabilities

Che-Theia plug-ins have the following capabilities:

Red Hat CodeReady Workspaces 2.1 End-user Guide

96

Plug-in Description Repository

CodeReady Workspaces
Extended Tasks

Handles the CodeReady
Workspaces commands and
provides the ability to start those
into a specific container of the
workspace.

CodeReady Workspaces
Extended Terminal

Allows to provide terminal for any
of the containers of the
workspace.

CodeReady Workspaces Factory Handles the Red Hat CodeReady
Workspaces Factories

CodeReady Workspaces
Container

Provides a container view that
shows all the containers that are
running in the workspace and
allows to interact with them.

Containers plugins

Dashboard Integrates the IDE with the
Dashboard and facilitate the
navigation.

CodeReady Workspaces APIs Extends the IDE APIs to allow
interacting with CodeReady
Workspaces-specific components
(workspaces, preferences).

4.1.2.4. VS Code extensions and Eclipse Theia plug-ins

A Che-Theia plug-in can be based on a VS Code extension or an Eclipse Theia plug-in.

A Visual Studio Code extension

To repackage a VS Code extension as a Che-Theia plug-in with its own set of dependencies,
package the dependencies into a container. This ensures that Red Hat CodeReady Workspaces users
do not need to install the dependencies when using the extension. See Using a Visual Studio Code
extension in CodeReady Workspaces.

An Eclipse Theia plug-in

You can build a Che-Theia plug-in by implementing an Eclipse Theia plug-in and packaging it to Red
Hat CodeReady Workspaces.

Additional resources

Section 4.1.5, “Embedded and remote Che-Theia plug-ins”

4.1.3. Che-Theia plug-in metadata

Che-Theia plug-in metadata is information about individual plug-ins for the plug-in registry.

The Che-Theia plug-in metadata, for each specific plug-in, is defined in a meta.yaml file.

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

97

https://github.com/eclipse/che-theia/tree/master/plugins/containers-plugin

The che-plugin-registry repository contains .

Table 4.1. meta.yml

apiVersion API version (`v2`and higher)

category Available: Language, Other

description Description (a phrase)

displayName Display name

firstPublicationDate Date in the form "YYYY-MM-DD" Example: "2019-
12-02"

icon URL of an SVG icon

name Name (no spaces allowed)

publisher Name of the publisher

repository URL of the source repository

title Title (long)

type Che Plugin, VS Code extension

version Version information, for example: 7.5.1

spec Specifications (see underneath)

Table 4.2. spec attributes

endpoints Plug-in endpoints

containers Sidecar containers for the plug-in. Che Plugin and
VS Code extension supports only one container

initContainers Sidecar init containers for the plug-in

workspaceEnv Environment variables for the workspace

extensions Optional attribute required for VS Code and Che-
Theia plug-ins. A list of URLs to plug-in artefacts,
such as .vsix or .theia files

Table 4.3. spec.containers. Notice: spec.initContainers has absolutely the same container
definition.

Red Hat CodeReady Workspaces 2.1 End-user Guide

98

https://github.com/eclipse/che-plugin-registry/tree/master/v3/plugins

name Sidecar container name

image Absolute or relative container image URL

memoryLimit OpenShift memory limit string, for example 512Mi

memoryRequest OpenShift memory request string, for example
512Mi

cpuLimit OpenShift CPU limit string, for example 2500m

cpuRequest OpenShift CPU request string, for example 125m

env List of environment variables to set in the sidecar

command String array definition of the root process command
in the container

args String array arguments for the root process
command in the container

volumes Volumes required by the plug-in

ports Ports exposed by the plug-in (on the container)

commands Development commands available to the plug-in
container

mountSources Boolean flag to bound volume with source code
/projects to the plug-in container

Table 4.4. spec.containers.env (and spec.initContainers.env) attributes. Notice: workspaceEnv
has absolutely the same attributes

name Environment variable name

value Environment variable value

Table 4.5. spec.containers.volumes (and spec.initContainers.volumes) attributes

mountPath Path to the volume in the container

name Volume name

ephemeral If true, the volume is ephemeral, otherwise the
volume is persisted

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

99

Table 4.6. spec.containers.ports (and spec.initContainers.ports) attributes

exposedPort Exposed port

Table 4.7. spec.containers.commands (and spec.initContainers.commands) attributes

name Command name

workingDir Command working directory

command String array that defines the development command

Table 4.8. spec.endpoints attributes

name Name (no spaces allowed)

public true, false

targetPort Target port

attributes Endpoint attributes

Table 4.9. spec.endpoints.attributes attributes

protocol Protocol, example: ws

type ide, ide-dev

discoverable true, false

secure true, false. If true, then the endpoint is assumed to
listen solely on 127.0.0.1 and is exposed using a
JWT proxy

cookiesAuthEnabled true, false

Example meta.yaml for a Che-Theia plug-in: the CodeReady Workspaces machine-exec
Service

apiVersion: v2
category: Other
description: Che Plugin with che-machine-exec service to provide creation terminal or tasks for Red
Hat CodeReady Workspaces workspace containers
displayName: CodeReady Workspaces machine-exec Service
firstPublicationDate: "2019-12-02"
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg
name: che-machine-exec-plug-in
publisher: eclipse

Red Hat CodeReady Workspaces 2.1 End-user Guide

100

Example meta.yaml for a VisualStudio Code extension: the AsciiDoc support extension

4.1.4. Che-Theia plug-in lifecycle

When a user is starting a workspace, the following procedure is followed:

1. CodeReady Workspaces master checks for plug-ins to start from the workspace definition.

2. Plug-in metadata is retrieved, and the type of each plug-in is recognized.

3. A broker is selected according to the plug-in type.

4. The broker processes the installation and deployment of the plug-in (the installation process is
different for each broker).

NOTE

repository: https://github.com/eclipse/che-machine-exec/
title: Che machine-exec Service Plugin
type: Che Plugin
version: 7.5.1
spec:
 endpoints:
 - name: "che-machine-exec"
 public: true
 targetPort: 4444
 attributes:
 protocol: ws
 type: terminal
 discoverable: false
 secure: true
 cookiesAuthEnabled: true
 containers:
 - name: che-machine-exec
 image: "quay.io/eclipse/che-machine-exec:7.5.1"
 ports:
 - exposedPort: 4444

apiVersion: v2
category: Language
description: This extension provides a live preview, syntax highlighting and snippets for the AsciiDoc
format using Asciidoctor flavor
displayName: AsciiDoc support
firstPublicationDate: "2019-12-02"
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg
name: vscode-asciidoctor
publisher: joaompinto
repository: https://github.com/asciidoctor/asciidoctor-vscode
title: AsciiDoctor Plug-in
type: VS Code extension
version: 2.7.7
spec:
 extensions:
 - https://github.com/asciidoctor/asciidoctor-vscode/releases/download/v2.7.7/asciidoctor-vscode-
2.7.7.vsix

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

101

NOTE

Different types of plug-ins exist. A broker ensures all installation requirements are met
for a plug-in to deploy correctly.

Figure 4.3. Che-Theia plug-in lifecycle

Before a CodeReady Workspaces workspace is launched, CodeReady Workspaces master starts
containers for the workspace:

1. The Che-Theia plug-in broker extracts the plug-in (from the .theia file) to get the sidecar
containers that the plug-in needs.

2. The broker sends the appropriate container information to CodeReady Workspaces master.

3. The broker copies the Che-Theia plug-in to a volume to have it available for the Che-Theia
editor container.

4. CodeReady Workspaces workspace master then starts all the containers of the workspace.

5. Che-Theia is started in its own container and checks the correct folder to load the plug-ins.

Red Hat CodeReady Workspaces 2.1 End-user Guide

102

Che-Theia plug-in lifecycle:

1. When a user is opening a browser tab or window with Che-Theia, Che-Theia starts a new plug-in
session (browser or remote TODO: 'what is remote in this context?'). Every Che-Theia plug-in
is notified that a new session has been started (the start() function of the plug-in triggered).

2. A Che-Theia plug-in session is running and interacting with the Che-Theia back end and
frontend.

3. When the user is closing the browser tab or there is a timeout, every plug-in is notified (the
stop() function of the plug-in triggered).

4.1.5. Embedded and remote Che-Theia plug-ins

Developer workspaces in Red Hat CodeReady Workspaces provide all dependencies needed to work on
a project. The application includes the dependencies needed by all the tools and plug-ins used.

There are two different ways a Che-Theia plug-in can run. This is based on the dependencies that are
needed for the plug-in: embedded (or local) and remote.

4.1.5.1. Embedded (or local) plug-ins

The plug-in does not have specific dependencies - it only uses a Node.js runtime, and it runs in the same
container as the IDE. The plug-in is injected into the IDE.

Examples:

Code linting

New set of commands

New UI components

To include a Che-Theia plug-in as embedded, define a URL to the plug-in binary file (the .theia archive)
in the meta.yaml file. In the case of a VS Code extension, provide the extension ID from the Visual
Studio Code marketplace (see Using a Visual Studio Code extension in CodeReady Workspaces).

When starting a workspace, CodeReady Workspaces downloads and unpacks the plug-in binaries and
includes them in the Che-Theia editor container. The Che-Theia editor initializes the plug-ins when it
starts.

Figure 4.4. Local Che-Theia plug-in

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

103

Figure 4.4. Local Che-Theia plug-in

4.1.5.2. Remote plug-ins

The plug-in relies on dependencies or it has a back end. It runs in its own sidecar container, and all
dependencies are packaged in the container.

A remote Che-Theia plug-in consist of two parts:

Che-Theia plug-in or VS Code extension binaries. The definition in the meta.yaml file is the
same as for embedded plug-ins.

Container image definition, for example, eclipse/che-theia-dev:nightly. From this image,
CodeReady Workspaces creates a separate container inside a workspace.

Examples:

Java Language Server

Python Language Server

When starting a workspace, CodeReady Workspaces creates a container from the plug-in image,
downloads and unpacks the plug-in binaries, and includes them in the created container. The Che-Theia
editor connects to the remote plug-ins when it starts.

Figure 4.5. Remote Che-Theia plug-in

Red Hat CodeReady Workspaces 2.1 End-user Guide

104

Figure 4.5. Remote Che-Theia plug-in

4.1.5.3. Comparison matrix

When a Che-Theia plug-in (or a VS Code extension) does not need extra dependencies inside its
container, it is an embedded plug-in. A container with extra dependencies that includes a plug-in is a
remote plug-in.

Table 4.10. Che-Theia plug-in comparison matrix: embedded vs remote

 Configure RAM per
plug-in

Environment
dependencies

Create separated
container

Remote TRUE Plug-in uses
dependencies defined in
the remote container.

TRUE

Embedded FALSE (users can
configure RAM for the
whole editor container,
but not per plug-in)

Plug-in uses
dependencies from the
editor container; if
container does not
include these
dependencies, the plug-
in fails or does not
function as expected.

FALSE

Depending on your use case and the capabilities provided by your plug-in, select one of the described

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

105

Depending on your use case and the capabilities provided by your plug-in, select one of the described
running modes.

4.1.6. Remote plug-in endpoint

Red Hat CodeReady Workspaces has a remote plug-in endpoint service to start VS Code Extensions
and Che-Theia plug-ins in separate containers. Red Hat CodeReady Workspaces injects the remote
plug-in endpoint binaries into each remote plug-in container. This service starts remote extensions and
plug-ins defined in the plug-in meta.yaml file and connects them to the Che-Theia editor container.

The remote plug-in endpoint creates a plug-in API proxy between the remote plug-in container and the
Che-Theia editor container. The remote plug-in endpoint is also an interceptor for some plug-in API
parts, which it launches inside a remote sidecar container rather than an editor container. Examples:
terminal API, debug API.

The remote plug-in endpoint executable command is stored in the environment variable of the remote
plug-in container: PLUGIN_REMOTE_ENDPOINT_EXECUTABLE.

Red Hat CodeReady Workspaces provides two ways to start the remote plug-in endpoint with a sidecar
image:

Defining a launch remote plug-in endpoint using a Dockerfile. To use this method, patch an
original image and rebuild it.

Defining a launch remote plug-in endpoint in the plug-in meta.yaml file. Use this method to
avoid patching an original image.

4.1.6.1. Defining a launch remote plug-in endpoint using Dockerfile

To start a remote plug-in endpoint, use the PLUGIN_REMOTE_ENDPOINT_EXECUTABLE
environment variable in the Dockerfile.

Procedure

Start a remote plug-in endpoint using the CMD command in the Dockerfile:

Dockerfile example

FROM fedora:30

RUN dnf update -y && dnf install -y nodejs htop && node -v

RUN mkdir /home/user

ENV HOME=/home/user

RUN mkdir /projects \
 && chmod -R g+rwX /projects \
 && chmod -R g+rwX "${HOME}"

CMD ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}

Start a remote plug-in endpoint using the ENTRYPOINT command in the Dockerfile:

Dockerfile example

Red Hat CodeReady Workspaces 2.1 End-user Guide

106

FROM fedora:30

RUN dnf update -y && dnf install -y nodejs htop && node -v

RUN mkdir /home/user

ENV HOME=/home/user

RUN mkdir /projects \
 && chmod -R g+rwX /projects \
 && chmod -R g+rwX "${HOME}"

ENTRYPOINT ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}

4.1.6.1.1. Using a wrapper script

Some images use a wrapper script to configure permissions. The script is defined it in the ENTRYPOINT
command of the Dockerfile to configure permissions inside the container, and it script executes a main
process defined in the CMD command of the Dockerfile.

Red Hat CodeReady Workspaces uses such images with a wrapper script to provide permission
configurations on different infrastructures with advanced security, for example on OpenShift.

Example of a wrapper script:

Example of a Dockerfile with a wrapper script:

Dockerfile example

FROM alpine:3.10.2

ENV HOME=/home/theia

RUN mkdir /projects ${HOME} && \
 # Change permissions to let any arbitrary user

#!/bin/sh

set -e

export USER_ID=$(id -u)
export GROUP_ID=$(id -g)

if ! whoami >/dev/null 2>&1; then
 echo "${USER_NAME:-user}:x:${USER_ID}:0:${USER_NAME:-user}
user:${HOME}:/bin/sh" >> /etc/passwd
fi

Grant access to projects volume in case of non root user with sudo rights
if ["${USER_ID}" -ne 0] && command -v sudo >/dev/null 2>&1 && sudo -n true > /dev/null
2>&1; then
 sudo chown "${USER_ID}:${GROUP_ID}" /projects
fi

exec "$@"

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

107

 for f in "${HOME}" "/etc/passwd" "/projects"; do \
 echo "Changing permissions on ${f}" && chgrp -R 0 ${f} && \
 chmod -R g+rwX ${f}; \
 done

ADD entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}

In this example, the container launches the /entrypoint.sh script defined in the ENTRYPOINT
command of the Dockerfile. The script configures the permissions and executes the command
using exec $@. CMD is the argument for ENTRYPOINT, and the exec $@ command calls
${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}. A remote plug-in endpoint then starts in
the container after permission configuration.

4.1.6.2. Defining a launch remote plug-in endpoint in a meta.yaml file

Use this method to re-use images to start remote a plug-in endpoint without modifications.

Procedure

Modify the plug-in meta.yaml file properties command and args:

command - Red Hat CodeReady Workspaces uses to override Dockerfile#ENTRYPOINT.

args - Red Hat CodeReady Workspaces uses to override Dockerfile#CMD.

Example of a YAML file with the command and args properties modified:

apiVersion: v2
category: Language
description: "Typescript language features"
displayName: Typescript
firstPublicationDate: "2019-10-28"
icon: "https://www.eclipse.org/che/images/logo-eclipseche.svg"
name: typescript
publisher: che-incubator
repository: "https://github.com/Microsoft/vscode"
title: "Typescript language features"
type: "VS Code extension"
version: remote-bin-with-override-entrypoint
spec:
 containers:
 - image: "example/fedora-for-ts-remote-plugin-without-endpoint:latest"
 memoryLimit: 512Mi
 name: vscode-typescript
 command:
 - sh
 - -c
 args:
 - ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}
 extensions:
 - "https://github.com/che-incubator/ms-code.typescript/releases/download/v1.35.1/che-
typescript-language-1.35.1.vsix"

Red Hat CodeReady Workspaces 2.1 End-user Guide

108

Modify args instead of command to use an image with a wrapper script pattern and to keep a
call of the entrypoint.sh script:

Red Hat CodeReady Workspaces calls the entrypoint.sh wrapper script defined in the
ENTRYPOINT command of the Dockerfile. The script executes [‘sh’, ‘-c”, ‘
${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}’] using the exec “$@” command.

NOTE

To execute a service when starting the container and also to start a remote plug-in
endpoint, use meta.yaml with modified command and args properties. Start the service,
detach the process, and start the remote plug-in endpoint, and they then work in parallel.

4.2. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES

Extending Red Hat CodeReady Workspaces developer workspaces using different IDEs (integrated
development environments) enables:

Re-purposing the environment for different use cases.

Providing a dedicated custom IDE for specific tools.

Providing different perspectives for individual users or groups of users.

Red Hat CodeReady Workspaces provides a default web IDE to be used with the developer workspaces.
This IDE is completely decoupled. You can bring your own custom IDE for Red Hat CodeReady
Workspaces:

Built from Eclipse Theia, which is a framework to build web IDEs. Example: Sirius on the web.

apiVersion: v2
category: Language
description: "Typescript language features"
displayName: Typescript
firstPublicationDate: "2019-10-28"
icon: "https://www.eclipse.org/che/images/logo-eclipseche.svg"
name: typescript
publisher: che-incubator
repository: "https://github.com/Microsoft/vscode"
title: "Typescript language features"
type: "VS Code extension"
version: remote-bin-with-override-entrypoint
spec:
 containers:
 - image: "example/fedora-for-ts-remote-plugin-without-endpoint:latest"
 memoryLimit: 512Mi
 name: vscode-typescript
 args:
 - sh
 - -c
 - ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}
 extensions:
 - "https://github.com/che-incubator/ms-code.typescript/releases/download/v1.35.1/che-
typescript-language-1.35.1.vsix"

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

109

https://www.youtube.com/watch?v=B6aCqywKpyY

Completely different web IDEs, such as Jupyter, Eclipse Dirigible, or others. Example: Jupyter
in Red Hat CodeReady Workspaces workspaces.

Bringing custom IDE built from Eclipse Theia

Creating your own custom IDE based on Eclipse Theia.

Adding CodeReady Workspaces-specific tools to your custom IDE.

Packaging your custom IDE into the available editors for CodeReady Workspaces.

Bringing your completely different web IDE into CodeReady Workspaces

Packaging your custom IDE into the available editors for CodeReady Workspaces.

4.3. USING A VISUAL STUDIO CODE EXTENSION IN CODEREADY
WORKSPACES

Starting with Red Hat CodeReady Workspaces 2.1, Visual Studio Code (VS Code) extensions can be
installed to extend the functionality of a CodeReady Workspaces workspace. VS Code extensions can
run in the Che-Theia editor container, or they can be packaged in their own isolated and pre-configured
containers with their prerequisites.

This document describes:

Use of a VS Code extension in CodeReady Workspaces with workspaces.

CodeReady Workspaces Plug-ins panel.

How to publish a VS Code extension in the CodeReady Workspaces plug-in registry (to share
the extension with other CodeReady Workspaces users).

The extension-hosting sidecar container and the use of the extension in a devfile are
optional for this.

How to review the compatibility of the VS Code extensions to be informed whether a
specific API is supported or has not been implemented yet.

4.3.1. Publishing a VS Code extension into the CodeReady Workspaces plug-in
registry

The user of CodeReady Workspaces can use a workspace devfile to use any plug-in, also known as
Visual Studio Code (VS Code) extension. This plug-in can be added to the plug-in registry, then easily
reused by anyone in the same organization with access to that workspaces installation.

Some plug-ins need a runtime dedicated container for code compilation. This fact makes those plug-ins
a combination of a runtime sidecar container and a VS Code extension.

The following section describes the portability of a plug-in configuration and associating an extension
with a runtime container that the plug-in needs.

4.3.1.1. Writing a meta.yaml file and adding it to a plug-in registry

The plug-in meta information is required to publish a VS Code extension in an Red Hat CodeReady

Red Hat CodeReady Workspaces 2.1 End-user Guide

110

https://www.youtube.com/watch?v=VooNzKxRFgw

1

2

3

4

5

6

7

8

9

The plug-in meta information is required to publish a VS Code extension in an Red Hat CodeReady
Workspaces plug-in registry. This meta information is provided as a meta.yaml file. This section
describes how to create a meta.yaml file for an extension.

Procedure

1. Create a meta.yaml file in the following plug-in registry directory:
<apiVersion>/plugins/<publisher>/<plug-inName>/<plug-inVersion>/.

2. Edit the meta.yaml file and provide the necessary information. The configuration file must
adhere to the following structure:

Version of the file structure.

Name of the plug-in publisher. Must be the same as the publisher in the path.

Name of the plug-in. Must be the same as in path.

Version of the plug-in. Must be the same as in path.

Type of the plug-in. Possible values: Che Plugin, Che Editor, Theia plugin, VS Code
extension.

A short name of the plug-in.

Title of the plug-in.

A brief explanation of the plug-in and what it does.

The link to the plug-in logo.

apiVersion: v2 1
publisher: myorg 2
name: my-vscode-ext 3
version: 1.7.2 4
type: value 5
displayName: 6
title: 7
description: 8
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg 9
repository: 10
category: 11
spec:
 containers: 12
 - image: 13
 memoryLimit: 14
 memoryRequest: 15
 cpuLimit: 16
 cpuRequest: 17
 extensions: 18
 - https://github.com/redhat-developer/vscode-
yaml/releases/download/0.4.0/redhat.vscode-yaml-0.4.0.vsix
 - vscode:extension/SonarSource.sonarlint-vscode

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

111

10

11

12

13

14

15

16

17

18

Optional. The link to the source-code repository of the plug-in.

Defines the category that this plug-in belongs to. Should be one of the following: Editor,
Debugger, Formatter, Language, Linter, Snippet, Theme, or Other.

If this section is omitted, the VS Code extension is added into the Che-Theia IDE
container.

The Docker image from which the sidecar container will be started. Example: eclipse/che-
theia-endpoint-runtime:next.

The maximum RAM which is available for the sidecar container. Example: "512Mi". This value
might be overridden by the user in the component configuration.

The RAM which is given for the sidecar container by default. Example: "256Mi". This value
might be overridden by the user in the component configuration.

The maximum CPU amount in cores or millicores (suffixed with "m") which is available for
the sidecar container. Examples: "500m", "2". This value might be overridden by the user in
the component configuration.

The CPU amount in cores or millicores (suffixed with "m") which is given for the sidecar
container by default. Example: "125m". This value might be overridden by the user in the
component configuration.

A list of VS Code extensions run in this sidecar container.

4.3.2. Adding a plug-in registry VS Code extension to a workspace

When the required VS Code extension is added into a CodeReady Workspaces plug-in registry, the user
can add it into the workspace through the CodeReady Workspaces Plugins panel or through the
workspace configuration.

4.3.2.1. Adding a VS Code extension using the CodeReady Workspaces Plugins panel

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts

Procedure

To add a VS Code extension using the CodeReady Workspaces Plugins panel:

1. Open the CodeReady Workspaces Plugins panel by pressing CTRL+SHIFT+J or navigate to
View/Plugins.

2. Change the current registry to the registry in which the VS Code extension was added.

3. In the search bar, click the Menu button and then click Change Registry to choose the registry
from the list. If the required registry is not in the list, add it using the Add Registry menu option.
The registry link points to the plugins segment of the registry, for example: https://my-
registry.com/v3/plugins/index.json.

Red Hat CodeReady Workspaces 2.1 End-user Guide

112

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://my-registry.com/v3/plugins/index.json

1

4. Search for the required plug-in using the filter, and then click the Install button.

5. Restart the workspace for the changes to take effect.

4.3.2.2. Adding a VS Code extension using the workspace configuration

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces Creating a
workspace from user dashboard.

Procedure

To add a VS Code extension using the workspace configuration:

1. Click the Workspaces tab on the Dashboard and select the workspace in which you want to add
the plug-in. The Workspace <workspace-name> window is opened showing the details of the
workspace.

2. Click the devfile tab.

3. Locate the components section, and add a new entry with the following structure:

Link to the meta.yaml file in your registry, for example, https://my-plug-in-
registry/v3/plugins/<publisher>/<plug-inName>/<plug-inVersion>/meta.yaml

CodeReady Workspaces automatically adds the other fields to the new component.

 - type: chePlugin
 id: 1

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

113

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/
https://my-plug-in-registry/v3/plugins/

1

Alternatively, you can link to a meta.yaml file hosted on GitHub, using the dedicated reference
field.

https://raw.githubusercontent.com/<username>/<registryRepository>/v3/plugins/<pu
blisher>/<plug-inName>/<plug-inVersion>/meta.yaml

4. Restart the workspace for the changes to take effect.

4.3.3. Choosing the sidecar image

CodeReady Workspaces plug-ins are special services that extend the CodeReady Workspaces
workspace capabilities. CodeReady Workspaces plug-ins are packaged as containers. The containers
that the plug-ins are packaged into run as sidecars of the CodeReady Workspaces workspace editor and
augment its capabilities.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

Procedure

To choose a sidecar image:

1. If the VS Code extension does not have any external dependencies, use eclipse/che-theia-
endpoint-runtime: next as a sidecar container image for the extension.

NOTE

 - type: chePlugin
 reference: 1

Red Hat CodeReady Workspaces 2.1 End-user Guide

114

https://raw.githubusercontent.com/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

NOTE

In addition to the eclipse/che-theia-endpoint-runtime:next base image, the
following ready-to-use sidecar images that include language-specific
dependencies are available:

eclipse/che-remote-plugin-runner-java8

eclipse/che-remote-plugin-runner-java11

eclipse/che-remote-plugin-go-1.10.7

eclipse/che-remote-plugin-python-3.7.3

eclipse/che-remote-plugin-dotnet-2.2.105

eclipse/che-remote-plugin-php7

eclipse/che-remote-plugin-kubernetes-tooling-1.0.0

eclipse/che-remote-plugin-kubernetes-tooling-0.1.17

eclipse/che-remote-plugin-openshift-connector-0.0.17

eclipse/che-remote-plugin-openshift-connector-0.0.21

For a VS Code extension with external dependencies not found in one of the ready-to-use images, use a
container image based on the eclipse/che-theia-endpoint-runtime:next image that contains the
dependencies.

Example

Base the FROM directive on FROM eclipse/che-theia-endpoint-runtime:next. This is required because
the base image contains tools for running the remote VS Code extension and for communicating
between the sidecar and the Che-Theia editor. This way, the VS Code extension operates as if it was not
remote.

4.3.4. Verifying the VS Code extension API compatibility level

Che-Theia does not fully support the VS Code extensions API. The vscode-theia-comparator is used to
analyze the compatibility between the Che-Theia plug-in API and the VS Code extension API. This tool
runs in a nightly cycle, and the results are published on the vscode-theia-comparator GitHub page.

Prerequisites

Personal GitHub access token. For information about creating a personal access token for the
command line see Creating a personal access token for the command line . A GitHub access
token is required to increase the GitHub download limit for your IP address.

Procedure

To run the vscode-theia comparator manually:

1. Clone the vscode-theia-comparator repository, and build it using the yarn command.

2. Set the GITHUB_TOKEN environment variable to your token.

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

115

https://github.com/che-incubator/vscode-theia-comparator/
https://github.com/che-incubator/vscode-theia-comparator/
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://github.com/che-incubator/vscode-theia-comparator/

3. Execute the yarn run generate command to generate a report.

4. Open the out/status.html file to view the report.

4.4. ADDING TOOLS TO CODEREADY WORKSPACES AFTER
CREATING A WORKSPACE

When installed in the workspace, CodeReady Workspaces plug-ins bring new capabilities to the
CodeReady Workspaces. Plug-ins consist of a Che-Theia plug-in, metadata, and a hosting container.
These plug-ins may provide the following capabilities:

Integrating with other systems, including OpenShift and OpenShift.

Automating some developer tasks, such as formatting, refactoring, and running automated
tests.

Communicating with multiple databases directly from the IDE.

Enhanced code navigation, auto-completion and error highlighting.

This chapter provides basic information about CodeReady Workspaces plug-ins installation, enabling,
and use in CodeReady Workspaces workspaces.

Section 4.4.1, “Additional tools in the CodeReady Workspaces workspace”

Section 4.4.2, “Adding language support plug-in to the CodeReady Workspaces workspace”

4.4.1. Additional tools in the CodeReady Workspaces workspace

CodeReady Workspaces plug-ins are extensions to the Che-Theia IDE that come bundled with a
container image that contains their native prerequisites (for example, the OpenShift Connector plug-in
needs the oc command installed). A Che Plugin is a list of Che-Theia plug-ins together about a Linux
container that the plug-in requires to run in. It can also include metadata to define the description,
categorization tags, and an icon. CodeReady Workspaces provides a registry of plug-ins available for
installation into the user’s workspace.

Because many VS Code extensions can run inside the Che-Theia IDE, they can be packaged as
CodeReady Workspaces plug-ins by combining them with a runtime or a sidecar container. Users can
choose from many more plug-ins that are provided out of the box.

From the Dashboard, plug-ins in the registry can be added from the Plugin tab or by adding them into a
devfile. The devfile can also be used for further configuration of the plug-in, such as to define memory
or CPU usage. Alternatively, plug-ins can be installed from CodeReady Workspaces by pressing
Ctrl+Shift+J or by navigating to View → Plugins.

Additional resources

Adding components to a devfile

4.4.2. Adding language support plug-in to the CodeReady Workspaces workspace

This procedure describes adding a tool to an already existing workspace, by enabling a dedicated plug-in
from the Dashboard.

To add tools that are available as plug-ins into a CodeReady Workspaces workspace, use one of the

Red Hat CodeReady Workspaces 2.1 End-user Guide

116

To add tools that are available as plug-ins into a CodeReady Workspaces workspace, use one of the
following methods:

Enable the plug-in from the Dashboard Plugin tab.

Edit the workspace devfile from the Dashboard Devfile tab.

This procedure uses the Java language support plug-in as an example.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace defined in this instance of Red Hat CodeReady Workspaces; see:

Creating and configuring a new CodeReady Workspaces workspace

Creating a workspace from User Dashboard

The workspace must be in a stopped state. To do so:

a. Navigate to the CodeReady Workspaces Dashboard. See Navigating CodeReady
Workspaces using the Dashboard.

b. In the Dashboard, click the Workspaces menu to open the workspaces list and locate the
workspace.

c. On the same row with the displayed workspace, on the right side of the screen, click the
Stop button to stop the workspace.

d. Wait a few seconds for the workspace to stop, then configure the workspace by clicking on
it.

Procedure

To add the plug-in from the Plug-in registry to an already existing CodeReady Workspaces workspace,
use one of the following methods:

Installing the plug-in from the Plugin tab.

1. Navigate to the Plugin tab.
The list of plug-ins, installed or possible to install, is displayed.

2. Enable the desired plug-in, for example, the Language Support for Java 11, by using the *
Enable* slide-toggle.
The plug-in source code is added to the workspace devfile, and the plug-in is now enabled.

3. On the bottom right side of the screen, save the changes by clicking the Save button. +
Once the changes are saved, the workspace is restarted.

Installing the plug-in by adding content to the devfile.

1. Navigate to the Devfile tab.
The devfile structure is displayed.

2. Locate the component section of the devfile and add the following lines to add the Java

CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS

117

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

2. Locate the component section of the devfile and add the following lines to add the Java
language v8 in to the workspace:

See the example of the final result:

Additional resources

Devfile specifications

 - id: redhat/java8/latest
 type: chePlugin

components:
 - id: redhat/php/latest
 memoryLimit: 1Gi
 type: chePlugin
 - id: redhat/php-debugger/latest
 memoryLimit: 256Mi
 type: chePlugin
 - mountSources: true
 endpoints:
 - name: 8080/tcp
 port: 8080
 memoryLimit: 512Mi
 type: dockerimage
 volumes:
 - name: composer
 containerPath: /home/user/.composer
 - name: symfony
 containerPath: /home/user/.symfony
 alias: php
 image: 'quay.io/eclipse/che-php-7:nightly'
 - id: redhat/java8/latest
 type: chePlugin

Red Hat CodeReady Workspaces 2.1 End-user Guide

118

https://redhat-developer.github.io/devfile/devfile

CHAPTER 5. CONFIGURING OAUTH AUTHORIZATION
This section describes how to connect Red Hat CodeReady Workspaces as an OAuth application to
supported OAuth providers.

Configuring GitHub OAuth

Configuring OpenShift OAuth

5.1. CONFIGURING GITHUB OAUTH

OAuth for GitHub allows for automatic SSH key upload to GitHub.

Procedure

Set up the GitHub OAuth client. The Authorization callback URL is filled in the next steps.

1. Go to the RH-SSO administration console and select the Identity Providers tab.

2. Select the GitHub identity provider in the drop-down list.

3. Paste the Redirect URI to the Authorization callback URL of the GitHub OAuth
application.

4. Fill the Client ID and Client Secret from the GitHub oauth app.

5. Enable Store Tokens.

6. Save the changes of the Github Identity provider and click Register application in the
GitHub oauth app page.

5.2. CONFIGURING OPENSHIFT OAUTH

For users to interact with OpenShift, they must first authenticate to the OpenShift cluster. OpenShift
OAuth is a process in which users prove themselves to a cluster through an API with obtained OAuth
access tokens.

Authentication with the OpenShift connector plugin is a possible way for CodeReady Workspaces users

CHAPTER 5. CONFIGURING OAUTH AUTHORIZATION

119

https://developer.github.com/apps/building-oauth-apps/creating-an-oauth-app

Authentication with the OpenShift connector plugin is a possible way for CodeReady Workspaces users
to authenticate with an OpenShift cluster.

The following section describes the OpenShift OAuth configuration options and its use with a
CodeReady Workspaces.

Prerequisites

The OpenShift command-line tool, oc is installed.

Procedure

To enable OpenShift OAuth automatically, deployed CodeReady Workspaces using the crwctl with the -
-os-oauth option. See the crwctl server:start specification chapter.

For CodeReady Workspaces deployed in single-user mode:

1. Register CodeReady Workspaces OAuth client in OpenShift. See the Register an OAuth
client in OpenShift chapter.

$ oc create -f <(echo '
kind: OAuthClient
apiVersion: oauth.openshift.io/v1
metadata:
 name: che
secret: "<random set of symbols>"
redirectURIs:
 - "<CodeReady Workspaces api url>/oauth/callback"
grantMethod: prompt
')

2. Add the OpenShift SSL certificate to the CodeReady Workspaces Java trust store.

See Adding self-signed SSL certificates to CodeReady Workspaces .

3. Update the OpenShift deployment configuration.

CHE_OAUTH_OPENSHIFT_CLIENTID: <client-ID>
CHE_OAUTH_OPENSHIFT_CLIENTSECRET: <openshift-secret>
CHE_OAUTH_OPENSHIFT_OAUTH__ENDPOINT: <oauth-endpoint>
CHE_OAUTH_OPENSHIFT_VERIFY__TOKEN__URL: <verify-token-url>

<client-ID> a name specified in the OpenShift OAuthClient.

<openshift-secret> a secret specified in the OpenShift OAuthClient.

<oauth-endpoint> the URL of the OpenShift OAuth service:

For OpenShift 3 specify the OpenShift master URL.

For OpenShift 4 specify the oauth-openshift route.

<verify-token-url> request URL that is used to verify the token. <OpenShift master
url>/api can be used for OpenShift 3 and 4.

See CodeReady Workspaces configMaps and their behavior .

Red Hat CodeReady Workspaces 2.1 End-user Guide

120

https://github.com/redhat-developer/codeready-workspaces-chectl#crwctl-serverstart
https://docs.openshift.com/container-platform/4.3/authentication/configuring-internal-oauth.html#oauth-register-additional-client_configuring-internal-oauth
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/advanced-configuration-options_crw#adding-self-signed-SSL-certificates-to-che
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/advanced-configuration-options_crw#codeready-workspaces-configmaps-and-their-behavior_advanced-configuration-options

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A
RESTRICTED ENVIRONMENT

This section describes how to manually configure various technology stacks to work with artifacts from
in-house repositories using self-signed certificates.

Using Maven artifact repositories

Using Gradle artifact repositories

Using Python artifact repositories

Using Go artifact repositories

Using NuGet artifact repositories

6.1. USING MAVEN ARTIFACT REPOSITORIES

Maven downloads artifacts that are defined in two locations:

Artifact repositories defined in a pom.xml file of the project. Configuring repositories in
pom.xml is not specific to Red Hat CodeReady Workspaces. For more information, see the
Maven documentation about the POM.

Artifact repositories defined in a settings.xml file. By default, settings.xml is located at
`~/.m2/settings.xml.

6.1.1. Defining repositories in settings.xml

To specify your own artifact repositories at example.server.org, use the settings.xml file. To do that,
ensure, that settings.xml is present in all the containers that use Maven tools, in particular the Maven
container and the Java plug-in container.

By default, settings.xml is located at the <home dir>/.m2 directory which is already on persistent
volume in Maven and Java plug-in containers and you don’t need to re-create the file each time you
restart the workspace if it isn’t in ephemeral mode.

In case you have another container that uses Maven tools and you want to share <home dir>/.m2 folder
with this container, you have to specify the custom volume for this specific component in the devfile:

Procedure

1. Configure your settings.xml file to use artifact repositories at example.server.org:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: chePlugin
 alias: maven-tool
 id: plugin/id
 volumes:
 - name: m2
 containerPath: <home dir>/.m2

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

121

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

<settings>
 <profiles>
 <profile>
 <id>my-nexus</id>
 <pluginRepositories>
 <pluginRepository>
 <id>my-nexus-snapshots</id>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-snapshots/</url>
 </pluginRepository>
 <pluginRepository>
 <id>my-nexus-releases</id>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-releases/</url>
 </pluginRepository>
 </pluginRepositories>
 <repositories>
 <repository>
 <id>my-nexus-snapshots</id>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-snapshots/</url>
 </repository>
 <repository>
 <id>my-nexus-releases</id>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-releases/</url>
 </repository>
 </repositories>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>my-nexus</activeProfile>
 </activeProfiles>
</settings>

Red Hat CodeReady Workspaces 2.1 End-user Guide

122

6.1.2. Defining Maven settings.xml file across workspaces

To use your own settings.xml file across all your workspaces, create a Secret object (with a name of
your choice) in the same namespace as the workspace. Put the contents of the required settings.xml in
the data section of the Secret (possibly along with other files that should reside in the same directory).
Labelling and annotating this Secret according to Mounting a secret as a file or an environment variable
into a workspace container ensures that the contents of the Secret is mounted into the workspace Pod.
Note that you need to restart any previously running workspaces for them to use this Secret.

Prerequisites

This is required to set your private credentials to a Maven repository. See the Maven documentation
Settings.xml#Servers for additional information.

To mount this settings.xml:

Procedure

1. Convert settings.xml to base64:

$ cat settings.xml | base64

2. Copy the output to a new file, secret.yaml, which also defines needed annotations and labels:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
 <servers>
 <server>
 <id>repository-id</id>
 <username>username</username>
 <password>password123</password>
 </server>
 </servers>
</settings>

apiVersion: v1
kind: Secret
metadata:
 name: maven-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
 annotations:
 che.eclipse.org/target-container: maven
 che.eclipse.org/mount-path: /home/user/.m2
 che.eclipse.org/mount-as: file
type: Opaque
data:
 settings.xml:
PHNldHRpbmdzIHhtbG5zPSJodHRwOi8vbWF2ZW4uYXBhY2hlLm9yZy9TRVRUSU5HUy8xLj
AuMCIKICAgICAgICAgIHhtbG5zOnhzaT0iaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2
hlbWEtaW5zdGFuY2UiCiAgICAgICAgICB4c2k6c2NoZW1hTG9jYXRpb249Imh0dHA6Ly9tYXZl
bi5hcGFjaGUub3JnL1NFVFRJTkdTLzEuMC4wCiAgICAgICAgICAgICAgICAgICAgICAgICAgI

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

123

https://maven.apache.org/settings.html#servers

As of {7-15-2-2} version of CodeReady Workspaces, the target container annotation has been
deprecated. An example of the updated annotation looks as follows:

+

1. Create this secret in the cluster:

$ oc apply -f secret.yaml

2. Start a new workspace. You will see /home/user/.m2/settings.xml with your original content in
the maven container.

6.1.3. Using self-signed certificates in Java projects

Internal artifact repositories often do not have a certificate signed by an authority that is trusted by
default in Java. They are usually signed by an internal company authority or are self-signed. Configure
your tools to accept these certificates by adding them to the Java truststore.

Procedure

1. Obtain a server certificate file from the repository server. It is often a file named tls.crt.

a. Create a Java truststore file:

$ keytool -import -file tls.crt -alias nexus -keystore truststore.jks -storepass changeit

CAgIGh0dHBzOi8vbWF2ZW4uYXBhY2hlLm9yZy94c2Qvc2V0dGluZ3MtMS4wLjAueHNkIj4KIC
A8c2VydmVycz4KICAgIDxzZXJ2ZXI+CiAgICAgIDxpZD5yZXBvc2l0b3J5LWlkPC9pZD4KICAgI
CAgPHVzZXJuYW1lPnVzZXJuYW1lPC91c2VybmFtZT4KICAgICAgPHBhc3N3b3JkPnBhc3N3
b3JkMTIzPC9wYXNzd29yZD4KICAgIDwvc2VydmVyPgogIDwvc2VydmVycz4KPC9zZXR0aW5
ncz4K

apiVersion: v1
kind: Secret
metadata:
 name: maven-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: true
 che.eclipse.org/mount-path: /home/user/.m2
 che.eclipse.org/mount-as: file
type: Opaque
data:
 settings.xml:
PHNldHRpbmdzIHhtbG5zPSJodHRwOi8vbWF2ZW4uYXBhY2hlLm9yZy9TRVRUSU5HUy8xLjAuMCIK
ICAgICAgICAgIHhtbG5zOnhzaT0iaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWEtaW5zdGF
uY2UiCiAgICAgICAgICB4c2k6c2NoZW1hTG9jYXRpb249Imh0dHA6Ly9tYXZlbi5hcGFjaGUub3JnL1NF
VFRJTkdTLzEuMC4wCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGh0dHBzOi8vbWF2ZW4uYX
BhY2hlLm9yZy94c2Qvc2V0dGluZ3MtMS4wLjAueHNkIj4KICA8c2VydmVycz4KICAgIDxzZXJ2ZXI+CiAgI
CAgIDxpZD5yZXBvc2l0b3J5LWlkPC9pZD4KICAgICAgPHVzZXJuYW1lPnVzZXJuYW1lPC91c2VybmFt
ZT4KICAgICAgPHBhc3N3b3JkPnBhc3N3b3JkMTIzPC9wYXNzd29yZD4KICAgIDwvc2VydmVyPgogID
wvc2VydmVycz4KPC9zZXR0aW5ncz4K

Red Hat CodeReady Workspaces 2.1 End-user Guide

124

Trust this certificate? [no]: yes
Certificate was added to keystore
Owner: CN=example.com
Issuer: CN=example.com
Serial number: 80ca0f6980c6019a
Valid from: Thu Feb 06 11:00:29 CET 2020 until: Fri Feb 05 11:00:29 CET 2021
Certificate fingerprints:
 MD5: 88:3C:EC:E1:BE:57:DD:9D:46:36:8E:DD:BF:14:04:22
 SHA1: 08:D8:79:D3:F8:6B:5C:3D:71:AA:23:CA:72:01:47:BD:9D:91:0A:AD
 SHA256:
5C:BB:66:81:44:D2:50:EE:EB:CE:D6:15:7E:63:E1:9A:71:EA:58:3F:14:01:15:4E:68:5D:71:
0A:A0:31:33:29
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 4096-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.17 Criticality=false
SubjectAlternativeName [
 DNSName: *.apps.example.com
]

Trust this certificate? [no]: yes
Certificate was added to keystore

b. Upload the truststore file to /projects/maven/truststore.jks to make it available for all
containers.

2. Add the truststore file.

In the Maven container:

a. Add the javax.net.ssl system property to the MAVEN_OPTS environment variable:

b. Restart the workspace.

In the Java plug-in container:
In the devfile, add the javax.net.ssl system property for the Java language server:

 - mountSources: true
 alias: maven
 type: dockerimage
 ...
 env:
 -name: MAVEN_OPTS
 value: >-
 -Duser.home=/projects/maven -
Djavax.net.ssl.trustStore=/projects/truststore.jks

components:
 - id: redhat/java11/latest
 type: chePlugin
 preferences:
 java.jdt.ls.vmargs: >-
 -noverify -Xmx1G -XX:+UseG1GC -XX:+UseStringDeduplication

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

125

6.2. USING GRADLE ARTIFACT REPOSITORIES

6.2.1. Downloading different versions of Gradle

The recommended way to download any version of Gradle is by using the Gradle Wrapper script. If your
project does not have a gradle/wrapper directory, run $ gradle wrapper to configure the Wrapper.

Prerequisites

The Gradle Wrapper is present in your project.

Procedure

To download a Gradle version from a non-standard location, change your Wrapper settings in
/projects/<your_project>/gradle/wrapper/gradle-wrapper.properties:

Change the distributionUrl property to point to a URL of the Gradle distribution ZIP file:

properties
distributionUrl=http://<url_to_gradle>/gradle-6.1-bin.zip

Alternatively, you may place a Gradle distribution zip file locally in /project/gradle in your workspace.

Change the distributionUrl property to point to a local address of the Gradle distribution zip
file:

properties
distributionUrl=file\:/projects/gradle/gradle-6.1-bin.zip

6.2.2. Configuring global Gradle repositories

Use an initialization script to configure global repositories for the workspace. Gradle performs extra
configuration before projects are evaluated, and this configuration is used in each Gradle project from
the workspace.

Procedure

To set global repositories for Gradle that could be used in each Gradle project in the workspace, create
an init.gradle script in the ~/.gradle/ directory:

 -Duser.home=/projects/maven
 -Djavax.net.ssl.trustStore=/projects/truststore.jks
[...]

allprojects {
 repositories {
 mavenLocal ()
 maven {
 url "http://repo.mycompany.com/maven"
 credentials {
 username "admin"
 password "my_password"
 }

Red Hat CodeReady Workspaces 2.1 End-user Guide

126

This file configures Gradle to use a local Maven repository with the given credentials.

NOTE

The ~/.gradle directory does not persist in the current Java plug-in versions, so you must
create the init.gradle script at each workspace start in the Java plug-in sidecar
container.

6.2.3. Using self-signed certificates in Java projects

Internal artifact repositories often do not have a certificate signed by an authority that is trusted by
default in Java. They are usually signed by an internal company authority or are self-signed. Configure
your tools to accept these certificates by adding them to the Java truststore.

Procedure

1. Obtain a server certificate file from the repository server. It is often a file named tls.crt.

a. Create a Java truststore file:

$ keytool -import -file tls.crt -alias nexus -keystore truststore.jks -storepass changeit

Trust this certificate? [no]: yes
Certificate was added to keystore
Owner: CN=example.com
Issuer: CN=example.com
Serial number: 80ca0f6980c6019a
Valid from: Thu Feb 06 11:00:29 CET 2020 until: Fri Feb 05 11:00:29 CET 2021
Certificate fingerprints:
 MD5: 88:3C:EC:E1:BE:57:DD:9D:46:36:8E:DD:BF:14:04:22
 SHA1: 08:D8:79:D3:F8:6B:5C:3D:71:AA:23:CA:72:01:47:BD:9D:91:0A:AD
 SHA256:
5C:BB:66:81:44:D2:50:EE:EB:CE:D6:15:7E:63:E1:9A:71:EA:58:3F:14:01:15:4E:68:5D:71:
0A:A0:31:33:29
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 4096-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.17 Criticality=false
SubjectAlternativeName [
 DNSName: *.apps.example.com
]

Trust this certificate? [no]: yes
Certificate was added to keystore

b. Upload the truststore file to /projects/gradle/truststore.jks to make it available for all
containers.

 }
 }
}

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

127

2. Add the truststore file in the Gradle container.

a. Add the javax.net.ssl system property to the JAVA_OPTS environment variable:

Additional resources

Gradle documentation about initialization scripts

The Gradle Wrapper documentation

6.3. USING PYTHON ARTIFACT REPOSITORIES

6.3.1. Configuring Python to use a non-standard registry

To specify a non-standard repository for use by the Python pip tool, set the PIP_INDEX_URL
environment variable.

Procedure

In your devfile, configure the PIP_INDEX_URL environment variable for the language support
and for the development container components:

6.3.2. Using self-signed certificates in Python projects

Internal artifact repositories often do not have a self-signed (SSL) certificate signed by an authority that
is trusted by default. They are usually signed by an internal company authority or are self-signed.
Configure your tools to accept these certificates.

Python uses certificates from a file defined in the PIP_CERT environment variable.

Procedure

 - mountSources: true
 alias: maven
 type: dockerimage
 ...
 env:
 -name: JAVA_OPTS
 value: >-
 -Duser.home=/projects/gradle -Djavax.net.ssl.trustStore=/projects/truststore.jks

 - id: ms-python/python/latest
 memoryLimit: 512Mi
 type: chePlugin
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'
 - mountSources: true
 memoryLimit: 512Mi
 type: dockerimage
 alias: python
 image: 'quay.io/eclipse/che-python-3.7:nightly'
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'

Red Hat CodeReady Workspaces 2.1 End-user Guide

128

https://docs.gradle.org/current/userguide/init_scripts.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html

Procedure

1. Obtain the certificate from the non-standard repository and place the certificate file in the
/projects/ssl file to make it accessible from all your containers.

NOTE

pip accepts certificates in the Privacy-Enhanced Mail (PEM) format only.
Convert the certificate to the PEM format using OpenSSL if necessary.

2. Configure the devfile:

6.4. USING GO ARTIFACT REPOSITORIES

To configure Go in a restricted environment, use the GOPROXY environment variable and the Athens
module datastore and proxy.

6.4.1. Configuring Go to use a non-standard-registry

Athens is a Go module datastore and proxy with many configuration options. It can be configured to act
only as a module datastore and not as a proxy. An administrator can upload their Go modules to the
Athens datastore and have them available across their Go projects. If a project tries to access a Go
module that is not in the Athens datastore, the Go build fails.

To work with Athens, configure the GOPROXY environment variable in the devfile of your CLI
container:

 - id: ms-python/python/latest
 memoryLimit: 512Mi
 type: chePlugin
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'
 - value: '/projects/ssl/rootCA.pem'
 name: 'PIP_CERT'
 - mountSources: true
 memoryLimit: 512Mi
 type: dockerimage
 alias: python
 image: 'quay.io/eclipse/che-python-3.7:nightly'
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'
 - value:'/projects/ssl/rootCA.pem'
 name: 'PIP_CERT'

components:
- mountSources: true
 type: dockerimage
 alias: go-cli
 image: 'quay.io/eclipse/che-golang-1.12:7.7.0'
 ...
 - value: /tmp/.cache

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

129

https://github.com/gomods/athens

6.4.2. Using self-signed certificates in Go projects

Internal artifact repositories often do not have a self-signed (SSL) certificate signed by an authority that
is trusted by default. They are usually signed by an internal company authority or are self-signed.
Configure your tools to accept these certificates.

Go uses certificates from a file defined in the SSL_CERT_FILE environment variable.

Procedure

1. Obtain the certificate used by the Athens server in the Privacy-Enhanced Mail (PEM) format
and place it in the /projects/ssl file to make it accessible from all your containers.

2. Right-click the project explorer and select Upload files to upload the rootCA.crt certificate file
to your Red Hat CodeReady Workspaces workspace.

3. Add the appropriate environment variables to your devfile:

Additional resources

GitHub - gomods/athens: A Go module datastore and proxy

6.5. USING NUGET ARTIFACT REPOSITORIES

To configure NuGet in a restricted environment, modify the nuget.config file and use the
SSL_CERT_FILE environment variable in the devfile to add self-signed certificates.

6.5.1. Configuring NuGet to use a non-standard artifact repository

NuGet searches for configuration files anywhere between the solution directory and the driver root
directory. If you put the nuget.config file in the /projects directory, the nuget.config file defines
NuGet behavior for all projects in /projects.

Procedure

 name: GOCACHE
 - value: 'http://your.athens.host'
 name: GOPROXY

components:
- mountSources: true
 type: dockerimage
 alias: go-cli
 image: 'quay.io/eclipse/che-golang-1.12:7.7.0'
 ...
 - value: /tmp/.cache
 name: GOCACHE
 - value: 'http://your.athens.host'
 name: GOPROXY
 - value: 'on'
 name: GO111MODULE
 - value: '/projects/ssl/rootCA.crt'
 name: SSL_CERT_FILE

Red Hat CodeReady Workspaces 2.1 End-user Guide

130

https://github.com/gomods/athens

Create and place the nuget.config file in the /projects directory.

Example nuget.config with a Nexus repository hosted at nexus.example.org:

6.5.2. Using self-signed certificates in NuGet projects

Internal artifact repositories often do not have a self-signed (SSL) certificate signed by an authority that
is trusted by default. They are usually signed by an internal company authority or are self-signed.
Configure your tools to accept these certificates.

Procedure

1. Obtain the certificate file of a non-standard repository and place it in the /projects/ssl file to
make it accessible from all your containers.

2. Specify the location of the certificate file in the SSL_CERT_FILE environment variable in your
devfile for the OmniSharp plug-in and for the .NET container.

Example of the devfile:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <packageSources>
 <add key="nexus2" value="https://nexus.example.org/repository/nuget-hosted/"/>
 </packageSources>
 <packageSourceCredentials>
 <nexus2>
 <add key="Username" value="user" />
 <add key="Password" value="..." />
 </nexus2>
 </packageSourceCredentials>
</configuration>

components:
 - id: redhat-developer/che-omnisharp-plugin/latest
 memoryLimit: 1024Mi
 type: chePlugin
 alias: omnisharp
 env:
 - value: /projects/ssl/rootCA.crt
 name: SSL_CERT_FILE
 - mountSources: true
 endpoints:
 - name: 5000/tcp
 port: 5000
 memoryLimit: 512Mi
 type: dockerimage
 volumes:
 - name: dotnet
 containerPath: /home/user
 alias: dotnet
 image: 'quay.io/eclipse/che-dotnet-2.2:7.7.1'
 env:
 - value: /projects/ssl/rootCA.crt
 name: SSL_CERT_FILE

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

131

6.6. USING NPM ARTIFACT REPOSITORIES

npm is usually configured using the npm config command, writing values to the .npmrc files. However,
configuration values can also be set using the environment variables beginning with NPM_CONFIG_.

The Javascript/Typescript plug-in used in Red Hat CodeReady Workspaces does not download any
artifacts. It is enough to configure npm in the dev-machine component.

Use the following environment variables for configuration:

The URL for the artifact repository: NPM_CONFIG_REGISTRY

For using a certificate from a file: NODE_EXTRA_CA_CERTS

To be able to reference the certificate in a devfile, get a copy of the certificate of the npm repository
server and put it inside the /project folder.

1. An example configuration for the use of an internal repository with a self-signed certificate:

 - mountSources: true
 endpoints:
 - name: nodejs
 port: 3000
 memoryLimit: '512Mi'
 type: 'dockerimage'
 alias: 'nodejs'
 image: 'quay.io/eclipse/che-nodejs10-ubi:nightly'
 env:
 -name: NODE_EXTRA_CA_CERTS
 value: '/projects/config/tls.crt'
 - name: NPM_CONFIG_REGISTRY
 value: 'https://snexus-airgap.apps.acme.com/repository/npm-proxy/'

Red Hat CodeReady Workspaces 2.1 End-user Guide

132

CHAPTER 7. TROUBLESHOOTING FOR CODEREADY
WORKSPACES END USERS

7.1. RESTARTING A CODEREADY WORKSPACES WORKSPACE IN
DEBUG MODE AFTER START FAILURE

This section describes how to restart the Red Hat CodeReady Workspaces workspace in debug mode
after a failure during workspace start.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces 'quick-starts'.

An existing workspace that failed to start.

Procedure

1. Find the target workspace from the recent workspaces. Click on the target workspace to see
the logs.

2. Click the link for restarting in debug mode.

3. Download full logs after start fail with the Download logs link.

CHAPTER 7. TROUBLESHOOTING FOR CODEREADY WORKSPACES END USERS

133

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

7.2. STARTING A CODEREADY WORKSPACES WORKSPACE IN DEBUG
MODE

This section describes how to start the Red Hat CodeReady Workspaces workspace in debug mode.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

An existing workspace defined on this instance of Red Hat CodeReady Workspaces. See
Creating a new workspace .

Procedure

1. Find the target workspace from the recent workspaces. Right-click the workspace name to
open a context menu. Select the Run in debug mode item.

2. Click the target workspace to see the logs.

3. The workspace logs are displayed.

Red Hat CodeReady Workspaces 2.1 End-user Guide

134

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

CHAPTER 7. TROUBLESHOOTING FOR CODEREADY WORKSPACES END USERS

135

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW
OpenShift Connector, also referred to as Visual Studio Code OpenShift Connector for Red Hat
OpenShift, is a plug-in for CodeReady Workspaces that provides a method for interacting with Red Hat
OpenShift 3 or 4 clusters.

OpenShift Connector makes it possible to create, build, and debug applications in the CodeReady
Workspaces IDE and then deploy the applications directly to a running OpenShift cluster.

OpenShift Connector is a GUI for the OpenShift Do (odo) utility, which aggregates OpenShift CLI (oc)
commands into compact units. As such, OpenShift Connector helps new developers who do not have
OpenShift background with creating applications and running them on the cloud. Instead of using
several oc commands, the user creates a new component or service by selecting a preconfigured
template, such as a Project, an Application, or a Service, and then deploys it as an OpenShift Component
to their cluster.

This section provides information about installing, enabling, and basic use of the OpenShift Connector
plug-in.

Features of OpenShift Connector

Installing OpenShift Connector in Red Hat CodeReady Workspaces

Authenticating with OpenShift Connector from Red Hat CodeReady Workspaces

Creating Components with OpenShift Connector in Red Hat CodeReady Workspaces

Connecting source code from GitHub to an OpenShift Component using OpenShift Connector

8.1. FEATURES OF OPENSHIFT CONNECTOR

The OpenShift Connector plug-in enables the user create, deploy, and push OpenShift Components to
an OpenShift Cluster in a GUI.

When used in CodeReady Workspaces, the OpenShift Connector GUI provides the following benefits to
its users:

Cluster management

Logging in to clusters using tokens and username and password combinations.

Switching contexts between different .kube/config entries directly from the extension view.

Viewing and managing OpenShift resources as build and deployment. configurations from the
Explorer view.

Development

Connecting to a local or hosted OpenShift cluster directly from CodeReady Workspaces.

Quickly updating the cluster with your changes.

Creating Components, Services, and Routes on the connected cluster.

Adding storage directly to a component from the extension itself.

Red Hat CodeReady Workspaces 2.1 End-user Guide

136

Deployment

Deploying to OpenShift clusters with a single click directly from CodeReady Workspaces.

Navigating to the multiple Routes, created to access the deployed application.

Deploying multiple interlinked Components and Services directly on the cluster.

Pushing and watching component changes from the CodeReady Workspaces IDE.

Streaming logs directly on the integrated terminal view of CodeReady Workspaces.

Monitoring

Working with OpenShift resources directly from the CodeReady Workspaces IDE.

Starting and resuming build and deployment configurations.

Viewing and following logs for deployments, pods, and containers.

8.2. INSTALLING OPENSHIFT CONNECTOR IN CODEREADY
WORKSPACES

OpenShift Connector is a plug-in designed to create basic OpenShift Components, using CodeReady
Workspaces as the editor, and to deploy the Component to an OpenShift cluster. To visually verify that
the plug-in is available in your instance, see whether the OpenShift icon is displayed in the CodeReady
Workspaces left menu.

To install and enable OpenShift Connector in a CodeReady Workspaces instance, use instructions in this
section.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady
Workspaces quick-starts.

Procedure

Install OpenShift Connector in CodeReady Workspaces by adding it as an extension in the CodeReady
Workspaces Plugins panel.

1. Open the CodeReady Workspaces Plugins panel by pressing Ctrl+Shift+J or by navigating to
View → Plugins.

2. Search for vscode-openshift-connector , and click the Install button.

3. Restart the workspace for the changes to take effect.

4. The dedicated OpenShift Application Explorer icon is added to the left panel.

8.3. AUTHENTICATING WITH OPENSHIFT CONNECTOR FROM
CODEREADY WORKSPACES

Before the user can develop and push Components from CodeReady Workspaces, they need to

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW

137

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

Before the user can develop and push Components from CodeReady Workspaces, they need to
authenticate with an OpenShift cluster.

OpenShift Connector offers the following methods for logging in to the OpenShift Cluster from the
CodeReady Workspaces instance:

Using the notification that asks to log in to the OpenShift cluster where CodeReady
Workspaces is deployed to.

Using the Log in to the cluster button.

Using the Command Palette.

NOTE

In CodeReady Workspaces 2.1, Openshift Connector plug-in requires manual
connecting to the target cluster

By default, the Openshift Connector plug-in logs into the cluster as inClusterUser, which
may not have the manage project permission. This causes an error message to be
displayed when a new project is being created using Openshift Application Explorer:

Failed to create Project with error 'Error: Command failed: "/tmp/vscode-
unpacked/redhat.vscode-openshift -connector.latest.qvkozqtkba.openshift-connector-
0.1.4-523.vsix/extension/out/tools/linux/odo" project create test-project ✗
projectrequests.project.openshift.io is forbidden

To work around this temporary issue, log out from the local cluster and relog in to
OpenShift cluster using the OpenShift user’s credentials.

When using a local instance of OpenShift (such as CodeReady Containers or Minishift), the user’s
credentials are stored in the workspace ~/.kube/config file, and may be used for automatic
authentication in subsequent logins. In the context of CodeReady Workspaces, the ~/.kube/config is
stored as a part of the plug-in sidecar container.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady Workspaces
quick-starts.

A CodeReady Workspaces workspace has been created.

The OpenShift Connector plug-in is installed.

The OpenShift OAuth provider is configured (only for the auto-login to the OpenShift cluster
where CodeReady Workspaces is deployed. See Section 5.2, “Configuring OpenShift OAuth”).

Procedure

1. In the left panel, select the OpenShift Application Explorer icon.
The OpenShift Connector panel is displayed.

2. Log in using the OpenShift Application Explorer. Use one of the following methods:

Click the Log in to cluster button in the top left corner of the pane.

Red Hat CodeReady Workspaces 2.1 End-user Guide

138

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

Press F1 to open the Command Palette, or navigate to View → Find Command in the top
menu.
Search for OpenShift: Log in to cluster and press Enter.

3. If a You are already logged in a cluster. message appears, click Yes.
A selection whether to log in using Credentials or Token is displayed at the top of the screen.

4. Select the method to log in to the cluster and follow the login instructions.

NOTE

For authenticating with a token, the required token information is in the top right
corner of the main OpenShift Container Platform screen, under <User name> →
Copy Login Command.

8.4. CREATING COMPONENTS WITH OPENSHIFT CONNECTOR IN
CODEREADY WORKSPACES

In the context of OpenShift, Components and Services are basic structures that need to be stored in
Application, which is a part of the OpenShift project that organizes deployables into virtual folders for
better readability.

This chapter describes how to create OpenShift Components in the CodeReady Workspaces using the
OpenShift Connector plug-in and push them to an OpenShift cluster.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see the CodeReady Workspaces 2.1 Installation GuideCodeReady Workspaces
quick-starts.

The user is logged in to an OpenShift cluster using the OpenShift Connector plug-in.

Procedure

1. In the OpenShift Connector panel, right-click the row with the red OpenShift icon and select
New Project.

2. Enter a name for your project.

3. Right-click the created project and select New Component.

4. When prompted, enter the name for a new OpenShift Application in which the component can
be stored.
The following options of source for your component are displayed:

a. Git Repository
This prompts you to specify a Git repository URL and select the intended revision of the
runtime.

b. Binary File
This prompts you to select a file from the file explorer.

c. Workspace Directory
This prompts you to select a folder from the file explorer.

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW

139

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/installation_guide/

5. Enter the name for the component.

6. Select the component type.

7. Select the component type version.

8. The component is created. Right-click the component, select New URL, and enter a name of
your choice.

9. The component is ready to be pushed to the OpenShift cluster. To do so, right-click the
component and select Push.
The component is now deployed to the cluster. Right-click for selecting additional actions, such
as debugging and opening in a browser (requires port 8080 to be exposed).

8.5. CONNECTING SOURCE CODE FROM GITHUB TO AN OPENSHIFT
COMPONENT USING OPENSHIFT CONNECTOR

When the user has a Git-stored source code that is wanted for further development, it is more efficient
to deploy it directly from the Git repository into the OpenShift Connector Component.

This chapter describes how to obtain the content from the Git repository and connect it with a
CodeReady Workspaces-developed OpenShift Component.

Prerequisites

Have a running CodeReady Workspaces workspace.

Be logged in to the OpenShift cluster using the OpenShift Connector.

Procedure

To make changes to your GitHub component, clone the repository into CodeReady Workspaces to
obtain this source code:

1. In the CodeReady Workspaces main screen, open the Command Palette by pressing F1.

2. Type the Git Clone command in the Command Palette and press Enter.

3. Provide the GitHub URL and select the destination for the deployment.

4. Add source-code files to your Project by clicking the Add to workspace button.

For additional information about cloning Git repository, see: Accessing a Git repository via HTTPS .

Red Hat CodeReady Workspaces 2.1 End-user Guide

140

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.1/html/end-user_guide/index#accessing-a-git-repository-via-https_version-control

	Table of Contents
	CHAPTER 1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD
	1.1. LOGGING IN TO CODEREADY WORKSPACES ON OPENSHIFT FOR THE FIRST TIME USING OAUTH
	1.2. LOGGING IN TO CODEREADY WORKSPACES ON OPENSHIFT FOR THE FIRST TIME REGISTERING AS A NEW USER
	1.3. FINDING CODEREADY WORKSPACES CLUSTER URL USING THE OPENSHIFT 4 CLI

	CHAPTER 2. CHE-THEIA IDE BASICS
	2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA
	2.1.1. Che-Theia task types
	2.1.2. Running and debugging
	2.1.3. Editing a task and launch configuration

	2.2. VERSION CONTROL
	2.2.1. Managing Git configuration: identity
	2.2.2. Accessing a Git repository using HTTPS
	2.2.3. Accessing a Git repository using a generated SSH key pair
	2.2.3.1. Generating an SSH key using the CodeReady Workspaces command palette
	2.2.3.2. Adding the associated public key to a repository or account on GitHub
	2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

	2.2.4. Managing pull requests using the GitHub PR plug-in
	2.2.4.1. Using the GitHub Pull Requests plug-in
	2.2.4.2. Creating a new pull request

	2.3. CHE-THEIA TROUBLESHOOTING

	CHAPTER 3. WORKSPACES OVERVIEW
	3.1. CONFIGURING A WORKSPACE USING A DEVFILE
	3.1.1. What is a devfile
	3.1.2. Disambiguation between stacks and devfiles
	3.1.3. Creating a workspace from the default branch of a Git repository
	3.1.4. Creating a workspace from a feature branch of a Git repository
	3.1.5. Creating a workspace from a publicly accessible standalone devfile using HTTP
	3.1.6. Overriding devfile values using factory parameters
	3.1.7. Creating a workspace using crwctl and a local devfile

	3.2. MAKING A WORKSPACE PORTABLE USING A DEVFILE
	3.2.1. What is a devfile
	3.2.2. A minimal devfile
	3.2.3. Generating workspace names
	3.2.4. Writing a devfile for a project
	3.2.4.1. Preparing a minimal devfile
	3.2.4.2. Specifying multiple projects in a devfile

	3.2.5. Devfile reference
	3.2.5.1. Adding projects to a devfile
	3.2.5.2. Adding components to a devfile
	3.2.5.3. Adding commands to a devfile
	3.2.5.4. Devfile attributes

	3.2.6. Objects supported in Red Hat CodeReady Workspaces 2.1

	3.3. CONVERTING A CODEREADY WORKSPACES 1.X WORKSPACE TO A DEVFILE
	3.3.1. Comparing CodeReady Workspaces 1.x workspace configuration to a devfile
	3.3.2. Converting a CodeReady Workspaces 1.x workspace to a basic devfile
	3.3.3. Accessing a CodeReady Workspaces 1.x workspace configuration

	3.4. CREATING AND CONFIGURING A NEW CODEREADY WORKSPACES 2.1 WORKSPACE
	3.4.1. Creating a new workspace from the dashboard
	3.4.2. Adding projects to your workspace
	3.4.3. Configuring the workspace and adding tools
	3.4.3.1. Adding plug-ins
	3.4.3.2. Defining the workspace editor
	3.4.3.3. Defining specific container images
	3.4.3.4. Adding commands to your workspace

	3.5. IMPORTING A OPENSHIFT APPLICATION INTO A WORKSPACE
	3.5.1. Including a OpenShift application in a workspace devfile definition
	3.5.2. Adding a OpenShift application to an existing workspace using the dashboard
	3.5.3. Generating a devfile from an existing OpenShift application

	3.6. REMOTELY ACCESSING WORKSPACES
	3.6.1. Remotely accessing workspaces using the OpenShift command-line tool
	3.6.2. Downloading and uploading a file to a workspace using the command-line interface

	3.7. CREATING A WORKSPACE FROM CODE SAMPLE
	3.7.1. Creating a workspace from Get Started view of User Dashboard
	3.7.2. Creating a workspace from Custom Workspace view of User Dashboard
	3.7.3. Changing the configuration of an existing workspace
	3.7.4. Running an existing workspace from the User Dashboard
	3.7.4.1. Running an existing workspace from the User Dashboard with the Run button
	3.7.4.2. Running an existing workspace from the User Dashboard using the Open button
	3.7.4.3. Running an existing workspace from the User Dashboard using the Recent Workspaces

	3.8. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF A PROJECT
	3.8.1. Importing from the Dashboard into an existing workspace
	3.8.1.1. Editing an existing repository
	3.8.1.2. Editing the commands after importing a project

	3.8.2. Importing to a running workspace using the Git: Clone command
	3.8.3. Importing to a running workspace with git clone in a terminal

	3.9. CONFIGURING WORKSPACE EXPOSURE STRATEGIES
	3.9.1. Workspace exposure strategies
	3.9.1.1. Multi-host strategy

	3.9.2. Security considerations
	3.9.2.1. JSON web token (JWT) proxy
	3.9.2.2. Secured plug-ins and editors
	3.9.2.3. Secured container-image components
	3.9.2.4. Cross-site request forgery attacks
	3.9.2.5. Phishing attacks

	3.10. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT VARIABLE INTO A WORKSPACE CONTAINER
	3.10.1. Mounting a secret as a file into a workspace container
	3.10.2. Mounting a secret as an environment variable into a workspace container
	3.10.3. The use of annotations in the process of mounting a secret into a workspace container

	CHAPTER 4. CUSTOMIZING DEVELOPER ENVIRONMENTS
	4.1. WHAT IS A CHE-THEIA PLUG-IN
	4.1.1. Features and benefits of Che-Theia plug-ins
	4.1.2. Che-Theia plug-in concept in detail
	4.1.2.1. Client-side and server-side Che-Theia plug-ins
	4.1.2.2. Che-Theia plug-in APIs
	4.1.2.3. Che-Theia plug-in capabilities
	4.1.2.4. VS Code extensions and Eclipse Theia plug-ins

	4.1.3. Che-Theia plug-in metadata
	4.1.4. Che-Theia plug-in lifecycle
	4.1.5. Embedded and remote Che-Theia plug-ins
	4.1.5.1. Embedded (or local) plug-ins
	4.1.5.2. Remote plug-ins
	4.1.5.3. Comparison matrix

	4.1.6. Remote plug-in endpoint
	4.1.6.1. Defining a launch remote plug-in endpoint using Dockerfile
	4.1.6.2. Defining a launch remote plug-in endpoint in a meta.yaml file

	4.2. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES
	4.3. USING A VISUAL STUDIO CODE EXTENSION IN CODEREADY WORKSPACES
	4.3.1. Publishing a VS Code extension into the CodeReady Workspaces plug-in registry
	4.3.1.1. Writing a meta.yaml file and adding it to a plug-in registry

	4.3.2. Adding a plug-in registry VS Code extension to a workspace
	4.3.2.1. Adding a VS Code extension using the CodeReady Workspaces Plugins panel
	4.3.2.2. Adding a VS Code extension using the workspace configuration

	4.3.3. Choosing the sidecar image
	4.3.4. Verifying the VS Code extension API compatibility level

	4.4. ADDING TOOLS TO CODEREADY WORKSPACES AFTER CREATING A WORKSPACE
	4.4.1. Additional tools in the CodeReady Workspaces workspace
	4.4.2. Adding language support plug-in to the CodeReady Workspaces workspace

	CHAPTER 5. CONFIGURING OAUTH AUTHORIZATION
	5.1. CONFIGURING GITHUB OAUTH
	5.2. CONFIGURING OPENSHIFT OAUTH

	CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
	6.1. USING MAVEN ARTIFACT REPOSITORIES
	6.1.1. Defining repositories in settings.xml
	6.1.2. Defining Maven settings.xml file across workspaces
	6.1.3. Using self-signed certificates in Java projects

	6.2. USING GRADLE ARTIFACT REPOSITORIES
	6.2.1. Downloading different versions of Gradle
	6.2.2. Configuring global Gradle repositories
	6.2.3. Using self-signed certificates in Java projects

	6.3. USING PYTHON ARTIFACT REPOSITORIES
	6.3.1. Configuring Python to use a non-standard registry
	6.3.2. Using self-signed certificates in Python projects

	6.4. USING GO ARTIFACT REPOSITORIES
	6.4.1. Configuring Go to use a non-standard-registry
	6.4.2. Using self-signed certificates in Go projects

	6.5. USING NUGET ARTIFACT REPOSITORIES
	6.5.1. Configuring NuGet to use a non-standard artifact repository
	6.5.2. Using self-signed certificates in NuGet projects

	6.6. USING NPM ARTIFACT REPOSITORIES

	CHAPTER 7. TROUBLESHOOTING FOR CODEREADY WORKSPACES END USERS
	7.1. RESTARTING A CODEREADY WORKSPACES WORKSPACE IN DEBUG MODE AFTER START FAILURE
	7.2. STARTING A CODEREADY WORKSPACES WORKSPACE IN DEBUG MODE

	CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW
	8.1. FEATURES OF OPENSHIFT CONNECTOR
	8.2. INSTALLING OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
	8.3. AUTHENTICATING WITH OPENSHIFT CONNECTOR FROM CODEREADY WORKSPACES
	8.4. CREATING COMPONENTS WITH OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
	8.5. CONNECTING SOURCE CODE FROM GITHUB TO AN OPENSHIFT COMPONENT USING OPENSHIFT CONNECTOR

