
Red Hat Certificate System 10

Administration Guide

Updated for Red Hat Certificate System 10.4

Last Updated: 2023-08-25

Red Hat Certificate System 10 Administration Guide

Updated for Red Hat Certificate System 10.4

Florian Delehaye
Red Hat Customer Content Services
fdelehay@redhat.com

Marc Muehlfeld
Red Hat Customer Content Services

Petr Bokoč
Red Hat Customer Content Services

Filip Hanzelka
Red Hat Customer Content Services

Tomáš Čapek
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2020 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This manual covers all aspects of installing, configuring, and managing Certificate System
subsystems. It also covers management tasks such as adding users; requesting, renewing, and
revoking certificates; publishing CRLs; and managing smart cards. This guide is intended for
Certificate System administrators.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM SUBSYSTEMS
1.1. USES FOR CERTIFICATES
1.2. A REVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS
1.3. A LOOK AT MANAGING CERTIFICATES (NON-TMS)
1.4. A LOOK AT THE TOKEN MANAGEMENT SYSTEM (TMS)
1.5. RED HAT CERTIFICATE SYSTEM SERVICES

PART I. RED HAT CERTIFICATE SYSTEM USER INTERFACES

CHAPTER 2. USER INTERFACES
2.1. USER INTERFACES OVERVIEW
2.2. CLIENT NSS DATABASE INITIALIZATION
2.3. GRAPHICAL INTERFACE
2.4. WEB INTERFACE
2.5. COMMAND LINE INTERFACES
2.6. ENTERPRISE SECURITY CLIENT

PART II. SETTING UP CERTIFICATE SERVICES

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)
3.1. ABOUT CERTIFICATE PROFILES
3.2. SETTING UP CERTIFICATE PROFILES
3.3. DEFINING KEY DEFAULTS IN PROFILES
3.4. CONFIGURING PROFILES TO ENABLE RENEWAL
3.5. SETTING THE SIGNING ALGORITHMS FOR CERTIFICATES
3.6. MANAGING CA-RELATED PROFILES
3.7. MANAGING SUBJECT NAMES AND SUBJECT ALTERNATIVE NAMES

CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY
4.1. CONFIGURING AGENT-APPROVED KEY RECOVERY IN THE CONSOLE
4.2. TESTING THE KEY ARCHIVAL AND RECOVERY SETUP

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES
5.1. ABOUT ENROLLING AND RENEWING CERTIFICATES
5.2. CREATING CERTIFICATE SIGNING REQUESTS
5.3. REQUESTING AND RECEIVING CERTIFICATES
5.4. RENEWING CERTIFICATES
5.5. SUBMITTING CERTIFICATE REQUESTS USING CMC
5.6. PERFORMING BULK ISSUANCE
5.7. ENROLLING A CERTIFICATE ON A CISCO ROUTER
5.8. USING CERTIFICATE TRANSPARENCY

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS
6.1. TPS PROFILES
6.2. TPS OPERATIONS
6.3. TOKEN POLICIES
6.4. TOKEN OPERATION AND POLICY PROCESSING
6.5. INTERNAL REGISTRATION
6.6. EXTERNAL REGISTRATION
6.7. MAPPING RESOLVER CONFIGURATION
6.8. AUTHENTICATION CONFIGURATION
6.9. CONNECTORS
6.10. REVOCATION ROUTING CONFIGURATION

6
6
6
6
7
7

8

9
9
9

10
12
17
23

25

26
26
29
41

42
42
45
53

60
60
61

63
63
63
73
76
80
94
96

102

105
105
105
106
108
115
116
121
123
125
126

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

6.11. SETTING UP SERVER-SIDE KEY GENERATION
6.12. SETTING UP NEW KEY SETS
6.13. SETTING UP A NEW MASTER KEY
6.14. SETTING UP A TKS/TPS SHARED SYMMETRIC KEY
6.15. USING DIFFERENT APPLETS FOR DIFFERENT SCP VERSIONS

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS
7.1. ABOUT REVOKING CERTIFICATES
7.2. PERFORMING A CMC REVOCATION
7.3. ISSUING CRLS
7.4. SETTING FULL AND DELTA CRL SCHEDULES
7.5. ENABLING REVOCATION CHECKING
7.6. USING THE ONLINE CERTIFICATE STATUS PROTOCOL (OCSP) RESPONDER

CHAPTER 8. MANAGING PKI ACME RESPONDER
8.1. ENABLING/DISABLING ACME SERVICES
8.2. CHECKING THE STATUS OF PKI ACME RESPONDER

PART III. ADDITIONAL CONFIGURATION TO MANAGE CA SERVICES

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS
9.1. ABOUT PUBLISHING
9.2. CONFIGURING PUBLISHING TO A FILE
9.3. CONFIGURING PUBLISHING TO AN OCSP
9.4. CONFIGURING PUBLISHING TO AN LDAP DIRECTORY
9.5. CREATING RULES
9.6. ENABLING PUBLISHING
9.7. ENABLING A PUBLISHING QUEUE
9.8. SETTING UP RESUMABLE CRL DOWNLOADS
9.9. PUBLISHING CROSS-PAIR CERTIFICATES
9.10. TESTING PUBLISHING TO FILES
9.11. VIEWING CERTIFICATES AND CRLS PUBLISHED TO FILE
9.12. UPDATING CERTIFICATES AND CRLS IN A DIRECTORY
9.13. REGISTERING CUSTOM MAPPER AND PUBLISHER PLUG-IN MODULES

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES
10.1. CONFIGURING AGENT-APPROVED ENROLLMENT
10.2. AUTOMATED ENROLLMENT
10.3. CMC AUTHENTICATION PLUG-INS
10.4. CMC SHAREDSECRET AUTHENTICATION
10.5. TESTING ENROLLMENT
10.6. REGISTERING CUSTOM AUTHENTICATION PLUG-INS
10.7. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE COMMAND LINE
10.8. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE WEB INTERFACE

CHAPTER 11. AUTHORIZATION FOR ENROLLING CERTIFICATES (ACCESS EVALUATORS)
11.1. AUTHORIZATION MECHANISM
11.2. DEFAULT EVALUATORS

CHAPTER 12. USING AUTOMATED NOTIFICATIONS
12.1. ABOUT AUTOMATED NOTIFICATIONS FOR THE CA
12.2. SETTING UP AUTOMATED NOTIFICATIONS FOR THE CA
12.3. CUSTOMIZING NOTIFICATION MESSAGES
12.4. CONFIGURING A MAIL SERVER FOR CERTIFICATE SYSTEM NOTIFICATIONS
12.5. CREATING CUSTOM NOTIFICATIONS FOR THE CA

126
128
130
133
136

137
137
140
144
153
157
157

171
171
171

172

173
173
176
179
181

188
191

193
194
195
196
197
197
199

201
201
201
211
213
214
215
217
217

219
219
219

221
221
222
224
228
229

Administration Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 13. SETTING AUTOMATED JOBS
13.1. ABOUT AUTOMATED JOBS
13.2. SETTING UP THE JOB SCHEDULER
13.3. SETTING UP SPECIFIC JOBS
13.4. REGISTERING A JOB MODULE

PART IV. MANAGING THE SUBSYSTEM INSTANCES

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT
14.1. PKI INSTANCES
14.2. PKI INSTANCE EXECUTION MANAGEMENT
14.3. OPENING SUBSYSTEM CONSOLES AND SERVICES
14.4. RUNNING SUBSYSTEMS UNDER A JAVA SECURITY MANAGER
14.5. CONFIGURING THE LDAP DATABASE
14.6. VIEWING SECURITY DOMAIN CONFIGURATION
14.7. MANAGING THE SELINUX POLICIES FOR SUBSYSTEMS
14.8. BACKING UP AND RESTORING CERTIFICATE SYSTEM
14.9. RUNNING SELF-TESTS

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS
15.1. ABOUT AUTHORIZATION
15.2. DEFAULT GROUPS
15.3. MANAGING USERS AND GROUPS FOR A CA, OCSP, KRA, OR TKS
15.4. CREATING AND MANAGING USERS FOR A TPS
15.5. CONFIGURING ACCESS CONTROL FOR USERS

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS
16.1. ABOUT CERTIFICATE SYSTEM LOGS
16.2. MANAGING LOGS
16.3. USING LOGS

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES
17.1. REQUIRED SUBSYSTEM CERTIFICATES
17.2. REQUESTING CERTIFICATES THROUGH THE CONSOLE
17.3. RENEWING SUBSYSTEM CERTIFICATES
17.4. CHANGING THE NAMES OF SUBSYSTEM CERTIFICATES
17.5. USING CROSS-PAIR CERTIFICATES
17.6. MANAGING THE CERTIFICATE DATABASE
17.7. CHANGING THE TRUST SETTINGS OF A CA CERTIFICATE
17.8. MANAGING TOKENS USED BY THE SUBSYSTEMS

CHAPTER 18. SETTING TIME AND DATE IN RED HAT ENTERPRISE LINUX 7
CHANGING THE CURRENT TIME
CHANGING THE CURRENT DATE

CHAPTER 19. DETERMINING CERTIFICATE SYSTEM PRODUCT VERSION

CHAPTER 20. UPDATING RED HAT CERTIFICATE SYSTEM

CHAPTER 21. TROUBLESHOOTING

CHAPTER 22. SUBSYSTEM CONTROL AND MAINTENANCE
22.1. STARTING, STOPPING, RESTARTING, AND OBTAINING STATUS
22.2. SUBSYSTEM HEALTH CHECK

PART V. REFERENCES

230
230
231

232
241

243

244
244
244
248
253
254
261
262
264
269

273
273
273
277
286
291

298
298
302

311

317
317

324
342
345
349
350
356
358

359
359
359

360

361

362

366
366
366

369

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT REFERENCE
A.1. INPUT REFERENCE
A.2. OUTPUT REFERENCE

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS
B.1. DEFAULTS REFERENCE
B.2. CONSTRAINTS REFERENCE
B.3. STANDARD X.509 V3 CERTIFICATE EXTENSION REFERENCE
B.4. CRL EXTENSIONS

APPENDIX C. PUBLISHING MODULE REFERENCE
C.1. PUBLISHER PLUG-IN MODULES
C.2. MAPPER PLUG-IN MODULES
C.3. RULE INSTANCES

APPENDIX D. ACL REFERENCE
D.1. ABOUT ACL CONFIGURATION FILES
D.2. COMMON ACLS
D.3. CERTIFICATE MANAGER-SPECIFIC ACLS
D.4. KEY RECOVERY AUTHORITY-SPECIFIC ACLS
D.5. ONLINE CERTIFICATE STATUS MANAGER-SPECIFIC ACLS
D.6. TOKEN KEY SERVICE-SPECIFIC ACLS

APPENDIX E. AUDIT EVENTS
E.1. AUDIT EVENT DESCRIPTIONS

GLOSSARY

INDEX

APPENDIX F. REVISION HISTORY

370
370
375

376
376

411
420
430

446
446
449
456

459
459
460
466
480
485
489

492
492

505

519

536

Administration Guide

4

Table of Contents

5

CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM
SUBSYSTEMS
Every common PKI operation — issuing, renewing and revoking certificates; archiving and recovering
keys; publishing CRLs and verifying certificate status — are carried out by interoperating subsystems
within Red Hat Certificate System. The functions of each individual subsystem and the way that they
work together to establish a robust and local PKI is described in this chapter.

1.1. USES FOR CERTIFICATES

The purpose of certificates is to establish trust. Their usage varies depending on the kind of trust they
are used to ensure. Some kinds of certificates are used to verify the identity of the presenter; others are
used to verify that an object or item has not been tampered with.

For information on how certificates are used, the types of certificates, or how certificates establish
identities and relationships, see the Certificates and Authentication section in the Red Hat
Certificate System Planning, Installation, and Deployment Guide.

1.2. A REVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS

Red Hat Certificate System provides five different subsystems, each focusing on different aspects of a
PKI deployment. These subsystems work together to create a public key infrastructure (PKI).
Depending on what subsystems are installed, a PKI can function as a token management system (TMS)
or a non token management system. For descriptions of the subsystems and TMS and non-TMS
environments, see the A Review of Certificate System Subsystems section in the Red Hat
Certificate System Planning, Installation, and Deployment Guide.

Enterprise Security Client
The Enterprise Security Client is not a subsystem since it does not perform any operations with
certificates, keys, or tokens. The Enterprise Security Client is a user interface which allows people to
manage certificates on smart cards very easily. The Enterprise Security Client sends all token
operations, such as certificate requests, to the token processing system (TPS), which then sends them
to the certificate authority (CA). For more information, see For more information, see Red Hat
Certificate System Managing Smart Cards with the Enterprise Security Client.

1.3. A LOOK AT MANAGING CERTIFICATES (NON-TMS)

A conventional PKI environment provides the basic framework to manage certificates stored in software
databases. This is a non-TMS environment, since it does not manage certificates on smart cards. At a
minimum, a non-TMS requires only a CA, but a non-TMS environment can use OCSP responders and
KRA instances as well.

For information on this topic, see the following sections in the Red Hat Certificate System Planning,
Installation, and Deployment Guide:

Managing Certificates

Using a Single Certificate Manager

Planning for Lost Keys: Key Archival and Recovery

Balancing Certificate Request Processing

Balancing Client OCSP Requests

Administration Guide

6

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html#types-of-certificates
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/SubsystemOverview.html#overview-subsystems
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Managing_Smart_Cards_with_the_Enterprise_Security_Client/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/cert-lifecycle.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#sect-Deployment_Guide-Deployment_Scenarios-Single_Certificate_Manager
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#planning-for-lost-keys
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#load-balancing-requests
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/chap-deployment_guide-planning_your_crts#load-balancing-crls

1.4. A LOOK AT THE TOKEN MANAGEMENT SYSTEM (TMS)

Certificate System creates, manages, renews, and revokes certificates, and it also archives and recovers
keys. For organizations which use smart cards, the Certificate System has a token management system
— a collection of subsystems with established relationships — to generate keys and requests and receive
certificates to be used for smart cards.

For information on this topic, see the following sections in the Red Hat Certificate System Planning,
Installation, and Deployment Guide:

Working with Smart Cards (TMS)

Using Smart Cards

1.5. RED HAT CERTIFICATE SYSTEM SERVICES

There are various different interfaces for managing certificates and subsystems, depending on the user
type: administrators, agents, auditors, and end users. For an overview of the different functions that are
performed through each interface, see the User Interfaces section.

CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM SUBSYSTEMS

7

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#sect-Deployment_Guide-Deployment_Scenarios-Smart_Card_Enrollment
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/user_interfaces

PART I. RED HAT CERTIFICATE SYSTEM USER INTERFACES

Administration Guide

8

CHAPTER 2. USER INTERFACES
There are different interfaces for managing certificates and subsystems, depending on the user's role:
administrators, agents, auditors, and end users.

2.1. USER INTERFACES OVERVIEW

Administrators can use the following interfaces to securely interact with a completed Certificate System
installation:

The PKI command-line interface and other command-line utilities

The PKI Console graphical interface

The Certificate System web interface.

These interfaces require configuration prior to use for secure communication with the
Certificate System server over TLS. Using these clients without proper configuration is not allowed.
Some of these tools use TLS client authentication. When required, their required initialization procedure
includes configuring this. Which interface is used depends on the administrator's preferences and
functionality available. Common actions using these interfaces are described in the remainder of the
guide after this chapter.

By default, the PKI command-line interface uses the NSS database in the user's ~/.dogtag/nssdb/
directory. Section 2.5.1.1, “pki CLI Initialization” provides detailed steps for initializing the NSS database
with the administrator's certificate and key. Some examples of using the PKI command-line utility are
described in Section 2.5.1.2, “Using "pki" CLI” . Additional examples are shown through the rest of the
guide.

Interfacing with Certificate System (as an administrator in other user roles) can be done using various
command-line utilities to submit CMC requests, manage generated certificates, and so on. These are
described briefly in Section 2.5, “Command Line Interfaces”, such as Section 2.5.2, “AtoB”. These utilities
are utilized in later sections such as Section 5.2.1.2, “Creating a CSR Using PKCS10Client”.

The Certificate System web interface allows administrative access through the Firefox web browser.
Section 2.4.1, “Browser Initialization” describes instructions about configuring the client authentication.
Other sections in Section 2.4, “Web Interface” describe using the web interface of Certificate System.

The Certificate System's PKI Console is a graphical interface. Please note that it is being deprecated.
Section 2.3.1, “pkiconsole Initialization” describes how to initialize this console interface. Section 2.3.2,
“Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems” gives an overview of using it. Later
sections, such as Section 3.2.2, “Managing Certificate Enrollment Profiles Using the Java-based
Administration Console” go into greater detail for specific operations.

NOTE

To terminate a PKI Console session, click the Exit button. To terminate a web browser
session, close the browser. A command-line utility terminates itself as soon as it performs
the action and returns to the prompt, so no action is needed on the administrator's part
to terminate the session.

2.2. CLIENT NSS DATABASE INITIALIZATION

On Red Hat Certificate System, certain interfaces may need to access the server using TLS client

CHAPTER 2. USER INTERFACES

9

On Red Hat Certificate System, certain interfaces may need to access the server using TLS client
certificate authentication (mutual authentication). Before performing server-side admin tasks, you need
to:

1. Prepare an NSS database for the client. This can be a new database or an existing one.

2. Import the CA certificate chain and trust them.

3. Have a certificate and corresponding key. They can be generated in the NSS database or
imported from somewhere else, such as from a PKCS #12 file.

Based on the utility, you need to initialize the NSS database accordingly. See:

Section 2.5.1.1, “pki CLI Initialization”

Section 2.3.1, “pkiconsole Initialization”

Section 2.4.1, “Browser Initialization”

2.3. GRAPHICAL INTERFACE

IMPORTANT

pkiconsole is being deprecated.

The Certificate System console,pkiconsole, is a graphical interface that is designed for users with the
Administrator role privilege to manage the subsystem itself. This includes adding users, configuring logs,
managing profiles and plug-ins, and the internal database, among many other functions. This utility
communicates with the Certificate System server via TLS using client-authentication and can be used to
manage the server remotely.

2.3.1. pkiconsole Initialization

To use the pkiconsole interface for the first time, specify a new password and use the following
command:

$ pki -c password -d ~/.redhat-idm-console client-init

This command creates a new client NSS database in the ~/.redhat-idm-console/ directory.

To import the CA certificate into the PKI client NSS database, see the Importing a certificate into an NSS
Database section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

To request a new client certificate, see Chapter 5, Requesting, Enrolling, and Managing Certificates .

Execute the following command to extract the admin client certificate from the .p12 file:

$ openssl pkcs12 -in file -clcerts -nodes -nokeys -out file.crt

Validate and import the admin client certificate as described in the Managing Certificate/Key Crypto
Token section in the Red Hat Certificate System Planning, Installation, and Deployment Guide :

$ PKICertImport -d ~/.redhat-idm-console -n "nickname" -t ",," -a -i file.crt -u C

IMPORTANT

Administration Guide

10

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/importing_certificate_into_nssdb
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing_certificate_key_crypto_token

IMPORTANT

Make sure all intermediate certificates and the root CA certificate have been imported
before importing the CA admin client certificate.

To import an existing client certificate and its key into the client NSS database:

$ pki -c password -d ~/.redhat-idm-console pkcs12-import --pkcs12-file file --pkcs12-password
pkcs12-password

Verify the client certificate with the following command:

$ certutil -V -u C -n "nickname" -d ~/.redhat-idm-console

2.3.2. Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

The Java console is used by four subsystems: the CA, OCSP, KRA, and TKS. The console is accessed
using a locally-installed pkiconsole utility. It can access any subsystem because the command requires
the host name, the subsystem's administrative TLS port, and the specific subsystem type.

pkiconsole https://server.example.com:admin_port/subsystem_type

If DNS is not configured, you can use an IPv4 or IPv6 address to connect to the console. For example:

https://192.0.2.1:8443/ca
https://[2001:DB8::1111]:8443/ca

This opens a console, as in Figure 2.1, “Certificate System Console” .

Figure 2.1. Certificate System Console

The Configuration tab controls all of the setup for the subsystem, as the name implies. The choices
available in this tab are different depending on which subsystem type the instance is; the CA has the
most options since it has additional configuration for jobs, notifications, and certificate enrollment
authentication.

All subsystems have four basic options:

Users and groups

Access control lists

CHAPTER 2. USER INTERFACES

11

Log configuration

Subsystem certificates (meaning the certificates issued to the subsystem for use, for example,
in the security domain or audit signing)

The Status tab shows the logs maintained by the subsystem.

2.4. WEB INTERFACE

2.4.1. Browser Initialization

This section explains browser initialization for Firefox to access PKI services.

Importing a CA Certificate

1. Click Menu → Preferences → Privacy & Security → View certificates.

2. Select the Authorities tab and click the Import button.

3. Select the ca.crt file and click Import.

Importing a Client Certificate

1. Click Options → Preferences → Privacy & Security → View certificates.

Administration Guide

12

2. Select the Your Certificates tab.

3. Click on Import and select the client p12 file, such as ca_admin_cert.p12.

4. Enter the password for the client certificate on the prompt.

5. Click OK.

6. Verify that an entry is added under Your Certificates.

CHAPTER 2. USER INTERFACES

13

Accessing the Web Console
You can access the PKI services by opening https://host_name:port in your browser.

2.4.2. The Administrative Interfaces

The all subsystems use HTML-based administrative interface. It is accessed by entering the host name
and secure port as the URL, authenticating with the administrator's certificate, and clicking the
appropriate Administrators link.

NOTE

There is a single TLS port for all subsystems which is used for both administrator and
agent services. Access to those services is restricted by certificate-based authentication.

The HTML admin interface is much more limited than the Java console; the primary administrative
function is managing the subsystem users.

The TPS only allows operations to manage users for the TPS subsystem. However, the TPS admin page
can also list tokens and display all activities (including normally-hidden administrative actions)
performed on the TPS.

Administration Guide

14

CHAPTER 2. USER INTERFACES

15

Figure 2.2. TPS Admin Page

2.4.3. Agent Interfaces

The agent services pages are where almost all of the certificate and token management tasks are
performed. These services are HTML-based, and agents authenticate to the site using a special agent
certificate.

Figure 2.3. Certificate Manager's Agent Services Page

The operations vary depending on the subsystem:

The Certificate Manager agent services include approving certificate requests (which issues the
certificates), revoking certificates, and publishing certificates and CRLs. All certificates issued
by the CA can be managed through its agent services page.

The TPS agent services, like the CA agent services, manages all of the tokens which have been
formatted and have had certificates issued to them through the TPS. Tokens can be enrolled,
suspended, and deleted by agents. Two other roles (operator and admin) can view tokens in web
services pages, but cannot perform any actions on the tokens.

KRA agent services pages process key recovery requests, which set whether to allow a
certificate to be issued reusing an existing key pair if the certificate is lost.

The OCSP agent services page allows agents to configure CAs which publish CRLs to the
OCSP, to load CRLs to the OCSP manually, and to view the state of client OCSP requests.

The TKS is the only subsystem without an agent services page.

2.4.4. End User Pages

The CA and TPS both process direct user requests in some way. That means that end users have to

Administration Guide

16

The CA and TPS both process direct user requests in some way. That means that end users have to
have a way to connect with those subsystems. The CA has end-user, or end-entities, HTML services. The
TPS uses the Enterprise Security Client.

The end-user services are accessed over standard HTTP using the server's host name and the standard
port number; they can also be accessed over HTTPS using the server's host name and the specific end-
entities TLS port.

For CAs, each type of TLS certificate is processed through a specific online submission form, called a
profile. There are about two dozen certificate profiles for the CA, covering all sorts of certificates — user
TLS certificates, server TLS certificates, log and file signing certificates, email certificates, and every
kind of subsystem certificate. There can also be custom profiles.

Figure 2.4. Certificate Manager's End-Entities Page

End users retrieve their certificates through the CA pages when the certificates are issued. They can
also download CA chains and CRLs and can revoke or renew their certificates through those pages.

2.5. COMMAND LINE INTERFACES

This section discusses command-line utilities.

2.5.1. "pki" CLI

The pki command-line interface (CLI) provides access to various services on the server using the REST
interface (see the REST Interface section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide. The CLI can be invoked as follows:

$ pki [CLI options] <command> [command parameters]

Note that the CLI options must be placed before the command, and the command parameters after the
command.

CHAPTER 2. USER INTERFACES

17

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/sect-certificate-system-architecture-overview#sect-architecture-overview-resteasy

2.5.1.1. pki CLI Initialization

To use the command line interface for the first time, specify a new password and use the following
command:

$ pki -c <password> client-init

This will create a new client NSS database in the ~/.dogtag/nssdb directory. The password must be
specified in all CLI operations that uses the client NSS database. Alternatively, if the password is stored
in a file, you can specify the file using the -C option. For example:

$ pki -C password_file client-init

To import the CA certificate into the client NSS database refer to the Importing a certificate into an NSS
Database section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

Some commands may require client certificate authentication. To import an existing client certificate
and its key into the client NSS database, specify the PKCS #12 file and the password, and execute the
following command:

Execute the following command to extract the admin client certificate from the .p12 file:

$ openssl pkcs12 -in file -clcerts -nodes -nokeys -out file.crt

Validate and import the admin client certificate as described in the Managing Certificate/Key Crypto
Token section in the Red Hat Certificate System Planning, Installation, and Deployment Guide :

$ PKICertImport -d ~/.dogtag/nssdb -n "nickname" -t ",," -a -i file.crt -u C

IMPORTANT

Make sure all intermediate certificates and the root CA certificate have been imported
before importing the CA admin client certificate.

To import an existing client certificate and its key into the client NSS database, specify the PKCS #12 file
and the password, and execute the following command:

$ pki -c <password> pkcs12-import --pkcs12-file <file> --pkcs12-password <password>

Verify the client certificate with the following command:

certutil -V -u C -n "nickname" -d ~/.dogtag/nssdb

2.5.1.2. Using "pki" CLI

The command line interface supports a number of commands organized in a hierarchical structure. To
list the top-level commands, execute the pki command without any additional commands or
parameters:

$ pki

Some commands have subcommands. To list them, execute pki with the command name and no

Administration Guide

18

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/importing_certificate_into_nssdb
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing_certificate_key_crypto_token

Some commands have subcommands. To list them, execute pki with the command name and no
additional options. For example:

$ pki ca

$ pki ca-cert

To view command usage information, use the --help option:

$ pki --help

$ pki ca-cert-find --help

To view manual pages, specify the command line help command:

$ pki help

$ pki help ca-cert-find

To execute a command that does not require authentication, specify the command and its parameters
(if required), for example:

$ pki ca-cert-find

To execute a command that requires client certificate authentication, specify the certificate nickname,
the client NSS database password, and optionally the server URL:

$ pki -U <server URL> -n <nickname> -c <password> <command> [command parameters]

For example:

$ pki -n jsmith -c password ca-user-find ...

By default, the CLI communicates with the server at http://local_host_name:8080. To communicate
with a server at a different location, specify the URL with the -U option, for example:

$ pki -U https://server.example.com:8443 -n jsmith -c password ca-user-find

2.5.2. AtoB

The AtoB utility decodes the Base64-encoded certificates to their binary equivalents. For example:

$ AtoB input.ascii output.bin

For further details, more options, and additional examples, see the AtoB(1) man page.

2.5.3. AuditVerify

The AuditVerify utility verifies integrity of the audit logs by validating the signature on log entries.

Example:

CHAPTER 2. USER INTERFACES

19

$ AuditVerify -d ~jsmith/auditVerifyDir -n Log Signing Certificate -a ~jsmith/auditVerifyDir/logListFile -
P "" -v

The example verifies the audit logs using the Log Signing Certificate (-n) in the ~jsmith/auditVerifyDir
NSS database (-d). The list of logs to verify (-a) are in the ~jsmith/auditVerifyDir/logListFile file,
comma-separated and ordered chronologically. The prefix (-P) to prepend to the certificate and key
database file names is empty. The output is verbose (-v).

For further details, more options, and additional examples, see the AuditVerify(1) man page or
Section 16.3.2, “Using Signed Audit Logs” .

2.5.4. BtoA

The BtoA utility encodes binary data in Base64. For example:

$ BtoA input.bin output.ascii

For further details, more options, and additional examples, see the BtoA(1) man page.

2.5.5. CMCRequest

The CMCRequest utility creates a certificate issuance or revocation request. For example:

$ CMCRequest example.cfg

NOTE

All options to the CMCRequest utility are specified as part of the configuration filed
passed to the utility. See the CMCRequest(1) man page for configuration file options and
further information. Also see 4.3. Requesting and Receiving Certificates Using CMC and
Section 7.2.1, “Revoking a Certificate Using CMCRequest”.

2.5.6. CMCRevoke

Legacy. Do not use.

2.5.7. CMCSharedToken

The CMCSharedToken utility encrypts a user passphrase for shared-secred CMC requests. For
example:

$ CMCSharedToken -d . -p myNSSPassword -s "shared_passphrase" -o cmcSharedTok2.b64 -n
"subsystemCert cert-pki-tomcat"

The shared passphrase (-s) is encrypted and stored in the cmcSharedtok2.b64 file (-o) using the
certificate named subsystemCert cert-pki-tomcat (-n) found in the NSS database in the current
directory (-d). The default security token internal is used (as -h is not specified) and the token
password of myNSSPassword is used for accessing the token.

For further details, more options, and additional examples, see the CMCSharedtoken(1) man page and
also Section 7.2.1, “Revoking a Certificate Using CMCRequest”.

Administration Guide

20

2.5.8. CRMFPopClient

The CRMFPopClient utility is Certificate Request Message Format (CRMF) client using NSS databases
and supplying Proof of Possession.

Example:

$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b kra.transport -w
"AES/CBC/PKCS5Padding" -t false -v -o /user_or_entity_database_directory/example.csr

This example creates a new CSR with the cn=subject_name subject DN (-n), NSS database in the
current directory (-d), certificate to use for transport kra.transport (-b), the
AES/CBC/PKCS5Padding key wrap algorithm verbose output is specified (-v) and the resulting CSR is
written to the /user_or_entity_database_directory/example.csr file (-o).

For further details, more options, and additional examples, see the output of the CRMFPopClient --
help command and also Section 7.2.1, “Revoking a Certificate Using CMCRequest”.

2.5.9. HttpClient

The HttpClient utility is an NSS-aware HTTP client for submitting CMC requests.

Example:

$ HttpClient request.cfg

NOTE

All parameters to the HttpClient utility are stored in the request.cfg file. For further
information, see the output of the HttpClient --help command.

2.5.10. OCSPClient

An Online Certificate Status Protocol (OCSP) client for checking the certificate revocation status.

Example:

$ OCSPClient -h server.example.com -p 8080 -d /etc/pki/pki-tomcat/alias -c "caSigningCert cert-pki-
ca" --serial 2

This example queries the server.example.com OCSP server (-h) on port 8080 (-p) to check whether
the certificate signed by caSigningcet cert-pki-ca (-c) with serial number 2 (--serial) is valid. The NSS
database in the /etc/pki/pki-tomcat/alias directory is used.

For further details, more options, and additional examples, see the output of the OCSPClient --help
command.

2.5.11. PKCS10Client

The PKCS10Client utility creates a CSR in PKCS10 format for RSA and EC keys, optionally on an HSM.

Example:

CHAPTER 2. USER INTERFACES

21

$ PKCS10Client -d /etc/dirsrv/slapd-instance_name/ -p password -a rsa -l 2048 -o ~/ds.csr -n
"CN=$HOSTNAME"

This example creates a new RSA (-a) key with 2048 bits (-l) in the /etc/dirsrv/slapd-instance_name/
directory (-d with database password password (-p). The output CSR is stored in the ~/ds.cfg file (-o)
and the certificate DN is CN=$HOSTNAME (-n).

For further details, more options, and additional examples, see the PKCS10Client(1) man page.

2.5.12. PrettyPrintCert

The PrettyPrintCert utility displays the contents of a certificate in a human-readable format.

Example:

$ PrettyPrintCert ascii_data.cert

This command parses the output of the ascii_data.cert file and displays its contents in human readable
format. The output includes information like signature algorithm, exponent, modulus, and certificate
extensions.

For further details, more options, and additional examples, see the PrettyPrintCert(1) man page.

2.5.13. PrettyPrintCrl

The PrettyPrintCrl utility displays the content of a CRL file in a human readable format.

Example:

$ PrettyPrintCrl ascii_data.crl

This command parses the output of the ascii_data.crl and displays its contents in human readable
format. The output includes information, such as revocation signature algorithm, the issuer of the
revocation, and a list of revoked certificates and their reason.

For further details, more options, and additional examples, see the PrettyPrintCrl(1) man page.

2.5.14. TokenInfo

The TokenInfo utility lists all tokens in an NSS database.

Example:

$ TokenInfo ./nssdb/

This command lists all tokens (HSMs, soft tokens, and so on) registered in the specified database
directory.

For further details, more options, and additional examples, see the output of the TokenInfo command

2.5.15. tkstool

The tkstool utility is interacting with the token Key Service (TKS) subsystem.

Administration Guide

22

Example:

$ tkstool -M -n new_master -d /var/lib/pki/pki-tomcat/alias -h token_name

This command creates a new master key (-M) named new_master (-n) in the /var/lib/pki/pki-
tomcat/alias NSS database on the HSM token_name

For further details, more options, and additional examples, see the output of the tkstool -H command.

2.6. ENTERPRISE SECURITY CLIENT

The Enterprise Security Client is a tool for Red Hat Certificate System which simplifies managing smart
cards. End users can use security tokens (smart cards) to store user certificates used for applications
such as single sign-on access and client authentication. End users are issued the tokens containing
certificates and keys required for signing, encryption, and other cryptographic functions.

The Enterprise Security Client is the third part of Certificate System's complete token management
system. Two subsystems — the Token Key Service (TKS) and Token Processing System (TPS) — are
used to process token-related operations. The Enterprise Security Client is the interface which allows
the smart card and user to access the token management system.

After a token is enrolled, applications such as Mozilla Firefox and Thunderbird can be configured to
recognize the token and use it for security operations, like client authentication and S/MIME mail.
Enterprise Security Client provides the following capabilities:

Supports JavaCard 2.1 or higher cards and Global Platform 2.01-compliant smart cards like
Safenet's 330J smart card.

Supports Gemalto TOP IM FIPS CY2 tokens, both the smart card and GemPCKey USB form
factor key.

Supports SafeNet Smart Card 650 (SC650).

Enrolls security tokens so they are recognized by TPS.

Maintains the security token, such as re-enrolling a token with TPS.

Provides information about the current status of the token or tokens being managed.

Supports server-side key generation so that keys can be archived and recovered on a separate
token if a token is lost.

The Enterprise Security Client is a client for end users to register and manage keys and certificates on
smart cards or tokens. This is the final component in the Certificate System token management system,
with the Token Processing System (TPS) and Token Key Service (TKS).

The Enterprise Security Client provides the user interface of the token management system. The end
user can be issued security tokens containing certificates and keys required for signing, encryption, and
other cryptographic functions. To use the tokens, the TPS must be able to recognize and communicate
with them. Enterprise Security Client is the method for the tokens to be enrolled.

Enterprise Security Client communicates over an SSL/TLS HTTP channel to the back end of the TPS. It
is based on an extensible Mozilla XULRunner framework for the user interface, while retaining a legacy
web browser container for a simple HTML-based UI.

After a token is properly enrolled, web browsers can be configured to recognize the token and use it for

CHAPTER 2. USER INTERFACES

23

After a token is properly enrolled, web browsers can be configured to recognize the token and use it for
security operations. Enterprise Security Client provides the following capabilities:

Allows the user to enroll security tokens so they are recognized by the TPS.

Allows the user to maintain the security token. For example, Enterprise Security Client makes it
possible to re-enroll a token with the TPS.

Provides support for several different kinds of tokens through default and custom token
profiles. By default, the TPS can automatically enroll user keys, device keys, and security officer
keys; additional profiles can be added so that tokens for different uses (recognized by
attributes such as the token CUID) can automatically be enrolled according to the appropriate
profile.

Provides information about the current status of the tokens being managed.

Administration Guide

24

PART II. SETTING UP CERTIFICATE SERVICES

PART II. SETTING UP CERTIFICATE SERVICES

25

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES
(CERTIFICATE PROFILES)
The Certificate System provides a customizable framework to apply policies for incoming certificate
requests and to control the input request types and output certificate types; these are called certificate
profiles. Certificate profiles set the required information for certificate enrollment forms in the
Certificate Manager end-entities page. This chapter describes how to configure certificate profiles.

3.1. ABOUT CERTIFICATE PROFILES

A certificate profile defines everything associated with issuing a particular type of certificate, including
the authentication method, the authorization method, the default certificate content, constraints for the
values of the content, and the contents of the input and output for the certificate profile. Enrollment
and renewal requests are submitted to a certificate profile and are then subject to the defaults and
constraints set in that certificate profile. These constraints are in place whether the request is submitted
through the input form associated with the certificate profile or through other means. The certificate
that is issued from a certificate profile request contains the content required by the defaults with the
information required by the default parameters. The constraints provide rules for what content is
allowed in the certificate.

For details about using and customizing certificate profiles, see Section 3.2, “Setting up Certificate
Profiles”.

The Certificate System contains a set of default profiles. While the default profiles are created to satisfy
most deployments, every deployment can add their own new certificate profiles or modify the existing
profiles.

Authentication. In every certification profile can be specified an authentication method.

Authorization. In every certification profile can be specified an authorization method.

Profile inputs. Profile inputs are parameters and values that are submitted to the CA when a
certificate is requested. Profile inputs include public keys for the certificate request and the
certificate subject name requested by the end entity for the certificate.

Profile outputs. Profile outputs are parameters and values that specify the format in which to
provide the certificate to the end entity. Profile outputs are CMC responses which contain a
PKCS#7 certificate chain, when the request was successful.

Certificate content. Each certificate defines content information, such as the name of the entity
to which it is assigned (the subject name), its signing algorithm, and its validity period. What is
included in a certificate is defined in the X.509 standard. With version 3 of the X509 standard,
certificates can also contain extensions. For more information about certificate extensions, see
Section B.3, “Standard X.509 v3 Certificate Extension Reference” .

All of the information about a certificate profile is defined in the set entry of the profile policy in
the profile's configuration file. When multiple certificates are expected to be requested at the
same time, multiple set entries can be defined in the profile policy to satisfy needs of each
certificate. Each policy set consists of a number of policy rules and each policy rule describes a
field in the certificate content. A policy rule can include the following parts:

Profile defaults. These are predefined parameters and allowed values for information
contained within the certificate. Profile defaults include the validity period of the certificate,
and what certificate extensions appear for each type of certificate issued.

Profile constraints. Constraints set rules or policies for issuing certificates. Amongst other,

Administration Guide

26

Profile constraints. Constraints set rules or policies for issuing certificates. Amongst other,
profile constraints include rules to require the certificate subject name to have at least one
CN component, to set the validity of a certificate to a maximum of 360 days, to define the
allowed grace period for renewal, or to require that the subjectaltname extension is always
set to true.

3.1.1. The Enrollment Profile

The parameters for each profile defining the inputs, outputs, and policy sets are listed in more detail in
Table 11.1. Profile Configuration File Parameters in Red Hat Certificate System Planning, Installation and
Deployment Guide.

A profile usually contains inputs, policy sets, and outputs, as illustrated in the caUserCert profile in
Example 3.1, “Example caCMCUserCert Profile” .

Example 3.1. Example caCMCUserCert Profile

The first part of a certificate profile is the description. This shows the name, long description,
whether it is enabled, and who enabled it.

desc=This certificate profile is for enrolling user certificates by using the CMC certificate request
with CMC Signature authentication.
visible=true
enable=true
enableBy=admin
name=Signed CMC-Authenticated User Certificate Enrollment

NOTE

The missing auth.instance_id= entry in this profile means that with this profile,
authentication is not needed to submit the enrollment request. However, manual
approval by an authorized CA agent will be required to get an issuance.

Next, the profile lists all of the required inputs for the profile:

input.list=i1
input.i1.class_id=cmcCertReqInputImp

For the caCMCUserCert profile, this defines the certificate request type, which is CMC.

Next, the profile must define the output, meaning the format of the final certificate. The only one
available is certOutputImpl, which results in CMC response to be returned to the requestor in case of
success.

output.list=o1
output.o1.class_id=certOutputImpl

The last — largest — block of configuration is the policy set for the profile. Policy sets list all of the
settings that are applied to the final certificate, like its validity period, its renewal settings, and the
actions the certificate can be used for. The policyset.list parameter identifies the block name of the
policies that apply to one certificate; the policyset.userCertSet.list lists the individual policies to
apply.

For example, the sixth policy populates the Key Usage Extension automatically in the certificate,

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

27

For example, the sixth policy populates the Key Usage Extension automatically in the certificate,
according to the configuration in the policy. It sets the defaults and requires the certificate to use
those defaults by setting the constraints:

policyset.list=userCertSet
policyset.userCertSet.list=1,10,2,3,4,5,6,7,8,9
...
policyset.userCertSet.6.constraint.class_id=keyUsageExtConstraintImpl
policyset.userCertSet.6.constraint.name=Key Usage Extension Constraint
policyset.userCertSet.6.constraint.params.keyUsageCritical=true
policyset.userCertSet.6.constraint.params.keyUsageDigitalSignature=true
policyset.userCertSet.6.constraint.params.keyUsageNonRepudiation=true
policyset.userCertSet.6.constraint.params.keyUsageDataEncipherment=false
policyset.userCertSet.6.constraint.params.keyUsageKeyEncipherment=true
policyset.userCertSet.6.constraint.params.keyUsageKeyAgreement=false
policyset.userCertSet.6.constraint.params.keyUsageKeyCertSign=false
policyset.userCertSet.6.constraint.params.keyUsageCrlSign=false
policyset.userCertSet.6.constraint.params.keyUsageEncipherOnly=false
policyset.userCertSet.6.constraint.params.keyUsageDecipherOnly=false
policyset.userCertSet.6.default.class_id=keyUsageExtDefaultImpl
policyset.userCertSet.6.default.name=Key Usage Default
policyset.userCertSet.6.default.params.keyUsageCritical=true
policyset.userCertSet.6.default.params.keyUsageDigitalSignature=true
policyset.userCertSet.6.default.params.keyUsageNonRepudiation=true
policyset.userCertSet.6.default.params.keyUsageDataEncipherment=false
policyset.userCertSet.6.default.params.keyUsageKeyEncipherment=true
policyset.userCertSet.6.default.params.keyUsageKeyAgreement=false
policyset.userCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.userCertSet.6.default.params.keyUsageCrlSign=false
policyset.userCertSet.6.default.params.keyUsageEncipherOnly=false
policyset.userCertSet.6.default.params.keyUsageDecipherOnly=false
...

3.1.2. Certificate Extensions: Defaults and Constraints

An extension configures additional information to include in a certificate or rules about how the
certificate can be used. These extensions can either be specified in the certificate request or taken from
the profile default definition and then enforced by the constraints.

A certificate extension is added or identified in a profile by adding the default which corresponds to the
extension and sets default values, if the certificate extension is not set in the request. For example, the
Basic Constraints Extension identifies whether a certificate is a CA signing certificate, the maximum
number of subordinate CAs that can be configured under the CA, and whether the extension is critical
(required):

policyset.caCertSet.5.default.name=Basic Constraints Extension Default
policyset.caCertSet.5.default.params.basicConstraintsCritical=true
policyset.caCertSet.5.default.params.basicConstraintsIsCA=true
policyset.caCertSet.5.default.params.basicConstraintsPathLen=-1

The extension can also set required values for the certificate request called constraints. If the contents
of a request do not match the set constraints, then the request is rejected. The constraints generally
correspond to the extension default, though not always. For example:

Administration Guide

28

policyset.caCertSet.5.constraint.class_id=basicConstraintsExtConstraintImpl
policyset.caCertSet.5.constraint.name=Basic Constraint Extension Constraint
policyset.caCertSet.5.constraint.params.basicConstraintsCritical=true
policyset.caCertSet.5.constraint.params.basicConstraintsIsCA=true
policyset.caCertSet.5.constraint.params.basicConstraintsMinPathLen=-1
policyset.caCertSet.5.constraint.params.basicConstraintsMaxPathLen=-1

NOTE

To allow user supplied extensions to be embedded in the certificate requests and ignore
the system-defined default in the profile, the profile needs to contain the User Supplied
Extension Default, which is described in Section B.1.32, “User Supplied Extension
Default”.

3.1.3. Inputs and Outputs

Inputs set information that must be submitted to receive a certificate. This can be requester information,
a specific format of certificate request, or organizational information.

The outputs configured in the profile define the format of the certificate that is issued.

In Certificate System, profiles are accessed by users through enrollment forms that are accessed
through the end-entities pages. (Even clients, such as TPS, submit enrollment requests through these
forms.) The inputs, then, correspond to fields in the enrollment forms. The outputs correspond to the
information contained on the certificate retrieval pages.

3.2. SETTING UP CERTIFICATE PROFILES

In Certificate System, you can add, delete, and modify enrollment profiles:

Using the PKI command-line interface

Using the Java-based administration console

This section provides information on each method.

3.2.1. Managing Certificate Enrollment Profiles Using the PKI Command-line
Interface

This section describes how to manage certificate profiles using the pki utility. For further details, see the
pki-ca-profile(1) man page.

NOTE

Using the raw format is recommended. For details on each attribute and field of the
profile, see the section Creating and Editing Certificate Profiles Directly on the File
System in Red Hat Certificate System Planning, Installation and Deployment Guide.

3.2.1.1. Enabling and Disabling a Certificate Profile

Before you can edit a certificate profile, you must disable it. After the modification is complete, you can
re-enable the profile.

NOTE

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

29

NOTE

Only CA agents can enable and disable certificate profiles.

For example, to disable the caCMCECserverCert certificate profile:

pki -c password -n caagent ca-profile-disable caCMCECserverCert

For example, to enable the caCMCECserverCert certificate profile:

pki -c password -n caagent ca-profile-enable caCMCECserverCert

3.2.1.2. Creating a Certificate Profile in Raw Format

To create a new profile in raw format:

pki -c password -n caadmin ca-profile-add profile_name.cfg --raw

NOTE

In raw format, specify the new profile ID as follows:

profileId=profile_name

3.2.1.3. Editing a Certificate Profile in Raw Format

CA administrators can edit a certificate profile in raw format without manually downloading the
configuration file.

For example, to edit the caCMCECserverCert profile:

pki -c password -n caadmin ca-profile-edit caCMCECserverCert

This command automatically downloads the profile configuration in raw format and opens it in the VI
editor. When you close the editor, the profile configuration is updated on the server.

You do not need to restart the CA after editing a profile.

IMPORTANT

Before you can edit a profile, disable the profile. For details, see Section 3.2.1.1, “Enabling
and Disabling a Certificate Profile”.

Example 3.2. Editing a Certificate Profile in RAW Format

For example, to edit the caCMCserverCert profile to accept multiple user-supplied extensions:

1. Disable the profile as a CA agent:

pki -c password -n caagemt ca-profile-disable caCMCserverCert

Administration Guide

30

2. Edit the profile as a CA administrator:

a. Download and open the profile in the VI editor:

pki -c password -n caadmin ca-profile-edit caCMCserverCert

b. Update the configuration to accept the extensions. For details, see Example B.3,
“Multiple User Supplied Extensions in CSR”.

3. Enable the profile as a CA agent:

pki -c password -n caagent ca-profile-enable caCMCserverCert

3.2.1.4. Deleting a Certificate Profile

To delete a certificate profile:

pki -c password -n caadmin ca-profile-del profile_name

IMPORTANT

Before you can delete a profile, disable the profile. For details, see Section 3.2.1.1,
“Enabling and Disabling a Certificate Profile”.

3.2.2. Managing Certificate Enrollment Profiles Using the Java-based
Administration Console

IMPORTANT

pkiconsole is being deprecated.

3.2.2.1. Creating Certificate Profiles through the CA Console

For security reasons, the Certificate Systems enforces separation of roles whereby an existing
certificate profile can only be edited by an administrator after it was allowed by an agent. To add a new
certificate profile or modify an existing certificate profile, perform the following steps as the
administrator:

1. Log in to the Certificate System CA subsystem console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager, and then select Certificate Profiles.

The Certificate Profile Instances Management tab, which lists configured certificate profiles,
opens.

3. To create a new certificate profile, click Add.

In the Select Certificate Profile Plugin Implementation window, select the type of certificate

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

31

In the Select Certificate Profile Plugin Implementation window, select the type of certificate
for which the profile is being created.

4. Fill in the profile information in the Certificate Profile Instance Editor.

Certificate Profile Instance ID. This is the ID used by the system to identify the profile.

Administration Guide

32

Certificate Profile Name. This is the user-friendly name for the profile.

Certificate Profile Description.

End User Certificate Profile. This sets whether the request must be made through the
input form for the profile. This is usually set to true. Setting this to false allows a signed
request to be processed through the Certificate Manager's certificate profile framework,
rather than through the input page for the certificate profile.

Certificate Profile Authentication. This sets the authentication method. An automated
authentication is set by providing the instance ID for the authentication instance. If this field
is blank, the authentication method is agent-approved enrollment; the request is submitted
to the request queue of the agent services interface.

Unless it is for a TMS subsystem, administrators must select one of the following
authentication plug-ins:

CMCAuth: Use this plug-in when a CA agent must approve and submit the enrollment
request.

CMCUserSignedAuth: Use this plug-in to enable non-agent users to enroll own
certificates.

5. Click OK. The plug-in editor closes, and the new profile is listed in the profiles tab.

6. Configure the policies, inputs, and outputs for the new profile. Select the new profile from the
list, and click Edit/View.

7. Set up policies in the Policies tab of the Certificate Profile Rule Editor window. The Policies
tab lists policies that are already set by default for the profile type.

1. To add a policy, click Add.

2. Choose the default from the Default field, choose the constraints associated with that
policy in the Constraints field, and click OK.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

33

3. Fill in the policy set ID. When issuing dual key pairs, separate policy sets define the policies
associated with each certificate. Then fill in the certificate profile policy ID, a name or
identifier for the certificate profile policy.

4. Configure any parameters in the Defaults and Constraints tabs.

Administration Guide

34

Defaults defines attributes that populate the certificate request, which in turn determines
the content of the certificate. These can be extensions, validity periods, or other fields
contained in the certificates. Constraints defines valid values for the defaults.

See Section B.1, “Defaults Reference” and Section B.2, “Constraints Reference” for
complete details for each default or constraint.

To modify an existing policy, select a policy, and click Edit. Then edit the default and constraints
for that policy.

To delete a policy, select the policy, and click Delete.

8. Set inputs in the Inputs tab of the Certificate Profile Rule Editor window. There can be more
than one input type for a profile.

NOTE

Unless you configure the profile for a TMS subsystem, select only
cmcCertReqInput and delete other profiles by selecting them and clicking the
Delete button.

1. To add an input, click Add.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

35

2. Choose the input from the list, and click OK. See Section A.1, “Input Reference” for
complete details of the default inputs.

3. The New Certificate Profile Editor window opens. Set the input ID, and click OK.

Administration Guide

36

Inputs can be added and deleted. It is possible to select edit for an input, but since inputs have
no parameters or other settings, there is nothing to configure.

To delete an input, select the input, and click Delete.

9. Set up outputs in the Outputs tab of the Certificate Profile Rule Editor window.

Outputs must be set for any certificate profile that uses an automated authentication method;
no output needs to be set for any certificate profile that uses agent-approved authentication.
The Certificate Output type is set by default for all profiles and is added automatically to
custom profiles.

Unless you configure the profile for a TMS subsystem, select only certOutput.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

37

Outputs can be added and deleted. It is possible to select edit for an output, but since outputs
have no parameters or other settings, there is nothing to configure.

1. To add an output, click Add.

2. Choose the output from the list, and click OK.

3. Give a name or identifier for the output, and click OK.

This output will be listed in the output tab. You can edit it to provide values to the
parameters in this output.

To delete an output, select the output from list, and click Delete.

10. Restart the CA to apply the new profile.

systemctl restart pki-tomcatd-nuxwdog@instance_name.service

11. After creating the profile as an administrator, a CA agent has to approve the profile in the agent
services pages to enable the profile.

1. Open the CA's services page.

https://server.example.com:8443/ca/services

2. Click the Manage Certificate Profiles link. This page lists all of the certificate profiles that

Administration Guide

38

2. Click the Manage Certificate Profiles link. This page lists all of the certificate profiles that
have been set up by an administrator, both active and inactive.

3. Click the name of the certificate profile to approve.

4. At the bottom of the page, click the Enable button.

NOTE

If this profile will be used with a TPS, then the TPS must be configured to recognized the
profile type. This is in 11.1.4. Managing Smart Card CA Profiles in Red Hat Certificate
System's Planning, Installation, and Deployment Guide.

Authorization methods for the profiles can only be added to the profile using the command line, as
described in the section Creating and Editing Certificate Profiles Directly on the File System in Red Hat
Certificate System Planning, Installation and Deployment Guide.

3.2.2.2. Editing Certificate Profiles in the Console

To modify an existing certificate profile:

1. Log into the agent services pages and disable the profile.

Once a certificate profile is enabled by an agent, that certificate profile is marked enabled in the
Certificate Profile Instance Management tab, and the certificate profile cannot be edited in
any way through the console.

2. Log in to the Certificate System CA subsystem console.

pkiconsole https://server.example.com:8443/ca

3. In the Configuration tab, select Certificate Manager, and then select Certificate Profiles.

4. Select the certificate profile, and click Edit/View.

5. The Certificate Profile Rule Editor window appears. Many any changes to the defaults,
constraints, inputs, or outputs.

NOTE

The profile instance ID cannot be modified.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

39

If necessary, enlarge the window by pulling out one of the corners of the window.

6. Restart the CA to apply the changes.

7. In the agent services page, re-enable the profile.

NOTE

Delete any certificate profiles that will not be approved by an agent. Any certificate
profile that appears in the Certificate Profile Instance Management tab also appears in
the agent services interface. If a profile has already been enabled, it must be disabled by
the agent before it can be deleted from the profile list.

3.2.3. Listing Certificate Enrollment Profiles

The following pre-defined certificate profiles are ready to use and set up in this environment when the
Certificate System CA is installed. These certificate profiles have been designed for the most common
types of certificates, and they provide common defaults, constraints, authentication methods, inputs,
and outputs.

To list the available profiles on the command line, use the pki utility. For example:

pki -c password -n caadmin ca-profile-find

59 entries matched

 Profile ID: caCMCserverCert
 Name: Server Certificate Enrollment using CMC
 Description: This certificate profile is for enrolling server certificates using CMC.

 Profile ID: caCMCECserverCert
 Name: Server Certificate wth ECC keys Enrollment using CMC
 Description: This certificate profile is for enrolling server certificates with ECC keys using CMC.

 Profile ID: caCMCECsubsystemCert
 Name: Subsystem Certificate Enrollment with ECC keys using CMC
 Description: This certificate profile is for enrolling subsystem certificates with ECC keys using CMC.

 Profile ID: caCMCsubsystemCert
 Name: Subsystem Certificate Enrollment using CMC
 Description: This certificate profile is for enrolling subsystem certificates using CMC.

 ...

Number of entries returned 20

For further details, see the pki-ca-profile(1) man page. Additional information can also be found at
Red Hat Certificate System Planning, Installation, and Deployment Guide .

3.2.4. Displaying Details of a Certificate Enrollment Profile

For example, to display a specific certificate profile, such as caECFullCMCUserSignedCert:

$ pki -c password -n caadmin ca-profile-show caECFullCMCUserSignedCert

Administration Guide

40

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/9/html/Planning_Installation_and_Deployment_Guide/certificate_profiles_configuration

Profile "caECFullCMCUserSignedCert"

 Profile ID: caECFullCMCUserSignedCert
 Name: User-Signed CMC-Authenticated User Certificate Enrollment
 Description: This certificate profile is for enrolling user certificates with EC keys by using the CMC
certificate request with non-agent user CMC authentication.

 Name: Certificate Request Input
 Class: cmcCertReqInputImpl

 Attribute Name: cert_request
 Attribute Description: Certificate Request
 Attribute Syntax: cert_request

 Name: Certificate Output
 Class: certOutputImpl

 Attribute Name: pretty_cert
 Attribute Description: Certificate Pretty Print
 Attribute Syntax: pretty_print

 Attribute Name: b64_cert
 Attribute Description: Certificate Base-64 Encoded
 Attribute Syntax: pretty_print

For example, to display a specific certificate profile, such as caECFullCMCUserSignedCert, in raw
format:

$ pki -c password -n caadmin ca-profile-show caECFullCMCUserSignedCert --raw
#Wed Jul 25 14:41:35 PDT 2018
auth.instance_id=CMCUserSignedAuth
policyset.cmcUserCertSet.1.default.params.name=
policyset.cmcUserCertSet.4.default.class_id=authorityKeyIdentifierExtDefaultImpl
policyset.cmcUserCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.cmcUserCertSet.10.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.10.constraint.name=Renewal Grace Period Constraint
output.o1.class_id=certOutputImpl

...

For further details, see the pki-ca-profile(1) man page.

3.3. DEFINING KEY DEFAULTS IN PROFILES

When creating certificate profiles, the Key Default must be added before the Subject Key Identifier
Default. Certificate System processes the key constraints in the Key Default before creating or applying
the Subject Key Identifier Default, so if the key has not been processed yet, setting the key in the
subject name fails.

For example, an object-signing profile may define both defaults:

policyset.set1.p3.constraint.class_id=noConstraintImpl
policyset.set1.p3.constraint.name=No Constraint
policyset.set1.p3.default.class_id=subjectKeyIdentifierExtDefaultImpl

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

41

policyset.set1.p3.default.name=Subject Key Identifier Default
...
policyset.set1.p11.constraint.class_id=keyConstraintImpl
policyset.set1.p11.constraint.name=Key Constraint
policyset.set1.p11.constraint.params.keyType=RSA
policyset.set1.p11.constraint.params.keyParameters=1024,2048,3072,4096
policyset.set1.p11.default.class_id=userKeyDefaultImpl
policyset.set1.p11.default.name=Key Default

In the policyset list, then, the Key Default (p11) must be listed before the Subject Key Identifier Default
(p3).

policyset.set1.list=p1,p2,p11,p3,p4,p5,p6,p7,p8,p9,p10

3.4. CONFIGURING PROFILES TO ENABLE RENEWAL

This section discusses how to set up profiles for certificate renewals. For more information on how to
renew certificates, see Section 5.4, “Renewing Certificates”.

A profile that allows renewal is often accompanied by the renewGracePeriodConstraint entry. For
example:

policyset.cmcUserCertSet.10.constraint.class_id=renewGracePeriodConstraintImpl
policyset.cmcUserCertSet.10.constraint.name=Renewal Grace Period Constraint
policyset.cmcUserCertSet.10.constraint.params.renewal.graceBefore=30
policyset.cmcUserCertSet.10.constraint.params.renewal.graceAfter=30
policyset.cmcUserCertSet.10.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.10.default.name=No Default

3.4.1. Renewing Using the Same Key

A profile that allows the same key to be submitted for renewal has the allowSameKeyRenewal
parameter set to true in the uniqueKeyConstraint entry. For example:

policyset.cmcUserCertSet.9.constraint.class_id=uniqueKeyConstraintImpl
policyset.cmcUserCertSet.9.constraint.name=Unique Key Constraint
policyset.cmcUserCertSet.9.constraint.params.allowSameKeyRenewal=true
policyset.cmcUserCertSet.9.default.class_id=noDefaultImpl
policyset.cmcUserCertSet.9.default.name=No Default

3.4.2. Renewal Using a New Key

To renew a certificate with a new key, use the same profile with a new key. Certificate System uses the
subjectDN from the user signing certificate used to sign the request for the new certificate.

3.5. SETTING THE SIGNING ALGORITHMS FOR CERTIFICATES

The CA's signing certificate can sign the certificates it issues with any public key algorithm supported by
the CA. For example, an ECC signing certificate can sign both ECC and RSA certificate requests as long
as both ECC and RSA algorithms are supported by the CA. An RSA signing certificate can can sign a
PKCS #10 request with EC keys, but may not be able to sign CRMF certificate requests with EC keys if
the ECC module is not available for the CA to verify the CRMF proof of possession (POP).

Administration Guide

42

ECC and RSA are public key encryption and signing algorithms. Both public key algorithms support
different cipher suites, algorithms used to encrypt and decrypt data. Part of the function of the CA
signing certificate is to issue and sign certificates using one of its supported cipher suites.

Each profile can define which cipher suite the CA should use to sign certificates processed through that
profile. If no signing algorithm is set, then the profile uses whatever the default signing algorithm is.

3.5.1. Setting the CA's Default Signing Algorithm

1. Open the CA console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager tree.

3. In the General Settings tab, set the algorithm to use in the Algorithm drop-down menu.

NOTE

pkiconsole is being deprecated.

3.5.2. Setting the Signing Algorithm Default in a Profile

Each profile has a Signing Algorithm Default extension defined. The default has two settings: a default
algorithm and a list of allowed algorithms, if the certificate request specifies a different algorithm. If no
signing algorithms are specified, then the profile uses whatever is set as the default for the CA.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

43

In the profile's .cfg file, the algorithm is set with two parameters:

policyset.cmcUserCertSet.8.constraint.class_id=signingAlgConstraintImpl
policyset.cmcUserCertSet.8.constraint.name=No Constraint
policyset.cmcUserCertSet.8.constraint.params.signingAlgsAllowed=SHA256withRSA,SHA512withRSA,S
HA256withEC,SHA384withRSA,SHA384withEC,SHA512withEC
policyset.cmcUserCertSet.8.default.class_id=signingAlgDefaultImpl
policyset.cmcUserCertSet.8.default.name=Signing Alg
policyset.cmcUserCertSet.8.default.params.signingAlg=-

To configure the Signing Algorithm Default through the console:

NOTE

Before a profile can be edited, it must first be disabled by an agent.

1. Open the CA console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager tree.

3. Click the Certificate Profiles item.

4. Click the Policies tab.

5. Select the Signing Alg policy, and click the Edit button.

6. To set the default signing algorithm, set the value in the Defaults tab. If this is set to -, then the
profile uses the CA's default.

Administration Guide

44

7. To set a list of allowed signing algorithms which can be accepted in a certificate request, open
the Constraints tab, and set the list of algorithms in the Value field for signingAlgsAllowed.

The possible values for the constraint are listed in Section B.2.10, “Signing Algorithm
Constraint”.

NOTE

pkiconsole is being deprecated.

3.6. MANAGING CA-RELATED PROFILES

Certificate profiles and extensions must be used to set rules on how subordinate CAs can issue
certificates. There are two parts to this:

Managing the CA signing certificate

Defining issuance rules

3.6.1. Setting Restrictions on CA Certificates

When a subordinate CA is created, the root CA can impose limits or restrictions on the subordinate CA.
For example, the root CA can dictate the maximum depth of valid certification paths (the number of
subordinate CAs allowed to be chained below the new CA) by setting the pathLenConstraint field of the
Basic Constraints extension in the CA signing certificate.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

45

A certificate chain generally consists of an entity certificate, zero or more intermediate CA certificates,
and a root CA certificate. The root CA certificate is either self-signed or signed by an external trusted
CA. Once issued, the root CA certificate is loaded into a certificate database as a trusted CA.

An exchange of certificates takes place when performing a TLS handshake, when sending an S/MIME
message, or when sending a signed object. As part of the handshake, the sender is expected to send the
subject certificate and any intermediate CA certificates needed to link the subject certificate to the
trusted root. For certificate chaining to work properly the certificates should have the following
properties:

CA certificates must have the Basic Constraints extension.

CA certificates must have the keyCertSign bit set in the Key Usage extension.

When the CAs generate new keys, they must add the Authority Key Identifier extension to all
subject certificates. This extensions helps distinguish the certificates from the older CA
certificates. The CA certificates must contain the Subject Key Identifier extension.

For more information on certificates and their extensions, see Internet X.509 Public Key Infrastructure -
Certificate and Certificate Revocation List (CRL) Profile (RFC 5280), available at RFC 5280.

These extensions can be configured through the certificate profile enrollment pages. By default, the CA
contains the required and reasonable configuration settings, but it is possible to customize these
settings.

NOTE

This procedure describes editing the CA certificate profile used by a CA to issue CA
certificates to its subordinate CAs.

The profile that is used when a CA instance is first configured is
/var/lib/pki/instance_name/ca/conf/caCert.profile. This profile cannot be edited in
pkiconsole (since it is only available before the instance is configured). It is possible to
edit the policies for this profile in the template file before the CA is configured using a
text editor.

To modify the default in the CA signing certificate profile used by a CA:

1. If the profile is currently enabled, it must be disabled before it can be edited. Open the agent
services page, select Manage Certificate Profiles from the left navigation menu, select the
profile, and click Disable profile.

2. Open the CA Console.

pkiconsole https://server.example.com:8443/ca

3. In the left navigation tree of the Configuration tab, select Certificate Manager, then
Certificate Profiles.

4. Select caCACert, or the appropriate CA signing certificate profile, from the right window, and
click Edit/View.

5. In the Policies tab of the Certificate Profile Rule Editor, select and edit the Key Usage or
Extended Key Usage Extension Default if it exists or add it to the profile.

Administration Guide

46

http://www.ietf.org/rfc/rfc3280.txt

6. Select the Key Usage or Extended Key Usage Extension Constraint, as appropriate, for the
default.

7. Set the default values for the CA certificates. For more information, see Section B.1.13, “Key
Usage Extension Default” and Section B.1.8, “Extended Key Usage Extension Default” .

8. Set the constraint values for the CA certificates. There are no constraints to be set for a Key
Usage extension; for an Extended Key Usage extension, set the appropriate OID constraints for
the CA. For more information, see Section B.1.8, “Extended Key Usage Extension Default” .

9. When the changes have been made to the profile, log into the agent services page again, and
re-enable the certificate profile.

NOTE

pkiconsole is being deprecated.

For more information on modifying certificate profiles, see Section 3.2, “Setting up Certificate Profiles” .

3.6.2. Changing the Restrictions for CAs on Issuing Certificates

The restrictions on the certificates issued are set by default after the subsystem is configured. These
include:

Whether certificates can be issued with validity periods longer than the CA signing certificate.
The default is to disallow this.

The signing algorithm used to sign certificates.

The serial number range the CA is able to use to issue certificates.

Subordinate CAs have constraints for the validity periods, types of certificates, and the types of
extensions which they can issue. It is possible for a subordinate CA to issue certificates that violate these
constraints, but a client authenticating a certificate that violates those constraints will not accept that
certificate. Check the constraints set on the CA signing certificate before changing the issuing rules for
a subordinate CA.

To change the certificate issuance rules:

1. Open the Certificate System Console.

pkiconsole https://server.example.com:8443/ca

2. Select the Certificate Manager item in the left navigation tree of the Configuration tab.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

47

Figure 3.1. The General Settings Tab in non-subordinate CAs by default

3. By default, in non-cloned CAs, the General Settings tab of the Certificate Manager menu item
contains these options:

Override validity nesting requirement. This checkbox sets whether the Certificate
Manager can issue certificates with validity periods longer than the CA signing certificate
validity period.

If this checkbox is not selected and the CA receives a request with validity period longer
than the CA signing certificate's validity period, it automatically truncates the validity period
to end on the day the CA signing certificate expires.

Certificate Serial Number. These fields display the serial number range for certificates
issued by the Certificate Manager. The server assigns the serial number in the Next serial
number field to the next certificate it issues and the number in the Ending serial number
to the last certificate it issues.

The serial number range allows multiple CAs to be deployed and balances the number of
certificates each CA issues. The combination of an issuer name and a serial number uniquely
identifies a certificate.

NOTE

Administration Guide

48

NOTE

The serial number ranges with cloned CAs are fluid. All cloned CAs share a
common configuration entry which defines the next available range. When
one CA starts running low on available numbers, it checks this configuration
entry and claims the next range. The entry is automatically updated, so that
the next CA gets a new range.

The ranges are defined in begin*Number and end*Number attributes, with
separate ranges defined for requests and certificate serial numbers. For
example:

 dbs.beginRequestNumber=1
 dbs.beginSerialNumber=1
 dbs.enableSerialManagement=true
 dbs.endRequestNumber=9980000
 dbs.endSerialNumber=ffe0000
 dbs.ldap=internaldb
 dbs.newSchemaEntryAdded=true
 dbs.replicaCloneTransferNumber=5

Serial number management can be enabled for CAs which are not cloned.
However, by default, serial number management is disabled unless a system
is cloned, when it is automatically enabled.

The serial number range cannot be updated manually through the console. The serial
number ranges are read-only fields.

Default Signing Algorithm. Specifies the signing algorithm the Certificate Manager uses to
sign certificates. The options are SHA256withRSA, and SHA512withRSA, if the CA's
signing key type is RSA.

The signing algorithm specified in the certificate profile configuration overrides the
algorithm set here.

4. By default, in cloned CAs, the General Settings tab of the Certificate Manager menu item
contains these options:

Enable serial number management

Enable random certificate serial numbers

Select both check boxes.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

49

Figure 3.2. The General Settings Tab in cloned CAs by default

5. Click Save.

NOTE

pkiconsole is being deprecated.

3.6.3. Using Random Certificate Serial Numbers

Red Hat Certificate System contains a serial number range management for requests, certificates, and
replica IDs. This allows the automation of cloning when installing Identity Management (IdM).

There are these ways to reduce the likelihood of hash-based attacks:

making part of the certificate serial number unpredictable to the attacker

adding a randomly chosen component to the identity

making the validity dates unpredictable to the attacker by skewing each one forwards or
backwards

The random certificate serial number assignment method adds a randomly chosen component to the
identity. This method:

works with cloning

allows resolving conflicts

is compatible with the current serial number management method

is compatible with the current workflows for administrators, agents, and end entities

fixes the existing bugs in sequential serial number management

Administration Guide

50

NOTE

Administrators must enable random certificate serial numbers.

3.6.3.1. Enabling Random Certificate Serial Numbers

You can enable automatic serial number range management either from the command line or from the
console UI.

To enable automatic serial number management from the console UI:

1. Tick the Enable serial number management option in the General Settings tab.

Figure 3.3. The General Settings Tab when Random Serial Number Assignment is enabled

2. Tick the Enable random certificate serial numbers option.

NOTE

pkiconsole is being deprecated.

3.6.4. Allowing a CA Certificate to Be Renewed Past the CA's Validity Period

Normally, a certificate cannot be issued with a validity period that ends after the issuing CA certificate's
expiration date. If a CA certificate has an expiration date of December 31, 2015, then all of the
certificates it issues must expire by or before December 31, 2015.

This rule applies to other CA signing certificates issued by a CA — and this makes renewing a root CA
certificate almost impossible. Renewing a CA signing certificate means it would necessarily have to have
a validity period past its own expiration date.

This behavior can be altered using the CA Validity Default. This default allows a setting

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

51

This behavior can be altered using the CA Validity Default. This default allows a setting
(bypassCAnotafter) which allows a CA certificate to be issued with a validity period that extends past
the issuing CA's expiration (notAfter) date.

Figure 3.4. CA Validity Default Configuration

In real deployments, what this means is that a CA certificate for a root CA can be renewed, when it might
otherwise be prevented.

To enable CA certificate renewals past the original CA's validity date:

1. Open the caCACert.cfg file.

vim /var/lib/pki/instance_name/ca/conf/caCACert.cfg

2. The CA Validity Default should be present by default. Set the value to true to allow a CA
certificate to be renewed past the issuing CA's validity period.

policyset.caCertSet.2.default.name=CA Certificate Validity Default
policyset.caCertSet.2.default.params.range=2922
policyset.caCertSet.2.default.params.startTime=0
policyset.caCertSet.2.default.params.bypassCAnotafter=true

3. Restart the CA to apply the changes.

Administration Guide

52

When an agent reviews a renewal request, there is an option in the Extensions/Fields area that allows
the agent to choose to bypass the normal validity period constraint. If the agent selects false, the
constraint is enforced, even if bypassCAnotafter=true is set in the profile. If the agent selects true
when the bypassCAnotafter value is not enabled, then the renewal request is rejected by the CA.

Figure 3.5. Bypass CA Constraints Option in the Agent Services Page

NOTE

The CA Validity Default only applies to CA signing certificate renewals. Other certificates
must still be issued and renewed within the CA's validity period.

A separate configuration setting for the CA, ca.enablePastCATime, can be used to allow
certificates to be renewed past the CA's validity period. However, this applies to every
certificate issued by that CA. Because of the potential security issues, this setting is not
recommended for production environments.

3.7. MANAGING SUBJECT NAMES AND SUBJECT ALTERNATIVE
NAMES

The subject name of a certificate is a distinguished name (DN) that contains identifying information
about the entity to which the certificate is issued. This subject name can be built from standard LDAP
directory components, such as common names and organizational units. These components are defined
in X.500. In addition to — or even in place of — the subject name, the certificate can have a subject
alternative name, which is a kind of extension set for the certificate that includes additional information
that is not defined in X.500.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

53

The naming components for both subject names and subject alternative names can be customized.

IMPORTANT

If the subject name is empty, then the Subject Alternative Name extension must be
present and marked critical.

3.7.1. Using the Requester CN or UID in the Subject Name

The cn or uid value from a certificate request can be used to build the subject name of the issued
certificate. This section demonstrates a profile that requires the naming attribute (CN or UID) being
specified in the Subject Name Constraint to be present in the certificate request. If the naming attribute
is missing, the request is rejected.

There are two parts to this configuration:

The CN or UID format is set in the pattern configuration in the Subject Name Constraint.

The format of the subject DN, including the CN or UID token and the specific suffix for the
certificate, is set in the Subject Name Default.

For example, to use the CN in the subject DN:

policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=$request.req_subject_name.cn$,DC=example,
DC=com

In this example, if a request comes in with the CN of cn=John Smith, then the certificate will be issued
with a subject DN of cn=John Smith,DC=example, DC=com. If the request comes in but it has a UID of
uid=jsmith and no CN, then the request is rejected.

The same configuration is used to pull the requester UID into the subject DN:

policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=UID=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=UID=$request.req_subject_name.uid$,DC=example,
DC=com

The format for the pattern parameter is covered in Section B.2.11, “Subject Name Constraint” and
Section B.1.27, “Subject Name Default” .

3.7.2. Inserting LDAP Directory Attribute Values and Other Information into the
Subject Alt Name

Information from an LDAP directory or that was submitted by the requester can be inserted into the

Administration Guide

54

subject alternative name of the certificate by using matching variables in the Subject Alt Name
Extension Default configuration. This default sets the type (format) of information and then the
matching pattern (variable) to use to retrieve the information. For example:

policyset.userCertSet.8.default.class_id=subjectAltNameExtDefaultImpl
policyset.userCertSet.8.default.name=Subject Alt Name Constraint
policyset.userCertSet.8.default.params.subjAltNameExtCritical=false
policyset.userCertSet.8.default.params.subjAltExtType_0=RFC822Name
policyset.userCertSet.8.default.params.subjAltExtPattern_0=$request.requestor_email$
policyset.userCertSet.8.default.params.subjAltExtGNEnable_0=true

This inserts the requester's email as the first CN component in the subject alt name. To use additional
components, increment the Type_, Pattern_, and Enable_ values numerically, such as Type_1.

Configuring the subject alt name is detailed in Section B.1.23, “Subject Alternative Name Extension
Default”, as well.

To insert LDAP components into the subject alt name of the certificate:

1. Inserting LDAP attribute values requires enabling the user directory authentication plug-in,
SharedSecret.

1. Open the CA Console.

pkiconsole https://server.example.com:8443/ca

2. Select Authentication in the left navigation tree.

3. In the Authentication Instance tab, click Add, and add an instance of the SharedSecret
authentication plug-in.

4. Enter the following information:

Authentication InstanceID=SharedToken
shrTokAttr=shrTok
ldap.ldapconn.host=server.example.com
ldap.ldapconn.port=636
ldap.ldapconn.secureConn=true
ldap.ldapauth.bindDN=cn=Directory Manager
password=password
ldap.ldapauth.authtype=BasicAuth
ldap.basedn=ou=People,dc=example,dc=org

5. Save the new plug-in instance.

NOTE

pkiconsole is being deprecated.

For information on setting a CMC shared token, see Section 10.4.2, “Setting a CMC Shared
Secret”.

2. The ldapStringAttributes parameter instructs the authentication plug-in to read the value of
the mail attribute from the user's LDAP entry and put that value in the certificate request.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

55

When the value is in the request, the certificate profile policy can be set to insert that value for
an extension value.

The format for the dnpattern parameter is covered in Section B.2.11, “Subject Name Constraint”
and Section B.1.27, “Subject Name Default” .

3. To enable the CA to insert the LDAP attribute value in the certificate extension, edit the
profile's configuration file, and insert a policy set parameter for an extension. For example, to
insert the mail attribute value in the Subject Alternative Name extension in the
caFullCMCSharedTokenCert profile, change the following code:

policyset.setID.8.default.params.subjAltExtPattern_0=$request.auth_token.mail[0]$

For more details about editing a profile, see Section 3.2.1.3, “Editing a Certificate Profile in Raw
Format”.

4. Restart the CA.

systemctl restart pki-tomcatd-nuxwdog@instance_name.service

For this example, certificates submitted through the caFullCMCSharedTokenCert profile enrollment
form will have the Subject Alternative Name extension added with the value of the requester's mail
LDAP attribute. For example:

Identifier: Subject Alternative Name - 2.5.29.17
 Critical: no
 Value:
 RFC822Name: jsmith@example.com

There are many attributes which can be automatically inserted into certificates by being set as a token
(X) in any of the Pattern_ parameters in the policy set. The common tokens are listed in Table 3.1,
“Variables Used to Populate Certificates”, and the default profiles contain examples for how these
tokens are used.

Table 3.1. Variables Used to Populate Certificates

Policy Set Token Description

$request.auth_token.cn[0]$ The LDAP common name (cn) attribute of the user
who requested the certificate.

$request.auth_token.mail[0]$ The value of the LDAP email (mail) attribute of the
user who requested the certificate.

$request.auth_token.tokencertsubject$ The certificate subject name.

$request.auth_token.uid$ The LDAP user ID (uid) attribute of the user who
requested the certificate.

$request.auth_token.userdn$ The user DN of the user who requested the
certificate.

Administration Guide

56

$request.auth_token.userid$ The value of the user ID attribute for the user who
requested the certificate.

$request.uid$ The value of the user ID attribute for the user who
requested the certificate.

$request.requestor_email$ The email address of the person who submitted the
request.

$request.requestor_name$ The person who submitted the request.

$request.upn$ The Microsoft UPN. This has the format
(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.upn$.

$server.source$ Instructs the server to generate a version 4 UUID
(random number) component in the subject name.
This always has the format
(IA5String)1.2.3.4,$server.source$.

$request.auth_token.user$ Used when the request was submitted by TPS. The
TPS subsystem trusted manager who requested the
certificate.

$request.subject$ Used when the request was submitted by TPS. The
subject name DN of the entity to which TPS has
resolved and requested for. For example,
cn=John.Smith.123456789,o=TMS Org

Policy Set Token Description

3.7.3. Using the CN Attribute in the SAN Extension

Several client applications and libraries no longer support using the Common Name (CN) attribute of
the Subject DN for domain name validation, which has been deprecated in RFC 2818. Instead, these
applications and libraries use the dNSName Subject Alternative Name (SAN) value in the certificate
request.

Certificate System copies the CN only if it matches the preferred name syntax according to RFC 1034
Section 3.5 and has more than one component. Additionally, existing SAN values are preserved. For
example, the dNSName value based on the CN is appended to existing SANs.

To configure Certificate System to automatically use the CN attribute in the SAN extension, edit the
certificate profile used to issue the certificates. For example:

1. Disable the profile:

pki -c password -p 8080 \
 -n "PKI Administrator for example.com" ca-profile-disable profile_name

2. Edit the profile:

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

57

http://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc1034#section-3.5

pki -c password -p 8080 \
 -n "PKI Administrator for example.com" ca-profile-edit profile_name

a. Add the following configuration with a unique set number for the profile. For example:

policyset.serverCertSet.12.constraint.class_id=noConstraintImpl
policyset.serverCertSet.12.constraint.name=No Constraint
policyset.serverCertSet.12.default.class_id=commonNameToSANDefaultImpl
policyset.serverCertSet.12.default.name=Copy Common Name to Subject

The previous example uses 12 as the set number.

b. Append the new policy set number to the policyset.userCertSet.list parameter. For
example:

policyset.userCertSet.list=1,10,2,3,4,5,6,7,8,9,12

c. Save the profile.

3. Enable the profile:

pki -c password -p 8080 \
 -n "PKI Administrator for example.com" ca-profile-enable profile_name

NOTE

All default server profiles contain the commonNameToSANDefaultImpl default.

3.7.4. Accepting SAN Extensions from a CSR

In certain environments, administrators want to allow specifying Subject Alternative Name (SAN)
extensions in Certificate Signing Request (CSR).

3.7.4.1. Configuring a Profile to Retrieve SANs from a CSR

To allow retrieving SANs from a CSR, use the User Extension Default. For details, see Section B.1.32,
“User Supplied Extension Default”.

NOTE

A SAN extension can contain one or more SANs.

To accept SANs from a CSR, add the following default and constraint to a profile, such as
caCMCECserverCert:

prefix.constraint.class_id=noConstraintImpl
prefix.constraint.name=No Constraint

prefix.default.class_id=userExtensionDefaultImpl
prefix.default.name=User supplied extension in CSR
prefix.default.params.userExtOID=2.5.29.17

Administration Guide

58

3.7.4.2. Generating a CSR with SANs

For example, to generate a CSR with two SANs using the certutil utility:

certutil -R -k ec -q nistp256 -d . -s "cn=Example Multiple SANs" --extSAN
dns:www.example.com,dns:www.example.org -a -o /root/request.csr.p10

After generating the CSR, follow the steps described in Section 5.5.2, “The CMC Enrollment Process” to
complete the CMC enrollment.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)

59

CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY
For more information on Key Archival and Recovery, see the Archiving, Recovering, and Rotating Keys
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

This chapter explains how to setup the Key Recovery Authority (KRA), previously known as Data
Recovery Manager (DRM), to archive private keys and to recover archived keys for restoring encrypted
data.

NOTE

This chapter only discusses archiving keys through client-side key generation. Server-
side key generation and archivals, whether it's initiated through TPS, or through CA's End
Entity portal, are not discussed here.

For information on smart card key recovery, see Section 6.11, “Setting Up Server-side Key
Generation”.

For information on server-side key generation provided at the CA’s EE portal, see
Section 5.2.2, “Generating CSRs Using Server-Side Key Generation” .

NOTE

Gemalto SafeNet LunaSA only supports PKI private key extraction in its CKE - Key
Export model, and only in non-FIPS mode. The LunaSA Cloning model and the CKE
model in FIPS mode do not support PKI private key extraction.

When KRA is installed, it joins a security domain, and is paired up with the CA. At such time, it is
configured to archive and recover private encryption keys. However, if the KRA certificates are issued by
an external CA rather than one of the CAs within the security domain, then the key archival and recovery
process must be set up manually.

For more information, see the Manually Setting up Key Archival section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

NOTE

In a cloned environment, it is necessary to set up key archival and recovery manually. For
more information, see the Updating CA-KRA Connector Information After Cloning section
in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

4.1. CONFIGURING AGENT-APPROVED KEY RECOVERY IN THE
CONSOLE

NOTE

While the number of key recovery agents can be configured in the Console, the group to
use can only be set directly in the CS.cfg file. The Console uses the Key Recovery
Authority Agents Group by default.

1. Open the KRA's console. For example:

Administration Guide

60

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/managing-pki#Archiving_and_Recovering_Keys
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuring-key-recovery-authority#Setting_up_Key_Archival
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/clone-kra-cxn

pkiconsole https://server.example.com:8443/kra

2. Click the Key Recovery Authority link in the left navigation tree.

3. Enter the number of agents to use to approve key recover in the Required Number of Agents
field.

NOTE

For more information on how to configure agent-approved key recovery in the CS.cfg
file, see the Configuring Agent-Approved Key Recovery in the Command Line section in
the Red Hat Certificate System Planning, Installation, and Deployment Guide .

4.2. TESTING THE KEY ARCHIVAL AND RECOVERY SETUP

NOTE

Newer browsers do not support key archival from the browser; for Step 1, one should
substitute CRMF generation clients for those browsers.

To test whether a key can be successfully archived:

1. Enroll for dual certificates using the CA's Manual User Signing & Encryption Certificates
Enrollment form.

2. Submit the request. Log in to the agent services page, and approve the request.

3. Log into the end-entities page, and check to see if the certificates have been issued. In the list
of certificates, there should be two new certificates with consecutive serial numbers.

4. Import the certificates into the web browser.

5. Confirm that the key has been archived. In the KRA's agent services page, select Show
completed requests. If the key has been archived successfully, there will be information about
that key. If the key is not shown, check the logs, and correct the problem. If the key has been
successfully archived, close the browser window.

6. Verify the key. Send a signed and encrypted email. When the email is received, open it, and
check the message to see if it is signed and encrypted. There should be a security icon at the
top-right corner of the message window that indicates that the message is signed and
encrypted.

CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY

61

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/setting_up_key_recovery#agent-recovery-cs-cfg
creating_a_csr_using_crmfpopclient

7. Delete the certificate. Check the encrypted email again; the mail client should not be able to
decrypt the message.

8. Test whether an archived key can be recovered successfully:

1. Open the KRA's agent services page, and click the Recover Keys link. Search for the key by
the key owner, serial number, or public key. If the key has been archived successfully, the
key information will be shown.

2. Click Recover.

3. In the form that appears, enter the base-64 encoded certificate that corresponds to the
private key to recover; use the CA to get this information. If the archived key was searched
for by providing the base-64 encoded certificate, then the certificate does not have to be
supplied here.

4. Make sure that the Async Recovery checkbox is selected to allow the browser session to
be closed while recovery is ongoing.

NOTE

An async recovery is the default and recommended way to perform a key
recovery. If you want to perform a synchronous key recovery, the browser
window cannot be shut and the KRA cannot be stopped during the recovery
process.

5. Depending on the agent scheme, a specified number of agents must authorize this key
recovery. Have the agents search for the key to recover and then to approve the initiated
recovery.

6. Once all the agents have authorized the recovery, the next screen requests a password to
encrypt the PKCS #12 file with the certificate.

7. The next screen returns a link to download a PKCS #12 blob containing the recovered key
pair. Follow the link, and save the blob to file.

IMPORTANT

Opening the PKCS #12 file directly from the browser in the gcr-viewer utility
can fail in certain situations. To work around the problem, download the file
and manually open it in gcr-viewer.

9. Restore the key to the browser's database. Import the .p12 file into the browser and mail client.

10. Open the test email. The message should be shown again.

Administration Guide

62

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING
CERTIFICATES
Certificates are requested and used by end users. Although certificate enrollment and renewal are
operations that are not limited to administrators, understanding the enrollment and renewal processes
can make it easier for administrators to manage and create appropriate certificate profiles, as described
in Section 3.2, “Setting up Certificate Profiles” , and to use fitting authentication methods (described in
Chapter 10, Authentication for Enrolling Certificates) for each certificate type.

This chapter discusses requesting, receiving, and renewing certificates for use outside
Certificate System. For information on requesting and renewing Certificate System subsystem
certificates, see Chapter 17, Managing Subsystem Certificates .

5.1. ABOUT ENROLLING AND RENEWING CERTIFICATES

Enrollment is the process for requesting and receiving a certificate. The mechanics for the enrollment
process are slightly different depending on the type of certificate, the method for generating its key
pair, and the method for generating and approving the certificate itself. Whatever the specific method,
certificate enrollment, at a high level, has the same basic steps:

1. A certificate request (CSR) is generated.

2. The certificate request is submitted to the CA.

3. The request is verified by authenticating the entity which requested it and by confirming that
the request meets the certificate profile rules which were used to submit it.

4. The request is approved.

5. The requesting party retrieves the new certificate.

When the certificate reaches the end of its validity period, it can be renewed.

5.2. CREATING CERTIFICATE SIGNING REQUESTS

Traditionally, the following methods are used to generate Certificate requests (CSRs):

Generating CSRs using command line utilities

Generating CSRs inside a supporting browser

Generating CSRs inside an application, such as the installer of a server

Some of these methods support direct submission of the CSRs, while some do not.

Starting from RHCS 9.7, Server-Side key generation is supported to overcome the inconvenience
brought on by the removal of the key generation support inside newer versions of browsers, such as
Firefox v69 and up, as well as Chrome. For this reason, in this section, we will not discuss browser
support for key generation. Although there is no reason to believe that older versions of those browsers
should not continue to function as specified in older RHCS documentation.

CSRs generated from an application generally take the form of PKCS#10. Provided that they are
generated correctly, they should be supported by RHCS.

In the following subsections, we are going to go over the following methods supported by RHCS:

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

63

Command-line utilities

Server-Side Key Generation

5.2.1. Generating CSRs Using Command-Line Utilities

Red Hat Certificate System supports using the following utilities to create CSRs:

certutil: Supports creating PKCS #10 requests.

PKCS10Client: Supports creating PKCS #10 requests.

CRMFPopClient: Supports creating CRMF requests.

pki client-cert-request: Supports both PKCS#10 and CRMF requests.

The following sections provide some examples on how to use these utilities with the feature-rich
enrollment profile framework.

5.2.1.1. Creating a CSR Using certutil

This section describes examples on how to use the certutil utility to create a CSR.

For further details about using certutil, see:

The certutil(1) man page

The output of the certutil --help command

5.2.1.1.1. Using certutil to Create a CSR with EC Keys

The following procedure demonstrates how to use the certutil utility to create an Elliptic Curve (EC) key
pair and CSR:

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

$ cd /user_or_entity_database_directory/

2. Create the binary CSR and store it in the /user_or_entity_database_directory/request.csr
file:

$ certutil -d . -R -k ec -q nistp256 -s "CN=subject_name" -o
/user_or_entity_database_directory/request-bin.csr

Enter the required NSS database password when prompted.

For further details about the parameters, see the certutil(1) man page.

3. Convert the created binary format CSR to PEM format:

$ BtoA /user_or_entity_database_directory/request-bin.csr
/user_or_entity_database_directory/request.csr

Administration Guide

64

4. Optionally, verify that the CSR file is correct:

$ cat /user_or_entity_database_directory/request.csr

MIICbTCCAVUCAQAwKDEQMA4GA1UEChMHRXhhbXBsZTEUMBIGA1UEAxMLZXhhbXBs

 ...

This is a PKCS#10 PEM certificate request.

5.2.1.1.2. Using certutil to Create a CSR With User-defined Extensions

The following procedure demonstrates how to create a CSR with user-defined extensions using the
certutil utility.

Note that the enrollment requests are constrained by the enrollment profiles defined by the CA. See
Example B.3, “Multiple User Supplied Extensions in CSR” .

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

$ cd /user_or_entity_database_directory/

2. Create the CSR with user-defined Key Usage extension as well as user-defined Extended Key
Usage extension and store it in the /user_or_entity_database_directory/request.csr file:

$ certutil -d . -R -k rsa -g 1024 -s "CN=subject_name" --keyUsage
keyEncipherment,dataEncipherment,critical --extKeyUsage
timeStamp,msTrustListSign,critical -a -o /user_or_entity_database_directory/request.csr

Enter the required NSS database password when prompted.

For further details about the parameters, see the certutil(1) man page.

3. Optionally, verify that the CSR file is correct:

$ cat /user_or_entity_database_directory/request.csr
 Certificate request generated by Netscape certutil
 Phone: (not specified)

 Common Name: user 4-2-1-2
 Email: (not specified)
 Organization: (not specified)
 State: (not specified)
 Country: (not specified)

This is a PKCS#10 PEM certificate request.

5.2.1.2. Creating a CSR Using PKCS10Client

This section describes examples how to use the PKCS10Client utility to create a CSR.

For further details about using PKCS10Client, see:

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

65

The PKCS10Client(1) man page

The output of the PKCS10Client --help command

5.2.1.2.1. Using PKCS10Client to Create a CSR

The following procedure explains how to use the PKCS10Client utility to create an Elliptic Curve (EC)
key pair and CSR:

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

$ cd /user_or_entity_database_directory/

2. Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:

$ PKCS10Client -d . -p NSS_password -a ec -c nistp256 -o
/user_or_entity_database_directory/example.csr -n "CN=subject_name"

For further details about the parameters, see the PKCS10Client(1) man page.

3. Optionally, verify that the CSR is correct:

$ cat /user_or_entity_database_directory/example.csr
 -----BEGIN CERTIFICATE REQUEST-----
 MIICzzCCAbcCAQAwgYkx
 ...
 -----END CERTIFICATE REQUEST-----

5.2.1.2.2. Using PKCS10Client to Create a CSR for SharedSecret-based CMC

The following procedure explains how to use the PKCS10Client utility to create an RSA key pair and
CSR for SharedSecret-based CMC. Use it only with the CMC Shared Secret authentication method
which is, by default, handled by the caFullCMCSharedTokenCert and caECFullCMCSharedTokenCert
profiles.

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

$ cd /user_or_entity_database_directory/

2. Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:

$ PKCS10Client -d . -p NSS_password -o /user_or_entity_database_directory/example.csr -y
true -n "CN=subject_name"

For further details about the parameters, see the PKCS10Client(1) man page.

3. Optionally, verify that the CSR is correct:

$ cat /user_or_entity_database_directory/example.csr
 -----BEGIN CERTIFICATE REQUEST-----
 MIICzzCCAbcCAQAwgYkx

Administration Guide

66

 ...
 -----END CERTIFICATE REQUEST-----

5.2.1.3. Creating a CSR Using CRMFPopClient

Certificate Request Message Format (CRMF) is a CSR format accepted in CMC that allows key archival
information to be securely embedded in the request.

This section describes examples how to use the CRMFPopClient utility to create a CSR.

For further details about using CRMFPopClient, see the CRMFPopClient(1) man page.

5.2.1.3.1. Using CRMFPopClient to Create a CSR with Key Archival

The following procedure explains how to use the CRMFPopClient utility to create an RSA key pair and a
CSR with the key archival option:

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

$ cd /user_or_entity_database_directory/

2. Retrieve the KRA transport certificate:

$ pki ca-cert-find --name "DRM Transport Certificate"

 1 entries found

 Serial Number: 0x7
 Subject DN: CN=DRM Transport Certificate,O=EXAMPLE
 Status: VALID
 Type: X.509 version 3
 Key A lgorithm: PKCS #1 RSA with 2048-bit key
 Not Valid Before: Thu Oct 22 18:26:11 CEST 2015
 Not Valid After: Wed Oct 11 18:26:11 CEST 2017
 Issued On: Thu Oct 22 18:26:11 CEST 2015
 Issued By: caadmin

 Number of entries returned 1

3. Export the KRA transport certificate:

$ pki ca-cert-show 0x7 --output kra.transport

4. Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:

$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b
kra.transport -w "AES/CBC/PKCS5Padding" -v -o
/user_or_entity_database_directory/example.csr

To create an Elliptic Curve (EC) key pair and CSR, pass the -a ec -t false options to the
command.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

67

For further details about the parameters, see the CRMFPopClient(1) man page.

5. Optionally, verify that the CSR is correct:

$ cat /user_or_entity_database_directory/example.csr
 -----BEGIN CERTIFICATE REQUEST-----
 MIICzzCCAbcCAQAwgYkx
 ...
 -----END CERTIFICATE REQUEST-----

5.2.1.3.2. Using CRMFPopClient to Create a CSR for SharedSecret-based CMC

The following procedure explains how to use the CRMFPopClient utility to create an RSA key pair and
CSR for SharedSecret-based CMC. Use it only with the CMC Shared Secret authentication method
which is, by default, handled by the caFullCMCSharedTokenCert and caECFullCMCSharedTokenCert
profiles.

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

$ cd /user_or_entity_database_directory/

2. Retrieve the KRA transport certificate:

$ pki ca-cert-find --name "DRM Transport Certificate"

 1 entries found

 Serial Number: 0x7
 Subject DN: CN=DRM Transport Certificate,O=EXAMPLE
 Status: VALID
 Type: X.509 version 3
 Key A lgorithm: PKCS #1 RSA with 2048-bit key
 Not Valid Before: Thu Oct 22 18:26:11 CEST 2015
 Not Valid After: Wed Oct 11 18:26:11 CEST 2017
 Issued On: Thu Oct 22 18:26:11 CEST 2015
 Issued By: caadmin

 Number of entries returned 1

3. Export the KRA transport certificate:

$ pki ca-cert-show 0x7 --output kra.transport

4. Create the CSR and store it in the /user_or_entity_database_directory/example.csr file:

$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b
kra.transport -w "AES/CBC/PKCS5Padding" -y -v -o
/user_or_entity_database_directory/example.csr

To create an EC key pair and CSR, pass the -a ec -t false options to the command.

For further details about the parameters, see the output of the CRMFPopClient --help

Administration Guide

68

For further details about the parameters, see the output of the CRMFPopClient --help
command.

5. Optionally, verify that the CSR is correct:

$ cat /user_or_entity_database_directory/example.csr
 -----BEGIN CERTIFICATE REQUEST-----
 MIICzzCCAbcCAQAwgYkx
 ...
 -----END CERTIFICATE REQUEST-----

5.2.1.4. Creating a CSR using client-cert-request in the PKI CLI

The pkicommand-line tool can also be used with the client-cert-request command to generate a CSR.
However, unlike the previously discussed tools, CSR generated with pki are submitted directly to the CA.
Both PKCS#10 or CRMF requests can be generated.

Example on generating a PKCS#10 request:

pki -d user token db directory -P https -p 8443 -h host.test.com -c user token db passwd client-cert-
request "uid=test2" --length 4096 --type pkcs10

Example on generating a CRMF request:

pki -d user token db directory -P https -p 8443 -h host.test.com -c user token db passwd client-cert-
request "uid=test2" --length 4096 --type crmf

A request id will be returned upon success.

Once a request is submitted, an agent could approve it by using the pki ca-cert-request-approve
command.

For example:

pki -d agent token db directory -P https -p 8443 -h host.test.com -c agent token db passwd -n <CA
agent cert nickname> ca-cert-request-approve request id

For more information, see the man page by running the pki client-cert-request --help command.

5.2.2. Generating CSRs Using Server-Side Key Generation

Many newer versions of browsers, including Firefox v69 and up, as well as Chrome, have removed the
functionality to generate PKI keys and the support for CRMF for key archival. On RHEL, CLIs such as
CRMFPopClient (see CRMFPopClient --help) or pki (see pki client-cert-request --help) could be
used as a workaround.

Server-Side Keygen enrollment has been around for a long time since the introduction of Token Key
Management System (TMS), where keys could be generated on a KRA instead of locally on smart cards.
Red Hat Certificate System now adopts a similar mechanism to resolve the browser keygen deficiency
issue. Keys are generated on the server (specifically, on the KRA) and then transferred securely back to
the client in PKCS#12.

NOTE

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

69

NOTE

It is highly recommended to employ the Server-Side Keygen mechanism only for
encryption certificates.

5.2.2.1. Functionality Highlights

Certificate request keys are generated on the KRA (Note: a KRA must be installed to work with
the CA)

The profile default plugin, serverKeygenUserKeyDefaultImpl, provides selection to enable or
disable key archival (i.e. the enableArchival parameter)

Support for both RSA and EC keys

Support for both manual (agent) approval and automatic approval (e.g. directory password-
based)

5.2.2.2. Enrolling a Certificate Using Server-Side Keygen

The default Sever-Side Keygen enrollment profile can be found on the EE page, under the List
Certificate Profiles tab:

Manual User Dual-Use Certificate Enrollment Using server-side Key generation

Figure 5.1. Server-Side Keygen Enrollment that requires agent manual approval

Administration Guide

70

Directory-authenticated User Dual-Use Certificate Enrollment Using server-side Key
generation

Figure 5.2. Server-Side Keygen Enrollment that will be automatically approved upon successful
LDAP uid/pwd authentication

Regardless of how the request is approved, the Server-Side Keygen Enrollment mechanism requires the
End Entity user to enter a password for the PKCS#12 package which will contain the issued certificate as
well as the encrypted private key generated by the server once issued.

IMPORTANT

Users should not share their passwords with anyone. Not even the CA or KRA agents.

When the enrollment request is approved, the PKCS#12 package will be generated and,

In case of manual approval, the PKCS#12 file will be returned to the CA agent that approves the
request; the agent is then expected to forward the PKCS#12 file to the user.

In case of automatic approval, the PKCS#12 file will be returned to the user who submitted the
request

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

71

Figure 5.3. Enrollment manually approved by an agent

Once the PKCS#12 file is received, the user could use a CLI such as pkcs12util to import this file into
their own user internal cert/key database for each application. E.g. the Firefox nss database of the user.

5.2.2.3. Key Recovery

If the enableArchival parameter is set to true in the certificate enrollment profile, then the private keys
are archived at the time of Server-Side Keygen enrollment. The archived private keys could then be
recovered by the authorized KRA agents.

5.2.2.4. Additional Information

5.2.2.4.1. KRA Request Records

NOTE

Due to the nature of this mechanism, in case the enableArchival parameter is set to true
in the profile, there are two KRA requests records per Server-Side keygen request:

One for the request type asymkeyGenRequest

This request type cannot be filtered using List Requests on the KRA agent page; you can
select Show All Requests to see them listed.

One for the request type recovery

5.2.2.4.2. Audit Records

Some audit records could be observed if enabled:

CA

Administration Guide

72

SERVER_SIDE_KEYGEN_ENROLL_KEYGEN_REQUEST

SERVER_SIDE_KEYGEN_ENROLL_KEY_RETRIEVAL_REQUEST

KRA

SERVER_SIDE_KEYGEN_ENROLL_KEYGEN_REQUEST_PROCESSED

SERVER_SIDE_KEYGEN_ENROLL_KEY_RETRIEVAL_REQUEST_PROCESSED (not yet
implemented)

5.3. REQUESTING AND RECEIVING CERTIFICATES

As explained in Section 5.1, “About Enrolling and Renewing Certificates” , once CSRs are generated, they
need to be submitted to the CA for issuance. Some of the methods discussed in Section 5.2, “Creating
Certificate Signing Requests” submit CSRs to the CA directly, while some would require submission of
the CSRs in a separate step, which could either be carried out by the user or pre-signed by an agent.

In this section, we are going to discuss the separate submission steps supported by the RHCS CA.

Section 5.3.1, “Requesting and Receiving a Certificate through the End-Entities Page”

Section 5.5, “Submitting Certificate requests Using CMC”

5.3.1. Requesting and Receiving a Certificate through the End-Entities Page

At the CA End Entity portal (i.e. https://host.domain:port#/ca/ee/ca), end entities can use the HTML
enrollment forms presented at each applicable enrollment profile under the Enrollment/Renewal tab to
submit their certificate requests (CSRs, see Section 5.2, “Creating Certificate Signing Requests” for how
to generate CSRs).

This section assumes that you have the CSR in Base64 encoded format, including the marker lines -----
BEGIN NEW CERTIFICATE REQUEST----- and -----END NEW CERTIFICATE REQUEST----- .

Many of the default enrollment profiles provide a Certificate Request text box where one could paste in
the Base64 encoded CSR, along with a Certificate Request Type selection drop down list.

In the certificate enrollment form, enter the required information.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

73

The standard requirements are as follows:

Certificate Request Type. This is either PKCS#10 or CRMF. Certificate requests created
through the subsystem administrative console are PKCS #10; those created through the
certutil tool and other utilities are usually PKCS #10.

Certificate Request. Paste the base-64 encoded blob, including the -----BEGIN NEW
CERTIFICATE REQUEST----- and -----END NEW CERTIFICATE REQUEST----- marker lines.

Requester Name. This is the common name of the person requesting the certificate.

Requester Email. This is the email address of the requester. The agent or CA system will use
this address to contact the requester when the certificate is issued. For example,
jdoe@someCompany.com.

Requester Phone. This is the contact phone number of the requester.

The submitted request is queued for agent approval. An agent needs to process and approve the

Administration Guide

74

The submitted request is queued for agent approval. An agent needs to process and approve the
certificate request.

NOTE

Some enrollment profiles may allow automatic approval such as by using the LDAP
uid/pwd authentication method offered by Red Hat Certificate System. Enrollments
through those profiles would not require manual agent approval in the next section. See
Chapter 10, Authentication for Enrolling Certificates for supported approval methods.

In case of manual approval, once the certificate is approved and generated, you can retrieve the
certificate.

1. Open the Certificate Manager end-entities page, for example:

https://server.example.com:8443/ca/ee/ca

2. Click the Retrieval tab.

3. Fill in the request ID number that was created when the certificate request was submitted, and
click Submit.

4. The next page shows the status of the certificate request. If the status is complete, then there
is a link to the certificate. Click the Issued certificate link.

5. The new certificate information is shown in pretty-print format, in base-64 encoded format,
and in PKCS #7 format.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

75

The following actions can be taken through this page:

To install this certificate on a server or other application, scroll down to the Installing This
Certificate in a Server section, which contains the base-64 encoded certificate.

6. Copy the base-64 encoded certificate, including the -----BEGIN CERTIFICATE----- and -----
END CERTIFICATE----- marker lines, to a text file. Save the text file, and use it to store a copy
of the certificate in the security module of the entity where the private key resides. See
Section 15.3.2.1, “Creating Users”.

5.4. RENEWING CERTIFICATES

This section discusses how to renew certificates. For more information on how to set up certificate
renewal, see Section 3.4, “Configuring Profiles to Enable Renewal” .

Renewing a certificate consists in regenerating the certificate with the same properties to be used for
the same purpose as the original certificate. In general, there are two types of renewals:

Same key Renewal takes the original key, profile, and request of the certificate and recreates a
new certificate with a new validity period and expiration date using the identical key. This can be
done by either of the following methods:

resubmitting the original certificate request (CSR) through the original profile, or

regenerating a CSR with the original keys by using supporting tools such as certutil

Administration Guide

76

Re-keying a certificate requires regeneration of a certificate request with the same information,
so that a new key pair is generated. The CSR is then submitted through the original profile.

5.4.1. Same Keys Renewal

5.4.1.1. Reusing CSR

There are three approval methods for same key renewal at the end entity portal.

Agent-approved method requires submitting the serial number of the certificate to be renewed;
This method would require a CA agent’s approval.

Directory-based renewal requires submitting the serial number of the certificate to be renewed,
and the CA draws the information from its current certificate directory entry. The certificate is
automatically approved if the ldap uid/pwd is authenticated successfully.

Certificate-based renewal uses the certificate in the browser database to authenticate and
have the same certificate re-issued.

5.4.1.1.1. Agent-Approved or Directory-Based Renewals

Sometimes, a certificate renewal request has to be manually approved, either by a CA agent or by
providing login information for the user directory.

1. Open the end-entities services page for the CA which issued the certificate (or its clone).

https://server.example.com:8443/ca/ee/ca

2. Click the name of the renewal form to use.

3. Enter the serial number of the certificate to renew. This can be in decimal or hexadecimal form.

4. Click the renew button.

5. The request is submitted. For directory-based renewals, the renewed certificate is automatically

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

77

5. The request is submitted. For directory-based renewals, the renewed certificate is automatically
returned. Otherwise, the renewal request will be approved by an agent.

5.4.1.1.2. Certificate-Based Renewal

Some user certificates are stored directly in your browser, so some renewal forms will simply check your
browser certificate database for a certificate to renew. If a certificate can be renewed, then the CA
automatically approved and reissued it.

IMPORTANT

If the certificate which is being renewed has already expired, then it probably cannot be
used for certificate-based renewal. The browser client may disallow any SSL client
authentication with an expired certificate.

In that case, the certificate must be renewed using one of the other renewal methods.

1. Open the end-entities services page for the CA which issued the certificate (or its clone).

https://server.example.com:8443/ca/ee/ca

2. Click the name of the renewal form to use.

3. There is no input field, so click the Renew button.

4. When prompted, select the certificate to renew.

Administration Guide

78

5. The request is submitted and the renewed certificate is automatically returned.

5.4.1.2. Renewal by generating CSR with same keys

Sometimes, the original CSR might not be available. The certutil tool allows one to regenerate a CSR

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

79

Sometimes, the original CSR might not be available. The certutil tool allows one to regenerate a CSR
with the same keys, provided that the key pair is in the NSS database. This can be achieved by doing the
following:

1. Find the corresponding key id in the NSS db:

Certutil -d <nssdb dir> -K

2. Generate a CSR using a specific key:

Certutil -d <nssdb dir> -R -k <key id> -s <subject DN> -o <CSR output file>

Alternatively, instead of keyid, if a key is associated with a certificate in the NSS db, nickname could be
used:

Generate a CSR using an existing nickname:

Certutil -d <nssdb dir> -R -k <nickname> -s <subject DN> -o <CSR output file>

5.4.2. Renewal by Re-keying Certificates

Since renewal by re-keying is basically generating a new CSR with the same info as the old certificate,
just follow any one of the methods described in Section 5.2, “Creating Certificate Signing Requests” . Be
mindful to enter the same information as the old certificate.

5.5. SUBMITTING CERTIFICATE REQUESTS USING CMC

This section describes the procedure to enroll a certificate using Certificate Management over CMS
(CMC).

For general information about configuration and the workflow of enrolling certificates using CMC, see:

The Configuration for CMC section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

The Enrolling with CMC section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

CMCRequest(1) man page

CMCResponse(1) man page

CMC enrollment is possible in various ways to meet the requirements for different scenarios.
Section 5.5.2, “The CMC Enrollment Process” supplements the Enrolling with CMC section in the
Red Hat Certificate System Planning, Installation, and Deployment Guide with more details. Additionally,
the Section 5.5.3, “Practical CMC Enrollment Scenarios” section enables administrators to decide which
mechanisms should be used in which scenario.

5.5.1. Using CMC Enrollment

CMC enrollment allows an enrollment client to use a CMCAuth plug-in for authentication, by which the
certificate request is pre-signed with an agent certificate. The Certificate Manager automatically issues
certificates when a valid request signed with the agent certificate is received.

NOTE

Administration Guide

80

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/configuration_for_cmc
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing-pki#enrolling_with_cmc
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing-pki#enrolling_with_cmc

NOTE

CMC enrollments are enabled by default. It should not be necessary to enable the CMC
enrollment authentication plug-ins or profiles unless the configuration has been changed.

The CMCAuth authentication plug-in also provides CMC revocation for the client. CMC revocation
allows the client to have the certificate request signed by the agent certificate, and then send such a
request to the Certificate Manager. The Certificate Manager automatically revokes certificates when a
valid request signed with the agent certificate is received. CMC revocation can be created with the
CMCRevoke command line tool. For more information about CMCRevoke, see Section 7.2, “Performing
a CMC Revocation”.

A CMC request can be submitted through browser end-entities forms or using a tool such as HttpClient
to post the request to the appropriate profile. The CMCRequest tool generates a signed certificate
request which can then be submitted using the HttpClient tool or the browser end-entities forms to
enroll and receive the certificate automatically and immediately.

The CMCRequest tool has a simple command syntax, with all the configuration given in the .cfg input
file:

CMCRequest /path/to/file.cfg

A single CMC enrollment can also be created using the CMCEnroll tool, with the following syntax:

CMCEnroll -d /agent's/certificate/directory -h password -n cert_nickname -r certrequest.file -p
certDB_passwd [-c "comment"]

These tools are described in more detail in the CMCEnroll(1) man page.

NOTE

Surround values that include spaces in quotation marks.

5.5.1.1. Testing CMCEnroll

1. Create a certificate request using the certutil tool.

2. Copy the PKCS #10 ASCII output to a text file.

3. Run the CMCEnroll utility.

For example, if the input file called request34.txt, the agent certificate is stored in the browser
databases, the certificate common name of the agent certificate is
CertificateManagerAgentsCert, and the password for the certificate database is secret, the
command is as follows:

CMCEnroll -d ~jsmith/.mozilla/firefox/1234.jsmith -n "CertificateManagerAgentsCert" -r
/export/requests/request34.txt -p secret

The output of this command is stored in a file with the same filename with .out appended to the
filename.

4. Submit the signed certificate through the end-entities page.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

81

1. Open the end-entities page.

https://server.example.com:8443/ca/ee/ca

2. Select the CMC enrollment form from the list of certificate profiles.

3. Paste the content of the output file into the Certificate Request text area of this form.

4. Remove -----BEGIN NEW CERTIFICATE REQUEST----- and ----END NEW CERTIFICATE
REQUEST----- from the pasted content.

5. Fill in the contact information, and submit the form.

5. The certificate is immediately processed and returned.

6. Use the agent page to search for the new certificate.

5.5.2. The CMC Enrollment Process

Use the following general procedure to request and issue a certificate using CMC:

1. Create a Certificate Signing Request (CSR) in one of the following formats:

PKCS #10 format

Certificate Request Message Format (CRMF) format

For details about creating CSRs in these formats, see Section 5.2, “Creating Certificate Signing
Requests”.

2. Import the admin certificate into the client NSS database. For example:

Execute the command below to extract the admin client certificate from the .p12 file:

$ openssl pkcs12 -in /root/.dogtag/instance/ca_admin_cert.p12 -clcerts -nodes -nokeys -
out /root/.dogtag/instance/ca_admin_cert.crt

Validate and import the admin client certificate according to guidance in Managing
Certificate/Key Crypto Token section in the Red Hat Certificate System Planning,
Installation, and Deployment Guide:

$ PKICertImport -d . -n "CA Admin - Client Certificate" -t ",," -a -i
/root/.dogtag/instance/ca_admin_cert.crt -u C

IMPORTANT

Make sure all intermediate certificates and the root CA certificate have been
imported before importing the CA Admin client certificate.

Import the private keys associated with the certificates.

$ pki -c password pkcs12-import --pkcs12-file /root/.dogtag/instance/ca_admin_cert.p12 -
-pkcs12-password-file /root/.dogtag/instance/ca/pkcs12_password.conf

Administration Guide

82

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing_certificate_key_crypto_token

3. Create a configuration file for a CMC request, such as /home/user_name/cmc-request.cfg,
with the following content:

NSS database directory where CA agent certificate is stored
dbdir=/home/user_name/.dogtag/nssdb/

NSS database password
password=password

Token name (default is internal)
tokenname=internal

Nickname for signing certificate
nickname=subsystem_admin

Request format: pkcs10 or crmf
format=pkcs10

Total number of PKCS10/CRMF requests
numRequests=1

Path to the PKCS10/CRMF request
The content must be in Base-64 encoded format.
Multiple files are supported. They must be separated by space.
input=/home/user_name/file.csr

Path for the CMC request
output=/home/user_name/cmc-request.bin

For further details, see the CMCRequest(1) man page.

4. Create the CMC request:

$ CMCRequest /home/user_name/cmc-request.cfg

If the command succeeds, the CMCRequest utility stored the CMC request in the file specified
in the output parameter in the request configuration file.

5. Create a configuration file for HttpClient, such as /home/user_name/cmc-submit.cfg, which
you use in a later step to submit the CMC request to the CA. Add the following content to the
created file:

PKI server host name
host=server.example.com

PKI server port number
port=8443

Use secure connection
secure=true

Use client authentication
clientmode=true

NSS database directory where the CA agent certificate is stored.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

83

dbdir=/home/user_name/.dogtag/nssdb/

NSS database password
password=password

Token name (default: internal)
tokenname=internal

Nickname of signing certificate
nickname=subsystem_admin

Path for the CMC request
input=/home/user_name/cmc-request.bin

Path for the CMC response
output=/home/user_name/cmc-response.bin

IMPORTANT

The nickname of the certificate specified in the nickname parameter must
match the one previously used for the CMC request.

6. Depending on what type of certificate you request, add the following parameter to the
configuration file created in the previous step:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=profile_name

For example, for a CA signing certificate:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCcaCert

IMPORTANT

When an agent submits the CMC request in the next step, the profile specified in
this parameter must use the CMCAuth authentication plug-in. Whereas in user-
initiated enrollments, the profile must use the CMCUserSignedAuth plug-in. For
further details, see the Section 10.3, “CMC Authentication Plug-ins” .

7. Submit the CMC request to the CA:

$ HttpClient /home/user_name/cmc-submit.cfg

8. To convert the CMC response to a PKCS #7 certificate chain, pass the CMC response file to the
-i parameter of the CMCResponse utility. For example:

$ CMCResponse -i /home/user_name/cmc-response.bin -o /home/user_name/cert_chain.crt

5.5.3. Practical CMC Enrollment Scenarios

This section describes frequent practical usage scenarios and their workflows to enable CA
administrators to decide which CMC method to use in which situation.

Administration Guide

84

For a general process of enrolling a certificate using CMC, see Section 5.5.2, “The CMC Enrollment
Process”.

5.5.3.1. Obtaining System and Server Certificates

If a service, such as LDAP or a web server, requires a TLS server certificate, the administrator of this
server creates a CSR based on the documentation of the service and sends it to the CA's agent for
approval. Use the procedure described in Section 5.5.2, “The CMC Enrollment Process” for this process.
Additionally, consider the following requirements:

Enrollment Profiles

The agent must either use one of the existing CMC profiles listed in Section 10.3, “CMC
Authentication Plug-ins”, or, alternatively, create a custom profile that uses the CMCAuth
authentication mechanism.

CMC Signing Certificate

For system certificates, the CA agent must generate and sign the CMC request. For this, set the
nickname parameter in the CMCRequest configuration file to the nickname of the CA agent.

NOTE

The CA agent must have access to its own private key.

HttpClient TLS Client Nickname

Use the same certificate for signing in the CMCRequest utility's configuration file as for TLS client
authentication in the configuration file for HttpClient.

HttpClient servlet Parameter

The servlet in the configuration file passed to the HttpClient utility refers to the CMC servlet and
the enrollment profile which handles the request.

Depending on what type of certificate you request, add one of the following entries to the
configuration file created in the previous step:

For a CA signing certificate:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCcaCert

For a KRA transport certificate:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCkraTransportCert

For a OCSP signing certificate:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCocspCert

For a audit signing certificate:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCauditSigningCert

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

85

For a subsystem certificate:

For RSA certificates:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCsubsystemCert

For ECC certificates:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCECCsubsystemCert

For a TLS server certificate:

For RSA certificates:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCserverCert

For ECC certificates:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCECCserverCert

For an admin certificate:

servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caFullCMCUserCert

Further details:

When an agent pre-signs a CSR, the Proof of Identification is considered established because
the agent examines the CSR for identification. No additional CMC-specific identification proof
is required.

PKCS #10 files already provide Proof of Possession information and no additional Proof of
Possession (POP) is required.

In agent pre-approved requests, the PopLinkWittnessV2 feature must be disabled because
the identification is checked by the agent.

5.5.3.2. Obtaining the First Signing Certificate for a User

There are two ways to approve a user's first signing certificate:

An agent signs the CMC request. See Section 5.5.3.2.1, “Signing a CMC Request with an Agent
Certificate”.

Certificate enrollment is authenticated by using a Shared Secret. See Section 5.5.3.2.2,
“Authenticating for Certificate Enrollment Using a Shared Secret”.

5.5.3.2.1. Signing a CMC Request with an Agent Certificate

The process for signing a CMC request with an agent certificate is the same as for system and server
certificates described in Section 5.5.3.1, “Obtaining System and Server Certificates” . The only difference
is that the user creates the CSR and sends it to a CA agent for approval.

Administration Guide

86

5.5.3.2.2. Authenticating for Certificate Enrollment Using a Shared Secret

When a user wants to obtain the first signing certificate and the agent cannot approve the request as
described in Section 5.5.3.2.1, “Signing a CMC Request with an Agent Certificate” , you can use a Shared
Token. With this token, the user can obtain the first signing certificate. This certificate can then be used
to sign other certificates of the user.

In this scenario, use the Shared Secret mechanism to obtain the first signing certificate of the user. Use
the following information together with Section 5.5.2, “The CMC Enrollment Process” :

1. Create a Shared Token either as the user or CA administrator. For details, see The Shared
Secret Workflow section in the Red Hat Certificate System Planning, Installation, and Deployment
Guide.

Note that:

If the user created the token, the user must send the token to the CA administrator.

If the CA administrator created the token, the administrator must share the password used
to generate the token with the user. Use a secure way to transmit the password.

2. As the CA administrator, add the Shared Token to the user entry in LDAP. For details, see
Section 10.4.2.1, “Adding a CMC Shared Secret to a User Entry for Certificate Enrollment” and
the Enabling the CMC Shared Secret Feature section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

3. Use the following parameters in the configuration file passed to the CMCRequest utility:

identification.enable

witness.sharedSecret

identityProofV2.enable

identityProofV2.hashAlg

identityProofV2.macAlg

request.useSharedSecret

request.privKeyId

4. If required by the CA, additionally use the following parameters in the configuration file passed
to the CMCRequest utility:

popLinkWitnessV2.enable

popLinkWitnessV2.keyGenAlg

popLinkWitnessV2.macAlg

5.5.3.3. Obtaining an Encryption-only Certificate for a User

This section describes the workflow for obtaining an encryption-only certificate which is signed with an
existing user signing certificate:

NOTE

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

87

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/managing-pki#the_shared_secret_workflow
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/planning_installation_and_deployment_guide/index?lb_target=stage#enabling_the_cmc_shared_secret_feature

NOTE

If a user owns multiple certificates for different usages, where one is signing, the user
must obtain the signing certificate first. Once the user owns a signing certificate, it can be
used for Proof Of Origin without requiring to set up and rely on the CMC Shared Secret
mechanism.

For details about obtaining a user's first signing certificate, see Section 5.5.3.2,
“Obtaining the First Signing Certificate for a User”.

As a user:

1. Use the cryptographic token stored in a Network Security Services (NSS) database or on a
smart card that contains the user's signing certificate and keys.

2. Generate the CSR in PKCS #10 or the CRMF format.

NOTE

Use the CRMF format, if key archival is required.

3. Generate the CMC request.

Since this is an encryption-only certificate, the private key is not able to sign. Therefore, Proof
Of Possession (POP) is not included. For this reason, the enrollment requires two steps: If the
initial request is successful, results in a CMC status with the EncryptedPOP control. The user
then uses the response and generates a CMC request that contains the DecryptedPOP control
and submits it in the second step.

a. For the first step, in addition to the default parameters, the user must set the following
parameters in the configuration file passed to the CMCRequest utility:

identification.enable

witness.sharedSecret

identityProofV2.enable

identityProofV2.hashAlg

identityProofV2.macAlg

popLinkWitnessV2.enable if required by the CA

popLinkWitnessV2.keyGenAlg if required by the CA

popLinkWitnessV2.macAlg if required by the CA

request.privKeyId

For details, see the CMCRequest(1) man page.

The response contains:

A CMC encrypted POP control

Administration Guide

88

The CMCStatusInfoV2 control with the POP required error

The request ID

b. For the second step, in addition to the default parameters, the user must set the following
parameters in the configuration file passed to the CMCRequest utility:

decryptedPop.enable

encryptedPopResponseFile

decryptedPopRequestFile

request.privKeyId

For details, see the CMCRequest(1) man page.

5.5.3.3.1. Example on Obtaining an Encryption-only certificate with Key Archival

To perform an enrollment with key archival, generate a CMC request that contains the user's encrypted
private key in the CRMF request. The following procedure assumes that the user already owns a signing
certificate. The nickname of this signing certificate is set in the configuration files in the procedure.

NOTE

The following procedure describes the two-trip issuance used with encryption-only keys,
which cannot be used for signing. If you use a key which can sign certificates, pass the -q
POP_SUCCESS option instead of -q POP_NONE to the CRMFPopClient utility for a
single-trip issuance.

For instructions about using CRMFPoPClient with POP_SUCCESS, see Section 5.2.1.3.1,
“Using CRMFPopClient to Create a CSR with Key Archival” and Section 5.2.1.3.2, “Using
CRMFPopClient to Create a CSR for SharedSecret-based CMC” .

1. Search for the KRA transport certificate. For example:

$ pki cert-find --name KRA_transport_certificate_subject_CN

2. Use the serial number of the KRA transport certificate, which you retrieved in the previous step,
to store the certificate in a file. For example, to store the certificate with the 12345 serial
number in the /home/user_name/kra.cert file:

$ pki cert-show 12345 --output /home/user_name/kra.cert

3. Use the CRMFPopClient utility to:

Create a CSR with key archival:

1. Change to the certificate database directory of the user or entity for which the
certificate is being requested, for example:

$ cd /home/user_name/

2. Use the CRMFPopClient utility to create a CRMF request, where the RSA private key is

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

89

2. Use the CRMFPopClient utility to create a CRMF request, where the RSA private key is
wrapped by the KRA transport certificate. For example, to store the request in the
/home/user_name/crmf.req file:

$ CRMFPopClient -d . -p token_password -n subject_DN -q POP_NONE \
 -b /home/user_name/kra.cert -w "AES/CBC/PKCS5Padding" \
 -v -o /home/user_name/crmf.req

Note the ID of the private key displayed by the command. The ID is required in a later
step as value in the request.privKeyId parameter in the configuration file for the
second trip.

4. Create a configuration file for the CRMRequest utility, such as /home/user_name/cmc.cfg with
the following content:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
input=/home/user_name/crmf.req

#output: full path for the CMC request in binary format
output=/home/user_name/cmc.req

#tokenname: name of token where agent signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for user certificate which will be used
#to sign the CMC full request.
nickname=signing_certificate

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert9.db which stores the agent certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

5. Create the CMC request:

$ CMCRequest /home/user_name/cmc.cfg

If the command succeeds, the CMCRequest utility stored the CMC request in the file specified
in the output parameter in the request configuration file.

6. Create a configuration file for HttpClient, such as /home/user_name/cmc-submit.cfg, which
you use in a later step to submit the CMC request to the CA. Add the following content to the
created file:

#host: host name for the http server
host=server.example.com

Administration Guide

90

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be in
#binary format
input=/home/user_name/cmc.req

#output: full path for the response in binary format
output=/home/user_name/cmc-response_round_1.bin

#tokenname: name of token where TLS client authentication cert can be found
#(default is internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert9.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=signing_certificate

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull?profileId=caFullCMCUserSignedCert

7. Submit the CMC request to the CA:

$ HttpClient /home/user_name/cmc-submit.cfg

If the command succeeds, the HTTPClient utility stored the CMC response in the file specified
in the output parameter in the configuration file.

8. Verify the response by passing the response file to the CMCResponse utility. For example:

$ CMCResponse -d /home/user_name/.dogtag/nssdb/ -i /home/user_name/cmc-
response_round_1.bin

If the first trip was successful, CMCResponse displays output similar to the following:

Certificates:
 Certificate:
 Data:

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

91

 Version: v3
 Serial Number: 0x1
 Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
 Issuer: CN=CA Signing Certificate,OU=pki-tomcat,O=unknown00262DFC6A5E Security
Domain
 Validity:
 Not Before: Wednesday, May 17, 2017 6:06:50 PM PDT America/Los_Angeles
 Not After: Sunday, May 17, 2037 6:06:50 PM PDT America/Los_Angeles
 Subject: CN=CA Signing Certificate,OU=pki-tomcat,O=unknown00262DFC6A5E Security
Domain
...
Number of controls is 3
Control #0: CMC encrypted POP
 OID: {1 3 6 1 5 5 7 7 9}
 encryptedPOP decoded
Control #1: CMCStatusInfoV2
 OID: {1 3 6 1 5 5 7 7 25}
 BodyList: 1
 OtherInfo type: FAIL
 failInfo=POP required
Control #2: CMC ResponseInfo
 requestID: 15

9. For the second trip, create a configuration file for DecryptedPOP, such as
/home/user_name/cmc_DecryptedPOP.cfg, which you use in a later step. Add the following
content to the created file:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
#this field is actually unused in 2nd trip
input=/home/user_name/crmf.req

#output: full path for the CMC request in binary format
#this field is actually unused in 2nd trip
output=/home/user_name/cmc2.req

#tokenname: name of token where agent signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for agent certificate which will be used
#to sign the CMC full request.
nickname=signing_certificate

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert9.db which stores the agent
#certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

Administration Guide

92

decryptedPop.enable=true
encryptedPopResponseFile=/home/user_name/cmc-response_round_1.bin
request.privKeyId=-25aa0a8aad395ebac7e6a19c364f0dcb5350cfef
decryptedPopRequestFile=/home/user_name/cmc.DecryptedPOP.req

10. Create the DecryptPOP CMC request:

$ CMCRequest /home/user_name/cmc.DecryptedPOP.cfg

If the command succeeds, the CMCRequest utility stored the CMC request in the file specified
in the decryptedPopRequestFile parameter in the request configuration file.

11. Create a configuration file for HttpClient, such as /home/user_name/decrypted_POP_cmc-
submit.cfg, which you use in a later step to submit the DecryptedPOP CMC request to the CA.
Add the following content to the created file:

#host: host name for the http server
host=server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be in binary format
input=/home/user_name/cmc.DecryptedPOP.req

#output: full path for the response in binary format
output=/home/user_name/cmc-response_round_2.bin

#tokenname: name of token where TLS client authentication cert can be found (default is
internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert9.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=singing_certificate

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull?profileId=caFullCMCUserCert

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

93

12. Submit the DecryptedPOP CMC request to the CA:

$ HttpClient /home/user_name/decrypted_POP_cmc-submit.cfg

If the command succeeds, the HTTPClient utility stored the CMC response in the file specified
in the output parameter in the configuration file.

13. To convert the CMC response to a PKCS #7 certificate chain, pass the CMC response file to the
-i parameter of the CMCResponse utility. For example:

$ CMCResponse -i /home/user_name/cmc-response_round_2.bin -o
/home/user_name/certs.p7

Alternatively, to display the individual certificates in PEM format, pass the -v to the utility.

If the second trip was successful, CMCResponse displays output similar to the following:

Certificates:
 Certificate:
 Data:
 Version: v3
 Serial Number: 0x2D
 Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
 Issuer: CN=CA Signing Certificate,OU=pki-tomcat,O=unknown00262DFC6A5E Security
Domain
 Validity:
 Not Before: Thursday, June 15, 2017 3:43:45 PM PDT America/Los_Angeles
 Not After: Tuesday, December 12, 2017 3:43:45 PM PST America/Los_Angeles
 Subject: CN=user_name,UID=example,OU=keyArchivalExample
...
Number of controls is 1
Control #0: CMCStatusInfo
 OID: {1 3 6 1 5 5 7 7 1}
 BodyList: 1
 Status: SUCCESS

5.6. PERFORMING BULK ISSUANCE

There can be instances when an administrator needs to submit and generate a large number of
certificates simultaneously. A combination of tools supplied with Certificate System can be used to post
a file containing certificate requests to the CA. This example procedure uses the PKCS10Client
command to generate the requests and the sslget command to send the requests to the CA.

1. Since this process is scripted, multiple variables need to be set to identify the CA (host, port)
and the items used for authentication (the agent certificate and certificate database and
password). For example, set these variables for the session by exporting them in the terminal:

NOTE

export d=/var/tmp/testDir
export p=password
export f=/var/tmp/server.csr.txt
export nick="CA agent cert"
export cahost=1.2.3.4
export caport=8443

Administration Guide

94

NOTE

The local system must have a valid security database with an agent's certificate in
it. To set up the databases:

1. Export or download the agent user certificate and keys from the browser and
save to a file, such as agent.p12.

2. If necessary, create a new directory for the security databases.

mkdir ${d}

3. If necessary, create new security databases.

certutil -N -d ${d}

4. Stop the Certificate System instance.

pki-server stop instance_name

5. Use pk12util to import the certificates.

pk12util -i /tmp/agent.p12 -d ${d} -W p12filepassword

If the procedure is successful, the command prints the following output:

pk12util: PKCS12 IMPORT SUCCESSFUL

6. Start the Certificate System instance.

pki-server start instance_name

2. Two additional variables must be set. A variable that identify the CA profile to be used to
process the requests, and a variable that is used to send a post statement to supply the
information for the profile form.

NOTE

This example submits the certificate requests to the caAgentServerCert profile
(identified in the profileId element of the post statement. Any certificate profile
can be used, including custom profiles.

3. Test the variable configuration.

export
post="cert_request_type=pkcs10&xmlOutput=true&profileId=caAgentServerCert&cert_request=
"
export url="/ca/ee/ca/profileSubmitSSLClient"

echo ${d} ${p} ${f} ${nick} ${cahost} ${caport} ${post} ${url}

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

95

4. Generate the certificate requests using (for this example) PKCS10Client:

5. Submit the bulk certificate request file created in step 4 to the CA profile interface using
sslget. For example:

5.7. ENROLLING A CERTIFICATE ON A CISCO ROUTER

Simple Certificate Enrollment Protocol (SCEP), designed by Cisco, is a way for a router to communicate
a certificate issuing authority, such as a CA, to enroll certificates for the router.

Normally, a router installer enters the CA's URL and a challenge password (also called a one-time PIN)
into the router and issues a command to initiate the enrollment. The router then communicates with the
CA over SCEP to generate, request, and retrieve the certificate. The router can also check the status of
a pending request using SCEP.

5.7.1. Enabling SCEP Enrollments

For security reasons, SCEP enrollments are disabled by default in the CA. To allow routers to be
enrolled, SCEP enrollments must be manually enabled for the CA.

1. Stop the CA server, so that you can edit the configuration files.

pki-server stop instance_name

2. Open the CA's CS.cfg file.

vim /var/lib/pki/instance_name/ca/conf/CS.cfg

3. Set the ca.scep.enable to true. If the parameter is not present, then add a line with the
parameter.

ca.scep.enable=true

4. Restart the CA server.

pki-server start instance_name

5.7.2. Configuring Security Settings for SCEP

Several different parameters allow administrators to set specific security requirements for SCEP
connections, such as not using the same certificate for enrollment authentication and regular certificate
enrollments, or setting allowed encryption algorithms to prevent downgrading the connection strength.

time for i in {1..10}; do /usr/bin/PKCS10Client -d ${d} -p ${p} -o ${f}.${i} -s
"cn=testms${i}.example.com"; cat ${f}.${i} >> ${f}; done

perl -pi -e 's/\r\n//;s/\+/%2B/g;s/\//%2F/g' ${f}

wc -l ${f}

cat ${f} | while read thisreq; do /usr/bin/sslget -n "${nick}" -p ${p} -d ${d} -e ${post}${thisreq} -
v -r ${url} ${cahost}:${caport}; done

Administration Guide

96

These parameters are listed in Table 5.1, “Configuration Parameters for SCEP Security” .

Table 5.1. Configuration Parameters for SCEP Security

Parameter Description

ca.scep.encryptionAlgorithm Sets the default or preferred encryption algorithm.

ca.scep.allowedEncryptionAlgorithms Sets a comma-separated list of allowed encryption
algorithms.

ca.scep.hashAlgorithm Sets the default or preferred hash algorithm.

ca.scep.allowedHashAlgorithms Sets a comma-separated list of allowed hash
algorithms.

ca.scep.nickname Gives the nickname of the certificate to use for
SCEP communication. The default is to use the CA's
key pair and certificate unless this parameter is set.

ca.scep.nonceSizeLimit Sets the maximum nonce size, in bytes, allowed for
SCEP requests. The default is 16 bytes.

To set security settings for connections for SCEP enrollments:

1. Stop the CA server, so that you can edit the configuration files.

pki-server stop instance_name

2. Open the CA's CS.cfg file.

vim /var/lib/pki/instance_name/ca/conf/CS.cfg

3. Set the desired security parameters, as listed in Table 5.1, “Configuration Parameters for SCEP
Security”. If the parameter is not already present, then add it to the CS.cfg file.

ca.scep.encryptionAlgorithm=DES3
ca.scep.allowedEncryptionAlgorithms=DES3
ca.scep.hashAlgorithm=SHA1
ca.scep.allowedHashAlgorithms=SHA1,SHA256,SHA512
ca.scep.nickname=Server-Cert
ca.scep.nonceSizeLimit=20

4. Restart the CA server.

pki-server start instance_name

5.7.3. Configuring a Router for SCEP Enrollment

NOTE

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

97

NOTE

Not all versions of router IOS have the relevant crypto features. Make sure that the
firmware image has the Certification Authority Interoperability feature.
Certificate System SCEP support was tested on a Cisco 2611 router running IOS C2600
Software (C2600-JK9S-M), version 12.2(40), RELEASE SOFTWARE (fc1).

Before enrolling SCEP certificates on the router, make sure that the router is appropriately configured:

The router must be configured with an IP address, DNS server, and routing information.

The router's date/time must be correct.

The router's hostname and dnsname must be configured.

See the router documentation for instructions on configuring the router hardware.

5.7.4. Generating the SCEP Certificate for a Router

The following procedure details how to generate the SCEP certificate for a router.

1. Pick a random PIN.

2. Add the PIN and the router's ID to the flatfile.txt file so that the router can authenticate directly
against the CA. For example:

vim /var/lib/pki/instance_name/ca/conf/flatfile.txt

UID:172.16.24.238
PWD:Uojs93wkfd0IS

Be sure to insert an empty line after the PWD line.

The router's IP address can be an IPv4 address or an IPv6 address.

Using flat file authentication is described in Section 10.2.4, “Configuring Flat File
Authentication”.

3. Log into the router's console. For this example, the router's name is scep:

scep>

4. Enable privileged commands.

scep> enable

5. Enter configuration mode.

scep# conf t

6. Import the CA certificate for every CA in the certificate chain, starting with the root. For
example, the following command sequence imports two CA certificates in the chain into the
router:

Administration Guide

98

scep(config)# crypto ca trusted-root1
scep(ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
scep(ca-root)# crl optional
scep(ca-root)# exit
scep(config)# cry ca authenticate 1
scep(config)# crypto ca trusted-root0
scep(ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
scep(ca-root)# crl optional
scep(ca-root)# exit
scep(config)# cry ca authenticate 0

7. Set up a CA identity, and enter the URL to access the SCEP enrollment profile. For example, for
the CA:

scep(config)# crypto ca identity CA
scep(ca-identity)# enrollment url http://server.example.com:8080/ca/cgi-bin
scep(ca-identity)# crl optional

8. Get the CA's certificate.

scep(config)# crypto ca authenticate CA
Certificate has the following attributes:
Fingerprint: 145E3825 31998BA7 F001EA9A B4001F57
% Do you accept this certificate? [yes/no]: yes

9. Generate RSA key pair.

scep(config)# crypto key generate rsa
The name for the keys will be: scep.server.example.com
Choose the size of the key modulus in the range of 360 to 2048 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]:
Generating RSA keys ...
[OK]

10. Lastly, generate the certificate on the router.

scep(config)# crypto ca enroll CA
%
% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this
password to the CA Administrator in order to revoke your certificate.
For security reasons your password will not be saved in the configuration.
Please make a note of it.

Password: secret
Re-enter password: secret

% The subject name in the certificate will be: scep.server.example.com
% Include the router serial number in the subject name? [yes/no]: yes
% The serial number in the certificate will be: 57DE391C
% Include an IP address in the subject name? [yes/no]: yes

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

99

% Interface: Ethernet0/0
% Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
% The certificate request fingerprint will be displayed.
% The 'show crypto ca certificate' command will also show the fingerprint.

% Fingerprint:D89DB555 E64CC2F7 123725B4 3DBDF263

Jan 12 13:41:17.348: %CRYPTO-6-CERTRET: Certificate received from Certificate

11. Close configuration mode.

 scep(config)# exit

12. To make sure that the router was properly enrolled, list all of the certificates stored on the
router.

scep# show crypto ca certificates
Certificate
 Status: Available
 Certificate Serial Number: 0C
 Key Usage: General Purpose
 Issuer:
 CN = Certificate Authority
 O = Sfbay Red hat Domain 20070111d12
 Subject Name Contains:
 Name: scep.server.example.com
 IP Address: 10.14.1.94
 Serial Number: 57DE391C
 Validity Date:
 start date: 21:42:40 UTC Jan 12 2007
 end date: 21:49:50 UTC Dec 31 2008
 Associated Identity: CA

CA Certificate
 Status: Available
 Certificate Serial Number: 01
 Key Usage: Signature
 Issuer:
 CN = Certificate Authority
 O = Sfbay Red hat Domain 20070111d12
 Subject:
 CN = Certificate Authority
 O = Sfbay Red hat Domain 20070111d12
 Validity Date:
 start date: 21:49:50 UTC Jan 11 2007
 end date: 21:49:50 UTC Dec 31 2008
 Associated Identity: CA

5.7.5. Working with Subordinate CAs

Before a router can authenticate to a CA, every CA certificate in the CA's certificate chain must be
imported into the router, starting with the root. For example, the following command sequence imports
two CA certificates in the chain into the router:

Administration Guide

100

scep(config)# crypto ca trusted-root1
scep(ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
scep(ca-root)# crl optional
scep(ca-root)# exit
scep(config)# cry ca authenticate 1
scep(config)# crypto ca trusted-root0
scep(ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
scep(ca-root)# crl optional
scep(ca-root)# exit
scep(config)# cry ca authenticate 0

If the CA certificates do not have the CRL distribution point extension set, turn off the CRL requirement
by setting it to optional:

scep(ca-root)# crl optional

After that, set up the CA identity as described in Section 5.7.4, “Generating the SCEP Certificate for a
Router”.

5.7.6. Re-enrolling a Router

Before a router can be re-enrolled with new certificates, the existing configuration has to be removed.

1. Remove (zeroize) the existing keys.

scep(config)# crypto key zeroize rsa
% Keys to be removed are named scep.server.example.com.
Do you really want to remove these keys? [yes/no]: yes

2. Remove the CA identity.

scep(config)# no crypto ca identity CA
% Removing an identity will destroy all certificates received from
the related Certificate Authority.

Are you sure you want to do this? [yes/no]: yes
% Be sure to ask the CA administrator to revoke your certificates.

No enrollment sessions are currently active.

5.7.7. Enabling Debugging

The router provides additional debugging during SCEP operations by enabling the debug statements.

 scep# debug crypto pki callbacks
 Crypto PKI callbacks debugging is on

 scep# debug crypto pki messages
 Crypto PKI Msg debugging is on

 scep# debug crypto pki transactions
 Crypto PKI Trans debugging is on

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

101

 scep#debug crypto verbose
 verbose debug output debugging is on

5.7.8. Issuing ECC Certificates with SCEP

By default, an ECC CA does not support SCEP out of box. However, it is possible to work around it by
using a designated RSA certificate to handle each of the following two areas:

encryption/decryption cert - designate an RSA cert having encryption/decryption capability;
(scepRSAcert in the following example)

signature cert - get an RSA cert to use on the client side for signing purpose instead of self-
signed; (signingCert cert in the following example)

For example, with scepRSAcert cert being the encrypt/decrypt cert, and signingCert being the signing
cert:

sscep enroll -c ca.crt -e scepRSAcert.crt -k local.key -r local.csr -K sign.key -O sign.crt -E 3des -S
sha256 -l cert.crt -u ' ​http://example.example.com:8080/ca/cgi-bin/pkiclient.exe'

5.8. USING CERTIFICATE TRANSPARENCY

Certificate System provides a basic version of Certificate Transparency (CT) V1 support (rfc 6962). It
has the capability of issuing certificates with embedded Signed Certificate Time stamps (SCTs) from
any trusted log where each deployment site choses to have its root CA cert included. You can also
configure the system to support multiple CT logs. A minimum of one trusted CT log is required for this
feature to work.

IMPORTANT

It is the responsibility of the deployment site to establish its trust relationship with a
trusted CT log server.

For more information on how to configure Certificate Transparency, see the Configuring Certificate
Transparency section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

5.8.1. Testing Certificate Transparency

As example on how to test a CT setup, the following procedure describes an actual test against Google
CT test logs. A more comprehensive test procedure would involve setting up a TLS server and test for
the inclusion of its certs from its specified CT logs. However, the following serves as a quick test that
checks for inclusion of the SCT extension once a certificate has been issued.

The test procedure consists in generating and submitting a Certificate Signing Request (CSR), in order
to verify its SCT extension using openssl. The test configuration in the CS.cfg file is as follows:

ca.certTransparency.mode=enabled
ca.certTransparency.log.1.enable=true
ca.certTransparency.log.1.pubKey=MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEw8i8S7qiGEs9NXv
0ZJFh6uuOm<snip>
ca.certTransparency.log.1.url=http://ct.googleapis.com:80/testtube/
ca.certTransparency.log.1.version=1

Administration Guide

102

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/configuring-certificate-transparency

ca.certTransparency.log.2.enable=true
ca.certTransparency.log.2.pubKey=MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEKATl2B3SAbxyzG
OfNRB+AytNTG<snip>
ca.certTransparency.log.2.url=http://ct.googleapis.com:80/logs/crucible/
ca.certTransparency.log.2.version=1
ca.certTransparency.log.3.enable=false
ca.certTransparency.log.3.pubKey=MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEiKfWtuoWCPMEzS
KySjMjXpo38W<snip>
ca.certTransparency.log.3.url=http://ct.googleapis.com:80/logs/solera2020/
ca.certTransparency.log.3.version=1
ca.certTransparency.log.num=3

1. First, generate a CSR, e.g:

PKCS10Client -d . -p passwd -l 2048 -n "cn=user.test.domain.com,OU=user-
TEST,O=TestDomain" -o pkcs10-TLS.req

2. Next, submit the CSR to an enrollment profile depending on the CT mode defined by the
ca.certTransparency.mode parameter in CS.cfg:

if the parameter is set to enabled, use any enrollment profile

if the parameter is set to perProfile, use one of the CT profiles: e.g. caServerCertWithSCT

3. Copy the issued b64 cert into a file, e.g. .ct1.pem.

4. Convert the pem to binary:

AtoB ct1.pem ct1.bin

5. Display the DER certificate content:

openssl x509 -noout -text -inform der -in ct1.bin

6. Observe that the SCT extension is present, e.g:

 CT Precertificate SCTs:
 Signed Certificate Timestamp:
 Version : v1 (0x0)
 Log ID : B0:CC:83:E5:A5:F9:7D:6B:AF:7C:09:CC:28:49:04:87:
 2A:C7:E8:8B:13:2C:63:50:B7:C6:FD:26:E1:6C:6C:77
 Timestamp : Jun 11 23:07:14.146 2020 GMT
 Extensions: none
 Signature : ecdsa-with-SHA256
 30:44:02:20:6E:E7:DC:D6:6B:A6:43:E3:BB:8E:1D:28:
 63:C6:6B:03:43:4E:7A:90:0F:D6:2B:E8:ED:55:1D:5F:
 86:0C:5A:CE:02:20:53:EB:75:FA:75:54:9C:9F:D3:7A:
 D4:E7:C6:6C:9B:33:2A:75:D8:AB:DE:7D:B9:FA:2B:19:
 56:22:BB:EF:19:AD
 Signed Certificate Timestamp:
 Version : v1 (0x0)
 Log ID : C3:BF:03:A7:E1:CA:88:41:C6:07:BA:E3:FF:42:70:FC:
 A5:EC:45:B1:86:EB:BE:4E:2C:F3:FC:77:86:30:F5:F6
 Timestamp : Jun 11 23:07:14.516 2020 GMT

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

103

 Extensions: none
 Signature : ecdsa-with-SHA256
 30:44:02:20:4A:C9:4D:EF:64:02:A7:69:FF:34:4E:41:
 F4:87:E1:6D:67:B9:07:14:E6:01:47:C2:0A:72:88:7A:
 A9:C3:9C:90:02:20:31:26:15:75:60:1E:E2:C0:A3:C2:
 ED:CF:22:A0:3B:A4:10:86:D1:C1:A3:7F:68:CC:1A:DD:
 6A:5E:10:B2:F1:8F

Alternatively, verify the SCT by running an asn1 dump:

openssl asn1parse -i -inform der -in ct1.bin

and observe the hex dump, e.g:

 740:d=4 hl=4 l= 258 cons: SEQUENCE
 744:d=5 hl=2 l= 10 prim: OBJECT :CT Precertificate SCTs
 756:d=5 hl=3 l= 243 prim: OCTET STRING [HEX
DUMP]:0481F000EE007500B0CC83E5A5F97D6B<snip>

Administration Guide

104

CHAPTER 6. USING AND CONFIGURING THE TOKEN
MANAGEMENT SYSTEM: TPS AND TKS
This chapter provides procedures for using hardware security modules, also called HSMs or tokens, to
generate and store Certificate System instance certificates and keys.

This chapter only contains administration procedures. For general information on the concepts behind
the Token Management System, see the Red Hat Certificate System Planning, Installation and
Deployment Guide.

6.1. TPS PROFILES

NOTE

See the TPS Profiles section of the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

Unlike CA enrollment profiles, which are defined and stored in individual files or in LDAP, TPS profiles
(also known as token types) are defined in the TPS configuration file, CS.cfg.

TPS profile (token type) configuration parameters are set in the following format:

op.<explicit op>.<profile id>.<implicit op>.<key type>.*

In the above, <explicit op> and <implicit op> are one of the explicit and implicit operations discussed in
the TPS Operations section below, and <key type> is the name given for each certificate type.

An example configuration parameter may look like the following example:

op.enroll.userKey.keyGen.encryption.*

6.2. TPS OPERATIONS

Explicit Operations

An explicit operation is an operation called by a user. Explicit operations include enroll (op.enroll.*),
format (op.format.*), and pinReset (op.pinReset.*).

Implicit Operations

An implicit operation is an operation that takes place due to the policy or status of a token at a time
when an explicit operation is being processed. Implicit operations include keyGen
(op.enroll.userKey.keyGen.*), renewal (op.enroll.userKey.renewal.*), update.applet
(op.enroll.userKey.update.applet.*), and key update (op.enroll.userKey.update.symmetricKeys.*).

Some implicit operations are controlled per key type. These include recovery, serverKeygen, and
revocation.

The following example of a TPS profile specifies user keys to be generated on the server side:

op.enroll.userKey.keyGen.encryption.serverKeygen.archive=true
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=kra1
op.enroll.userKey.keyGen.encryption.serverKeygen.enable=true

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

105

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/SubsystemOverview.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tps-profiles

Additionally, the following example tells TPS that a token whose keys are compromised should revoke
the certification with revocation reason 1 during the state transition:

According to RFC 5280, possible revocation reasons and their codes are defined as follows:

Table 6.1. Revocation Reasons and Codes

Reason Code

unspecified 0

keyCompromise 1

CACompromise 2

affiliationChanged 3

superseded 4

cessationOfOperation 5

certificateHold 6

removeFromCRL 8

privilegeWithdrawn 9

AACompromise 10

6.3. TOKEN POLICIES

This section provides a list of token policies that can be applied on a per token basis using the TPS UI.
Ech section will show how each policy is reflected in the configuration.

NOTE

See the Token Policies section of the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

The policy is a collection of policies each separated by a semicolon (";""). Each policy can be turned on or
off with the keywords YES or NO. Each policy in the list below will be introduced with its default value -
the action taken by TPS if the setting did not exist at all in the policy string.

RE_ENROLL=YES

This policy controls whether or not a token allows a reenroll operation. This allows an already enrolled

op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert=true
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert.reason=1

Administration Guide

106

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tps-token-policies

This policy controls whether or not a token allows a reenroll operation. This allows an already enrolled
token (with certificates) to be reenrolled and given new ones. If set to NO, the server will return an
error if a reenrollment is attempted.

This policy does not require special configuration. The enrollment will proceed with the standard
enrollment profile, which likely enrolled the token originally.

RENEW=NO;RENEW_KEEP_OLD_ENC_CERTS=YES

Renewal allows a token to have their profile generated certificates to be renewed in place on the
token. If RENEW is set to YES, a simple enrollment from the Enterprise Security Client (ESC) will
result in a renewal instead of a reenrollment as discussed above.

The RENEW_KEEP_OLD_ENC_CERTS setting determines if a renewal operation will retain the
previous version of the encryption certificate. Retaining the previous certificate allows users to
access data encrypted with the old certificate. Setting this option to NO will mean that anything
encrypted with the old certificate will no longer be recoverable.

Configuration:

This type of renewal configuration mirrors the basic userKey standard enrollment profile with a few
added settings that are renewal specific. This parity is needed because we went to renew exactly the
number and type of certs that were enrolled originally on to the token before renewal is to be put
into play.

FORCE_FORMAT=NO

This policy causes every enrollment operation to prompt a format operation if enabled. This is a last-
step option to allow tokens to be reset without a user having to return it to an administrator. If set to
YES, every enrollment operation initiated by the user will cause a format to happen, esentially
resetting the token to the formatted state.

No additional configuration is necessary. A simple format occurs given the same TPS profile used to
perform a standard format operation.

PIN_RESET=NO

op.enroll.userKey.renewal.encryption.ca.conn=ca1
op.enroll.userKey.renewal.encryption.ca.profileId=caTokenUserEncryptionKeyRenewal
op.enroll.userKey.renewal.encryption.certAttrId=c2
op.enroll.userKey.renewal.encryption.certId=C2
op.enroll.userKey.renewal.encryption.enable=true
op.enroll.userKey.renewal.encryption.gracePeriod.after=30
op.enroll.userKey.renewal.encryption.gracePeriod.before=30
op.enroll.userKey.renewal.encryption.gracePeriod.enable=false
op.enroll.userKey.renewal.keyType.num=2
op.enroll.userKey.renewal.keyType.value.0=signing
op.enroll.userKey.renewal.keyType.value.1=encryption
op.enroll.userKey.renewal.signing.ca.conn=ca1
op.enroll.userKey.renewal.signing.ca.profileId=caTokenUserSigningKeyRenewal
op.enroll.userKey.renewal.signing.certAttrId=c1
op.enroll.userKey.renewal.signing.certId=C1
op.enroll.userKey.renewal.signing.enable=true
op.enroll.userKey.renewal.signing.gracePeriod.after=30
op.enroll.userKey.renewal.signing.gracePeriod.before=30
op.enroll.userKey.renewal.signing.gracePeriod.enable=false

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

107

This policy determines if an already enrolled token can perform an explicit “pin reset” change using
the ESC. This value must be set to YES or the attempted operation will be rejected with an error by
the server.

Configuration:

In the above example, the settings for minLen and maxLen put constraints on the length of a
chosen password, and the maxRetries setting sets the token to only allow a given number of retries
before locking up.

TPS policies can be edited easily using the latest TPS user interface. Navigate to the token that needs a
policy change and click Edit. This will bring up a dialog that will allow you to edit the field, which is a
collection of semi colon separated policies strung together. Each supported policy must be set to
<POLICYNAME>=YES or <POLICYNAME>=NO in order to be recognized by TPS.

6.4. TOKEN OPERATION AND POLICY PROCESSING

This section discusses major operations (both explicit and implicit) that involve a token. The list below
will discuss each feature and its configuration.

NOTE

See the Token Policiessection in the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

Format

The Format operation (user-initiated) takes a token in a completely blank state as supplied by the
manufacturer, and loads a Coolkey applet on it.

Configuration example:

op.enroll.userKey.pinReset.enable=true
op.enroll.userKey.pinReset.pin.maxLen=10
op.enroll.userKey.pinReset.pin.maxRetries=127
op.enroll.userKey.pinReset.pin.minLen=4

#specify that we want authentication for format. We almost always want this at true:
op.format.userKey.auth.enable=true
#specify the ldap authentication configuration, so TPS knows where to validate credentials:
op.format.userKey.auth.id=ldap1
#specify the connection the the CA
op.format.userKey.ca.conn=ca1
#specify id of the card manager applet on given token
op.format.userKey.cardmgr_instance=A0000000030000

#specify if we need to match the visa cuid to the nist sp800sp derivation algorithm KDD value.
Mostly will be false:
op.format.userKey.cuidMustMatchKDD=false

#enable ability to restrict key changoever to a specific range of key set:
op.format.userKey.enableBoundedGPKeyVersion=true
#enable the phone home url to write to the token:
op.format.userKey.issuerinfo.enable=true

Administration Guide

108

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tps-token-policies

Enrollment

The basic enrollment operation takes a formatted token and places certs and keys onto the token in
an effort to personalize the token. The following configuration example will explain how this can be
controlled.

The example shows basic enrollment which does not deal with renewal and internal recovery.
Settings not discussed here are either covered in the Format section, or not crucial.

#actual home url to write to token:
op.format.userKey.issuerinfo.value=http://server.example.com:8080/tps/phoneHome
#specify whether to request a login from the client. Mostly true, external reg may want this to be
false:
op.format.userKey.loginRequest.enable=true
#Actual range of desired keyset numbers:
op.format.userKey.maximumGPKeyVersion=FF
op.format.userKey.minimumGPKeyVersion=01
#Whether or not to revoke certs on the token after a format, and what the reason will be if so:
op.format.userKey.revokeCert=true
op.format.userKey.revokeCert.reason=0
#This will roll back the reflected keyyset version of the token in the tokendb. After a failed key
changeover operation. This is to keep the value in sync with reality in the tokendb. Always false,
since this version of TPS avoids this situation now:
op.format.userKey.rollbackKeyVersionOnPutKeyFailure=false

#specify connection to the TKS:
op.format.userKey.tks.conn=tks1
#where to get the actual applet file to write to the token:
op.format.userKey.update.applet.directory=/usr/share/pki/tps/applets
#Allows a completely blank token to be recognized by TPS. Mostly should be true:
op.format.userKey.update.applet.emptyToken.enable=true
#Always should be true, not supported:
op.format.userKey.update.applet.encryption=true
#Actual version of the applet file we want to upgrade to. This file will have a name something like:
1.4.54de7a99.ijc:
op.format.userKey.update.applet.requiredVersion=1.4.54de790f
#Symm key changeover:
op.format.userKey.update.symmetricKeys.enable=false
op.format.userKey.update.symmetricKeys.requiredVersion=1
#Make sure the token db is in sync with reality. Should always be true:
op.format.userKey.validateCardKeyInfoAgainstTokenDB=true

op.enroll.userKey.auth.enable=true
op.enroll.userKey.auth.id=ldap1
op.enroll.userKey.cardmgr_instance=A0000000030000
op.enroll.userKey.cuidMustMatchKDD=false

op.enroll.userKey.enableBoundedGPKeyVersion=true
op.enroll.userKey.issuerinfo.enable=true
op.enroll.userKey.issuerinfo.value=http://server.example.com:8080/tps/phoneHome

#configure the encryption cert and keys we want on the token:

#connection the the CA, which issues the certs:
op.enroll.userKey.keyGen.encryption.ca.conn=ca1
#Profile id we want the CA to use to issue our encrytion cert:

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

109

op.enroll.userKey.keyGen.encryption.ca.profileId=caTokenUserEncryptionKeyEnrollment

#These two cover the indexes of the certs written to the token. Each cert needs a unique index or
“slot”. In our sample the enc cert will occupy slot 2 and the signing cert, shown later, will occupy
slot 1. Avoid overlap with these numbers:
op.enroll.userKey.keyGen.encryption.certAttrId=c2
op.enroll.userKey.keyGen.encryption.certId=C2

op.enroll.userKey.keyGen.encryption.cuid_label=$cuid$
#specify size of generated private key:
op.enroll.userKey.keyGen.encryption.keySize=1024
op.enroll.userKey.keyGen.encryption.keyUsage=0
op.enroll.userKey.keyGen.encryption.keyUser=0
#specify pattern for what the label of the cert will look like when the cert nickname is displayed in
browsers and mail clients:
op.enroll.userKey.keyGen.encryption.label=encryption key for $userid$
#specify if we want to overwrite certs on a re-enrollment operation. This is almost always the case:
op.enroll.userKey.keyGen.encryption.overwrite=true

#The next several settings specify the capabilities that the private key on the final token will inherit.
For instance this will determine if the cert can be used for encryption or digital signatures. There
are settings for both the private and public key.

op.enroll.userKey.keyGen.encryption.private.keyCapabilities.decrypt=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.derive=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.encrypt=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.private=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.sensitive=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.sign=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.signRecover=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.token=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.unwrap=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.verify=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.verifyRecover=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.wrap=false
op.enroll.userKey.keyGen.encryption.privateKeyAttrId=k4
op.enroll.userKey.keyGen.encryption.privateKeyNumber=4
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.decrypt=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.derive=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.encrypt=true
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.private=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.sensitive=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.sign=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.signRecover=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.token=true
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.unwrap=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.verify=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.verifyRecover=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.wrap=true

#The following index numbers correspond to the index or slot that the private and public keys
occupy. The common formula we use is that the public key index will be 2 * cert id + 1, and the
private key index, shown above will be 2 * cert id. In this example the cert id is 2, so the key ids will
be 4 and 5 respectively. When composing these, be careful not to create conflicts. This applies to
the signing key section below.

Administration Guide

110

op.enroll.userKey.keyGen.encryption.publicKeyAttrId=k5
op.enroll.userKey.keyGen.encryption.publicKeyNumber=5

#specify if, when a certificate is slated for revocation, based on other rules, we want to check to
see if some other token is using this cert in a shared situation. If this is set to true, and this
situation is found the cert will not be revoked until the last token wants to revoke this cert:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.holdRevocationUntilLastCredential=false

#specify, if we want server side keygen, if we want to have that generated key archived to the
drm. This is almost always the case, since we want the ability to later recover a cert and its
encryption private key back to a new token:
op.enroll.userKey.keyGen.encryption.serverKeygen.archive=true
#connection to drm to generate the key for us:
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=kra1
#specify server side keygen of the encryption private key. This most often will be desired:
op.enroll.userKey.keyGen.encryption.serverKeygen.enable=true

#This setting tells us how many certs we want to enroll for this TPS profile, in the case “userKey”.
Here we want 2 total certs. The next values then go on to index into the config what two types of
certs we want, signing and encryption:
op.enroll.userKey.keyGen.keyType.num=2
op.enroll.userKey.keyGen.keyType.value.0=signing
op.enroll.userKey.keyGen.keyType.value.1=encryption

#configure the signing cert and keys we want on the token the settings for these are similar to the
encryption settings already discussed, except the capability flags presented below, since this is a
signing key.

op.enroll.userKey.keyGen.signing.ca.conn=ca1
op.enroll.userKey.keyGen.signing.ca.profileId=caTokenUserSigningKeyEnrollment
op.enroll.userKey.keyGen.signing.certAttrId=c1
op.enroll.userKey.keyGen.signing.certId=C1
op.enroll.userKey.keyGen.signing.cuid_label=$cuid$
op.enroll.userKey.keyGen.signing.keySize=1024
op.enroll.userKey.keyGen.signing.keyUsage=0
op.enroll.userKey.keyGen.signing.keyUser=0
op.enroll.userKey.keyGen.signing.label=signing key for $userid$
op.enroll.userKey.keyGen.signing.overwrite=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.decrypt=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.derive=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.encrypt=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.private=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.sensitive=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.sign=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.signRecover=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.token=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.unwrap=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.verify=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.verifyRecover=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.wrap=false
op.enroll.userKey.keyGen.signing.privateKeyAttrId=k2
op.enroll.userKey.keyGen.signing.privateKeyNumber=2
op.enroll.userKey.keyGen.signing.public.keyCapabilities.decrypt=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.derive=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.encrypt=false

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

111

Pin Reset

The configuration for pin reset is discussed in Section 6.3, “Token Policies” , because pin reset relies
on a policy to determine if it is to be legally performed or not.

Renewal

The configuration for renewal is discussed in Section 6.3, “Token Policies” , since renewal relies on a
policy to determine if it is legal to perform or not upon an already enrolled token.

Recovery

Recovery is implicitly set into motion when the user of the TPS user interface marks a previously
active token into an unfavorable state such as “lost” or “destroyed”. Once this happens, the next
enrollment of a new token by the same user will adhere to the following configuration to recover the
certificates from the user’s old token, to this new token.

The end result of this operation is that the user will have a new physical token that may contain the
encryption certificates recovered from the old token, so that the user can continue to encrypt and
decrypt data as needed. A new signing certificate is also usually placed on this token as shown in the
sample config examples below.

The following is a list of supported states into which a token can be placed manually in the TPS user
interface, as seen in the configuration:

tokendb._069=# - DAMAGED (1): Corresponds to destroyed in the recovery configuration.
Used when a token has been physically damaged.

tokendb._070=# - PERM_LOST (2): Corresponds to keyCompromisein the recovery
configuration. Used when a token has been lost permanently.

tokendb._071=# - SUSPENDED (3): Corresponds to onHold in the recovery configuration.
Used when a token has been temporarily misplaced, but the user expects to find it again.

tokendb._072=# - TERMINATED (6): Corresponds to terminated in the recovery
configuration. Used to take a token out of service forever for internal reasons.

Example recovery configuration:

op.enroll.userKey.keyGen.signing.public.keyCapabilities.private=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.sensitive=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.sign=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.signRecover=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.token=true
op.enroll.userKey.keyGen.signing.public.keyCapabilities.unwrap=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.verify=true
op.enroll.userKey.keyGen.signing.public.keyCapabilities.verifyRecover=true
op.enroll.userKey.keyGen.signing.public.keyCapabilities.wrap=false
op.enroll.userKey.keyGen.signing.publicKeyAttrId=k3
op.enroll.userKey.keyGen.signing.publicKeyNumber=3

#When a token is marked destroyed, don’t revoke the certs on the token unless all other tokens do
not have the certs included:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.holdRevocationUntilLastCredential=false

#specify if we even want to revoke certs a token is marked destroyed:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.revokeCert=false

Administration Guide

112

Additional settings are used to specify what kind of supported static recovery should be used when
performing a recovery operation to a new token (when the original token has been marked
destroyed). The following schemes are supported:

Recover Last (RecoverLast): Recover the latest encryption certificate to be placed on the
token.

Generate New Key and Recover Last (GenerateNewKeyAndRecoverLast): Same as
Recover Last, but also generate a new encryption certificate and upload it to the token as
well. The new token will then have two certificates.

Generate New Key (GenerateNewKey): Generate a new encryption certificate and place it
on the token. Do not recover any old certificates.

For example:

The following configuration example determines how to recover tokens marked as permanently lost:

Finally, the following example determines what the system will do about the signing certificate that
was on the old token. In most cases, the GenerateNewKey recovery scheme should be used in order
to avoid potentially having multiple copies of a signing private key available (for example, one that is
recovered on a new token, and one on an old token that was permanently lost but found by
somebody else).

#if we want to revoke any certs here, specify the reason for revocation that will be sent to the CA:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.revokeCert.reason=0
#speficy if we want to revoke expired certs when marking the token destroyed:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.revokeExpiredCerts=false

op.enroll.userKey.keyGen.encryption.recovery.destroyed.scheme=RecoverLast

op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.holdRevocationUntilLastCredential=f
alse
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert=true
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert.reason=1
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeExpiredCerts=false
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.scheme=GenerateNewKey

Section when a token is marked terminated.

op.enroll.userKey.keyGen.encryption.recovery.terminated.holdRevocationUntilLastCredential=false

op.enroll.userKey.keyGen.encryption.recovery.terminated.revokeCert=true
op.enroll.userKey.keyGen.encryption.recovery.terminated.revokeCert.reason=1
op.enroll.userKey.keyGen.encryption.recovery.terminated.revokeExpiredCerts=false
op.enroll.userKey.keyGen.encryption.recovery.terminated.scheme=GenerateNewKey

This section details the recovery profile with respect to which certs and of what kind get
recovered on the token.

op.enroll.userKey.keyGen.recovery.destroyed.keyType.num=2
op.enroll.userKey.keyGen.recovery.destroyed.keyType.value.0=signing
op.enroll.userKey.keyGen.recovery.destroyed.keyType.value.1=encryption

op.enroll.userKey.keyGen.recovery.keyCompromise.keyType.value.0=signing

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

113

Applet Update

The following example shows how to configure a Coolkey applet update operation. This operation
can be performed during format, enrollment, and PIN reset operations:

Some of these options have already been demonstrated in the Format section. They provide
information needed to determine if applet upgrade should be allowed, where to find the applet files,
and the applet version to upgrade the token to. The version in the requiredVersion maps to a file
name inside the directory.

Key Update

op.enroll.userKey.keyGen.recovery.keyCompromise.keyType.value.1=encryption
op.enroll.userKey.keyGen.recovery.onHold.keyType.num=2
op.enroll.userKey.keyGen.recovery.onHold.keyType.value.0=signing
op.enroll.userKey.keyGen.recovery.onHold.keyType.value.1=encryption

op.enroll.userKey.keyGen.signing.recovery.destroyed.holdRevocationUntilLastCredential=false
op.enroll.userKey.keyGen.signing.recovery.destroyed.revokeCert=true
op.enroll.userKey.keyGen.signing.recovery.destroyed.revokeCert.reason=0
op.enroll.userKey.keyGen.signing.recovery.destroyed.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.destroyed.scheme=GenerateNewKey
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.holdRevocationUntilLastCredential=false

op.enroll.userKey.keyGen.signing.recovery.keyCompromise.revokeCert=true
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.revokeCert.reason=1
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.scheme=GenerateNewKey
op.enroll.userKey.keyGen.signing.recovery.onHold.holdRevocationUntilLastCredential=false
op.enroll.userKey.keyGen.signing.recovery.onHold.revokeCert=true

op.enroll.userKey.keyGen.signing.recovery.onHold.revokeCert.reason=6
op.enroll.userKey.keyGen.signing.recovery.onHold.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.onHold.scheme=GenerateNewKey
op.enroll.userKey.keyGen.signing.recovery.terminated.holdRevocationUntilLastCredential=false
op.enroll.userKey.keyGen.signing.recovery.terminated.revokeCert=true
op.enroll.userKey.keyGen.signing.recovery.terminated.revokeCert.reason=1
op.enroll.userKey.keyGen.signing.recovery.terminated.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.terminated.scheme=GenerateNewKey

Configuration for the case when we mark a token “onHold” or temporarily lost

op.enroll.userKeyTemporary.keyGen.encryption.recovery.onHold.revokeCert=true
op.enroll.userKeyTemporary.keyGen.encryption.recovery.onHold.revokeCert.reason=0
op.enroll.userKeyTemporary.keyGen.encryption.recovery.onHold.scheme=RecoverLast
op.enroll.userKeyTemporary.keyGen.recovery.onHold.keyType.num=2
op.enroll.userKeyTemporary.keyGen.recovery.onHold.keyType.value.0=signing
op.enroll.userKeyTemporary.keyGen.recovery.onHold.keyType.value.1=encryption
op.enroll.userKeyTemporary.keyGen.signing.recovery.onHold.revokeCert=true
op.enroll.userKeyTemporary.keyGen.signing.recovery.onHold.revokeCert.reason=0
op.enroll.userKeyTemporary.keyGen.signing.recovery.onHold.scheme=GenerateNewKey

op.format.userKey.update.applet.directory=/usr/share/pki/tps/applets
op.format.userKey.update.applet.emptyToken.enable=true
op.format.userKey.update.applet.encryption=true
op.format.userKey.update.applet.requiredVersion=1.4.54de790f

Administration Guide

114

This operation, which can take place during format, enrollment, and PIN reset operations, allows the
user to have their Global Platform key set version upgraded from the default supplied by the
manufacturer.

TPS

The following options will instruct the TPS to upgrade the keyset from 1 to 2 during the next
format operation requested on behalf of a given token. After this is done, the TKS must derive the
three new keys that will be written to the token, Afterwards, the token must be used with the
same TPS and TKS installation, otherwise it will become locked.

You can also specify a version lower than current to downgrade the keyset instead.

TKS

As mentioned above, the TKS must be configured to generate the new keys to write to the token.
First, the new master key identifier, 02, must be mapped to its PKCS #11 object nickname in the
TKS CS.cfg, as shown in the following example:

The above will map a key set number to an actual master key which exists in the TKS NSS
database.

Master keys are identified by IDs such as 01. The TKS maps these IDs to PKCS #11 object
nicknames specified in the masterKeyId part of the mapping. Therefore, the first number is
updated as the master key version is updated, and the second number stays consistent.

When attempting to upgrade from version 1 to version 2, the mapping determines how to find the
master key nickname which will be used to derive the 3 parts of the new key set.

The setting of internal in the above example references the name of the token where the master
key resides. It could also be an external HSM module with a name such as nethsm. The strong
new_master is an example of the master key nickname itself.

6.5. INTERNAL REGISTRATION

NOTE

See the TPS Profiles section of the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

In case of Internal Registration , the TPS profile (token type) is determined by the Mapping Resolver . In
contrast with External Registration , authentication information is defined within the profile itself. For
example:

op.format.userKey.update.symmetricKeys.enable=true
op.format.userKey.update.symmetricKeys.requiredVersion=2

tks.mk_mappings.#02#01=internal:new_master
tks.defKeySet.mk_mappings.#02#01=internal:new_master

op.enroll.userKey.auth.enable=true
op.enroll.userKey.auth.id=ldap1

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

115

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tps-profiles

Another difference from External Registration is that the CA and KRA connector information is defined
under each key type of each profile. For example:

TKS connector information, however, is defined per profile:

NOTE

Switching registration types between Internal and External Registration means you have
to format all previously registered tokens before you can continue using them.

6.6. EXTERNAL REGISTRATION

External Registration obtains the token type (TPS profile) from the authenticated user LDAP record. It
also allows certificate/key recovery information to be specified in the same user record.

An External Registration TPS profile is similar to the Internal Registration profile discussed previously. It
allows you to specify new certificate enrollments for both client-side and server-side key generation.
Unlike Internal Registration, it allows you to choose specific certificate (and its matching keys) to be
retrieved and loaded onto the token.

NOTE

Switching registration types between Internal and External Registration means you have
to format all previously registered tokens before you can continue using them.

6.6.1. Enabling External Registration

External Registration can only be enabled globally for an entire TPS instance. The following example
shows a set of global configuration parameters pertaining to External Registration:

6.6.2. Customizing User LDAP Record Attribute Names

Authentication parameters pertaining to External Registration are shown in the following example (with
their default values):

op.enroll.userKey.keyGen.encryption.ca.conn=ca1
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=kra1

op.enroll.userKey.tks.conn=tks1

externalReg.allowRecoverInvalidCert.enable=true
externalReg.authId=ldap1
externalReg.default.tokenType=externalRegAddToToken
externalReg.delegation.enable=true
externalReg.enable=true
externalReg.recover.byKeyID=false
externalReg.format.loginRequest.enable=true
externalReg.mappingResolver=keySetMappingResolver

auths.instance.ldap1.externalReg.certs.recoverAttributeName=certsToAdd
auths.instance.ldap1.externalReg.cuidAttributeName=tokenCUID
auths.instance.ldap1.externalReg.tokenTypeAttributeName=tokenType

Administration Guide

116

The LDAP record attribute names can be customized here. Make sure that the actual attributes in the
user's LDAP records match this configuration.

6.6.3. Configuring certsToAdd attributes

The certsToAdd attribute takes multiple values in the following form:

For example:

IMPORTANT

By default, key recovery searches for the key by certificate, which makes the <key ID>
value irrelevant. However, the TPS can optionally be configured to search for the key
using this attribute, and therefore it is typically simpler to set the value to 0. That value is
invalid, which avoids the possibility of retrieving an unmatched key.

Recovering by key ID is not recommended, because the KRA can not verify if the
certificate matches with the key in this situation.

When specifying the certsToAdd attribute with only certificate and CA information, the TPS assumes
that the certificate in question is already on the token, and that it should be preserved. This concept is
called Key Retention .

The following examples show relevant attributes in the user LDAP record:

6.6.4. Token to User Matching Enforcement

Optionally, you can set the system up so that the token used for registration must match the token
record card-unique ID (CUID) attribute in the user record. If this attribute (tokencuid) is missing from
the record, CUID matching is not enforced.

Another attribute about External Registration is that the Token Policies on each token are bypassed.

NOTE

<cert serial # in decimal>,<CA connector ID>,<key ID>,<kra connector ID>

59,ca1,0,kra1

tokenType: externalRegAddToToken
certstoadd: 59,ca1,0,kra1
certstoadd: 134,ca1,0,kra1
Certstoadd: 24,ca1

Tokencuid: a10192030405028001c0

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

117

NOTE

For the certificate and keys to be “recovered” in External Registration, connector
information for CA and KRA is specified in the user LDAP record. Any CA and/or KRA
connector information specified in the TPS profile pertaining to the certificate/keys to be
“recovered” is to be ignored.

6.6.5. Delegation Support

Delegation support is useful where a user has delegates who can act on their behalf (for example, an
executive at a company has one or more delegates) in terms of authentication (logins), data encryption
and decryption, or signing (with limitations).

An example scenario could be that each delegate has their own token which they use to act on behalf of
the executive. This token contains a combination of the following certificates and keys (determined by
TPS profiles):

Authentication certificate/keys: The CN contains the name and unique ID of the delegate. The
Subject Alternative Name (SAN) extension contains the Principal Name (UPN) of the executive.

Encryption certificate: An exact copy of the executive's encryption certificate.

Signing certificate: The CN contains the delegate's name and unique ID. The SAN contains the
RFC822Name of the executive.

Use the following parameter to enable delegation support:

IMPORTANT

To work around a bug, manually set the
op.enroll.delegateISEtoken.keyGen.encryption.ca.profileId parameter in the
/var/lib/pki/instance_name/tps/conf/CS.cfg file to
caTokenUserDelegateAuthKeyEnrollment:

op.enroll.delegateISEtoken.keyGen.encryption.ca.profileId=caTokenUserDelegateAuthK
eyEnrollment

6.6.6. SAN and DN Patterns

The auths.instance.<authID>.ldapStringAttributes in the authentication instance configuration
specifies which attributes will be retrieved during authentication. For example:

Once retrieved from the user's LDAP record, the values of these attributes can be referenced and used
to form the Subject Alternative Name (SAN) or Distinguished Name (DN) of the certificate in the
format of $auth.<attribute name>$. For example:

certstoadd: 59,ca1,0,kra1

externalReg.delegation.enable=true

auths.instance.ldap1.ldapStringAttributes=mail,cn,uid,edipi,pcc,firstname,lastname,exec-edipi,exec-
pcc,exec-mail,certsToAdd,tokenCUID,tokenType

Administration Guide

118

When patterns are used in TPS profiles for SAN and DN, it is important to ensure the CA enrollment
profile specified in the TPS profile is set up correctly. For example:

On TPS, in profile delegateIEtoken

On CA, in enrollment profile caTokenUserDelegateAuthKeyEnrollment

The subjectDNInputImpl plug-in must be specified as one of the inputs in order to allow the DN to
be specified by the TPS profile above:

Similarly, to allow the SAN to be specified by the above TPS profile, the
subjectAltNameExtInputImpl plug-in must be specified:

The subjAltExtpattern must be specified as well:

In the above example, the OID 1.3.6.1.4.1.311.20.2.3 is the OID for the User Principal Name (UPN),
and request.req_san_pattern_0 is the first SAN pattern specified in the delegateIEtoken SAN
pattern.

You can specify multiple SANs at the same time. On the TPS side, specify multiple SANs in the
SANpattern, delimited by a comma (" ,"). On the CA side, a corresponding amount of subjAltExtPattern
needs to be defined in the following format:

In the above, the <ordered number> starts with 0 and increases by one for each SAN pattern specified on
the TPS side:

The following is a complete example:

Example 6.1. SANpattern and DNpattern configuration

op.enroll.delegateIEtoken.keyGen.authentication.SANpattern=$auth.exec-edipi$.$auth.exec-
pcc$@EXAMPLE.com
op.enroll.delegateIEtoken.keyGen.authentication.dnpattern=cn=$auth.firstname$.$auth.lastname$.$aut
h.edipi$,e=$auth.mail$,o=TMS Org

op.enroll.delegateIEtoken.keyGen.authentication.ca.profileId=caTokenUserDelegateAuthKeyEnrollm
ent

input.i2.class_id=subjectDNInputImpl
input.i2.name=subjectDNInputImpl

input.i3.class_id=subjectAltNameExtInputImpl
input.i3.name=subjectAltNameExtInputImpl

policyset.set1.p6.default.params.subjAltExtPattern_0=
(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.req_san_pattern_0$

policyset.<policy set id>.<policy id>.default.params.subjAltExtPattern_<ordered number>=

policyset.set1.p6.default.params.subjAltExtPattern_0=
policyset.set1.p6.default.params.subjAltExtPattern_1=
...

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

119

The LDAP record contains the following information:

TPS External Registration profile delegateIEtoken contains:

SANpattern:

DNPattern:

CA caTokenUserDelegateAuthKeyEnrollment contains:

The resulting certificate then contains:

givenName: user1a
mail: user1a@example.org
firstname: user1a
edipi: 123456789
pcc: AA
exec-edipi: 999999999
exec-pcc: BB
exec-mail: user1b@EXAMPLE.com
tokenType: delegateISEtoken
certstoadd: 59,ca1,0,kra1

op.enroll.delegateISEtoken.keyGen.authentication.SANpattern=$auth.exec-
edipi$.$auth.exec-pcc$@EXAMPLE.com

op.enroll.delegateISEtoken.keyGen.authentication.dnpattern=cn=$auth.firstname$.$auth.las
tname$.$auth.edipi$,e=$auth.mail$,o=TMS Org

input.i2.class_id=subjectDNInputImpl
input.i2.name=subjectDNInputImpl
input.i3.class_id=subjectAltNameExtInputImpl
input.i3.name=subjectAltNameExtInputImpl

policyset.set1.p6.constraint.class_id=noConstraintImpl
policyset.set1.p6.constraint.name=No Constraint
policyset.set1.p6.default.class_id=subjectAltNameExtDefaultImpl
policyset.set1.p6.default.name=Subject Alternative Name Extension Default
policyset.set1.p6.default.params.subjAltExtGNEnable_0=true
policyset.set1.p6.default.params.subjAltExtPattern_0=
(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.req_san_pattern_0$
policyset.set1.p6.default.params.subjAltExtType_0=OtherName
policyset.set1.p6.default.params.subjAltNameExtCritical=false
policyset.set1.p6.default.params.subjAltNameNumGNs=1

Subject: CN=user1a..123456789,E=user1a@example.org,O=TMS Org
Identifier: Subject Alternative Name - 2.5.29.17
Critical: no
Value:
 OtherName: (UTF8String)1.3.6.1.4.1.311.20.2.3,999999999.BB@EXAMPLE.com

Administration Guide

120

6.7. MAPPING RESOLVER CONFIGURATION

The Token Processing System provides a single mapping resolver by default. The resolver is called
FilterMappingResolver. This section will cover its configuration.

NOTE

See the Mapping Resolver section of the Red Hat Certificate System Planning, Installation,
and Deployment Guide for general information about the Mapping Resolver.

6.7.1. Key Set Mapping Resolver

During External Registration, the key set must be resolved using the resolver before a user can
authenticate.

The key set mapping resolver name is defined as follows:

For example:

The following configuration example shows a full instance configuration:

The above example defines three mappings named 0, 1, and 2. They are ordered in ascending order
using the mappingResolver.keySetMappingResolver.mapping.order=0,1,2 line in the example. This
order means the input parameters will be run against the mapping filter 0 first; only if they do not match

externalReg.mappingResolver=<keySet mapping resolver name>

externalReg.mappingResolver=keySetMappingResolver

mappingResolver.keySetMappingResolver.class_id=filterMappingResolverImpl
mappingResolver.keySetMappingResolver.mapping.0.filter.appletMajorVersion=0
mappingResolver.keySetMappingResolver.mapping.0.filter.appletMinorVersion=0
mappingResolver.keySetMappingResolver.mapping.0.filter.keySet=
mappingResolver.keySetMappingResolver.mapping.0.filter.tokenATR=
mappingResolver.keySetMappingResolver.mapping.0.filter.tokenCUID.end=a1000000000000000000
mappingResolver.keySetMappingResolver.mapping.0.filter.tokenCUID.start=a0000000000000000000

mappingResolver.keySetMappingResolver.mapping.0.target.keySet=defKeySet
mappingResolver.keySetMappingResolver.mapping.1.filter.appletMajorVersion=1
mappingResolver.keySetMappingResolver.mapping.1.filter.appletMinorVersion=1
mappingResolver.keySetMappingResolver.mapping.1.filter.keySet=
mappingResolver.keySetMappingResolver.mapping.1.filter.tokenATR=1234
mappingResolver.keySetMappingResolver.mapping.1.filter.tokenCUID.end=
mappingResolver.keySetMappingResolver.mapping.1.filter.tokenCUID.start=
mappingResolver.keySetMappingResolver.mapping.1.target.keySet=defKeySet
mappingResolver.keySetMappingResolver.mapping.2.filter.appletMajorVersion=
mappingResolver.keySetMappingResolver.mapping.2.filter.appletMinorVersion=
mappingResolver.keySetMappingResolver.mapping.2.filter.keySet=
mappingResolver.keySetMappingResolver.mapping.2.filter.tokenATR=
mappingResolver.keySetMappingResolver.mapping.2.filter.tokenCUID.end=
mappingResolver.keySetMappingResolver.mapping.2.filter.tokenCUID.start=
mappingResolver.keySetMappingResolver.mapping.2.target.keySet=jForte
mappingResolver.keySetMappingResolver.mapping.order=0,1,2

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

121

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tps-mapping-resolver

that filter, the next one in the mapping order will be tried. For example, if a token with the following
characteristics is evaluated:

Then it would pass mapping 0 and be assigned its target, which is configured to defKeySet, because the
applet version matches and the CUID falls within the CUID start and end range for that mapping.

On the other hand, if a token has the following parameters:

In this case this token fails mapping 0 because it is outside the specified CUID range. It also fails mapping
1 because while the applet versions match, the ATR does not. The above token will be assigned to
mapping 2 and its target, jForte.

Note how mapping 2 has no assignments for any of its filters. This causes the mapping to match all
tokens, effectively making it a "default" value. Mappings like this must be specified last in the mapping
order, because any other mappings after it will never be evaluated.

6.7.2. Token Type (TPS) Mapping Resolver

There are three default tokenType mapping resolvers defined in the Token Processing System:
formatProfileMappingResolver, enrollProfileMappingResolver, and
pinResetProfileMappingResolver. Compared to the External Registration case discussed in the
previous section, in the Internal Registration case token types are actually calculated from the defined
mapping resolver.

The token type mapping resolver names are defined as follows:

For example:

The following configuration example describes the enrollProfileMappingResolver:

CUID=a0000000000000000011
appletMajorVersion=0
appletMinorVersion=0

CUID=b0000000000000000000
ATR=2222
appletMajorVersion=1
appletMinorVersion=1

op.<op>.mappingResolver=<mapping resolver name>

op.enroll.mappingResolver=enrollProfileMappingResolver

mappingResolver.enrollProfileMappingResolver.class_id=filterMappingResolverImpl
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.appletMajorVersion=1
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.appletMinorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenATR=
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenCUID.end=b10000000000000000
00
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenCUID.start=b0000000000000000
000
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenType=userKey
mappingResolver.enrollProfileMappingResolver.mapping.0.target.tokenType=userKey
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.appletMajorVersion=1

Administration Guide

122

Three mappings are defined for the enrollProfileMappingResolver in the above example. The
mappings are named 0, 1, and 2. The
mappingResolver.enrollProfileMappingResolver.mapping.order=1,0,2 line defines the order in
which the mappings will be processed. If a token matches a mapping, no further mappings in the order
will be evaluated; if it does not match a mapping, the next one in the order will be tried.

In case of a token with the following parameters:

A token with this configuration will match the filters for mapping 1 because the applet version matches,
the CUID fails within the specified start and end range, and the extension tokenType matches.
Therefore, this token will be assigned the target for that mapping - soKey.

In another case, if the token has the following parameters:

In this case, the token will fail mapping 1 because the CUID is outside the specified range. Then it will
also fail mapping 0, because the tokenType extension is missing. This token will then match mapping 2,
because it has no specified filters in order to match all tokens which did not match any of the previous
filters.

6.8. AUTHENTICATION CONFIGURATION

The Token Processing System supports directory-based authentication using a user ID and password
(UidPwdDirAuthentication) by default. Authentication instances are defined in the CS.cfg file using the
following pattern:

The <auths ID> is the authenticator name to be referenced by the TPS profiles for authentication

mappingResolver.enrollProfileMappingResolver.mapping.1.filter.appletMinorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenATR=
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenCUID.end=a00000000000000010
00
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenCUID.start=a0000000000000000
000
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenType=soKey
mappingResolver.enrollProfileMappingResolver.mapping.1.target.tokenType=soKey
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.appletMajorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.appletMinorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenATR=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenCUID.end=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenCUID.start=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenType=
mappingResolver.enrollProfileMappingResolver.mapping.2.target.tokenType=userKey
mappingResolver.enrollProfileMappingResolver.mapping.order=1,0,2

CUID=a0000000000000000011
appletMajorVersion=1
appletMinorVersion=0
extension: tokenType=soKey

CUID=b0000000000000000010
appletMajorVersion=1
appletMinorVersion=1

auths.instance.<auths ID>.*

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

123

The <auths ID> is the authenticator name to be referenced by the TPS profiles for authentication
preferences. For example:

The following configuration example shows a full definition of an authentication instance:

TPS authentication instances are configured in a way similar to the CA's UidPwdDirAuthentication
authentication instance, since both are handled by the same plug-in. However, the TPS requires several
extra parameters on top of the CA configuration.

op.enroll.userKey.auth.id=ldap1

auths.impl.UidPwdDirAuth.class=com.netscape.cms.authentication.UidPwdDirAuthentication
auths.instance.ldap1.pluginName=UidPwdDirAuth
auths.instance.ldap1.authCredName=uid
auths.instance.ldap1.dnpattern=
auths.instance.ldap1.externalReg.certs.recoverAttributeName=certsToAdd
auths.instance.ldap1.externalReg.cuidAttributeName=tokenCUID
auths.instance.ldap1.externalReg.tokenTypeAttributeName=tokenType
auths.instance.ldap1.ldap.basedn=dc=sjc,dc=example,dc=com
auths.instance.ldap1.ldap.ldapauth.authtype=BasicAuth
auths.instance.ldap1.ldap.ldapauth.bindDN=
auths.instance.ldap1.ldap.ldapauth.bindPWPrompt=ldap1
auths.instance.ldap1.ldap.ldapauth.clientCertNickname=subsystemCert cert-pki-tomcat
auths.instance.ldap1.ldap.ldapconn.host=host1.EXAMPLE.com
auths.instance.ldap1.ldap.ldapconn.port=389
auths.instance.ldap1.ldap.ldapconn.secureConn=False
auths.instance.ldap1.ldap.ldapconn.version=3
auths.instance.ldap1.ldap.maxConns=15
auths.instance.ldap1.ldap.minConns=3
auths.instance.ldap1.ldapByteAttributes=
auths.instance.ldap1.ldapStringAttributes=mail,cn,uid,edipi,pcc,firstname,lastname,exec-edipi,exec-
pcc,exec-mail,certsToAdd,tokenCUID,tokenType
auths.instance.ldap1.ldapStringAttributes._000=#################################
auths.instance.ldap1.ldapStringAttributes._001=# For isExternalReg
auths.instance.ldap1.ldapStringAttributes._002=# attributes will be available as
auths.instance.ldap1.ldapStringAttributes._003=# $<attribute>$
auths.instance.ldap1.ldapStringAttributes._004=# attributes example:
auths.instance.ldap1.ldapStringAttributes._005=#mail,cn,uid,edipi,pcc,firstname,lastname,exec-
edipi,exec-pcc,exec-mail,certsToAdd,tokenCUID,tokenType
auths.instance.ldap1.ldapStringAttributes._006=#################################
auths.instance.ldap1.pluginName=UidPwdDirAuth
auths.instance.ldap1.ui.description.en=This authenticates user against the LDAP directory.
auths.instance.ldap1.ui.id.PASSWORD.credMap.authCred=pwd
auths.instance.ldap1.ui.id.PASSWORD.credMap.msgCred.extlogin=PASSWORD
auths.instance.ldap1.ui.id.PASSWORD.credMap.msgCred.login=password
auths.instance.ldap1.ui.id.PASSWORD.description.en=LDAP Password
auths.instance.ldap1.ui.id.PASSWORD.name.en=LDAP Password
auths.instance.ldap1.ui.id.UID.credMap.authCred=uid
auths.instance.ldap1.ui.id.UID.credMap.msgCred.extlogin=UID
auths.instance.ldap1.ui.id.UID.credMap.msgCred.login=screen_name
auths.instance.ldap1.ui.id.UID.description.en=LDAP User ID
auths.instance.ldap1.ui.id.UID.name.en=LDAP User ID
auths.instance.ldap1.ui.retries=3
auths.instance.ldap1.ui.title.en=LDAP Authentication

Administration Guide

124

In case of common operations (for both Internal and External registration), profiles that call for this
authentication method allow TPS to project how the UID and password will be labeled on the client side.
This is controlled by the auths.instance.ldap1.ui.id.UID.name.en=LDAP User ID and
auths.instance.ldap1.ui.id.PASSWORD.name.en=LDAP Password parameters in the above
example; this configuration tells clients to display the UID/password pair as "LDAP User ID" and "LDAP
Password". Both parameters can be customized.

The credMap.authCred entries configure how the internal authentication plug-in accepts information
presented to it, and the credMap.msgCred entries configure how this information is passed to the TPS.
These fields allow you to use customized plug-in implementations, and should be left at their default
values unless you are using a custom authentication plug-in.

Parameters related to External Registration are discussed in Section 6.6, “External Registration” .

Similarly to CA authentication configuration, you can define multiple authentication instances for the
same authentication implementation. This may be useful when the TPS serves multiple groups of users;
you can direct each group to use its own TPS profile, each configured to use its own directory server
authentication.

6.9. CONNECTORS

Connectors define how the TPS communicates with other subsystems - namely CA, KRA, and TKS. In
general, these parameters are set up during TPS installation. The following is an example of connector
configuration:

tps.connector.ca1.enable=true
tps.connector.ca1.host=host1.EXAMPLE.com
tps.connector.ca1.maxHttpConns=15
tps.connector.ca1.minHttpConns=1
tps.connector.ca1.nickName=subsystemCert cert-pki-tomcat
tps.connector.ca1.port=8443
tps.connector.ca1.timeout=30
tps.connector.ca1.uri.enrollment=/ca/ee/ca/profileSubmitSSLClient
tps.connector.ca1.uri.getcert=/ca/ee/ca/displayBySerial
tps.connector.ca1.uri.renewal=/ca/ee/ca/profileSubmitSSLClient
tps.connector.ca1.uri.revoke=/ca/ee/subsystem/ca/doRevoke
tps.connector.ca1.uri.unrevoke=/ca/ee/subsystem/ca/doUnrevoke
tps.connector.kra1.enable=true
tps.connector.kra1.host=host1.EXAMPLE.com
tps.connector.kra1.maxHttpConns=15
tps.connector.kra1.minHttpConns=1
tps.connector.kra1.nickName=subsystemCert cert-pki-tomcat
tps.connector.kra1.port=8443
tps.connector.kra1.timeout=30
tps.connector.kra1.uri.GenerateKeyPair=/kra/agent/kra/GenerateKeyPair
tps.connector.kra1.uri.TokenKeyRecovery=/kra/agent/kra/TokenKeyRecovery
tps.connector.tks1.enable=true
tps.connector.tks1.generateHostChallenge=true
tps.connector.tks1.host=host1.EXAMPLE.com
tps.connector.tks1.keySet=defKeySet
tps.connector.tks1.maxHttpConns=15
tps.connector.tks1.minHttpConns=1
tps.connector.tks1.nickName=subsystemCert cert-pki-tomcat
tps.connector.tks1.port=8443
tps.connector.tks1.serverKeygen=true

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

125

TPS profiles refer to these connectors by their IDs. For example

Multiple connector of the same kind (for example, multiple CA connectors) can be defined. This may be
useful when one TPS instance serves multiple backend Certificate System servers for different groups
of tokens.

NOTE

Automatic failover for connectors in TPS is currently not supported. A manual failover
procedure must be performed to point the TPS to alternate CA, KRA, or TKS, as long as
they are clones of the original systems.

6.10. REVOCATION ROUTING CONFIGURATION

To configure revocation routing, you must first define a list of relevant CA connectors and add them to
the connector list in the following format:

Additionally, you must add the CA signing certificate to the TPS nssdb and set up trust:

#cd <TPS instance directory>/alias

#certutil -d . -A -n <CA signing cert nickname> -t “CT,C,C” -i <CA signing cert b64 file name>

Finally, the nickname of the CA signing certificate must be added to the connector using the following
option:

tps.connector.ca1.caNickname=caSigningCert cert-pki-tomcat CA

NOTE

During CA discovery, the TPS may automatically calculate the Authority Key Identifier of
the CA and add it to the connector configuration. For example:

This behavior is expected.

6.11. SETTING UP SERVER-SIDE KEY GENERATION

Server-side key generation means that keys are generated by a Key Recovery Authority (KRA), an

tps.connector.tks1.timeout=30
tps.connector.tks1.tksSharedSymKeyName=sharedSecret
tps.connector.tks1.uri.computeRandomData=/tks/agent/tks/computeRandomData
tps.connector.tks1.uri.computeSessionKey=/tks/agent/tks/computeSessionKey
tps.connector.tks1.uri.createKeySetData=/tks/agent/tks/createKeySetData
tps.connector.tks1.uri.encryptData=/tks/agent/tks/encryptData

op.enroll.userKey.keyGen.signing.ca.conn=ca1

tps.connCAList=ca1,ca2

tps.connector.ca1.caSKI=i9wOnN0QZLkzkndAB1MKMcjbRP8=

Administration Guide

126

optional Certificate System subsystem. Generating keys by the KRA is necessary to allow recovery of
keys on lost or damaged tokens, or key retrieval in the case of external registration. This section
describes how to configure server-side key generation in TMS.

During TPS installation you are asked to specify whether you want to use key archival. If you confirm,
setup will perform automatic basic configuration, specifically the following parameters:

TPS connector parameters for the KRA:

TPS profile-specific parameters for server-side key generation:

Set the serverKeygen.enable=true option for serverKeygen.archive to take effect.

IMPORTANT

The LunaSA HSM does not support a smaller key size than 2048 bits for RSA
encryption.

For example, to configure a key size of 2048 bits, set the following parameter in the
/var/lib/pki/instance_name/tps/conf/CS.cfg file:

op.enroll.userKey.keyGen.encryption.keySize=2048

TKS configuration:

The following configures the nickname of the transport certificate used for communication between
the TKS and KRA (via TPS):

The referenced transport certificate must also exist in the TKS instance security module. For
example:

KRA configuration

Depending on the PKCS#11 token, parameters kra.keygen.temporaryPairs,

tps.connector.kra1.enable=true
tps.connector.kra1.host=host1.EXAMPLE.com
tps.connector.kra1.maxHttpConns=15
tps.connector.kra1.minHttpConns=1
tps.connector.kra1.nickName=subsystemCert cert-pki-tomcat
tps.connector.kra1.port=8443
tps.connector.kra1.timeout=30
tps.connector.kra1.uri.GenerateKeyPair=/kra/agent/kra/GenerateKeyPair
tps.connector.kra1.uri.TokenKeyRecovery=/kra/agent/kra/TokenKeyRecovery

op.enroll.userKey.keyGen.encryption.serverKeygen.archive=true
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=kra1
op.enroll.userKey.keyGen.encryption.serverKeygen.enable=true

tks.drm_transport_cert_nickname=transportCert cert-pki-tomcat KRA

transportCert cert-pki-tomcat KRA u,u,u

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

127

Depending on the PKCS#11 token, parameters kra.keygen.temporaryPairs,
kra.keygen.sensitivePairs, and kra.keygen.extractablePairs can be customized for key generation
options. These parameters are all set to false by default.

The following values for these parameters have been tested with some of the security modules
supported by Red Hat Certificate System:

NSS (when in FIPS mode):

nCipher nShield Connect 6000 (works by default without specifying):

For specifying RSA keys:

(Do not specify any other parameters.)

For generating ECC keys:

LunaSA CKE - Key Export Model (non-FIPS mode):

NOTE

Gemalto SafeNet LunaSA only supports PKI private key extraction in its CKE - Key
Export model, and only in non-FIPS mode. The LunaSA Cloning model and the CKE
model in FIPS mode do not support PKI private key extraction.

NOTE

When LunaSA CKE – Key Export Model is in FIPS mode, pki private keys cannot be
extracted.

6.12. SETTING UP NEW KEY SETS

This section describes setting up an alternative to the default key set in the Token Processing System
(TPS) and in the Token Key Service (TKS).

TKS configuration

The default key set is configured in the TKS using the following options in the
/var/lib/pki/instance_name/tks/conf/CS.cfg file:

kra.keygen.extractablePairs=true

kra.keygen.temporaryPairs=true

kra.keygen.temporaryPairs=true
kra.keygen.sensitivePairs=false
kra.keygen.extractablePairs=true

kra.keygen.temporaryPairs=true
kra.keygen.sensitivePairs=true
kra.keygen.extractablePairs=true

Administration Guide

128

The above configuration defines settings specific to a certain type or class of tokens that can be
used in the TMS. The most important part are the 3 developer or (out of the box) session keys, which
are used to create a secure channel before symmetric key handover takes place. A different type of
key may have different default values for these keys.

The settings describing the nistSP800 key diversification method control whether this method or
the standard Visa method is used. Specifically, the value of the tks.defKeySet.nistSP800-
108KdfOnKeyVersion option determines that the NIST version will be used. The nistSP800-
108KdfUseCuidAsKdd option allows you to use the legacy key ID value of CUID during processing.
The newer KDD value is most commonly used and therefore this option is disabled (false) by default.
This allows you to configure a new key set to enable support for a new class of keys.

Example 6.2. Enabling Support for the jForte Class

To enable support for the jForte class, set:

Note the difference in the 3 static session keys compared to the previous example.

Certificate System supports the Secure Channel Protocol 03 (SCP03) for Giesecke & Devrient
(G&D) Smart Cafe 6 smart cards. To enable SCP03 support for these smart cards in a TKS, set in
the /var/lib/pki/instance_name/tks/conf/CS.cfg file:

tks.defKeySet.prot3.divers=emv
tks.defKeySet.prot3.diversVer1Keys=emv
tks.defKeySet.prot3.devKeyType=DES3
tks.defKeySet.prot3.masterKeyType=DES3

TPS configuration

The TPS must be configured to recognize the new key set when a supported client attempts to
perform an operation on a token. The default defKeySet is used most often.

tks.defKeySet._000=##
tks.defKeySet._001=## Axalto default key set:
tks.defKeySet._002=##
tks.defKeySet._003=## tks.defKeySet.mk_mappings.#02#01=<tokenname>:<nickname>
tks.defKeySet._004=##
tks.defKeySet.auth_key=#40#41#42#43#44#45#46#47#48#49#4a#4b#4c#4d#4e#4f
tks.defKeySet.kek_key=#40#41#42#43#44#45#46#47#48#49#4a#4b#4c#4d#4e#4f
tks.defKeySet.mac_key=#40#41#42#43#44#45#46#47#48#49#4a#4b#4c#4d#4e#4f
tks.defKeySet.nistSP800-108KdfOnKeyVersion=00
tks.defKeySet.nistSP800-108KdfUseCuidAsKdd=false

tks.jForte._000=##
tks.jForte._001=## SAFLink's jForte default key set:
tks.jForte._002=##
tks.jForte._003=## tks.jForte.mk_mappings.#02#01=<tokenname>:<nickname>
tks.jForte._004=##
tks.jForte.auth_key=#30#31#32#33#34#35#36#37#38#39#3a#3b#3c#3d#3e#3f
tks.jForte.kek_key=#50#51#52#53#54#55#56#57#58#59#5a#5b#5c#5d#5e#5f
tks.jForte.mac_key=#40#41#42#43#44#45#46#47#48#49#4a#4b#4c#4d#4e#4f
tks.jForte.nistSP800-108KdfOnKeyVersion=00
tks.jForte.nistSP800-108KdfUseCuidAsKdd=false

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

129

The primary method to determine the keySet in the TPS involves Section 6.7, “Mapping Resolver
Configuration”. See the linked section for a discussion of the exact settings needed to establish this
resolver mechanism.

If the KeySet Mapping Resolver is not present, several fallback methods are available for the TPS to
determine the correct keySet:

You can add the tps.connector.tks1.keySet=defKeySet to the CS.cfg configuration file of
the TPS.

Certain clients can possibly be configured to explicitly pass the desired keySet value.
However, the Enterprise Security Client does not have this ability at this point.

When the TPS calculates the proper keySet based on the desired method, all requests to the
TKS to help create secure channels pass the keySet value as well. The TKS can then use its
own keySet configuration (described above) to determine how to proceed.

6.13. SETTING UP A NEW MASTER KEY

This section will describe the procedures and configuration required to set up a new master key in the
Token Key Service (TKS). See the Red Hat Certificate System Planning, Installation, and Deployment
Guide for background information.

Procedure 6.1. Creating a New Master Key

1. Obtain internal the PIN required to access the TKS security databases:

cat /var/lib/pki/pki-tomcat/tks/conf/password.conf
internal=649713464822
internaldb=secret12
replicationdb=-752230707

2. Open the alias/ directory of the TKS instance:

cd /var/lib/pki/pki-tomcat/alias

3. Generate a new master key using the tkstool utility. For example:

tkstool -M -n new_master -d /var/lib/pki/pki-tomcat/alias -h <token_name>
Enter Password or Pin for "NSS Certificate DB":

Generating and storing the master key on the specified token . . .

Naming the master key "new_master" . . .

Computing and displaying KCV of the master key on the specified token . . .

new_master key KCV: CA5E 1764

4. Verify that the keys have been properly added to the database:

tkstool -L -d .

Administration Guide

130

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tks-keys

 slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB

Enter Password or Pin for "NSS Certificate DB":
 <0> new_master

6.13.1. Generating and Transporting Wrapped Master Keys (Key Ceremony)

If a master key is going to be used on an external token or in multiple locations, then it must be wrapped
so that it can be safely transported to the hardware tokens. The tkstool utility can be used to generate
transport keys, which are then used to send the master key to the facility where the tokens are
generated. The process of transferring wrapped master keys is commonly called a Key Ceremony.

NOTE

Transport keys can only be used with the master key they were generated with.

Procedure 6.2. Generating and Transporting Wrapped Master Keys

1. Obtain the internal PIN required to access the Token Key Service security databases:

cat /var/lib/pki/pki-tomcat/tks/conf/password.conf

internal=649713464822
internaldb=secret12
replicationdb=-752230707

2. Open the TKS instance alias/ directory:

cd /var/lib/pki/pki-tomcat/alias

3. Create a transport key named transport:

tkstool -T -d . -n transport

NOTE

The tkstool utility prints out the key shares and KCV values for each of the three
session keys generated. Save them to a file as they are necessary to regenerate
the transport key in new databases later in this procedure, and to regenerate the
key if lost.

4. When prompted, fill in the database password. Then, follow on-screen instructions to generate a
random seed.

A random seed must be generated that will be used in the
creation of your key. One of the easiest ways to create a
random seed is to use the timing of keystrokes on a keyboard.

To begin, type keys on the keyboard until this progress meter
is full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

131

Continue typing until the progress meter is full:

|**|

Finished.

Type the word "proceed" and press enter

5. The next prompt will generate a series of session keys. Follow on-screen instructions until the
final message:

Successfully generated, stored, and named the transport key!

6. Use the transport key to generate and wrap a master key and store it in a file named file:

tkstool -W -d . -n new_master -t transport -o file
Enter Password or Pin for "NSS Certificate DB":
Retrieving the transport key (for wrapping) from the specified token . . .
Generating and storing the master key on the specified token . . .
Naming the master key "new_master" . . .
Successfully generated, stored, and named the master key!
Using the transport key to wrap and store the master key . . .
Writing the wrapped data (and resident master key KCV) into the
 file called "file" . . .

 wrapped data: 47C0 06DB 7D3F D9ED
 FE91 7E6F A7E5 91B9
 master key KCV: CED9 4A7B
 (computed KCV of the master key residing inside the wrapped data)

7. Copy the wrapped master key over to the appropriate locations or facility.

8. If necessary, generate new security databases on the HSM or at the facility:

tkstool -N -d <directory>

Alternatively, add the -I option to produce a key identical to the one generated originally in a the
new database. Regenerating the transport key in this way requires that you input the session key
share and KCV for each of the session keys generated earlier in this procedure.

tkstool -I -d <directory> -n verify_transport

9. Use the transport key to unwrap the master key stored in the file. Provide the security database
PIN when prompted:

tkstool -U -d directory -n new_master -t verify_transport -i file
Enter Password or Pin for "NSS Certificate DB":
Retrieving the transport key from the specified token (for
 unwrapping) . . .
Reading in the wrapped data (and resident master key KCV) from
 the file called "file" . . .

Administration Guide

132

 wrapped data: 47C0 06DB 7D3F D9ED
 FE91 7E6F A7E5 91B9
 master key KCV: CED9 4A7B
 (pre-computed KCV of the master key residing inside the wrapped data)

Using the transport key to temporarily unwrap the master key to
recompute its KCV value to check against its pre-computed KCV value . . .
 master key KCV: CED9 4A7B
 (computed KCV of the master key residing inside the wrapped data)
 master key KCV: CED9 4A7B
 (pre-computed KCV of the master key residing inside the wrapped data)

Using the transport key to unwrap and store the master key on the
 specified token . . .
Naming the master key "new_master" . . .
Successfully unwrapped, stored, and named the master key!

10. Verify that the keys have been added to the database properly:

tkstool -L -d
slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB

Enter Password or Pin for "NSS Certificate DB":
 <0> transport
 <1> new_master

6.14. SETTING UP A TKS/TPS SHARED SYMMETRIC KEY

The shared symmetric key must be present in the NSS databases of both the TPS and TKS subsystems.
This key is automatically generated when creating the a TPS subsystem. If both the TPS and TKS are
installed within the same Tomcat instance, no additional setup is required as the TKS will automatically
use the key created by TPS; however, if both subsystems are on separate instances, or even different
physical hosts, you must follow the procedure described in this section to securely transport the key to
the TKS.

Several possible methods are available to securely transport the shared key between the TPS and TKS:

The authomatic method: This method works in cases where the subsystem certificates for the
TPS are kept in the software NSS database.

If the above method fails, a fallback manual method is available where the shared key is
generated on the TPS using the tkstool utility, which can wrap the key from the TPS, allowing
for secure transport without exposing the key in transit, and unwrap it into the TKS NSS
database.

The following describes the general configuration for both the TPS and TKS, regardless of the method
which will be used to import the key. Note that the automatic method will generate these configurations
automatically.

TKS

tks.useNewSharedSecretNames=true
tps.0.host=dhcp-16-206.sjc.example.com

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

133

NOTE

The above list can be extended when one TKS is connecting to multiple TPS instances.

TPS

NOTE

The host name must be the same as the one configured on the TKS side.

6.14.1. Manually Generating and Transporting a Shared Symmetric Key

This section describes how to generate and transport a shared symmetric key manually. This method is
useful in cases where automatic generation and transport fails, but should be avoided otherwise.

The manual method consists of two procedures. The first one is performed on the Token Key Service
side, and the second one on the Token Processing System.

Procedure 6.3. Manual Shared Secret Key Method - TKS side

1. Install the Token Key Service on the first system. See the Red Hat Certificate System Planning,
Installation, and Deployment Guide for installation instructions.

2. Stop the TKS service:

#pki-server stop pki-tomcat

3. Change into the /var/lib/pki/pki-tomcat/alias directory, and use tkstool to create the shared
secret key on the TKS. Make sure to generate the shared key before you restart the new TKS
instance.

IMPORTANT

The tkstool script will display information about the key during the key creation
process. Make sure to note down this information, because it will be required
later to import the key into the TPS.

#cd /var/lib/pki/pki-tomcat/alias
#tkstool -T -d /var/lib/pki/pki-tomcat/tks/alias -n TPS-<tps host name>-8443 sharedSecret
Generating the first session key share . . .
 first session key share: 792F AB89 8989 D902
 9429 6137 8632 7CC4
 first session key share KCV: D1B6 14FD

tps.0.nickname=TPS-<tps host name>-8443 sharedSecret
tps.0.port=8443
tps.0.userid=,TPS-<tps host name>-8443
tps.list=0

conn.tks1.tksSharedSymKeyName=TPS-<tps host name>-8443 sharedSecret

Administration Guide

134

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/index

Generating the second session key share . . .
 second session key share: 4CDF C8E0 B385 68EC
 380B 6D5E 1C19 3E5D
 second session key share KCV: 1EC7 8D4B
Generating the third session key share . . .
 third session key share: CD32 3140 25B3 C789
 B54F 2C94 26C4 9752
 third session key share KCV: 73D6 8633
Generating first symmetric key . . .
Generating second symmetric key . . .
Generating third symmetric key . . .
Extracting transport key from operational token . . .
 transport key KCV: A8D0 97A2
Storing transport key on final specified token . . .
Naming transport key "sharedSecret" . . .
Successfully generated, stored, and named the transport key!

4. Configure the new key in the TKS:

5. Start the TKS:

#pki-server start pki-tomcat

Procedure 6.4. Manual Shared Secret Key Method - TPS side

1. Install the Token Processing System on the second system. See the Red Hat Certificate System
10 Planning, Installation, and Deployment Guide for installation instructions.

2. Stop the TPS service:

#pki-server stop pki-tomcat

3. Change into the /var/lib/pki/pki-tomcat/alias directory, and use tkstool to import the shared
key into the NSS software token:

#cd /var/lib/pki/pki-tomcat/alias
#tkstool -I -d . -n TPS-<tps host name>-8443 sharedSecret

At this point, the script will prompt you for session key shares which were displayed to you when
generating and wrapping the shared keys on the TKS side in the procedure above.

4. Configure the shared secret in the TPS:

5. Start the TPS service:

tks.useNewSharedSecretNames=true
tps.0.host=dhcp-16-206.sjc.redhat.com
tps.0.nickname=TPS-<tps host name>-8443 sharedSecret
tps.0.port=8443
tps.0.userid=TPS-<tps host name>-8443 sharedSecret
tps.list=0

conn.tks1.tksSharedSymKeyName=TPS-<tps host name>-8443 sharedSecret

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS

135

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/index

#pki-server start pki-tomcat

6.15. USING DIFFERENT APPLETS FOR DIFFERENT SCP VERSIONS

In Certificate System, the following parameter in the /var/lib/instance_name/tps/conf/CS.cfg file
specifies which applet should be loaded for all Secure Channel Protocol (SCP) versions for each token
operation:

op.operation.token_type.update.applet.requiredVersion=version

However, you can also set individual applets for specific SCP versions, by adding the following
parameter:

op.operation.token_type.update.applet.requiredVersion.prot.protocol_version=version

Certificate System supports setting individual protocol versions for the following operations:

format

enroll

pinReset

Example 6.3. Setting Protocol Versions for Enrollment Operations

To configure a specific applet for SCP03 and a different applet for all other protocols when
performing enrollment operations for the userKey token:

1. Edit the /var/lib/instance_name/tps/conf/CS.cfg file:

a. Set the op.enroll.userKey.update.applet.requiredVersion parameter to specify the
applet used by default. For example:

op.enroll.userKey.update.applet.requiredVersion=1.4.58768072

b. Set the op.enroll.userKey.update.applet.requiredVersion.prot.3 parameter to
configure the applet Certificate System uses for the SCP03 protocol. For example:

op.enroll.userKey.update.applet.requiredVersion.prot.3=1.5.558cdcff

2. Restart Certificate System:

pki-server restart instance_name

For details about enabling SCP03 for Giesecke & Devrient (G&D) Smart Cafe 6 smart cards in a TKS,
see Section 6.12, “Setting Up New Key Sets”.

Administration Guide

136

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS
The Certificate System provides methods for revoking certificates and for producing lists of revoked
certificates, called certificate revocation lists (CRLs). This chapter describes the methods for revoking a
certificate, describes CMC revocation, and provides details about CRLs and setting up CRLs.

7.1. ABOUT REVOKING CERTIFICATES

Certificates can be revoked by an end user (the original owner of the certificate) or by a Certificate
Manager agent. End users can revoke certificates by using the revocation form provided in the end-
entities page. Agents can revoke end-entity certificates by using the appropriate form in the agent
services interface. Certificate-based (SSL/TLS client authentication) is required in both cases.

An end user can revoke only certificates that contain the same subject name as the certificate
presented for authentication. After successful authentication, the server lists the certificates belonging
to the end user. The end user can then select the certificate to be revoked or can revoke all certificates
in the list. The end user can also specify additional details, such as the date of revocation and revocation
reason for each certificate or for the list as a whole.

Agents can revoke certificates based on a range of serial numbers or based on subject name
components. When the revocation request is submitted, agents receive a list of certificates from which
they can pick the ones to be revoked. For instructions on how agents revoke end-entity certificates, see
the Red Hat Certificate System Planning, Installation, and Deployment Guide .

When revocation requests are approved, the Certificate Manager marks the corresponding certificate
records in its internal database as revoked, and, if configured to do so, removes the revoked certificates
from the publishing directory. These changes are reflected in the next CRL which the CA issues.

Server and client applications that use public-key certificates as ID tokens need access to information
about the validity of a certificate. Because one of the factors that determines the validity of a certificate
is its revocation status, these applications need to know whether the certificate being validated has been
revoked. The CA has a responsibility to do the following:

Revoke the certificate if a revocation request is received by the CA and approved.

Make the revoked certificate status available to parties or applications that need to verify its
validity status.

Whenever a certificate is revoked, the Certificate Manager automatically updates the status of the
certificate in its internal database, it marks the copy of the certificate in its internal database as revoked
and removes the revoked certificate from the publishing directory, if the Certificate Manager is
configured to remove the certificate from the database.

One of the standard methods for conveying the revocation status of certificates is by publishing a list of
revoked certificates, known a certificate revocation list (CRL). A CRL is a publicly available list of
certificates that have been revoked.

The Certificate Manager can be configured to generate CRLs. These CRLs can be created to conform
to X.509 standards by enabling extension-specific modules in the CRL configuration. The server
supports standard CRL extensions through its CRL issuing points framework; see Section 7.3.3, “Setting
CRL Extensions” for more information on setting up CRL extensions for issuing points. The Certificate
Manager can generate a CRL every time a certificate is revoked and at periodic intervals. If publishing is
set up, the CRLs can be published to a file, an LDAP directory, or an OCSP responder.

A CRL is issued and digitally signed by the CA that issued the certificates listed in the CRL or by an
entity that has been authorized by that CA to issue CRLs. The CA may use a single key pair to sign both

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

137

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/managing-pki.html#Revocation

the certificates and CRLs it issues or two separate key pairs, one for signing certificates and another one
for signing CRLs.

By default, the Certificate Manager uses a single key pair for signing the certificates it issues and CRLs it
generates. To create another key pair for the Certificate Manager and use it exclusively for signing
CRLs, see Section 7.3.4, “Setting a CA to Use a Different Certificate to Sign CRLs” .

CRLs are generated when issuing points are defined and configured and when CRL generation is
enabled.

When CRLs are enabled, the server collects revocation information as certificates are revoked. The
server attempts to match the revoked certificate against all issuing points that are set up. A given
certificate can match none of the issuing points, one of the issuing points, several of the issuing points,
or all of the issuing points. When a certificate that has been revoked matches an issuing point, the server
stores the information about the certificate in the cache for that issuing point.

The cache is copied to the internal directory at the intervals set for copying the cache. When the interval
for creating a CRL is reached, a CRL is created from the cache. If a delta CRL has been set up for this
issuing point, a delta CRL is also created at this time. The full CRL contains all revoked certificate
information since the Certificate Manager began collecting this information. The delta CRL contains all
revoked certificate information since the last update of the full CRL.

The full CRLs are numbered sequentially, as are delta CRLs. A full CRL and a delta CRL can have the
same number; in that case, the delta CRL has the same number as the next full CRL. For example, if the
full CRL is the first CRL, it is CRL 1. The delta CRL is Delta CRL 2. The data combined in CRL 1 and Delta
CRL 2 is equivalent to the next full CRL, which is CRL 2.

NOTE

When changes are made to the extensions for an issuing point, no delta CRL is created
with the next full CRL for that issuing point. A delta CRL is created with the second full
CRL that is created, and then all subsequent full CRLs.

The internal database stores only the latest CRL and delta CRL. As each new CRL is created, the old one
is overwritten.

When CRLs are published, each update to the CRL and delta CRL is published to the locations specified
in the publishing set up. The method of publishing determines how many CRLs are stored. For file
publishing, each CRL that is published to a file using the number for the CRL, so no file is overwritten.
For LDAP publishing, each CRL that is published replaces the old CRL in the attribute containing the
CRL in the directory entry.

By default, CRLs do not contain information about revoked expired certificates. The server can include
revoked expired certificates by enabling that option for the issuing point. If expired certificates are
included, information about revoked certificates is not removed from the CRL when the certificate
expires. If expired certificates are not included, information about revoked certificates is removed from
the CRL when the certificate expires.

7.1.1. User-Initiated Revocation

When an end user submits a certificate revocation request, the first step in the revocation process is for
the Certificate Manager to identify and authenticate the end user to verify that the user is attempting
to revoke his own certificate, not a certificate belonging to someone else.

In SSL/TSL client authentication, the server expects the end user to present a certificate that has the

Administration Guide

138

same subject name as the one to be revoked and uses that for authentication purposes. The server
verifies the authenticity of a revocation request by mapping the subject name in the certificate
presented for client authentication to certificates in its internal database. The server revokes the
certificate only if the certificate maps successfully to one or more valid or expired certificates in its
internal database.

After successful authentication, the server lists the valid or expired certificates that match the subject
name of the certificate presented for client authentication. The user can then either select the
certificates to be revoked or revoke all certificates in the list.

7.1.2. Reasons for Revoking a Certificate

A Certificate Manager can revoke any certificate it has issued. There are generally accepted reason
codes for revoking a certificate that are often included in the CRL, such as the following:

0. Unspecified; no particular reason is given.

1. The private key associated with the certificate was compromised.

2. The private key associated with the CA that issued the certificate was compromised.

3. The owner of the certificate is no longer affiliated with the issuer of the certificate and either
no longer has rights to the access gained with the certificate or no longer needs it.

4. Another certificate replaces this one.

5. The CA that issued the certificate has ceased to operate.

6. The certificate is on hold pending further action. It is treated as revoked but may be taken off
hold in the future so that the certificate is active and valid again.

8. The certificate is going to be removed from the CRL because it was removed from hold. This
only occurs in delta CRLs.

9. The certificate is revoked because the privilege of the owner of the certificate has been
withdrawn.

A certificate can be revoked by administrators, agents, and end entities. Agents and administrators with
agent privileges can revoke certificates using the forms in the agent services page. End users can
revoke certificates using the forms in the Revocation tab of the end-entity interface. End users can
revoke only their own certificates, whereas agents and administrators can revoke any certificates issued
by the server. End users are also required to authenticate to the server in order to revoke a certificate.

Whenever a certificate is revoked, the Certificate Manager updates the status of the certificate in its
internal database. The server uses the entries in the internal database to track of all revoked certificates,
and, when configured, it makes the CRLs public by publishing it to a central repository to notify other
users that the certificates in the list are no longer valid.

7.1.3. CRL Issuing Points

Because CRLs can grow very large, there are several methods to minimize the overhead of retrieving
and delivering large CRLs. One of these methods partitions the entire certificate space and associates a
separate CRL with every partition. This partition is called a CRL issuing point , the location where a subset
of all the revoked certificates is maintained. Partitioning can be based on whether the revoked
certificate is a CA certificate, whether it was revoked for a specific reason, or whether it was issued using
a specific profile. Each issuing point is identified by its name.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

139

By default, the Certificate Manager generates and publishes a single CRL, the master CRL. An issuing
point can generate CRLs for all certificates, for only CA signing certificates, or for all certificates
including expired certificates.

Once the issuing points have been defined, they can be included in certificates so that an application
that needs to check the revocation status of a certificate can access the CRL issuing points specified in
the certificate instead of the master or main CRL. Since the CRL maintained at the issuing point is
smaller than the master CRL, checking the revocation status is much faster.

CRL distribution points can be associated with certificates by setting the CRLDistributionPoint
extension.

7.1.4. Delta CRLs

Delta CRLs can be issued for any defined issuing point. A delta CRL contains information about any
certificates revoked since the last update to the full CRL. Delta CRLs for an issuing point are created by
enabling the DeltaCRLIndicator extension.

7.1.5. Publishing CRLs

The Certificate Manager can publish the CRL to a file, an LDAP-compliant directory, or to an OCSP
responder. Where and how frequently CRLs are published are configured in the Certificate Manager, as
described in Chapter 9, Publishing Certificates and CRLs .

Because CRLs can be very large, publishing CRLs can take a very long time, and it is possible for the
process to be interrupted. Special publishers can be configured to publish CRLs to a file over HTTP1.1,
and, if the process is interrupted, the CA subsystem's web server can resume publishing at the point it
was interrupted, instead of having to begin again. This is described in Section 9.8, “Setting up
Resumable CRL Downloads”.

7.1.6. Certificate Revocation Pages

The end-entities page of the Certificate Manager includes default HTML forms for revocation
authenticated by an SSL/TLS client. The forms are accessible from the Revocation tab. You can see
the form for such a revocation by clicking the User Certificate link.

To change the form appearance to suit organization's requirements, edit the UserRevocation.html, the
form that allows the SSL/TSL client authenticated revocation of client or personal certificates. The file
is in the /var/lib/instance_name/webapps/subsystem_type/ee/subsystem_type directory.

7.2. PERFORMING A CMC REVOCATION

Similar to Certificate Management over CMS (CMC) enrollment, CMC revocation enables users to set
up a revocation client, and sign the revocation request with either an agent certificate or a user
certificate with a matching subjectDN attribute. Then the user can send the signed request to the
Certificate Manager.

Alternatively, CMC revocation can also be authenticated using the Shared Secret Token mechanism. For
details, see Enabling the CMC Shared Secret Feature .

Regardless of whether a user or agent signs the request or if a Shared Secret Token is used, the
Certificate Manager automatically revokes the certificate when it receives a valid revocation request.

Certificate System provides the following utilities for CMC revocation requests:

Administration Guide

140

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_for_cmc#enabling_the_cmc_shared_secret_feature

CMCRequest. For details, see Section 7.2.1, “Revoking a Certificate Using CMCRequest”.

CMCRevoke. For details, see Section 7.2.2, “Revoking a Certificate Using CMCRevoke”.

IMPORTANT

Red Hat recommends using the CMCRequest utility to generate CMC revocation
requests, because it provides more options than CMCRevoke.

7.2.1. Revoking a Certificate Using CMCRequest

To revoke a certificate using CMCRequest:

1. Create a configuration file for the CMC revocation request, such as /home/user_name/cmc-
request.cfg, with the following content:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#output: full path for the CMC request in binary format
output=/home/user_name/cmc.revoke.userSigned.req

#tokenname: name of token where user signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for user signing certificate which will be used
#to sign the CMC full request.
nickname=signer_user_certificate

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert9.db which stores the user signing
#certificate and keys
password=myPass

#format: request format, either pkcs10 or crmf.
format=pkcs10

revocation parameters
revRequest.enable=true
revRequest.serial=45
revRequest.reason=unspecified
revRequest.comment=user test revocation
revRequest.issuer=issuer
revRequest.sharedSecret=shared_secret

2. Create the CMC request:

CMCRequest /home/user_name/cmc-request.cfg

If the command succeeds, the CMCRequest utility stores the CMC request in the file specified
in the output parameter in the request configuration file.

3. Create a configuration file, such as /home/user_name/cmc-submit.cfg, which you use in a later

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

141

3. Create a configuration file, such as /home/user_name/cmc-submit.cfg, which you use in a later
step to submit the CMC revocation request to the CA. Add the following content to the created
file:

#host: host name for the http server
host=>server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be
#in binary format
input=/home/user_name/cmc.revoke.userSigned.req

#output: full path for the response in binary format
output=/home/user_name/cmc.revoke.userSigned.resp

#tokenname: name of token where SSL client authentication certificate
#can be found (default is internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client
#authentication. This parameter will be ignored if secure=false
clientmode=true

#password: password for cert9.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=signer_user_certificate

IMPORTANT

If the CMC revocation request is signed, set the secure and clientmode
parameters to true and, additionally, fill the nickname parameter.

4. Depending on who signed the request, the servlet parameter in the configuration file for
HttpClient must be set accordingly:

If an agent signed the request, set:

servlet=/ca/ee/ca/profileSubmitCMCFull

If a user signed the request, set:

Administration Guide

142

servlet=/ca/ee/ca/profileSubmitSelfSignedCMCFull

5. Submit the CMC request:

HttpClient /home/user_name/cmc-submit.cfg

For further details about revoking a certificate using CMCRequest, see the CMCRequest(1) man page.

7.2.2. Revoking a Certificate Using CMCRevoke

The CMC revocation utility, CMCRevoke, is used to sign a revocation request with an agent's certificate.
This utility simply passes the required information — certificate serial number, issuer name, and
revocation reason — to identify the certificate to revoke, and then the require information to identify the
CA agent performing the revocation (certificate nickname and the database with the certificate).

The reason the certificate is being revoked can be any of the following (with the number being the value
passed to the CMCRevoke utility):

0 — unspecified

1 — the key was compromised

2 — the CA key was compromised

3 — the employee's affiliation changed

4 — the certificate has been superseded

5 — cessation of operation

6 — the certificate is on hold

The available tool arguments are described in detail in the Command-Line Tools Guide.

7.2.2.1. Testing CMCRevoke

1. Create a CMC revocation request for an existing certificate.

CMCRevoke -d/path/to/agent-cert-db -nnickname -iissuerName -sserialName -mreason -
ccomment

For example, if the directory containing the agent certificate is ~jsmith/.mozilla/firefox/, the
nickname of the certificate is AgentCert, and the serial number of the certificate is 22, the
command is as shown:

CMCRevoke -d"~jsmith/.mozilla/firefox/" -n"ManagerAgentCert" -i"cn=agentAuthMgr" -s22 -
m0 -c"test comment"

NOTE

Surround values that include spaces in quotation marks.

IMPORTANT

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

143

IMPORTANT

Do not have a space between the argument and its value. For example, giving a
serial number of 26 is -s26, not -s 26.

2. Open the end-entities page.

https://server.example.com:8443/ca/ee/ca

3. Select the Revocation tab.

4. Select the CMC Revoke link on the menu.

5. Paste the output from the CMCRevoke into the text area.

6. Remove -----BEGIN NEW CERTIFICATE REQUEST----- and ----END NEW CERTIFICATE
REQUEST----- from the pasted content.

7. Click Submit.

8. The returned page should confirm that correct certificate has been revoked.

7.3. ISSUING CRLS

1. The Certificate Manager uses its CA signing certificate key to sign CRLs. To use a separate
signing key pair for CRLs, set up a CRL signing key and change the Certificate Manager
configuration to use this key to sign CRLs. See Section 7.3.4, “Setting a CA to Use a Different
Certificate to Sign CRLs” for more information.

2. Set up CRL issuing points. An issuing point is already set up and enabled for a master CRL.

Figure 7.1. Default CRL Issuing Point

Additional issuing points for the CRLs can be created. See Section 7.3.1, “Configuring Issuing
Points” for details.

There are five types of CRLs the issuing points can create, depending on the options set when
configuring the issuing point to define what the CRL will list:

Master CRL contains the list of revoked certificates from the entire CA.

Administration Guide

144

ARL is an Authority Revocation List containing only revoked CA certificates.

CRL with expired certificates includes revoked certificates that have expired in the CRL.

CRL from certificate profiles determines the revoked certificates to include based on the
profiles used to create the certificates originally.

CRLs by reason code determines the revoked certificates to include based on the
revocation reason code.

3. Configure the CRLs for each issuing point. See Section 7.3.2, “Configuring CRLs for Each
Issuing Point” for details.

4. Set up the CRL extensions which are configured for the issuing point. See Section 7.3.3,
“Setting CRL Extensions” for details.

5. Set up the delta CRL for an issuing point by enabling extensions for that issuing point,
DeltaCRLIndicator or CRLNumber.

6. Set up the CRLDistributionPoint extension to include information about the issuing point.

7. Set up publishing CRLs to files, an LDAP directory, or an OCSP responder. See Chapter 9,
Publishing Certificates and CRLs for details about setting up publishing.

7.3.1. Configuring Issuing Points

Issuing points define which certificates are included in a new CRL. A master CRL issuing point is created
by default for a master CRL containing a list of all revoked certificates for the Certificate Manager.

To create a new issuing point, do the following:

1. Open the Certificate System Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand Certificate Manager from the left navigation menu. Then
select CRL Issuing Points.

3. To edit an issuing point, select the issuing point, and click Edit. The only parameters which can
be edited are the name of the issuing point and whether the issuing point is enabled or disabled.

To add an issuing point, click Add. The CRL Issuing Point Editor window opens.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

145

Figure 7.2. CRL Issuing Point Editor

NOTE

If some fields do not appear large enough to read the content, expand the
window by dragging one of the corners.

Fill in the following fields:

Enable. Enables the issuing point if selected; deselect to disable.

CRL Issuing Point name. Gives the name for the issuing point; spaces are not allowed.

Description. Describes the issuing point.

4. Click OK.

To view and configure a new issuing point, close the CA Console, then open the Console again. The new
issuing point is listed below the CRL Issuing Points entry in the navigation tree.

Configure CRLs for the new issuing point, and set up any CRL extensions that will be used with the CRL.
See Section 7.3.2, “Configuring CRLs for Each Issuing Point” for details on configuring an issuing point.
See Section 7.3.3, “Setting CRL Extensions” for details on setting up the CRL extensions. All the CRLs
created appear on the Update Revocation List page of the agent services pages.

NOTE

pkiconsole is being deprecated.

7.3.2. Configuring CRLs for Each Issuing Point

Information, such as the generation interval, the CRL version, CRL extensions, and the signing algorithm,
can all be configured for the CRLs for the issuing point. The CRLs must be configured for each issuing
point.

1. Open the CA console.

pkiconsole https://server.example.com:8443/ca

Administration Guide

146

2. In the navigation tree, select Certificate Manager, and then select CRL Issuing Points.

3. Select the issuing point name below the Issuing Points entry.

4. Configure how and how often the CRLs are updated by supplying information in the Update tab
for the issuing point. This tab has two sections, Update Schema and Update Frequency.

The Update Schema section has the following options:

Enable CRL generation. This checkbox sets whether CRLs are generated for that
issuing point.

Generate full CRL every # delta(s). This field sets how frequently CRLs are created in
relation to the number of changes.

Extend next update time in full CRLs. This provides an option to set the nextUpdate
field in the generated CRLs. The nextUpdate parameter shows the date when the next
CRL is issued, regardless of whether it is a full or delta CRL. When using a combination
of full and delta CRLs, enabling Extend next update time in full CRLs will make the
nextUpdate parameter in a full CRL show when the next full CRL will be issued.
Otherwise, the nextUpdate parameter in the full CRL will show when the next delta CRL
will be issued, since the delta will be the next CRL to be issued.

The Update Frequency section sets the different intervals when the CRLs are generated
and issued to the directory.

Every time a certificate is revoked or released from hold. This sets the Certificate
Manager to generate the CRL every time it revokes a certificate. The Certificate
Manager attempts to issue the CRL to the configured directory whenever it is
generated. Generating a CRL can be time consuming if the CRL is large. Configuring
the Certificate Manager to generate CRLs every time a certificate is revoked may
engage the server for a considerable amount of time; during this time, the server will not
be able to update the directory with any changes it receives.

This setting is not recommended for a standard installation. This option should be
selected to test revocation immediately, such as testing whether the server issues the
CRL to a flat file.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

147

Update the CRL at. This field sets a daily time when the CRL should be updated. To
specify multiple times, enter a comma-separate list of times, such as 01:50,04:55,06:55.
To enter a schedule for multiple days, enter a comma-separated list to set the times
within the same day, and then a semicolon separated list to identify times for different
days. For example, this sets revocation on Day 1 of the cycle at 1:50am, 4:55am, and
6:55am and then Day 2 at 2am, 5am, and 5pm:

01:50,04:55,06:55;02:00,05:00,17:00

Update the CRL every. This checkbox enables generating CRLs at the interval set in
the field. For example, to issue CRLs every day, select the checkbox, and enter 1440 in
this field.

Next update grace period. If the Certificate Manager updates the CRL at a specific
frequency, the server can be configured to have a grace period to the next update time
to allow time to create the CRL and issue it. For example, if the server is configured to
update the CRL every 20 minutes with a grace period of 2 minutes, and if the CRL is
updated at 16:00, the CRL is updated again at 16:18.

IMPORTANT

Due to a known issue, when currently setting full and delta Certificate Revocation
List schedules, the Update CRL every time a certificate is revoked or
released from hold option also requires you to fill out the two grace period
settings. Thus, in order to select this option you need to first select the Update
CRL every option and enter a number for the Next update grace period #
minutes box.

5. The Cache tab sets whether caching is enabled and the cache frequency.

Figure 7.3. CRL Cache Tab

Enable CRL cache. This checkbox enables the cache, which is used to create delta CRLs. If
the cache is disabled, delta CRLs will not be created. For more information about the cache,
see Section 7.1, “About Revoking Certificates”.

Administration Guide

148

Update cache every. This field sets how frequently the cache is written to the internal
database. Set to 0 to have the cache written to the database every time a certificate is
revoked.

Enable cache recovery. This checkbox allows the cache to be restored.

Enable CRL cache testing. This checkbox enables CRL performance testing for specific
CRL issuing points. CRLs generated with this option should not be used in deployed CAs, as
CRLs issued for testing purposed contain data generated solely for the purpose of
performance testing.

6. The Format tab sets the formatting and contents of the CRLs that are created. There are two
sections, CRL Format and CRL Contents.

Figure 7.4. CRL Format Tab

The CRL Format section has two options:

Revocation list signing algorithm is a drop down list of allowed ciphers to encrypt the
CRL.

Allow extensions for CRL v2 is a checkbox which enabled CRL v2 extensions for the
issuing point. If this is enabled, set the required CRL extensions described in
Section 7.3.3, “Setting CRL Extensions”.

NOTE

Extensions must be turned on to create delta CRLs.

The CRL Contents section has three checkboxes which set what types of certificates to
include in the CRL:

Include expired certificates. This includes revoked certificates that have expired. If this
is enabled, information about revoked certificates remains in the CRL after the
certificate expires. If this is not enabled, information about revoked certificates is
removed when the certificate expires.

CA certificates only. This includes only CA certificates in the CRL. Selecting this

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

149

CA certificates only. This includes only CA certificates in the CRL. Selecting this
option creates an Authority Revocation List (ARL), which lists only revoked CA
certificates.

Certificates issued according to profiles. This only includes certificates that were
issued according to the listed profiles; to specify multiple profiles, enter a comma-
separated list.

7. Click Save.

8. Extensions are allowed for this issuing point and can be configured. See Section 7.3.3, “Setting
CRL Extensions” for details.

NOTE

pkiconsole is being deprecated.

7.3.3. Setting CRL Extensions

NOTE

Extensions only need configured for an issuing point if the Allow extensions for CRLs
v2 checkbox is selected for that issuing point.

When the issuing point is created, three extensions are automatically enabled: CRLReason,
InvalidityDate, and CRLNumber. Other extensions are available but are disabled by default. These can
be enabled and modified. For more information about the available CRL extensions, see Section B.4.2,
“Standard X.509 v3 CRL Extensions Reference”.

To configure CRL extensions, do the following:

1. Open the CA console.

pkiconsole https://server.example.com:8443/ca

2. In the navigation tree, select Certificate Manager, and then select CRL Issuing Points.

3. Select the issuing point name below the Issuing Points entry, and select the CRL Extension
entry below the issuing point.

The right pane shows the CRL Extensions Management tab, which lists configured extensions.

Administration Guide

150

Figure 7.5. CRL Extensions

4. To modify a rule, select it, and click Edit/View.

5. Most extensions have two options, enabling them and setting whether they are critical. Some
require more information. Supply all required values. See Section B.4.2, “Standard X.509 v3
CRL Extensions Reference” for complete information about each extension and the parameters
for those extensions.

6. Click OK.

7. Click Refresh to see the updated status of all the rules.

NOTE

pkiconsole is being deprecated.

7.3.4. Setting a CA to Use a Different Certificate to Sign CRLs

For instruction on how to configure this feature by editing the CS.cfg file, see the Setting a CA to Use a
Different Certificate to Sign CRLs section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

7.3.5. Generating CRLs from Cache

By default, CRLs are generated from the CA's internal database. However, revocation information can
be collected as the certificates are revoked and kept in memory. This revocation information can then
be used to update CRLs from memory. Bypassing the database searches that are required to generate
the CRL from the internal database significantly improves performance.

NOTE

Because of the performance enhancement from generating CRLs from cache, enable the
enableCRLCache parameter in most environments. However, the Enable CRL cache
testing parameter should not be enabled in a production environment.

7.3.5.1. Configuring CRL Generation from Cache in the Console

NOTE

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

151

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#Using_a_Different_Certificate_to_sign_crls

NOTE

pkiconsole is being deprecated.

1. Open the console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager folder and the CRL Issuing Points
subfolder.

3. Select the MasterCRL node.

4. Select Enable CRL cache.

5. Save the changes.

Administration Guide

152

7.3.5.2. Configuring CRL Generation from Cache in CS.cfg

For instruction on how to configure this feature by editing the CS.cfg file, see the Configuring CRL
Generation from Cache in CS.cfg section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

7.4. SETTING FULL AND DELTA CRL SCHEDULES

CRLs are generated periodically. Setting that period is touched on in the configuration in Section 7.3.2,
“Configuring CRLs for Each Issuing Point”.

CRLs are issued according to a time-based schedule. CRLs can be issued every single time a certificate
is revoked, at a specific time of day, or once every so-many minutes.

Time-based CRL generation schedules apply to every CRL that is generated. There are two kinds of
CRLs, full CRLs and delta CRLs. A full CRL has a record of every single revoked certificate, whereas
delta CRLs contain only the certificates that have been revoked since the last CRL (delta or full) was
generated.

By default, full CRLs are generated at every specified interval in the schedule. It is possible space out
the time between generating full CRLs by generating interim delta CRLs. The generation interval is
configured in the CRL schema, which sets the scheme for generating delta and full CRLs.

If the interval is set to 3, for example, then the first CRL generated will be both a full and delta CRL, then
the next two generation updates are delta CRLs only, and then the fourth interval is both a full and delta
CRL again. In other words, every third generation interval has both a full CRL and a delta CRL.

Interval 1, 2, 3, 4, 5, 6, 7 ...
Full CRL 1 4 7 ...
Delta CRL 1, 2, 3, 4, 5, 6, 7 ...

NOTE

For delta CRLs to be generated in addition to full CRLs, the CRL cache must be enabled.

7.4.1. Configuring CRL Update Intervals in the Console

NOTE

pkiconsole is being deprecated.

1. Open the console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager folder and the CRL Issuing Points
subfolder.

3. Select the MasterCRL node.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

153

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#configuring_CRL_generation_from_cache_in_cs-cfg

4. Enter the required interval in the Generate full CRL every # delta(s) field.

5. Set the update frequency, either by specifying the occasion of a certificate revocation, a cyclical
interval or set times for the updates to occur:

Select the Update CRL every time a certificate is revoked or released from hold
checkbox. The Update CRL every time a certificate is revoked or released from hold
option also requires you to fill out the two Grace period settings. This is a known issue, and
the bug is being tracked in Red Hat Bugzilla.

Select the Update CRL every time a certificate is revoked or released from hold
checkbox.

Select the Update CRL at checkbox and enter specific times separated by commas, such as
01:50,04:55,06:55.

Administration Guide

154

Select Update CRL every checkbox and enter the required interval, such as 240.

6. Save the changes.

IMPORTANT

The Update CRL every time a certificate is revoked or released from hold option also
requires you to fill out the two grace period settings. This is a known issue, and the bug is
being tracked in Red Hat Bugzilla.

NOTE

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

155

NOTE

Schedule drift can occur when updating CRLs by interval. Typically, drift occurs as a result
of manual updates and CA restarts.

To prevent schedule drift, select the Update CRL at checkbox and enter a value. The
interval updates will resynchronize with the Update CRL at value every 24 hours.

Only one Update CRL at value will be accepted when updating CRLs by interval.

7.4.2. Configuring Update Intervals for CRLs in CS.cfg

For instruction on how to configure this feature by editing the CS.cfg file, see the Configuring Update
Intervals for CRLs in CS.cfg section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

7.4.3. Configuring CRL Generation Schedules over Multiple Days

By default, CRL generation schedules cover 24 hours. Also, by default, when full and delta CRLs are
enabled full CRLs occur at specific intervals in place of one or all delta CRLs, i.e., every third update.

To set CRL generation schedules across multiple days, the list of times uses commas to separate times
within the same day and a semicolon to delimit days:

ca.crl.MasterCRL.dailyUpdates=01:00,03:00,18:00;02:00,05:00,17:00

This example updates CRLs on day one of the schedule at 01:00, 03:00, and 18:00, and on day two of
the schedule at 02:00, 05:00, and 17:00. On day three the cycle starts again.

NOTE

The semicolon indicates a new day. Starting the list with a semicolon results in an initial
day where no CRLs are generated. Likewise, ending the list with a semicolon adds a final
day to the schedule where no CRLs are generated. Two semicolons together result in a
day with no CRL generation.

Administration Guide

156

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#configuring-crl-update-intervals-cmd

To set full CRL updates independent of delta updates, the list of times accepts time values prepended
with an asterisk to indicate when full CRL updates should occur:

ca.crl.MasterCRL.dailyUpdates=01:00,03:00,18:00,*23:00;02:00,05:00,21:00,*23:30

This example generates delta CRL updates on day one at 01:00, 03:00, and 18:00, with a full and delta
CRL update at 23:00. On day two, delta CRLs are updated at 02:00, 05:00, and 21:00, with a full and
delta CRL update at 23:30. On day three, the cycle starts again.

NOTE

The semicolon and asterisk syntax works in both the console and when manually editing
the CS.cfg file.

7.5. ENABLING REVOCATION CHECKING

Revocation checking means that a Certificate System subsystem verifies that a certificate is both valid
and not revoked when an agent or administrator attempts to access the instance's secure interfaces.
This leverages a local OCSP service (either a CA's internal OCSP service or a separate OCSP responder)
to check the revocation status of the certificate.

OCSP configuration is covered in Section 7.6, “Using the Online Certificate Status Protocol (OCSP)
Responder”.

See Enabling Automatic Revocation Checking on the CA in the Red Hat Certificate System Planning,
Installation, and Deployment Guide.

See Enabling Certificate Revocation Checking for Subsystems in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

7.6. USING THE ONLINE CERTIFICATE STATUS PROTOCOL (OCSP)
RESPONDER

7.6.1. Setting up the OCSP Responder

If a CA within the security domain is selected when the Online Certificate Status Manager is configured,
there is no extra step required to configure the OCSP service. The CA's CRL publishing is set up
automatically, and its signing certificate is automatically added and trusted in the Online Certificate
Status Manager's certificate database. However, if a non-security domain CA is selected, then the
OCSP service must be manually configured after the Online Certificate Status Manager is configured.

NOTE

Not every CA within the security domain to which the OCSP Manager belongs is
automatically trusted by the OCSP Manager when it is configured. Every CA in the
certificate chain of the CA configured in the CA panel is trusted automatically by the
OCSP Manager. Other CAs within the security domain but not in the certificate chain
must be trusted manually.

To set up the Online Certificate Status Manager for a Certificate Manager outside the security domain:

1. Configure the CRLs for every CA that will publish to an OCSP responder.

2. Enable publishing, set up a publisher, and set publishing rules in every CA that the OCSP service

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

157

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/index#Checking_the_Revocation_Status_of_Agent_Certificates
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/index#enabling-ocsp-checking-for-the-tks-and-kra

2. Enable publishing, set up a publisher, and set publishing rules in every CA that the OCSP service
will handle (Chapter 9, Publishing Certificates and CRLs). This is not necessary if the Certificate
Managers publish to an LDAP directory and the Online Certificated Status Manager is set up to
read from that directory.

3. The certificate profiles must be configured to include the Authority Information Access
extension, pointing to the location at which the Certificate Manager listens for OCSP service
requests (Section 7.6.4, “Enabling the Certificate Manager's Internal OCSP Service”).

4. Configure the OCSP Responder.

Configure the Revocation Info store (Section 7.6.2.2, “Configure the Revocation Info
Stores: Internal Database” and Section 7.6.2.3, “Configure the Revocation Info Stores:
LDAP Directory”).

Identify every publishing Certificate Manager to the OCSP responder (Section 7.6.2,
“Identifying the CA to the OCSP Responder”).

If necessary, configure the trust settings for the CA which signed the OCSP signing
certificate (Section 17.7, “Changing the Trust Settings of a CA Certificate”).

5. Restart both subsystems after configuring them.

6. Verify that the CA is properly connected to the OCSP responder (Section 7.6.2.1, “Verify
Certificate Manager and Online Certificate Status Manager Connection”).

7.6.2. Identifying the CA to the OCSP Responder

Before a CA is configured to publish CRLs to the Online Certificate Status Manager, the CA must be
identified to the Online Certificate Status Manager by storing the CA signing certificate in the internal
database of the Online Certificate Status Manager. The Certificate Manager signs CRLs with the key
pair associated with this certificate; the Online Certificate Status Manager verifies the signature against
the stored certificate.

NOTE

If a CA within the security domain is selected when the Online Certificate Status Manager
is configured, there is no extra step required to configure the Online Certificate Status
Manager to recognize the CA; the CA signing certificate is automatically added and
trusted in the Online Certificate Status Manager's certificate database. However, if a
non-security domain CA is selected, then the CA signing certificate must be manually
added to the certificate database after the Online Certificate Status Manager is
configured.

It is not necessary to import the certificate chain for a CA which will publish its CRL to the Online
Certificate Status Manager. The only time a certificate chain is needed for the OCSP service is if the CA
connects to the Online Certificate Status Manager through SSL/TLS authentication when it publishes
its CRL. Otherwise, the Online Certificate Status Manager does not need to have the complete
certificate chain.

However, the Online Certificate Status Manager must have the certificate which signed the CRL, either
a CA signing certificate or a separate CRL signing certificate, in its certificate database. The OCSP
service verifies the CRL by comparing the certificate which signed the CRL against the certificates in its

Administration Guide

158

database, not against a certificate chain. If both a root CA and one of its subordinate CAs publish CRLs
to the Online Certificate Status Manager, the Online Certificate Status Manager needs the CA signing
certificate of both CAs.

To import the CA or CRL signing certificate which is used to sign the certificates the CA is publishing to
the Online Certificate Status Manager, do the following:

1. Get the Certificate Manager's base-64 CA signing certificate from the end-entities page of the
CA.

2. Open the Online Certificate Status Manager agent page. The URL has the format
https://hostname:SSLport/ocsp/agent/ocsp.

3. In the left frame, click Add Certificate Authority.

4. In the form, paste the encoded CA signing certificate inside the text area labeled Base 64
encoded certificate (including the header and footer).

5. To verify that the certificate is added successfully, in the left frame, click List Certificate
Authorities.

The resulting form should show information about the new CA. The This Update, Next Update, and
Requests Served Since Startup fields should show a value of zero (0).

7.6.2.1. Verify Certificate Manager and Online Certificate Status Manager Connection

When the Certificate Manager is restarted, it tries to connect to the Online Certificate Status Manager's
SSL/TLS port. To verify that the Certificate Manager did indeed communicate with the Online
Certificate Status Manager, check the This Update and Next Update fields, which should be updated
with the appropriate timestamps of the CA's last communication with the Online Certificate Status
Manager. The Requests Served Since Startup field should still show a value of zero (0) since no client
has tried to query the OCSP service for certificate revocation status.

7.6.2.2. Configure the Revocation Info Stores: Internal Database

The Online Certificate Status Manager stores each Certificate Manager's CRL in its internal database
and uses it as the CRL store for verifying the revocation status of certificates. To change the
configuration that the Online Certificate Status Manager uses for storing the CRLs in its internal
database:

1. Open the Online Certificate Status Manager Console.

pkiconsole https://server.example.com:8443/ocsp

2. In the Configuration tab, select Online Certificate Status Manager, and then select
Revocation Info Stores.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

159

The right pane shows the two repositories the Online Certificate Status Manager can use; by
default, it uses the CRL in its internal database.

3. Select the defStore, and click Edit/View.

4. Edit the defStore values.

notFoundAsGood. Sets the OCSP service to return an OCSP response of GOOD if the
certificate in question cannot be found in any of the CRLs. If this is not selected, the
response is UNKNOWN, which, when encountered by a client, results in an error message.

byName. The OCSP Responder only supports the basic response type, which includes the
ID of the OCSP Responder making the response. The ResponderID field within the basic

Administration Guide

160

response type is determined by the value of the ocsp.store.defStore.byName parameter.
If byName parameter is true or is missing, the OCSP authority signing certificate subject
name is used as the ResponderID field of the OCSP response. If byName parameter is false,
the OCSP authority signing certificate key hash will be the ResponderID field of the OCSP
response.

includeNextUpdate. Includes the timestamp of the next CRL update time.

NOTE

pkiconsole is being deprecated.

7.6.2.3. Configure the Revocation Info Stores: LDAP Directory

Although the OCSP Manager stores the CA CRLs in its internal database by default, it can be configured
to use a CRL published to an LDAP directory instead.

IMPORTANT

If the ldapStore method is enabled, the OCSP user interface does not check the
certificate status.

To configure the Online Certificate Status Manager to use an LDAP directory:

1. Open the Online Certificate Status Manager Console.

pkiconsole https://server.example.com:8443/ocsp

2. In the Configuration tab, select Online Certificate Status Manager, and then select
Revocation Info Stores.

The right pane shows the two repositories the Online Certificate Status Manager can use; by
default, it uses the CRL in its internal database.

3. To use the CRLs in LDAP directories, click Set Default to enable the ldapStore option.

4. Select ldapStore, and click Edit/View.

5. Set the ldapStore parameters.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

161

numConns. The total number of LDAP directories the OCSP service should check. By
default, this is set to 0. Setting this value shows the corresponding number of host, port,
baseDN, and refreshInSec fields.

host. The fully-qualified DNS hostname of the LDAP directory.

port. The non-SSL/TLS port of the LDAP directory.

baseDN. The DN to start searching for the CRL. For example, O=example.com.

refreshInSec. How often the connection is refreshed. The default is 86400 seconds (daily).

caCertAttr. Leave the default value, cACertificate;binary, as it is. It is the attribute to which
the Certificate Manager publishes its CA signing certificate.

crlAttr. Leave the default value, certificateRevocationList;binary, as it is. It is the attribute
to which the Certificate Manager publishes CRLs.

notFoundAsGood. Sets the OCSP service to return an OCSP response of GOOD if the
certificate in question cannot be found in any of the CRLs. If this is not selected, the
response is UNKNOWN, which, when encountered by a client, results in an error message.

byName. The OCSP Responder only supports the basic response type, which includes the
ID of the OCSP Responder making the response. The ResponderID field within the basic
response type is determined by the value of the ocsp.store.defStore.byName parameter.

Administration Guide

162

If byName parameter is true or is missing, the OCSP authority signing certificate subject
name is used as the ResponderID field of the OCSP response. If byName parameter is false,
the OCSP authority signing certificate key hash will be the ResponderID field of the OCSP
response.

includeNextUpdate. The Online Certificate Status Manager can include the timestamp of
the next CRL update time.

NOTE

pkiconsole is being deprecated.

7.6.2.4. Testing the OCSP Service Setup

Test whether the Certificate Manager can service OCSP requests properly by doing the following:

1. Turn on revocation checking in the browser or client.

2. Request a certificate from the CA that has been enabled for OCSP services.

3. Approve the request.

4. Download the certificate to the browser or client.

5. Make sure the CA is trusted by the browser or client.

6. Check the status of Certificate Manager's internal OCSP service.

Open the CA agent services page, and select the OCSP Services link.

7. Test the independent Online Certificate Status Manager subsystem.

Open the Online Certificate Status Manager agent services page, and click the List Certificate
Authorities link.

The page should show information about the Certificate Manager configured to publish CRLs to
the Online Certificate Status Manager. The page also summarizes the Online Certificate Status
Manager's activity since it was last started.

8. Revoke the certificate.

9. Verify the certificate in the browser or client. The server should return that the certificate has
been revoked.

10. Check the Certificate Manager's OCSP-service status again to verify that these things
happened:

The browser sent an OCSP query to the Certificate Manager.

The Certificate Manager sent an OCSP response to the browser.

The browser used that response to validate the certificate and returned its status, that the
certificate could not be verified.

11. Check the independent OCSP service subsystem again to verify that these things happened:

The Certificate Manager published the CRL to the Online Certificate Status Manager.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

163

The browser sent an OCSP response to the Online Certificate Status Manager.

The Online Certificate Status Manager sent an OCSP response to the browser.

The browser used that response to validate the certificate and returned its status, that the
certificate could not be verified.

7.6.3. Setting the Response for Bad Serial Numbers

OCSP responders check the revocation status and expiration date of a certificate before determining
whether the certificate is valid; by default, the OCSP does not validate other information on the
certificate.

The notFoundAsGood parameter sets how the OCSP handles a certificate with an invalid serial
number. This parameter is enabled by default, which means that if a certificate is present with a bad
serial number but the certificate is otherwise valid, the OCSP returns a status of GOOD for the
certificate.

To have the OCSP check and reject certificates based on bad serial numbers as well as revocation
status, change the notFoundAsGood setting. In that case, the OCSP returns a status of UNKNOWN
with a certificate with a bad serial number. The client interprets that as an error and can respond
accordingly.

1. Open the Online Certificate Status Manager Console.

pkiconsole https://server.example.com:8443/ocsp

2. In the Configuration tab, select Online Certificate Status Manager, and then select
Revocation Info Stores.

3. Select the defStore, and click Edit/View.

4. Edit the notFoundAsGood value. Selecting the checkbox means that the OCSP returns a value
of GOOD even if the serial number on the certificate is bad. Unselecting the checkbox means
that the OCSP sends a value of UNKNOWN, which the client can intrepret as an error.

Administration Guide

164

5. Restart the OCSP Manager.

]# pki-server restart instance-name

NOTE

pkiconsole is being deprecated.

7.6.4. Enabling the Certificate Manager's Internal OCSP Service

The Certificate Manager has a built-in OCSP service, which can be used by OCSP-compliant clients to
query the Certificate Manager directly about the revocation status of the certificate. When the
Certificate Manager is installed, an OCSP signing certificate is issued and the OCSP service is turned on
by default. This OCSP signing certificate is used to sign all responses to OCSP service requests. Since
the internal OCSP service checks the status of certificates stored in the Certificate Manager's internal
database, publishing does not have to be configured to use this service.

Clients can query the OCSP service through the non-SSL/TLS end-entity port of the Certificate
Manager. When queried for the revocation status of a certificate, the Certificate Manager searches its
internal database for the certificate, checks its status, and responds to the client. Since the Certificate
Manager has real-time status of all certificates it has issued, this method of revocation checking is the
most accurate.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

165

Every CA's built-in OCSP service is turned on at installation. However, to use this service, the CA needs
to issue certificates with the Authority Information Access extension.

1. Go to the CA's end-entities page. For example:

https://server.example.com:8443/ca/ee/ca

2. Find the CA signing certificate.

3. Look for the Authority Info Access extension in the certificate, and note the Location URIName
value, such as https://server.example.com:8443/ca/ocsp.

4. Update the enrollment profiles to enable the Authority Information Access extension, and set
the Location parameter to the Certificate Manager's URI. For information on editing the
certificate profiles, see Section 3.2, “Setting up Certificate Profiles” .

5. Restart the CA instance.

]# pki-server restart instance-name

NOTE

To disable the Certificate Manager's internal OCSP service, edit the CA's CS.cfg file and
change the value of the ca.ocsp parameter to false.

ca.ocsp=false

7.6.5. Submitting OCSP Requests Using the OCSPClient program

The OCSPClient program can be used for performing OCSP requests. For example:

]# OCSPClient -h server.example.com -p 8080 -d /etc/pki/pki-tomcat/alias -c "caSigningCert cert-pki-
ca" --serial 2
CertID.serialNumber=2
CertStatus=Good

The OCSPClient command can be used with the following command-line options:

Table 7.1. Available OCSPClient Options

Option Description

-d database Security database location (default: current directory)

-h hostname OCSP server hostname (default: example.com)

-p port OCSP server port number (default: 8080)

-t path OCSP service path (default: /ocsp/ee/ocsp)

-c nickname CA certificate nickname (defaut: CA Signing Certificate)

Administration Guide

166

-n times Number of submissions (default: 1)

--serial serial_number Serial number of certificate to be checked

--input input_file Input file containing DER-encoded OCSP request

--output output_file Output file to store DER-encoded OCSP response

-v, --verbose Run in verbose mode

--help Show help message

Option Description

7.6.6. Submitting OCSP Requests Using the GET Method

OCSP requests which are smaller than 255 bytes can be submitted to the Online Certificate Status
Manager using a GET method, as described in RFC 6960. To submit OCSP requests over GET:

1. Generate an OCSP request for the certificate the status of which is being queried. For example:

]# openssl ocsp -CAfile ca.pem -issuer issuer.pem -serial serial_number -reqout - | base64

MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy
35o7xW5BMzM8FTvyTwCAQE=

2. Paste the URL in the address bar of a web browser to return the status information. The
browser must be able to handle OCSP requests.

https://server.example.com:8443/ocsp/ee/ocsp/MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4
cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy35o7xW5BMzM8FTvyTwCAQE=

3. The OCSP Manager responds with the certificate status which the browser can interpret. The
possible statuses are GOOD, REVOKED, and UNKNOWN.

Alternatively, run the OCSP from the command line by using a tool such as curl to send the request and
openssl to parse the response. For example:

1. Generate an OCSP request for the certificate the status of which is being queried. For example:

]# openssl ocsp -CAfile ca.pem -issuer issuer.pem -serial serial_number -reqout - | base64

MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy
35o7xW5BMzM8FTvyTwCAQE=

2. Connect to the OCSP Manager using curl to send the OCSP request.

curl
https://server.example.com:8443/ocsp/ee/ocsp/MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4
cyABkyiCIhU4JpmIBewdDnn8ZgQUbyBZ44kgy35o7xW5BMzM8FTvyTwCAQE= >

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

167

ocspresp.der

3. Parse the response using openssl:

openssl ocsp -respin ocspresp.der -resp_text

For certificates issued by a 7.1 CA with the Authority Information Access extension to be sent to the
OCSP with the GET method, a redirect needs to be created to forward the requests to the appropriate
URL, as described in Section 7.6.7, “Setting up a Redirect for Certificates Issued in Certificate System 7.1
and Earlier”.

7.6.7. Setting up a Redirect for Certificates Issued in Certificate System 7.1 and
Earlier

The location for the OCSP user pages, specified in the URL with the file root /ocsp/ee/ocsp/, is
different in Certificate System 10 or Certificate System 8.1 than the location in Certificate System 7.1,
which was simply /ocsp/. In order for certificates issued by a 7.1 or earlier CA with the Authority
Information Access extension to be sent to the OCSP, create a redirect to forward the requests to the
appropriate URL.

NOTE

Setting the redirect is only required to manage certificates issued by a 7.1 or earlier CA
with the Authority Information Access extension. If the certificates are issued by a later
version Certificate Manager or do not contain the Authority Information Access
extension, then this configuration is not necessary.

1. Stop the OCSP Responder.

]# pki-server stop instance-name

2. Change to the OCSP's end user web applications directory. For example:

]# cd /var/lib/pki-ocsp/webapps/ocsp

3. Change to the ROOT/WEB-INF/ directory in the ROOT folder of the OCSP's web applications
directory. For example:

]# cd /var/lib/pki-ocsp/webapps/ocsp/ROOT/WEB-INF/

4. Create and open the lib/ directory in the ROOT folder of the OCSP's web applications
directory.

]# mkdir lib
]# cd lib/

5. Create a symlink that links back to the /usr/share/java/pki/cms.jar JAR file. For example:

]# ln -s /usr/share/java/pki/cms.jar cms.jar

6. Move up to the main web application directory. For example:

Administration Guide

168

]# cd /var/lib/pki-ocsp/webapps/ocsp/

7. Rename the current instance (ocsp) directory. For example:

]# mv /var/lib/pki-ocsp/webapps/ocsp/ocsp /var/lib/pki-ocsp/webapps/ocsp/ocsp2

8. Change to the WEB-INF/ directory in the original ocsp/ directory. For example:

]# cd /var/lib/pki-ocsp/webapps/ocsp/ocsp/WEB-INF

9. In the original ocsp/WEB-INF/ directory, edit the web.xml file and add lines mapping between
the eeocspAddCRL and csadmin-wizard servlets.

 <servlet-mapping>
 <servlet-name> ocspOCSP </servlet-name>
 <url-pattern> /ee/ocsp/* </url-pattern>
 </servlet-mapping>

10. Create and install the web.xml file in the ROOT directory. For example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app>

 <display-name>Welcome to Tomcat</display-name>
 <description>
 Welcome to Tomcat
 </description>

 <servlet>
 <servlet-name>ocspProxy</servlet-name>
 <servlet-class>com.netscape.cms.servlet.base.ProxyServlet</servlet-class>
 <init-param>
 <param-name>destContext</param-name>
 <param-value>/ocsp2</param-value>
 </init-param>
 <init-param>
 <param-name>destServlet</param-name>
 <param-value>/ee/ocsp</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>ocspOther</servlet-name>
 <servlet-class>com.netscape.cms.servlet.base.ProxyServlet</servlet-class>
 <init-param>
 <param-name>destContext</param-name>
 <param-value>/ocsp2</param-value>
 </init-param>
 <init-param>
 <param-name>srcContext</param-name>
 <param-value>/ocsp</param-value>
 </init-param>
 <init-param>
 <param-name>destServlet</param-name>

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

169

 <param-value></param-value>
 </init-param>
 <init-param>
 <param-name>matchURIStrings</param-name>

<param-value>/ocsp/registry,/ocsp/acl,/ocsp/jobsScheduler,/ocsp/ug,/ocsp/server,/ocsp/log,
 /ocsp/auths,/ocsp/start,/ocsp/ocsp,/ocsp/services,/ocsp/agent,/ocsp/ee,
 /ocsp/admin</param-value>
 </init-param>
 <init-param>
 <param-name>destServletOnNoMatch</param-name>
 <param-value>/ee/ocsp</param-value>
 </init-param>
 <init-param>
 <param-name>appendPathInfoOnNoMatch</param-name>
 <param-value>/ocsp</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>ocspProxy</servlet-name>
 <url-pattern>/ocsp</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>ocspOther</servlet-name>
 <url-pattern>/ocsp/*</url-pattern>
 </servlet-mapping>

</web-app>

11. Edit the /var/lib/pki-ocsp/conf/context.xml file, changing the following line:

<Context>
 to
<Context crossContext="true" >

12. Edit the /var/lib/pki-ocsp/webapps/ocsp/ocsp2/services.template file and change the
following line:

result.recordSet[i].uri);
 to
result.recordSet[i].uri + "/");

13. Start the OCSP instance.

]# pki-server start instance-name

Administration Guide

170

CHAPTER 8. MANAGING PKI ACME RESPONDER
This chapter describes how to manage PKI ACME Responder.

For information on how to set up PKI ACME Responder, see the Setting up PKI ACME Responder
chapter in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

8.1. ENABLING/DISABLING ACME SERVICES

Users that belong to the Administrators group can enable or disable services in the ACME responder.
The user can authenticate either with basic authentication or client certificate authentication.

To enable or disable ACME services with basic authentication, specify the username and
password:

$ pki -u <username> -p <password> acme-<enable/disable>

To enable or disable ACME services with client certificate authentication, specify the certificate
nickname and NSS database password:

$ pki -n <nickname> -c <password> acme-<enable/disable>

8.2. CHECKING THE STATUS OF PKI ACME RESPONDER

To check the status of the ACME responder, run the following command:

$ pki acme-info
Status: Available
Terms of Service: https://www.example.com/acme/tos.pdf
Website: https://www.example.com
CAA Identities: example.com
External Account Required:false

If the services are disabled, the command will show the following result:

$ pki acme-info
Status: Unavailable

NOTE

The actual output depends on what is configured in the metadata.conf configuration file.

CHAPTER 8. MANAGING PKI ACME RESPONDER

171

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/setting_up_acme_responder

PART III. ADDITIONAL CONFIGURATION TO MANAGE CA
SERVICES

Administration Guide

172

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS
Red Hat Certificate System includes a customizable publishing framework for the Certificate Manager,
enabling certificate authorities to publish certificates, certificate revocation lists (CRLs), and other
certificate-related objects to any of the supported repositories: an LDAP-compliant directory, a flat file,
and an online validation authority. This chapter explains how to configure a Certificate Manager to
publish certificates and CRLs to a file, to a directory, and to the Online Certificate Status Manager.

The general process to configure publishing is as follows:

1. Configure publishing to a file, LDAP directory, or OCSP responder.

There can be a single publisher or multiple publishers, depending on how many locations will be
used. The locations can be split by certificates and CRLs or narrower definitions, such as
certificate type. Rules determine which type to publish and to what location by being associated
with the publisher.

2. Set rules to determine what certificates are published to the locations. Any rule which a
certificate or CRL matches is activated, so the same certificate can be published to a file and to
an LDAP directory by matching a file-based rule and matching a directory-based rule.

Rules can be set for each object type: CA certificates, CRLs, user certificates, and cross-pair
certificates. Disable all rules that will not be used.

3. Configure CRLs. CRLs must be configured before they can be published. See Chapter 7,
Revoking Certificates and Issuing CRLs .

4. Enable publishing after setting up publishers, mappers, and rules. Once publishing is enabled,
the server starts publishing immediately. If the publishers, mappers, and rules are not completely
configured, publishing may not work correctly or at all.

9.1. ABOUT PUBLISHING

The Certificate System is capable of publishing certificates to a file or an LDAP directory and of
publishing CRLs to a file, an LDAP directory, or to an OCSP responder.

For additional flexibility, specific types of certificates or CRLs can be published to a single format or all
three. For example, CA certificates can be published only to a directory and not to a file, and user
certificates can be published to both a file and a directory.

NOTE

An OCSP responder only provides information about CRLs; certificates are not published
to an OCSP responder.

Different publishing locations can be set for certificates files and CRL files, as well as different
publishing locations for different types of certificates files or different types of CRL files.

Similarly, different types of certificates and different types of CRLs can be published to different places
in a directory. For example, certificates for users from the West Coast division of a company can be
published in one branch of the directory, while certificates for users in the East Coast division can be
published to another branch in the directory.

When publishing is enabled, every time a certificate or a CRL is issued, updated, or revoked, the
publishing system is invoked. The certificate or CRL is evaluated by the rules to see if it matches the

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

173

type and predicate set in the rule. The type specifies if the object is a CRL, CA certificate, or any other
certificate. The predicate sets more criteria for the type of object being evaluated. For example, it can
specify user certificates, or it can specify West Coast user certificates. To use predicates, a value needs
to be entered in the predicate field of the publishing rule, and a corresponding value (although
formatted somewhat differently) needs to be contained in the certificate or certificate request to
match. The value in the certificate or certificate request may be derived from information in the
certificate, such as the type of certificate, or may be derived from a hidden value that is placed in the
request form. If no predicate is set, all certificates of that type are considered to match. For example, all
CRLs match the rule if CRL is set as the type.

Every rule that is matched publishes the certificate or CRL according to the method and location
specified in that rule. A given certificate or CRL can match no rules, one rule, more than one rule, or all
rules. The publishing system attempts to match every certificate and CRL issued against all rules.

When a rule is matched, the certificate or CRL is published according to the method and location
specified in the publisher associated with that rule. For example, if a rule matches all certificates issued
to users, and the rule has a publisher that publishes to a file in the location /etc/CS/certificates, the
certificate is published as a file to that location. If another rule matches all certificates issued to users,
and the rule has a publisher that publishes to the LDAP attribute userCertificate;binary attribute, the
certificate is published to the directory specified when LDAP publishing was enabled in this attribute in
the user's entry.

For rules that specify to publish to a file, a new file is created when either a certificate or a CRL is issued
in the stipulated directory.

For rules that specify to publish to an LDAP directory, the certificate or CRL is published to the entry
specified in the directory, in the attribute specified. The CA overwrites the values for any published
certificate or CRL attribute with any subsequent certificate or CRL. Simply put, any existing certificate
or CRL that is already published is replaced by the next certificate or CRL.

For rules that specify to publish to an Online Certificate Status Manager, a CRL is published to this
manager. Certificates are not published to an Online Certificate Status Manager.

For LDAP publishing, the location of the user's entry needs to be determined. Mappers are used to
determine the entry to which to publish. The mappers can contain an exact DN for the entry, some
variable that associates information that can be gotten from the certificate to create the DN, or enough
information to search the directory for a unique attribute or set of attributes in the entry to ascertain
the correct DN for the entry.

When a certificate is revoked, the server uses the publishing rules to locate and delete the
corresponding certificate from the LDAP directory or from the filesystem.

When a certificate expires, the server can remove that certificate from the configured directory. The
server does not do this automatically; the server must be configured to run the appropriate job. For
details, see Chapter 13, Setting Automated Jobs.

Setting up publishing involves configuring publishers, mappers, and rules.

9.1.1. Publishers

Publishers specify the location to which certificates and CRLs are published. When publishing to a file,
publishers specify the filesystem publishing directory. When publishing to an LDAP directory, publishers
specify the attribute in the directory that stores the certificate or CRL; a mapper is used to determine
the DN of the entry. For every DN, a different formula is set for deriving that DN. The location of the
LDAP directory is specified when LDAP publishing is enabled. When publishing a CRL to an OCSP
responder, publishers specify the hostname and URI of the Online Certificate Status Manager.

Administration Guide

174

9.1.2. Mappers

Mappers are only used in LDAP publishing. Mappers construct the DN for an entry based on information
from the certificate or the certificate request. The server has information from the subject name of the
certificate and the certificate request and needs to know how to use this information to create a DN for
that entry. The mapper provides a formula for converting the information available either to a DN or to
some unique information that can be searched in the directory to obtain a DN for the entry.

9.1.3. Rules

Rules for file, LDAP, and OCSP publishing tell the server whether and how a certificate or CRL is to be
published. A rule first defines what is to be published, a certificate or CRL matching certain
characteristics, by setting a type and predicate for the rule. A rule then specifies the publishing method
and location by being associated with a publisher and, for LDAP publishing, with a mapper.

Rules can be as simple or complex as necessary for the PKI deployment and are flexible enough to
accommodate different scenarios.

9.1.4. Publishing to Files

The server can publish certificates and CRLs to flat files, which can then be imported into any repository,
such as a relational database. When the server is configured to publish certificates and CRLs to file, the
published files are DER-encoded binary blobs, base-64 encoded text blobs, or both.

For each certificate the server issues, it creates a file that contains the certificate in either DER-
encoded or base-64 encoded format. Each file is named either cert-serial_number.der or
cert-serial_number.b64. The serial_number is the serial number of the certificate contained in
the file. For example, the filename for a DER-encoded certificate with the serial number 1234 is
cert-1234.der.

Every time the server generates a CRL, it creates a file that contains the new CRL in either DER-
encoded or base-64 encoded format. Each file is named either issuing_point_name-
this_update.der or issuing_point_name-this_update.b64, depending on the format. The
issuing_point_name identifies the CRL issuing point which published the CRL, and this_update
specifies the value derived from the time-dependent update value for the CRL contained in the
file. For example, the filename for a DER-encoded CRL with the value This Update: Friday
January 28 15:36:00 PST 2020, is MasterCRL-20200128-153600.der.

9.1.5. OCSP Publishing

There are two forms of Certificate System OCSP services, an internal service for the Certificate
Manager and the Online Certificate Status Manager. The internal service checks the internal database of
the Certificate Manager to report on the status of a certificate. The internal service is not set for
publishing; it uses the certificates stored in its internal database to determine the status of a certificate.
The Online Certificate Status Manager checks CRLs sent to it by Certificate Manager. A publisher is set
for each location a CRL is sent and one rule for each type of CRL sent.

For detailed information on both OCSP services, see Section 7.6, “Using the Online Certificate Status
Protocol (OCSP) Responder”.

9.1.6. LDAP Publishing

In LDAP publishing , the server publishes the certificates, CRLs, and other certificate-related objects to a
directory using LDAP or LDAPS. The branch of the directory to which it publishes is called the publishing
directory.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

175

For each certificate the server issues, it creates a blob that contains the certificate in its DER-
encoded format in the specified attribute of the user's entry. The certificate is published as a
DER encoded binary blob.

Every time the server generates a CRL, it creates a blob that contains the new CRL in its DER-
encoded format in the specified attribute of the entry for the CA.

The server can publish certificates and CRLs to an LDAP-compliant directory using the LDAP protocol
or LDAP over SSL (LDAPS) protocol, and applications can retrieve the certificates and CRLs over
HTTP. Support for retrieving certificates and CRLs over HTTP enables some browsers to import the
latest CRL automatically from the directory that receives regular updates from the server. The browser
can then use the CRL to check all certificates automatically to ensure that they have not been revoked.

For LDAP publishing to work, the user entry must be present in the LDAP directory.

If the server and publishing directory become out of sync for some reason, privileged users
(administrators and agents) can also manually initiate the publishing process. For instructions, see
Section 9.12.2, “Manually Updating the CRL in the Directory” .

9.2. CONFIGURING PUBLISHING TO A FILE

The general process to configure publishing involves setting up a publisher to publish the certificates or
CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how
many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such
as certificate type. Rules determine which type to publish and to what location by being associated with
the publisher.

Publishing to file simply publishes the CRLs or certificates to text files on a given host.

Publishers must be created and configured for each publishing location; publishers are not automatically
created for publishing to a file. To publish all files to a single location, create one publisher. To publish to
different locations, create a publisher for each location. A location can either contain an object type, like
user certificates, or a subset of an object type, like West Coast user certificates.

To create publishers for publishing to files:

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Publishers.

The Publishers Management tab, which lists configured publisher instances, opens on the
right.

Administration Guide

176

3. Click Add to open the Select Publisher Plug-in Implementation window, which lists registered
publisher modules.

4. Select the FileBasedPublisher module, then open the editor window.

This is the module that enables the Certificate Manager to publish certificates and CRLs to files.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

177

5. Configure the information for publishing the certificate:

The publisher ID, an alphanumeric string with no spaces like PublishCertsToFile

The path to the directory in which the Certificate Manager should publish the files. The path
can be an absolute path or can be relative to the Certificate System instance directory. For
example, /export/CS/certificates.

The file type to publish, by selecting the checkboxes for DER-encoded files, base-64
encoded files, or both.

For CRLs, the format of the timestamp. Published certificates include serial numbers in
their file names, while CRLs use timestamps.

For CRLs, whether to generate a link in the file to go to the latest CRL. If enabled, the link
assumes that the name of the CRL issuing point to use with the extension will be supplied in
the crlLinkExt field.

For CRLs, whether to compress (zip) CRLs and the compression level to use.

After configuring the publisher, configure the rules for the published certificates and CRLs, as described
in Section 9.5, “Creating Rules”.

Administration Guide

178

NOTE

pkiconsole is being deprecated.

9.3. CONFIGURING PUBLISHING TO AN OCSP

The general process to configure publishing involves setting up a publisher to publish the certificates or
CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how
many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such
as certificate type. Rules determine which type to publish and to what location by being associated with
the publisher.

Publishing to an OCSP Manager is a way to publish CRLs to a specific location for client verification.

A publisher must be created and configured for each publishing location; publishers are not
automatically created for publishing to the OCSP responder. Create a single publisher to publish
everything to s single location, or create a publisher for every location to which CRLs will be published.
Each location can contain a different kind of CRL.

9.3.1. Enabling Publishing to an OCSP with Client Authentication

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Publishers.

3. Click Add to open the Select Publisher Plug-in Implementation window, which lists registered
publisher modules.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

179

4. Select the OCSPPublisher module, then open the editor window. This is the publisher module
that enables the Certificate Manager to publish CRLs to the Online Certificate Status Manager.

The publisher ID must be an alphanumeric string with no spaces, like PublishCertsToOCSP.

The host can be the fully-qualified domain name, such as ocspResponder.example.com,

Administration Guide

180

The host can be the fully-qualified domain name, such as ocspResponder.example.com,
or an IPv4 or IPv6 address.

The default path is the directory to send the CRL to, like /ocsp/agent/ocsp/addCRL.

If client authentication is used (enableClientAuth is checked), then the nickname field
gives the nickname of the certificate to use for authentication. This certificate must already
exist in the OCSP security database; this will usually be the CA subsystem certificate.

5. Create a user entry for the CA on the OCSP Manager. The user is used to authenticate to the
OCSP when sending a new CRL. There are two things required:

Name the OCSP user entry after the CA server, like CA-hostname-EEport.

Use whatever certificate was specified in the publisher configuration as the user certificate
in the OCSP user account. This is usually the CA's subsystem certificate.

Setting up subsystem users is covered in Section 15.3.2.1, “Creating Users”.

After configuring the publisher, configure the rules for the published certificates and CRLs, as described
in Section 9.5, “Creating Rules”.

NOTE

pkiconsole is being deprecated.

9.4. CONFIGURING PUBLISHING TO AN LDAP DIRECTORY

The general process to configure publishing involves setting up a publisher to publish the certificates or
CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how
many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such
as certificate type. Rules determine which type to publish and to what location by being associated with
the publisher.

Configuring LDAP publishing is similar to other publishing procedures, with additional steps to configure
the directory:

1. Configure the Directory Server to which certificates will be published. Certain attributes have to
be added to entries and bind identities and authentication methods have to be configured.

2. Configure a publisher for each type of object published: CA certificates, cross-pair certificates,
CRLs, and user certificates. The publisher declares in which attribute to store the object. The
attributes set by default are the X.500 standard attributes for storing each object type. This
attribute can be changed in the publisher, but generally, it is not necessary to change the LDAP
publishers.

3. Set up mappers to enable an entry's DN to be derived from the certificate's subject name. This
generally does not need set for CA certificates, CRLs, and user certificates. There can be more
than one mapper set for a type of certificate. This can be useful, for example, to publish
certificates for two sets of users from different divisions of a company who are located in
different parts of the directory tree. A mapper is created for each of the groups to specify a
different branch of the tree.

For details about setting up mappers, see Section 9.4.3, “Creating Mappers”.

4. Create rules to connect publishers to mappers, as described in Section 9.5, “Creating Rules”.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

181

5. Enable publishing, as described in Section 9.6, “Enabling Publishing” .

9.4.1. Configuring the LDAP Directory

Before certificates and CRLs can be published, the Directory Server must be configured to work with
the publishing system. This means that user entries must have attributes that allow them to receive
certificate information, and entries must be created to represent the CRLs.

1. Set up the entry for the CA. For the Certificate Manager to publish its CA certificate and CRL,
the directory must include an entry for the CA.

NOTE

When LDAP publishing is configured, the Certificate Manager automatically
creates or converts an entry for the CA in the directory. This option is set in both
the CA and CRL mapper instances and enabled by default. If the directory
restricts the Certificate Manager from creating entries in the directory, turn off
this option in those mapper instances, and add an entry for the CA manually in
the directory.

When adding the CA's entry to the directory, select the entry type based on the DN of the CA:

If the CA's DN begins with the cn component, create a new person entry for the CA.
Selecting a different type of entry may not allow the cn component to be specified.

If the CA's DN begins with the ou component, create a new organizationalunit entry for
the CA.

The entry does not have to be in the pkiCA or certificationAuthority object class. The
Certificate Manager will convert this entry to the pkiCA or certificationAuthority object class
automatically by publishing its CA's signing certificate.

NOTE

The pkiCA object class is defined in RFC 4523, while the certificationAuthority
object class is defined in the (obsolete) RFC 2256. Either object class is
acceptable, depending on the schema definitions used by the Directory Server. In
some situations, both object classes can be used for the same CA entry.

For more information on creating directory entries, see the Red Hat Directory Server
documentation.

2. Add the correct schema elements to the CA and user directory entries.

Administration Guide

182

For a Certificate Manager to publish certificates and CRLs to a directory, it must be configured
with specific attributes and object classes.

Object Type Schema Reason

End-entity certificate userCertificate;binary
(attribute)

This is the attribute to which
the Certificate Manager
publishes the certificate.

This is a multi-valued attribute,
and each value is a DER-
encoded binary X.509
certificate. The LDAP object
class named inetOrgPerson
allows this attribute. The
strongAuthenticationUser
object class allows this
attribute and can be combined
with any other object class to
allow certificates to be
published to directory entries
with other object classes. The
Certificate Manager does not
automatically add this object
class to the schema table of
the corresponding Directory
Server.

If the directory object that it
finds does not allow the
userCertificate;binary
attribute, adding or removing
the certificate fails.

CA certificate caCertificate;binary (attribute) This is the attribute to which
the Certificate Manager
publishes the certificate.

The Certificate Manager
publishes its own CA
certificate to its own LDAP
directory entry when the server
starts. The entry corresponds
to the Certificate Manager's
issuer name.

This is a required attribute of
the pkiCA or
certificationAuthority
object class. The Certificate
Manager adds this object class
to the directory entry for the
CA if it can find the CA's
directory entry.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

183

CRL certificateRevocationList;binar
y (attribute)

This is the attribute to which
the Certificate Manager
publishes the CRL.

The Certificate Manager
publishes the CRL to its own
LDAP directory entry. The
entry corresponds to the
Certificate Manager's issuer
name.

This is an attribute of the
pkiCA or
certificationAuthority
object class. The value of the
attribute is the DER-encoded
binary X.509 CRL. The CA's
entry must already contain the
pkiCA or
certificationAuthority
object class for the CRL to be
published to the entry.

Delta CRL deltaRevocationList;binary
(attribute)

This is the attribute to which
the Certificate Manager
publishes the delta CRL. The
Certificate Manager publishes
the delta CRL to its own LDAP
directory entry, separate from
the full CRL. The delta CRL
entry corresponds to the
Certificate Manager's issuer
name.

This attribute belongs to the
deltaCRL or
certificationAuthority-V2
object class. The value of the
attribute is the DER-encoded
binary X.509 delta CRL.

Object Type Schema Reason

3. Set up a bind DN for the Certificate Manager to use to access the Directory Server.

The Certificate Manager user must have read-write permissions to the directory to publish
certificates and CRLs to the directory so that the Certificate Manager can modify the user
entries with certificate-related information and the CA entry with CA's certificate and CRL
related information.

The bind DN entry can be either of the following:

An existing DN that has write access, such as the Directory Manager.

A new user which is granted write access. The entry can be identified by the Certificate
Manager's DN, such as cn=testCA, ou=Research Dept, o=Example Corporation,
st=California, c=US.

NOTE

Administration Guide

184

NOTE

Carefully consider what privileges are given to this user. This user can be
restricted in what it can write to the directory by creating ACLs for the
account. For instructions on giving write access to the Certificate Manager's
entry, see the Directory Server documentation.

4. Set the directory authentication method for how the Certificate Manager authenticates to
Directory Server. There are three options: basic authentication (simple username and
password); SSL without client authentication (simple username and password); and SSL with
client authentication (certificate-based).

See the Red Hat Directory Server documentation for instructions on setting up these methods
of communication with the server.

9.4.2. Configuring LDAP Publishers

The Certificate Manager creates, configures, and enables a set of publishers that are associated with
LDAP publishing. The default publishers (for CA certificates, user certificates, CRLs, and cross-pair
certificates) already conform to the X.500 standard attributes for storing certificates and CRLs and do
not need to be changed.

Table 9.1. LDAP Publishers

Publisher Description

LdapCaCertPublisher Publishes CA certificates to the LDAP directory.

LdapCrlPublisher Publishes CRLs to the LDAP directory.

LdapDeltaCrlPublisher Publishes delta CRLs to the LDAP directory.

LdapUserCertPublisher Publishes all types of end-entity certificates to the
LDAP directory.

LdapCrossCertPairPublisher Publishes cross-signed certificates to the LDAP
directory.

9.4.3. Creating Mappers

Mappers are only used with LDAP publishing. Mappers define a relationship between a certificate's
subject name and the DN of the directory entry to which the certificate is published. The Certificate
Manager needs to derive the DN of the entry from the certificate or the certificate request so it can
determine which entry to use. The mapper defines the relationship between the DN for the user entry
and the subject name of the certificate or other input information so that the exact DN of the entry can
be determined and found in the directory.

When it is configured, the Certificate Manager automatically creates a set of mappers defining the most
common relationships. The default mappers are listed in Table 9.2, “Default Mappers” .

Table 9.2. Default Mappers

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

185

Mapper Description

LdapUserCertMap Locates the correct attribute of user entries in the
directory in order to publish user certificates.

LdapCrlMap Locates the correct attribute of the CA's entry in the
directory in order to publish the CRL.

LdapCaCertMap Locates the correct attribute of the CA's entry in the
directory in order to publish the CA certificate.

To use the default mappers, configure each of the macros by specifying the DN pattern and whether to
create the CA entry in the directory. To use other mappers, create and configure an instance of the
mapper. For more information, see Section C.2, “Mapper Plug-in Modules ” .

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Mappers.

The Mappers Management tab, which lists configured mappers, opens on the right.

3. To create a new mapper instance, click Add. The Select Mapper Plugin Implementation
window opens, which lists registered mapper modules. Select a module, and edit it. For
complete information about these modules, see Section C.2, “Mapper Plug-in Modules ” .

Administration Guide

186

4. Edit the mapper instance, and click OK.

See Section C.2, “Mapper Plug-in Modules ” for detailed information about each mapper.

NOTE

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

187

NOTE

pkiconsole is being deprecated.

9.4.4. Completing Configuration: Rules and Enabling

After configuring the mappers for LDAP publishing, configure the rules for the published certificates
and CRLs, as described in Section 9.5, “Creating Rules”.

Once the configuration is complete, enable publishing, as described in Section 9.6, “Enabling
Publishing”.

9.5. CREATING RULES

Rules determine what certificate object is published in what location. Rules work independently, not in
tandem. A certificate or CRL that is being published is matched against every rule. Any rule which it
matches is activated. In this way, the same certificate or CRL can be published to a file, to an Online
Certificate Status Manager, and to an LDAP directory by matching a file-based rule, an OCSP rule, and
matching a directory-based rule.

Rules can be set for each object type: CA certificates, CRLs, user certificates, and cross-pair
certificates. The rules can be more detailed for different kinds of certificates or different kinds of CRLs.

The rule first determines if the object matches by matching the type and predicate set up in the rule
with the object. Where matching objects are published is determined by the publisher and mapper
associated with the rule.

Rules are created for each type of certificate the Certificate Manager issues.

Modify publishing rules by doing the following:

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Rules.

The Rules Management tab, which lists configured rules, opens on the right.

Administration Guide

188

3. To edit an existing rule, select that rule from the list, and click Edit. This opens the Rule Editor
window.

4. To create a rule, click Add. This opens the Select Rule Plug-in Implementation window.

Select the Rule module. This is the only default module. If any custom modules have been been

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

189

Select the Rule module. This is the only default module. If any custom modules have been been
registered, they are also available.

5. Edit the rule.

type. This is the type of certificate for which the rule applies. For a CA signing certificate,
the value is cacert. For a cross-signed certificate, the value is xcert. For all other types of
certificates, the value is certs. For CRLs, specify crl.

predicate. This sets the predicate value for the type of certificate or CRL issuing point to
which this rule applies. The predicate values for CRL issuing points, delta CRLs, and
certificates are listed in Table 9.3, “Predicate Expressions” .

enable.

mapper. Mappers are not necessary when publishing to a file; they are only needed for
LDAP publishing. If this rule is associated with a publisher that publishes to an LDAP
directory, select an appropriate mapper here. Leave blank for all other forms of publishing.

publisher. Sets the publisher to associate with the rule.

Table 9.3, “Predicate Expressions” lists the predicates that can be used to identify CRL issuing points
and delta CRLs and certificate profiles.

Table 9.3. Predicate Expressions

Administration Guide

190

Predicate Type Predicate

CRL Issuing Point issuingPointId==Issuing_Point_Instance_ID &&
isDeltaCRL==[true|false]

To publish only the master CRL, set
isDeltaCRL==false. To publish only the delta CRL,
set isDeltaCRL==true. To publish both, set a rule
for the master CRL and another rule for the delta
CRL.

Certificate Profile profileId==profile_name

To publish certificates based on the profile used to
issue them, set profileId== to a profile name, such
as caServerCert.

NOTE

pkiconsole is being deprecated.

9.6. ENABLING PUBLISHING

Publishing can be enabled for only files, only LDAP, or both. Publishing should be enabled after setting
up publishers, rules, and mappers. Once enabled, the server attempts to begin publishing. If publishing
was not configured correctly before being enabled, publishing may exhibit undesirable behavior or may
fail.

NOTE

Configure CRLs. CRLs must be configured before they can be published. See Chapter 7,
Revoking Certificates and Issuing CRLs .

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing.

The right pane shows the details for publishing to an LDAP-compliant directory.

3. To enable publishing to a file only, select Enable Publishing.

4. To enable LDAP publishing, select both Enable Publishing and Enable Default LDAP
Connection.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

191

In the Destination section, set the information for the Directory Server instance.

Host name. If the Directory Server is configured for SSL client authenticated
communication, the name must match the cn component in the subject DN of the Directory
Server's SSL server certificate.

The hostname can be the fully-qualified domain name or an IPv4 or IPv6 address.

Port number.

Directory Manager DN. This is the distinguished name (DN) of the directory entry that has
Directory Manager privileges. The Certificate Manager uses this DN to access the directory
tree and to publish to the directory. The access control set up for this DN determines
whether the Certificate Manager can perform publishing. It is possible to create another DN
that has limited read-write permissions for only those attributes that the publishing system
actually needs to write.

Password. This is the password which the CA uses to bind to the LDAP directory to which
the certificate or CRL is published. The Certificate Manager saves this password in its
password.conf file. For example:

CA LDAP Publishing:password

NOTE

The parameter name which identifies the publishing password (CA LDAP
Publishing) is set in the Certificate Manager's CS.cfg file in the
ca.publish.ldappublish.ldap.ldapauth.bindPWPrompt parameter, and it
can be edited.

Client certificate. This sets the certificate the Certificate Manager uses for SSL client
authentication to the publishing directory. By default, the Certificate Manager uses its SSL
server certificate.

LDAP version. Select LDAP version 3.

Authentication. The way the Certificate Manager authenticates to the Directory Server.

Administration Guide

192

Authentication. The way the Certificate Manager authenticates to the Directory Server.
The choices are Basic authentication and SSL client authentication.

If the Directory Server is configured for basic authentication or for SSL communication
without client authentication, select Basic authentication and specify values for the
Directory manager DN and password.

If the Directory Server is configured for SSL communication with client authentication,
select SSL client authentication and the Use SSL communication option, and identify
the certificate that the Certificate Manager must use for SSL client authentication to the
directory.

The server attempts to connect to the Directory Server. If the information is incorrect, the server
displays an error message.

NOTE

pkiconsole is being deprecated.

9.7. ENABLING A PUBLISHING QUEUE

Part of the enrollment process includes publishing the issued certificate to any directories or files. This,
essentially, closes out the initial certificate request. However, publishing a certificate to an external
network can significantly slow down the issuance process — which leaves the request open.

To avoid this situation, administrators can enable a publishing queue. The publishing queue separates
the publishing operation (which may involve an external LDAP directory) from the request and
enrollment operations, which uses a separate request queue. The request queue is updated immediately
to show that the enrollment process is complete, while the publishing queue sends the information at
the pace of the network traffic.

The publishing queue sets a defined, limited number of threads that publish generated certificates,
rather than opening a new thread for each approved certificate.

The publishing queue is disabled by default. It can be enabled in the CA Console, along with enabling
publishing.

NOTE

pkiconsole is being deprecated.

NOTE

While the publishing queue is disabled by default, the queue is automatically enabled if
LDAP publishing is enabled in the Console . Otherwise, the queue can be enabled
manually.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

193

Figure 9.1. Enabling the Publishing Queue

NOTE

Enabling the publishing queue by editing the CS.cfg file allows administrators to set other
options for publishing, like the number of threads to use for publishing operations and the
queue page size.

For instruction on how to configure this feature by editing the CS.cfg file, see the
Enabling and Configuring a Publishing Queue section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

9.8. SETTING UP RESUMABLE CRL DOWNLOADS

Certificate System provides option for interrupted CRL downloads to be resumed smoothly. This is done
by publishing the CRLs as a plain file over HTTP. This method of downloading CRLs gives flexibility in
retrieving CRLs and lowers overall network congestion.

9.8.1. Retrieving CRLs Using wget

Because CRLs can be published as a text file over HTTP, they can be manually retrieved from the CA
using a tool such as wget. The wget command can be used to retrieve any published CRL. For example,
to retrieve a full CRL which is newer than the previous full CRL:

[root@server ~]# wget --no-check-certificate -d
https://server.example.com:8443/ca/ee/ca/crl/MasterCRL.bin

The relevant parameters for wget are summarized in Table 9.4, “wget Options to Use for Retrieving
CRLs”.

Table 9.4. wget Options to Use for Retrieving CRLs

Argument Description

no argument Retrieves the full CRL.

Administration Guide

194

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#publishing-queue

-N Retrieves the CRL that is newer than the local copy
(delta CRL).

-c Retrieves a partially-downloaded file.

--no-check-certificate Skips SSL for the connection, so it is not necessary to
configure SSL between the host and client.

-d Prints debug information.

Argument Description

9.9. PUBLISHING CROSS-PAIR CERTIFICATES

The cross-pair certificates can be published as a crossCertificatePair entry to an LDAP directory or to a
file; this is enabled by default. If this has been disabled, it can be re-enabled through the Certificate
Manager Console by doing the following:

1. Open the CA console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select the Certificate Manager link in the left pane, then the
Publishing link.

3. Click the Rules link under Publishing. This opens the Rules Management pane on the right.

4. If the rule exists and has been disabled, select the enable checkbox. If the rule has been
deleted, then click Add and create a new rule.

1. Select xcerts from the type drop-down menu.

2. Make sure the enable checkbox is selected.

3. Select LdapCaCertMap from the mapper drop-down menu.

4. Select LdapCrossCertPairPublisher from the publisher drop-down menu.

The mapper and publisher specified in the publishing rule are both listed under Mapper and Publisher
under the Publishing link in the left navigation window of the CA Console. The mapper,
LdapCaCertMap, by default designates that the crossCertificatePair be stored to the
LdapCaSimpleMap LDAP entry. The publisher, LDAPCrossPairPublisher, by default sets the
attribute to store the cross-pair certificate in the CA entry to crossCertificatePair;binary.

For more information on using cross-pair certificates, see Section 17.5, “Using Cross-Pair Certificates” .

For more information on creating cross-pair certificate profiles, see the Configuring Cross-Pair profiles
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

NOTE

pkiconsole is being deprecated.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

195

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/certificate_profiles_configuration#configuring-cross-pair-profiles

9.10. TESTING PUBLISHING TO FILES

To verify that the Certificate Manager is publishing certificates and CRLs correctly to file:

1. Open the CA's end-entities page, and request a certificate.

2. Approve the request through the agent services page, if required.

3. Retrieve the certificate from the end-entities page, and download the certificate into the
browser.

4. Check whether the server generated the DER-encoded file containing the certificate.

Open the directory to which the binary blob of the certificate is supposed to be published. The
certificate file should be named cert-serial_number.der.

5. Convert the DER-encoded certificate to its base 64-encoded format using the Binary to ASCII
tool. For more information on this tool, refer to the BtoA(1) man page.

BtoA input_file output_file

input_file sets the path to the file that contains the DER-encoded certificate, and output_file
sets the path to the file to write the base-64 encoded certificate.

6. Open the ASCII file; the base-64 encoded certificate is similar to the one shown:

-----BEGIN CERTIFICATE-----
MMIIBtgYJYIZIAYb4QgIFoIIBpzCCAZ8wggGbMIIBRaADAgEAAgEBMA0GCSqGSIb3DQEBB
AUAMFcxC
AJBgNVBAYTAlVTMSwwKgYDVQQKEyNOZXRzY2FwZSBDb21tdW5pY2F0aWhfyyuougjgjjg
mkgjkgmjg
fjfgjjjgfyjfyj9ucyBDb3Jwb3JhdGlvbjpMEaMBgGA1UECxMRSXNzdWluZyhgdfhbfdpffjphotoo
gdhkBBdXRob3JpdHkwHhcNOTYxMTA4MDkwNzM0WhcNOTgxMTA4MDkwNzMM0WjBXMQ
swCQYDVQQGEwJ
VUzEsMCoGA1UEChMjTmV0c2NhcGUgQ29tbXVuaWNhdGlvbnMgQ29ycG9yY2F0aW9ucyB
Db3Jwb3Jhd
GlvbjpMEaMBgGA1UECxMRSXNzdWluZyBBdXRob3JpdHkwHh
-----END CERTIFICATE-----

7. Convert the base 64-encoded certificate to a readable form using the Pretty Print Certificate
tool. For more information on this tool, refer to the PrettyPrintCert(1) man page.

PrettyPrintCert input_file [output_file]

input_file sets the path to the ASCII file that contains the base-64 encoded certificate, and
output_file, optionally, sets the path to the file to write the certificate. If an output file is not set,
the certificate information is written to the standard output.

8. Compare the output with the certificate issued; check the serial number in the certificate with
the one used in the filename.

If everything matches, the Certificate Manager is configured correctly to publish certificates to
file.

9. Revoke the certificate.

Administration Guide

196

10. Check whether the server generated the DER-encoded file containing the CRL.

Open the directory to which the server is to publish the CRL as a binary blob. The CRL file
should have a name in the form crl-this_update.der. this_update specifies the value derived from
the time-dependent This Update variable of the CRL.

11. Convert the DER-encoded CRL to its base 64-encoded format using the Binary to ASCII tool.

BtoA input_file output_file

12. Convert the base 64-encoded CRL to readable form using the Pretty Print CRL tool.

PrettyPrintCrl input_file [output_file]

13. Compare the output.

9.11. VIEWING CERTIFICATES AND CRLS PUBLISHED TO FILE

Certificates and CRLs can be published to two types of files: base-64 encoded or DER-encoded. The
content of these files can be viewed by converting the files to pretty-print format using the dumpasn1
tool or the PrettyPrintCert or PrettyPrintCrl tool.

To view the content in a base-64 encoded file:

1. Convert the base-64 file to binary. For example:

AtoB /tmp/example.b64 /tmp/example.bin

2. Use the PrettyPrintCert or PrettyPrintCrl tool to convert the binary file to pretty-print format.
For example:

PrettyPrintCert example.bin example.cert

To view the content of a DER-encoded file, simply run the dumpasn1, PrettyPrintCert, or
PrettyPrintCrl tool with the DER-encoded file. For example:

PrettyPrintCrl example.der example.crl

9.12. UPDATING CERTIFICATES AND CRLS IN A DIRECTORY

The Certificate Manager and the publishing directory can become out of sync if certificates are issued
or revoked while the Directory Server is down. Certificates that were issued or revoked need to be
published or unpublished manually when the Directory Server comes back up.

To find certificates that are out of sync with the directory ‐ valid certificates that are not in the directory
and revoked or expired certificates that are still in the directory ‐ the Certificate Manager keeps a record
of whether a certificate in its internal database has been published to the directory. If the Certificate
Manager and the publishing directory become out of sync, use the Update Directory option in the
Certificate Manager agent services page to synchronize the publishing directory with the internal
database.

The following choices are available for synchronizing the directory with the internal database:

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

197

Search the internal database for certificates that are out of sync and publish or unpublish.

Publish certificates that were issued while the Directory Server was down. Similarly, unpublish
certificates that were revoked or that expired while Directory Server was down.

Publish or unpublish a range of certificates based on serial numbers, from serial number xx to
serial number yy.

A Certificate Manager's publishing directory can be manually updated by a Certificate Manager agent
only.

9.12.1. Manually Updating Certificates in the Directory

The Update Directory Server form in the Certificate Manager agent services page can be used to
update the directory manually with certificate-related information. This form initiates a combination of
the following operations:

Update the directory with certificates.

Remove expired certificates from the directory.

Removing expired certificates from the publishing directory can be automated by scheduling an
automated job. For details, see Chapter 13, Setting Automated Jobs.

Remove revoked certificates from the directory.

Manually update the directory with changes by doing the following:

1. Open the Certificate Manager agent services page.

2. Select the Update Directory Server link.

3. Select the appropriate options, and click Update Directory.

The Certificate Manager starts updating the directory with the certificate information in its
internal database. If the changes are substantial, updating the directory can take considerable
time. During this period, any changes made through the Certificate Manager, including any
certificates issued or any certificates revoked, may not be included in the update. If any
certificates are issued or revoked while the directory is updated, update the directory again to
reflect those changes.

When the directory update is complete, the Certificate Manager displays a status report. If the process is
interrupted, the server logs an error message.

If the Certificate Manager is installed as a root CA, the CA signing certificate may get published using
the publishing rule set up for user certificates when using the agent interface to update the directory
with valid certificates. This may return an object class violation error or other errors in the mapper.
Selecting the appropriate serial number range to exclude the CA signing certificate can avoid this
problem. The CA signing certificate is the first certificate a root CA issues.

Modify the default publishing rule for user certificates by changing the value of the predicate
parameter to profileId!=caCACert.

Use the LdapCaCertPublisher publisher plug-in module to add another rule, with the predicate
parameter set to profileId=caCACert, for publishing subordinate CA certificates.

Administration Guide

198

9.12.2. Manually Updating the CRL in the Directory

The Certificate Revocation List form in the Certificate Manager agent services page manually updates
the directory with CRL-related information.

Manually update the CRL information by doing the following:

1. Open the Certificate Manager agent services page.

2. Select Update Revocation List.

3. Click Update.

The Certificate Manager starts updating the directory with the CRL in its internal database. If the CRL is
large, updating the directory takes considerable time. During this period, any changes made to the CRL
may not be included in the update.

When the directory is updated, the Certificate Manager displays a status report. If the process is
interrupted, the server logs an error message.

9.13. REGISTERING CUSTOM MAPPER AND PUBLISHER PLUG-IN
MODULES

New mapper or publisher plug-in modules can be registered in a Certificate Manager's publishing
framework. Unwanted mapper or publisher plug-in modules can be deleted. Before deleting a module,
delete all the rules that are based on this module.

1. Create the custom job class. For this example, the custom publisher plug-in is called
MyPublisher.java.

2. Compile the new class.

javac -d . -classpath $CLASSPATH MyPublisher.java

3. Create a directory in the CA's WEB-INF web directory to hold the custom classes, so that the
CA can access them.

mkdir /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

4. Copy the new plug-in files into the new classes directory, and set the owner to the
Certificate System system user (pkiuser).

cp -pr com /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

chown -R pkiuser:pkiuser /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

5. Register the plug-in.

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

199

3. To register a mapper module, select Mappers, and then select the Mapper Plugin
Registration tab.

To register a publisher module, select Publishers, and then select the Publisher Plug-in
Registration tab.

4. To register a plug-in, click Register.

5. Set the plug-in name and plug-in class name. The class name is, the path to the
implementing Java class. If this class is part of a package, include the package name. For
example, to register a class named customMapper in a package named
com.customplugins, the name is com.customplugins.customMapper.

NOTE

pkiconsole is being deprecated.

Administration Guide

200

CHAPTER 10. AUTHENTICATION FOR ENROLLING
CERTIFICATES
This chapter covers how to enroll end entity certificates, how to create and manage server certificates,
the authentication methods available in the Certificate System to use when enrolling end entity
certificates, and how to set up those authentication methods.

Enrollment is the process of issuing certificates to an end entity. The process is creating and submitting
the request, authenticating the user requesting it, and then approving the request and issuing the
certificate.

The method used to authenticate the end entity determines the entire enrollment process. There are
three ways that the Certificate System can authenticate an entity:

In agent-approved enrollment, end-entity requests are sent to an agent for approval. The agent
approves the certificate request.

In automatic enrollment, end-entity requests are authenticated using a plug-in, and then the
certificate request is processed; an agent is not involved in the enrollment process.

In CMC enrollment, a third party application can create a request that is signed by an agent and
then automatically processed.

A Certificate Manager is initially configured for agent-approved enrollment and for CMC authentication.
Automated enrollment is enabled by configuring one of the authentication plug-in modules. More than
one authentication method can be configured in a single instance of a subsystem.

NOTE

An email can be automatically sent to an end entity when the certificate is issued for any
authentication method by configuring automated notifications. See Chapter 12, Using
Automated Notifications for more information on notifications.

10.1. CONFIGURING AGENT-APPROVED ENROLLMENT

The Certificate Manager is initially configured for agent-approved enrollment. An end entity makes a
request which is sent to the agent queue for an agent's approval. An agent can modify request, change
the status of the request, reject the request, or approve the request. Once the request is approved, the
signed request is sent to the Certificate Manager for processing. The Certificate Manager processes the
request and issues the certificate.

The agent-approved enrollment method is not configurable. If a Certificate Manager is not configured
for any other enrollment method, the server automatically sends all certificate-related requests to a
queue where they await agent approval. This ensures that all requests that lack authentication
credentials are sent to the request queue for agent approval.

To use agent-approved enrollment, leave the authentication method blank in the profile's .cfg file. For
example:

auth.instance_id=

10.2. AUTOMATED ENROLLMENT

In automated enrollment, an end-entity enrollment request is processed as soon as the user successfully

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

201

In automated enrollment, an end-entity enrollment request is processed as soon as the user successfully
authenticates by the method set in the authentication plug-in module; no agent approval is necessary.
The following authentication plug-in modules are provided:

Directory-based enrollment. End entities are authenticated against an LDAP directory using
their user ID and password or their DN and password. See Section 10.2.1, “Setting up Directory-
Based Authentication”.

PIN-based enrollment. End entities are authenticated against an LDAP directory using their user
ID, password, and a PIN set in their directory entry. See Section 10.2.2, “Setting up PIN-Based
Enrollment”.

Certificate-based authentication . Entities of some kind — both end users and other entities, like
servers or tokens — are authenticated to the CA using a certificate issued by the CA which
proves their identity. This is most commonly used for renewal, where the original certificate is
presented to authenticate the renewal process. See Section 10.2.3, “Using Certificate-Based
Authentication”.

AgentCertAuth. This method automatically approves a certificate request if the entity
submitting the request is authenticated as a subsystem agent. A user authenticates as an agent
by presenting an agent certificate. If the presented certificate is recognized by the subsystem as
an agent certificate, then the CA automatically processes the certificate request.

This form of automatic authentication can be associated with the certificate profile for enrolling
for server certificates.

This plug-in is enabled by default and has no parameters.

Flat file-based enrollment . Used exclusively for router (SCEP) enrollments, a text file is used
which contains a list of IP addresses, hostnames, or other identifier and a password, which is
usually a random PIN. A router authenticates to the CA using its ID and PIN, and then the CA
compares the presented credentials to the list of identities in the text file. See Section 10.2.4,
“Configuring Flat File Authentication”.

10.2.1. Setting up Directory-Based Authentication

The UidPwdDirAuth and the UdnPwdDirAuth plug-in modules implement directory-based
authentication. End users enroll for a certificate by providing their user IDs or DN and password to
authenticate to an LDAP directory.

1. Create an instance of either the UidPwdDirAuth or UdnPwdDirAuth authentication plug-in
module and configure the instance.

1. Open the CA Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Authentication in the navigation tree.

The right pane shows the Authentication Instance tab, which lists the currently configured
authentication instances.

NOTE

The UidPwdDirAuth plug-in is enabled by default.

Administration Guide

202

3. Click Add.

The Select Authentication Plug-in Implementation window appears.

4. Select UidPwdDirAuth for user ID and password authentication, or select UdnPwdDirAuth
for DN and password authentication.

5. Fill in the following fields in the Authentication Instance Editor window:

Authentication Instance ID. Accept the default instance name, or enter a new name.

dnpattern. Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

ldapStringAttributes. Specifies the list of LDAP string attributes that should be
considered authentic for the end entity. If specified, the values corresponding to these
attributes are copied from the authentication directory into the authentication token
and used by the certificate profile to generate the subject name. Entering values for this
parameter is optional.

ldapByteAttributes. Specifies the list of LDAP byte (binary) attributes that should be
considered authentic for the end entity. If specified, the values corresponding to these
attributes will be copied from the authentication directory into the authentication token
for use by other modules, such as adding additional information to users' certificates.

Entering values for this parameter is optional.

ldap.ldapconn.host. Specifies the fully-qualified DNS hostname of the authentication
directory.

ldap.ldapconn.port. Specifies the TCP/IP port on which the authentication directory
listens to requests; if the ldap.ldapconn.secureConn. checkbox is selected, this should
be the SSL port number.

ldap.ldapconn.secureConn. Specifies the type, SSL or non-SSL, of the port on which
the authentication directory listens to requests from the Certificate System. Select if
this is an SSL port.

ldap.ldapconn.version. Specifies the LDAP protocol version, either 2 or 3. The default
is 3, since all Directory Servers later than version 3.x are LDAPv3.

ldap.basedn. Specifies the base DN for searching the authentication directory. The
server uses the value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

ldap.minConns. Specifies the minimum number of connections permitted to the
authentication directory. The permissible values are 1 to 3.

ldap.maxConns. Specifies the maximum number of connections permitted to the
authentication directory. The permissible values are 3 to 10.

6. Click OK. The authentication instance is set up and enabled.

2. Set the certificate profiles to use to enroll users by setting policies for specific certificates.
Customize the enrollment forms by configuring the inputs in the certificate profiles, and include
inputs for the information needed by the plug-in to authenticate the user. If the default inputs

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

203

do not contain all of the information that needs to be collected, submit a request created with a
third-party tool.

For information on configuring the profiles, see Section 3.7.2, “Inserting LDAP Directory
Attribute Values and Other Information into the Subject Alt Name”.

NOTE

pkiconsole is being deprecated.

Setting up Bound LDAP Connection
Some environments require disallowing an anonymous bind for the LDAP server that is used for
authentication. To create a bound connection between a CA and the LDAP server, you need to make the
following configuration changes:

Set up directory-based authentication according to the following example in CS.cfg:

where bindPWPrompt is the tag or prompt that is used in the password.conf file; it is also the
name used under the cms.passwordlist and authPrefix options.

Add the tag or prompt from CS.cfg with its password in password.conf:

Setting up External Authorization
A directory-based authentication plug-in can also be configured to evaluate the group membership of
the user for authentication. To set up the plug-in this way, the following options has to be configured in
CS.cfg:

groupsEnable is a boolean option that enables retrieval of groups. The default value is false.

groupsBasedn is the base DN of groups. It needs to be specified when it differs from the
default basedn.

groups is the DN component for groups. The default value is ou=groups.

groupObjectClass is one of the following group object classes: groupofuniquenames,
groupofnames. The default value is groupofuniquenames.

groupUseridName is the name of the user ID attribute in the group object member attribute.
The default value is cn.

useridName is the name of the user ID DN component. The default value is uid.

searchGroupUserByUserdn is a boolean option that determines whether to search the group
object member attribute for the userdn or ${groupUserIdName}=${uid} attributes. The
default value is true.

auths.instance.UserDirEnrollment.ldap.ldapBoundConn=true
auths.instance.UserDirEnrollment.ldap.ldapauth.authtype=BasicAuth
auths.instance.UserDirEnrollment.ldap.ldapauth.bindDN=cn=Directory Manager
auths.instance.UserDirEnrollment.ldap.ldapauth.bindPWPrompt=externalLDAP
externalLDAP.authPrefix=auths.instance.UserDirEnrollment
cms.passwordlist=internaldb,replicationdb,externalLDAP

externalLDAP=your_password

Administration Guide

204

For example:

Finally, you have to modify the /instance_path/ca/profiles/ca/profile_id.cfg file to configure the profile
to use the UserDirEnrollment auth instance defined in CS.cfg, and if appropriate, provide an ACL for
authorization based on groups. For example:

10.2.2. Setting up PIN-Based Enrollment

PIN-based authentication involves setting up PINs for each user in the LDAP directory, distributing
those PINs to the users, and then having the users provide the PIN along with their user ID and
password when filling out a certificate request. Users are then authenticated both against an LDAP
directory using their user ID and password and against the PIN in their LDAP entry. When the user
successfully authenticates, the request is automatically processed, and a new certificate is issued.

The Certificate System provides a tool, setpin, that adds the necessary schema for PINs to the
Directory Server and generates the PINs for each user.

The PIN tool performs the following functions:

Adds the necessary schema for PINs to the LDAP directory.

Adds a PIN manager user who has read-write permissions to the PINs that are set up.

Sets up ACIs to allow for PIN removal once the PIN has been used, giving read-write
permissions for PINs to the PIN manager, and preventing users from creating or changing PINs.

Creates PINs in each user entry.

NOTE

This tool is documented in the Certificate System Command-Line Tools Guide .

1. Use the PIN tool to add schema needed for PINs, add PINs to the user entries, and then
distribute the PINs to users.

1. Open the /usr/share/pki/native-tools/ directory.

2. Open the setpin.conf file in a text editor.

3. Follow the instructions outlined in the file and make the appropriate changes.

Usually, the parameters which need updated are the Directory Server's host name, Directory

auths.instance.UserDirEnrollment.pluginName=UidPwdDirAuth
auths.instance.UserDirEnrollment.ldap.basedn=cn=users,cn=accounts,dc=local
auths.instance.UserDirEnrollment.ldap.groupObjectClass=groupofnames
auths.instance.UserDirEnrollment.ldap.groups=cn=groups
auths.instance.UserDirEnrollment.ldap.groupsBasedn=cn=accounts,dc=local
auths.instance.UserDirEnrollment.ldap.groupsEnable=true
auths.instance.UserDirEnrollment.ldap.ldapconn.host=local
auths.instance.UserDirEnrollment.ldap.ldapconn.port=636
auths.instance.UserDirEnrollment.ldap.ldapconn.secureConn=true

auth.instance_id=UserDirEnrollment
auths.acl=group="cn=devlab-access,ou=engineering,dc=example,dc=com"

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

205

Usually, the parameters which need updated are the Directory Server's host name, Directory
Manager's bind password, and PIN manager's password.

4. Run the setpin command with its optfile option pointing to the setpin.conf file.

setpin optfile=/usr/share/pki/native-tools/setpin.conf

The tool modifies the schema with a new attribute (by default, pin) and a new object class
(by default, pinPerson), creates a pinmanager user, and sets the ACI to allow only the
pinmanager user to modify the pin attribute.

5. To generate PINs for specific user entries or to provide user-defined PINs, create an input
file with the DNs of those entries listed. For ezample:

dn:uid=bjensen,ou=people,dc=example,dc=com
dn:uid=jsmith,ou=people,dc=example,dc=com
dn:jtyler,ou=people,dc=example,dc=com
...

For information on constructing an input file, see the PIN generator chapter in the
Certificate System Command-Line Tools Guide .

6. Disable setup mode for the setpin command. Either comment out the setup line or change
the value to no.

vim /usr/share/pki/native-tools/setpin.conf

setup=no

Setup mode creates the required uers and object classes, but the tool will not generate
PINs while in setup mode.

7. Run the setpin command to create PINs in the directory.

NOTE

Test-run the tool first without the write option to generate a list of PINs
without actually changing the directory.

For example:

setpin host=yourhost port=9446 length=11 input=infile output=outfile write
"binddn=cn=pinmanager,o=example.com" bindpw="password" basedn=o=example.com
"filter=(uid=u*)" hash=sha256

Administration Guide

206

WARNING

Do not set the hash argument to none. Running the setpin command
with hash=none results in the pin being stored in the user LDAP entry
as plain text.

8. Use the output file for delivering PINs to users after completing setting up the required
authentication method.

After confirming that the PIN-based enrollment works, deliver the PINs to users so they can
use them during enrollment. To protect the privacy of PINs, use a secure, out-of-band
delivery method.

2. Set the policies for specific certificates in the certificate profiles to enroll users. See Chapter 3,
Making Rules for Issuing Certificates (Certificate Profiles) for information about certificate
profile policies.

3. Create and configure an instance of the UidPwdPinDirAuth authentication plug-in.

1. Open the CA Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Authentication in the navigation tree.

The right pane shows the Authentication Instance tab, which lists the currently configured
authentication instances.

3. Click Add.

The Select Authentication Plug-in Implementation window appears.

4. Select the UidPwdPinDirAuth plug-in module.

5. Fill in the following fields in the Authentication Instance Editor window:

Authentication Instance ID. Accept the default instance name or enter a new name.

removePin. Sets whether to remove PINs from the authentication directory after end
users successfully authenticate. Removing PINs from the directory restricts users from
enrolling more than once, and thus prevents them from getting more than one
certificate.

pinAttr. Specifies the authentication directory attribute for PINs. The PIN Generator
utility sets the attribute to the value of the objectclass parameter in the setpin.conf
file; the default value for this parameter is pin.

dnpattern. Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

ldapStringAttributes. Specifies the list of LDAP string attributes that should be
considered authentic for the end entity. Entering values for this parameter is optional.



CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

207

ldapByteAttributes. Specifies the list of LDAP byte (binary) attributes that should be
considered authentic for the end entity. If specified, the values corresponding to these
attributes will be copied from the authentication directory into the authentication token
for use by other modules, such as adding additional information to users' certificates.

Entering values for this parameter is optional.

ldap.ldapconn.host. Specifies the fully-qualified DNS host name of the authentication
directory.

ldap.ldapconn.port. Specifies the TCP/IP port on which the authentication directory
listens to requests from the Certificate System.

ldap.ldapconn.secureConn. Specifies the type, SSL or non-SSL, of the port on which
the authentication directory listens to requests. Select if this is an SSL port.

ldap.ldapconn.version. Specifies the LDAP protocol version, either 2 or 3. By default,
this is 3, since all Directory Server versions later than 3.x are LDAPv3.

ldap.ldapAuthentication.bindDN. Specifies the user entry as whom to bind when
removing PINs from the authentication directory. Specify this parameter only if the
removePin checkbox is selected. It is recommended that a separate user entry that has
permission to modify only the PIN attribute in the directory be created and used. For
example, do not use the Directory Manager's entry because it has privileges to modify
the entire directory content.

password. Gives the password associated with the DN specified by the
ldap.ldapauthbindDN parameter. When saving changes, the server stores the
password in the single sign-on password cache and uses it for subsequent start ups. This
parameter needs set only if the removePin checkbox is selected.

ldap.ldapAuthentication.clientCertNickname. Specifies the nickname of the
certificate to use for SSL client authentication to the authentication directory to
remove PINs. Make sure that the certificate is valid and has been signed by a CA that is
trusted in the authentication directory's certificate database and that the
authentication directory's certmap.conf file has been configured to map the certificate
correctly to a DN in the directory. This is needed for PIN removal only.

ldap.ldapAuthentication.authtype. Specifies the authentication type, basic
authentication or SSL client authentication, required in order to remove PINs from the
authentication directory.

BasicAuth specifies basic authentication. With this option, enter the correct values
for ldap.ldapAuthentication.bindDN and password parameters; the server uses
the DN from the ldap.ldapAuthentication.bindDN attribute to bind to the
directory.

SslClientAuth specifies SSL client authentication. With this option, set the value of
the ldap.ldapconn.secureConn parameter to true and the value of the
ldap.ldapAuthentication.clientCertNickname parameter to the nickname of the
certificate to use for SSL client authentication.

ldap.basedn. Specifies the base DN for searching the authentication directory; the
server uses the value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

ldap.minConns. Specifies the minimum number of connections permitted to the

Administration Guide

208

ldap.minConns. Specifies the minimum number of connections permitted to the
authentication directory. The permissible values are 1 to 3.

ldap.maxConns. Specifies the maximum number of connections permitted to the
authentication directory. The permissible values are 3 to 10.

6. Click OK.

4. Customize the enrollment forms by configuring the inputs in the certificate profiles. Include the
information that will be needed by the plug-in to authenticate the user. If the default inputs do
not contain all of the information that needs to be collected, submit a request created with a
third-party tool.

NOTE

pkiconsole is being deprecated.

10.2.3. Using Certificate-Based Authentication

Certificate-based authentication is when a certificate is presented that verifies the identity of the
requester and automatically validates and authenticates the request being submitted. This is most
commonly used for renewal processes, when the original certificate is presented by the user, server, and
application and that certificate is used to authenticate the request.

There are other circumstances when it may be useful to use certificate-based authentication for initially
requesting a certificate. For example, tokens may be bulk-loaded with generic certificates which are
then used to authenticate the users when they enroll for their user certificates or, alternatively, users can
be issued signing certificates which they then use to authenticate their requests for encryption
certificates.

The certificate-based authentication module, SSLclientCertAuth, is enabled by default, and this
authentication method can be referenced in any custom certificate profile.

10.2.4. Configuring Flat File Authentication

A router certificate is enrolled and authenticated using a randomly-generated PIN. The CA uses the
flatFileAuth authentication module to process a text file which contains the router's authentication
credentials.

10.2.4.1. Configuring the flatFileAuth Module

Flat file authentication is already configured for SCEP enrollments, but the location of the flat file and
its authentication parameters can be edited.

1. Open the CA Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Authentication in the navigation tree.

3. Select the flatFileAuth authentication module.

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

209

4. Click Edit/View.

5. To change the file location and name, reset the fileName field.

To change the authentication name parameter, reset the keyAttributes value to another value
submitted in the SCEP enrollment form, like CN. It is also possible to use multiple name
parameters by separating them by commas, like UID,CN. To change the password parameter
name, reset the authAttributes field.

6. Save the edits.

NOTE

Administration Guide

210

NOTE

pkiconsole is being deprecated.

10.2.4.2. Editing flatfile.txt

The same flatfile.txt file is used to authenticate every SCEP enrollment. This file must be manually
updated every time a new PIN is issued to a router.

By default, this file is in /var/lib/pki/pki-ca/ca/conf/ and specifies two parameters per authentication
entry, the UID of the site (usually its IP address, either IPv4 or IPv6) and the PIN issued by the router.

UID:192.168.123.123
PIN:HU89dj

Each entry must be followed by a blank line. For example:

UID:192.168.123.123
PIN:HU89dj

UID:12.255.80.13
PIN:fiowIO89

UID:0.100.0.100
PIN:GRIOjisf

If the authentication entries are not separated by an empty line, then when the router attempts to
authenticate to the CA, it will fail. For example:

... flatfile.txt entry ...
UID:192.168.123.123
PIN:HU89dj
UID:12.255.80.13
PIN:fiowIO89

... error log entry ...
[13/Jun/2020:13:03:09][http-9180-Processor24]: FlatFileAuth: authenticating user: finding user from
key: 192.168.123.123
[13/Jun/2020:13:03:09][http-9180-Processor24]: FlatFileAuth: User not found in password file.

10.3. CMC AUTHENTICATION PLUG-INS

CMC enrollment allows an enrollment client to use a CMC Authentication plug-in for authentication, by
which the certificate request is either pre-signed with an agent certificate or a user certificate,
depending on the plug-in. The Certificate Manager automatically issues certificates when a CMC
request signed with a valid certificate is received.

The CMC authentication plug-ins also provide CMC revocation for the client. CMC revocation allows
the client to have the certificate request either signed by the agent certificate, or a verifiable user that
owns the certificate, and then send such a request to the Certificate Manager. The Certificate Manager
automatically revokes certificates when a CMC revocation request signed with a valid certificate is
received.

Certificate System provides the following CMC authentication plug-ins:

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

211

CMCAuth

Use this plug-in when a CA agent signs CMC requests.

To use the CMCAuth plug-in, set the following in the enrollment profile:

auth.instance_id=CMCAuth

By default, the following enrollment profiles use the CMCAuth plug-in:

For system certificates:

caCMCauditSigningCert

caCMCcaCert

caCMCECserverCert

caCMCECsubsystemCert

caCMCECUserCert

caCMCkraStorageCert

caCMCkraTransportCert

caCMCocspCert

caCMCserverCert

caCMCsubsystemCert

For user certificates:

caCMCUserCert

caECFullCMCUserCert

caFullCMCUserCert

CMCUserSignedAuth

Use this plug-in when users submit signed or SharedSecret-based CMC requests.

To use the CMCUserSignedAuth plug-in, set the following in the enrollment profile:

auth.instance_id=CMCUserSignedAuth

A user-signed CMC request must be signed by the user's certificate which contains the same
subjectDN attribute as the requested certificate. You can only use a user-signed CMC request if the
user already obtained a signing certificate which can be used to prove the user's identity for other
certificates.

A SharedSecret-based CMC request means that the request was signed by the private key of the
request itself. In this case, the CMC request must use the Shared Secret mechanism for
authentication. A SharedSecret-based CMC request is typically used to obtain the user's first signing
certificate, which is later used to obtain other certificates. For further details, see Section 10.4, “CMC
SharedSecret Authentication”.

Administration Guide

212

By default, the following enrollment profiles use the CMCUserSignedAuth plug-in:

caFullCMCUserSignedCert

caECFullCMCUserSignedCert

caFullCMCSharedTokenCert

caECFullCMCSharedTokenCert

10.4. CMC SHAREDSECRET AUTHENTICATION

Use the Shared Secret feature to enable users to send unsigned CMC requests to the server. For
example, this is necessary if a user wants to obtain the first signing certificate. This signing certificate
can later be used to sign other certificates of this user.

10.4.1. Creating a Shared Secret Token

The The Shared Secret Workflow section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide describes the workflow when using a Shared Secret Token. Depending on the
situation, either an end entity user or an administrator creates the Shared Secret Token.

NOTE

To use the shared secret token, Certificate System must use an RSA issuance protection
certificate. For details, see Enabling the CMC Shared Secret Feature section located in
RHCS Planning, Installation, and Deployment Guide.

To create a Shared Secret Token, enter:

CMCSharedToken -d /home/user_name/.dogtag/ -p NSS_password \
 -s "CMC_enrollment_password" -o /home/user_name/CMC_shared_token.b64 \
 -n "issuance_protection_certificate_nickname"

If you use an HSM, additionally pass the -h token_name option to the command to set the HSM security
token name.

For further details about the CMCSharedToken utility, see the CMCSharedToken(8) man page.

NOTE

The generated token is encrypted and only the user who generated knows the password.
If a CA administrator generates the token for a user, the administrator must provide the
password to the user using a secure way.

After creating the Shared Token, an administrator must add the token to a user or certificate record. For
details, see Section 10.4.2, “Setting a CMC Shared Secret” .

10.4.2. Setting a CMC Shared Secret

Depending on the planned action, an administrator must store a Shared Secret Token after generating it
in the LDAP entry of the user or certificate.

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

213

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/planning_installation_and_deployment_guide/the_shared_secret_workflow

For details about the workflow and when to use a Shared Secret, see the The Shared Secret Workflow
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

10.4.2.1. Adding a CMC Shared Secret to a User Entry for Certificate Enrollment

To use the Shared Secret Token for certificate enrollment, store it as an administrator in the LDAP entry
of the user:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

 dn: uid=user_name,ou=People,dc=example,dc=com
 changetype: modify
 replace: shrTok
 shrTok: base64-encoded_token

10.4.2.2. Adding a CMC Shared Secret to a Certificate for Certificate Revocations

To use the Shared Secret Token for certificate revocations, store it as an administrator in the LDAP
entry of the certificate to be revoked:

 # ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

 dn: cn=certificate_id,ou=certificateRepository,ou=ca,o=pki-tomcat-CA
 changetype: modify
 replace: shrTok
 shrTok: base64-encoded_token

10.5. TESTING ENROLLMENT

For information on testing enrollment through the profiles, see Chapter 3, Making Rules for Issuing
Certificates (Certificate Profiles). To test whether end users can successfully enroll for a certificate
using the authentication method set:

1. Open the end-entities page.

https://server.example.com:8443/ca/ee/ca

2. In the Enrollment tab, open the customized enrollment form.

3. Fill in the values, and submit the request.

4. Enter the password to the key database when prompted.

5. When the correct password is entered, the client generates the key pair.

Do not interrupt the key-generation process. Upon completion of the key generation, the
request is submitted to the server to issue the certificate. The server subjects the request to the
certificate profile and issues the certificate only if the request meets all the requirements.

When the certificate is issued, install the certificate in the browser.

6. Verify that the certificate is installed in the browser's certificate database.

7. If PIN-based directory authentication was configured with PIN removal, re-enroll for another

Administration Guide

214

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/planning_installation_and_deployment_guide/the_shared_secret_workflow

7. If PIN-based directory authentication was configured with PIN removal, re-enroll for another
certificate using the same PIN. The request should be rejected.

10.6. REGISTERING CUSTOM AUTHENTICATION PLUG-INS

Custom authentication plug-in modules can be registered through the CA Console. Authentication
plug-in modules can also be deleted through the CA Console. Before deleting a module, delete
instances that are based on that module.

NOTE

For writing custom plug-ins, refer to the Authentication Plug-in Tutorial .

1. Create the custom authentication class. For this example, the custom authentication plug-in is
called UidPwdDirAuthenticationTestms.java.

2. Compile the new class.

javac -d . -classpath $CLASSPATH UidPwdDirAuthenticationTestms.java

3. Create a directory in the CA's WEB-INF web directory to hold the custom classes, so that the
CA can access them for the enrollment forms.

mkdir /usr/share/pki/ca/webapps/ca/WEB-INF/classes

4. Copy the new plug-in files into the new classes directory, and set the owner to the
Certificate System system user (pkiuser).

cp -pr com /usr/share/pki/ca/webapps/ca/WEB-INF/classes

chown -R pkiuser:pkiuser /usr/share/pki/ca/webapps/ca/WEB-INF/classes

5. Log into the console.

pkiconsole https://server.example.com:8443/ca

6. Register the plug-in.

1. In the Configuration tab, click Authentication in the navigation tree.

2. In the right pane, click the Authentication Plug-in Registration tab.

The tab lists modules that are already registered.

3. To register a plug-in, click Register.

The Register Authentication Plug-in Implementation window appears.

4. Specify which module to register by filling in the two fields:

Plugin name. The name for the module.

Class name. The full name of the class for this module. This is the path to the

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

215

http://pki.fedoraproject.org/wiki/PKI_Authentication_Plug-ins

implementing Java™ class. If this class is part of a package, include the package name.
For example, to register a class named customAuth in a package named
com.customplugins, the class name is com.customplugins.customAuth.

7. After registering the module, add the module as an active authentication instance.

1. In the Configuration tab, click Authentication in the navigation tree.

2. In the right pane, click the Authentication Instance tab.

3. Click Add.

4. Select the custom module, UidPwdDirAuthenticationTestms.java, from the list to add the
module. Fill in the appropriate configuration for the module.

NOTE

pkiconsole is being deprecated.

8. Create a new end-entity enrollment form to use the new authentication module.

cd /var/lib/pki/pki-tomcat/ca/profiles/ca

cp -p caDirUserCert.cfg caDirUserCertTestms.cfg

vi caDirUserCertTestms.cfg

desc=Test ms - This certificate profile is for enrolling user certificates with directory-based
authentication.
visible=true
enable=true
enableBy=admin
name=Test ms - Directory-Authenticated User Dual-Use Certificate Enrollment
auth.instance_id=testms
...

9. Add the new profile to the CA's CS.cfg file.

NOTE

Back up the CS.cfg file before editing it.

vim /var/lib/pki/instance-name/ca/conf/CS.cfg

profile.list=caUserCert,caDualCert,caSignedLogCert,caTPSCert,caRARouterCert,caRouterCer
t,caServerCert,caOtherCert,caCACert,caInstallCACert,caRACert,caOCSPCert,caTransportCe
rt,caDirUserCert,caAgentServerCert,caAgentFileSigning,caCMCUserCert,caFullCMCUserCert
,caSimpleCMCUserCert,caTokenDeviceKeyEnrollment,caTokenUserEncryptionKeyEnrollment,
caTokenUserSigningKeyEnrollment,caTempTokenDeviceKeyEnrollment,caTempTokenUserEn
cryptionKeyEnrollment,caTempTokenUserSigningKeyEnrollment,caAdminCert,caInternalAuthS
erverCert,caInternalAuthTransportCert,caInternalAuthKRAstorageCert,caInternalAuthSubsyste
mCert,caInternalAuthOCSPCert,DomainController,caDirUserCertTestms
...

Administration Guide

216

profile.caDirUserCertTestms.class_id=caEnrollImpl
profile.caDirUserCertTestms.config=/var/lib/pki/pki-
tomcat/ca/profiles/ca/caDirUserCertTestms.cfg

10. Restart the CA.

pki-server restart instance_name

10.7. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE
COMMAND LINE

To review certificate requests, ensure that you are authenticated as an agent with proper permissions to
approve certificate requests. For details about configuring the pki command-line interface, see
Section 2.5.1.1, “pki CLI Initialization” .

To review the requests:

1. Display the list of pending certificate requests:

$ pki agent_authentication_parameters ca-cert-request-find --status pending

This command lists all pending certificate requests.

2. Download a particular certificate request:

$ pki agent_authentication_parameters ca-cert-request-review id --file request.xml

3. Open the request.xml file in an editor or a separate terminal, and review the contents of the
request to ensure it is legitimate. Then answer the prompt: if the request is valid, answer
"approve and press Enter. If the request is invalid, answer reject and press Enter. Organizations
can subscribe semantic differences to reject and cancel; both result in no certificate being
issued.

10.8. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE
WEB INTERFACE

1. Open the following URL in a web browser:

https://server_host_name:8443/ca/agent/ca

2. Authenticate as an agent. For information about authenticating as a user and configuring your
browser, see Section 2.4.1, “Browser Initialization” .

3. On the sidebar on the left, click the List requests link.

4. Filter the requests by selecting Show all requests for Request type and Show pending
requests for Request status.

5. Click Find in the lower right corner.

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

217

6. The results page lists all pending requests waiting for review. Click on the request number to
review a request.

7. Review the request information and ensure that it is a legitimate request. If necessary, modify
the policy information to correct any mistakes or make any desired changes to the certificate,
such as changing the not valid after field. Optionally, leave an additional note.

The drop down menu includes several review status updates. Select Approve request to
approve the request or Reject request to deny it, and click Submit. Organizations can
subscribe semantic differences to Reject request and Cancel Request; both result in no
certificate being issued.

Administration Guide

218

CHAPTER 11. AUTHORIZATION FOR ENROLLING
CERTIFICATES (ACCESS EVALUATORS)
This chapter describes the authorization mechanism using access evaluators.

11.1. AUTHORIZATION MECHANISM

In addition to the authentication mechanism, each enrollment profile can be configured to have its own
authorization mechanism. The authorization mechanism is executed only after a successful
authentication.

The authorization mechanism is provided by the Access Evaluator plug-in framework. Access evaluators
are pluggable classes that are used for evaluating access control instructions (ACI) entries. The
mechanism provides an evaluate method that takes a predefined list of arguments (that is, type, op,
value), evaluates an expression such as group='Certificate Manager Agents' and returns a boolean
depending on the result of evaluation.

11.2. DEFAULT EVALUATORS

Red Hat Certificate System provides four default evaluators. The following entries are listed by default
in the CS.cfg file:

accessEvaluator.impl.group.class=com.netscape.cms.evaluators.GroupAccessEvaluator
accessEvaluator.impl.ipaddress.class=com.netscape.cms.evaluators.IPAddressAccessEvaluator
accessEvaluator.impl.user.class=com.netscape.cms.evaluators.UserAccessEvaluator
accessEvaluator.impl.user_origreq.class=com.netscape.cms.evaluators.UserOrigReqAccessEvaluator

The group access evaluator evaluates the group membership properties of a user. For example, in the
following enrollment profile entry, only the CA agents are allowed to go through enrollment with that
profile:

authz.acl=group="Certificate Manager Agents"

The ipaddress access evaluator evaluates the IP address of the requesting subject. For example, in the
following enrollment profile entry, only the host bearing the specified IP address can go through
enrollment with that profile:

authz.acl=ipaddress="a.b.c.d.e.f"

The user access evaluator evaluates the user ID for exact match. For example, in the following
enrollment profile entry, only the user matching the listed user is allowed to go through enrollment with
that profile:

authz.acl=user="bob"

The user_origreq access evaluator evaluates the authenticated user against a previous matching
request for equality. This special evaluator is designed specifically for renewal purpose to make sure the
user requesting the renewal is the same user that owns the original request. For example, in the
following renewal enrollment profile entry, the UID of the authenticated user must match the UID of the
user requesting the renewal:

authz.acl=user_origreq="auth_token.uid"

CHAPTER 11. AUTHORIZATION FOR ENROLLING CERTIFICATES (ACCESS EVALUATORS)

219

New evaluators can be written in the current framework and can be registered through the CS console.
The default evaluators can be used as templates to expand and customize into more targeted plug-ins.

Administration Guide

220

CHAPTER 12. USING AUTOMATED NOTIFICATIONS
The Certificate System can be configured to send automatic email notifications to end users when
certificates are issued or revoked or to an agent when a new request has arrived in the agent request
queue. This chapter describes automated notifications and details how to enable, configure, and
customize the notification email messages that are sent.

NOTE

Because of the types of notifications that can be sent, only Certificate Managers have
the ability to be configured for notifications; this option is not available on the other
subsystems.

12.1. ABOUT AUTOMATED NOTIFICATIONS FOR THE CA

Automated notifications are email messages sent when a specified event occurs. The system uses
listeners that monitor the system to determine when a particular event has occurred; when the event
happens, then the system is triggered to send an email to the configured recipient. Each type of
notification uses a template, either in plain text or HTML, to construct the notification message. The
template contains text and tokens that are expanded to fill in the correct information for a particular
event. The messages can be customized by changing the text and tokens contained in the templates.
The HTML templates can also be customized for different appearances and formatting.

12.1.1. Types of Automated Notifications

There are three types of automated notifications:

Certificate Issued .

A notification message is automatically sent to users who have been issued certificates. A
rejection message is sent to a user if the user's certificate request is rejected.

Certificate Revocation.

A notification message is automatically sent to users when the user certificate is revoked.

Request in Queue .

A notification message is automatically sent to one or more agents when a request enters the
agent request queue, using the email addresses set for the agent. This notification type sends
an email every time a message enters the queue. For more information about the request in
queue job, see Section 13.1.2.2, “requestInQueueNotifier (RequestInQueueJob)”.

There is also a job that sends a notification to agents about the status of the queue, which
includes a summary of the queue status at certain intervals.

12.1.2. Determining End-Entity Email Addresses

The notification system determines the email address of an end entity by checking first the certificate
request or revocation request, then the subject name of the certificate, and last the Subject Alternative
Name extension of the certificate, if the certificate contains this extension. If an email address cannot be
found, the notification is sent to the email address specified in the Sender's Email Address field of the
Notification panel.

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

221

12.2. SETTING UP AUTOMATED NOTIFICATIONS FOR THE CA

12.2.1. Setting up Automated Notifications in the Console

1. Open the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. Open the Configuration tab.

3. Open the Certificate Manager heading in the navigation tree on the left. Then select
Notification.

The Notification tabs appear in the right side of the window.

4. Notifications can be sent for three kinds of events: newly-issued certificates, revoked
certificates, and new certificate requests. To send a notification for any event, select the tab,
check the Enable checkbox, and specify information in the following fields:

Sender's E-mail Address. Type the sender's full email address of the user who is notified
of any delivery problems.

Recipient's E-mail Address. These are the email addresses of the agents who will check
the queue. To list more than one recipient, separate the email addresses with commas. For
new requests in queue only.

Subject. Type the subject title for the notification.

Content template path. Type the path, including the filename, to the directory that contains
the template to use to construct the message content.

5. Click Save.

NOTE

Make sure the mail server is set up correctly. See Section 12.4, “Configuring a
Mail Server for Certificate System Notifications”.

6. Customize the notification message templates. See Section 12.3, “Customizing Notification
Messages” for more information.

Administration Guide

222

7. Test the configuration. See Section 12.2.3, “Testing Configuration”.

NOTE

pkiconsole is being deprecated.

12.2.2. Configuring Specific Notifications by Editing the CS.cfg File

1. Stop the CA subsystem.

pki-server stop instance_name

2. Open the CS.cfg file for that instance. This file is in the instance's conf/ directory.

3. Edit all of the configuration parameters for the notification type being enabled.

For certificate issuing notifications, there are four parameters:

ca.notification.certIssued.emailSubject
ca.notification.certIssued.emailTemplate
ca.notification.certIssued.enabled
ca.notification.certIssued.senderEmail

For certificate revocation notifications, there are four parameters:

ca.notification.certRevoked.emailSubject
ca.notification.certRevoked.emailTemplate
ca.notification.certRevoked.enabled
ca.notification.certRevoked.senderEmail

For certificate request notifications, there are five parameters:

ca.notification.requestInQ.emailSubject
ca.notification.requestInQ.emailTemplate
ca.notification.requestInQ.enabled
ca.notification.requestInQ.recipientEmail
ca.notification.requestInQ.senderEmail

The parameters for the notification messages are explained in Section 12.2, “Setting up
Automated Notifications for the CA”.

4. Save the file.

5. Restart the CA instance.

pki-server start instance_name

6. If a job has been created to send automated messages, check that the mail server is correctly
configured. See Section 12.4, “Configuring a Mail Server for Certificate System Notifications” .

7. The messages that are sent automatically can be customized; see Section 12.3, “Customizing
Notification Messages” for more information.

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

223

12.2.3. Testing Configuration

To test whether the subsystem sends email notifications as configured, do the following:

1. Change the email address in the notification configuration for the request in queue notification
to an accessible agent or administrator email address.

2. Open the end-entities page, and request a certificate using the agent-approved enrollment
form.

When the request gets queued for agent approval, a request-in-queue email notification should
be sent. Check the message to see if it contains the configured information.

3. Log into the agent interface, and approve the request.

When the server issues a certificate, the user receive a certificate-issued email notification to
the address listed in the request. Check the message to see if it has the correct information.

4. Log into the agent interface, and revoke the certificate.

The user email account should contain an email message reading that the certificate has been
revoked. Check the message to see if it has the correct information.

12.3. CUSTOMIZING NOTIFICATION MESSAGES

The email notifications are constructed using a template for each type of message. This allows
messages to be informative, easily reproducible, and easily customizable. The CA uses templates for its
notification messages. Separate templates exist for HTML and plain text messages.

12.3.1. Customizing CA Notification Messages

Each type of CA notification message has an HTML template and a plain text template associated with
it. Messages are constructed from text, tokens, and, for the HTML templates, HTML markup. Tokens are
variables, identified by a dollar sign ($), in the message that are replaced by the current value when the
message is constructed. See Table 12.3, “Notification Variables” for a list of available tokens.

The contents of any message type can be modified by changing the text and tokens in the message
template. The appearance of the HTML messages can be changed by modifying the HTML commands
in the HTML message template.

The default text version of the certificate-issuance-notification message is as follows:

Your certificate request has been processed successfully.
SubjectDN= $SubjectDN
IssuerDN= $IssuerDN
notAfter= $NotAfter
notBefore= $NotBefore
Serial Number= 0x$HexSerialNumber
To get your certificate, please follow this URL:
https://$HttpHost:$HttpPort/displayBySerial?op=displayBySerial&
 serialNumber=$SerialNumber
Please contact your admin if there is any problem.
And, of course, this is just a \$SAMPLE\$ email notification form.

This template can be customized as desired, by rearranging, adding, or removing tokens and text, as

Administration Guide

224

This template can be customized as desired, by rearranging, adding, or removing tokens and text, as
shown:

THE EXAMPLE COMPANY CERTIFICATE ISSUANCE CENTER
Your certificate has been issued!
You can pick up your new certificate at the following website:
https://$HttpHost:$HttpPort/displayBySerial?op=displayBySerial&
 serialNumber=$SerialNumber
This certificate has been issued with the following information:
Serial Number= 0x$HexSerialNumber
Name of Certificate Holder = $SubjectDN
Name of Issuer = $IssuerDN
Certificate Expiration Date = $NotAfter
Certificate Validity Date = $NotBefore
Contact IT by calling X1234, or going to the IT website http://IT
 if you have any problems.

Notification message templates are located in the /var/lib/pki/instance_name/ca/emails directory.

The name and location of these messages can be changed; make the appropriate changes when
configuring the notification. All template names can be changed except for the certificate rejected
templates; these names must remain the same. The templates associated with certificate issuance and
certificate rejection must be located in the same directory and must use the same extension.

Table 12.1, “Notification Templates” lists the default template files provided for creating notification
messages. Table 12.2, “Job Notification Email Templates” lists the default template files provided for
creating job summary messages.

Table 12.1. Notification Templates

Filename Description

certIssued_CA Template for plain text notification emails to end
entities when certificates are issued.

certIssued_CA.html Template for HTML-based notification emails to end
entities when certificates are issued.

certRequestRejected.html Template for HTML-based notification emails to end
entities when certificate requests are rejected.

certRequestRevoked_CA Template for plain text notification emails to end
entities when a certificate is revoked.

certRequestRevoked_CA.html Template for HTML-based notification emails to end
entities when a certificate is revoked.

reqInQueue_CA Template for plain text notification emails to agents
when a request enters the queue.

reqInQueue_CA.html Template for HTML-based notification emails to
agents when a request enters the queue.

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

225

Table 12.2. Job Notification Email Templates

Filename Description

rnJob1.txt Template for formulating the message content sent
to end entities to inform them that their certificates
are about to expire and that the certificates should
be renewed or replaced before they expire.

rnJob1Summary.txt Template for constructing the summary report to be
sent to agents and administrators. Uses the
rnJob1Item.txt template to format items in the
message.

rnJob1Item.txt Template for formatting the items included in the
summary report.

riq1Item.html Template for formatting the items included in the
summary table, which is constructed using the
riq1Summary.html template.

riq1Summary.html Template for formulating the report or table that
summarizes how many requests are pending in the
agent queue of a Certificate Manager.

publishCerts Template for the report or table that summarizes the
certificates to be published to the directory. Uses the
publishCertsItem.html template to format the
items in the table.

publishCertsItem.html Template for formatting the items included in the
summary table.

ExpiredUnpublishJob Template for the report or table that summarizes
removal of expired certificates from the directory.
Uses the ExpiredUnpublishJobItem template to
format the items in the table.

ExpiredUnpublishJobItem Template for formatting the items included in the
summary table.

Table 12.3, “Notification Variables” lists and defines the variables that can be used in the notification
message templates.

Table 12.3. Notification Variables

Token Description

Administration Guide

226

$CertType Specifies the type of certificate; these can be any of
the following:

TLS client (client)

TLS server (server)

CA signing certificate (ca)

other (other).

$ExecutionTime Gives the time the job was run.

$HexSerialNumber Gives the serial number of the certificate that was
issued in hexadecimal format.

$HttpHost Gives the fully qualified host name of the Certificate
Manager to which end entities should connect to
retrieve their certificates.

$HttpPort Gives the Certificate Manager's end-entities (non-
TLS) port number.

$InstanceID Gives the ID of the subsystem that sent the
notification.

$IssuerDN Gives the DN of the CA that issued the certificate.

$NotAfter Gives the end date of the validity period.

$NotBefore Gives the beginning date of the validity period.

$RecipientEmail Gives the email address of the recipient.

$RequestId Gives the request ID.

$RequestorEmail Gives the email address of the requester.

$RequestType Gives the type of request that was made.

$RevocationDate Gives the date the certificate was revoked.

$SenderEmail Gives the email address of the sender; this is the
same as the one specified in the Sender's E-mail
Address field in the notification configuration.

Token Description

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

227

$SerialNumber Gives the serial number of the certificate that has
been issued; the serial number is displayed as a
hexadecimal value in the resulting message.

$Status Gives the request status.

$SubjectDN Gives the DN of the certificate subject.

$SummaryItemList Lists the items in the summary notification. Each item
corresponds to a certificate the job detects for
renewal or removal from the publishing directory.

$SummaryTotalFailure Gives the total number of items in the summary
report that failed.

$SummaryTotalNum Gives the total number of certificate requests that
are pending in the queue or the total number of
certificates to be renewed or removed from the
directory in the summary report.

$SummaryTotalSuccess Shows how many of the total number of items in the
summary report succeeded.

Token Description

12.4. CONFIGURING A MAIL SERVER FOR CERTIFICATE SYSTEM
NOTIFICATIONS

The notifications and jobs features use the mail server configured in the Certificate System CA
instances to send notification messages.

Before you start setting up the mail server, ensure the following parameters are specified in the CS.cfg
configuration file:

smtp.host=localhost
smtp.port=25

Set up a mail server by doing the following:

1. Open the CA subsystem administrative console. For example:

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, highlight the instance name at the top, and select the SMTP tab.

3. Supply the server name and port number of the mail server.

The server name is the fully qualified DNS hostname of the machine on which the mail server is
installed, such as mail.example.com. By default, the hostname of the mail server is localhost
instead of the actual hostname.

Administration Guide

228

The default port number on which the SMTP mail server listens is 25.

4. Click Save.

NOTE

pkiconsole is being deprecated.

12.5. CREATING CUSTOM NOTIFICATIONS FOR THE CA

It can be possible to create custom notification functions to handle other PKI operations, such as token
enrollments, by editing existing email notifications plug-ins for the Certificate System CA. Before
attempting to create or use custom notification plug-ins, contact Red Hat support services.

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

229

CHAPTER 13. SETTING AUTOMATED JOBS
The Certificate System provides a customizable Job Scheduler that supports various mechanisms for
scheduling cron jobs. This chapter explains how to configure Certificate System to use specific job
plug-in modules for accomplishing jobs.

13.1. ABOUT AUTOMATED JOBS

The Certificate Manager Console includes a Job Scheduler option that can execute specific jobs at
specified times. The Job Scheduler is similar to a traditional Unix cron daemon; it takes registered cron
jobs and executes them at a pre-configured date and time. If configured, the scheduler checks at
specified intervals for jobs waiting to be executed; if the specified execution time has arrived, the
scheduler initiates the job automatically.

Jobs are implemented as Java™ classes, which are then registered with Certificate System as plug-in
modules. One implementation of a job module can be used to configure multiple instances of the job.
Each instance must have a unique name (an alphanumeric string with no spaces) and can contain
different input parameter values to apply to different jobs.

13.1.1. Setting up Automated Jobs

The automated jobs feature is set up by doing the following:

Enabling and configuring the Job Scheduler; see Section 13.2, “Setting up the Job Scheduler”
for more information.

Enabling and configuring the job modules and setting preferences for those job modules; see
Section 13.3, “Setting up Specific Jobs” for more information.

Customizing the email notification messages sent with these jobs by changing the templates
associated with the types of notification. The message contents are composed of both plain
text messages and HTML messages; the appearance is modified by changing the HTML
templates. See Section 12.3.1, “Customizing CA Notification Messages” for more information.

13.1.2. Types of Automated Jobs

The types of automated jobs are RenewalNotificationJob, RequestInQueueJob, PublishCertsJob,
and UnpublishExpiredJob. One instance of each job type is created when Certificate System is
deployed.

13.1.2.1. certRenewalNotifier (RenewalNotificationJob)

The certRenewalNotifier job checks for certificates that are about to expire in the internal database.
When it finds one, it automatically emails the certificate's owner and continues sending email reminders
for a configured period of time or until the certificate is replaced. The job collects a summary of all
renewal notifications and mails the summary to the configured agents or administrators.

The job determines the email address to send the notification using an email resolver. By default, the
email address is found in the certificate itself or in the certificate's associated enrollment request.

13.1.2.2. requestInQueueNotifier (RequestInQueueJob)

The requestInQueueNotifier job checks the status of the request queue at pre-configured time

Administration Guide

230

The requestInQueueNotifier job checks the status of the request queue at pre-configured time
intervals. If any deferred enrollment requests are waiting in the queue, the job constructs an email
message summarizing its findings and sends it to the specified agents.

13.1.2.3. publishCerts (PublishCertsJob)

The publishCerts job checks for any new certificates that have been added to the publishing directory
that have not yet been published. When these new certificates are added, they are automatically
published to an LDAP directory or file by the publishCerts job.

NOTE

Most of the time, publishers immediately publish any certificates that are created
matching their rules to the appropriate publishing directory.

If a certificate is successfully published when it is created, then the publishCerts job will
not re-publish the certificate. Therefore, the new certificate will not be listed in the job
summary report, since the summary only lists certificates published by the publishCerts
job.

13.1.2.4. unpublishExpiredCerts (UnpublishExpiredJob)

Expired certificates are not automatically removed from the publishing directory. If a Certificate
Manager is configured to publish certificates to an LDAP directory, over time the directory will contain
expired certificates.

The unpublishExpiredCerts job checks for certificates that have expired and are still marked as
published in the internal database at the configured time interval. The job connects to the publishing
directory and deletes those certificates; it then marks those certificates as unpublished in the internal
database. The job collects a summary of expired certificates that it deleted and mails the summary to
the agents or administrators specified by the configuration.

NOTE

This job automates removing expired certificates from the directory. Expired certificates
can also be removed manually; for more information on this, see Section 9.12, “Updating
Certificates and CRLs in a Directory”.

13.2. SETTING UP THE JOB SCHEDULER

The Certificate Manager can execute a job only if the Job Scheduler is enabled. The job settings, such as
enabling the job schedule, setting the frequency, and enabling the job modules, can be done through
the Certificate System CA Console or through editing the CS.cfg file.

To turn the Job Scheduler on:

1. Open the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab navigation tree, click Job Scheduler.

This opens the General Settings tab, which shows whether the Job Scheduler is currently
enabled.

CHAPTER 13. SETTING AUTOMATED JOBS

231

3. Click the Enable Jobs Schedule checkbox to enable or disable the Job Scheduler.

Disabling the Job Scheduler turns off all the jobs.

4. Set the frequency which the scheduler checks for jobs in the Check Frequency field.

The frequency is how often the Job Scheduler daemon thread wakes up and calls the
configured jobs that meet the cron specification. By default, it is set to one minute.

NOTE

The window for entering this information may be too small to see the input. Drag
the corners of the Certificate Manager Console to enlarge the entire window.

5. Click Save.

NOTE

pkiconsole is being deprecated.

13.3. SETTING UP SPECIFIC JOBS

Automated jobs can be configured through the Certificate Manager Console or by editing the
configuration file directory. It is recommended that these changes be made through the Certificate
Manager Console.

13.3.1. Configuring Specific Jobs Using the Certificate Manager Console

NOTE

pkiconsole is being deprecated.

To enable and configure an automated job using the Certificate Manager Console:

1. Open the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. Confirm that the Jobs Scheduler is enabled. See Section 13.2, “Setting up the Job Scheduler”

Administration Guide

232

2. Confirm that the Jobs Scheduler is enabled. See Section 13.2, “Setting up the Job Scheduler”
for more information.

3. In the Configuration tab, select Job Scheduler from the navigation tree. Then select Jobs to
open the Job Instance tab.

Select the job instance from the list, and click Edit/View.

The Job Instance Editor opens, showing the current job configuration.

CHAPTER 13. SETTING AUTOMATED JOBS

233

Figure 13.1. Job Configuration

4. Select enabled to turn on the job.

5. Set the configuration settings by specifying them in the fields for this dialog.

For certRenewalNotifier, see Section 13.3.3, “Configuration Parameters of
certRenewalNotifier”.

For requestInQueueNotifier, see Section 13.3.4, “Configuration Parameters of
requestInQueueNotifier”.

For publishCerts, see Section 13.3.5, “Configuration Parameters of publishCerts”.

For unpublishExpiredCerts, see Section 13.3.6, “Configuration Parameters of
unpublishExpiredCerts”.

For more information about setting the cron time frequencies, see Section 13.3.7,
“Frequency Settings for Automated Jobs”.

6. Click OK.

Administration Guide

234

7. Click Refresh to view any changes in the main window.

8. If the job is configured to send automatic messages, check that a mail server is set up correctly.
See Section 12.4, “Configuring a Mail Server for Certificate System Notifications” .

9. Customize the email message text and appearance.

13.3.2. Configuring Jobs by Editing the Configuration File

1. Ensure that the Jobs Scheduler is enabled and configured; see Section 13.2, “Setting up the Job
Scheduler”.

2. Stop the CA subsystem instance.

pki-server stop instance_name

3. Open the CS.cfg file for that server instance in a text editor.

4. Edit all of the configuration parameters for the job module being configured.

To configure the certRenewalNotifier job, edit all parameters that begin with
jobsScheduler.job.certRenewalNotifier; see Section 13.3.3, “Configuration Parameters of
certRenewalNotifier”.

To configure the requestInQueueNotifier job, edit all parameters that begin with
jobsScheduler.job.requestInQueueNotifier; see Section 13.3.4, “Configuration
Parameters of requestInQueueNotifier”.

To configure the publishCerts job, edit all parameters that begin with
jobsScheduler.job.publishCerts; see Section 13.3.5, “Configuration Parameters of
publishCerts”.

To configure the unpublishExpiredCerts job, edit all parameters that begin with
jobsScheduler.job.unpublishExpiredCerts; see Section 13.3.6, “Configuration Parameters
of unpublishExpiredCerts”.

5. Save the file.

6. Restart the server instance.

pki-server start instance_name

7. If the job will send automated messages, check that the mail server is set up correctly. See
Section 12.4, “Configuring a Mail Server for Certificate System Notifications” .

8. Customize the automatic job messages.

13.3.3. Configuration Parameters of certRenewalNotifier

Table 13.1, “certRenewalNotifier Parameters” gives details for each of these parameters that can be
configured for the certRenewalNotifier job, either in the CS.cfg file or in the Certificate Manager
Console.

Table 13.1. certRenewalNotifier Parameters

CHAPTER 13. SETTING AUTOMATED JOBS

235

Parameter Description

enabled Specifies whether the job is enabled or disabled. The
value true enables the job; false disables it.

cron Sets the schedule when this job should be run. This
sets the time at which the Job Scheduler daemon
thread checks the certificates for sending renewal
notifications. These settings must follow the
conventions in Section 13.3.7, “Frequency Settings
for Automated Jobs”. For example:

0 3 * * 1-5

The job in the example is run Monday through Friday
at 3:00 pm.

notifyTriggerOffset Sets how long (in days) before the certificate
expiration date the first notification will be sent.

notifyEndOffset Sets how long (in days) after the certificate expires
that notifications will continue to be sent if the
certificate is not replaced.

senderEmail Sets the sender of the notification messages, who
will be notified of any delivery problems.

emailSubject Sets the text of the subject line of the notification
message.

emailTemplate Sets the path, including the filename, to the directory
that contains the template to use to create the
message content.

summary.enabled Sets whether a summary report of renewal
notifications should be compiled and sent. The value
true enables sending the summary; false disables it.
If enabled, set the remaining summary parameters;
these are required by the server to send the
summary report.

summary.recipientEmail Specifies the recipients of the summary message.
These can be agents who need to know the status of
user certificates or other users. Set more than one
recipient by separating each email address with a
comma.

summary.senderEmail Specifies the email address of the sender of the
summary message.

summary.emailSubject Gives the subject line of the summary message.

Administration Guide

236

summary.itemTemplate Gives the path, including the filename, to the
directory that contains the template to use to create
the content and format of each item to be collected
for the summary report.

summary.emailTemplate Gives the path, including the filename, to the
directory that contains the template to use to create
the summary report email notification.

Parameter Description

13.3.4. Configuration Parameters of requestInQueueNotifier

Table 13.2, “requestInQueueNotifier Parameters” gives details for each of these parameters that can be
configured for the requestInQueueNotifier job, either in the CS.cfg file or in the Certificate Manager
Console.

Table 13.2. requestInQueueNotifier Parameters

Parameter Description

enabled Sets whether the job is enabled (true) or disabled
(false).

cron Sets the time schedule for when the job should run.
This is the time at which the Job Scheduler daemon
thread checks the queue for pending requests. This
setting must follow the conventions in Section 13.3.7,
“Frequency Settings for Automated Jobs”. For
example:

0 0 * * 0

subsystemid Specifies the subsystem which is running the job. The
only possible value is ca, for the Certificate Manager.

summary.enabled Specifies whether a summary of the job
accomplished should be compiled and sent. The
value true enables the summary reports; false
disables them. If enabled, set the remaining summary
parameters; these are required by the server to send
the summary report.

summary.emailSubject Sets the subject line of the summary message.

summary.emailTemplate Specifies the path, including the filename, to the
directory containing the template to use to create
the summary report.

summary.senderEmail Specifies the sender of the notification message,
who will be notified of any delivery problems.

CHAPTER 13. SETTING AUTOMATED JOBS

237

summary.recipientEmail Specifies the recipients of the summary message.
These can be agents who need to process pending
requests or other users. More than one recipient can
be listed by separating each email address with a
comma.

Parameter Description

13.3.5. Configuration Parameters of publishCerts

Table 13.3, “publishCerts Parameters” gives details for each of these parameters that can be configured
for the publishCerts job, either in the CS.cfg file or in the Certificate Manager Console.

Table 13.3. publishCerts Parameters

Parameter Description

enabled Sets whether the job is enabled. The value true is
enabled; false is disabled.

cron Sets the time schedule for when the job runs. This is
the time the Job Scheduler daemon thread checks
the certificates to removing expired certificates from
the publishing directory. This setting must follow the
conventions in Section 13.3.7, “Frequency Settings
for Automated Jobs”. For example:

0 0 * * 6

summary.enabled Specifies whether a summary of the certificates
published by the job should be compiled and sent.
The value true enables the summaries; false
disables them. If enabled, set the remaining summary
parameters; these are required by the server to send
the summary report.

summary.emailSubject Gives the subject line of the summary message.

summary.emailTemplate Specifies the path, including the filename, to the
directory containing the template to use to create
the summary report.

summary.itemTemplate Specifies the path, including the filename, to the
directory containing the template to use to create
the content and format of each item collected for the
summary report.

summary.senderEmail Specifies the sender of the summary message, who
will be notified of any delivery problems.

Administration Guide

238

summary.recipientEmail Specifies the recipients of the summary message.
These can be agents who need to know the status of
user certificates or other users. More than one
recipient can be set by separating each email address
with a comma.

Parameter Description

13.3.6. Configuration Parameters of unpublishExpiredCerts

Table 13.4, “unpublishExpiredCerts Parameters” gives details for each of these parameters that can be
configured for the unpublishedExpiresCerts job, either in the CS.cfg file or in the Certificate Manager
Console.

Table 13.4. unpublishExpiredCerts Parameters

Parameter Description

enabled Sets whether the job is enabled. The value true is
enabled; false is disabled.

cron Sets the time schedule for when the job runs. This is
the time the Job Scheduler daemon thread checks
the certificates to removing expired certificates from
the publishing directory. This setting must follow the
conventions in Section 13.3.7, “Frequency Settings
for Automated Jobs”. For example:

0 0 * * 6

summary.enabled Specifies whether a summary of the certificates
published by the job should be compiled and sent.
The value true enables the summaries; false
disables them. If enabled, set the remaining summary
parameters; these are required by the server to send
the summary report.

summary.emailSubject Gives the subject line of the summary message.

summary.emailTemplate Specifies the path, including the filename, to the
directory containing the template to use to create
the summary report.

summary.itemTemplate Specifies the path, including the filename, to the
directory containing the template to use to create
the content and format of each item collected for the
summary report.

summary.senderEmail Specifies the sender of the summary message, who
will be notified of any delivery problems.

CHAPTER 13. SETTING AUTOMATED JOBS

239

summary.recipientEmail Specifies the recipients of the summary message.
These can be agents who need to know the status of
user certificates or other users. More than one
recipient can be set by separating each email address
with a comma.

Parameter Description

13.3.7. Frequency Settings for Automated Jobs

The Job Scheduler uses a variation of the Unix crontab entry format to specify dates and times for
checking the job queue and executing jobs. As shown in Table 13.5, “Time Values for Scheduling Jobs”
and Figure 13.1, “Job Configuration”, the time entry format consists of five fields. (The sixth field
specified for the Unix crontab is not used by the Job Scheduler.) Values are separated by spaces or
tabs.

Each field can contain either a single integer or a pair of integers separated by a hyphen (-) to indicate
an inclusive range. To specify all legal values, a field can contain an asterisk rather than an integer. Day
fields can contain a comma-separated list of values. The syntax of this expression is

Minute Hour Day_of_month Month_of_year Day_of_week

Table 13.5. Time Values for Scheduling Jobs

Field Value

Minute 0-59

Hour 0-23

Day of month 1-31

Month of year 1-12

Day of week 0-6 (where 0=Sunday)

For example, the following time entry specifies every hour at 15 minutes (1:15, 2:15, 3:15, and so on):

15 * * * *

The following example sets a job to run at noon on April 12:

0 12 12 4 *

The day-of-month and day-of-week options can contain a comma-separated list of values to specify
more than one day. If both day fields are specified, the specification is inclusive; that is, the day of the
month is not required to fall on the day of the week to be valid. For example, the following entry
specifies a job execution time of midnight on the first and fifteenth of every month and on every
Monday:

Administration Guide

240

0 0 1,15 * 1

To specify one day type without the other, use an asterisk in the other day field. For example, the
following entry runs the job at 3:15 a.m. every weekday morning:

15 3 * * 1-5

13.4. REGISTERING A JOB MODULE

Custom job plug-ins can be registered through the Certificate Manager Console. Registering a new
module involves specifying the name of the module and the full name of the Java™ class that
implements the module.

To register a new job module:

1. Create the custom job class. For this example, the custom job plug-in is called MyJob.java.

2. Compile the new class.

javac -d . -classpath $CLASSPATH MyJob.java

3. Create a directory in the CA's WEB-INF web directory to hold the custom classes, so that the
CA can access them.

mkdir /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

4. Copy the new plug-in files into the new classes directory, and set the owner to the
Certificate System system user (pkiuser).

cp -pr com /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

chown -R pkiuser:pkiuser /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

5. Register the plug-in.

1. Log into the Certificate Manager Console.

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Job Scheduler in the left navigation tree. Select Jobs.

The Job Instance tab opens, which lists any currently configured jobs. Select the Job
Plugin Registration tab.

3. Click Register to add the new module.

4. In the Register Job Scheduler Plugin Implementation window, supply the following
information:

Plugin name. Type a name for the plug-in module.

Class name. Type the full name of the class for this module; this is the path to the
implementing Java™ class. If this class is part of a package, include the package name.

CHAPTER 13. SETTING AUTOMATED JOBS

241

For example, to register a class named customJob that is in a package named
com.customplugins, type com.customplugins.customJob.

5. Click OK.

NOTE

It is also possible to delete job modules, but this is not recommended.

If it is necessary to delete a module, open the Job Plugin Registration tab as when
registering a new module, select the module to delete, and click Delete. When prompted,
confirm the deletion.

NOTE

pkiconsole is being deprecated.

Administration Guide

242

PART IV. MANAGING THE SUBSYSTEM INSTANCES

PART IV. MANAGING THE SUBSYSTEM INSTANCES

243

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT
This chapter discusses the Certificate System administrative console, the configuration files, and other
basic administrative tasks such as starting and stopping the server, managing logs, changing port
assignments, and changing the internal database.

14.1. PKI INSTANCES

This version of the Certificate System continues to support separate PKI instances for all subsystems.

Separate PKI instances

run as a single Java-based Apache Tomcat instance,

contain a single PKI subsystem (CA, KRA, OCSP, TKS, or TPS), and

must utilize unique ports if co-located on the same physical machine or virtual machine
(VM).

Additionally, this version of the Certificate System introduces the notion of a shared PKI instance .

Shared PKI instances

run as a single Java-based Apache Tomcat instance,

can contain a single PKI subsystem that is identical to a separate PKI instance,

can contain any combination of up to one of each type of PKI subsystem:

CA

TKS

CA, KRA

CA, OCSP

TKS, TPS

CA, KRA, TKS, TPS

CA, KRA, OCSP, TKS, TPS

and so on.

allow all of their subsystems contained within that instance to share the same ports, and

must utilize unique ports if more than one is co-located on the same physical machine or VM.

14.2. PKI INSTANCE EXECUTION MANAGEMENT

The act of starting, stopping, restarting, or obtaining the status of a PKI instance is known as execution
management. Each PKI instance, separate or shared, is started, stopped, restarted, and has its status
obtained separately. This section describes the execution management for any PKI instance.

Administration Guide

244

14.2.1. Starting, Stopping, and Restarting a PKI Instance

A PKI instance is started, stopped, and restarted like other system programs, using systemd.

1. Log in to the server machine as root.

2. Run the systemctl command, specifying the action and the instance name:

systemctl start|stop|restart pki-tomcatd@instance_name.service

For example:

systemctl restart pki-tomcatd@pki-tomcat.service

3. Alternatively, you can use the pki-server alias:

pki-server start|stop|restart instance_name

For example:

pki-server restart pki-tomcat

14.2.2. Restarting a PKI Instance after a Machine Restart

If a computer running one or more PKI instances is shut down unexpectedly, more services than just the
PKI instances must be restarted, in the proper order, for the subsystem to be available both through the
HTML services page and the administrative console.

1. If the Directory Server instance used by the subsystem is installed on the local machine, restart
the Administration Server and the Directory Server processes.

systemctl start dirsrv-admin.service
systemctl start dirsrv@instance_name.service

2. Start the Certificate System subsystem instances.

pki-server start instance_name

14.2.3. Checking the PKI Instance Status

The systemctl command can be used to check the status of a process, showing whether it is running or
stopped. For example:

systemctl -l status pki-tomcatd@pki-tomcat.service
pki-tomcatd@pki-tomcat.service - PKI Tomcat Server pki-tomcat
 Loaded: loaded (/lib/systemd/system/pki-tomcatd@.service; enabled)
 Active: inactive (dead) since Fri 2015-11-20 19:04:11 MST; 12s ago
 Process: 8728 ExecStop=/usr/libexec/tomcat/server stop (code=exited, status=0/SUCCESS)
 Process: 8465 ExecStart=/usr/libexec/tomcat/server start (code=exited, status=143)
 Process: 8316 ExecStartPre=/usr/bin/pkidaemon start tomcat %i (code=exited, status=0/SUCCESS)
 Main PID: 8465 (code=exited, status=143)

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

245

Nov 20 19:04:10 pki.example.com server[8728]: options used: -Dcatalina.base=/var/lib/pki/pki-tomcat
-Dcatalina.home=/usr/share/tomcat -Djava.endorsed.dirs= -Djava.io.tmpdir=/var/lib/pki/pki-
tomcat/temp -Djava.util.logging.config.file=/var/lib/pki/pki-tomcat/conf/logging.properties -
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager
Nov 20 19:04:10 pki.example.com server[8728]: arguments used: stop
Nov 20 19:04:11 pki.example.com server[8465]: Nov 20, 2015 7:04:11 PM
org.apache.catalina.core.StandardServer await
Nov 20 19:04:11 pki.example.com server[8465]: INFO: A valid shutdown command was received via
the shutdown port. Stopping the Server instance.
Nov 20 19:04:11 pki.example.com server[8465]: PKIListener:
org.apache.catalina.core.StandardServer[before_stop]
Nov 20 19:04:11 pki.example.com server[8465]: PKIListener:
org.apache.catalina.core.StandardServer[stop]
Nov 20 19:04:11 pki.example.com server[8465]: PKIListener:
org.apache.catalina.core.StandardServer[configure_stop]
Nov 20 19:04:11 pki.example.com server[8465]: Nov 20, 2015 7:04:11 PM
org.apache.coyote.AbstractProtocol pause
Nov 20 19:04:11 pki.example.com server[8465]: INFO: Pausing ProtocolHandler ["http-bio-8080"]
Nov 20 19:04:11 pki.example.com systemd[1]: Stopped PKI Tomcat Server pki-tomcat.

If the instance is running, the status check returns information similar to the following example:

systemctl -l status pki-tomcatd@pki-tomcat.service
pki-tomcatd@pki-tomcat.service - PKI Tomcat Server pki-tomcat
 Loaded: loaded (/lib/systemd/system/pki-tomcatd@.service; enabled)
 Active: active (running) since Fri 2015-11-20 19:09:09 MST; 3s ago
 Process: 8728 ExecStop=/usr/libexec/tomcat/server stop (code=exited, status=0/SUCCESS)
 Process: 9154 ExecStartPre=/usr/bin/pkidaemon start tomcat %i (code=exited, status=0/SUCCESS)
 Main PID: 9293 (java)
 CGroup: /system.slice/system-pki\x2dtomcatd.slice/pki-tomcatd@pki-tomcat.service
 ������9293 java -DRESTEASY_LIB=/usr/share/java/resteasy-base -
Djava.library.path=/usr/lib64/nuxwdog-jni -classpath
/usr/share/tomcat/bin/bootstrap.jar:/usr/share/tomcat/bin/tomcat-juli.jar:/usr/share/java/commons-
daemon.jar -Dcatalina.base=/var/lib/pki/pki-tomcat -Dcatalina.home=/usr/share/tomcat -
Djava.endorsed.dirs= -Djava.io.tmpdir=/var/lib/pki/pki-tomcat/temp -
Djava.util.logging.config.file=/var/lib/pki/pki-tomcat/conf/logging.properties -
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Djava.security.manager -
Djava.security.policy==/var/lib/pki/pki-tomcat/conf/catalina.policy
org.apache.catalina.startup.Bootstrap start

Nov 20 19:09:10 pki.example.com server[9293]: Nov 20, 2015 7:09:10 PM
org.apache.catalina.core.StandardService startInternal
Nov 20 19:09:10 pki.example.com server[9293]: INFO: Starting service Catalina
Nov 20 19:09:10 pki.example.com server[9293]: Nov 20, 2015 7:09:10 PM
org.apache.catalina.core.StandardEngine startInternal
Nov 20 19:09:10 pki.example.com server[9293]: INFO: Starting Servlet Engine: Apache
Tomcat/7.0.54
Nov 20 19:09:10 pki.example.com server[9293]: Nov 20, 2015 7:09:10 PM
org.apache.catalina.startup.HostConfig deployDescriptor
Nov 20 19:09:10 pki.example.com server[9293]: INFO: Deploying configuration descriptor /etc/pki/pki-
tomcat/Catalina/localhost/ROOT.xml
Nov 20 19:09:12 pki.example.com server[9293]: Nov 20, 2015 7:09:12 PM
org.apache.catalina.startup.HostConfig deployDescriptor
Nov 20 19:09:12 pki.example.com server[9293]: INFO: Deployment of configuration descriptor
/etc/pki/pki-tomcat/Catalina/localhost/ROOT.xml has finished in 2,071 ms
Nov 20 19:09:12 pki.example.com server[9293]: Nov 20, 2015 7:09:12 PM

Administration Guide

246

org.apache.catalina.startup.HostConfig deployDescriptor
Nov 20 19:09:12 pki.example.com server[9293]: INFO: Deploying configuration descriptor /etc/pki/pki-
tomcat/Catalina/localhost/pki#admin.xml

14.2.4. Configuring a PKI Instance to Automatically Start Upon Reboot

The systemctl command can be used to automatically start instances upon reboot. For example, the
following commands automatically start the Red Hat Administration Server, Directory Server, and a CA
upon reboot:

systemctl enable dirsrv-admin.service
systemctl enable dirsrv.target
systemctl enable pki-tomcatd@pki-tomcat.service

NOTE

The default PKI instance installation and configuration using the pkispawn command
automatically enables the instance to start upon reboot.

To disable this behavior (that is, to prevent PKI instances from automatically starting upon reboot), issue
the following commands:

systemctl disable pki-tomcatd@pki-tomcat.service
systemctl disable dirsrv.target
systemctl disable dirsrv-admin.service

14.2.5. Setting sudo Permissions for Certificate System Services

For both simplicity of administration and security, the Certificate System and Directory Server
processes can be configured so that PKI administrators (instead of only root) can start and stop the
services.

A recommended option when setting up subsystems is to use a pkiadmin system group. (Details are in
the Red Hat Certificate System Planning, Installation, and Deployment Guide .) All of the operating
system users which will be Certificate System administrators are then added to this group. If this
pkiadmin system group exists, then it can be granted sudo access to perform certain tasks.

1. Edit the /etc/sudoers file; on Red Hat Enterprise Linux 8, this can be done using the visudo
command:

2. Depending on what is installed on the machine, add a line for the Directory Server, the
Administration Server, PKI management tools, and each PKI subsystem instance, granting sudo
rights to the pkiadmin group:

visudo

For Directory Server services
%pkiadmin ALL = PASSWD: /usr/bin/systemctl * dirsrv.target
%pkiadmin ALL = PASSWD: /usr/bin/systemctl * dirsrv-admin.service

For PKI instance management
%pkiadmin ALL = PASSWD: /usr/sbin/pkispawn *

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

247

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/BeforeInstalling.html#creating-os-groups

IMPORTANT

Make sure to set sudo permissions for every Certificate System, Directory Server, and
Administration Server on the machine — and only for those instances on the machine.
There could be multiple instances of the same subsystem type on a machine or no
instance of a subsystem type. It depends on the deployment.

14.3. OPENING SUBSYSTEM CONSOLES AND SERVICES

Each subsystem has different interfaces for different user types to access. All subsystems have some
kind of web services page for agents, administrators, or end users (or all three), with the exception of
the TKS. Additionally, the CA, KRA, OCSP, and TKS all have a Java-based Console, which must be
installed on a server, to perform administrative tasks to manage the subsystem itself.

The appearance and, to a limited extent, functionality of the subsystem's web-based services pages can
be customized to better integrate with an organization's existing websites. See
Red Hat Certificate System Planning, Installation, and Deployment Guide .

14.3.1. Finding the Subsystem Web Services Pages

The CA, KRA, OCSP, TKS, and TPS subsystems have web services pages for agents, regular users, and
administrators. These menu of web services can be accessed by opening the URL to the subsystem host
over the subsystem's secure end user's port. For example, for the CA:

https://server.example.com:8443/ca/services

The main web services page for each subsystem has a list of available services pages; these are
summarized in Table 14.1, “Default Web Services Pages”. To access any service specifically, access the
appropriate port and append the appropriate directory to the URL. For example, to access the CA's end
entities (regular users) web services:

https://server.example.com:8443/ca/ee/ca

If DNS is properly configured, then an IPv4 or IPv6 address can be used to connect to the services
pages. For example:

https://1.2.3.4:8443/ca/services
https://[00:00:00:00:123:456:789:00:]:8443/ca/services

Some subsystem interfaces require client authentication to access them, usually interfaces associated
with agent or administrator roles. Other interfaces, even those that run over secure (SSL connections)
do not require client authentication. Some of these interfaces (such as end entities services) can be
configured to require client authentication, but others cannot be configured to support client
authentication. These differences are noted in Table 14.1, “Default Web Services Pages”.

NOTE

%pkiadmin ALL = PASSWD: /usr/sbin/pkidestroy *

For PKI instance services
%pkiadmin ALL = PASSWD: /usr/bin/systemctl * pki-tomcatd@instance_name.service

Administration Guide

248

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/Customizing_Web_Services

NOTE

Anyone can access the end user pages for a subsystem, but accessing agent or admin
web services pages requires that an agent or administrator certificate be issued and
installed in the web browser, or authentication to the web services fails.

Table 14.1. Default Web Services Pages

Used for SSL Used for Client
Authentication[a]

Web Services Web Service Location

Certificate Manager

No End Entities ca/ee/ca/

Yes No End Entities ca/ee/ca

Yes Yes Agents ca/agent/ca

Yes No Services ca/services

Yes No Console pkiconsole
https://host:port/ca

Key Recovery
Authority

Yes Yes Agents kra/agent/kra

Yes No Services kra/services

Yes No Console pkiconsole
https://host:port/kra

Online Certificate
Status Manager

Yes Yes Agents ocsp/agent/ocsp

Yes No Services ocsp/services

Yes No Console pkiconsole
https://host:port/ocsp

Token Key Service

Yes No Services tks/services

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

249

Yes No Console pkiconsole
https://host:port/tks

Token Processing
System

Yes Services index.cgi

[a] Services with a client authentication value of No can be reconfigured to require client authentication. Services which
do not have either a Yes or No value cannot be configured to use client authentication.

Used for SSL Used for Client
Authentication[a]

Web Services Web Service Location

14.3.2. Starting the Certificate System Administrative Console

IMPORTANT

pkiconsole is being deprecated.

The Console is opened by connecting to the subsystem instance over its SSL port using the pkiconsole
command. This command has the format:

pkiconsole https://server.example.com:admin_port/subsystem_type

The subsystem_type can be ca, kra, ocsp, or tks. For example, this opens the KRA console:

pkiconsole https://server.example.com:8443/kra

If DNS is properly configured, then an IPv4 or IPv6 address can be used to connect to the console. For
example:

pkiconsole https://1.2.3.4:8443/ca
pkiconsole https://[00:00:00:00:123:456:789:00:]:8443/ca

14.3.3. Enabling SSL for the Java Administrative Console

Certificate-based authentication to the Certificate System Console can be enabled so that
administrators must authenticate using a client certificate before logging into the Certificate System
Console. Store the administrators' certificates before enabling certificate-based authentication.

To enable SSL in the Console, configure both the client and the server.

IMPORTANT

Administration Guide

250

IMPORTANT

If a CA is configured for client authentication over the admin port and that CA is a
security domain manager, then no new PKI subsystems can be configured that use that
CA for its security domain. New PKI instances register themselves to the security
domain CA over the admin port but without using client authentication. If the CA requires
client authentication, then the registration attempt fails.

First, set up the Certificate System server to use SSL client authentication:

1. Store the certificates for any administrator using this system. The certificate should be either
from the CA itself or from whichever CA signed the certificate for the subsystem.

1. Open the subsystem console.

2. Select the Users and Groups option on the left.

3. In the Users tab, select the administrative user, and click Manage Certificates.

4. Click Import.

5. Paste in the base-64 encoded SSL client certificate, such as the administrator certificate
stored in the web browser.

Make sure the client certificate is good for SSL client authentication; otherwise, the server will
not accept the client certificate and will post an error message in the error log in the
/var/log/instanceID/system:

failure (14290): Error receiving connection
SEC_ERROR_INADEQUATE_CERT_TYPE - Certificate type not approved for application.)

2. Stop the subsystem.

pki-server stop instance_name

3. Open the instance configuration directory, /var/lib/pki/instance_name/subsystem_type/conf.

4. Open the file CS.cfg.

5. Change the value of the authType parameter from pwd to sslclientauth:

authType=sslclientauth

6. Save the file.

7. Open the server.xml file.

8. Change the clientAuth="false" attribute to clientAuth="want" in the admin interface
connector section:

<Connector port="8443" maxHttpHeaderSize="8192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

251

 clientAuth="want" sslProtocol="SSL"
.....
 serverCertFile="/var/lib/pki/pki-tomcat/conf/serverCertNick.conf"
 passwordFile="/var/lib/pki/pki-tomcat/conf/password.conf"
 passwordClass="org.apache.tomcat.util.net.jss.PlainPasswordFile"
 certdbDir="/var/lib/pki/pki-tomcat/alias"/>

The want value means that client authentication is preferred, but not required. This allows client
authentication through interfaces that can easily use it (like the Console) while still allowing
clients which do not easily support client authentication (other subsystems within the security
domain) to connect using regular connections.

9. Start the subsystem.

pki-server start instance_name

After setting up the server, then configure the client to use SSL client authentication.

The Console must have access to the administrator certificate and keys used for SSL client
authentication to the server. The Console's default certificate and key databases are stored in the
.redhat-idm-console directory.

To provide access to the administrator certificate and keys, either export them from the administrator's
browser into a .p12 file and then import it by using pk12util, or copy the browser's certificate and key
databases into the .redhat-idm-console directory. (This procedure assumes that the certificates are
exported from the browser into a .p12 file.)

1. Export the administrator user certificate and keys from the browser into a file, such as
admin.p12.

2. Open the user's console directory.

/user-directory/.redhat-idm-console

3. If necessary, create new security databases.

certutil -N -d .

4. Stop the Certificate System instance.

pki-server stop instance_name

5. Use pk12util to import the certificates.

pk12util -i /tmp/admin.p12 -d /user-directory/.redhat-idm-console -W [p12filepassword]

If the procedure is successful, the command prints the following:

pk12util: PKCS12 IMPORT SUCCESSFUL

6. Export the 64-bit blob of the issuing CA certificate from the browser and save it to a file like
ca.crt.

Administration Guide

252

7. Import the CA certificate from the base 64-blob associated with the admin user cert.

certutil -A -d . -n ca -t CT,C,C -i ./ca.crt

8. Start the Certificate System instance.

pki-server start instance_name

9. Start the Console; now, it prompts for a certificate.

14.4. RUNNING SUBSYSTEMS UNDER A JAVA SECURITY MANAGER

Java services have the option of having a Security Manager which defines unsafe and safe operations
for applications to perform. When the subsystems are installed, they have the Security Manager enabled
automatically, meaning each Tomcat instance starts with the Security Manager running.

14.4.1. About the Security Manager Policy Files

When the five Java subsystems (the CA, OCSP, KRA, TKS, and TPS) run within the Java Security
Manager, they use a combination of three sets of policies:

The catalina.policy file from the default Tomcat policy located in the /usr/share/tomcat/conf
directory; this is updated whenever the general Tomcat files are updated.

A pki.policy file, in the /var/lib/pki/instance_name/subsystem_type/conf directory, that is
supplied with the subsystem instance.

A custom.policy file, in the /var/lib/pki/instance_name/subsystem_type/conf directory, that
contains user-defined security policies.

These three files are concatenated together whenever the Tomcat service starts to create a revised
catalina.policy file, also in the /var/lib/pki/instance_name/subsystem_type/conf directory, which is
used for the instance.

The default pki.policy file contains permissions that grant unrestricted access to the Tomcat, LDAP,
and symkey services used by the PKI subsystems. For example:

The custom.policy file is empty by default; administrators can write policies in that file which will be
used in addition to the given PKI policies and Tomcat policies.

14.4.2. Starting a Subsystem Instance without the Java Security Manager

All Java subsystems configured under a PKI Tomcat instance are automatically run under a Java
Security Manager (unless the instance was created by overriding pki_security_manager=true under
the [Tomcat] section in the /etc/pki/default.cfg file). However, it is possible to start or restart an
instance and run it without starting the Java Security Manager, as shown below.

Procedure 14.1. Starting an Instance Without the Java Security Manager

 // These permissions apply to Tomcat java as utilized by PKI instances
 grant codeBase "file:/usr/share/java/tomcat/-" {
 permission java.security.AllPermission;
 };

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

253

1. Stop the instance.

pki-server stop instance_name

2. Edit the /etc/sysconfig/instance_name file and turn off the security manager:

SECURITY_MANAGER="false"

3. Start the instance.

pki-server start instance_name

14.5. CONFIGURING THE LDAP DATABASE

The Certificate System performs certificate- and key-management functions in response to the
requests it receives. These functions include the following:

Storing and retrieving certificate requests

Storing and retrieving certificate records

Storing CRLs

Storing ACLs

Storing privileged user and role information

Storing and retrieving end users' encryption private key records

To fulfill these functions, the Certificate System is incorporated with a Red Hat Directory Server,
referred to as the internal database or local database. The Directory Server is referenced as part of the
Certificate System configuration; when the Certificate System subsystem is configured, a new database
is created within the Directory Server. This database is used as an embedded database exclusively by the
Certificate System instance and can be managed using directory management tools that come with the
Directory Server.

The Certificate System instance database is listed with the other Directory Server databases in the
serverRoot/slapd-DS_name/db/ directory. These databases are named by the value determined by the
value of the pki_ds_database variable under the specified subsystem section within the
/etc/pki/default.cfg file (CS_instance_name-CA, CS_instance_name-KRA, CS_instance_name-OCSP,
CS_instance_name-TKS, and CS_instance_name-TPS by default), which is the default format given
during the instance configuration. For example, for a Certificate Manager named ca1, the database
name would be ca1-CA. Similarly, the database name is determined by the value of the
pki_ds_base_dn variable under the specified subsystem section within the /etc/pki/default.cfg file
((o=CS_instance_name-CA, o=CS_instance_name-KRA, o=CS_instance_name-OCSP,
o=CS_instance_name-TKS, or o=CS_instance_name-TPS by default), and is also set during the
configuration.

The subsystems use the database for storing different objects. A Certificate Manager stores all the
data, certificate requests, certificates, CRLs, and related information, while a KRA only stores key
records and related data.

Administration Guide

254

WARNING

The internal database schema are configured to store only Certificate System data.
Do not make any changes to it or configure the Certificate System to use any other
LDAP directory. Doing so can result in data loss.

Additionally, do not use the internal LDAP database for any other purpose.

14.5.1. Changing the Internal Database Configuration

To change the Directory Server instance that a subsystem instance uses as its internal database:

1. Log into the subsystem administrative console.

pkiconsole https://server.example.com:admin_port/subsystem_type

2. In the Configuration tab, select the Internal Database tab.

3. Change the Directory Server instance by changing the hostname, port, and bind DN fields.

The hostname is the fully qualified hostname of the machine on which the Directory Server is
installed, such as certificates.example.com. The Certificate System uses this name to access
the directory.

By default, the hostname of the Directory Server instance used as the internal database is
shown as localhost instead of the actual hostname. This is done to insulate the internal
database from being visible outside the system since a server on localhost can only be
accessed from the local machine. Thus, the default configuration minimizes the risk of someone
connecting to this Directory Server instance from outside the local machine.

The hostname can be changed to something other than localhost if the visibility of the internal
database can be limited to a local subnet. For example, if the Certificate System and Directory
Server are installed on separate machines for load balancing, specify the hostname of the
machine in which the Directory Server is installed.

The port number is the TCP/IP port used for non-SSL communications with the Directory
Server.

The DN should be the Directory Manager DN. The Certificate System subsystem uses this DN
when it accesses the directory tree to communicate with the directory.

4. Click Save.

The configuration is modified. If the changes require restarting the server, a prompt appears
with that message. In that case, restart the server.

NOTE

pkiconsole is being deprecated.



CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

255

14.5.2. Using a Certificate Issued by Certificate System in Directory Server

To use an encrypted connection to Directory Server when you installed Certificate System, it was
necessary to either use a certificate issued by an external Certificate Authority (CA) or a self-signed
certificate. However, after setting up the Certificate System CA, administrators often want to replace
this certificate with one issued by Certificate System.

To replace the TLS certificate used by Directory Server with a certificate issued by Certificate System:

1. On the Directory Server host:

a. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

b. Generate a Certificate Signing Request (CSR).

For example, to generate a CSR which uses 2048 bit RSA encryption, and to store it in the
~/ds.csr file:

PKCS10Client -d /etc/dirsrv/slapd-instance_name/ -p password -a rsa -l 2048 -o
~/ds.csr -n "CN=$HOSTNAME"
PKCS10Client: Debug: got token.
PKCS10Client: Debug: thread token set.
PKCS10Client: token Internal Key Storage Token logged in...
PKCS10Client: key pair generated.
PKCS10Client: CertificationRequest created.
PKCS10Client: b64encode completes.
Keypair private key id: -3387b397ebe254b91c5d6c06dc36618d2ea8b7e6

-----BEGIN CERTIFICATE REQUEST-----
...
-----END CERTIFICATE REQUEST-----
PKCS10Client: done. Request written to file: ~/ds.csr

c. Start the Directory Server instance to enable the CA to process the request:

systemctl start dirsrv@instance_name

d. Submit the CSR to the Certificate System's CA. For example:

pki -d /etc/dirsrv/slapd-instance_name/ ca-cert-request-submit --profile caServerCert --
csr-file ~/ds.csr

Submitted certificate request

 Request ID: 13
 Type: enrollment
 Request Status: pending
 Operation Result: success

2. On the Certificate System host:

a. Import the CA agent certificate into a Network Security Services (NSS) database to sign

Administration Guide

256

a. Import the CA agent certificate into a Network Security Services (NSS) database to sign
the CMC full request:

i. Create a new directory. For example:

mkdir ~/certs_db/

ii. Initialize the database in the newly created directory:

certutil -N -d ~/certs_db/

iii. Display the serial number of the CA signing certificate:

pki -p 8080 ca-cert-find --name "CA Signing Certificate"

1 entries found

Serial Number: 0x87bbe2d
...

iv. Use the serial number from the previous step to download the CA signing certificate
into the ~/certs_db/CA.pem file:

pki -p 8080 ca-cert-show 0x87bbe2d --output ~/certs_db/CA.pem

v. Import the CA signing certificate into the NSS database:

pki -d ~/certs_db/ -c password client-cert-import "CA Certificate" --ca-cert
~/certs_db/CA.pem

vi. Import the agent certificate:

pk12util -d ~/certs_db/ -i ~/.dogtag/instance_name/ca_admin_cert.p12
Enter Password or Pin for "NSS FIPS 140-2 Certificate DB": password
Enter password for PKCS12 file: password
pk12util: PKCS12 IMPORT SUCCESSFUL

b. Create the Certificate Management over CMS (CMC) request:

i. Create a configuration file, such as ~/sslserver-cmc-request.cfg, with the following
content:

NSS database directory where the CA agent certificate is stored.
dbdir=~/certs_db/

NSS database password.
password=password

Token name (default is internal).
tokenname=internal

Nickname for CA agent certificate.
nickname=caadmin

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

257

Request format: pkcs10 or crmf.
format=pkcs10

Total number of PKCS10/CRMF requests.
numRequests=1

Path to the PKCS10/CRMF request.
The content must be in Base-64 encoded format.
Multiple files are supported. They must be separated by space.
input=~/ds.csr

Path for the CMC request.
output=~/sslserver-cmc-request.bin

ii. Create the CMC request:

CMCRequest ~/sslserver-cmc-request.cfg
...
The CMC enrollment request in base-64 encoded format:
...
The CMC enrollment request in binary format is stored in ~/sslserver-cmc-
request.bin

c. Submit the CMC request:

i. Create a configuration file, such as ~/sslserver-cmc-submit.cfg, with the following
content:

PKI server host name.
host=server.example.com

PKI server port number.
port=8443

Use secure connection.
secure=true

Use client authentication.
clientmode=true

NSS database directory where the CA agent certificate is stored.
dbdir=~/certs_db/

NSS database password.
password=password

Token name (default: internal).
tokenname=internal

Nickname of CA agent certificate.
nickname=caadmin

CMC servlet path
servlet=/ca/ee/ca/profileSubmitCMCFull?profileId=caCMCserverCert

Administration Guide

258

Path for the CMC request.
input=~/sslserver-cmc-request.bin

Path for the CMC response.
output=~/sslserver-cmc-response.bin

ii. Submit the request:

HttpClient sslserver-cmc-submit.cfg
...
The response in binary format is stored in
~/sslserver-cmc-response.bin

iii. Optionally, verify the result:

CMCResponse -d ~/certs_db/ -i ~/sslserver-cmc-response.bin
...
Number of controls is 1
Control #0: CMCStatusInfoV2
 OID: {1 3 6 1 5 5 7 7 25}
 BodyList: 1
 Status: SUCCESS

d. Display the serial number of the Directory Server certificate:

pki -p 8080 ca-cert-find --name "DS Certificate"

1 entries found

Serial Number: 0xc3eeb0c
...

e. Use the serial number from the previous step to download the certificate:

pki -p 8080 ca-cert-show 0xc3eeb0c --output ~/ds.crt

f. Copy the certificate for Directory Server and the CA certificate to the Directory Server
host. For example:

scp ~/ds.crt ~/certs_db/CA.pem ds.example.com:~/

g. Stop Certificate System:

pki-server stop instance_name

3. On the Directory Server host:

a. Stop the Directory Server instance:

systemctl stop dirsrv@instance_name

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

259

b. Replace the certificates. For details, see the corresponding sections in the Red Hat
Directory Server Administration Guide:

i. Remove the old certificate and CA certificate. See Removing a Certificate .

ii. Install the CA certificate issued by Certificate System. See Installing a CA Certificate .

iii. Install the certificate for Directory Server issued by Certificate System. See Installing a
Server Certificate.

c. Start the Directory Server instance:

systemctl start dirsrv@instance_name

4. Start Certificate System:

pki-server stop instance_name

5. Optionally, configure certificate-based authentication. For details, see Section 14.5.3, “Enabling
SSL/TLS Client Authentication with the Internal Database”.

14.5.3. Enabling SSL/TLS Client Authentication with the Internal Database

Client authentication allows one entity to authenticate to another entity by presenting a certificate. This
method of authentication is used by Certificate System agents to log into agent services pages, for
example.

To use an SSL/TLS connection between a Certificate System instance and the LDAP directory instance
that it uses as its internal database, client authentication must be enabled to allow the
Certificate System instance to authenticate and bind to the LDAP directory.

There are two parts to setting up client authentication. The first is configuring the LDAP directory, such
as setting up SSL/TLS and setting ACIs to control the Certificate System instance access. The second
is creating a user on the Certificate System instance which it will use to bind to the LDAP directory and
setting up its certificate.

To configure LDAPS for a PKI instance, see the pkispawn(8) man page (Example: Installing a PKI
subsystem with a secure LDAP connection).

14.5.4. Restricting Access to the Internal Database

The Red Hat Directory Server Console displays an entry or icon for the Directory Server instance that
the Certificate System uses as its internal database.

Unlike the Certificate System Console, in which access is restricted to users with Certificate System
administrator privileges, the Directory Server Console can be accessed by any user. The user can open
the Directory Server Console for the internal database and change to the data stored there, such as
deleting users from the Certificate System administrators group or adding his own entry to the group.

Access can be restricted to the internal database to only those users who know the Directory Manager
DN and password. This password can be changed by modifying the single sign-on password cache.

1. Log into the Directory Server Console.

2. Select the Certificate System internal database entry, and click Open.

Administration Guide

260

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/managing_the_nss_database_used_by_directory_server#removing_a_certificate
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/managing_the_nss_database_used_by_directory_server#installing_a_ca_certificate
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/managing_the_nss_database_used_by_directory_server#installing_a_server_certificate

3. Select the Configuration tab.

4. In the navigation tree, expand Plug-ins, and select Pass-Through Authentication.

5. In the right pane, deselect the Enable plugin checkbox.

6. Click Save.

The server prompts to restart the server.

7. Click the Tasks tab, and click Restart the Directory Server.

8. Close the Directory Server Console.

9. When the server is restarted, open the Directory Server Console for the internal database
instance.

The Login to Directory dialog box appears; the Distinguished Name field displays the
Directory Manager DN; enter the password.

The Directory Server Console for the internal database opens only if the correct password is
entered.

14.6. VIEWING SECURITY DOMAIN CONFIGURATION

A security domain is a registry of PKI services. PKI services, such as CAs, register information about
themselves in these domains so users of PKI services can find other services by inspecting the registry.
The security domain service in Certificate System manages both the registration of PKI services for
Certificate System subsystems and a set of shared trust policies.

The security domain manages the trust relationships between subsystems automatically, so if a TPS,
TKS, and KRA are within the same security domain, they can communicate securely.

NOTE

The security domain is used during subsystem configuration. When a subsystem is being
set up, it can check the security domain registry to see available instances. If it needs to
create a trusted relationship with another instance — like a TPS which uses a TKS and KRA
for its operations — then the security domain is used to create a TPS agent user on the
selected TKS and KRA instances.

The registry provides a complete view of all PKI services provided by the subsystems within that domain.
Each Certificate System subsystem must be either a host or a member of a security domain.

Only a CA can host and manage a security domain. Each CA has its own LDAP entry, and the security
domain is an organizational group underneath that CA entry:

ou=Security Domain,dc=example,dc=com

Then there is a list of each subsystem type beneath the security domain organizational group, with a
special object class (pkiSecurityGroup) to identify the group type:

cn=KRAList,ou=Security Domain,dc=example,dc=com
objectClass: top
objectClass: pkiSecurityGroup

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

261

cn: KRAList

Each subsystem instance is then stored as a member of that group, with a special pkiSubsystemobject
class to identify the entry type:

dn: cn=server.example.com:8443,cn=KRAList,ou=Security Domain,dc=example,dc=com
objectClass: top
objectClass: pkiSubsystem
cn: kra.example.com:8443
host: server.example.com
SecurePort: 8443
SecureAgentPort: 8443
SecureAdminPort: 8443
UnSecurePort: 8080
DomainManager: false
Clone: false
SubsystemName: KRA server.example.com 8443

14.7. MANAGING THE SELINUX POLICIES FOR SUBSYSTEMS

SELinux is a collection of mandatory access control rules which are enforced across a system to restrict
unauthorized access and tampering. For more information about SELinux, see the Using SELinux guide
for Red Hat Enterprise Linux 8.

14.7.1. About SELinux

Basically, SELinux identifies objects on a system, which can be files, directories, users, processes,
sockets, or any other thing on a Linux host. These objects correspond to the Linux API objects. Each
object is then mapped to a security context, which defines the type of object it is and how it is allowed to
function on the Linux server.

System processes run within SELinux domains. Each domain has a set of rules that defines how the
SELinux domain interacts with other SELinux objects on the system. This set of rules, then, determines
which resources a process may access and what operations it may perform on those resources.

For Certificate System, each subsystem type runs within a specific domain for that subsystem type.
Every instance of that subsystem type belongs to the same SELinux domain, regardless of how many
instances are on the system For example, if there are three CAs installed on a server, all three belong to
the http_port_t SELinux domain.

The rules and definitions for all the subsystems comprise the overall Certificate System SELinux policy.
Certificate System SELinux policies are already configured when the subsystems are installed, and all
SELinux policies are updated every time a subsystem is added with pkispawn or removed with
pkidestroy.

The Certificate System subsystems run with SELinux set in enforcing mode, meaning that
Certificate System operations can be successfully performed even when all SELinux rules are required to
be followed.

By default, the Certificate System subsystems run confined by SELinux policies.

14.7.2. Viewing SELinux Policies for Subsystems

All Certificate System policies are are part of the system SELinux policy. The configured policies can be

Administration Guide

262

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_selinux/index

All Certificate System policies are are part of the system SELinux policy. The configured policies can be
viewed using the SELinux Administration GUI, which you can get by installing the policycoreutils-gui
package.

1. Either run the system-config-selinux command or open the utility by accessing Applications
→ Other → SELinux Management for the main system menu.

2. To check the version of the Certificate System SELinux policy installed, click the Policy Module
section in the left bar.

3. To view the policies set on the individual files and processes, click the File Labeling section. To
view the policies for the port assignments for the subsystems, click the Network Port section.

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

263

14.7.3. Relabeling nCipher netHSM Contexts

The nCipher netHSM software does not come with its own SELinux policy, so the Certificate System
contains a default netHSM policy, shown in Example 14.1, “netHSM SELinux Policy” .

Example 14.1. netHSM SELinux Policy

Other rules allow the pki_*_t domain to talk to files that are labeled pki_common_t and
pki_common_dev_t.

If any of the nCipher configuration is changed (even if it is in the default directory, /opt/nfast), run the
restorecon to make sure all files are properly labeled:

restorecon -R /dev/nfast
restorecon -R /opt/nfast

If the nCipher software is installed in a different location or if a different HSM is used, the default
Certificate System HSM policy needs to be relabelled using semanage.

14.8. BACKING UP AND RESTORING CERTIFICATE SYSTEM

Certificate System does not include backup and restore tools. However, the Certificate System
components can still be archived and restored manually, which can be necessary for deployments where
information cannot be accessed if certificate or key information is lost. Three major parts of
Certificate System need to be backed up routinely in case of data loss or hardware failure:

Internal database. Subsystems use an LDAP database to store their data. The Directory Server

default labeling for nCipher
/opt/nfast/scripts/init.d/(.*) gen_context(system_u:object_r:initrc_exec_t,s0)
/opt/nfast/sbin/init.d-ncipher gen_context(system_u:object_r:initrc_exec_t,s0)
/opt/nfast(/.*)? gen_context(system_u:object_r:pki_common_t, s0)
/dev/nfast(/.*)? gen_context(system_u:object_r:pki_common_dev_t,0)

Administration Guide

264

Internal database. Subsystems use an LDAP database to store their data. The Directory Server
provides its own backup scripts and procedures.

Security databases. The security databases store the certificate and key material. If these are
stored on an HSM, then consult the HSM vendor documentation for information on how to back
up the data. If the information is stored in the default directories in the instance alias directory,
then it is backed up with the instance directory. To back it up separately, use a utility such as tar
or zip.

Instance directory. The instance directory contains all configuration files, security databases, and
other instance files. This can be backed up using a utility such as tar or zip.

14.8.1. Backing up and Restoring the LDAP Internal Database

The Red Hat Directory Server documentation contains more detailed information on backing up and
restoring the databases.

14.8.1.1. Backing up the LDAP Internal Database

Two pairs of subcommands of the dsctl command are available to back up the Directory Server
instance. Each back-up subcommand has a counterpart to restore the files it generated:

The db2ldif subcommand creates a LDIF file you can restore using the ldif2db subcommand.

The db2bak subcommand creates a backup file you can restore using the bak2db subcommand.

14.8.1.1.1. Backing up using db2ldif

Running the db2ldif subcommand backs up a single subsystem database.

NOTE

As the db2ldif subcommand runs with the dirsrv user, it doesn't have permissions to write
under the /root/ directory, so you need to provide a path where it can write.

Back up each Directory Server database used by PKI subsystems. You can use the pki-server ca-db-
config-show command to check the database name for a given subsystem. For example, to back up the
main database, userRoot:

1. Stop the instance:

dsctl instance_name stop

2. Export the database into an LDIF file:

dsctl instance_name db2ldif userroot /tmp/example.ldif
OK group dirsrv exists
OK user dirsrv exists
ldiffile: /tmp/example.ldif
[18/Jul/2018:10:46:03.353656777 +0200] - INFO - ldbm_instance_config_cachememsize_set
- force a minimal value 512000
[18/Jul/2018:10:46:03.383101305 +0200] - INFO - ldbm_back_ldbm2ldif - export userroot:
Processed 160 entries (100%).

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

265

https://access.redhat.com/documentation/en-us/red_hat_directory_server/

[18/Jul/2018:10:46:03.391553963 +0200] - INFO - dblayer_pre_close - All database threads
now stopped
db2ldif successful

3. Start the instance:

dsctl instance_name start

To restore the LDIF file using the ldif2db subcommand, see Section 14.8.1.2.1, “Restoring using ldif2db” .

14.8.1.1.2. Backing up using db2bak

Running the db2bak subcommand backs up all Certificate System subsystem databases for that
Directory Server (and any other databases maintained by that Directory Server instance). For example:

For example:

1. Stop the instance:

dsctl instance_name stop

2. Backup the database:

dsctl instance_name db2bak
OK group dirsrv exists
OK user dirsrv exists
[18/Jul/2018:14:02:37.358958713 +0200] - INFO - ldbm_instance_config_cachememsize_set
- force a minimal value 512000
...
db2bak successful

3. Start the instance:

dsctl instance_name start

NOTE

As the db2bak subcommand runs with the dirsrv user, the target directory must be
writeable by dirsrv. Running the subcommand without any argument creates the backup
in the /var/lib/dirsrv/slapd-<instance_name>/bak folder where db2bak has the proper
write permissions.

To restore the LDIF file using bak2db, see Section 14.8.1.2.2, “Restoring using bak2db” .

14.8.1.2. Restoring the LDAP Internal Database

Depending on how you backed up the Directory Server instance, use ldif2db or bak2db with the
corresponding file(s) to restore the database.

NOTE

Make sure you stop the instance before restoring databases.

Administration Guide

266

14.8.1.2.1. Restoring using ldif2db

If you created a LDIF file with db2ldif, stop the Directory Server instance and import the files using the
ldif2db subcommand. You can specify a single database to restore from the backup. For example, for
the main database, userRoot:

1. Stop the Directory Server instance:

dsctl instance_name stop

2. Import the data from the LDIF file:

dsctl instance_name ldif2db userroot /tmp/example.ldif
OK group dirsrv exists
OK user dirsrv exists
[17/Jul/2018:13:42:42.015554231 +0200] - INFO - ldbm_instance_config_cachememsize_set
- force a minimal value 512000
...
[17/Jul/2018:13:42:44.302630629 +0200] - INFO - import_main_offline - import userroot:
Import complete. Processed 160 entries in 2 seconds. (80.00 entries/sec)
ldif2db successful

3. Start the Directory Server instance:

dsctl instance_name start

14.8.1.2.2. Restoring using bak2db

If you created a backup file with db2bak, stop the Directory Server and import the file using the bak2db
subcommand. For example:

1. Stop the Directory Server instance:

dsctl instance_name stop

2. Restore the databases:

dsctl instance_name bak2db /var/lib/dirsrv/slapd-instance_name/bak/instance_name-
time_stamp/
OK group dirsrv exists
OK user dirsrv exists
[20/Jul/2018:15:52:24.932598675 +0200] - INFO - ldbm_instance_config_cachememsize_set
- force a minimal value 512000
...
bak2db successful

3. Start the Directory Server instance:

dsctl instance_name start

14.8.2. Backing up and Restoring the Instance Directory

The instance directory has all of the configuration information for the subsystem instance, so backing up

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

267

The instance directory has all of the configuration information for the subsystem instance, so backing up
the instance directory preserves the configuration information not contained in the internal database.

NOTE

Stop the subsystem instance before backing up the instance or the security databases.

1. Stop the subsystem instance.

pki-server stop instance_name

2. Save the directory to a compressed file:

cd /var/lib/pki/
tar -chvf /export/archives/pki/instance_name.tar instance_name/

For example:

cd /var/lib/pki/
tar -chvf /tmp/test.tar pki-tomcat/ca/
pki-tomcat/ca/
pki-tomcat/ca/registry/
pki-tomcat/ca/registry/ca/
...........

3. Restart the subsystem instance.

pki-server start instance_name

You can use the Certificate System backup files, both the alias database backups and the full instance
directory backups, to replace the current directories if the data is corrupted or the hardware is damaged.
To restore the data, uncompress the archive file using the unzip or tar tools, and copy the archive over
the existing files.

To restore the instance directory:

1. Uncompress the archive:

cd /export/archives/pki/
tar -xvf instance_name.tar

For example:

cd /tmp/
tar -xvf test.tar
pki-tomcat/ca/
pki-tomcat/ca/registry/
pki-tomcat/ca/registry/ca/
pki-tomcat/ca/registry/ca/default.cfg
.........

2. Stop the subsystem instance if it is not already stopped.

Administration Guide

268

pki-server stop instance_name

3. Copy the archived files to restore the instance directory:

cp -r /export/archives/pki/instance_name /var/lib/pki/instance_name

For example:

cp -r /tmp/pki-tomcat/ca/ /var/lib/pki/pki-tomcat/ca/

4. Make sure the ownership and group permissions of the restored files are set to the pkiuser:

chown -R pkiuser:pkiuser /var/lib/pki/pki-tomcat/ca/

5. Restart the subsystem instance.

pki-server start instance_name

14.9. RUNNING SELF-TESTS

The Certificate System has the added functionality to allow self-tests of the server. The self-tests are
run at start up and can also be run on demand. The startup self-tests run when the server starts and
keep the server from starting if a critical self-test fails. The on-demand self-tests are run by clicking the
self-tests button in the subsystem console.

14.9.1. Running Self-Tests

The on-demand self-test for the CA, OCSP, KRA, or TKS subsystems are run from the console. The on-
demand self-tests for the TPS system are run from the web services page.

14.9.1.1. Running Self-Tests from the Console

NOTE

pkiconsole is being deprecated.

1. Log into the Console.

pkiconsole https://server.example.com:admin_port/subsystem_type

2. Select the subsystem name at the top of the left pane.

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

269

3. Select the Self Tests tab.

4. Click Run.

The self-tests that are configured for the subsystem will run. If any critical self-tests fail, the
server will stop.

5. The On-Demand Self Tests Results window appears, showing the logged events for this run of
the self-tests.

14.9.1.2. Running TPS Self-Tests

To run TPS self-tests from the command-line interface (CLI):

pki tps-selftest-find

pki tps-selftest-run

pki tps-selftest-show

14.9.2. Self-Test Logging

A separate log, selftest.log, is added to the log directory that contains reports for both the start up self-
tests and the on-demand self-tests. This log is configured by changing the setting for the log in the
CS.cfg file. See the Modifying Self-Test Configuration section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide for details.

14.9.3. Configuring POSIX System ACLs

POSIX system access control rules provide finer granularity over system user permissions. These ACLs
must be set for each instance after it is fully configured. For more details on ACLs, see the
corresponding chapter in the Red Hat Enterprise Linux System Administration Guide.

14.9.3.1. Setting POSIX System ACLs for the CA, KRA, OCSP, TKS, and TPS

Modern file systems like ext4 and XFS enable ACLs by default, and are most likely used on modern

Administration Guide

270

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuring_logs_in_the_cs.cfg_file#Modifying_Self_Test_Configuration
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_managing-access-control-list_configuring-basic-system-settings

Modern file systems like ext4 and XFS enable ACLs by default, and are most likely used on modern
Red Hat Enterprise Linux installations.

1. Stop the instance.

pki-server stop instance_name

2. Set the group readability to the pkiadmin group for the instance's directories and files.

setfacl -R -L -m g:pkiadmin:r,d:g:pkiadmin:r /var/lib/pki/instance_name

3. Apply execute (x) ACL permissions on all directories:

find -L /var/lib/pki/instance_name -type d -exec setfacl -L -n -m
g:pkiadmin:rx,d:g:pkiadmin:rx {} \;

4. Remove group readability for the pkiadmin group from the instance's signedAudit/ directory
and its associated files:

setfacl -R -L -x g:pkiadmin,d:g:pkiadmin /var/lib/pki/instance_name/logs/signedAudit

5. Set group readability for the pkiaudit group for the instance's signedAudit/ directory and its
associated files:

setfacl -R -L -m g:pkiaudit:r,d:g:pkiaudit:r /var/lib/pki/instance_name/logs/signedAudit

6. Re-apply execute (x) ACL permissions on the signedAudit/ directory and all of its
subdirectories:

find -L /var/lib/pki/instance_name/logs/signedAudit -type d -exec setfacl -L -n -m
g:pkiaudit:rx,d:g:pkiaudit:rx {} \;

7. Start the instance.

pki-server start instance_name

8. Confirm that the file access controls were properly applied by using the getfacl command to
show the current ACL settings:

getfacl /var/lib/pki/instance_name
/var/lib/pki/instance_name/subsystem_type/logs/signedAudit/
getfacl: Removing leading '/' from absolute path names
file: var/lib/pki/instance_name
owner: pkiuser
group: pkiuser
user::rwx
group::rwx
group:pkiadmin:r-x
mask::rwx
other::r-x
default:user::rwx
default:group::rwx

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT

271

default:group:pkiadmin:r-x
default:mask::rwx
default:other::r-x

file: var/lib/pki/instance_name/logs/signedAudit
owner: pkiuser
group: pkiaudit
user::rwx
group::rwx
group:pkiaudit:r-x
mask::rwx
other::---
default:user::rwx
default:group::rwx
default:group:pkiaudit:r-x
default:mask::rwx
default:other::---

Administration Guide

272

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND
GROUPS
This chapter explains how to set up authorization for access to the administrative, agent services, and
end-entities pages.

15.1. ABOUT AUTHORIZATION

Authorization is the process of allowing access to certain tasks associated with the Certificate System.
Access can be limited to allow certain tasks to certain areas of the subsystem for certain users or
groups and different tasks to different users and groups.

Users are specific to the subsystem in which they are created. Each subsystem has its own set of users
independent of any other subsystem installed. The users are placed in groups, which can be predefined
or user-created. Privileges are assigned to a group through access control lists (ACLs). There are ACLs
associated with areas in the administrative console, agent services interface, and end-entities page that
perform an authorization check before allowing an operation to proceed. Access control instructions
(ACIs) in each of the ACLs are created that specifically allow or deny possible operations for that ACL
to specified users, groups, or IP addresses.

The ACLs contain a default set of ACIs for the default groups that are created. These ACIs can be
modified to change the privileges of predefined groups or to assign privileges to newly-created groups.

Authorization goes through the following process:

1. The users authenticate to the interface using either the Certificate System user ID and
password or a certificate.

2. The server authenticates the user either by matching the user ID and password with the one
stored in the database or by checking the certificate against one stored in the database. With
certificate-based authentication, the server also checks that the certificate is valid and finds the
group membership of the user by associating the DN of the certificate with a user and checking
the user entry. With password-based authentication, the server checks the password against the
user ID and then finds the group membership of the user by associating that user ID with the
user ID contained in the group.

3. When the user tries to perform an operation, the authorization mechanism compares the user ID
of the user, the group in which the user belongs, or the IP address of the user to the ACLs set
for that user, group, or IP address. If an ACL exists that allows that operation, then the operation
proceeds.

15.2. DEFAULT GROUPS

A user's privileges are determined by the group (role) membership of the user. There are three groups
(roles) that a user can be assigned to:

Administrators. This group is given full access to all of the tasks available in the administrative
interface.

Agents. This group is given full access to all of the tasks available in the agent services interface.

Auditors. This group is given access to view the signed audit logs. This group does not have any
other privileges.

There is a fourth role that is exclusively created for communication between subsystems. Administrators

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

273

There is a fourth role that is exclusively created for communication between subsystems. Administrators
should never assign a real user to such a role:

Enterprise administrators. Each subsystem instance is automatically assigned a subsystem-
specific role as an enterprise administrator when it is joined to a security domain during
configuration. These roles automatically provide trusted relationships among subsystems in the
security domain, so that each subsystem can efficiently carry out interactions with other
subsystems.

15.2.1. Administrators

Administrators have permissions to perform all administrative tasks. A user is designated or identified as
being an administrator by being added to the Administrators group for the group. Every member of
that group has administrative privileges for that instance of Certificate System.

At least one administrator must be defined for each Certificate System instance, but there is no limit to
the number of administrators an instance can have. The first administrator entry is created when the
instance is configured.

Administrators are authenticated with a simple bind using their Certificate System user ID and password.

Table 15.1. Security Domain User Roles

Role Description

Security Domain Administrators
Add and modify users in the security
domain's user and group database.

Manage the shared trust policies.

Manage the access controls on the domain
services.

By default, the CA administrator of the CA hosting
the domain is assigned as the security domain
administrator.

Enterprise CA Administrators
Automatically approve any sub-CA, server,
and subsystem certificate from any CA in
the domain.

Register and unregister CA subsystem
information in the security domain.

Enterprise KRA Administrators
Automatically approve any transport,
storage, server, and subsystem certificate
from any CA in the domain.

Register and unregister KRA subsystem
information in the security domain.

Push KRA connector information to any CA.

Administration Guide

274

Enterprise OCSP Administrators
Automatically approve any OCSP, server,
and subsystem certificate from any CA in
the domain.

Register and unregister OCSP subsystem
information in the security domain.

Push CRL publishing information to any CA.

Enterprise TKS Administrators
Automatically approve any server and
subsystem certificate from any CA in the
domain.

Register and unregister TKS subsystem
information in the security domain.

Enterprise TPS Administrators
Automatically approve any server and
subsystem certificate from any CA in the
domain.

Register and unregister TPS subsystem
information in the security domain.

Role Description

As necessary, the security domain administrator can manage access controls on the security domain and
on the individual subsystems. For example, the security domain administrator can restrict access so that
only finance department KRA administrators can set up finance department KRAs.

Enterprise subsystem administrators are given enough privileges to perform operations on the
subsystems in the domain. For example, an enterprise CA administrator has the privileges to have sub-
CA certificates approved automatically during configuration. Alternatively, a security domain
administrator can restrict this right if necessary.

15.2.2. Auditors

An auditor can view the signed audit logs and is created to audit the operation of the system. The
auditor cannot administer the server in any way.

An auditor is created by adding a user to the Auditors group and storing the auditor's certificate in the
user entry. The auditor's certificate is used to encrypt the private key of the key pair used to sign the
audit log.

The Auditors group is set when the subsystem is configured. No auditors are assigned to this group
during configuration.

Auditors are authenticated into the administrative console with a simple bind using their UID and
password. Once authenticated, auditors can only view the audit logs. They cannot edit other parts of the
system.

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

275

15.2.3. Agents

Agents are users who have been assigned end-entity certificate and key-management privileges.
Agents can access the agent services interface.

Agents are created by assigning a user to the appropriate subsystem agent group and identifying
certificates that the agents must use for SSL client authentication to the subsystem for it to service
requests from the agents. Each subsystem has its own agent group:

The Certificate Manager Agents group.

The Key Recovery Authority Agents group.

The Online Certificate Status Manager Agents group.

The Token Key Service Agents group.

The Token Processing System Agents group.

Each Certificate System subsystem has its own agents with roles defined by the subsystem. Each
subsystem must have at least one agent, but there is no limit to the number of agents a subsystem can
have.

Certificate System identifies and authenticates a user with agent privileges by checking the user's SSL
client certificate in its internal database.

15.2.4. Enterprise Groups

NOTE

No real user should ever be assigned to this group.

During subsystem configuration, every subsystem instance is joined to a security domain. Each
subsystem instance is automatically assigned a subsystem-specific role as an enterprise administrator.
These roles automatically provide trusted relationships among subsystems in the security domain, so
that each subsystem can efficiently carry out interactions with other subsystems. For example, this
allows OCSPs to push CRL publishing publishing information to all CAs in the domain, KRAs to push KRA
connector information, and CAs to approve certificates generated within the CA automatically.

Enterprise subsystem administrators are given enough privileges to perform operations on the
subsystems in the domain. Each subsystem has its own security domain role:

Enterprise CA Administrators

Enterprise KRA Administrators

Enterprise OCSP Administrators

Enterprise TKS Administrators

Enterprise TPS Administrators

Additionally, there is a Security Domain Administrators group for the CA instance which manages the
security domain, access control, users, and trust relationships within the domain.

Each subsystem administrator authenticates to the other subsystems using SSL client authentication

Administration Guide

276

Each subsystem administrator authenticates to the other subsystems using SSL client authentication
with the subsystem certificate issued during configuration by the security domain CA.

15.3. MANAGING USERS AND GROUPS FOR A CA, OCSP, KRA, OR TKS

Many of the operations that users can perform are dictated by the groups that they belong to; for
instance, agents for the CA manage certificates and profiles, while administrators manage CA server
configuration.

Four subsystems — the CA, OCSP, KRA, and TKS — use the Java administrative console to manage
groups and users. The TPS has web-based admin services, and users and groups are configured
through its web service page.

15.3.1. Managing Groups

NOTE

pkiconsole is being deprecated.

15.3.1.1. Creating a New Group

1. Log into the administrative console.

pkiconsole https://server.example.com:8443/subsystem_type

2. Select Users and Groups from the navigation menu on the left.

3. Select the Groups tab.

4. Click Edit, and fill in the group information.

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

277

It is only possible to add users who already exist in the internal database.

5. Edit the ACLs to grant the group privileges. See Section 15.5.4, “Editing ACLs” for more
information. If no ACIs are added to the ACLs for the group, the group will have no access
permissions to any part of Certificate System.

15.3.1.2. Changing Members in a Group

Members can be added or deleted from all groups. The group for administrators must have at least one
user entry.

1. Log into the administrative console.

2. Select Users and Groups from the navigation tree on the left.

3. Click the Groups tab.

4. Select the group from the list of names, and click Edit.

5. Make the appropriate changes.

To change the group description, type a new description in the Group description field.

To remove a user from the group, select the user, and click Delete.

To add users, click Add User. Select the users to add from the dialog box, and click OK.

15.3.2. Managing Users (Administrators, Agents, and Auditors)

The users for each subsystem are maintained separately. Just because a person is an administrator in
one subsystem does not mean that person has any rights (or even a user entry) for another subsystem.
Users can be configured and, with their user certificates, trusted as agents, administrators, or auditors
for a subsystem.

15.3.2.1. Creating Users

After you installed Certificate System, only the user created during the setup exists. This section
describes how to create additional users.

NOTE

For security reasons, create individual accounts for Certificate System users.

15.3.2.1.1. Creating Users Using the Command Line

To create a user using the command line:

1. Add a user account. For example, to add the example user to the CA:

pki -d ~/.dogtag/pki-instance_name/ca/alias/ -c password -n caadmin \
 ca-user-add example --fullName "Example User"

Added user "example"

Administration Guide

278

 User ID: example
 Full name: Example User

This command uses the caadmin user to add a new account.

2. Optionally, add a user to a group. For example, to add the example user to the Certificate
Manager Agents group:

pki -d ~/.dogtag/pki-instance_name/ -p password -n "caadmin" \
 user-add-membership example Certificate Manager Agents

3. Create a certificate request:

If a Key Recovery Authority (KRA) exists in your Certificate System environment:

CRMFPopClient -d ~/.dogtag/pki-instance_name/ -p password \
 -n "user_name" -q POP_SUCCESS -b kra.transport -w "AES/CBC/PKCS5Padding" \
 -v -o ~/user_name.req

This command stores the Certificate Signing Request (CSR) in the CRMF format in the
~/user_name.req file.

If no Key Recovery Authority (KRA) exists in your Certificate System environment:

Create a NSS database directory:

export pkiinstance=ca1
echo ${pkiinstance}
export agentdir=~/.dogtag/${pkiinstance}/agent1.dir
echo ${agentdir}
pki -d ${agentdir}/ -C ${somepwdfile} client-init

Store the CSR in a PKCS-#10 formatted file specified by the -o option, -d for the path
to an initialized NSS database directory, -P option for a password file, -p for a password,
and -n for a subject DN:

PKCS10Client -d ${agentdir}/ -P ${somepwdfile} -n "cn=agent1,uid=agent1" -o
${agentdir}/agent1.csr
PKCS10Client: Certificate request written into /.dogtag/ca1/agent1.dir/agent1.csr
PKCS10Client: PKCS#10 request key id written into
/.dogtag/ca1/agent1.dir/agent1.csr.keyId

4. Create an enrollment request:

a. Create the ~/cmc.role_crmf.cfg file with the following content:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
#Multiple files are supported. They must be separated by space.
input=~/user_name.req

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

279

#output: full path for the CMC request in binary format
output=~/cmc.role_crmf.req

#tokenname: name of token where agent signing cert can be found (default is internal)
tokenname=internal

#nickname: nickname for agent certificate which will be used
#to sign the CMC full request.
nickname=PKI Administrator for Example.com

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
dbdir=~/.dogtag/pki-instance_name/

#password: password for cert9.db which stores the agent
#certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

Set the parameters based on your environment and the CSR format used in the previous
step.

b. Pass the previously created configuration file to the CMCRequest utility to create the CMC
request:

CMCRequest ~/cmc.role_crmf.cfg

5. Submit a Certificate Management over CMS (CMC) request:

a. Create the ~/HttpClient_role_crmf.cfg file with the following content:

#host: host name for the http server
host=server.example.com

#port: port number
port=8443

#secure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be in binary format
input=~/cmc.role_crmf.req

#output: full path for the response in binary format
output=~/cmc.role_crmf.resp

#tokenname: name of token where SSL client authentication cert can be found (default is
internal)
#This parameter will be ignored if secure=false
tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.txt
#This parameter will be ignored if secure=false

Administration Guide

280

dbdir=~/.dogtag/pki-instance_name/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert9.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false
nickname=PKI Administrator for Example.com

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitCMCFull

Set the parameters based on your environment.

b. Submit the request to the CA:

HttpClient ~/HttpClient_role_crmf.cfg
Total number of bytes read = 3776
after SSLSocket created, thread token is Internal Key Storage Token
client cert is not null
handshake happened
writing to socket
Total number of bytes read = 2523
MIIJ1wYJKoZIhvcNAQcCoIIJyDCCCcQCAQMxDzANBglghkgBZQMEAgEFADAxBggr
...
The response in data format is stored in ~/cmc.role_crmf.resp

c. Verify the result:

CMCResponse ~/cmc.role_crmf.resp
Certificates:
 Certificate:
 Data:
 Version: v3
 Serial Number: 0xE
 Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
 Issuer: CN=CA Signing Certificate,OU=pki-instance_name Security Domain
 Validity:
 Not Before: Friday, July 21, 2017 12:06:50 PM PDT America/Los_Angeles
 Not After: Wednesday, January 17, 2018 12:06:50 PM PST
America/Los_Angeles
 Subject: CN=user_name
...
Number of controls is 1
Control #0: CMCStatusInfoV2
 OID: {1 3 6 1 5 5 7 7 25}
 BodyList: 1
 Status: SUCCESS

6. Optionally, to import the certificate as the user to its own ~/.dogtag/pki-instance_name/

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

281

6. Optionally, to import the certificate as the user to its own ~/.dogtag/pki-instance_name/
database:

certutil -d ~/.dogtag/pki-instance_name/ -A -t "u,u,u" -n "user_name certificate" -i
~/cmc.role_crmf.resp

7. Add the certificate to the user record:

a. List certificates issued for the user to discover the certificate's serial number. For example,
to list certificates that contain the example user name in the certificate's subject:

pki -d ~/.dogtag/pki-instance_name/ -c password -n caadmin ca-user-cert-find example

1 entries matched

 Cert ID: 2;6;CN=CA Signing Certificate,O=EXAMPLE;CN=PKI
Administrator,E=example@example.com,O=EXAMPLE
 Version: 2
 Serial Number: 0x6
 Issuer: CN=CA Signing Certificate,O=EXAMPLE
 Subject: CN=PKI Administrator,E=example@example.com,O=EXAMPLE

Number of entries returned 1

The serial number of the certificate is required in the next step.

b. Add the certificate using its serial number from the certificate repository to the user
account in the Certificate System database. For example, for a CA user:

pki -c password -n caadmin ca-user-cert-add example --serial 0x6

15.3.2.1.2. Creating Users Using the Console

NOTE

pkiconsole is being deprecated.

To create a user using the PKI Console:

1. Log into the administrative console.

pkiconsole https://server.example.com:8443/subsystem_type

2. In the Configuration tab, select Users and Groups. Click Add.

3. Fill in the information in the Edit User Information dialog.

Administration Guide

282

Most of the information is standard user information, such as the user's name, email address,
and password. This window also contains a field called User State, which can contain any string,
which is used to add additional information about the user; most basically, this field can show
whether this is an active user.

4. Select the group to which the user will belong. The user's group membership determines what
privileges the user has. Assign agents, administrators, and auditors to the appropriate
subsystem group.

5. Store the user's certificate.

1. Request a user certificate through the CA end-entities service page.

2. If auto-enrollment is not configured for the user profile, then approve the certificate
request.

3. Retrieve the certificate using the URL provided in the notification email, and copy the base-
64 encoded certificate to a local file or to the clipboard.

4. Select the new user entry, and click Certificates.

5. Click Import, and paste in the base-64 encoded certificate.

15.3.2.2. Changing a Certificate System User's Certificate

1. Log into the administrative console.

2. Select Users and Groups.

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

283

3. Select the user to edit from the list of user IDs, and click Certificates.

4. Click Import to add the new certificate.

5. In the Import Certificate window, paste the new certificate in the text area. Include the -----
BEGIN CERTIFICATE----- and -----END CERTIFICATE----- marker lines.

15.3.2.3. Renewing Administrator, Agent, and Auditor User Certificates

There are two methods of renewing a certificate. Regenerating the certificate takes its original key and
its original profile and request, and recreates an identical key with a new validity period and expiration
date. Re-keying a certificate resubmits the initial certificate request to the original profile, but generates
a new key pair. Administrator certificates can be renewed by being re-keyed.

Each subsystem has a bootstrap user that was created at the time the subsystem was created. A new
certificate can be requested for this user before their original one expires, using one of the default
renewal profiles.

Certificates for administrative users can be renewed directly in the end user enrollment forms, using the
serial number of the original certificate.

1. Renew the admin user certificates in the CA's end users forms, as described in Section 5.4.1.1.2,
“Certificate-Based Renewal”. This must be the same CA as first issued the certificate (or a clone
of it).

Agent certificates can be renewed by using the certificate-based renewal form in the end
entities page. Self-renew user SSL client certificate. This form recognizes and updates the
certificate stored in the browser's certificate store directly.

NOTE

It is also possible to renew the certificate using certutil, as described in
Section 17.3.3, “Renewing Certificates Using certutil” . Rather than using the
certificate stored in a browser to initiate renewal, certutil uses an input file with
the original key.

2. Add the renewed user certificate to the user entry in the internal LDAP database.

1. Open the console for the subsystem.

pkiconsole https://server.example.com:admin_port/subsystem_type

2. Configuration | Users and Groups | Users | admin | Certificates | Import

3. In the Configuration tab, select Users and Groups.

4. In the Users tab, double-click the user entry with the renewed certificate, and click
Certificates.

5. Click Import, and paste in the base-64 encoded certificate.

NOTE

pkiconsole is being deprecated.

Administration Guide

284

This can also be done by using ldapmodify to add the renewed certification directly to the user
entry in the internal LDAP database, by replacing the userCertificate attribute in the user entry,
such as uid=admin,ou=people,dc=subsystem-base-DN.

15.3.2.4. Renewing an Expired Administrator, Agent, and Auditor User Certificate

When a valid user certificate has already expired, you can no longer use the web service page nor the pki
command-line tool requiring authentication. In such a scenario, you can use the pki-server cert-fix
command to renew an expired certificate.

Before you proceed, make sure:

You have a valid CA certificate.

You have root privileges.

Procedure 15.1. Renewing an Expired Administrator, Agent, and Auditor User Certificate

1. Disable self test.

Either run the following command:

pki-server selftest-disable -i PKI_instance

Or remove the following line from CA's CS.cfg file and restart the CA subsystem:

selftests.container.order.startup=CAPresence:critical, SystemCertsVerification:critical

2. Check the expired certificates in the client's NSS database and find the certificate’s serial
number (certificate ID).

a. List the user certificates:

certutil -L -d /root/nssdb/

b. Get the expired certificate serial number, which you want to renew:

certutil -L -d /root/nssdb/ -n Expired_cert | grep Serial
 Serial Number: 16 (0x10)

3. Renew the certificate. The local LDAP server requires the LDAP Directory Manager’s password.

pki-server cert-fix --ldap-url ldap://host389 --agent-uid caadmin -i PKI_instance -p
PKI_https_port --extra-cert 16

4. Re-eanable self test.

Either run the following command:

pki-server selftest-enable -i PKI_instance

Or add the following line to CA's CS.cfg file and restart the CA subsystem:

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

285

selftests.container.order.startup=CAPresence:critical, SystemCertsVerification:critical

To verify that you have succeeded in the certificate renewal, you can display sufficient information about
the certificate by running:

pki ca-cert-find

To see full details of the specific certificate including attributes, extensions, public key modulus, hashes,
and more, you can also run:

pki ca-cert-show 16 --pretty

15.3.2.5. Deleting a Certificate System User

Users can be deleted from the internal database. Deleting a user from the internal database deletes that
user from all groups to which the user belongs. To remove the user from specific groups, modify the
group membership.

Delete a privileged user from the internal database by doing the following:

1. Log into the administrative console.

2. Select Users and Groups from the navigation menu on the left.

3. Select the user from the list of user IDs, and click Delete.

4. Confirm the delete when prompted.

15.4. CREATING AND MANAGING USERS FOR A TPS

There are three defined roles for TPS users, which function as groups for the TPS:

Agents, who perform actual token management operations, such setting the token status and
changing token policies

Administrators, who manage users for the TPS subsystem and have limited control over tokens

Operators, who have no management control but are able to view and list tokens, certificates,
and activities performed through the TPS

Additional groups cannot be added for the TPS.

All of the TPS subsystem users are authenticated against an LDAP directory database that contains
their certificate (because accessing the TPS's web services requires certificate-based authentication),
and the authentication process checks the TPS group entries — ou=TUS Agents, ou=TUS
Administrators, and ou=TUS Operators — to see to which roles the user belongs, using Apache's
mod_tokendb module.

Users for the TPS are added and managed through the Web UI or the CLI. The Web UI is accessible at
https://server.example.com:8443/tps/ui/.

To use the Web UI or the CLI, the TPS administrator has to authenticate using a user certificate.

15.4.1. Listing and Searching for Users

Administration Guide

286

15.4.1.1. From the Web UI

To list users from the Web UI:

1. Click the Accounts tab.

2. Click the Users menu item. The list of users appears on the page.

3. To search for certain users, write the keyword in the search field and press Enter. To list all
users again, remove the keyword and press Enter.

15.4.1.2. From the Command Line

To list users from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-find

To view user details from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-show username

15.4.2. Adding Users

15.4.2.1. From the Web UI

To add a user from the Web UI:

1. Click the Accounts tab.

2. Click the Users menu item.

3. Click the Add button on the Users page.

4. Fill in the user ID, full name, and TPS profile.

5. Click the Save button.

15.4.2.1.1. From the Command Line

To add a user from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-add username --
fullName full_name

15.4.3. Setting Profiles for Users

A TPS profile is much like a CA profile; it defines rules for processing different types of tokens. The
profile is assigned automatically to a token based on some characteristic of the token, like the CUID.
Users can only see tokens for the profiles which are assigned to them.

NOTE

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

287

NOTE

A user can only see entries relating to the profile configured for it, including both token
operations and tokens themselves. For an administrator to be able to search and manage
all tokens configured in the TPS, the administrator user entry should be set to All
profiles. Setting specific profiles for users is a simple way to control access for operators
and agents to specific users or token types.

Token profiles are sets of policies and configurations that are applied to a token. Token profiles are
mapped to tokens automatically based on some kind of attribute in the token itself, such as a CCUID
range. Token profiles are created as other certificate profiles in the CA profile directory and are then
added to the TPS configuration file, CS.cfg, to map the CA's token profile to the token type.
Configuring token mapping is covered in Section 6.7, “Mapping Resolver Configuration” .

To manage user profiles from the Web UI:

1. Click the Accounts tab.

2. Click the Users menu item.

3. Click the user name of the user you want to modify.

4. Click the Edit link.

5. In the TPS Profile field, enter the profile names separated by commas, or enter All Profiles.

6. Click the Save button.

15.4.4. Managing User Roles

A role is just a group within the TPS. Each role can view different tabs of the TPS services pages. The
group is editable, so it is possible to add and remove role assignments for a user.

A user can belong to more than one role or group. The bootstrap user, for example, belongs to all three
groups.

15.4.4.1. From the Web UI

To manage group members from the Web UI:

1. Click the Accounts tab.

2. Click the Groups menu item.

3. Click the name of the group that you want to change, for example TPS Agents.

4. To add a user to this group:

a. Click the Add button.

b. Enter the user ID.

c. Click the Add button.

5. To remove a user from this group:

Administration Guide

288

a. Select the check box next to the user.

b. Click the Remove button.

c. Click the OK button.

15.4.4.2. From the Command Line

To list groups from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-group-find

To list group members from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-group-member-find
group_name

To add a user to a group from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-group-member-add
group_name user_name

To delete a user from a group from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-group-member-del
group_name user_name

15.4.5. Managing User Certificates

User certificates can be managed from the CLI:

To list user certificates, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-cert-find
user_name

To add a certificate to a user:

1. Obtain a user certificate for the new user. Requesting and submitting certificates is explained in
Chapter 5, Requesting, Enrolling, and Managing Certificates .

IMPORTANT

A TPS administrator must have a signing certificate. The recommended profile to
use is Manual User Signing and Encryption Certificates Enrollment.

2. Run the following command:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-cert-add
user_name --serial cert_serial_number

To remove a certificate from a user, run:

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

289

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-cert-del
user_name cert_id

15.4.6. Renewing TPS Agent and Administrator Certificates

Regenerating the certificate takes its original key and its original profile and request, and recreates an
identical key with a new validity period and expiration date.

The TPS has a bootstrap user that was created at the time the subsystem was created. A new certificate
can be requested for this user when their original one expires, using one of the default renewal profiles.

Certificates for administrative users can be renewed directly in the end user enrollment forms, using the
serial number of the original certificate.

1. Renew the user certificates through the CA's end users forms, as described in Section 5.4.1.1.2,
“Certificate-Based Renewal”. This must be the same CA as first issued the certificate (or a clone
of it).

Agent certificates can be renewed by using the certificate-based renewal form in the end
entities page, Self-renew user SSL client certificate. This form recognizes and updates the
certificate stored in the browser's certificate store directly.

NOTE

It is also possible to renew the certificate using certutil, as described in
Section 17.3.3, “Renewing Certificates Using certutil” . Rather than using the
certificate stored in a browser to initiate renewal, certutil uses an input file with
the original key.

2. Add the new certificate to the user and remove the old certificate as described in Section 15.4.5,
“Managing User Certificates”.

15.4.7. Deleting Users

WARNING

It is possible to delete the last user account, and the operation cannot be undone.
Be very careful about the user which is selected to be deleted.

To delete users from the Web UI:

1. Click the Accounts tab.

2. Click the Users menu item.

3. Select the check box next to the users to be deleted.

4. Click the Remove button.



Administration Guide

290

5. Click the OK button.

To delete a user from the CLI, run:

pki -d client_db_dir -c client_db_password -n admin_cert_nickname tps-user-del user_name

15.5. CONFIGURING ACCESS CONTROL FOR USERS

Authorization is the mechanism that checks whether a user is allowed to perform an operation.
Authorization points are defined in certain groups of operations that require an authorization check.

15.5.1. About Access Control

Access control lists (ACLs) are the mechanisms that specify the authorization to server operations. An
ACL exists for each set of operations where an authorization check occurs. Additional operations can be
added to a ACL.

The ACL contains access control instructions (ACIs) which specifically allow or deny operations, such as
read or modify. The ACI also contains an evaluator expression. The default implementation of ACLs
specifies only users, groups, and IP addresses as possible evaluator types. Each ACI in an ACL specifies
whether access is allowed or denied, what the specific operator is being allowed or denied, and which
users, groups, or IP addresses are being allowed or denied to perform the operation.

The privileges of Certificate System users are changed by changing the access control lists (ACL) that
are associated with the group in which the user is a member, for the users themselves, or for the IP
address of the user. New groups are assigned access control by adding that group to the access control
lists. For example, a new group for administrators who are only authorized to view logs, LogAdmins, can
be added to the ACLs relevant to logs to allow read or modify access to this group. If this group is not
added to any other ACLs, members of this group only have access to the logs.

The access for a user, group, or IP address is changed by editing the ACI entries in the ACLs. In the ACL
interface, each ACI is shown on a line of its own. In this interface window, the ACI has the following
syntax:

allow|deny (operation) user|group|IP="name"

NOTE

The IP address can be an IPv4 or IPv6 address. An IPv4 address must be in the format
n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or 128.21.39.40,255.255.255.00. An
IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and
the netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:0000.

For example, the following is an ACI that allows administrators to perform read operations:

allow (read) group="Administrators"

An ACI can have more than one operation or action configured. The operations are separated with a
comma with no space on either side. For example:

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

291

allow (read,modify) group="Administrators"

An ACI can have more than one group, user, or IP address by separating them with two pipe symbols (||)
with a space on either side. For example:

allow (read) group="Administrators" || group="Auditors"

The administrative console can create or modify ACIs. The interface sets whether to allow or deny the
operation in the Allow and Deny field, sets which operations are possible in the Operations field, and
then lists the groups, users, or IP addresses being granted or denied access in the Syntax field.

An ACI can either allow or deny an operation for the specified group, user ID, or IP address. Generally,
ACIs do not need to be created to deny access. If there are no allow ACIs that include a user ID, group,
or IP address, then the group, user ID, or IP address is denied access.

NOTE

If a user is not explicitly allowed access to any of the operations for a resource, then this
user is considered denied; he does not specifically need to be denied access.

For example, user JohnB is a member of the Administrators group. If an ACL has only the following
ACL, JohnB is denied any access since he does not match any of the allow ACIs:

Allow (read,modify) group="Auditors" || user="BrianC"

There usually is no need to include a deny statement. Some situations can arise, however, when it is
useful to specify one. For example, JohnB, a member of the Administrators group, has just been fired.
It may be necessary to deny access specifically to JohnB if the user cannot be deleted immediately.
Another situation is that a user, BrianC, is an administrator, but he should not have the ability to change
some resource. Since the Administrators group must access this resource, BrianC can be specifically
denied access by creating an ACI that denies this user access.

The allowed rights are the operations which the ACI controls, either by allowing or denying permission to
perform the operation. The actions that can be set for an ACL vary depending on the ACL and
subsystem. Two common operations that can be defined are read and modify.

The syntax field of the ACI editor sets the evaluator for the expression. The evaluator can specify
group, name, and IP address (both IPv4 and IPv6 addresses). These are specified along with the name
of the entity set as equals (=) or does not equal (!=).

The syntax to include a group in the ACL is group="groupname". The syntax to exclude a group is
group!="groupname", which allows any group except for the group named. For example:

group="Administrators" || group!="Auditors"

It is also possible to use regular expressions to specify the group, such as using wildcard characters like
an asterisk (*). For example:

group="* Managers"

For more information on supported regular expression patterns, see
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

Administration Guide

292

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

The syntax to include a user in the ACL is user="userID". The syntax to exclude the user is
user!="userID", which allows any user ID except for the user ID named. For example:

user="BobC" || user!="JaneK"

To specify all users, provide the value anybody. For example:

user="anybody"

It is also possible to use regular expressions to specify the user names, such as using wildcard characters
like an asterisk (*). For example:

user="*johnson"

For more information on supported regular expression patterns, see
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

The syntax to include an IP address in the ACL is ipaddress="ipaddress". The syntax to exclude an ID
address from the ACL is ipaddress!="ipaddress". An IP address is specified using its numeric value;
DNS values are not permitted. For example:

ipaddress="12.33.45.99"
ipaddress!="23.99.09.88"

The IP address can be an IPv4 address, as shown above, or IPv6 address. An IPv4 address has the format
n.n.n.n or n.n.n.n,m.m.m.m with the netmask. An IPv6 address uses a 128-bit namespace, with the IPv6
address separated by colons and the netmask separated by periods. For example:

ipaddress="0:0:0:0:0:0:13.1.68.3"

It is also possible to use regular expressions to specify the IP address, such as using wildcard characters
like an asterisk (*). For example:

ipaddress="12.33.45.*"

For more information on supported regular expression patterns, see
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

It is possible to create a string with more than one value by separating each value with two pipe
characters (||) with a space on either side. For example:

user="BobC" || group="Auditors" || group="Administrators"

15.5.2. Changing the Access Control Settings for the Subsystem

For instruction on how to configure this feature by editing the CS.cfg file, see the Changing the Access
Control Settings for the Subsystem section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

15.5.3. Adding ACLs

ACLs are stored in the internal database and can only be modified in the administrative console.

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

293

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#acl-eval

To add a new ACL:

1. Log into the administrative console.

2. Select Access Control List.

3. Click Add to open the Access Control Editor.

4. Fill the Resource name and Available rights fields.

5. To add an access control instruction (ACI), click Add, and supply the ACI information.

Administration Guide

294

a. Select the allow or deny radio button from the Access field to allow or deny the operation
to the groups, users, or IP addresses specified. For more information about allowing or
denying access, see Section 15.5.1, “About Access Control” .

b. Set the rights. The available options are read and modify. To select both, hold the Ctrl or
Shift button while selecting the entries.

c. Specify the user, group, or IP address that will be granted or denied access in the Syntax
field. See Section 15.5.1, “About Access Control” for details on syntax.

6. Click OK to return to the Access Control Editor window.

7. Click OK to store the ACI.

15.5.4. Editing ACLs

ACLs are stored in the internal database and can only be modified in the administrative console.

To edit the existing ACLs:

1. Log into the administrative console.

2. Select Access Control List in the left navigation menu.

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

295

3. Select the ACL to edit from the list, and click Edit.

The ACL opens in the Access Control Editor window.

4. To add an ACI, click Add, and supply the ACI information.

To edit an ACI, select the ACI from the list in the ACI entries text area of the ACL Editor
window. Click Edit.

Administration Guide

296

1. Select the allow or deny radio button from the Access field to allow or deny the operation
to the groups, users, or IP addresses specified. For more information about allowing or
denying access, see Section 15.5.1, “About Access Control” .

2. Set the rights for the access control. The options are read and modify. To set both, use the
Ctrl or Shift buttons.

3. Specify the user, group, or IP address that will be granted or denied access in the Syntax
field. See Section 15.5.1, “About Access Control” for details on syntax.

CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS

297

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS
The Certificate System subsystems create log files that record events related to activities, such as
administration, communications using any of the protocols the server supports, and various other
processes employed by the subsystems. While a subsystem instance is running, it keeps a log of
information and error messages on all the components it manages. Additionally, the Apache and Tomcat
web servers generate error and access logs.

Each subsystem instance maintains its own log files for installation, audit, and other logged functions.

Log plug-in modules are listeners which are implemented as Java™ classes and are registered in the
configuration framework.

All the log files and rotated log files, except for audit logs, are located in whatever directory was
specified in pki_subsystem_log_path when the instance was created with pkispawn. Regular audit
logs are located in the log directory with other types of logs, while signed audit logs are written to
/var/log/pki/instance_name/subsystem_name/signedAudit. The default location for logs can be
changed by modifying the configuration.

16.1. ABOUT CERTIFICATE SYSTEM LOGS

Certificate System subsystems keep several different kinds of logs, which provide specific information
depending on the type of subsystem, types of services, and individual log settings. The kinds of logs
that can be kept for an instance depend on the kind of subsystem that it is.

16.1.1. Signed Audit Logs

The Certificate System maintains audit logs for all events, such as requesting, issuing and revoking
certificates and publishing CRLs. These logs are then signed. This allows authorized access or activity to
be detected. An outside auditor can then audit the system if required. The assigned auditor user
account is the only account which can view the signed audit logs. This user's certificate is used to sign
and encrypt the logs. Audit logging is configured to specify the events that are logged.

Signed audit logs are written to /var/log/pki/instance_name/subsystem_name/signedAudit. However,
the default location for logs can be changed by modifying the configuration.

For more information, see Section 16.3.2, “Using Signed Audit Logs” .

16.1.2. Debug Logs

Debug logs, which are enabled by default, are maintained for all subsystems, with varying degrees and
types of information.

Debug logs contain very specific information for every operation performed by the subsystem, including
plug-ins and servlets which are run, connection information, and server request and response messages.

The general types of services which are recorded to the debug log are briefly discussed in
Section 16.2.1.1, “Services That Are Logged” . These services include authorization requests, processing
certificate requests, certificate status checks, and archiving and recovering keys, and access to web
services.

The debug logs for the CA, OCSP, KRA, and TKS record detailed information about the processes for
the subsystem. Each log entry has the following format:

[date:time] [processor]: servlet: message

Administration Guide

298

The message can be a return message from the subsystem or contain values submitted to the
subsystem.

For example, the TKS records this message for connecting to an LDAP server:

[10/Jun/2020:05:14:51][main]: Established LDAP connection using basic authentication to host
localhost port 389 as cn=Directory Manager

The processor is main, and the message is the message from the server about the LDAP connection,
and there is no servlet.

The CA, on the other hand, records information about certificate operations as well as subsystem
connections:

[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.requestowner$
value=KRA-server.example.com-8443

In this case, the processor is the HTTP protocol over the CA's agent port, while it specifies the servlet for
handling profiles and contains a message giving a profile parameter (the subsystem owner of a request)
and its value (that the KRA initiated the request).

Example 16.1. CA Certificate Request Log Messages

[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.profileapprovedby$ value=admin
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.cert_request$
value=MIIBozCCAZ8wggEFAgQqTfoHMIHHgAECpQ4wDDEKMAgGA1UEAxMBeKaBnzANBgkqhki
G9w0BAQEFAAOB...
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.profile$
value=true
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.cert_request_type$ value=crmf
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestversion$ value=1.0.0
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.req_locale$
value=en
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestowner$ value=KRA-server.example.com-8443
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.dbstatus$
value=NOT_UPDATED
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.subject$
value=uid=jsmith, e=jsmith@example.com
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requeststatus$ value=begin
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.user$ value=uid=KRA-server.example.com-
8443,ou=People,dc=example,dc=com
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.req_key$
value=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDreuEsBWq9WuZ2MaBwtNYxvkLP^
M
HcN0cusY7gxLzB+XwQ/VsWEoObGldg6WwJPOcBdvLiKKfC605wFdynbEgKs0fChV^M
k9HYDhmJ8hX6+PaquiHJSVNhsv5tOshZkCfMBbyxwrKd8yZ5G5I+2gE9PUznxJaM^M
HTmlOqm4HwFxzy0RRQIDAQAB

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

299

[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.authmgrinstname$ value=raCertAuth
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.uid$ value=KRA-server.example.com-8443
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.userid$ value=KRA-server.example.com-8443
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestor_name$ value=
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.profileid$
value=caUserCert
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.userdn$ value=uid=KRA-server.example.com-
4747,ou=People,dc=example,dc=com
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.requestid$
value=20
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.authtime$ value=1212782378071
[06/Jun/2020:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.req_x509info$
value=MIICIKADAgECAgEAMA0GCSqGSIb3DQEBBQUAMEAxHjAcBgNVBAoTFVJlZGJ1ZGNv^M

bXB1dGVyIERvbWFpbjEeMBwGA1UEAxMVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4X^M
DTA4MDYwNjE5NTkzOFoXDTA4MTIwMzE5NTkzOFowOzEhMB8GCSqGSIb3DQEJARYS^M
anNtaXRoQGV4YW1wbGUuY29tMRYwFAYKCZImiZPyLGQBARMGanNtaXRoMIGfMA0G^M
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDreuEsBWq9WuZ2MaBwtNYxvkLPHcN0cusY^M
7gxLzB+XwQ/VsWEoObGldg6WwJPOcBdvLiKKfC605wFdynbEgKs0fChVk9HYDhmJ^M
8hX6+PaquiHJSVNhsv5tOshZkCfMBbyxwrKd8yZ5G5I+2gE9PUznxJaMHTmlOqm4^M
HwFxzy0RRQIDAQABo4HFMIHCMB8GA1UdIwQYMBaAFG8gWeOJIMt+aO8VuQTMzPBU^M
78k8MEoGCCsGAQUFBwEBBD4wPDA6BggrBgEFBQcwAYYuaHR0cDovL3Rlc3Q0LnJl^M
ZGJ1ZGNvbXB1dGVyLmxvY2FsOjkwODAvY2Evb2NzcDAOBgNVHQ8BAf8EBAMCBeAw^M
HQYDVR0lBBYwFAYIKwYBBQUHAwIGCCsGAQUFBwMEMCQGA1UdEQQdMBuBGSRyZXF1^
M
ZXN0LnJlcXVlc3Rvcl9lbWFpbCQ=

Likewise, the OCSP shows OCSP request information:

[07/Jul/2020:06:25:40][http-11180-Processor25]: OCSPServlet: OCSP Request:
[07/Jul/2020:06:25:40][http-11180-Processor25]: OCSPServlet:
MEUwQwIBADA+MDwwOjAJBgUrDgMCGgUABBSEWjCarLE6/BiSiENSsV9kHjqB3QQU

16.1.2.1. Installation Logs

All subsystems keep an install log.

Every time a subsystem is created either through the initial installation or creating additional instances
with pkispawn, an installation file with the complete debug output from the installation, including any
errors and, if the installation is successful, the URL and PIN to the configuration interface for the
instance. The file is created in the /var/log/pki/ directory for the instance with a name in the form
pki-subsystem_name-spawn.timestamp.log.

Each line in the install log follows a step in the installation process.

Example 16.2. CA Install Log

Administration Guide

300

...
2015-07-22 20:43:13 pkispawn : INFO ... finalizing
'pki.server.deployment.scriptlets.finalization'
2015-07-22 20:43:13 pkispawn : INFO cp -p /etc/sysconfig/pki/tomcat/pki-
tomcat/ca/deployment.cfg /var/log/pki/pki-
tomcat/ca/archive/spawn_deployment.cfg.20150722204136
2015-07-22 20:43:13 pkispawn : DEBUG chmod 660 /var/log/pki/pki-
tomcat/ca/archive/spawn_deployment.cfg.20150722204136
2015-07-22 20:43:13 pkispawn : DEBUG chown 26445:26445 /var/log/pki/pki-
tomcat/ca/archive/spawn_deployment.cfg.20150722204136
2015-07-22 20:43:13 pkispawn : INFO generating manifest file called
'/etc/sysconfig/pki/tomcat/pki-tomcat/ca/manifest'
2015-07-22 20:43:13 pkispawn : INFO cp -p /etc/sysconfig/pki/tomcat/pki-
tomcat/ca/manifest /var/log/pki/pki-tomcat/ca/archive/spawn_manifest.20150722204136
2015-07-22 20:43:13 pkispawn : DEBUG chmod 660 /var/log/pki/pki-
tomcat/ca/archive/spawn_manifest.20150722204136
2015-07-22 20:43:13 pkispawn : DEBUG chown 26445:26445 /var/log/pki/pki-
tomcat/ca/archive/spawn_manifest.20150722204136
2015-07-22 20:43:13 pkispawn : INFO executing 'systemctl enable pki-tomcatd.target'
2015-07-22 20:43:13 pkispawn : INFO executing 'systemctl daemon-reload'
2015-07-22 20:43:13 pkispawn : INFO executing 'systemctl restart pki-tomcatd@pki-
tomcat.service'
2015-07-22 20:43:14 pkispawn : INFO END spawning subsystem 'CA' of instance 'pki-tomcat'
2015-07-22 20:43:14 pkispawn : DEBUG

16.1.2.2. Tomcat Error and Access Logs

The CA, KRA, OCSP, TKS, and TPS subsystems use a Tomcat web server instance for their agent and
end-entities' interfaces.

Error and access logs are created by the Tomcat web server, which are installed with the
Certificate System and provide HTTP services. The error log contains the HTTP error messages the
server has encountered. The access log lists access activity through the HTTP interface.

Logs created by Tomcat:

admin.timestamp

catalina.timestamp

catalina.out

host-manager.timestamp

localhost.timestamp

localhost_access_log.timestamp

manager.timestamp

These logs are not available or configurable within the Certificate System; they are only configurable
within Apache or Tomcat. See the Apache documentation for information about configuring these logs.

16.1.2.3. Self-Tests Log

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

301

The self-tests log records information obtained during the self-tests run when the server starts or when
the self-tests are manually run. The tests can be viewed by opening this log. This log is not configurable
through the Console, it can only be configured by changing settings in the CS.cfg file. For instruction on
how to configure logs by editing the CS.cfg file, see the Enabling the Publishing Queue section in the
Red Hat Certificate System Planning, Installation, and Deployment Guide .

The information about logs in this section does not pertain to this log. See Section 14.9, “Running Self-
Tests” for more information about self-tests.

16.2. MANAGING LOGS

The Certificate System subsystem log files record events related to operations within that specific
subsystem instance. For each subsystem, different logs are kept for issues such as installation, access,
and web servers.

All subsystems have similar log configuration, options, and administrative paths.

16.2.1. An Overview of Log Settings

The way that logs are configured can affect Certificate System performance. For example, log file
rotation keeps logs from becoming too large, which slows down subsystem performance. This section
explains the different kinds of logs recorded by Certificate System subsystems and covers important
concepts such as log file rotation, buffered logging, and available log levels.

16.2.1.1. Services That Are Logged

All major components and protocols of Certificate System log messages to log files. Table 16.1, “Services
Logged” lists services that are logged by default. To view messages logged by a specific service,
customize log settings accordingly. For details, see Section 16.3.1, “Viewing Logs in the Console” .

Table 16.1. Services Logged

Service Description

ACLs Logs events related to access control lists.

Administration Logs events related to administration activities, such as HTTPS
communication between the Console and the instance.

All Logs events related to all the services.

Authentication Logs events related to activity with the authentication module.

Certificate Authority Logs events related to the Certificate Manager.

Database Logs events related to activity with the internal database.

HTTP Logs events related to the HTTP activity of the server. Note that HTTP
events are actually logged to the errors log belonging to the Apache
server incorporated with the Certificate System to provide HTTP
services.

Administration Guide

302

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/Self_Test_Configuration#Modifying_Self_Test_Configuration

Key Recovery Authority Logs events related to the KRA.

LDAP Logs events related to activity with the LDAP directory, which is used for
publishing certificates and CRLs.

OCSP Logs events related to OCSP, such as OCSP status GET requests.

Others Logs events related to other activities, such as command-line utilities
and other processes.

Request Queue Logs events related to the request queue activity.

User and Group Logs events related to users and groups of the instance.

Service Description

16.2.1.2. Log Levels (Message Categories)

The different events logged by Certificate System services are determined by the log levels, which
makes identifying and filtering events simpler. The different Certificate System log levels are listed in
Table 16.2, “Log Levels and Corresponding Log Messages” .

Log levels are represented by numbers indicating how detailed the level of logging to be performed by
the server should be.

A higher priority level means less detail because only events of high priority are logged.

Table 16.2. Log Levels and Corresponding Log Messages

Log
level

Message category Description

0-1 Tracing These messages contain finer-grained debugging information.
This level should not be used regularly because it may impact
the performance.

2-5 Debugging These messages contain debugging information. This level is not
recommended for regular use because it generates too much
information.

6-10 Informational These messages provide general information about the state of
the Certificate System, including status messages such as
Certificate System initialization complete and Request for
operation succeeded.

11-15 Warning These messages are warnings only and do not indicate any
failure in the normal operation of the server.

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

303

> 15 Failure These messages indicate errors and failures that prevent the
server from operating normally, including failures to perform a
certificate service operation (User authentication failed or
Certificate revoked) and unexpected situations that can cause
irrevocable errors (The server cannot send back the request it
processed for a client through the same channel the request
came from the client). Setting the level above 15 will minimize the
logs, as only failures will be recorded.

Log
level

Message category Description

Log levels can be used to filter log entries based on the severity of an event. The default log level is 10.

Log data can be extensive, especially at lower (more verbose) logging levels. Make sure that the host
machine has sufficient disk space for all the log files. It is also important to define the logging level, log
rotation, and server-backup policies appropriately so that all the log files are backed up and the host
system does not get overloaded; otherwise, information can be lost.

16.2.1.3. Buffered and Unbuffered Logging

The Java subsystems support buffered logging for all types of logs. The server can be configured for
either buffered or unbuffered logging.

If buffered logging is configured, the server creates buffers for the corresponding logs and holds the
messages in the buffers for as long as possible. The server flushes out the messages to the log files only
when one of the following conditions occurs:

The buffer gets full. The buffer is full when the buffer size is equal to or greater than the value
specified by the bufferSize configuration parameter. The default value for this parameter is 512
KB.

The flush interval for the buffer is reached. The flush interval is reached when the time interval
since the last buffer flush is equal to or greater than the value specified by the flushInterval
configuration parameter. The default value for this parameter is 5 seconds.

When current logs are read from Console. The server retrieves the latest log when it is queried
for current logs.

If the server is configured for unbuffered logging, the server flushes out messages as they are generated
to the log files. Because the server performs an I/O operation (writing to the log file) each time a
message is generated, configuring the server for unbuffered logging decreases performance.

Setting log parameters is described in Section 16.2.2, “Configuring Logs in the Console” .

16.2.1.4. Log File Rotation

The subsystem logs have an optional log setting that allows them to be rotated and start a new log file
instead of letting log files grow indefinitely. Log files are rotated when either of the following occur:

The size limit for the corresponding file is reached. The size of the corresponding log file is
equal to or greater than the value specified by the maxFileSize configuration parameter. The
default value for this parameter is 100 KB.

The age limit for the corresponding file is reached. The corresponding log file is equal to or

Administration Guide

304

The age limit for the corresponding file is reached. The corresponding log file is equal to or
older than the interval specified by the rolloverInterval configuration parameter. The default
value for this parameter is 2592000 seconds (every thirty days).

NOTE

Setting both these parameters to 0 effectively disables the log file rotation.

When a log file is rotated, the old file is named using the name of the file with an appended time stamp.
The appended time stamp is an integer that indicates the date and time the corresponding active log
file was rotated. The date and time have the forms YYYYMMDD (year, month, day) and HHMMSS
(hour, minute, second).

Log files, especially the audit log file, contain critical information. These files should be periodically
archived to some backup medium by copying the entire log directory to an archive medium.

NOTE

The Certificate System does not provide any tool or utility for archiving log files.

The Certificate System provides a command-line utility, signtool, that signs log files before archiving
them as a means of tamper detection. For details, see Section 16.2.4.5, “Signing Log Files” .

Signing log files is an alternative to the signed audit logs feature. Signed audit logs create audit logs that
are automatically signed with a subsystem signing certificate. See Section 16.2.4.3, “Configuring a
Signed Audit Log in the Console” for details about signed audit logs.

Rotated log files are not deleted.

16.2.2. Configuring Logs in the Console

Logs can be configured through both the subsystem Console and through the subsystem's CS.cfg file.
Specialized logs, such as signed audit logs and custom logs, can also be created through the Console or
configuration file.

Audit logs can be configured through the subsystem Console for the CA, OCSP, TKS, and KRA
subsystems. TPS logs are only configured through the configuration file.

1. In the navigation tree of the Configuration tab, select Log.

2. The Log Event Listener Management tab lists the currently configured listeners.

To create a new log instance, click Add, and select a module plug-in from the list in the Select
Log Event Listener Plug-in Implementation window.

3. Set or modify the fields in the Log Event Listener Editor window. The different parameters are
listed in Table 16.3, “Log Event Listener Fields” .

Table 16.3. Log Event Listener Fields

Field Description

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

305

Log Event Listener ID Gives the unique name that identifies the listener. The names can have any
combination of letters (aA to zZ), digits (0 to 9), an underscore (_), and a hyphen
(-), but it cannot contain other characters or spaces.

type Gives the type of log file. transaction records audit logs.

enabled Sets whether the log is active. Only enabled logs actually record events. The value
is either true or false.

level Sets the log level in the text field. The level must be manually entered in the field;
there is no selection menu. The choices are Debug, Information, Warning,
Failure, Misconfiguration, Catastrophe, and Security. For more
information, see Section 16.2.1.2, “Log Levels (Message Categories)”.

fileName Gives the full path, including the file name, to the log file. The subsystem user
should have read/write permission to the file.

bufferSize Sets the buffer size in kilobytes (KB) for the log. Once the buffer reaches this size,
the contents of the buffer are flushed out and copied to the log file. The default
size is 512 KB. For more information on buffered logging, see Section 16.2.1.3,
“Buffered and Unbuffered Logging”.

flushInterval Sets the amount of time before the contents of the buffer are flushed out and
added to the log file. The default interval is 5 seconds.

maxFileSize Sets the size, in kilobytes (KB), a log file can become before it is rotated. Once it
reaches this size, the file is copied to a rotated file, and the log file is started new.
For more information on log file rotation, see Section 16.2.1.4, “Log File Rotation”.
The default size is 2000 KB.

rolloverInterval Sets the frequency for the server to rotate the active log file. The available
options are hourly, daily, weekly, monthly, and yearly. The default is monthly. For
more information, see Section 16.2.1.4, “Log File Rotation”.

Field Description

16.2.3. Configuring Logs in the CS.cfg File

For instruction on how to configure logs by editing the CS.cfg file, see the Configuring Logs in the
CS.cfg File section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

16.2.4. Managing Audit Logs

The audit log contains records for events that have been set up as recordable events. If the logSigning
attribute is set to true, the audit log is signed with a log signing certificate belonging to the server. This
certificate can be used by auditors to verify that the log has not been tampered with.

By default, regular audit logs are located in the /var/log/pki/instance_name/subsystem_name/
directory with other types of logs, while signed audit logs are written to
/var/log/pki/instance_name/subsystem_name/signedAudit/. The default location for logs can be
changed by modifying the configuration.

Administration Guide

306

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/Configuring_Logs_in_the_CS.cfg_File

The signed audit log creates a log recording system events, and the events are selected from a list of
potential events. When enabled, signed audit logs record a verbose set of messages about the selected
event activity.

Signed audit logs are configured by default when the instance is first created, but it is possible to
configure signed audits logs after installation. (See Section 16.2.4.2, “Enabling Signed Audit Logging
after Installation”.) It is also possible to edit the configuration or change the signing certificates after
configuration, as covered in Section 16.2.4.3, “Configuring a Signed Audit Log in the Console” .

16.2.4.1. A List of Audit Events

For a list of audit events in Certificate System, see Appendix E, Audit Events .

16.2.4.2. Enabling Signed Audit Logging after Installation

Signed audit logs can be enabled by default when an instance is first created by using the
pki_audit_group deployment parameter with the pkispawn command. If, however, signed audit logs
were not configured when an instance was created, they can be enabled afterwards by reassigning
ownership of the audit log directory to the auditor system users group, such as pkiaudit.

1. Stop the instance:

pki-server stop instance_name

2. Set the group ownership of the signed audit log directory to the PKI auditors operating system
group, such as pkiaudit. This allows the users in the PKI auditors group to have the required
read access to the signedAudit directory to verify the signatures on the log files. No user
(except for the Certificate System user account, pkiuser) should have write access to the log
files in this directory.

chgrp -R pkiaudit /var/log/pki/instance_name/subsystem_name/signedAudit

3. Restart the instance:

pki-server start instance_name

16.2.4.3. Configuring a Signed Audit Log in the Console

Signed audit logs are configured by default when the instance is first created, but it is possible to edit
the configuration or change the signing certificates after configuration.

NOTE

Provide enough space in the file system for the signed audit logs, since they can be large.

A log is set to a signed audit log by setting the logSigning parameter to enable and providing the
nickname of the certificate used to sign the log. A special log signing certificate is created when the
subsystems are first configured.

Only a user with auditor privileges can access and view a signed audit log. Auditors can use the
AuditVerify tool to verify that signed audit logs have not been tampered with.

The signed audit log is created and enabled when the subsystem is configured, but it needs additional

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

307

The signed audit log is created and enabled when the subsystem is configured, but it needs additional
configuration to begin creating and signing audit logs.

1. Open the Console.

NOTE

To create or configure the audit log by editing the CS.cfg file, see the
Configuring Logs in the CS.cfg File section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

2. In the navigation tree of the Configuration tab, select Log.

3. In the Log Event Listener Management tab, select the SignedAudit entry.

4. Click Edit/View.

5. There are three fields which must be reset in the Log Event Listener Editor window.

Fill in the signedAuditCertNickname. This is the nickname of the certificate used to sign
audit logs. An audit signing certificate is created when the subsystem is configured; it has a
nickname like auditSigningCert cert-instance_name subsystem_name.

NOTE

To get the audit signing certificate nickname, list the certificates in the
subsystem's certificate database using certutil. For example:

certutil -L -d /var/lib/pki-tomcat/alias

Certificate Authority - Example Domain CT,c,
subsystemCert cert-pki-tomcat u,u,u
Server-Cert cert-pki-tomcat u,u,u
auditSigningCert cert-pki-tomcat CA u,u,Pu

Set the logSigning field to true to enable signed logging.

Set any events which are logged to the audit log. Appendix E, Audit Events lists the
loggable events. Log events are separated by commas with no spaces.

6. Set any other settings for the log, such as the file name, the log level, the file size, or the
rotation schedule.

NOTE

By default, regular audit logs are located in the
/var/log/pki/instance_name/subsystem_name/ directory with other types of
logs, while signed audit logs are written to
/var/log/pki/instance_name/subsystem_name/signedAudit/. The default
location for logs can be changed by modifying the configuration.

7. Save the log configuration.

Administration Guide

308

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/Configuring_Logs_in_the_CS.cfg_File

After enabling signed audit logging, assign auditor users by creating the user and assigning that entry to
the auditor group. Members of the auditor group are the only users who can view and verify the signed
audit log. See Section 15.3.2.1, “Creating Users” for details about setting up auditors.

Auditors can verify logs by using the AuditVerify tool. See the AuditVerify(1) man page for details
about using this tool.

16.2.4.4. Handling Audit Logging Failures

There are events that could cause the audit logging function to fail, so events cannot be written to the
log. For example, audit logging can fail when the file system containing the audit log file is full or when
the file permissions for the log file are accidentally changed. If audit logging fails, the Certificate System
instance shuts down in the following manner.

Servlets are disabled and will not process new requests.

All pending and new requests are killed.

The subsystem is shut down.

When this happens, administrators and auditors should work together with the operating system
administrator to resolve the disk space or file permission issues. When the IT problem is resolved, the
auditor should make sure that the last audit log entries are signed. If not, they should be preserved by
manual signing (Section 16.2.4.5, “Signing Log Files”), archived, and removed to prevent audit
verification failures in the future. When this is completed, the administrators can restart the
Certificate System.

16.2.4.5. Signing Log Files

The Certificate System can digitally sign log files before they are archived or distributed for audit
purposes. This feature allows files to be checked for tampering.

This is an alternative to the signed audit logs feature. The signed audit log feature creates audit logs
that are automatically signed; this tool manually signs archived logs. See Section 16.2.4.3, “Configuring a
Signed Audit Log in the Console” for details about signed audit logs.

For signing log files, use a command-line utility called the Signing Tool (signtool). For details about this
utility, see http://www.mozilla.org/projects/security/pki/nss/tools/.

The utility uses information in the certificate, key, and security module databases of the subsystem
instance.

As a user with auditor privilegesuse the signtool command to sign the log directories:

signtool -d secdb_dir -k cert_nickname -Z output input

secdb_dir specifies the path to the directory that contains the certificate, key, and security
module databases for the CA.

cert_nickname specifies the nickname of the certificate to use for signing.

output specifies the name of the JAR file (a signed zip file).

input specifies the path to the directory that contains the log files.

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

309

http://www.mozilla.org/projects/security/pki/nss/tools/

16.2.4.6. Filtering Audit Events

In Certificate System administrators can set filters to configure which audit events will be logged in the
audit file based on the event attributes.

The format of the filters is the same as for LDAP filters. However, Certificate System only supports the
following filters:

Table 16.4. Supported Audit Event Filters

Type Format Example

Presence (attribute=*) (ReqID=*)

Equality (attribute=value) (Outcome=Failure)

Substring (attribute=initial*any*...*any*final) (SubjectID=*admin*)

AND operation (&(filter_1)(filter_2)...(filter_n)) (&(SubjectID=admin)(Outcome=Failure))

OR operation (|(filter_1)(filter_2)...(filter_n)) (|(SubjectID=admin)(Outcome=Failure))

NOT operation (!(filter)) (!(SubjectID=admin))

For further details on LDAP filters, see the Using Compound Search Filters in the Red Hat
Directory Server Administration Guide.

Example 16.3. Filtering Audit Events

To log only failed events for profile certificate requests and events for processed certificates
requests that have the InfoName field set to rejectReadon or cancelReason:

1. Edit the /var/lib/pki/instance_name/subsystem_type/conf/CS.cfg file and set the
following parameters:

log.instance.SignedAudit.filters.PROFILE_CERT_REQUEST=(Outcome=Failure)
log.instance.SignedAudit.filters.CERT_REQUEST_PROCESSED=(|
(InfoName=rejectReason)(InfoName=cancelReason))

2. Restart Certificate System:

pki-server restart instance_name

16.2.5. Managing Log Modules

The types of logs that are allowed and their behaviors are configured through log module plug-ins. New
logging modules can be created and used to make custom logs.

New log plug-in modules can be registered through the Console. Registering a new module involves

Administration Guide

310

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/finding_directory_entries-ldap_search_filters#Search_Filter_Syntax-Using_Compound_Search_Filters

New log plug-in modules can be registered through the Console. Registering a new module involves
specifying the name of the module and the full name of the Java™ class that implements the log
interface.

Before registering a plug-in module, put the Java™ class for the module in the classes directory; the
implementation must be on the class path.

To register a log plug-in module with a subsystem instance:

1. Create the custom job class. For this example, the custom log plug-in is called MyLog.java.

2. Compile the new class into the lib directory of the instance.

javac -d . /var/lib/pki/pki-tomcat/lib -classpath $CLASSPATH MyLog.java

3. Create a directory in the CA's WEB-INF web directory to hold the custom classes, so that the
CA can access them.

mkdir /var/lib/pki/pki-tomcat/webapps/ca/WEB-INF/classes

4. Set the owner to the Certificate System system user (pkiuser).

chown -R pkiuser:pkiuser /var/lib/pki/pki-tomcat/lib

5. Register the plug-in.

1. Log into the Console.

2. In the Configuration tab, select Logs from the navigation tree. Then select the Log Event
Listener Plug-in Registration tab.

3. Click Register.

The Register Log Event Listener Plug-in Implementation window appears.

4. Give the name for the plug-in module and the Java™ class name.

The Java™ class name is the full path to the implementing Java™ class. If this class is part of
a package, include the package name. For example, registering a class named customLog in
a package named com.customplugins, the class name would be
com.customplugins.customLog.

5. Click OK.

Unwanted log plug-in modules can be deleted through the Console. Before deleting a module, delete all
the listeners based on this module; see Section 16.2.1.4, “Log File Rotation” .

16.3. USING LOGS

16.3.1. Viewing Logs in the Console

To troubleshoot the subsystem, check the error or informational messages that the server has logged.
Examining the log files can also monitor many aspects of the server's operation. Some log files can be
viewed through the Console. However, the audit log is only accessible by users with the Auditor role,

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

311

using a method detailed in Section 16.3.2, “Using Signed Audit Logs” .

To view the contents of a log file:

1. Log into the Console.

2. Select the Status tab.

3. Under Logs, select the log to view.

4. Set the viewing preferences in the Display Options section.

Entries — The maximum number of entries to be displayed. When this limit is reached, the
Certificate System returns any entries that match the search request. Zero (0) means no
messages are returned. If the field is blank, the server returns every matching entry,
regardless of the number found.

Source — Select the Certificate System component or service for which log messages are
to be displayed. Choosing All means messages logged by all components that log to this file
are displayed.

Level — Select a message category that represents the log level for filtering messages.

Filename — Select the log file to view.

5. Click Refresh.

6. To view a full entry, double-click it, or select the entry, and click View.

16.3.2. Using Signed Audit Logs

This section explains how a user in the Auditor group displays and verifies signed audit logs.

16.3.2.1. Listing Audit Logs

As a user with auditor privileges, use the the pki subsystem-audit-file-find command to list existing
audit log files on the server.

For example, to list the audit log files on the CA hosted on server.example.com:

pki -h server.example.com -p 8443 -n auditor ca-audit-file-find

3 entries matched

 File name: ca_audit.20170331225716
 Size: 2883

 File name: ca_audit.20170401001030
 Size: 189

 File name: ca_audit
 Size: 6705

Number of entries returned 3

The command uses the client certificate with the auditor nickname stored in the ~/.dogtag/nssdb/

Administration Guide

312

The command uses the client certificate with the auditor nickname stored in the ~/.dogtag/nssdb/
directory for authenticating to the CA. For further details about the parameters used in the command
and alternative authentication methods, see the pki(1) man page.

16.3.2.2. Downloading Audit Logs

As a user with auditor privileges, use the pki subsystem-audit-file-retrieve command to download a
specific audit log from the server.

For example, to download an audit log file from the CA hosted on server.example.com:

1. Optionally, list the available log files on the CA. See Section 16.3.2.1, “Listing Audit Logs” .

2. Download the log file. For example, to download the ca_audit file:

pki -U https://server.example.com:8443 -n auditor ca-audit-file-retrieve ca_audit

The command uses the client certificate with the auditor nickname stored in the
~/.dogtag/nssdb/ directory for authenticating to the CA. For further details about the
parameters used in the command and alternative authentication methods, see the pki(1) man
page.

After downloading a log file, you can search for specific log entries, for example, using the grep utility:

grep "\[AuditEvent=ACCESS_SESSION_ESTABLISH\]" log_file

16.3.2.3. Verifying Signed Audit Logs

If audit log signing is enabled, users with auditor privileges can verify the logs:

1. Initialize the NSS database and import the CA certificate. For details, see Section 2.5.1.1, “pki CLI
Initialization” and the Importing a certificate into an NSS Database section in the Red Hat
Certificate System Planning, Installation, and Deployment Guide.

2. If the audit signing certificate does not exist in the PKI client database, import it:

a. Search the audit signing certificate for the subsystem logs you want to verify. For example:

pki ca-cert-find --name "CA Audit Signing Certificate"

1 entries found

 Serial Number: 0x5
 Subject DN: CN=CA Audit Signing Certificate,O=EXAMPLE
 Status: VALID
 Type: X.509 version 3
 Key Algorithm: PKCS #1 RSA with 2048-bit key
 Not Valid Before: Fri Jul 08 03:56:08 CEST 2016
 Not Valid After: Thu Jun 28 03:56:08 CEST 2018
 Issued On: Fri Jul 08 03:56:08 CEST 2016
 Issued By: system

Number of entries returned 1

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

313

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/importing_certificate_into_nssdb

b. Import the audit signing certificate into the PKI client:

pki client-cert-import "CA Audit Signing Certificate" --serial 0x5 --trust ",,P"

Imported certificate "CA Audit Signing Certificate"

3. Download the audit logs. See Section 16.3.2.2, “Downloading Audit Logs”.

4. Verify the audit logs.

a. Create a text file that contains a list of the audit log files you want to verify in chronological
order. For example:

cat > ~/audit.txt << EOF
ca_audit.20170331225716
ca_audit.20170401001030
ca_audit
EOF

b. Use the AuditVerify utility to verify the signatures. For example:

AuditVerify -d ~/.dogtag/nssdb/ -n "CA Audit Signing Certificate" \
 -a ~/audit.txt
Verification process complete.
Valid signatures: 10
Invalid signatures: 0

For further details about using AuditVerify, see the AuditVerify(1) man page.

16.3.3. Displaying Operating System-level Audit Logs

NOTE

To see Operating System-level audit logs using the instructions below, the auditd
logging framework must be configured per the Enabling OS-level Audit Logs section in
the Red Hat Certificate System Planning, Installation, and Deployment Guide .

To display operating system-level access logs, use the ausearch utility as root or as a privileged user
with the sudo utility.

16.3.3.1. Displaying Audit Log Deletion Events

Since these events are keyed (with rhcs_audit_deletion), use the -k parameter to find events matching
that key:

ausearch -k rhcs_audit_deletion

16.3.3.2. Displaying Access to the NSS Database for Secret and Private Keys

Since these events are keyed (with rhcs_audit_nssdb), use the -k parameter to find events matching
that key:

Administration Guide

314

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/operating_system_external_to_rhcs_log_settings#enabling_os_level_audit_logs

ausearch -k rhcs_audit_nssdb

16.3.3.3. Displaying Time Change Events

Since these events are keyed (with rhcs_audit_time_change), use the -k parameter to find events
matching that key:

ausearch -k rhcs_audit_time_change

16.3.3.4. Displaying Package Update Events

Since these events are a typed message (of type SOFTWARE_UPDATE), use the -m parameter to find
events matching that type:

ausearch -m SOFTWARE_UPDATE

16.3.3.5. Displaying Changes to the PKI Configuration

Since these events are keyed (with rhcs_audit_config), use the -k parameter to find events matching
that key:

ausearch -k rhcs_audit_config

16.3.4. Smart Card Error Codes

Smart cards can report certain error codes to the TPS; these are recorded in the TPS's debug log file,
depending on the cause for the message.

Table 16.5. Smart Card Error Codes

Return Code Description

General Error Codes

6400 No specific diagnosis

6700 Wrong length in Lc

6982 Security status not satisfied

6985 Conditions of use not satisfied

6a86 Incorrect P1 P2

6d00 Invalid instruction

6e00 Invalid class

CHAPTER 16. CONFIGURING SUBSYSTEM LOGS

315

Install Load Errors

6581 Memory Failure

6a80 Incorrect parameters in data field

6a84 Not enough memory space

6a88 Referenced data not found

Delete Errors

6200 Application has been logically deleted

6581 Memory failure

6985 Referenced data cannot be deleted

6a88 Referenced data not found

6a82 Application not found

6a80 Incorrect values in command data

Get Data Errors

6a88 Referenced data not found

Get Status Errors

6310 More data available

6a88 Referenced data not found

6a80 Incorrect values in command data

Load Errors

6581 Memory failure

6a84 Not enough memory space

6a86 Incorrect P1/P2

6985 Conditions of use not satisfied

Return Code Description

Administration Guide

316

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES
This chapter gives an overview of using certificates: what types and formats are available, how to
request and create them through the HTML end-entity forms and through the Certificate System
Console, and how to install certificates in the Certificate System and on different clients. Additionally,
there is information on managing certificates through the Console and configuring the servers to use
them.

17.1. REQUIRED SUBSYSTEM CERTIFICATES

Each subsystem has a defined set of certificates which must be issued to the subsystem instance for it
to perform its operations. There are certain details of the certificate contents that are set during the
Certificate Manager configuration, with different considerations for constraints, settings, and attributes
depending on the types of certificates; planning the formats of certificates is covered in the Red Hat
Certificate System Planning, Installation, and Deployment Guide.

17.1.1. Certificate Manager Certificates

When a Certificate Manager is installed, the keys and requests for the CA signing certificate, SSL server
certificate, and OCSP signing certificate are generated. The certificates are created before the
configuration can be completed.

The CA certificate request is either submitted as a self-signing request to the CA, which then issues the
certificate and finishes creating the self-signed root CA, or is submitted to a third-party public CA or
another Certificate System CA. When the external CA returns the certificate, the certificate is installed,
and installation of the subordinate CA is completed.

Section 17.1.1.1, “CA Signing Key Pair and Certificate”

Section 17.1.1.2, “OCSP Signing Key Pair and Certificate”

Section 17.1.1.3, “Subsystem Certificate”

Section 17.1.1.4, “SSL Server Key Pair and Certificate”

Section 17.1.1.5, “Audit Log Signing Key Pair and Certificate”

17.1.1.1. CA Signing Key Pair and Certificate

Every Certificate Manager has a CA signing certificate with a public key corresponding to the private
key the Certificate Manager uses to sign the certificates and CRLs it issues. This certificate is created
and installed when the Certificate Manager is installed. The default nickname for the certificate is
caSigningCert cert-instance_ID CA, where instance_ID identifies the Certificate Manager instance. The
default validity period for the certificate is five years.

The subject name of the CA signing certificate reflects the name of the CA that was set during
installation. All certificates signed or issued by the Certificate Manager include this name to identify the
issuer of the certificate.

The Certificate Manager's status as a root or subordinate CA is determined by whether its CA signing
certificate is self-signed or is signed by another CA, which affects the subject name on the certificates.

If the Certificate Manager is a root CA, its CA signing certificate is self-signed, meaning the
subject name and issuer name of the certificate are the same.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

317

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html#types-of-certificates

If the Certificate Manager is a subordinate CA, its CA signing certificate is signed by another CA,
usually the one that is a level above in the CA hierarchy (which may or may not be a root CA).
The root CA's signing certificate must be imported into individual clients and servers before the
Certificate Manager can be used to issue certificates to them.

NOTE

The CA name cannot be changed or all previously-issued certificates are invalidated.
Similarly, reissuing a CA signing certificate with a new key pair invalidates all certificates
that were signed by the old key pair.

17.1.1.2. OCSP Signing Key Pair and Certificate

The subject name of the OCSP signing certificate is in the form cn=OCSP cert-instance_ID CA, and it
contains extensions, such as OCSPSigning and OCSPNoCheck, required for signing OCSP responses.

The default nickname for the OCSP signing certificate is ocspSigningCert cert-instance_ID, where
instance_ID CA identifies the Certificate Manager instance.

The OCSP private key, corresponding to the OCSP signing certificate's public key, is used by the
Certificate Manager to sign the OCSP responses to the OCSP-compliant clients when queried about
certificate revocation status.

17.1.1.3. Subsystem Certificate

Every member of the security domain is issued a server certificate to use for communications among
other domain members, which is separate from the server SSL certificate. This certificate is signed by
the security domain CA; for the security domain CA itself, its subsystem certificate is signed by itself.

The default nickname for the certificate is subsystemCert cert-instance_ID.

17.1.1.4. SSL Server Key Pair and Certificate

Every Certificate Manager has at least one SSL server certificate that was first generated when the
Certificate Manager was installed. The default nickname for the certificate is Server-Cert
cert-instance_ID, where instance_ID identifies the Certificate Manager instance.

By default, the Certificate Manager uses a single SSL server certificate for authentication. However,
additional server certificates can be requested to use for different operations, such as configuring the
Certificate Manager to use separate server certificates for authenticating to the end-entity services
interface and agent services interface.

If the Certificate Manager is configured for SSL-enabled communication with a publishing directory, it
uses its SSL server certificate for client authentication to the publishing directory by default. The
Certificate Manager can also be configured to use a different certificate for SSL client authentication.

17.1.1.5. Audit Log Signing Key Pair and Certificate

The CA keeps a secure audit log of all events which occurred on the server. To guarantee that the audit
log has not been tampered with, the log file is signed by a special log signing certificate.

The audit log signing certificate is issued when the server is first configured.

NOTE

Administration Guide

318

NOTE

While other certificates can use ECC keys, the audit signing certificate must always use
an RSA key.

17.1.2. Online Certificate Status Manager Certificates

When the Online Certificate Status Manager is first configured, the keys for all required certificates are
created, and the certificate requests for the OCSP signing, SSL server, audit log signing, and subsystem
certificates are made. These certificate requests are submitted to a CA (either a Certificate System CA
or a third-party CA) and must be installed in the Online Certificate Status Manager database to
complete the configuration process.

Section 17.1.2.2, “SSL Server Key Pair and Certificate”

Section 17.1.2.3, “Subsystem Certificate”

Section 17.1.2.4, “Audit Log Signing Key Pair and Certificate”

Section 17.1.2.5, “Recognizing Online Certificate Status Manager Certificates”

17.1.2.1. OCSP Signing Key Pair and Certificate

Every Online Certificate Status Manager has a certificate, the OCSP signing certificate, which has a
public key corresponding to the private key the Online Certificate Status Manager uses to sign OCSP
responses. The Online Certificate Status Manager's signature provides persistent proof that the Online
Certificate Status Manager has processed the request. This certificate is generated when the Online
Certificate Status Manager is configured. The default nickname for the certificate is ocspSigningCert
cert-instance_ID, where instance_ID OSCP is the Online Certificate Status Manager instance name.

17.1.2.2. SSL Server Key Pair and Certificate

Every Online Certificate Status Manager has at least one SSL server certificate which was generated
when the Online Certificate Status Manager was configured. The default nickname for the certificate is
Server-Cert cert-instance_ID, where instance_ID identifies the Online Certificate Status Manager
instance name.

The Online Certificate Status Manager uses its server certificate for server-side authentication for the
Online Certificate Status Manager agent services page.

The Online Certificate Status Manager uses a single server certificate for authentication purposes.
Additional server certificates can be installed and used for different purposes.

17.1.2.3. Subsystem Certificate

Every member of the security domain is issued a server certificate to use for communications among
other domain members, which is separate from the server SSL certificate. This certificate is signed by
the security domain CA.

The default nickname for the certificate is subsystemCert cert-instance_ID.

17.1.2.4. Audit Log Signing Key Pair and Certificate

The OCSP keeps a secure audit log of all events which occurred on the server. To guarantee that the
audit log has not been tampered with, the log file is signed by a special log signing certificate.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

319

The audit log signing certificate is issued when the server is first configured.

NOTE

While other certificates can use ECC keys, the audit signing certificate must always use
an RSA key.

17.1.2.5. Recognizing Online Certificate Status Manager Certificates

Depending on the CA which signed the Online Certificate Status Manager's SSL server certificate, it
may be necessary to get the certificate and issuing CA recognized by the Certificate Manager.

If the Online Certificate Status Manager's server certificate is signed by the CA that is
publishing CRLs, then nothing needs to be done.

If the Online Certificate Status Manager's server certificate is signed by the same root CA that
signed the subordinate Certificate Manager's certificates, then the root CA must be marked as a
trusted CA in the subordinate Certificate Manager's certificate database.

If the Online Certificate Status Manager's SSL server certificate is signed by a different root CA,
then the root CA certificate must be imported into the subordinate Certificate Manager's
certificate database and marked as a trusted CA.

If the Online Certificate Status Manager's server certificate is signed by a CA within the selected
security domain, the certificate chain is imported and marked when the Online Certificate Status
Manager is configured. No other configuration is required. However, if the server certificate is signed by
an external CA, the certificate chain has to be imported for the configuration to be completed.

NOTE

Not every CA within the security domain is automatically trusted by the OCSP Manager
when it is configured. Every CA in the certificate chain of the CA configured in the CA
panel is, however, trusted automatically by the OCSP Manager. Other CAs within the
security domain but not in the certificate chain must be added manually.

17.1.3. Key Recovery Authority Certificates

The KRA uses the following key pairs and certificates:

Section 17.1.3.1, “Transport Key Pair and Certificate”

Section 17.1.3.2, “Storage Key Pair”

Section 17.1.3.3, “SSL Server Certificate”

Section 17.1.3.4, “Subsystem Certificate”

Section 17.1.3.5, “Audit Log Signing Key Pair and Certificate”

17.1.3.1. Transport Key Pair and Certificate

Every KRA has a transport certificate. The public key of the key pair that is used to generate the
transport certificate is used by the client software to encrypt an end entity's private encryption key
before it is sent to the KRA for archival; only those clients capable of generating dual-key pairs use the
transport certificate.

Administration Guide

320

17.1.3.2. Storage Key Pair

Every KRA has a storage key pair. The KRA uses the public component of this key pair to encrypt (or
wrap) private encryption keys when archiving the keys. It uses the private component to decrypt (or
unwrap) the archived key during recovery. For more information on how this key pair is used, see
Chapter 4, Setting up Key Archival and Recovery .

Keys encrypted with the storage key can be retrieved only by authorized key recovery agents.

17.1.3.3. SSL Server Certificate

Every Certificate System KRA has at least one SSL server certificate. The first SSL server certificate is
generated when the KRA is configured. The default nickname for the certificate is Server-Cert
cert-instance_ID, where instance_id identifies the KRA instance is installed.

The KRA's SSL server certificate was issued by the CA to which the certificate request was submitted,
which can be a Certificate System CA or a third-party CA. To view the issuer name, open the certificate
details in the System Keys and Certificates option in the KRA Console.

The KRA uses its SSL server certificate for server-side authentication to the KRA agent services
interface. By default, the Key Recovery Authority uses a single SSL server certificate for authentication.
However, additional SSL server certificates can be requested and installed for the KRA.

17.1.3.4. Subsystem Certificate

Every member of the security domain is issued a server certificate to use for communications among
other domain members, which is separate from the server SSL certificate. This certificate is signed by
the security domain CA.

The default nickname for the certificate is subsystemCert cert-instance_ID.

17.1.3.5. Audit Log Signing Key Pair and Certificate

The KRA keeps a secure audit log of all events which occurred on the server. To guarantee that the audit
log has not been tampered with, the log file is signed by a special log signing certificate.

The audit log signing certificate is issued when the server is first configured.

NOTE

While other certificates can use ECC keys, the audit signing certificate must always use
an RSA key.

17.1.4. TKS Certificates

The TKS has three certificates. The SSL server and subsystem certificates are used for standard
operations. An additional signing certificate is used to protect audit logs.

Section 17.1.4.1, “SSL Server Certificate”

Section 17.1.4.2, “Subsystem Certificate”

Section 17.1.4.3, “Audit Log Signing Key Pair and Certificate”

17.1.4.1. SSL Server Certificate

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

321

Every Certificate System TKS has at least one SSL server certificate. The first SSL server certificate is
generated when the TKS is configured. The default nickname for the certificate is Server-Cert
cert-instance_ID.

17.1.4.2. Subsystem Certificate

Every member of the security domain is issued a server certificate to use for communications among
other domain members, which is separate from the server SSL certificate. This certificate is signed by
the security domain CA.

The default nickname for the certificate is subsystemCert cert-instance_ID.

17.1.4.3. Audit Log Signing Key Pair and Certificate

The TKS keeps a secure audit log of all events which occurred on the server. To guarantee that the audit
log has not been tampered with, the log file is signed by a special log signing certificate.

The audit log signing certificate is issued when the server is first configured.

NOTE

While other certificates can use ECC keys, the audit signing certificate must always use
an RSA key.

17.1.5. TPS Certificates

The TPS only uses three certificates: a server certificate, subsystem certificate, and audit log signing
certificate.

Section 17.1.5.1, “SSL Server Certificate”

Section 17.1.5.2, “Subsystem Certificate”

Section 17.1.5.3, “Audit Log Signing Key Pair and Certificate”

17.1.5.1. SSL Server Certificate

Every Certificate System TPS has at least one SSL server certificate. The first SSL server certificate is
generated when the TPS is configured. The default nickname for the certificate is Server-Cert
cert-instance_ID.

17.1.5.2. Subsystem Certificate

Every member of the security domain is issued a server certificate to use for communications among
other domain members, which is separate from the server SSL certificate. This certificate is signed by
the security domain CA.

The default nickname for the certificate is subsystemCert cert-instance_ID.

17.1.5.3. Audit Log Signing Key Pair and Certificate

The TPS keeps a secure audit log of all events which occurred on the server. To guarantee that the audit
log has not been tampered with, the log file is signed by a special log signing certificate.

Administration Guide

322

The audit log signing certificate is issued when the server is first configured.

17.1.6. About Subsystem Certificate Key Types

When you create a new instance, you can specify the key type and key size in the configuration file
passed to the pkispawn utility.

Example 17.1. Key Type-related Configuration Parameters for a CA

The following are key type-related parameters including example values. You can set these
parameters in the configuration file which you pass to pkispawn when creating a new CA.

pki_ocsp_signing_key_algorithm=SHA256withRSA
pki_ocsp_signing_key_size=2048
pki_ocsp_signing_key_type=rsa

pki_ca_signing_key_algorithm=SHA256withRSA
pki_ca_signing_key_size=2048
pki_ca_signing_key_type=rsa

pki_sslserver_key_algorithm=SHA256withRSA
pki_sslserver_key_size=2048
pki_sslserver_key_type=rsa

pki_subsystem_key_algorithm=SHA256withRSA
pki_subsystem_key_size=2048
pki_subsystem_key_type=rsa

pki_admin_keysize=2048
pki_admin_key_size=2048
pki_admin_key_type=rsa

pki_audit_signing_key_algorithm=SHA256withRSA
pki_audit_signing_key_size=2048
pki_audit_signing_key_type=rsa

NOTE

The values in the example are for a CA. Other subsystems require different parameters.

For further details, see:

The Understanding the pkispawn Utility section in the Red Hat Certificate System Planning,
Installation, and Deployment Guide.

The pki_default.cfg(5) man page for descriptions of the parameters and examples.

17.1.7. Using an HSM to Store Subsystem Certificates

By default, keys and certificates are stored in locally-managed databases, key4.db and cert9.db,
respectively, in the /var/lib/pki/instance_name/alias directory. However, Red Hat Certificate System
also supports hardware security modules (HSM), external devices which can store keys and certificates

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

323

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/understanding_the_pkispawn_utility

in a centralized place on the network. Using an HSM can make some functions, like cloning, easier
because the keys and certificates for the instance are readily accessible.

When an HSM is used to store certificates, then the HSM name is prepended to the certificate
nickname, and the full name is used in the subsystem configuration, such as the server.xml file. For
example:

serverCert="nethsm:Server-Cert cert-instance_ID

NOTE

A single HSM can be used to store certificates and keys for mulitple subsystem instances,
which may be installed on multiple hosts. When an HSM is used, any certificate nickname
for a subsystem must be unique for every subsystem instance managed on the HSM.

Certificate System supports two types of HSM, nCipher netHSM and Chrysalis LunaSA.

17.2. REQUESTING CERTIFICATES THROUGH THE CONSOLE

The Certificate Setup Wizard for the CA, OCSP, KRA, and TKS automates the certificate enrollment
process for subsystem certificates. The Console can create, submit, and install certificate requests and
certificates for any of the certificates used by that subsystem. These certificates can be a server
certificate or subsystem-specific certificate, such as a CA signing certificate or KRA transport
certificate.

17.2.1. Requesting Signing Certificates

NOTE

It is important that the user generate and submit the client request from the computer
that will be used later to access the subsystem because part of the request process
generates a private key on the local machine. If location independence is required, use a
hardware token, such as a smart card, to store the key pair and the certificate.

1. Open the subsystem console. For example:

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select System Keys and Certificates in the navigation tree.

3. In the right panel, select the Local Certificates tab.

4. Click Add/Renew.

Administration Guide

324

5. Select the Request a certificate radio button.

6. Choose the signing certificate type to request.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

325

7. Select which type of CA will sign the request, either a root CA or a subordinate CA.

8. Set the key-pair information and set the location to generate the keys (the token), which can be
either the internal security database directory or one of the listed external tokens.

To create a new certificate, you must create a new key pair. Using an existing key pair will simply
renew an existing certificate.

9. Select the message digest algorithm.

Administration Guide

326

10. Give the subject name. Either enter values for individual DN attributes to build the subject DN
or enter the full string.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

327

The certificate request forms support all UTF-8 characters for the common name,
organizational unit, and requester name fields.

This support does not include supporting internationalized domain names.

11. Specify the start and end dates of the validity period for the certificate and the time at which
the validity period will start and end on those dates.

Administration Guide

328

The default validity period is five years.

12. Set the standard extensions for the certificate. The required extensions are chosen by default.
To change the default choices, read the guidelines explained in Appendix B, Defaults,
Constraints, and Extensions for Certificates and CRLs.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

329

NOTE

Certificate extensions are required to set up a CA hierarchy. Subordinate CAs
must have certificates that include the extension identifying them as either a
subordinate SSL CA (which allows them to issue certificates for SSL) or a
subordinate email CA (which allows them to issue certificates for secure email).
Disabling certificate extensions means that CA hierarchies cannot be set up.

Basic Constraints. The associated fields are CA setting and a numeric setting for the
certification path length.

Extended Key Usage.

Authority Key Identifier.

Subject Key Identifier.

Key Usage. The digital signature (bit 0), non-repudiation (bit 1), key certificate sign (bit 5),
and CRL sign (bit 6) bits are set by default. The extension is marked critical as
recommended by the PKIX standard and RFC 2459. See RFC 2459 for a description of the
Key Usage extension.

Base-64 SEQUENCE of extensions. This is for custom extensions. Paste the extension in

Administration Guide

330

http://www.ietf.org/rfc/rfc2459.txt

Base-64 SEQUENCE of extensions. This is for custom extensions. Paste the extension in
MIME 64 DER-encoded format into the text field.

To add multiple extensions, use the ExtJoiner program. For information on using the tools, see
the Certificate System Command-Line Tools Guide .

13. The wizard generates the key pairs and displays the certificate signing request.

The request is in base-64 encoded PKCS #10 format and is bounded by the marker lines -----
BEGIN NEW CERTIFICATE REQUEST----- and -----END NEW CERTIFICATE REQUEST-----.
For example:

-----BEGIN NEW CERTIFICATE REQUEST-----

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

331

MIICJzCCAZCgAwIBAgIBAzANBgkqhkiG9w0BAQQFADBC6SAwHgYDVQQKExdOZXRzY2F
wZSBDb21tdW5pY2
F0aW9uczngjhnMVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTk4MDgyNzE5MDAwMFo
XDTk5MDIyMzE5MDA
wMnbjdgngYoxIDAeBgNVBAoTF05ldHNjYXBlIENvbW11bmljYXRpb25zMQ8wDQYDVQQLEw
ZQZW9wbGUxFz
AVBgoJkiaJkIsZAEBEwdzdXByaXlhMRcwFQYDVQQDEw5TdXByaXlhIFNoZXR0eTEjMCEGC
SqGSIb3Dbndg
JARYUc3Vwcml5Yhvfggsvwryw4y7214vAOBgNVHQ8BAf8EBAMCBLAwFAYJYIZIAYb4QgEB
AQHBAQDAgCAM
A0GCSqGSIb3DQEBBAUAA4GBAFi9FzyJlLmS+kzsue0kTXawbwamGdYql2w4hIBgdR+jWeL
mD4CP4x
-----END NEW CERTIFICATE REQUEST-----

The wizard also copies the certificate request to a text file it creates in the configuration
directory, which is located in /var/lib/pki/instance_name/subsystem_type/conf/. The name of
the text file depends on the type of certificate requested. The possible text files are listed in
Table 17.1, “Files Created for Certificate Signing Requests” .

Table 17.1. Files Created for Certificate Signing Requests

Filename Certificate Signing Request

cacsr.txt CA signing certificate

ocspcsr.txt Certificate Manager OCSP signing certificate

ocspcsr.txt OCSP signing certificate

Do not modify the certificate request before sending it to the CA. The request can either be
submitted automatically through the wizard or copied to the clipboard and manually submitted
to the CA through its end-entities page.

NOTE

The wizard's auto-submission feature can submit requests to a remote
Certificate Manager only. It cannot be used for submitting the request to a third-
party CA. To submit it to a third-party CA, use the certificate request file.

14. Retrieve the certificate.

1. Open the Certificate Manager end-entities page.

https://server.example.com:8443/ca/ee/ca

2. Click the Retrieval tab.

3. Fill in the request ID number that was created when the certificate request was submitted,
and click Submit.

4. The next page shows the status of the certificate request. If the status is complete, then
there is a link to the certificate. Click the Issued certificate link.

Administration Guide

332

5. The new certificate information is shown in pretty-print format, in base-64 encoded format,
and in PKCS #7 format.

6. Copy the base-64 encoded certificate, including the -----BEGIN CERTIFICATE----- and ----
-END CERTIFICATE----- marker lines, to a text file. Save the text file, and use it to store a

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

333

copy of the certificate in a subsystem's internal database. See Section 15.3.2.1, “Creating
Users”.

NOTE

pkiconsole is being deprecated.

17.2.2. Requesting Other Certificates

NOTE

It is important that the user generate and submit the client request from the computer
that will be used later to access the subsystem because part of the request process
generates a private key on the local machine. If location independence is required, use a
hardware token, such as a smart card, to store the key pair and the certificate.

1. Open the subsystem console. For example:

pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select System Keys and Certificates in the navigation tree.

3. In the right panel, select the Local Certificates tab.

4. Click Add/Renew.

5. Select the Request a certificate radio button.

6. Choose the certificate type to request. The types of certificates that can be requested varies
depending on the subsystem.

Administration Guide

334

NOTE

If selecting to create an "other" certificate, the Certificate Type field becomes
active. Fill in the type of certificate to create, either caCrlSigning for the CRL
signing certificate, caSignedLogCert for an audit log signing certificate, or client
for an SSL client certificate.

7. Select which type of CA will sign the request. The options are to use the local CA signing
certificate or to create a request to submit to another CA.

8. Set the key-pair information and set the location to generate the keys (the token), which can be
either the internal security database directory or one of the listed external tokens.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

335

To create a new certificate, you must create a new key pair. Using an existing key pair will simply
renew an existing certificate.

9. Give the subject name. Either enter values for individual DN attributes to build the subject DN
or enter the full string.

Administration Guide

336

NOTE

For an SSL server certificate, the common name must be the fully-qualified host
name of the Certificate System in the format machine_name.domain.domain.

The CA certificate request forms support all UTF-8 characters for the common name,
organizational unit, and requester name fields.

This support does not include supporting internationalized domain names.

10. Specify the start and end dates of the validity period for the certificate and the time at which
the validity period will start and end on those dates.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

337

The default validity period is five years.

11. Set the standard extensions for the certificate. The required extensions are chosen by default.
To change the default choices, read the guidelines explained in Appendix B, Defaults,
Constraints, and Extensions for Certificates and CRLs.

Administration Guide

338

Extended Key Usage.

Authority Key Identifier.

Subject Key Identifier.

Key Usage. The digital signature (bit 0), non-repudiation (bit 1), key certificate sign (bit 5),
and CRL sign (bit 6) bits are set by default. The extension is marked critical as
recommended by the PKIX standard and RFC 2459. See RFC 2459 for a description of the
Key Usage extension.

Base-64 SEQUENCE of extensions. This is for custom extensions. Paste the extension in
MIME 64 DER-encoded format into the text field.

To add multiple extensions, use the ExtJoiner program. For information on using the tools, see
the Certificate System Command-Line Tools Guide .

12. The wizard generates the key pairs and displays the certificate signing request.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

339

http://www.ietf.org/rfc/rfc2459.txt

The request is in base-64 encoded PKCS #10 format and is bounded by the marker lines -----
BEGIN NEW CERTIFICATE REQUEST----- and -----END NEW CERTIFICATE REQUEST-----.
For example:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICJzCCAZCgAwIBAgIBAzANBgkqhkiG9w0BAQQFADBC6SAwHgYDVQQKExdOZXRzY2F
wZSBDb21tdW5pY2
F0aW9uczngjhnMVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTk4MDgyNzE5MDAwMFo
XDTk5MDIyMzE5MDA
wMnbjdgngYoxIDAeBgNVBAoTF05ldHNjYXBlIENvbW11bmljYXRpb25zMQ8wDQYDVQQLEw
ZQZW9wbGUxFz
AVBgoJkiaJkIsZAEBEwdzdXByaXlhMRcwFQYDVQQDEw5TdXByaXlhIFNoZXR0eTEjMCEGC
SqGSIb3Dbndg
JARYUc3Vwcml5Yhvfggsvwryw4y7214vAOBgNVHQ8BAf8EBAMCBLAwFAYJYIZIAYb4QgEB
AQHBAQDAgCAM
A0GCSqGSIb3DQEBBAUAA4GBAFi9FzyJlLmS+kzsue0kTXawbwamGdYql2w4hIBgdR+jWeL
mD4CP4x
-----END NEW CERTIFICATE REQUEST-----

The wizard also copies the certificate request to a text file it creates in the configuration
directory, which is located in /var/lib/pki/instance_name/subsystem_type/conf/. The name of
the text file depends on the type of certificate requested. The possible text files are listed in
Table 17.2, “Files Created for Certificate Signing Requests” .

Administration Guide

340

Table 17.2. Files Created for Certificate Signing Requests

Filename Certificate Signing Request

kracsr.txt KRA transport certificate

sslcsr.txt SSL server certificate

othercsr.txt Other certificates, such as Certificate Manager
CRL signing certificate or SSL client certificate

Do not modify the certificate request before sending it to the CA. The request can either be
submitted automatically through the wizard or copied to the clipboard and manually submitted
to the CA through its end-entities page.

NOTE

The wizard's auto-submission feature can submit requests to a remote
Certificate Manager only. It cannot be used for submitting the request to a third-
party CA. To submit the request to a third-party CA, use one of the certificate
request files.

13. Retrieve the certificate.

1. Open the Certificate Manager end-entities page.

https://server.example.com:8443/ca/ee/ca

2. Click the Retrieval tab.

3. Fill in the request ID number that was created when the certificate request was submitted,
and click Submit.

4. The next page shows the status of the certificate request. If the status is complete, then
there is a link to the certificate. Click the Issued certificate link.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

341

5. The new certificate information is shown in pretty-print format, in base-64 encoded format,
and in PKCS #7 format.

6. Copy the base-64 encoded certificate, including the -----BEGIN CERTIFICATE----- and ----
-END CERTIFICATE----- marker lines, to a text file. Save the text file, and use it to store a
copy of the certificate in a subsystem's internal database. See Section 15.3.2.1, “Creating
Users”.

17.3. RENEWING SUBSYSTEM CERTIFICATES

There are two methods of renewing a certificate. Regenerating the certificate takes its original key and
its original profile and request, and recreates an identical key with a new validity period and expiration
date. Re-keying a certificate resubmits the initial certificate request to the original profile, but generates
a new key pair. Administrator certificates can be renewed by being re-keyed.

17.3.1. Re-keying Certificates in the End-Entities Forms

Subsystem certificates can be renewed directly in the end user enrollment forms, using the serial
number of the original certificate.

1. Renew the certificates in the CA's end-entities forms, as described in Section 5.4, “Renewing
Certificates”. This requires the serial number of the subsystem certificate being renewed.

2. Import the certificate into the subsystem's database, as described in Section 17.6.1, “Installing
Certificates in the Certificate System Database”. The certificate can be imported using certutil
or the console. For example:

Administration Guide

342

certutil -A -n "ServerCert cert-example" -t u,u,u -d /var/lib/pki/instance_name/alias -a -i
/tmp/example.cert

17.3.2. Renewing Certificates in the Console

The Java subsystems can renew any of their subsystem certificates through their administrative
console. The process is exactly the same as requesting new subsystem certificates (Section 17.2,
“Requesting Certificates through the Console”), with one crucial difference: renewal uses an existing key
pair rather than generating a new one.

Figure 17.1. Renewing Subsystem Certificate

After renewing a certificate, then delete the original certificate from the database (Section 17.6.3,
“Deleting Certificates from the Database”).

17.3.3. Renewing Certificates Using certutil

certutil can be used to generate a certificate request using an existing key pair in the certificate
database. The new certificate request can then be submitted through the regular profile pages for the
CA to issue a renewed certificate.

NOTE

Encryption and signing certificates are created in a single step. However, the renewal
process only renews one certificate at a time.

To renew both certificates in a certificate pair, each one has to be renewed individually.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

343

1. Get the password for the token database.

cat /var/lib/pki/instance_name/conf/password.conf

internal=263163888660

2. Open the certificate database directory of the instance whose certificate is being renewed.

cd /var/lib/pki/instance_name/alias

3. List the key and nickname for the certificate being renewed. In order to renew a certificate, the
key pairs used to generate and the subject name given to the new certificate must be the same
as the one in the old certificate.

certutil -K -d .

certutil: Checking token "NSS Certificate DB" in slot "NSS User Private Key and Certificate
Services"
Enter Password or Pin for "NSS Certificate DB":
< 0> rsa 69481646e38a6154dc105960aa24ccf61309d37d caSigningCert cert-pki-tomcat
CA

4. Copy the alias directory as a backup, then delete the original certificate from the certificate
database. For example:

certutil -D -n "ServerCert cert-example" -d .

5. Run the certutil command with the options set to the values in the existing certificate.

certutil -d . -R -n "NSS Certificate DB:cert-pki-tomcat CA" -s "cn=CA Authority,o=Example
Domain" -a -o example.req2.txt

The difference between generating a new certificate and key pair and renewing the certificate is
the value of the -n option. To generate an entirely new request and key pair, then -k sets the key
type and is used with -g, which sets the bit length. For a renewal request, the -n option uses the
certificate nickname to access the existing key pair stored in the security database.

For further details about the parameters, see the certutil(1) man page.

6. Submit the certificate request and then retrieve it and install it, as described in Section 5.3,
“Requesting and Receiving Certificates”.

17.3.4. Renewing System Certificates

Certificate System does not automatically renew system certificates online while the PKI server is
running. However, if a system certificate expires, Certificate System will fail to start.

To renew system certificates:

1. If the system certificate is expired:

a. Create a temporary certificate:

Administration Guide

344

pki-server cert-create sslserver --temp

b. Import the temporary certificate into Certificate System's Network Security Services (NSS)
database:

pki-server cert-import sslserver

c. Start Certificate System:

pki-server start instance_name

2. Display the certificates and note the ID of the expired system certificate:

pki-server cert-find

3. Create the new permanent certificate:

pki-server cert-create certificate_ID

4. Stop Certificate System:

pki-server stop instance_name

5. Import the new certificate to replace the expired certificate:

pki-server cert-import certificate_ID

6. Start Certificate System:

pki-server start instance_name

17.4. CHANGING THE NAMES OF SUBSYSTEM CERTIFICATES

One alternative to renewing certificates is replacing them with new certificates, meaning that a new
certificate is generated with new keys. Generally, a new certificate can be added to the database and
the old one deleted, a simple one-to-one swap. This is possible because the individual subsystem
servers identify certificates based on their nickname; as long as the certificate nickname remains the
same, the server can find the required certificate even if other factors — like the subject name, serial
number, or key — are different.

However, in some situations, the new certificate may have a new certificate nickname, as well. In that
case, the certificate nickname needs to be updated in all of the required settings in the subsystem's
CS.cfg configuration file.

IMPORTANT

Always restart a subsystem after editing the CS.cfg file.

These tables list all of the configuration parameters for each of the subsystem's certificates:

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

345

Table 17.3, “CA Certificate Nickname Parameters”

Table 17.4, “KRA Certificate Nickname Parameters”

Table 17.5, “OCSP Certificate Nickname Parameters”

Table 17.6, “TKS Certificate Nickname Parameters”

Table 17.7, “TPS Nickname Parameters in CS.cfg”

Table 17.3. CA Certificate Nickname Parameters

CA Signing Certificate
ca.cert.signing.nickname

ca.signing.cacertnickname

ca.signing.certnickname

ca.signing.nickname

cloning.signing.nickname

OCSP Signing Certificate
ca.ocsp_signing.cacertnickname

ca.ocsp_signing.certnickname

ca.cert.ocsp_signing.nickname

ca.ocsp_signing.nickname

cloning.ocsp_signing.nickname

Subsystem Certificate
ca.cert.subsystem.nickname

ca.subsystem.nickname

cloning.subsystem.nickname

pkiremove.cert.subsystem.nickname

Server Certificate
ca.sslserver.nickname

ca.cert.sslserver.nickname

Audit Signing Certificate
ca.audit_signing.nickname

ca.cert.audit_signing.nickname

cloning.audit_signing.nickname

Table 17.4. KRA Certificate Nickname Parameters

Administration Guide

346

Transport Certificate
cloning.transport.nickname

kra.cert.transport.nickname

kra.transport.nickname

tks.kra_transport_cert_nickname

Note that this parameter is in the TKS
configuration file. This needs changed in the
TKS configuration if the KRA transport
certificate nickname changes, even if the
TKS certificates all stay the same.

Storage Certificate
cloning.storage.nickname

kra.storage.nickname

kra.cert.storage.nickname

Server Certificate
kra.cert.sslserver.nickname

kra.sslserver.nickname

Subsystem Certificate
cloning.subsystem.nickname

kra.cert.subsystem.nickname

kra.subsystem.nickname

pkiremove.cert.subsystem.nickname

Audit Log Signing Certificate
cloning.audit_signing.nickname

kra.cert.audit_signing.nickname

kra.audit_signing.nickname

Table 17.5. OCSP Certificate Nickname Parameters

OCSP Signing Certificate
cloning.signing.nickname

ocsp.signing.certnickname

ocsp.signing.cacertnickname

ocsp.signing.nickname

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

347

Server Certificate
ocsp.cert.sslserver.nickname

ocsp.sslserver.nickname

Subsystem Certificate
cloning.subsystem.nickname

ocsp.subsystem.nickname

ocsp.cert.subsystem.nickname

pkiremove.cert.subsystem

Audit Log Signing Certificate
cloning.audit_signing.nickname

ocsp.audit_signing.nickname

ocsp.cert.audit_signing.nickname

Table 17.6. TKS Certificate Nickname Parameters

KRA Transport Certificate[a]
tks.kra_transport_cert_nickname

Server Certificate
tks.cert.sslserver.nickname

tks.sslserver.nickname

Subsystem Certificate
cloning.subsystem.nickname

tks.cert.subsystem.nickname

tks.subsystem.nickname

pkiremove.cert.subsystem.nickname

Audit Log Signing Certificate
cloning.audit_signing.nickname

tks.audit_signing.nickname

tks.cert.audit_signing.nickname

[a] This needs changed in the TKS configuration if the KRA transport certificate nickname changes, even if the TKS
certificates all stay the same.

Table 17.7. TPS Nickname Parameters in CS.cfg

Administration Guide

348

Server Certificate
tps.cert.sslserver.nickname

Subsystem Certificate
tps.cert.subsystem.nickname

selftests.plugin.TPSValidity.nickname

selftests.plugin.TPSPresence.nickname

pkiremove.cert.subsystem.nickname

Audit Log Signing Certificate
tps.cert.audit_signing.nickname

17.5. USING CROSS-PAIR CERTIFICATES

In the late 1990s, as the US government began enhancing its public key infrastructure, it became
apparent that branches of government with their own, separate PKI deployments still needed to be able
to recognize and trust each others certificates as if the certificates were issued from their own CA. (The
method of getting certificates trusted outside a network for external clients to use is a serious, not easily
resolved issue for any PKI administrator.)

The US government devised a standard for issuing cross-pair certificates called the Federal Bridge
Certificate Authority. These certificates are also called bridge certificates, for obvious reasons. Bridge or
cross-pair certificates are CA signing certificate that are framed as dual certificate pairs, similar to
encryption and signing certificate pairs for users, only each certificate in the pair is issued by a different
CA. Both partner CAs store the other CA signing certificate in its database, so all of the certificates
issued within the other PKI are trusted and recognized.

Bridging certificates honors certificates issued by a CA that is not chained to the root CA in its own PKI.
By establishing a trust between the Certificate System CA and another CA through a cross-pair CA
certificate, the cross-pair certificate can be downloaded and used to trust the certificates issued by the
other CA, just as downloading and installing a single CA certificate trusts all certificates issued by the
CA.

The Certificate System can issue, import, and publish cross-pair CA certificates. A special profile must
be created for issuing cross-pair certificates, and then the certificates can be requested and installed
for the CA using the Certificate Wizard for the CA subsystem.

For more information on creating cross-pair certificate profiles, see the Configuring Cross-Pair profiles
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

For more information on publishing cross-pair certificates, see Section 9.9, “Publishing Cross-Pair
Certificates”.

17.5.1. Installing Cross-Pair Certificates

Both cross-pair certificates can be imported into the Certificate System databases using the certutil
tool or by selecting the Cross-Pair Certificates option from the Certificate Setup Wizard, as described
in Section 17.6.1, “Installing Certificates in the Certificate System Database” .

When both certificates have been imported into the database, a crossCertificatePair entry is formed

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

349

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/configuring-cross-pair-profiles

When both certificates have been imported into the database, a crossCertificatePair entry is formed
and stored in the database. The original individual cross-pair CA certificates are deleted once the
crossCertificatePair entry is created.

17.5.2. Searching for Cross-Pair Certificates

Both CAs in bridge certificates can store or publish the cross-pair certificates as a crossCertificatePair
entry in an LDAP database. The Certificate Manager's internal database can be searched for the
crossCertificatePair entry with ldapsearch.

/usr/lib[64]/mozldap/ldapsearch -D "cn=directory manager" -w secret -p 389 -h server.example.com -
b "o=server.example.com-pki-ca" -s sub "(crossCertificatePair=*)"

17.6. MANAGING THE CERTIFICATE DATABASE

Each Certificate System instance has a certificate database, which is maintained in its internal token.
This database contains certificates belonging to the subsystem installed in the Certificate System
instance and various CA certificates the subsystems use for validating the certificates they receive.

Even if an external token is used to generate and store key pairs, Certificate System always maintains its
list of trusted and untrusted CA certificates in its internal token.

This section explains how to view the contents of the certificate database, delete unwanted certificates,
and change the trust settings of CA certificates installed in the database using the Certificate System
window. For information on adding certificates to the database, see Section 17.6.1, “Installing Certificates
in the Certificate System Database”.

NOTE

The Certificate System command-line utility certutil can be used to manage the
certificate database by editing trust settings and adding and deleting certificates. For
details about this tool, see http://www.mozilla.org/projects/security/pki/nss/tools/.

Administrators should periodically check the contents of the certificate database to make sure that it
does not include any unwanted CA certificates. For example, if the database includes CA certificates
that should not ever be trusted within the PKI setup, delete them.

17.6.1. Installing Certificates in the Certificate System Database

If new server certificates are issued for a subsystem, they must be installed in that subsystem database.
Additionally, user and agent certificates must be installed in the subsystem databases. If the certificates
are issued by an external CA, then usually the corresponding CA certificate or certificate chain needs to
be installed.

Certificates can be installed in the subsystem certificate database through the Console's Certificate
Setup Wizard or using the certutil utility.

Section 17.6.1.1, “Installing Certificates through the Console”

Section 17.6.1.2, “Installing Certificates Using certutil”

Section 17.6.1.3, “About CA Certificate Chains”

Administration Guide

350

http://www.mozilla.org/projects/security/pki/nss/tools/

17.6.1.1. Installing Certificates through the Console

NOTE

pkiconsole is being deprecated.

The Certificate Setup Wizard can install or import the following certificates into either an internal or
external token used by the Certificate System instance:

Any of the certificates used by a Certificate System subsystem

Any trusted CA certificates from external CAs or other Certificate System CAs

Certificate chains

A certificate chain includes a collection of certificates: the subject certificate, the trusted root CA
certificate, and any intermediate CA certificates needed to link the subject certificate to the trusted
root. However, the certificate chain the wizard imports must include only CA certificates; none of the
certificates can be a user certificate.

In a certificate chain, each certificate in the chain is encoded as a separate DER-encoded object. When
the wizard imports a certificate chain, it imports these objects one after the other, all the way up the
chain to the last certificate, which may or may not be the root CA certificate. If any of the certificates in
the chain are already installed in the local certificate database, the wizard replaces the existing
certificates with the ones in the chain. If the chain includes intermediate CA certificates, the wizard adds
them to the certificate database as untrusted CA certificates.

The subsystem console uses the same wizard to install certificates and certificate chains. To install
certificates in the local security database, do the following:

1. Open the console.

pkiconsole https://server.example.com:secure_port/subsystem_type

2. In the Configuration tab, select System Keys and Certificates from the left navigation tree.

3. There are two tabs where certificates can be installed, depending on the subsystem type and
the type of certificate.

The CA Certificates tab is for installing CA certificates and certificate chains. For
Certificate Managers, this tab is used for third-party CA certificates or other
Certificate System CA certificates; all of the local CA certificates are installed in the Local
Certificates tab. For all other subsystems, all CA certificates and chains are installed
through this tab.

The Local Certificates tab is where all server certificates, subsystem certificates, and local
certificates such as OCSP signing or KRA transport are installed.

Select the appropriate tab.

4. To install a certificate in the Local Certificates tab, click Add/Renew. To install a certificate in
the CA Certificates tab, click Add. Both will open the Certificate Setup Wizard.

1. When the wizard opens, select the Install a certificate radio button, and click Next.

2. Select the type of certificate to install. The options for the drop-down menu are the same

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

351

2. Select the type of certificate to install. The options for the drop-down menu are the same
options available for creating a certificate, depending on the type of subsystem, with the
additional option to install a cross-pair certificate.

3. Paste in the certificate body, including the -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE-----, into the text area, or specify the absolute file location; this must be a
local file.

The certificate will look like the following:

-----BEGIN CERTIFICATE-----
MIICKzCCAZSgAwIBAgIBAzANgkqkiG9w0BAQQFADA3MQswCQYDVQQGEw
JVUzERMA8GA1UEChMITmV0c2NhcGUxFTATBgNVBAsTDFN1cHJpeWEncy
BDQTAeFw05NzEwMTgwMTM2MjVaFw05OTEwMTgwMTM2MjVaMEgxCzAJBg
NVBAYTAlVTMREwDwYDVQQKEwhOZXRzY2FwZTENMAsGA1UECxMEUHawcz
EXMBUGA1UEAxMOU3Vwcml5YSBTaGV0dHkwgZ8wDQYJKoZIhdfNAQEBBQ
ADgY0AMIGJAoGBAMr6eZiPGfjX3uRJgEjmKiqG7SdATYzBcABu1AVyd7
chRFOGD3wNktbf6hRo6EAmM5R1Askzf8AW7LiQZBcrXpc0k4du+2j6xJ
u2MPm8WKuMOTuvzpo+SGXelmHVChEqooCwfdiZywyZNmgaMa2MS6pUkf
QVAgMBAAGjNjA0MBEGCWCGSAGG+EIBAQQEAwIAgD
-----END CERTIFICATE-----

5. The wizard displays the certificate details. Review the fingerprint to make sure this is the correct
certificate, or use the Back button to go back and submit a different one. Give a nickname for
the certificate.

The wizard installs the certificate.

6. Any CA that signed the certificate must be trusted by the subsystem. Make sure that this CA's
certificate exists in the subsystem's certificate database (internal or external) and that it is
trusted.

If the CA certificate is not listed, add the certificate to the certificate database as a trusted CA.
If the CA's certificate is listed but untrusted, change the trust setting to trusted, as shown in
Section 17.7, “Changing the Trust Settings of a CA Certificate” .

When installing a certificate issued by a CA that is not stored in the Certificate System
certificate database, add that CA's certificate chain to the database. To add the CA chain to the
database, copy the CA chain to a text file, start the wizard again, and install the CA chain.

17.6.1.2. Installing Certificates Using certutil

To install subsystem certificates in the Certificate System instance's security databases using certutil,
do the following:

1. Open the subsystem's security database directory.

cd /var/lib/pki/instance_name/alias

2. Run the certutil command with the -A to add the certificate and -i pointing to the file
containing the certificate issued by the CA.

certutil -A -n cert-name -t trustargs
 -d . -a -i certificate_file

NOTE

Administration Guide

352

NOTE

If the Certificate System instance's certificates and keys are stored on an HSM,
then specify the token name using the -h option.

For example:

certutil -A -n "ServerCert cert-instance_name" -t u,u,u -d . -a -i /tmp/example.cert

For information about using the certutil command, see
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.

17.6.1.3. About CA Certificate Chains

Any client or server software that supports certificates maintains a collection of trusted CA certificates
in its certificate database. These CA certificates determine which other certificates the software can
validate. In the simplest case, the software can validate only certificates issued by one of the CAs for
which it has a certificate. It is also possible for a trusted CA certificate to be part of a chain of CA
certificates, each issued by the CA above it in a certificate hierarchy.

The first certificate in the chain is processed in a context-specific manner, which varies according to how
it is being imported. For Mozilla Firefox, this handling depends upon the MIME content type used on the
object being downloaded. For Red Hat servers, it depends upon the options selected in the server
administration interface.

Subsequent certificates are all treated the same. If the certificates contain the SSL-CA bit in the
Netscape Certificate Type certificate extension and do not already exist in the local certificate database,
they are added as untrusted CAs. They can be used for certificate chain validation as long as there is a
trusted CA somewhere in the chain.

17.6.2. Viewing Database Content

The certificates stored in the subsystem certificates database, cert9.db, can be viewed through the
subsystem administrative console. Alternatively, the certificates can be listed using the certutil utility.
certutil must be used to view the TPS certificates because the TPS subsystem does not use an
administrative console.

Section 17.6.2.1, “Viewing Database Content through the Console”

Section 17.6.2.2, “Viewing Database Content Using certutil”

NOTE

The certificates listed in the cert9.db database are the subsystem certificates used for
subsystem operations. User certificates are stored with the user entries in the LDAP
internal database.

17.6.2.1. Viewing Database Content through the Console

NOTE

pkiconsole is being deprecated.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

353

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

To view the contents of the database through the administrative console, do the following:

1. Open the subsystem console.

pkiconsole https://server.example.com:secure_port/subsystem_type

2. In the Configuration tab, select System Keys and Certificates from the left navigation tree.

3. There are two tabs, CA Certificates and Local Certificates, which list different kinds of
certificates.

CA Certificates lists CA certificates for which the corresponding private key material is not
available, such as certificates issued by third-party CAs such as Entrust or Verisign or
external Certificate System Certificate Managers.

Local Certificates lists certificates kept by the Certificate System subsystem instance,
such as the KRA transport certificate or OCSP signing certificate.

Figure 17.2. Certificate Database Tab

4. The Certificate Database Management table lists the all of the certificates installed on the
subsystem. The following information is supplied for each certificate:

Certificate Name

Serial Number

Issuer Names, the common name (cn) of the issuer of this certificate.

Token Name, the name of the cryptographic token holding the certificate; for certificate
stored in the database, this is internal.

To view more detailed information about the certificate, select the certificate, and click View. This opens
a window which shows the serial number, validity period, subject name, issuer name, and certificate
fingerprint of the certificate.

17.6.2.2. Viewing Database Content Using certutil

To view the certificates in the subsystem database using certutil, open the instance's certificate
database directory, and run the certutil with the -L option. For example:

cd /var/lib/pki/instance_name/alias

certutil -L -d .

Administration Guide

354

Certificate Authority - Example Domain CT,c,
subsystemCert cert-instance name u,u,u
Server-Cert cert-instance_name u,u,u

To view the keys stored in the subsystem databases using certutil, run the certutil with the -K option.
For example:

cd /var/lib/pki/instance_name/alias

certutil -K -d .

Enter Password or Pin for "NSS Certificate DB":
<0> subsystemCert cert-instance_name
<1>
<2> Server-Cert cert-instance_name

For information about using the certutil command, see
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.

17.6.3. Deleting Certificates from the Database

Removing unwanted certificates reduces the size of the certificate database.

NOTE

When deleting CA certificates from the certificate database, be careful not to delete the
intermediate CA certificates , which help a subsystem chain up to the trusted CA
certificate. If in doubt, leave the certificates in the database as untrusted CA certificates;
see Section 17.7, “Changing the Trust Settings of a CA Certificate” .

Section 17.6.3.1, “Deleting Certificates through the Console”

Section 17.6.3.2, “Deleting Certificates Using certutil”

17.6.3.1. Deleting Certificates through the Console

NOTE

pkiconsole is being deprecated.

To delete a certificate through the Console, do the following:

1. Open the subsystem console.

pkiconsole https://server.example.com:secure_port/subsystem_type

2. In the Configuration tab, select System Keys and Certificates from the left navigation tree.

3. Select the certificate to delete, and click Delete.

4. When prompted, confirm the delete.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

355

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

17.6.3.2. Deleting Certificates Using certutil

To delete a certificate from the database using certutil:

1. Open the instance's certificate databases directory.

/var/lib/pki/instance_name/alias

2. List the certificates in the database by running the certutil with the -L option. For example:

certutil -L -d .

Certificate Authority - Example Domain CT,c,
subsystemCert cert-instance_name u,u,u
Server-Cert cert-instance_name u,u,u

3. Delete the certificate by running the certutil with the -D option.

certutil -D -d . -n certificate_nickname

For example:

certutil -D -d . -n "ServerCert cert-instance_name"

4. List the certificates again to confirm that the certificate was removed.

certutil -L -d .

Certificate Authority - Example Domain CT,c,
subsystemCert cert-instance_name u,u,u

For information about using the certutil command, see
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.

17.7. CHANGING THE TRUST SETTINGS OF A CA CERTIFICATE

Certificate System subsystems use the CA certificates in their certificate databases to validate
certificates received during an SSL-enabled communication.

It can be necessary to change the trust settings on a CA stored in the certificate database, temporarily
or permanently. For example, if there is a problem with access or compromised certificates, marking the
CA certificate as untrusted prevents entities with certificates signed by that CA from authenticating to
the Certificate System. When the problem is resolved, the CA can be marked as trusted again.

To untrust a CA permanently, consider removing its certificate from the trust database. For instructions,
see Section 17.6.3, “Deleting Certificates from the Database” .

17.7.1. Changing Trust Settings through the Console

NOTE

pkiconsole is being deprecated.

Administration Guide

356

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

To change the trust setting of a CA certificate, do the following:

1. Open the subsystem console.

pkiconsole https://server.example.com:secure_port/subsystem_type

2. In the Configuration tab, System Keys and Certificates from the left navigation tree.

3. Select the CA certificates tab.

4. Select the CA certificate to modify, and click Edit.

5. A prompt opens which reads The Certificate chain is (un)trusted, are you sure you want to
(un)trust it?

Clicking yes changes the trust setting of the certificate chain; pressing no preserves the
original trust relationship.

17.7.2. Changing Trust Settings Using certutil

To change the trust setting of a certificate using certutil, do the following:

1. Open the instance's certificate databases directory.

cd /var/lib/pki/instance_name/alias

2. List the certificates in the database by running the certutil with the -L option. For example:

certutil -L -d .

Certificate Authority - Example Domain CT,c,
subsystemCert cert-instance_name u,u,u
Server-Cert cert-instance_name u,u,u

3. Change the trust settings for the certificate by running the certutil with the -M option.

certutil -M -n cert_nickname -t trust -d .

For example:

certutil -M -n "Certificate Authority - Example Domain" -t TCu,TCu,TCu -d .

4. List the certificates again to confirm that the certificate trust was changed.

certutil -L -d .

Certificate Authority - Example Domain CTu,CTu,CTu
subsystemCert cert-instance_name u,u,u
Server-Cert cert-instance_name u,u,u

For information about using the certutil command, see
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html.

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES

357

http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

17.8. MANAGING TOKENS USED BY THE SUBSYSTEMS

Certificate System managers two groups of tokens: tokens used by the subsystems to perform PKI
tasks and tokens issued through the subsystem. These management tasks refer specifically to tokens
that are used by the subsystems.

For information on managing smart card tokens, see Chapter 6, Using and Configuring the Token
Management System: TPS and TKS.

17.8.1. Detecting Tokens

To see if a token can be detected by Certificate System to be installed or configured, use the
TokenInfo utility.

TokenInfo /var/lib/pki/instance_name/alias
Database Path: /var/lib/pki/instance_name/alias
Found external module 'NSS Internal PKCS #11 Module'

This utility will return all tokens which can be detected by the Certificate System, not only tokens which
are installed in the Certificate System.

17.8.2. Viewing Tokens

To view a list of the tokens currently installed for a Certificate System instance, use the modutil utility.

1. Open the instance alias directory. For example:

cd /var/lib/pki/instance_name/alias

2. Show the information about the installed PKCS #11 modules installed as well as information on
the corresponding tokens using the modutil tool.

modutil -dbdir . -nocertdb -list

17.8.3. Changing a Token's Password

The token, internal or external, that stores the key pairs and certificates for the subsystems is protected
(encrypted) by a password. To decrypt the key pairs or to gain access to them, enter the token
password. This password is set when the token is first accessed, usually during Certificate System
installation.

It is good security practice to change the password that protects the server's keys and certificates
periodically. Changing the password minimizes the risk of someone finding out the password. To change
a token's password, use the certutil command-line utility.

For information about certutil, see http://www.mozilla.org/projects/security/pki/nss/tools/.

The single sign-on password cache stores token passwords in the password.conf file. This file must be
manually updated every time the token password is changed. For more information on managing
passwords through the password.conf file, see Red Hat Certificate System Planning, Installation, and
Deployment Guide.

Administration Guide

358

http://www.mozilla.org/projects/security/pki/nss/tools/
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/System_Passwords

CHAPTER 18. SETTING TIME AND DATE IN RED HAT
ENTERPRISE LINUX 7
The section contains how to set time and date in Red Hat Enterprise Linux 7:

The system time is always kept in Coordinated Universal Time (UTC) and converted in applications to
local time as needed. Local time is the actual time in your current time zone, taking into account daylight
saving time (DST).

The timedatectl utility is distributed as part of the systemd system and service manager and allows you
to review and change the configuration of the system clock.

CHANGING THE CURRENT TIME

timedatectl set-time HH:MM:SS

Replace HH with an hour, MM with a minute, and SS with a second, all typed in two-digit form.

CHANGING THE CURRENT DATE

timedatectl set-time YYYY-MM-DD

Replace YYYY with a four-digit year, MM with a two-digit month, and DD with a two-digit day of the
month.

The time change is audited by the operating system. For more information see the Auditing Time
Change Events section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

CHAPTER 18. SETTING TIME AND DATE IN RED HAT ENTERPRISE LINUX 7

359

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/operating_system_external_to_rhcs_log_settings#auditing_time_change_events

CHAPTER 19. DETERMINING CERTIFICATE SYSTEM PRODUCT
VERSION
The Red Hat Certificate System product version is stored in the
/usr/share/pki/CS_SERVER_VERSION file. To display the version:

cat /usr/share/pki/CS_SERVER_VERSION
Red Hat Certificate System 10.0 (Batch Update 1)

To find the product version of a running server, access the following URLs from your browser:

http://host_name:port_number/ca/admin/ca/getStatus

http://host_name:port_number/kra/admin/kra/getStatus

http://host_name:port_number/ocsp/admin/ocsp/getStatus

http://host_name:port_number/tks/admin/tks/getStatus

http://host_name:port_number/tps/admin/tps/getStatus

NOTE

Note that each component is a separate package and thus could have a separate version
number. The above will show the version number for each currently running component.

Administration Guide

360

CHAPTER 20. UPDATING RED HAT CERTIFICATE SYSTEM
To update Certificate System and the operating system it is running on, use the yum update command.
This downloads, verifies, and installs updates for Certificate System as well as operating system
packages. For further information on updating Certificate System and validating that the update was
successful, see the see the Updating Certificate System Packages section in the Red Hat
Certificate System Planning, Installation, and Deployment Guide.

CHAPTER 20. UPDATING RED HAT CERTIFICATE SYSTEM

361

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/certificate_system_packages#updating_certificate_system_packages

A:

Q:

A:

Q:

A:

Q:

CHAPTER 21. TROUBLESHOOTING
This chapter covers some of the more common usage problems that are encountered when installing
Certificate System.

The init script returned an OK status, but my CA instance does not respond. Why?

This should not happen. Usually (but not always), this indicates a listener problem with the CA, but
it can have many different causes. Check in the catalina.out, system, and debug log files for the
instance to see what errors have occurred. This lists a couple of common errors.

One situation is when there is a PID for the CA, indicating the process is running, but that no
listeners have been opened for the server. This would return Java invocation class errors in the
catalina.out file:

Oct 29, 2010 4:15:44 PM org.apache.coyote.http11.Http11Protocol init
INFO: Initializing Coyote HTTP/1.1 on http-9080
java.lang.reflect.InvocationTargetException
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:64)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:615)
 at org.apache.catalina.startup.Bootstrap.load(Bootstrap.java:243)
 at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:408)
Caused by: java.lang.UnsatisfiedLinkError: jss4

This could mean that you have the wrong version of JSS or NSS. The process requires libnss3.so
in the path. Check this with this command:

ldd /usr/lib64/libjss4.so

If libnss3.so is not found, try unsetting the LD_LIBRARY_PATH variable and restart the CA.

unset LD_LIBRARY_PATH
pki-server restart instance_name

I can't open the pkiconsole and I'm seeing Java exceptions in stdout.

This probably means that you have the wrong JRE installed or the wrong JRE set as the default.
Run alternatives --config java to see what JRE is selected. Red Hat Certificate System requires
OpenJDK 1.8.

I tried to run pkiconsole, and I got Socket exceptions in stdout. Why?

This means that there is a port problem. Either there are incorrect SSL settings for the
administrative port (meaning there is bad configuration in the server.xml) or the wrong port was
given to access the admin interface.

Port errors will look like the following:

NSS Cipher Supported '0xff04'

Administration Guide

362

Q:

A:

java.io.IOException: SocketException cannot read on socket
 at org.mozilla.jss.ssl.SSLSocket.read(SSLSocket.java:1006)
 at org.mozilla.jss.ssl.SSLInputStream.read(SSLInputStream.java:70)
 at
com.netscape.admin.certsrv.misc.HttpInputStream.fill(HttpInputStream.java:303)
 at
com.netscape.admin.certsrv.misc.HttpInputStream.readLine(HttpInputStream.java:224)
 at
com.netscape.admin.certsrv.connection.JSSConnection.readHeader(JSSConnection.java:439)
 at
com.netscape.admin.certsrv.connection.JSSConnection.initReadResponse(JSSConnection.java:4
30)
 at
com.netscape.admin.certsrv.connection.JSSConnection.sendRequest(JSSConnection.java:344)

 at
com.netscape.admin.certsrv.connection.AdminConnection.processRequest(AdminConnection.java
:714)
 at
com.netscape.admin.certsrv.connection.AdminConnection.sendRequest(AdminConnection.java:62
3)
 at
com.netscape.admin.certsrv.connection.AdminConnection.sendRequest(AdminConnection.java:59
0)
 at
com.netscape.admin.certsrv.connection.AdminConnection.authType(AdminConnection.java:323)

 at
com.netscape.admin.certsrv.CMSServerInfo.getAuthType(CMSServerInfo.java:113)
 at com.netscape.admin.certsrv.CMSAdmin.run(CMSAdmin.java:499)
 at com.netscape.admin.certsrv.CMSAdmin.run(CMSAdmin.java:548)
 at com.netscape.admin.certsrv.Console.main(Console.java:1655)

I tried to enroll for a certificate, and I got the error "request is not submitted...Subject Name
Not Found"?

This most often occurs with a custom LDAP directory authentication profile and it shows that the
directory operation failed. Particularly, it failed because it could not construct a working DN. The
error will be in the CA's debug log. For example, this profile used a custom attribute
(MYATTRIBUTE) that the directory didn't recognize:

[14/Feb/2011:15:52:25][http-1244-Processor24]: BasicProfile: populate() policy
setid =userCertSet
[14/Feb/2011:15:52:25][http-1244-Processor24]: AuthTokenSubjectNameDefault:
populate start
[14/Feb/2011:15:52:25][http-1244-Processor24]: AuthTokenSubjectNameDefault:
java.io.IOException: Unknown AVA keyword 'MYATTRIBUTE'.
[14/Feb/2011:15:52:25][http-1244-Processor24]: ProfileSubmitServlet: populate
Subject Name Not Found
[14/Feb/2011:15:52:25][http-1244-Processor24]: CMSServlet: curDate=Mon Feb 14
15:52:25 PST 2011 id=caProfileSubmit time=13

Any custom components — attributes, object classes, and unregistered OIDs — which are used in

CHAPTER 21. TROUBLESHOOTING

363

A:

Q:

A:

Q:

Q:

Any custom components — attributes, object classes, and unregistered OIDs — which are used in
the subject DN can cause a failure. For most cases, the X.509 attributes defined in RHC 2253
should be used in subject DNs instead of custom attributes.

Why are my enrolled certificates not being published?

This usually indicates that the CA is misconfigured. The main place to look for errors is the debug
log, which can indicate where the misconfiguration is. For example, this has a problem with the
mappers:

[31/Jul/2010:11:18:29][Thread-29]: LdapSimpleMap: cert subject
dn:UID=me,E=me@example.com,CN=yes
[31/Jul/2010:11:18:29][Thread-29]: Error mapping:
mapper=com.netscape.cms.publish.mappers.LdapSimpleMap@258fdcd0 error=Cannot
find a match in the LDAP server for certificate. netscape.ldap.LDAPException:
error result (32); matchedDN = ou=people,c=test; No such object

Check the publishing configuration in the CA's CS.cfg file or in the Publishing tab of the CA
console. In this example, the problem was in the mapping parameter, which must point to an
existing LDAP suffix:

ca.publish.mapper.instance.LdapUserCertMap.dnPattern=UID=$subj.UID,dc=publish

How do I open the pkiconsole utility from a remote host?

In certain situations, administrators want to open the pkiconsole on the Certificate System server
from a remote host. For that, administrators can use a Virtual Network Computing (VNC)
connection:

1. Setup a VNC server, for example, on the Red Hat Certificate System server. For details
about remote desktop access, see the relevant section in the RHEL 8 documentation.

IMPORTANT

The pkiconsole utility cannot run on a server with Federal Information
Processing Standard (FIPS) mode enabled. Use a different host with
Red Hat Enterprise Linux to run the VNC server, if FIPS mode is enabled on
your Certificate System server. Note that this utility will be deprecated.

2. Open the pkiconsole utility in the VNC window. For example:

pkiconsole https://server.example.com:8443/ca

NOTE

VNC viewers are available for different kind of operating systems. However,
Red Hat supports only VNC viewers installed on Red Hat Enterprise Linux from the
integrated repositories.

What do I do when the LDAP server is not responding?

Administration Guide

364

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_the_desktop_environment_in_rhel_8/accessing-the-desktop-remotely_using-the-desktop-environment-in-rhel-8

A: If the Red Hat Directory Server instance used for the internal database is not running, a
connectivity issue occurred, or a TLS connection failure occurred, then you cannot connect to the

[02/Apr/2019:15:55:41][authorityMonitor]: authorityMonitor: failed to get LDAPConnection.
Retrying in 1 second.
[02/Apr/2019:15:55:42][authorityMonitor]: In LdapBoundConnFactory::getConn()
[02/Apr/2019:15:55:42][authorityMonitor]: masterConn is null.
[02/Apr/2019:15:55:42][authorityMonitor]: makeConnection: errorIfDown true
[02/Apr/2019:15:55:42][authorityMonitor]: TCP Keep-Alive: true
java.net.ConnectException: Connection refused (Connection refused)
 at java.net.PlainSocketImpl.socketConnect(Native Method)
 at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
 at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
[02/Apr/2019:15:55:42][authorityMonitor]: Can't create master connection in
LdapBoundConnFactory::getConn!
 Could not connect to LDAP server host example911.redhat.com port 389 Error
netscape.ldap.LDAPException:
 Unable to create socket: java.net.ConnectException: Connection refused (Connection
refused) (-1)

After fixing the underlying network problem, such as a cable was unplugged, the Red Hat
Directory Server was stopped, significant packet loss occurred, or ensuring that the TLS
connection can be recreated, stop and then start the Certificate System instance in question:

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

systemctl start pki-tomcatd-nuxwdog@instance_name.service

CHAPTER 21. TROUBLESHOOTING

365

CHAPTER 22. SUBSYSTEM CONTROL AND MAINTENANCE
This chapter provides information on how to control (start, stop, restart, and status check) a Red Hat
Certificate System subsystem, as well as general maintenance (health check) recommendation.

22.1. STARTING, STOPPING, RESTARTING, AND OBTAINING STATUS

Red Hat Certificate System subsystem instances can be stopped and started using the systemctl utility
on Red Hat Enterprise Linux 8.

NOTE

You can also use the pki-server alias to start and stop instances: pki-server
<command> <instance> is an alias to systemctl <command> pki-
tomcatd@<instance>.service..

To start an instance:

systemctl start unit_file@instance_name.service

pki-server start instance_name

To stop an instance:

systemctl stop unit_file@instance_name.service

pki-server stop instance_name

To restart an instance:

systemctl restart unit_file@instance_name.service

pki-server restart instance_name

To display the status of an instance:

systemctl status unit_file@instance_name.service

unit_file has one of the following values:

pki-tomcat: With watchdog disabled

pki-tomcat-nuxwdog: With watchdog enabled

22.2. SUBSYSTEM HEALTH CHECK

It is important for administrators to periodically monitor possible failures, such as the following:

Audit failure caused by a full disk

Signing failure caused by HSM connection issue

Administration Guide

366

LDAP server connection issues

And so on

Self-tests can also be run by demand as described in Section 14.9, “Running Self-Tests”.

22.2.1. Healthcheck in PKI

PKI Healthcheck is a command-line tool that helps find issues that may impact the health of your
Certificate System environment. If needed, this tool can report to the Healthcheck tool present in Red
Hat Identity Management.

22.2.1.1. PKI Healthcheck Test Modules

PKI Healthcheck consists of independent modules which test for:

Certificate sync between CS.cfg and NSS database

Checks whether the system certificates in CS.cfg (located in
/var/lib/pki/<instance>/<subsystem>/conf/CS.cfg) and NSS database (located in
/var/lib/pki/<instance>/alias/) match. Else, the Certificate Authority (CA) fails to start.

System certificate expiry

Checks the expiry status of the installed system certificates (See System Certificates for more
information).

System certificate trust flags

Checks whether the installed system certificates carry the correct Trust flags (See System
Certificates for more information).

Subsystem connectivity check

Checks whether a subsystem is running and able to respond to requests.

Subsystem clones connectivity and data check

Checks simple connectivity and data sanity for a set of clones configured within a given CS
subsystem. A given CA subsystem’s security domain is consulted to identify clones that have
been set. The check then proceeds to reach out to each clone and verify data sanity where
applicable.

22.2.1.2. PKI Healthcheck Configuration

The PKI Healthcheck tool configuration is stored at /etc/pki/healthcheck.conf. It looks like the following:

[global]
 plugin_timeout=300
 cert_expiration_days=30

 # Dogtag specific section
 [dogtag]
 instance_name=pki-tomcat

CHAPTER 22. SUBSYSTEM CONTROL AND MAINTENANCE

367

22.2.1.3. Running PKI Healthcheck

To perform a health check, run the pki-healthcheck command.

You can also execute a specific check. For example:

pki-healthcheck --source pki.server.healthcheck.meta.csconfig --check
DogtagCertsConfigCheck

For more information on the possible options, see the man page: man pki-healthcheck.

22.2.1.4. Healthcheck Output Formats

Healthcheck generates the following outputs, which you can set using the --output-type:

By default, machine-readable output in JSON format (json).

Alternatively, human-readable output (human).

You can specify a alternative file destination with the --output-file option.

22.2.1.5. Healthcheck Results

The report consists of a message describing what was run and the status. Each Healthcheck module
returns one of the following results:

SUCCESS

configured as expected, the check executed and found no issue

WARNING

not an error, but worth keeping an eye on or evaluating (e.g. a certificate will expire soon)

ERROR

not configured as expected, something is wrong but your server is probably still working (e.g. a clone
conflict)

CRITICAL

not configured as expected, with a high possibility for impact (e.g. a service is not started, certificates
are expired, etc.)

If the status is not successful, the message may include additional information or recommandations,
which can be used by the admin to correct the issue (e.g. a file has the wrong permissions, expected X
and got Y).

Administration Guide

368

PART V. REFERENCES

PART V. REFERENCES

369

APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT
REFERENCE
Profile inputs and outputs define the expected input parameters in the certificate request and the
output format of the enrollment result. Like many other components in Red Hat Certificate System,
profile inputs and outputs are implemented as JAVA plug-ins to offer customization and flexibility. This
appendix provides reference for the default input and output plug-ins.

Section A.1, “Input Reference”

Section A.2, “Output Reference”

A.1. INPUT REFERENCE

An input puts certain fields on the enrollment page associated with a particular certificate profile. The
inputs set for a certificate profile are used to generate the enrollment page dynamically with the
appropriate fields; these input fields collect necessary information for the profile to generate the final
certificate.

A.1.1. Certificate Request Input

The Certificate Request input is used for enrollments in which a certificate request is pasted into the
enrollment form. It allows the request format to be set from a drop-down list and provides an input field
to paste the request.

This input puts the following fields in the enrollment form:

Certificate Request Type. This drop-down menu lets the user specify the certificate request
type. The choices are PKCS #10 or CRMF. Certificate Management Messages over
Cryptographic Message Syntax (CMC) enrollment is supported with both PKCS #10 and CRMF.

Certificate Request. This is the text area in which to paste the request.

Example A.1.

caAdminCert.cfg:input.i1.class_id=certReqInputImpl

A.1.2. CMC Certificate Request Input

The CMC Certificate Request input is used for enrollments using a Certificate Message over CMS
(CMC) certificate request is submitted in the request form. The request type must be either PKCS #10
or CRMF, and the only field is the Certificate Request text area in which to paste the request.

Example A.2.

caCMCUserCert.cfg:input.i1.class_id=cmcCertReqInputImpl

A.1.3. Dual Key Generation Input

The Dual Key Generation input is for enrollments in which dual key pairs will be generated, and thus two

Administration Guide

370

The Dual Key Generation input is for enrollments in which dual key pairs will be generated, and thus two
certificates issued, one for signing and one for encryption.

This input puts the following fields into the enrollment form:

Key Generation Request Type. This field is a read-only field displaying crmf as the request
type.

Key Generation Request. This field sets the selection for the key size in the key generation
request for both encryption and signing certificates.

Example A.3.

caDualCert.cfg:input.i1.class_id=dualKeyGenInputImpl

A.1.4. File-Signing Input

The File-Signing input sets the fields to sign a file to show it has not been tampered with.

This input creates the following fields:

Key Generation Request Type. This field is a read-only field displaying crmf as the request
type.

Key Generation Request. This input adds a drop-down menu to select the key size to use in
the key generation request.

URL Of File Being Signed. This gives the location of the file which is to be signed.

Text Being Signed. This gives the filename.

Example A.4.

caAgentFileSigning.cfg:input.i2.class_id=fileSigningInputImpl

A.1.5. Image Input

The Image input sets the field to sign an image file. The only field which this input creates is Image URL,
which gives the location of the image which is to be signed.

A.1.6. Key Generation Input

The Key Generation input is used for enrollments in which a single key pair will be generated, generally
user-based certificate enrollments.

This input puts the following fields into the enrollment form:

Key Generation Request Type. This field is a read-only field displaying crmf as the request
type.

Key Generation Request. This input adds a drop-down menu to select the key size to use in
the key generation request.

APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT REFERENCE

371

Example A.5.

caDualCert.cfg:input.i1.class_id=keyGenInputImpl

A.1.7. nsHKeyCertRequest (Token Key) Input

The Token Key input is used to enroll keys for hardware tokens for agents to use later for certificate-
based authentication.

This input puts the following fields into the enrollment form:

Token Key CUID. This field gives the CUID (contextually unique user ID) for the token device.

Token Key User Public Key. This field must contain the token user's public key.

Example A.6.

caTempTokenDeviceKeyEnrollment.cfg:input.i1.class_id=nsHKeyCertReqInputImpl

A.1.8. nsNKeyCertRequest (Token User Key) Input

The Token User Key input is used to enroll keys for the user of a hardware token, for agents to use the
token later for certificate-based authentication. This input puts the following fields into the enrollment
form:

Token Key User UID. This field gives the UID for the LDAP entry of the user of the token
device.

Token Key User Public Key. This field must contain the token user's public key.

Example A.7.

caTempTokenUserEncryptionKeyEnrollment.cfg:input.i1.class_id=nsNKeyCertReqInputImpl

A.1.9. Serial Number Renewal Input

The Serial Number Renewal Input is used to set the serial number of an existing certificate so that the
CA can pull the original certificate entry and use the information to regenerate the certificate. The input
inserts a Serial Number field into the enrollment form.

This is the only input that needs to be used with a renewal form; all the other information is supplied by
the certificate entry.

Example A.8.

caTokenUserEncryptionKeyRenewal.cfg:input.i1.class_id=serialNumRenewInputImpl

Administration Guide

372

A.1.10. Subject DN Input

The Subject DN input allows the user to input the specific DN to set as the certificate subject name, and
the input inserts a single Subject Name field into the enrollment form.

Example A.9.

caAdminCert.cfg:input.i3.class_id=subjectDNInputImpl

A.1.11. Subject Name Input

The Subject Name input is used for enrollment when DN parameters need to be collected from the user.
The parameters are used to formulate the subject name in the certificate. This input puts the following
fields into the enrollment form:

UID (the LDAP directory user ID)

Email

Common Name (the name of the user)

Organizational Unit (the organizational unit (ou) to which the user belongs)

Organization (the organization name)

Country (the country where the user is located)

Example A.10.

caDualCert.cfg:input.i2.class_id=subjectNameInputImpl

A.1.12. Submitter Information Input

The Submitter Information input collects the certificate requester's information such as name, email,
and phone.

This input puts the following fields into the enrollment form:

Requester Name

Requester Email

Requester Phone

Example A.11.

caAdminCert.cfg:input.i2.class_id=submitterInfoInputImpl

A.1.13. Generic Input

APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT REFERENCE

373

The Generic Input allows admins to specify any number of input fields to be used with extension plug-ins
that handle patterns. For example, the ccm and GUID parameters are used in the patterned Subject
Alternative Name Extension Default plug-in:

Example A.12.

input.i3.class_id=genericInputImpl
input.i3.params.gi_display_name0=ccm
input.i3.params.gi_param_enable0=true
input.i3.params.gi_param_name0=ccm
input.i3.params.gi_display_name1=GUID
input.i3.params.gi_param_enable1=true
input.i3.params.gi_param_name1=GUID
input.i3.params.gi_num=2
…
policyset.set1.p6.default.class_id=subjectAltNameExtDefaultImpl
policyset.set1.p6.default.name=Subject Alternative Name Extension Default
policyset.set1.p6.default.params.subjAltExtGNEnable_0=true
policyset.set1.p6.default.params.subjAltExtGNEnable_1=true
policyset.set1.p6.default.params.subjAltExtPattern_0=$request.ccm$
policyset.set1.p6.default.params.subjAltExtType_0=DNSName
policyset.set1.p6.default.params.subjAltExtPattern_1=
(Any)1.3.6.1.4.1.311.25.1,0410$request.GUID$
policyset.set1.p6.default.params.subjAltExtType_1=OtherName
policyset.set1.p6.default.params.subjAltNameExtCritical=false
policyset.set1.p6.default.params.subjAltNameNumGNs=2

A.1.14. Subject Alternative Name Extension Input

The Subject Alternative Name Extension Input is used along with the Subject Alternative Name
Extension Default plug-in. It allows admins to enable the numbered parameters in URI with the pattern
req_san_pattern_# into the input and therefore the SubjectAltNameExt extension. For example, URI
containing:

...&req_san_pattern_0=host0.Example.com&req_san_pattern_1=host1.Example.com

injects host0.Example.com and host1.Example.com into the SubjectAltNameExt extension from the
profile below.

Example A.13.

input.i3.class_id=subjectAltNameExtInputImpl
input.i3.name=subjectAltNameExtInputImpl
…
policyset.serverCertSet.9.constraint.class_id=noConstraintImpl
policyset.serverCertSet.9.constraint.name=No Constraint
policyset.serverCertSet.9.default.class_id=subjectAltNameExtDefaultImpl
policyset.serverCertSet.9.default.name=Subject Alternative Name Extension Default
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_0=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_0=$request.req_san_pattern_0$
policyset.serverCertSet.9.default.params.subjAltExtType_0=DNSName
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_1=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_1=$request.req_san_pattern_1$

Administration Guide

374

policyset.serverCertSet.9.default.params.subjAltExtType_1=DNSName
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_2=false
policyset.serverCertSet.9.default.params.subjAltExtPattern_2=$request.req_san_pattern_2$
policyset.serverCertSet.9.default.params.subjAltExtType_2=DNSName
policyset.serverCertSet.9.default.params.subjAltNameExtCritical=false
policyset.serverCertSet.9.default.params.subjAltNameNumGNs=3

A.2. OUTPUT REFERENCE

An output is the response to the end user of a successful enrollment.

A.2.1. Certificate Output

This output displays the certificate in pretty-print format. This output cannot be configured or changed.
It does not display anything other than the certificate in pretty-print format.

This output needs to be specified for any automated enrollment. Once a user successfully authenticates
using the automated enrollment method, the certificate is automatically generated, and this output
page is returned to the user. In an agent-approved enrollment, the user can get the certificate, once it is
issued, by providing the request ID in the end-entities page.

Example A.14.

caAdminCert.cfg:output.o1.class_id=certOutputImpl

A.2.2. PKCS #7 Output

This output returns the certificate and the certificate chain in PKCS #7 format. PKCS #7 format is the
Cryptographic Message Syntax Standard, which is used for signing. This output cannot be configured or
changed.

Example A.15.

caAgentFileSigning.cfg:output.o1.class_id=pkcs7OutputImpl

A.2.3. nsNSKeyOutput

This class implements the output plug-in that returns the DER encoded certificates for token keys.

A.2.4. CMMF Output

This output returns the certificate in Certificate Management Messages Formats (CMMF). CMMF
govern communication between different parts of a PKI and is used for requesting certificates and
requesting certificate revocation.

APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT REFERENCE

375

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS
FOR CERTIFICATES AND CRLS
This appendix explains both the standard certificate extensions defined by X.509 v3 and the extensions
defined by Netscape that were used in versions of products released before X.509 v3 was finalized. It
provides recommendations for extensions to use with specific kinds of certificates, including PKIX Part 1
recommendations.

IMPORTANT

This appendix is a reference for defaults, constraints, and certificate and CRL extensions
that are used or are configurable in Red Hat Certificate System. For a complete
reference and explanation of certificate and CRL extensions, see RFC 3280.

This appendix contains the following sections:

Section B.1, “Defaults Reference”

Section B.2, “Constraints Reference”

Section B.3, “Standard X.509 v3 Certificate Extension Reference”

Section B.4, “CRL Extensions”

B.1. DEFAULTS REFERENCE

Defaults are used to define the contents of a certificate. This section lists and defines the predefined
defaults.

B.1.1. Authority Info Access Extension Default

This default attaches the Authority Info Access extension. This extension specifies how an application
validating a certificate can access information, such as online validation services and CA policy data,
about the CA that has issued the certificate. This extension should not be used to point directly to the
CRL location maintained by a CA; the CRL Distribution Points extension, Section B.1.7, “CRL Distribution
Points Extension Default”, provides references to CRL locations.

For general information about this extension, see Section B.3.1, “authorityInfoAccess”.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

This default can define up to five locations, with parameters for each location. The parameters are
marked with an n in the table to show with which location the parameter is associated.

Table B.1. Authority Info Access Extension Default Configuration Parameters

Parameter Description

Administration Guide

376

http://www.ietf.org/rfc/rfc3280.txt

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

Method_n Specifies the access method for retrieving additional
information about the CA that has issued the
certificate in which the extension appears. This is one
of the following values:

ocsp (1.3.6.1.5.5.7.48.1).

caIssuers (1.3.6.1.5.5.7.48.2)

renewal (2.16.840.1.113730.16.1)

LocationType_n Specifies the general name type for the location that
contains additional information about the CA that
has issued the certificate. This is one of the following
types:

DirectoryName

DNSName

EDIPartyName

IPAddress

OID

RFC822Name

URIName

Parameter Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

377

Location_n Specifies the address or location to get additional
information about the CA that has issued the
certificate.

For directoryName, the value must be a
string form of X.500 name, similar to the
subject name in a certificate. For example,
cn=SubCA, ou=Research Dept, o=Example
Corporation, c=US.

For dNSName, the value must be a valid
fully-qualified domain name. For example,
testCA.example.com.

For EDIPartyName, the value must be an
IA5String. For example, Example
Corporation.

For iPAddress, the value must be a valid IP
address. An IPv4 address must be in the
format n.n.n.n or n.n.n.n,m.m.m.m. For
example, 128.21.39.40 or
128.21.39.40,255.255.255.00. An IPv6
address uses a 128-bit namespace, with the
IPv6 address separated by colons and the
netmask separated by periods. For example,
0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FF00:0000.

For OID, the value must be a unique, valid
OID specified in dot-separated numeric
component notation. For example,
1.2.3.4.55.6.5.99.

For RFC822Name, the value must be a
valid Internet mail address.

For URIName, the value must be a non-
relative universal resource identifier (URI)
following the URL syntax and encoding
rules. The name must include both a
scheme, such as http, and a fully-qualified
domain name or IP address of the host. For
example,
http://ocspResponder.example.com:8000.
Certificate System allows both IPv4 and
IPv6 IP addresses.

Enable_n Specifies whether this location is enabled. Select
true to mark this as set; select false to disable it.

Parameter Description

B.1.2. Authority Key Identifier Extension Default

This default attaches the Authority Key Identifier extension to the certificate. The extension identifies

Administration Guide

378

This default attaches the Authority Key Identifier extension to the certificate. The extension identifies
the public key that corresponds to the private key used by a CA to sign certificates. This default has no
parameters. If used, this extension is included in the certificate with the public key information.

This default takes the following constraint:

No Constraints; see Section B.2.8, “No Constraint” .

For general information about this extension, see Section B.3.2, “authorityKeyIdentifier”.

B.1.3. Authentication Token Subject Name Default

This profile default populates subject names based on the attribute values in the authentication token
(AuthToken) object.

This default plug-in works with the directory-based authentication manager. The Directory-Based User
Dual-Use Certificate Enrollment certificate profile has two input parameters, UID and password. The
directory-based authentication manager checks if the given UID and password are correct.

In addition, the directory-based authentication manager formulates the subject name of the issuing
certificate. It forms the subject name by using the user's DN value from AuthToken.

This default is responsible for reading the subject name from the AuthToken and placing it in the
certificate request so that the final certificate contains the subject name.

The following constraints can be defined with this default:

No Constraints; see Section B.2.8, “No Constraint” .

B.1.4. Basic Constraints Extension Default

This default attaches the Basic Constraint extension to the certificate. The extension identifies whether
the Certificate Manager is a CA. The extension is also used during the certificate chain verification
process to identify CA certificates and to apply certificate chain-path length constraints.

For general information about this extension, see Section B.3.3, “basicConstraints”.

The following constraints can be defined with this default:

Basic Constraints Extension Constraint; see Section B.2.1, “Basic Constraints Extension
Constraint”.

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.2. Basic Constraints Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

379

IsCA Specifies whether the certificate subject is a CA.
With true, the server checks the PathLen parameter
and sets the specified path length in the certificate.
With false, the server treats the certificate subject as
a non-CA and ignores the value specified for the
PathLen parameter.

PathLen Specifies the path length, the maximum number of
CA certificates that may be chained below
(subordinate to) the subordinate CA certificate being
issued. The path length affects the number of CA
certificates to be used during certificate validation.
The chain starts with the end-entity certificate being
validated and moves up.

The maxPathLen parameter has no effect if the
extension is set in end-entity certificates.

The permissible values are 0 or n. The value should
be less than the path length specified in the Basic
Constraints extension of the CA signing certificate. 0
specifies that no subordinate CA certificates are
allowed below the subordinate CA certificate; only an
end-entity certificate may follow in the path. n must
be an integer greater than zero. It specifies the
maximum number of subordinate CA certificates
allowed below the subordinate CA certificate.

If the field is blank, the path length defaults to a
value that is determined by the path length set in the
Basic Constraints extension in the issuer's certificate.
If the issuer's path length is unlimited, the path
length in the subordinate CA certificate will also be
unlimited. If the issuer's path length is an integer
greater than zero, the path length in the subordinate
CA certificate will be set to a value that is one less
than the issuer's path length; for example, if the
issuer's path length is 4, the path length in the
subordinate CA certificate will be set to 3.

Parameter Description

B.1.5. CA Validity Default

This default adds an option to a CA certificate enrollment or renewal profile to bypass the CA's signing
certificate's expiration constraint. This means that the issued CA certificate can have an expiration date
that is later than the issuing CA signing certificate expiration date.

The following constraints can be defined with this default:

Validity Constraint; see Section B.2.14, “Validity Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.3. CA Validity Default Parameters

Administration Guide

380

Parameter Description

bypassCAnotafterrange Sets the default value for whether a requesting CA
can request a certificate whose validity period
extends past the issuing CA's validity period.

range Specifies the absolute validity period for this
certificate, in the number of days.

startTime Sets when the validity period begins, based on the
current time.

B.1.6. Certificate Policies Extension Default

This default attaches the Certificate Policy Mappings extension into the certificate template. This
extension defines one or more policies, indicating the policy under which the certificate has been issued
and the purposes for which the certificate may be used. This default defines up to five policies, but this
can be value can be changed.

For general information about this extension, see Section B.3.4, “certificatePoliciesExt”

Table B.4. Certificate Policies Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

numCertPolicies Specifies the number of policies that can be defined.
The default is 5.

enable Select true to enable the policy; select false to
disable the policy.

policyId Specifies the OID identifier for the policy.

cpsURI.enable The extension can include a URI to the issuer's
Certificate Practice Statement. Select true to enable
URI; select false to disable URI.

CPSURI.value This value is a pointer to a Certification Practice
Statement (CPS) published by the CA. The pointer is
in the form of a URI.

usernotice.enable The extension can include a URI to the issuer's
Certificate Practice Statement or can embed issuer
information, such as a user notice in text form. Select
true to enable user notices; select false to disable
the user notices.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

381

usernotice.noticeReference.noticeNumbers This optional user notice parameter is a sequence of
numbers that points to messages stored elsewhere.

usernotice.noticeReference.organization This optional user notice parameter specifies the
name of the company.

usernotice.explicitText.value This optional user notice parameter contains the
message within the certificate.

Parameter Description

B.1.7. CRL Distribution Points Extension Default

This default attaches the CRL Distribution Points extension to the certificate. This extension identifies
locations from which an application that is validating the certificate can obtain the CRL information to
verify the revocation status of the certificate.

For general information about this extension, see Section B.3.5, “CRLDistributionPoints”.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

This default defines up to five locations, with parameters for each location. The parameters are marked
with an n in the table to show with which location the parameter is associated.

Table B.5. CRL Distribution Points Extension Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

Type_n Specifies the type of CRL distribution point. The
permissible values are DirectoryName, URIName,
or RelativeToIssuer. The type must correspond to
the value in the Name field.

Administration Guide

382

Name_n Specifies the name of the CRL distribution point, the
name can be in any of the following formats:

An X.500 directory name in the RFC 2253
syntax. The name looks similar to the
subject name in a certificate, like cn=CA
Central, ou=Research Dept, o=Example
Corporation, c=US.

A URIName, such as
http://testCA.example.com:80.

An RDN which specifies a location relative
to the CRL issuer. In this case, the value of
the Type attribute must be
RelativeToIssuer.

Reasons_n Specifies revocation reasons covered by the CRL
maintained at the distribution point. Provide a
comma-separated list of the following constants:

unused

keyCompromise

cACompromise

affiliationChanged

superseded

cessationOfOperation

certificateHold

IssuerType_n Specifies the naming type of the issuer that has
signed the CRL maintained at the distribution point.
The issuer name can be in any of the following
formats:

RFC822Name

DirectoryName

DNSName

EDIPartyName

URIName

IPAddress

OIDName

OtherName

IssuerName_n
Specifies the name format of the CRL issuer that

Parameter Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

383

Specifies the name format of the CRL issuer that
signed the CRL. The permissible values are as
follows:

For RFC822Name, the value must be a
valid Internet mail address. For example,
testCA@example.com.

For DirectoryName, the value must be a
string form of X.500 name, similar to the
subject name in a certificate. For example,
cn=SubCA, ou=Research Dept, o=Example
Corporation, c=US.

For DNSName, the value must be a valid
fully-qualified domain name. For example,
testCA.example.com.

For EDIPartyName, the value must be an
IA5String. For example, Example
Corporation.

For URIName, the value must be a non-
relative URI following the URL syntax and
encoding rules. The name must include both
a scheme, such as http, and a fully qualified
domain name or IP address of the host. For
example, http://testCA.example.com.
Certificate System supports both IPv4 and
IPv6 addresses.

For IPAddress, the value must be a valid IP
address. An IPv4 address must be in the
format n.n.n.n or n.n.n.n,m.m.m.m. For
example, 128.21.39.40 or
128.21.39.40,255.255.255.00. An IPv6
address uses a 128-bit namespace, with the
IPv6 address separated by colons and the
netmask separated by periods. For example,
0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FF00:0000.

For OIDName, the value must be a unique,
valid OID specified in dot-separated
numeric component notation. For example,
1.2.3.4.55.6.5.99.

OtherName is used for names with any
other format; this supports
PrintableString, IA5String, UTF8String,
BMPString, Any, and KerberosName.
KerberosName has the format
Realm|NameType|NameStrings, such as
realm1|0|userID1,userID2.

OtherName must have the format
(type)oid,string. For example,
(IA5String)1.2.3.4,MyExample.

The value for this parameter must correspond to the
value in the issuerName field.

Parameter Description

Administration Guide

384

Parameter Description
B.1.8. Extended Key Usage Extension Default

This default attaches the Extended Key Usage extension to the certificate.

For general information about this extension, see Section B.3.6, “extKeyUsage”.

The extension identifies the purposes, in addition to the basic purposes indicated in the Key Usage
extension, for which the certified public key may be used. For example, if the key usage extension
identifies a signing key, the Extended Key Usage extension can narrow the usage of the key for only
signing OCSP responses or only Java™ applets.

Table B.6. PKIX Usage Definitions for the Extended Key Usage Extension

Usage OID

Server authentication 1.3.6.1.5.5.7.3.1

Client authentication 1.3.6.1.5.5.7.3.2

Code signing 1.3.6.1.5.5.7.3.3

Email 1.3.6.1.5.5.7.3.4

IPsec end system 1.3.6.1.5.5.7.3.5

IPsec tunnel 1.3.6.1.5.5.7.3.6

IPsec user 1.3.6.1.5.5.7.3.7

Timestamping 1.3.6.1.5.5.7.3.8

Windows 2000 can encrypt files on the hard disk, a feature known as encrypted file system (EFS), using
certificates that contain the Extended Key Usage extension with the following two OIDs:

1.3.6.1.4.1.311.10.3.4 (EFS certificate)

1.3.6.1.4.1.311.10.3.4.1 (EFS recovery certificate)

The EFS recovery certificate is used by a recovery agent when a user loses the private key and the data
encrypted with that key needs to be used. Certificate System supports these two OIDs and allows
certificates to be issued containing the Extended Key Usage extension with these OIDs.

Normal user certificates should be created with only the EFS OID, not the recovery OID.

The following constraints can be defined with this default:

Extended Key Usage Constraint; see Section B.2.3, “Extended Key Usage Extension
Constraint”.

Extension Constraint; see Section B.2.4, “Extension Constraint” .

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

385

No Constraints; see Section B.2.8, “No Constraint” .

Table B.7. Extended Key Usage Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

OIDs Specifies the OID that identifies a key-usage
purpose. The permissible values are a unique, valid
OID specified in the dot-separated numeric
component notation. For example,
2.16.840.1.113730.1.99. Depending on the key-usage
purposes, the OIDs can be designated by PKIX (listed
in Table B.6, “PKIX Usage Definitions for the
Extended Key Usage Extension”) or custom OIDs.
Custom OIDs must be in the registered subtree of
IDs reserved for the company's use. Although it is
possible to use custom OIDs for evaluating and
testing the Certificate System, in a production
environment, comply with the ISO rules for defining
OIDs and for registering subtrees of IDs.

B.1.9. Freshest CRL Extension Default

This default attaches the Freshest CRL extension to the certificate.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

This default defines five locations with parameters for each location. The parameters are marked with an
n in the table to show with which location the parameter is associated.

Table B.8. Freshest CRL Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

PointEnable_n Select true to enable this point; select false to
disable this point.

PointType_n Specifies the type of issuing point, either
DirectoryName or URIName.

Administration Guide

386

PointName_n
If pointType is set to directoryName, the
value must be an X.500 name, similar to the
subject name in a certificate. For example,
cn=CACentral,ou=Research Dept,o=Example
Corporation,c=US.

If pointType is set to URIName, the name
must be a URI, an absolute pathname that
specifies the host. For example,
http://testCA.example.com/get/crls/here/.

PointIssuerName_n Specifies the name of the issuer that has signed the
CRL. The name can be in any of the following
formats:

For RFC822Name, the value must be a
valid Internet mail address. For example,
testCA@example.com.

For DirectoryName, the value must be a
string form of X.500 name, similar to the
subject name in a certificate. For example,
cn=SubCA, ou=Research Dept, o=Example
Corporation, c=US.

For DNSName, the value must be a valid
fully-qualified domain name. For example,
testCA.example.com.

For EDIPartyName, the value must be an
IA5String. For example, Example
Corporation.

For URIName, the value must be a non-
relative URI following the URL syntax and
encoding rules. The name must include both
a scheme, such as http, and a fully qualified
domain name or IP address of the host. For
example, http://testCA.example.com.
Certificate System supports both IPv4 and
IPv6 addresses.

For IPAddress, the value must be a valid IP
address. An IPv4 address must be in the
format n.n.n.n or n.n.n.n,m.m.m.m. For
example, 128.21.39.40 or
128.21.39.40,255.255.255.00. An IPv6
address uses a 128-bit namespace, with the
IPv6 address separated by colons and the
netmask separated by periods. For example,
0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FF00:0000.

For OIDName, the value must be a unique,
valid OID specified in dot-separated
numeric component notation. For example,

Parameter Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

387

1.2.3.4.55.6.5.99.

OtherName is used for names with any
other format; this supports
PrintableString, IA5String, UTF8String,
BMPString, Any, and KerberosName.
KerberosName has the format
Realm|NameType|NameStrings, such as
realm1|0|userID1,userID2.

OtherName must have the format
(type)oid,string. For example,
(IA5String)1.2.3.4,MyExample.

The name value must comply with the format
specified in PointType_.

PointType_n Specifies the general name type of the CRL issuer
that signed the CRL. The permissible values are as
follows:

RFC822Name

DirectoryName

DNSName

EDIPartyName

URIName

IPAddress

OIDName

OtherName

The value for this parameter must correspond to the
value in the PointIssuerName field.

Parameter Description

B.1.10. Generic Extension Default

This extension allows for the creation of a generic extension with user determined data. The default
ensures the generic extension is populated correctly.

Table B.9. Generic Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

genericExtOID Specifies the extensions OID identifier.

genericExtData The binary data contained within the extension.

Administration Guide

388

B.1.11. Inhibit Any-Policy Extension Default

The inhibit any-policy extension can be used for certificates issued to CAs. The inhibit any-policy
indicates that the special anyPolicy OID, with the value { 2 5 29 32 0 }, is not considered an explicit
match for other certificate policies.

Table B.10. Inhibit Any-Policy Extension Default Configuration Parameters

Parameter Description

Critical This policy must be marked as critical. Select true to
mark this extension critical; select false to mark the
extension noncritical.

SkipCerts This parameter indicate the number of additional
certificates that may appear in the path before any-
policy is no longer allowed. A value of 1 indicates that
any-policy may be processed in certificates issued by
the subject of this certificate, but not in additional
certificates in the path.

B.1.12. Issuer Alternative Name Extension Default

This default attaches the Issuer Alternative Name extension to the certificate. The Issuer Alternative
Name extension is used to associate Internet-style identities with the certificate issuer.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

This default defines five locations with parameters for each location. The parameters are marked with an
n in the table to show with which location the parameter is associated.

Table B.11. Issuer Alternative Name Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

389

issuerAltExtType This sets the type of name extension to be used,
which can be one of the following:

RFC822Name

DirectoryName

DNSName

EDIPartyName

URIName

IPAddress

OIDName

issuerAltExtPattern Specifies the request attribute value to include in the
extension. The attribute value must conform to any
of the supported general name types. The
permissible value is a request attribute included in
the certificate request.

If the server finds the attribute in the request, it sets
the attribute value in the extension and adds the
extension to certificates. If multiple attributes are
specified and none of the attributes are present in
the request, the server does not add the Issuer
Alternative Name extension to certificates. If no
suitable attributes can be used from the request to
form the issuerAlternativeName, then literal string
can be used without any token expression. For
example, Certificate Authority.

Parameter Description

B.1.13. Key Usage Extension Default

This default attaches the Key Usage extension to the certificate. The extension specifies the purposes
for which the key contained in a certificate should be used, such as data signing, key encryption, or data
encryption, which restricts the usage of a key pair to predetermined purposes.

For general information about this extension, see Section B.3.8, “keyUsage”.

The following constraints can be defined with this default:

Key Usage Constraint; see Section B.2.6, “Key Usage Extension Constraint” .

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.12. Key Usage Extension Default Configuration Parameters

Parameter Description

Administration Guide

390

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

digitalSignature Specifies whether to allow signing SSL client
certificates and S/MIME signing certificates. Select
true to set.

nonRepudiation Specifies whether to use for S/MIME signing
certificates. Select true to set.

WARNING

Using this bit is controversial.
Carefully consider the legal
consequences of its use
before setting it for any
certificate.

keyEncipherment Specifies whether the public key in the subject is
used to encipher private or secret keys. This is set for
SSL server certificates and S/MIME encryption
certificates. Select true to set.

dataEncipherment Specifies whether to set the extension when the
subject's public key is used to encipher user data as
opposed to key material. Select true to set.

keyAgreement Specifies whether to set the extension whenever the
subject's public key is used for key agreement. Select
true to set.

keyCertsign Specifies whether the public key is used to verify the
signature of other certificates. This setting is used for
CA certificates. Select true to set the option.

cRLSign Specifies whether to set the extension for CA signing
certificates that sign CRLs. Select true to set.

encipherOnly Specifies whether to set the extension if the public
key is only for encrypting data while performing key
agreement. If this bit is set, keyAgreement should
also be set. Select true to set.

Parameter Description



APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

391

decipherOnly Specifies whether to set the extension if the public
key is only for decrypting data while performing key
agreement. If this bit is set, keyAgreement should
also be set. Select true to set.

Parameter Description

B.1.14. Name Constraints Extension Default

This default attaches a Name Constraints extension to the certificate. The extension is used in CA
certificates to indicate a name space within which the subject names or subject alternative names in
subsequent certificates in a certificate chain should be located.

For general information about this extension, see Section B.3.9, “nameConstraints”.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

This default defines up to five locations for both the permitted subtree and the excluded subtree and
sets parameters for each location. The parameters are marked with an n in the table to show with which
location the parameter is associated.

Table B.13. Name Constraints Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

PermittedSubtreesn.min Specifies the minimum number of permitted
subtrees.

-1 specifies that the field should not be set
in the extension.

0 specifies that the minimum number of
subtrees is zero.

n must be an integer that is greater than
zero. It sets the minimum required number
of subtrees.

Administration Guide

392

PermittedSubtreesmax_n Specifies the maximum number of permitted
subtrees.

-1 specifies that the field should not be set
in the extension.

0 specifies that the maximum number of
subtrees is zero.

n must be an integer that is greater than
zero. It sets the maximum number of
subtrees allowed.

PermittedSubtreeNameChoice_n Specifies the general name type for the permitted
subtree to include in the extension. The permissible
values are as follows:

RFC822Name

DirectoryName

DNSName

EDIPartyName

URIName

IPAddress

OIDName

OtherName

Parameter Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

393

PermittedSubtreeNameValue_n Specifies the general name value for the permitted
subtree to include in the extension.

For RFC822Name, the value must be a
valid Internet mail address. For example,
testCA@example.com.

For DirectoryName, the value must be a
string form of X.500 name, similar to the
subject name in a certificate. For example,
cn=SubCA, ou=Research Dept, o=Example
Corporation, c=US.

For DNSName, the value must be a valid
fully-qualified domain name. For example,
testCA.example.com.

For EDIPartyName, the value must be an
IA5String. For example, Example
Corporation.

For URIName, the value must be a non-
relative URI following the URL syntax and
encoding rules. The name must include both
a scheme, such as http, and a fully qualified
domain name or IP address of the host. For
example, http://testCA.example.com.
Certificate System supports both IPv4 and
IPv6 addresses.

For IPAddress, the value must be a valid IP
address conforming to Classless Inter-
Domain Routing (CIDR) notation. An IPv4
address must be in the n.n.n.n format, or
n.n.n.n/m with a netmask - for example,
10.34.3.133 or 110.34.3.133/24. IPv6
addresses must also conform to CIDR
notation; examples with netmasks include
2620:52:0:2203:527b:9dff:fe56:4495/64 or
2001:db8::/64.

For OIDName, the value must be a unique,
valid OID specified in dot-separated
numeric component notation. For example,
1.2.3.4.55.6.5.99.

OtherName is used for names with any
other format; this supports
PrintableString, IA5String, UTF8String,
BMPString, Any, and KerberosName.
KerberosName has the format
Realm|NameType|NameStrings, such as
realm1|0|userID1,userID2.

OtherName must have the format
(type)oid,string. For example,
(IA5String)1.2.3.4,MyExample.

PermittedSubtreeEnable_n Select true to enable this permitted subtree entry.

Parameter Description

Administration Guide

394

ExcludedSubtreesn.min Specifies the minimum number of excluded subtrees.

-1 specifies that the field should not be set
in the extension.

0 specifies that the minimum number of
subtrees is zero.

n must be an integer that is greater than
zero. This sets the minimum number of
required subtrees.

ExcludedSubtreeMax_n Specifies the maximum number of excluded
subtrees.

-1 specifies that the field should not be set
in the extension.

0 specifies that the maximum number of
subtrees is zero.

n must be an integer that is greater than
zero. This sets the maximum number of
allowed subtrees.

ExcludedSubtreeNameChoice_n Specifies the general name type for the excluded
subtree to include in the extension. The permissible
values are as follows:

RFC822Name

DirectoryName

DNSName

EDIPartyName

URIName

IPAddress

OIDName

OtherName

Parameter Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

395

ExcludedSubtreeNameValue_n Specifies the general name value for the permitted
subtree to include in the extension.

For RFC822Name, the value must be a
valid Internet mail address. For example,
testCA@example.com.

For DirectoryName, the value must be an
X.500 name, similar to the subject name in a
certificate. For example, cn=SubCA,
ou=Research Dept, o=Example Corporation,
c=US.

For DNSName, the value must be a valid
fully-qualified domain name. For example,
testCA.example.com.

For EDIPartyName, the value must be an
IA5String. For example, Example
Corporation.

For URIName, the value must be a non-
relative URI following the URL syntax and
encoding rules. The name must include both
a scheme, such as http, and a fully qualified
domain name or IP address of the host. For
example, http://testCA.example.com.
Certificate System supports both IPv4 and
IPv6 addresses.

For IPAddress, the value must be a valid IP
address conforming to Classless Inter-
Domain Routing (CIDR) notation. An IPv4
address must be in the n.n.n.n format, or
n.n.n.n/m with a netmask - for example,
10.34.3.133 or 110.34.3.133/24. IPv6
addresses must also conform to CIDR
notation; examples with netmasks include
2620:52:0:2203:527b:9dff:fe56:4495/64 or
2001:db8::/64.

For OIDName, the value must be a unique,
valid OID specified in dot-separated
numeric component notation. For example,
1.2.3.4.55.6.5.99.

For OtherName, the values are names with
any other format. This supports
PrintableString, IA5String, UTF8String,
BMPString, Any, and KerberosName.
KerberosName has the format
Realm|NameType|NameStrings, such as
realm1|0|userID1,userID2.

OtherName must have the format
(type)oid,string. For example,
(IA5String)1.2.3.4,MyExample.

ExcludedSubtreeEnable_n Select true to enable this excluded subtree entry.

Parameter Description

Administration Guide

396

B.1.15. Netscape Certificate Type Extension Default

WARNING

This extension is obsolete. Use the Key Usage or Extended Key Usage certificate
extensions instead.

This default attaches a Netscape Certificate Type extension to the certificate. The extension identifies
the certificate type, such as CA certificate, server SSL certificate, client SSL certificate, or S/MIME
certificate. This restricts the usage of a certificate to predetermined purposes.

B.1.16. Netscape Comment Extension Default

WARNING

This extension is obsolete.

This default attaches a Netscape Comment extension to the certificate. The extension can be used to
include textual comments in certificates. Applications that are capable of interpreting the comment
display it when the certificate is used or viewed.

For general information about this extension, see Section B.4.3.2, “netscape-comment”.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.14. Netscape Comment Extension Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

CommentContent Specifies the content of the comment to appear in
the certificate.

B.1.17. No Default Extension

This default can be used to set constraints when no defaults are being used. This default has no settings
and sets no defaults but does allow all of the constraints available to be set.





APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

397

B.1.18. OCSP No Check Extension Default

This default attaches an OCSP No Check extension to the certificate. The extension, which should be
used in OCSP responder certificates only, indicates how OCSP-compliant applications can verify the
revocation status of the certificate an authorized OCSP responder uses to sign OCSP responses.

For general information about this extension, see Section B.3.10, “OCSPNocheck” .

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.15. OCSP No Check Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

B.1.19. Policy Constraints Extension Default

This default attaches a Policy Constraints extension to the certificate. The extension, which can be used
in CA certificates only, constrains path validation in two ways: either to prohibit policy mapping or to
require that each certificate in a path contain an acceptable policy identifier. The default can specify
both ReqExplicitPolicy and InhibitPolicyMapping. PKIX standard requires that, if present in the
certificate, the extension must never consist of a null sequence. At least one of the two specified fields
must be present.

For general information about this extension, see Section B.3.11, “policyConstraints”.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.16. Policy Constraints Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

Administration Guide

398

reqExplicitPolicy Specifies the total number of certificates permitted
in the path before an explicit policy is required. This is
the number of CA certificates that can be chained
below the subordinate CA certificate before an
acceptable policy is required.

-1 specifies that the field should not be set
in the extension.

0 specifies that no subordinate CA
certificates are permitted in the path before
an explicit policy is required.

n must be an integer that is greater than
zero. It specifies the maximum number of
subordinate CA certificates allowed in the
path before an explicit policy is required.

This number affects the number of CA certificates to
be used during certificate validation. The chain starts
with the end-entity certificate being validated and
moving up the chain. The parameter has no effect if
the extension is set in end-entity certificates.

inhibitPolicyMapping Specifies the total number of certificates permitted
in the path before policy mapping is no longer
permitted.

-1 specifies that the field should not be set
in the extension.

0 specifies that no subordinate CA
certificates are permitted in the path before
policy mapping is no longer permitted.

n must be an integer that is greater than
zero. It specifies at the maximum number of
subordinate CA certificates allowed in the
path before policy mapping is no longer
permitted. For example, a value of 1
indicates that policy mapping may be
processed in certificates issued by the
subject of this certificate, but not in
additional certificates in the path.

Parameter Description

B.1.20. Policy Mappers Extension Default

This default attaches a Policy Mappings extension to the certificate. The extension lists pairs of OIDs,
each pair identifying two policy statements of two CAs. The pairing indicates that the corresponding
policies of one CA are equivalent to policies of another CA. The extension may be useful in the context
of cross-certification. If supported, the extension is included in CA certificates only. The default maps
policy statements of one CA to that of another by pairing the OIDs assigned to their policy statements

Each pair is defined by two parameters, issuerDomainPolicy and subjectDomainPolicy. The pairing
indicates that the issuing CA considers the issuerDomainPolicy equivalent to the

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

399

subjectDomainPolicy of the subject CA. The issuing CA's users may accept an issuerDomainPolicy
for certain applications. The policy mapping tells these users which policies associated with the subject
CA are equivalent to the policy they accept.

For general information about this extension, see Section B.3.12, “policyMappings”.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.17. Policy Mappings Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

IssuerDomainPolicy_n Specifies the OID assigned to the policy statement of
the issuing CA to map with the policy statement of
another CA. For example, 1.2.3.4.5.

SubjectDomainPolicy_n Specifies the OID assigned to the policy statement of
the subject CA that corresponds to the policy
statement of the issuing CA. For example, 6.7.8.9.10.

B.1.21. Private Key Usage Period Extension Default

The Private Key Usage Period extension allows the certificate issuer to specify a different validity period
for the private key than for the certificate itself. This extension is intended for use with digital signature
keys.

Table B.18. Private key Usage Period Configuration Parameters

Parameter Description

Critical This extension should always be non-critical.

puStartTime This parameters sets the start time. The default
value is 0, which starts the validity period from the
time the extension is activated.

puDurationDays This parameters sets the duration of the usage
period. The default value is 365, which sets the
validity period to 365 days from the time the
extension is activated.

B.1.22. Signing Algorithm Default

This default attaches a signing algorithm in the certificate request. This default presents an agent with
the possible algorithms that can be used for signing the certificate.

Administration Guide

400

The following constraints can be defined with this default:

Signing Algorithm Constraint; see Section B.2.10, “Signing Algorithm Constraint”.

No Constraints; see Section B.2.8, “No Constraint” .

Table B.19. Signing Algorithm Default Configuration Parameters

Parameter Description

signingAlg Specify the default signing algorithm to be used to
create this certificate. An agent can override this
value by specifying one of the values contained in the
signingAlgsAllowed parameter.

signingAlgsAllowed Specify the signing algorithms that can be used for
signing this certificate. The algorithms can be any or
all of the following:

MD2withRSA

MD5withRSA

SHA256withRSA

SHA512withRSA

B.1.23. Subject Alternative Name Extension Default

This default attaches a Subject Alternative Name extension to the certificate. The extension binds
additional identities, such as an email address, a DNS name, an IP address (both IPv4 and IPv6), or a URI,
to the subject of the certificate. The standard requires that if the certificate subject field contains an
empty sequence, then the Subject Alternative name extension must contain the subject's alternative
name and that the extension be marked critical.

For any of the directory-based authentication methods, the Certificate System can retrieve values for
any string and byte attributes and set them in the certificate request. These attributes are set by
entering them in the ldapStringAttributes and ldapByteAttributes fields defined in the automated
enrollment modules.

If authenticated attributes — meaning attributes stored in an LDAP database — need to be part of this
extension, use values from the $request.X$ token.

There is an additional attribute to insert a universally unique identifier (UUID) into the subject alt name.
This option generates a random number for version 4 UUID; the pattern is defined by referencing the
server which will generate the number in an additional subjAltExtSource parameter.

A basic Subject Alternative Name Extension default is configured in the example.

Example B.1. Default Subject Alternative Name Extension Configuration

policyset.serverCertSet.9.constraint.name=No Constraint
policyset.serverCertSet.9.default.class_id=subjectAltNameExtDefaultImpl
policyset.serverCertSet.9.default.name=Subject Alternative Name Extension Default
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_0=true

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

401

policyset.serverCertSet.9.default.params.subjAltExtPattern_0=$request.requestor_email$
policyset.serverCertSet.9.default.params.subjAltExtType_0=RFC822Name
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_1=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_1=$request.SAN1$
policyset.serverCertSet.9.default.params.subjAltExtType_1=DNSName
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_2=true
policyset.serverCertSet.9.default.params.subjAltExtPattern_2=http://www.server.example.com
policyset.serverCertSet.9.default.params.subjAltExtType_2=URIName
policyset.serverCertSet.9.default.params.subjAltExtType_3=OtherName
policyset.serverCertSet.9.default.params.subjAltExtPattern_3=(IA5String)1.2.3.4,$server.source$
policyset.serverCertSet.9.default.params.subjAltExtSource_3=UUID4
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_3=true
policyset.serverCertSet.9.default.params.subjAltExtType_4=RFC822Name
policyset.serverCertSet.9.default.params.subjAltExtGNEnable_4=false
policyset.serverCertSet.9.default.params.subjAltExtPattern_4=
policyset.serverCertSet.9.default.params.subjAltNameExtCritical=false
policyset.serverCertSet.9.default.params.subjAltNameNumGNs=5

The Subject Alternative Name extension default checks the certificate request for the profile attributes.
If the request contains an attribute, the profile reads its value and sets it in the extension. It is also
possible for the Subject Alternative Name extension default to insert attribute values from an LDAP
directory, if LDAP-based authentication is configured. The extension added to the certificates contain
all the configured attributes.

The variables that can be used with the Subject Alternative Name extension default are listed in
Table B.20, “Variables to Insert Values in the Subject Alternative Name” .

Table B.20. Variables to Insert Values in the Subject Alternative Name

Policy Set Token Description

$request.auth_token.cn$ The LDAP common name (cn) attribute of the user
who requested the certificate.

$request.auth_token.mail$ The value of the LDAP email (mail) attribute of the
user who requested the certificate.

$request.auth_token.tokenCertSubject$ The certificate subject name.

$request.auth_token.uid$ The LDAP user ID (uid) attribute of the user who
requested the certificate.

$request.auth_token.user$

$request.auth_token.userDN$ The user DN of the user who requested the
certificate.

$request.auth_token.userid$ The value of the user ID attribute for the user who
requested the certificate.

Administration Guide

402

$request.uid$ The value of the user ID attribute for the user who
requested the certificate.

$request.profileRemoteAddr$ The IP address of the user making the request. This
can be an IPv4 or an IPv6 address, depending on the
client. An IPv4 address must be in the format n.n.n.n
or n.n.n.n,m.m.m.m. For example, 128.21.39.40 or
128.21.39.40,255.255.255.00. An IPv6 address uses a
128-bit namespace, with the IPv6 address separated
by colons and the netmask separated by periods. For
example, 0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FF
FF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:00
00.

$request.profileRemoteHost$ The hostname or IP address of the user's machine.
The hostname can be the fully-qualified domain
name and the protocol, such as
http://server.example.com. An IPv4 address must
be in the format n.n.n.n or n.n.n.n,m.m.m.m. For
example, 128.21.39.40 or 128.21.39.40,255.255.255.00.
An IPv6 address uses a 128-bit namespace, with the
IPv6 address separated by colons and the netmask
separated by periods. For example,
0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FF
FF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FF00:00
00.

$request.requestor_email$ The email address of the person who submitted the
request.

$request.requestowner$ The person who submitted the request.

$request.subject$ The subject name DN of the entity to which the
certificate is issued. For example, uid=jsmith,
e=jsmith@example.com.

$request.tokencuid$ The card unique ID (CUID) of the smart card token
used for requesting the enrollment.

$request.upn$ The Microsoft UPN. This has the format
(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.upn$.

$server.source$ Instructs the server to generate a version 4 UUID
(random number) component in the subject name.
This always has the format
(IA5String)1.2.3.4,$server.source$.

Policy Set Token Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

403

Multiple attributes can be set for a single extension. The subjAltNameNumGNs parameter controls
how many of the listed attributes are required to be added to the certificate. This parameter must be
added to custom profiles and may need to be modified in default profiles to include as many attributes
as required. In Example B.1, “Default Subject Alternative Name Extension Configuration” , the
subjAltNameNumGNs is set to 5 to insert the RFC822Name, DNSName, URIName, OtherName, and
RFC822Name names (generic names _0, _1, _2, _3, and _4).

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.21. Subject Alternative Name Extension Default Configuration Parameters

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

Pattern Specifies the request attribute value to include in the
extension. The attribute value must conform to any
of the supported general name types. If the server
finds the attribute in the request, it sets the attribute
value in the extension and adds the extension to
certificates. If multiple attributes are specified and
none of the attributes are present in the request, the
server does not add the Subject Alternative Name
extension to certificates. The permissible value is a
request attribute included in the certificate request.
For example, $request.requestor_email$.

Type Specifies the general name type for the request
attribute.

Select RFC822Name if the request-
attribute value is an email address in the
local-part@domain format. For example,
jdoe@example.com

Select DirectoryName if the request-
attribute value is an X.500 directory name,
similar to the subject name in a certificate.
For example, cn=Jane Doe, ou=Sales Dept,
o=Example Corporation, c=US.

Select DNSName if the request-attribute
value is a DNS name. For example,
corpDirectory.example.com.

Select EDIPartyName if the request-
attribute value is an EDI party name. For
example, Example Corporation.

Select URIName if the request-attribute
value is a non-relative URI that includes
both a scheme, such as http, and a fully
qualified domain name or IP address of the

Administration Guide

404

host. For example, http://hr.example.com.
Certificate System supports both IPv4 and
IPv6 addresses.

Select IPAddress if the request-attribute
value is a valid IP address specified in dot-
separated numeric component notation. For
example, 128.21.39.40. An IPv4 address must
be in the format n.n.n.n or n.n.n.n,m.m.m.m.
For example, 128.21.39.40 or
128.21.39.40,255.255.255.00. An IPv6
address uses a 128-bit namespace, with the
IPv6 address separated by colons and the
netmask separated by periods. For example,
0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FF00:0000.

Select OIDName if the request-attribute
value is a unique, valid OID specified in the
dot-separated numeric component
notation. For example, 1.2.3.4.55.6.5.99.

Select OtherName for names with any
other format. This supports
PrintableString, IA5String, UTF8String,
BMPString, Any, and KerberosName.
KerberosName has the format
Realm|NameType|NameStrings, such as
realm1|0|userID1,userID2.

OtherName must have the format
(type)oid,string. For example,
(IA5String)1.2.3.4,MyExample.

Source Specifies an identification source or protocol to use
to generate an ID. The only supported source is
UUID4, which generates a random number to create
the UUID.

Number of Components (NumGNs) Specifies the number of name components that
must be included in the subject alternative name.

Parameter Description

B.1.24. Subject Directory Attributes Extension Default

This default attaches a Subject Directory Attributes extension to the certificate. The Subject Directory
Attributes extension conveys any desired directory attribute values for the subject of the certificate.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.22. Subject Directory Attributes Extension Default Configuration Parameters

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

405

Parameter Description

Critical Select true to mark this extension critical; select
false to mark the extension noncritical.

Name The attribute name; this can be any LDAP directory
attribute, such as cn or mail.

Pattern Specifies the request attribute value to include in the
extension. The attribute value must conform to the
allowed values of the attribute. If the server finds the
attribute, it sets the attribute value in the extension
and adds the extension to certificates. If multiple
attributes are specified and none of the attributes
are present in the request, the server does not add
the Subject Directory Attributes extension to
certificates. For example, $request.requestor_email$.

Enable Sets whether that attribute is able to be added to
the certificate. Select true to enable the attribute.

B.1.25. Subject Info Access Extension Default

Implements an enrollment default policy that populates a Subject Information Access extension in the
certificate template. This extension indicates how to access information and services for the subject of
the certificate in which the extension appears.

Parameter Description

Critical This extension is supposed to be non-critical.

subjInfoAccessNumADs The number of information access sections included
with the certificate.

subjInfoAccessADMethod_n OID of the access method.

subjInfoAccessADMethod_n Type of access method.

URIName

Directory name

DNS Name

EID Party Name

IP Address

OID Name

RFC822Name

Administration Guide

406

subjInfoAccessADLocation_n Location based on the type
subjInfoAccessADMethod_n

i.e., a URL for URI Name.

subjInfoAccessADEnable_n Select true to enable this extension; select false to
disable this extension.

Parameter Description

B.1.26. Subject Key Identifier Extension Default

This default attaches a Subject Key Identifier extension to the certificate. The extension identifies
certificates that contain a particular public key, which identifies a certificate from among several that
have the same subject name.

For general information about this extension, see Section B.3.16, “subjectKeyIdentifier”.

If enabled, the profile adds a Subject Key Identifier Extension to an enrollment request if the extension
does not already exist. If the extension exists in the request, such as a CRMF request, the default
replaces the extension. After an agent approves the manual enrollment request, the profile accepts any
Subject Key Identifier Extension that is already there.

This default has no parameters. If used, this extension is included in the certificate with the public key
information.

The following constraints can be defined with this default:

Extension Constraint; see Section B.2.4, “Extension Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

B.1.27. Subject Name Default

This default attaches a server-side configurable subject name to the certificate request. A static subject
name is used as the subject name in the certificate.

The following constraints can be defined with this default:

Subject Name Constraint; see Section B.2.11, “Subject Name Constraint” .

Unique Subject Name Constraint; see Section B.2.13, “Unique Subject Name Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.23. Subject Name Default Configuration Parameters

Parameter Description

Name Specify the subject name for this certificate.

If you need to get a certificate subject name that uses the DNPATTERN value from the UidPwdDirAuth

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

407

If you need to get a certificate subject name that uses the DNPATTERN value from the UidPwdDirAuth
plugin, then configure the profile to use the Subject Name Default plugin and substitute the Name
parameter with the "Subject Name" from the AuthToken as shown below.

policyset.userCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.userCertSet.1.default.name=Subject Name Default
policyset.userCertSet.1.default.params.name=$request.auth_token.tokenCertSubject$

B.1.28. User Key Default

This default attaches a user-supplied key into the certificate request. This is a required default. Keys are
part of the enrollment request.

The following constraints can be defined with this default:

Key Constraint; see Section B.2.5, “Key Constraint”.

No Constraints; see Section B.2.8, “No Constraint” .

B.1.29. User Signing Algorithm Default

This default implements an enrollment default profile that populates a user-supplied signing algorithm in
the certificate request. If included in the certificate profile, this allows a user to choose a signing
algorithm for the certificate, subject to the constraint set.

No inputs are provided to add signing algorithm choices to the enrollment form, but it is possible to
submit a request that contains this information.

The following constraints can be defined with this default:

Signing Algorithm Constraint; see Section B.2.10, “Signing Algorithm Constraint”.

No Constraints; see Section B.2.8, “No Constraint” .

B.1.30. User Subject Name Default

This default attaches a user-supplied subject name to the certificate request. If included in the
certificate profile, it allows a user to supply a subject name for the certificate, subject to the constraints
set. This extension preserves the subject name that is specified in the original certificate request when
the certificate is issued.

The following constraints can be defined with this default:

Subject Name Constraint; see Section B.2.11, “Subject Name Constraint” .

Unique Subject Name Constraint; see Section B.2.13, “Unique Subject Name Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

B.1.31. User Validity Default

This default attaches a user-supplied validity to the certificate request. If included in the certificate
profile, it allows a user to supply the validity period, subject to the constraints set. This default profile
preserves that user-defined validity period in the original certificate request when the certificate is
issued.

Administration Guide

408

No inputs are provided to add user-supplied validity date to the enrollment form, but it is possible to
submit a request that contains this information.

The following constraints can be defined with this default:

Validity Constraint; see Section B.2.14, “Validity Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

B.1.32. User Supplied Extension Default

The User Supplied Extension Default class populates a certificate with any certificate extension defined
by the user in the certificate request. This requires users to submit certificate requests which meet
certain standards or give certain information because the profile can require specific extensions before
enrolling a certificate.

WARNING

Be exceptionally cautious about setting this extension default, since it allows users
to specify an extension in the certificate request. If this default is used, then
Red Hat strongly recommends using a constraint corresponding to the extension to
minimize any possible abuse of the User Supplied Extension Default.

The user-defined extension is validated against whatever constraint is set, so it is possible to restrict the
kind of extension (through the Extension Constraint) or to set rules for the key and other basic
constraints, such as whether this is a CA certificate.

NOTE

If this extension is set on a profile with a corresponding OID (Extension Constraint), then
any certificate request processed through that profile must carry the specified extension
or the request is rejected.

If a certificate profile was enabled with the User Supplied Extension Default before the
errata RHSA 2008:0500, then this profile must be edited to support user supplied
extensions in certificate requests. Apply the userExtensionDefaultImpl default, as
shown in the example. The given OID is for the Basic Constraints Extension Constraint.

policyset.set1.p6.default.class_id=userExtensionDefaultImpl
policyset.set1.p6.default.name=User Supplied Extension Default
policyset.set1.p6.default.params.userExtOID=2.5.29.19

The CA handles an enrollment with the User Supplied Extension Default in one of three ways:

If the OID of the extension is specified in both the certificate request and the default, then the
extension is validated by the constraints and applied to the certificate.

If an OID of an extension is given in the request but is not specified in the User Supplied



APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

409

If an OID of an extension is given in the request but is not specified in the User Supplied
Extension Default in the profile, then the user-specified extension is ignored, and the certificate
is successfully enrolled without that extension.

If this extension is set on a profile with a corresponding OID (Extension Constraint), then any
certificate request processed through that profile must carry the specified extension or the
request is rejected.

A certificate request that contains the user-defined extensions must be submitted to the profile. The
certificate enrollment forms, however, do not have any input fields for users to add user-supplied
extensions. Submitting a certificate request without supplying the extension fails.

Example B.2, “User Supplied Extension Default for the Extended Key Usage Extension” adds the User
Supplied Extension Default to a profile with the Extended Key Usage Constraint. The OID specified in
the userExtOID parameter is for the Extended Key Usage Extension.

Example B.2. User Supplied Extension Default for the Extended Key Usage Extension

policyset.set1.2.constraint.class_id=extendedKeyUsageExtConstraintImpl
policyset.set1.2.constraint.name=Extended Key Usage Extension
policyset.set1.2.constraint.params.exKeyUsageCritical=false
policyset.set1.2.constraint.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.2,1.3.6.1.5.5.7.3.4
policyset.set1.2.default.class_id=userExtensionDefaultImpl
policyset.set1.2.default.name=User Supplied Extension Default
policyset.set1.2.default.params.userExtOID=2.5.29.37

In Example B.2, “User Supplied Extension Default for the Extended Key Usage Extension” , although the
User Supplied Extension Default allows a user to specify the Extended Key Usage Extension (2.5.29.37),
the constraint limits the user request to only the SSL client authentication (1.3.6.1.5.5.7.3.2) and email
protection (1.3.6.1.5.5.7.3.4) uses.

Editing profiles is described in Section 3.2, “Setting up Certificate Profiles” .

Example B.3. Multiple User Supplied Extensions in CSR

The RHCS enrollment profile framework allows to define multiple User Supplied Extensions in the
same profile. For example, a combination of the following can be specified.

For Extended Key Usage Extension:

policyset.serverCertSet.2.constraint.class_id=extendedKeyUsageExtConstraintImpl
policyset.serverCertSet.2.constraint.name=Extended Key Usage Extension
policyset.serverCertSet.2.constraint.params.exKeyUsageCritical=false
policyset.serverCertSet.2.constraint.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.2,1.3.6.1.5.5.
7.3.4
policyset.serverCertSet.2.default.class_id=userExtensionDefaultImpl
policyset.serverCertSet.2.default.name=User Supplied Extension Default
policyset.serverCertSet.2.default.params.userExtOID=2.5.29.37

For Key Usage Extension:

By using the following format, you can apply a policy which parameter of the extension:

Must exist in the CSR: value = "true"

Administration Guide

410

Must not exist in the CSR: value = "false"

Is optional: value = "-"

For example:

policyset.serverCertSet.13.constraint.class_id=keyUsageExtConstraintImpl
policyset.serverCertSet.13.constraint.name=Key Usage Extension Constraint
policyset.serverCertSet.13.constraint.params.keyUsageCritical=-
policyset.serverCertSet.13.constraint.params.keyUsageCrlSign=false
policyset.serverCertSet.13.constraint.params.keyUsageDataEncipherment=-
policyset.serverCertSet.13.constraint.params.keyUsageDecipherOnly=-
policyset.serverCertSet.13.constraint.params.keyUsageDigitalSignature=-
policyset.serverCertSet.13.constraint.params.keyUsageEncipherOnly=-
policyset.serverCertSet.13.constraint.params.keyUsageKeyAgreement=true
policyset.serverCertSet.13.constraint.params.keyUsageKeyCertSign=-
policyset.serverCertSet.13.constraint.params.keyUsageKeyEncipherment=-
policyset.serverCertSet.13.constraint.params.keyUsageNonRepudiation=-
policyset.serverCertSet.13.default.class_id=userExtensionDefaultImpl
policyset.serverCertSet.13.default.name=User Supplied Key Usage Extension
policyset.serverCertSet.13.default.params.userExtOID=2.5.29.15

NOTE

For an example on how to create a CSR with user-defined extensions attributes, see
Section 5.2.1.1.2, “Using certutil to Create a CSR With User-defined Extensions” .

B.1.33. Validity Default

This default attaches a server-side configurable validity period into the certificate request.

The following constraints can be defined with this default:

Validity Constraint; see Section B.2.14, “Validity Constraint” .

No Constraints; see Section B.2.8, “No Constraint” .

Table B.24. Validity Default Configuration Parameters

Parameter Description

range Specifies the validity period for this certificate.

startTime Sets when the validity period begins, based on the
current time.

B.2. CONSTRAINTS REFERENCE

Constraints are used to define the allowable contents of a certificate and the values associated with that
content. This section lists the predefined constraints with complete definitions of each.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

411

B.2.1. Basic Constraints Extension Constraint

The Basic Constraints extension constraint checks if the basic constraint in the certificate request
satisfies the criteria set in this constraint.

Table B.25. Basic Constraints Extension Constraint Configuration Parameters

Parameter Description

basicConstraintsCritical Specifies whether the extension can be marked
critical or noncritical. Select true to mark this
extension critical; select false to prevent this
extension from being marked critical. Selecting a
hyphen -, implies no criticality preference.

basicConstraintsIsCA Specifies whether the certificate subject is a CA.
Select true to require a value of true for this
parameter (is a CA); select false to disallow a value
of true for this parameter; select a hyphen, -, to
indicate no constraints are placed for this parameter.

basicConstraintsMinPathLen Specifies the minimum allowable path length, the
maximum number of CA certificates that may be
chained below (subordinate to) the subordinate CA
certificate being issued. The path length affects the
number of CA certificates used during certificate
validation. The chain starts with the end-entity
certificate being validated and moves up.

This parameter has no effect if the extension is set in
end-entity certificates.

The permissible values are 0 or n. The value must be
less than the path length specified in the Basic
Constraints extension of the CA signing certificate.

0 specifies that no subordinate CA certificates are
allowed below the subordinate CA certificate being
issued; only an end-entity certificate may follow in
the path.

n must be an integer greater than zero. This is the
minimun number of subordinate CA certificates
allowed below the subordinate CA certificate being
used.

Administration Guide

412

basicConstraintsMaxPathLen Specifies the maximum allowable path length, the
maximum number of CA certificates that may be
chained below (subordinate to) the subordinate CA
certificate being issued. The path length affects the
number of CA certificates used during certificate
validation. The chain starts with the end-entity
certificate being validated and moves up.

This parameter has no effect if the extension is set in
end-entity certificates.

The permissible values are 0 or n. The value must be
greater than the path length specified in the Basic
Constraints extension of the CA signing certificate.

0 specifies that no subordinate CA certificates are
allowed below the subordinate CA certificate being
issued; only an end-entity certificate may follow in
the path.

n must be an integer greater than zero. This is the
maximum number of subordinate CA certificates
allowed below the subordinate CA certificate being
used.

If the field is blank, the path length defaults to a
value determined by the path length set on the Basic
Constraints extension in the issuer's certificate. If the
issuer's path length is unlimited, the path length in
the subordinate CA certificate is also unlimited. If the
issuer's path length is an integer greater than zero,
the path length in the subordinate CA certificate is
set to a value one less than the issuer's path length;
for example, if the issuer's path length is 4, the path
length in the subordinate CA certificate is set to 3.

Parameter Description

B.2.2. CA Validity Constraint

The CA Validity constraint checks if the validity period in the certificate template is within the CA's
validity period. If the validity period of the certificate is out outside the CA certificate's validity period,
the constraint is rejected.

B.2.3. Extended Key Usage Extension Constraint

The Extended Key Usage extension constraint checks if the Extended Key Usage extension on the
certificate satisfies the criteria set in this constraint.

Table B.26. Extended Key Usage Extension Constraint Configuration Parameters

Parameter Description

exKeyUsageCritical When set to true, the extension can be marked as
critical. When set to false, the extension can be
marked noncritical.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

413

exKeyUsageOIDs Specifies the allowable OIDs that identifies a key-
usage purpose. Multiple OIDs can be added in a
comma-separated list.

Parameter Description

B.2.4. Extension Constraint

This constraint implements the general extension constraint. It checks if the extension is present.

Table B.27. Extension Constraint

Parameter Description

extCritical Specifies whether the extension can be marked
critical or noncritical. Select true to mark the
extension critical; select false to mark it noncritical.
Select - to enforce no preference.

extOID The OID of an extension that must be present in the
cert to pass the constraint.

B.2.5. Key Constraint

This constraint checks the size of the key for RSA keys, and the name of the elliptic curve for EC keys.
When used with RSA keys the KeyParameters parameter contains a comma-separated list of legal key
sizes, and with EC Keys the KeyParameters parameter contains a comma-separated list of available
ECC curves.

Table B.28. Key Constraint Configuration Parameters

Parameter Description

keyType Gives a key type; this is set to - by default and uses
an RSA key system. The choices are rsa and ec. If the
key type is specified and not identified by the system,
the constraint will be rejected.

KeyParameters Defines the specific key parameters. The parameters
which are set for the key differe, depending on the
value of the keyType parameter (meaning,
depending on the key type).

With RSA keys, the KeyParameters
parameter contains a comma-separated list
of legal key sizes.

With ECC keys, the KeyParameters
parameter contains a comma-separated list
of available ECC curves.

Administration Guide

414

B.2.6. Key Usage Extension Constraint

The Key Usage extension constraint checks if the key usage constraint in the certificate request satisfies
the criteria set in this constraint.

Table B.29. Key Usage Extension Constraint Configuration Parameters

Parameter Description

keyUsageCritical Select true to mark this extension critical; select
false to mark it noncritical. Select - for no
preference.

keyUsageDigitalSignature Specifies whether to sign SSL client certificates and
S/MIME signing certificates. Select true to mark this
as set; select false to keep this from being set; select
a hyphen, -, to indicate no constraints are placed for
this parameter.

kleyUsageNonRepudiation Specifies whether to set S/MIME signing certificates.
Select true to mark this as set; select false to keep
this from being set; select a hyphen, -, to indicate no
constraints are placed for this parameter.

WARNING

Using this bit is controversial.
Carefully consider the legal
consequences of its use
before setting it for any
certificate.

keyEncipherment Specifies whether to set the extension for SSL server
certificates and S/MIME encryption certificates.
Select true to mark this as set; select false to keep
this from being set; select a hyphen, -, to indicate no
constraints are placed for this parameter.

keyUsageDataEncipherment Specifies whether to set the extension when the
subject's public key is used to encrypt user data,
instead of key material. Select true to mark this as
set; select false to keep this from being set; select a
hyphen, -, to indicate no constraints are placed for
this parameter.



APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

415

keyUsageKeyAgreement Specifies whether to set the extension whenever the
subject's public key is used for key agreement. Select
true to mark this as set; select false to keep this
from being set; select a hyphen, -, to indicate no
constraints are placed for this parameter.

keyUsageCertsign Specifies whether the extension applies for all CA
signing certificates. Select true to mark this as set;
select false to keep this from being set; select a
hyphen, -, to indicate no constraints are placed for
this parameter.

keyUsageCRLSign Specifies whether to set the extension for CA signing
certificates that are used to sign CRLs. Select true
to mark this as set; select false to keep this from
being set; select a hyphen, -, to indicate no
constraints are placed for this parameter.

keyUsageEncipherOnly Specifies whether to set the extension if the public
key is to be used only for encrypting data. If this bit is
set, keyUsageKeyAgreement should also be set.
Select true to mark this as set; select false to keep
this from being set; select a hyphen, -, to indicate no
constraints are placed for this parameter.

keyUsageDecipherOnly Specifies whether to set the extension if the public
key is to be used only for deciphering data. If this bit
is set, keyUsageKeyAgreement should also be
set. Select true to mark this as set; select false to
keep this from being set; select a hyphen, -, to
indicate no constraints are placed for this parameter.

Parameter Description

B.2.7. Netscape Certificate Type Extension Constraint

WARNING

This constraint is obsolete. Instead of using the Netscape Certificate Type
extension constraint, use the Key Usage extension or Extended Key Usage
extension.

The Netscape Certificate Type extension constraint checks if the Netscape Certificate Type extension
in the certificate request satisfies the criteria set in this constraint.

B.2.8. No Constraint



Administration Guide

416

This constraint implements no constraint. When chosen along with a default, there are not constraints
placed on that default.

B.2.9. Renewal Grace Period Constraint

The Renewal Grace Period Constraint sets rules on when a user can renew a certificate based on its
expiration date. For example, users cannot renew a certificate until a certain time before it expires or if it
goes past a certain time after its expiration date.

One important thing to remember when using this constraint is that this constraint is set on the original
enrollment profile, not the renewal profile. The rules for the renewal grace period are part of the original
certificate and are carried over and applied for any subsequent renewals.

This constraint is only available with the No Default extension.

Table B.30. Renewal Grace Period Constraint Configuration Parameters

Parameter Description

renewal.graceAfter Sets the period, in days, after the certificate expires
that it can be submitted for renewal. If the certificate
has been expired longer that that time, then the
renewal request is rejected. If no value is given, there
is no limit.

renewal.graceBefore Sets the period, in days, before the certificate expires
that it can be submitted for renewal. If the certificate
is not that close to its expiration date, then the
renewal request is rejected. If no value is given, there
is no limit.

B.2.10. Signing Algorithm Constraint

The Signing Algorithm constraint checks if the signing algorithm in the certificate request satisfies the
criteria set in this constraint.

Table B.31. Signing Algorithms Constraint Configuration Parameters

Parameter Description

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

417

signingAlgsAllowed Sets the signing algorithms that can be specified to
sign the certificate. The algorithms can be any or all
of the following:

MD2withRSA

MD5withRSA

SHA256withRSA

SHA512withRSA

SHA256withEC

SHA384withEC

SHA512withEC

Parameter Description

B.2.11. Subject Name Constraint

The Subject Name constraint checks if the subject name in the certificate request satisfies the criteria.

Table B.32. Subject Name Constraint Configuration Parameters

Parameter Description

Pattern Specifies a regular expression or other string to build
the subject DN.

Subject Names and Regular Expressions

The regular expression for the Subject Name Constraint is matched by the Java facility for matching
regular expressions. The format for these regular expressions are listed in
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html. This allows wildcards such as
asterisks (*) to search for any number of the characters and periods (.) to search for any type character.

For example, if the pattern of the subject name constraint is set to uid=.*, the certificate profile
framework checks if the subject name in the certificate request matches the pattern. A subject name
like uid=user, o=Example, c=US satisfies the pattern uid=.*. The subject name cn=user,
o=example,c=US does not satisfy the pattern. uid=.* means the subject name must begin with the uid
attribute; the period-asterisk (.*) wildcards allow any type and number of characters to follow uid.

It is possible to require internal patterns, such as .*ou=Engineering.*, which requires the
ou=Engineering attribute with any kind of string before and after it. This matches
cn=jdoe,ou=internal,ou=west coast,ou=engineering,o="Example Corp",st=NC as well as
uid=bjensen,ou=engineering,dc=example,dc=com.

Lastly, it is also possible to allow requests that are either one string or another by setting a pipe sign (|)
between the options. For example, to permit subject names that contain either
ou=engineering,ou=people or ou=engineering,o="Example Corp", the pattern is
.*ou=engineering,ou=people.* | .*ou=engineering,o="Example Corp".*.

NOTE

Administration Guide

418

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

NOTE

For constructing a pattern which uses a special character, such as a period (.), escape the
character with a back slash (\). For example, to search for the string o="Example Inc.",
set the pattern to o="Example Inc\.".

Subject Names and the UID or CN in the Certificate Request

The pattern that is used to build the subject DN can also be based on the CN or UID of the person
requesting the certificate. The Subject Name Constraint sets the patter of the CN (or UID) to recognize
in the DN of the certificate request, and then the Subject Name Default builds on that CN to create the
subject DN of the certificate, using a predefined directory tree.

For example, to use the CN of the certificate request:

policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=$request.req_subject_name.cn$,DC=example,
DC=com

B.2.12. Unique Key Constraint

This constraint checks that the public key is unique.

Table B.33. Unique Key Constraints Parameters

Parameter Description

allowSameKeyRenewal A request is considered a renewal and is accepted if
this parameter is set to true, if a public key is not
unique, and if the subject DN matches an existing
certificate. However, if the public key is a duplicate
and does not match an existing Subject DN, the
request is rejected.

When the parameter is set to false, a duplicate
public key request will be rejected.

B.2.13. Unique Subject Name Constraint

The Unique Subject Name constraint restricts the server from issuing multiple certificates with the same
subject names. When a certificate request is submitted, the server automatically checks the nickname
against other issued certificate nicknames. This constraint can be applied to certificate enrollment and
renewal through the end-entities' page.

Certificates cannot have the same subject name unless one certificate is expired or revoked (and not on
hold). So, active certificates cannot share a subject name, with one exception: if certificates have
different key usage bits, then they can share the same subject name, because they have different uses.

Table B.34. Unique Subject Name Constraint Configuration Parameters

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

419

Parameter Description

enableKeyUsageExtensionChecking Optional setting which allows certificates to have the
same subject name as long as their key usage
settings are different. This is either true or false.
The default is true, which allows duplicate subject
names.

B.2.14. Validity Constraint

The Validity constraint checks if the validity period in the certificate request satisfies the criteria.

The parameters provided must be sensible values. For instance, a notBefore parameter that provides a
time which has already passed will not be accepted, and a notAfter parameter that provides a time
earlier than the notBefore time will not be accepted.

Table B.35. Validity Constraint Configuration Parameters

Parameter Description

range The range of the validity period. This is an integer
which sets the number of days. The difference (in
days) between the notBefore time and the
notAfter time must be less than the range value, or
this constraint will be rejected.

notBeforeCheck Verifies that the range is not within the grace period.
When the NotBeforeCheck Boolean parameter is
set to true, the system will check the notBefore time
is not greater than the current time plus the
notBeforeGracePeriod value. If the
notBeforeTime is not between the current time
and the notBeforeGracePeriod value, this
constraint will be rejected.

notBeforeGracePeriod The grace period (in seconds) after the notBefore
time. If the notBeforeTime is not between the
current time and the notBeforeGracePeriod value,
this constraint will be rejected. This constraint is only
checked if the notBeforeCheck parameter has
been set to true.

notAfterCheck Verfies whether the given time is not after the
expiration period. When the notAfterCheck
Boolean parameter is set to true, the system will
check the notAfter time is not greater than the
current time. If the current time exceeds the
notAfter time, this constraint will be rejected.

B.3. STANDARD X.509 V3 CERTIFICATE EXTENSION REFERENCE

An X.509 v3 certificate contains an extension field that permits any number of additional fields to be

Administration Guide

420

An X.509 v3 certificate contains an extension field that permits any number of additional fields to be
added to the certificate. Certificate extensions provide a way of adding information such as alternative
subject names and usage restrictions to certificates. Older Netscape servers, such as Red Hat Directory
Server and Red Hat Certificate System, that were developed before PKIX part 1 standards were defined
require Netscape-specific extensions.

The following is an example of the section of a certificate containing X.509 v3 extensions. The
Certificate System can display certificates in readable pretty-print format, as shown here. As in this
example, certificate extensions appear in sequence and only one instance of a particular extension may
appear per certificate; for example, a certificate may contain only one subject key identifier extension.
Certificates that support these extensions have the version 0x2 (which corresponds to version 3).

Example B.4. Sample Pretty-Print Certificate Extensions

Data:
 Version: v3
 Serial Number: 0x1
 Signature Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
 Issuer: CN=Certificate Manager,OU=netscape,O=ExampleCorp,L=MV,ST=CA,C=US
 Validity:
 Not Before: Friday, February 21, 2005 12:00:00 AM PST America/Los_Angeles
 Not After: Monday, February 21, 2007 12:00:00 AM PST America/Los_Angeles
 Subject: CN=Certificate Manager,OU=netscape,O=ExampleCorp,L=MV,ST=CA,C=US
 Subject Public Key Info:
 Algorithm: RSA - 1.2.840.113549.1.1.1
 Public Key:
 Exponent: 65537
 Public Key Modulus: (2048 bits) :
 E4:71:2A:CE:E4:24:DC:C4:AB:DF:A3:2E:80:42:0B:D9:
 CF:90:BE:88:4A:5C:C5:B3:73:BF:49:4D:77:31:8A:88:
 15:A7:56:5F:E4:93:68:83:00:BB:4F:C0:47:03:67:F1:
 30:79:43:08:1C:28:A8:97:70:40:CA:64:FA:9E:42:DF:
 35:3D:0E:75:C6:B9:F2:47:0B:D5:CE:24:DD:0A:F7:84:
 4E:FA:16:29:3B:91:D3:EE:24:E9:AF:F6:A1:49:E1:96:
 70:DE:6F:B2:BE:3A:07:1A:0B:FD:FE:2F:75:FD:F9:FC:
 63:69:36:B6:5B:09:C6:84:92:17:9C:3E:64:C3:C4:C9
 Extensions:
 Identifier: Netscape Certificate Type - 2.16.840.1.113730.1.1
 Critical: no
 Certificate Usage:
 SSL CA
 Secure Email CA
 ObjectSigning CA
 Identifier: Basic Constraints - 2.5.29.19
 Critical: yes
 Is CA: yes
 Path Length Constraint: UNLIMITED
 Identifier: Subject Key Identifier - 2.5.29.14
 Critical: no
 Key Identifier:
 3B:46:83:85:27:BC:F5:9D:8E:63:E3:BE:79:EF:AF:79:
 9C:37:85:84
 Identifier: Authority Key Identifier - 2.5.29.35
 Critical: no
 Key Identifier:
 3B:46:83:85:27:BC:F5:9D:8E:63:E3:BE:79:EF:AF:79:

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

421

 9C:37:85:84
 Identifier: Key Usage: - 2.5.29.15
 Critical: yes
 Key Usage:
 Digital Signature
 Key CertSign
 Crl Sign
 Signature:
 Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
 Signature:
 AA:96:65:3D:10:FA:C7:0B:74:38:2D:93:54:32:C0:5B:
 2F:18:93:E9:7C:32:E6:A4:4F:4E:38:93:61:83:3A:6A:
 A2:11:91:C2:D2:A3:48:07:6C:07:54:A8:B8:42:0E:B4:
 E4:AE:42:B4:B5:36:24:46:4F:83:61:64:13:69:03:DF:
 41:88:0B:CB:39:57:8C:6B:9F:52:7E:26:F9:24:5E:E7:
 BC:FB:FD:93:13:AF:24:3A:8F:DB:E3:DC:C9:F9:1F:67:
 A8:BD:0B:95:84:9D:EB:FC:02:95:A0:49:2C:05:D4:B0:
 35:EA:A6:80:30:20:FF:B1:85:C8:4B:74:D9:DC:BB:50

An object identifier (OID) is a string of numbers identifying a unique object, such as a certificate
extension or a company's certificate practice statement. The Certificate System comes with a set of
extension-specific profile plug-in modules which enable X.509 certificate extensions to be added to the
certificates the server issues. Some of the extensions contain fields for specifying OIDs.

The PKIX standard recommends that all objects, such as extensions and statements, that are used in
certificates be included in the form of an OID. This promotes interoperability between organizations on a
shared network. If certificates will be issued that will be used on shared networks, register the OID
prefixes with the appropriate registration authority.

OIDs are controlled by the International Standards Organization (ISO) registration authority. In some
cases, this authority is delegated by ISO to regional registration authorities. In the United States, the
American National Standards Institute (ANSI) manages this registration.

Using an OID registered to another organization or failing to register an OID may carry legal
consequences, depending the situation. Registration may be subject to fees. For more information,
contact the appropriate registration authority.

To define or assign OIDs for custom objects, know the company's arc, an OID for a private enterprise. If
the company does not have an arc, it needs to get one. The http://www.alvestrand.no/objectid/ has
more information on registering and using OIDs.

For example, the Netscape-defined OID for an extension named Netscape Certificate Comment is
2.16.840.1.113730.1.13. The OID assigned to this extension is hierarchical and includes the former
Netscape company arc, 2.16.840.1. The OID definition entry is
http://www.alvestrand.no/objectid/2.16.840.1.113730.1.13.html.

If an OID extension exists in a certificate and is marked critical, the application validating the certificate
must be able to interpret the extension, including any optional qualifiers, or it must reject the certificate.
Since it is unlikely that all applications will be able to interpret a company's custom extensions
embedded in the form of OIDs, the PKIX standard recommends that the extension be always marked
noncritical.

This section summarizes the extension types defined as part of the Internet X.509 version 3 standard
and indicates which types are recommended by the PKIX working group.

Administration Guide

422

http://www.alvestrand.no/objectid/
http://www.alvestrand.no/objectid/2.16.840.1.113730.1.13.html

This reference summarizes important information about each certificate. For complete details, see both
the X.509 v3 standard, available from the ITU, and Internet X.509 Public Key Infrastructure - Certificate
and CRL Profile (RFC 3280), available at RFC 3280. The descriptions of extensions reference the RFC
and section number of the standard draft that discusses the extension; the object identifier (OID) for
each extension is also provided.

Each extension in a certificate can be designated as critical or noncritical. A certificate-using system,
such as a web browser, must reject the certificate if it encounters a critical extension it does not
recognize; however, a noncritical extension can be ignored if it is not recognized.

B.3.1. authorityInfoAccess

The Authority Information Access extension indicates how and where to access information about the
issuer of the certificate. The extension contains an accessMethod and an accessLocation field.
accessMethod specifies by OID the type and format of information about the issuer named in
accessLocation.

PKIX Part 1 defines one accessMethod (id-ad-caIssuers) to get a list of CAs that have issued
certificates higher in the CA chain than the issuer of the certificate using the extension. The
accessLocation field then typically contains a URL indicating the location and protocol (LDAP, HTTP,
or FTP) used to retrieve the list.

The Online Certificate Status Protocol (RFC 2560), available at RFC 2560, defines an accessMethod
(id-ad-ocsp) for using OCSP to verify certificates. The accessLocation field then contains a URL
indicating the location and protocol used to access an OCSP responder that can validate the certificate.

OID

1.3.6.1.5.5.7.1.1

Criticality

This extension must be noncritical.

B.3.2. authorityKeyIdentifier

The Authority Key Identifier extension identifies the public key corresponding to the private key used to
sign a certificate. This extension is useful when an issuer has multiple signing keys, such as when a CA
certificate is renewed.

The extension consists of one or both of the following:

An explicit key identifier, set in the keyIdentifier field

An issuer, set in the authorityCertIssuer field, and serial number, set in the
authorityCertSerialNumber field, identifying a certificate

If the keyIdentifier field exists, it is used to select the certificate with a matching subjectKeyIdentifier
extension. If the authorityCertIssuer and authorityCertSerialNumber fields are present, then they are
used to identify the correct certificate by issuer and serialNumber.

If this extension is not present, then the issuer name alone is used to identify the issuer certificate.

PKIX Part 1 requires this extension for all certificates except self-signed root CA certificates. Where a
key identifier has not been established, PKIX recommends that the authorityCertIssuer and
authorityCertSerialNumber fields be specified. These fields permit construction of a complete

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

423

http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc2560.txt

certificate chain by matching the SubjectName and CertificateSerialNumber fields in the issuer's
certificate against the authortiyCertIssuer and authorityCertSerialNumber in the Authority Key
Identifier extension of the subject certificate.

OID

2.5.29.35

Criticality

This extension is always noncritical and is always evaluated.

B.3.3. basicConstraints

This extension is used during the certificate chain verification process to identify CA certificates and to
apply certificate chain path length constraints. The cA component should be set to true for all CA
certificates. PKIX recommends that this extension should not appear in end-entity certificates.

If the pathLenConstraint component is present, its value must be greater than the number of CA
certificates that have been processed so far, starting with the end-entity certificate and moving up the
chain. If pathLenConstraint is omitted, then all of the higher level CA certificates in the chain must not
include this component when the extension is present.

OID

2.5.29.19

Criticality

PKIX Part 1 requires that this extension be marked critical. This extension is evaluated regardless of its
criticality.

B.3.4. certificatePoliciesExt

The Certificate Policies extension defines one or more policies, each of which consists of an OID and
optional qualifiers. The extension can include a URI to the issuer's Certificate Practice Statement or can
embed issuer information, such as a user notice in text form. This information can be used by certificate-
enabled applications.

If this extension is present, PKIX Part 1 recommends that policies be identified with an OID only, or, if
necessary, only certain recommended qualifiers.

OID

2.5.29.32

Criticality

This extension may be critical or noncritical.

B.3.5. CRLDistributionPoints

This extension defines how CRL information is obtained. It should be used if the system is configured to
use CRL issuing points.

If the extension contains a DistributionPointName with a type set to URI, the URI is assumed to be a
pointer to the current CRL for the specified revocation reasons and will be issued by the named
cRLIssuer. The expected values for the URI are those defined for the Subject Alternative Name

Administration Guide

424

extension. If the distributionPoint omits reasons, the CRL must include revocations for all reasons. If
the distributionPoint omits cRLIssuer, the CRL must be issued by the CA that issued the certificate.

PKIX recommends that this extension be supported by CAs and applications.

OID

2.5.29.31

Criticality

PKIX recommends that this extension be marked noncritical and that it be supported for all certificates.

B.3.6. extKeyUsage

The Extended Key Usage extension indicates the purposes for which the certified public key may be
used. These purposes may be in addition to or in place of the basic purposes indicated in the Key Usage
extension.

The Extended Key Usage extension must include OCSP Signing in an OCSP responder's certificate
unless the CA signing key that signed the certificates validated by the responder is also the OCSP
signing key. The OCSP responder's certificate must be issued directly by the CA that signs certificates
the responder will validate.

The Key Usage, Extended Key Usage, and Basic Constraints extensions act together to define the
purposes for which the certificate is intended to be used. Applications can use these extensions to
disallow the use of a certificate in inappropriate contexts.

Table B.36, “PKIX Extended Key Usage Extension Uses” lists the uses defined by PKIX for this extension,
and Table B.37, “Private Extended Key Usage Extension Uses” lists uses privately defined by Netscape.

OID

2.5.29.37

Criticality

If this extension is marked critical, the certificate must be used for one of the indicated purposes only. If
it is not marked critical, it is treated as an advisory field that may be used to identify keys but does not
restrict the use of the certificate to the indicated purposes.

Table B.36. PKIX Extended Key Usage Extension Uses

Use OID

Server authentication 1.3.6.1.5.5.7.3.1

Client authentication 1.3.6.1.5.5.7.3.2

Code signing 1.3.6.1.5.5.7.3.3

Email 1.3.6.1.5.5.7.3.4

Timestamping 1.3.6.1.5.5.7.3.8

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

425

OCSP Signing 1.3.6.1.5.5.7.3.9[a]

[a] OCSP Signing is not defined in PKIX Part 1, but in RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP.

Use OID

Table B.37. Private Extended Key Usage Extension Uses

Use OID

Certificate trust list signing 1.3.6.1.4.1.311.10.3.1

Microsoft Server Gated Crypto (SGC) 1.3.6.1.4.1.311.10.3.3

Microsoft Encrypted File System 1.3.6.1.4.1.311.10.3.4

Netscape SGC 2.16.840.1.113730.4.1

B.3.7. issuerAltName Extension

The Issuer Alternative Name extension is used to associate Internet-style identities with the certificate
issuer. Names must use the forms defined for the Subject Alternative Name extension.

OID

2.5.29.18

Criticality

PKIX Part 1 recommends that this extension be marked noncritical.

B.3.8. keyUsage

The Key Usage extension defines the purpose of the key contained in the certificate. The Key Usage,
Extended Key Usage, and Basic Constraints extensions act together to specify the purposes for which a
certificate can be used.

If this extension is included at all, set the bits as follows:

digitalSignature (0) for SSL client certificates, S/MIME signing certificates, and object-signing
certificates.

nonRepudiation (1) for some S/MIME signing certificates and object-signing certificates.

Administration Guide

426

WARNING

Use of this bit is controversial. Carefully consider the legal consequences of
its use before setting it for any certificate.

keyEncipherment (2) for SSL server certificates and S/MIME encryption certificates.

dataEncipherment (3) when the subject's public key is used to encrypt user data instead of key
material.

keyAgreement (4) when the subject's public key is used for key agreement.

keyCertSign (5) for all CA signing certificates.

cRLSign (6) for CA signing certificates that are used to sign CRLs.

encipherOnly (7) if the public key is used only for enciphering data. If this bit is set,
keyAgreement should also be set.

decipherOnly (8) if the public key is used only for deciphering data. If this bit is set,
keyAgreement should also be set.

Table B.38, “Certificate Uses and Corresponding Key Usage Bits” summarizes the guidelines for typical
certificate uses.

If the keyUsage extension is present and marked critical, then it is used to enforce the usage of the
certificate and key. The extension is used to limit the usage of a key; if the extension is not present or
not critical, all types of usage are allowed.

If the keyUsage extension is present, critical or not, it is used to select from multiple certificates for a
given operation. For example, it is used to distinguish separate signing and encryption certificates for
users who have separate certificates and key pairs for operations.

OID

2.5.29.15

Criticality

This extension may be critical or noncritical. PKIX Part 1 recommends that it should be marked critical if it
is used.

Table B.38. Certificate Uses and Corresponding Key Usage Bits

Purpose of Certificate Required Key Usage Bit

CA Signing
keyCertSign

cRLSign



APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

427

SSL Client digitalSignature

SSL Server keyEncipherment

S/MIME Signing digitalSignature

S/MIME Encryption keyEncipherment

Certificate Signing keyCertSign

Object Signing digitalSignature

Purpose of Certificate Required Key Usage Bit

B.3.9. nameConstraints

This extension, which can used in CA certificates only, defines a name space within which all subject
names in subsequent certificates in a certification path must be located.

OID

2.5.29.30

Criticality

PKIX Part 1 requires that this extension be marked critical.

B.3.10. OCSPNocheck

The extension is meant to be included in an OCSP signing certificate. The extension tells an OCSP client
that the signing certificate can be trusted without querying the OCSP responder (since the reply would
again be signed by the OCSP responder, and the client would again request the validity status of the
signing certificate). This extension is null-valued; its meaning is determined by its presence or absence.

Since the presence of this extension in a certificate will cause OCSP clients to trust responses signed
with that certificate, use of this extension should be managed carefully. If the OCSP signing key is
compromised, the entire process of validating certificates in the PKI will be compromised for the
duration of the validity period of the certificate. Therefore, certificates using OCSPNocheck should be
issued with short lifetimes and be renewed frequently.

OID

1.3.6.1.5.5.7.48.4

Criticality

This extension should be noncritical.

B.3.11. policyConstraints

This extension, which is for CA certificates only, constrains path validation in two ways. It can be used to
prohibit policy mapping or to require that each certificate in a path contain an acceptable policy
identifier.

PKIX requires that, if present, this extension must never consist of a null sequence. At least one of the

Administration Guide

428

PKIX requires that, if present, this extension must never consist of a null sequence. At least one of the
two available fields must be present.

OID

2.5.29.36

Criticality

This extension may be critical or noncritical.

B.3.12. policyMappings

The Policy Mappings extension is used in CA certificates only. It lists one or more pairs of OIDs used to
indicate that the corresponding policies of one CA are equivalent to policies of another CA. It may be
useful in the context of cross-pair certificates.

This extension may be supported by CAs and applications.

OID

2.5.29.33

Criticality

This extension must be noncritical.

B.3.13. privateKeyUsagePeriod

The Private Key Usage Period extension allows the certificate issuer to specify a different validity period
for the private key than for the certificate itself. This extension is intended for use with digital signature
keys.

NOTE

PKIX Part 1 recommends against the use of this extension. CAs conforming to PKIX Part 1
must not generate certificates with this extension.

OID

2.5.29.16

B.3.14. subjectAltName

The Subject Alternative Name extension includes one or more alternative (non-X.500) names for the
identity bound by the CA to the certified public key. It may be used in addition to the certificate's subject
name or as a replacement for it. Defined name forms include Internet electronic mail address (SMTP, as
defined in RFC-822), DNS name, IP address (both IPv4 and IPv6), and uniform resource identifier
(URI).

PKIX requires this extension for entities identified by name forms other than the X.500 distinguished
name (DN) used in the subject field. PKIX Part 1 describes additional rules for the relationship between
this extension and the subject field.

Email addresses may be provided in the Subject Alternative Name extension, the certificate subject
name field, or both. If the email address is part of the subject name, it must be in the form of the
EmailAddress attribute defined by PKCS #9. Software that supports S/MIME must be able to read an

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

429

email address from either the Subject Alternative Name extension or from the subject name field.

OID

2.5.29.17

Criticality

If the certificate's subject field is empty, this extension must be marked critical.

B.3.15. subjectDirectoryAttributes

The Subject Directory Attributes extension conveys any desired directory attribute values for the
subject of the certificate. It is not recommended as an essential part of the proposed PKIX standard but
may be used in local environments.

OID

2.5.29.9

Criticality

PKIX Part 1 requires that this extension be marked noncritical.

B.3.16. subjectKeyIdentifier

The Subject Key Identifier extension identifies the public key certified by this certificate. This extension
provides a way of distinguishing public keys if more than one is available for a given subject name.

The value of this extension should be calculated by performing a SHA-1 hash of the certificate's DER-
encoded subjectPublicKey, as recommended by PKIX. The Subject Key Identifier extension is used in
conjunction with the Authority Key Identifier extension for CA certificates. If the CA certificate has a
Subject Key Identifier extension, the key identifier in the Authority Key Identifier extension of the
certificate being verified should match the key identifier of the CA's Subject Key Identifier extension. It
is not necessary for the verifier to recompute the key identifier in this case.

PKIX Part 1 requires this extension for all CA certificates and recommends it for all other certificates.

OID

2.5.29.14

Criticality

This extension is always noncritical.

B.4. CRL EXTENSIONS

B.4.1. About CRL Extensions

Since its initial publication, the X.509 standard for CRL formats has been amended to include additional
information within a CRL. This information is added through CRL extensions.

The extensions defined by ANSI X9 and ISO/IEC/ITU for X.509 CRLs [X.509] [X9.55] allow additional
attributes to be associated with CRLs. The Internet X.509 Public Key Infrastructure Certificate and CRL
Profile, available at RFC 5280, recommends a set of extensions to be used in CRLs. These extensions
are called standard CRL extensions .

The standard also allows custom extensions to be created and included in CRLs. These extensions are

Administration Guide

430

http://www.ietf.org/rfc/rfc5280.txt

The standard also allows custom extensions to be created and included in CRLs. These extensions are
called private, proprietary, or custom CRL extensions and carry information unique to an organization or
business. Applications may not able to validate CRLs that contain private critical extensions, so it is not
recommended that custom extensions be used in a general context.

NOTE

Abstract Syntax Notation One (ASN.1) and Distinguished Encoding Rules (DER)
standards are specified in the CCITT Recommendations X.208 and X.209. For a quick
summary of ASN.1 and DER, see A Layman's Guide to a Subset of ASN.1, BER, and DER ,
which is available at RSA Laboratories' web site, http://www.rsa.com.

B.4.1.1. Structure of CRL Extensions

A CRL extension consists of the following parts:

The object identifier (OID) for the extension. This identifier uniquely identifies the extension. It
also determines the ASN.1 type of value in the value field and how the value is interpreted. When
an extension appears in a CRL, the OID appears as the extension ID field (extnID) and the
corresponding ASN.1 encoded structure appears as the value of the octet string (extnValue);
examples are shown in Example B.4, “Sample Pretty-Print Certificate Extensions” .

A flag or Boolean field called critical.

The true or false value assigned to this field indicates whether the extension is critical or
noncritical to the CRL.

If the extension is critical and the CRL is sent to an application that does not understand the
extension based on the extension's ID, the application must reject the CRL.

If the extension is not critical and the CRL is sent to an application that does not understand
the extension based on the extension's ID, the application can ignore the extension and
accept the CRL.

An octet string containing the DER encoding of the value of the extension.

The application receiving the CRL checks the extension ID to determine if it can recognize the ID. If it
can, it uses the extension ID to determine the type of value used.

B.4.1.2. Sample CRL and CRL Entry Extensions

The following is an example of an X.509 CRL version 2 extension. The Certificate System can display
CRLs in readable pretty-print format, as shown here. As shown in the example, CRL extensions appear in
sequence and only one instance of a particular extension may appear per CRL; for example, a CRL may
contain only one Authority Key Identifier extension. However, CRL-entry extensions appear in
appropriate entries in the CRL.

Certificate Revocation List:
 Data:
 Version: v2
 Signature Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
 Issuer: CN=Certificate Authority,O=Example Domain
 This Update: Wednesday, July 29, 2009 8:59:48 AM GMT-08:00
 Next Update: Friday, July 31, 2009 8:59:48 AM GMT-08:00
 Revoked Certificates: 1-3 of 3

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

431

http://www.rsa.com

 Serial Number: 0x11
 Revocation Date: Thursday, July 23, 2009 10:07:15 AM GMT-08:00
 Extensions:
 Identifier: Revocation Reason - 2.5.29.21
 Critical: no
 Reason: Privilege_Withdrawn
 Serial Number: 0x1A
 Revocation Date: Wednesday, July 29, 2009 8:50:11 AM GMT-08:00
 Extensions:
 Identifier: Revocation Reason - 2.5.29.21
 Critical: no
 Reason: Certificate_Hold
 Identifier: Invalidity Date - 2.5.29.24
 Critical: no
 Invalidity Date: Sun Jul 26 23:00:00 GMT-08:00 2009
 Serial Number: 0x19
 Revocation Date: Wednesday, July 29, 2009 8:50:49 AM GMT-08:00
 Extensions:
 Identifier: Revocation Reason - 2.5.29.21
 Critical: no
 Reason: Key_Compromise
 Identifier: Invalidity Date - 2.5.29.24
 Critical: no
 Invalidity Date: Fri Jul 24 23:00:00 GMT-08:00 2009
 Extensions:
 Identifier: Authority Info Access: - 1.3.6.1.5.5.7.1.1
 Critical: no
 Access Description:
 Method #0: ocsp
 Location #0: URIName: http://example.com:9180/ca/ocsp
 Identifier: Issuer Alternative Name - 2.5.29.18
 Critical: no
 Issuer Names:
 DNSName: example.com
 Identifier: Authority Key Identifier - 2.5.29.35
 Critical: no
 Key Identifier:
 50:52:0C:AA:22:AC:8A:71:E3:91:0C:C5:77:21:46:9C:
 0F:F8:30:60
 Identifier: Freshest CRL - 2.5.29.46
 Critical: no
 Number of Points: 1
 Point 0
 Distribution Point: [URIName: http://server.example.com:8443/ca/ee/ca/getCRL?
op=getDeltaCRL&crlIssuingPoint=MasterCRL]
 Identifier: CRL Number - 2.5.29.20
 Critical: no
 Number: 39
 Identifier: Issuing Distribution Point - 2.5.29.28
 Critical: yes
 Distribution Point:
 Full Name:
 URIName: http://example.com:9180/ca/ee/ca/getCRL?
op=getCRL&crlIssuingPoint=MasterCRL
 Only Contains User Certificates: no
 Only Contains CA Certificates: no

Administration Guide

432

 Indirect CRL: no
 Signature:
 Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
 Signature:
 47:D2:CD:C9:E5:F5:9D:56:0A:97:31:F5:D5:F2:51:EB:
 1F:CF:FA:9E:63:D4:80:13:85:E5:D8:27:F0:69:67:B5:
 89:4F:59:5E:69:E4:39:93:61:F2:E3:83:51:0B:68:26:
 CD:99:C4:A2:6C:2B:06:43:35:36:38:07:34:E4:93:80:
 99:2F:79:FB:76:E8:3D:4C:15:5A:79:4E:E5:3F:7E:FC:
 D8:78:0D:1D:59:A0:4C:14:42:B7:22:92:89:38:3A:4C:
 4A:3A:06:DE:13:74:0E:E9:63:74:D0:2F:46:A1:03:37:
 92:F0:93:D9:AA:F8:13:C5:06:25:02:B0:FD:3B:41:E7:
 62:6F:67:A3:9F:F5:FA:03:41:DA:8D:FD:EA:2F:E3:2B:
 3E:F8:E9:CC:3B:9F:E4:ED:73:F2:9E:B9:54:14:C1:34:
 68:A7:33:8F:AF:38:85:82:40:A2:06:97:3C:B4:88:43:
 7B:AF:5D:87:C4:47:63:4A:11:65:E3:75:55:4D:98:97:
 C2:2E:62:08:A4:04:35:5A:FE:0A:5A:6E:F1:DE:8E:15:
 27:1E:0F:87:33:14:16:2E:57:F7:DC:77:BE:D2:75:AB:
 A9:7C:42:1F:84:6D:40:EC:E7:ED:84:F8:14:16:28:33:
 FD:11:CD:C5:FC:49:B7:7B:39:57:B3:E6:36:E5:CD:B6

A delta CRL is a subset of the CRL which contains only the changes since the last CRL was published.
Any CRL which contains the delta CRL indicator extension is a delta CRL.

ertificate Revocation List:
 Data:
 Version: v2
 Signature Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
 Issuer: CN=Certificate Authority,O=SjcRedhat Domain
 This Update: Wednesday, July 29, 2009 9:02:28 AM GMT-08:00
 Next Update: Thursday, July 30, 2009 9:02:28 AM GMT-08:00
 Revoked Certificates:
 Serial Number: 0x1A
 Revocation Date: Wednesday, July 29, 2009 9:00:48 AM GMT-08:00
 Extensions:
 Identifier: Revocation Reason - 2.5.29.21
 Critical: no
 Reason: Remove_from_CRL
 Serial Number: 0x17
 Revocation Date: Wednesday, July 29, 2009 9:02:16 AM GMT-08:00
 Extensions:
 Identifier: Revocation Reason - 2.5.29.21
 Critical: no
 Reason: Certificate_Hold
 Identifier: Invalidity Date - 2.5.29.24
 Critical: no
 Invalidity Date: Mon Jul 27 23:00:00 GMT-08:00 2009
 Extensions:
 Identifier: Authority Info Access: - 1.3.6.1.5.5.7.1.1
 Critical: no
 Access Description:
 Method #0: ocsp
 Location #0: URIName: http://server.example.com:8443/ca/ocsp
 Identifier: Delta CRL Indicator - 2.5.29.27
 Critical: yes
 Base CRL Number: 39

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

433

 Identifier: Issuer Alternative Name - 2.5.29.18
 Critical: no
 Issuer Names:
 DNSName: a-f8.sjc.redhat.com
 Identifier: Authority Key Identifier - 2.5.29.35
 Critical: no
 Key Identifier:
 50:52:0C:AA:22:AC:8A:71:E3:91:0C:C5:77:21:46:9C:
 0F:F8:30:60
 Identifier: CRL Number - 2.5.29.20
 Critical: no
 Number: 41
 Identifier: Issuing Distribution Point - 2.5.29.28
 Critical: yes
 Distribution Point:
 Full Name:
 URIName: http://server.example.com:8443/ca/ee/ca/getCRL?
op=getCRL&crlIssuingPoint=MasterCRL
 Only Contains User Certificates: no
 Only Contains CA Certificates: no
 Indirect CRL: no
 Signature:
 Algorithm: SHA1withRSA - 1.2.840.113549.1.1.5
 Signature:
 68:28:DA:90:D5:39:CB:6D:BE:42:04:77:C9:E4:09:60:
 C1:97:A6:99:AB:A0:5B:A2:F3:8B:5E:4E:D6:05:70:B0:
 87:1F:D7:0E:4B:C6:B2:DE:8B:92:D8:7C:3B:36:1C:79:
 96:2A:64:E6:7A:25:1D:E7:40:62:48:7A:24:C9:9D:11:
 A6:7F:BB:6B:03:A0:9C:1D:BC:1C:EE:9A:4B:A6:48:2C:
 3B:5E:2B:B1:70:3C:C3:42:96:28:26:AB:82:18:F2:E9:
 F2:55:48:A8:7E:7F:FE:D4:3D:0B:EA:A2:2F:4E:E6:C3:
 C3:C1:6A:E5:C6:85:5B:42:B1:70:2A:C6:E1:D9:0C:AF:
 DA:01:22:FF:80:6E:2E:A7:E5:34:DC:AF:E6:C2:B5:B3:
 1B:FC:28:36:8A:91:4A:22:E7:03:A5:ED:4E:62:0C:D9:
 7F:81:BB:80:99:B8:61:2A:02:C6:9C:41:2E:01:82:21:
 80:82:69:52:BD:B2:AA:DB:0F:80:0A:7E:2A:F3:15:32:
 69:D2:40:0D:39:59:93:75:A2:ED:24:70:FB:EE:19:C0:
 BE:A2:14:36:D0:AC:E8:E2:EE:23:83:DD:BC:DF:38:1A:
 9E:37:AF:E3:50:D9:47:9D:22:7C:36:35:BF:13:2C:16:
 A2:79:CF:05:41:88:8E:B6:A2:4E:B3:48:6D:69:C6:38

B.4.2. Standard X.509 v3 CRL Extensions Reference

In addition to certificate extensions, the X.509 proposed standard defines extensions to CRLs, which
provide methods for associating additional attributes with Internet CRLs. These are one of two kinds:
extensions to the CRL itself and extensions to individual certificate entries in the CRL.

Section B.4.2.1, “Extensions for CRLs”

Section B.4.2.2, “CRL Entry Extensions”

B.4.2.1. Extensions for CRLs

The following CRL descriptions are defined as part of the Internet X.509 v3 Public Key Infrastructure
proposed standard.

Administration Guide

434

Section B.4.2.1.1, “authorityInfoAccess”

Section B.4.2.1.2, “authorityKeyIdentifier”

Section B.4.2.1.3, “CRLNumber”

Section B.4.2.1.4, “deltaCRLIndicator”

Section B.4.2.1.5, “FreshestCRL”

Section B.4.2.1.6, “issuerAltName”

Section B.4.2.1.7, “issuingDistributionPoint”

Section B.4.2.1.5, “FreshestCRL”

B.4.2.1.1. authorityInfoAccess

The Authority Information Access extension identifies how delta CRL information is obtained. The
freshestCRL extension is placed in the full CRL to indicate where to find the latest delta CRL.

OID

1.3.6.1.5.5.7.1.1

Criticality

PKIX requires that this extension must not be critical.

Parameters

Table B.39. Authority Infomation Access Configuration Parameters

Parameter Description

enable Specifies whether the rule is enabled or disabled. The
default is to have this extension disabled.

critical Sets whether the extension is marked as critical; the
default is noncritical.

numberOfAccessDescriptions Indicates the number of access descriptions, from 0
to any positive integer; the default is 0.

When setting this parameter to an integer other than
0, set the number, and then click OK to close the
window. Re-open the edit window for the rule, and
the fields to set the points will be present.

accessMethodn The only accepted value for this parameter is
caIssuers. The caIssuers method is used when the
information available lists certificates that can be
used to verify the signature on the CRL. No other
method should be used when the AIA extension is
included in a CRL.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

435

accessLocationTypen Specifies the type of access location for the n access
description. The options are either DirectoryName
or URI.

accessLocationn If accessLocationType is set to DirectoryName,
the value must be a string in the form of an X.500
name, similar to the subject name in a certificate. For
example, CN=CACentral,OU=Research
Dept,O=Example Corporation,C=US.

If accessLocationType is set to URI, the name
must be a URI; the URI must be an absolute
pathname and must specify the host. For example,
http://testCA.example.com/get/crls/here/.

Parameter Description

B.4.2.1.2. authorityKeyIdentifier

The Authority Key Identifier extension for a CRL identifies the public key corresponding to the private
key used to sign the CRL. For details, see the discussion under certificate extensions at Section B.3.2,
“authorityKeyIdentifier”.

The PKIX standard recommends that the CA must include this extension in all CRLs it issues because a
CA's public key can change, for example, when the key gets updated, or the CA may have multiple
signing keys because of multiple concurrent key pairs or key changeover. In these cases, the CA ends up
with more than one key pair. When verifying a signature on a certificate, other applications need to know
which key was used in the signature.

OID

2.5.29.35

Parameters

Table B.40. AuthorityKeyIdentifierExt Configuration Parameters

Parameter Description

enable Specifies whether the rule is enabled or disabled. The
default is to have this extension disabled.

critical Sets whether the extension is marked as critical; the
default is noncritical.

B.4.2.1.3. CRLNumber

The CRLNumber extension specifies a sequential number for each CRL issued by a CA. It allows users to
easily determine when a particular CRL supersedes another CRL. PKIX requires that all CRLs have this
extension.

OID

Administration Guide

436

2.5.29.20

Criticality

This extension must not be critical.

Parameters

Table B.41. CRLNumber Configuration Parameters

Parameter Description

enable Specifies whether the rule is enabled, which is the
default.

critical Sets whether the extension is marked as critical; the
default is noncritical.

B.4.2.1.4. deltaCRLIndicator

The deltaCRLIndicator extension generates a delta CRL, a list only of certificates that have been
revoked since the last CRL; it also includes a reference to the base CRL. This updates the local database
while ignoring unchanged information already in the local database. This can significantly improve
processing time for applications that store revocation information in a format other than the CRL
structure.

OID

2.5.29.27

Criticality

PKIX requires that this extension be critical if it exists.

Parameters

Table B.42. DeltaCRL Configuration Parameters

Parameter Description

enable Sets whether the rule is enabled. By default, it is
disabled.

critical Sets whether the extension is critical or noncritical.
By default, this is critical.

B.4.2.1.5. FreshestCRL

The freshestCRL extension identifies how delta CRL information is obtained. The freshestCRL
extension is placed in the full CRL to indicate where to find the latest delta CRL.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

437

OID

2.5.29.46

Criticality

PKIX requires that this extension must be noncritical.

Parameters

Table B.43. FreshestCRL Configuration Parameters

Parameter Description

enable Sets whether the extension rule is enabled. By
default, this is disabled.

critical Marks the extension as critical or noncritical. The
default is noncritical.

numPoints Indicates the number of issuing points for the delta
CRL, from 0 to any positive integer; the default is 0.
When setting this to an integer other than 0, set the
number, and then click OK to close the window. Re-
open the edit window for the rule, and the fields to
set these points will be present.

pointTypen Specifies the type of issuing point for the n issuing
point. For each number specified in numPoints,
there is an equal number of pointType parameters.
The options are either DirectoryName or
URIName.

pointNamen If pointType is set to directoryName, the value
must be a string in the form of an X.500 name,
similar to the subject name in a certificate. For
example, CN=CACentral,OU=Research
Dept,O=Example Corporation,C=US.

If pointType is set to URIName, the name must be
a URI; the URI must be an absolute pathname and
must specify the host. For example,
http://testCA.example.com/get/crls/here/.

B.4.2.1.6. issuerAltName

The Issuer Alternative Name extension allows additional identities to be associated with the issuer of the
CRL, like binding attributes such as a mail address, a DNS name, an IP address (both IPv4 and IPv6), and
a uniform resource indicator (URI), with the issuer of the CRL. For details, see the discussion under
certificate extensions at Section B.3.7, “issuerAltName Extension” .

OID

2.5.29.18

Administration Guide

438

Parameters

Table B.44. IssuerAlternativeName Configuration Parameters

Parameter Description

enable Sets whether the extension rule is enabled; by
default, this is disabled.

critical Sets whether the extension is critical; by default, this
is noncritical.

numNames Sets the total number of alternative names or
identities permitted in the extension. Each name has
a set of configuration parameters, nameType and
name, which must have appropriate values or the
rule returns an error. Change the total number of
identities by changing the value specified in this field;
there is no limit on the total number of identities that
can be included in the extension. Each set of
configuration parameters is distinguished by an
integer derived from the value of this field. For
example, if the numNames parameter is set to 2,
the derived integers are 0 and 1.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

439

nameTypen Specifies the general-name type; this can be any of
the following:

rfc822Name if the name is an Internet mail
address.

directoryName if the name is an X.500
directory name.

dNSName if the name is a DNS name.

ediPartyName if the name is a EDI party
name.

URL if the name is a URI (default).

iPAddress if the name is an IP address. An
IPv4 address must be in the format n.n.n.n
or n.n.n.n,m.m.m.m. For example,
128.21.39.40 or 128.21.39.40,255.255.255.00.
An IPv6 address uses a 128-bit namespace,
with the IPv6 address separated by colons
and the netmask separated by periods. For
example, 0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FF00:0000.

OID if the name is an object identifier.

otherName if the name is in any other
name form; this supports PrintableString,
IA5String, UTF8String, BMPString,
Any, and KerberosName.

namen Specifies the general-name value; the allowed values
depend on the name type specified in the
nameType field.

For rfc822Name, the value must be a valid
Internet mail address in the local-
part@domain format.

For directoryName, the value must be a
string X.500 name, similar to the subject
name in a certificate. For example,
CN=CACentral,OU=Research
Dept,O=Example Corporation,C=US.

For dNSName, the value must be a valid
domain name in the DNS format. For
example, testCA.example.com.

For ediPartyName, the name must be an
IA5String. For example, Example
Corporation.

Parameter Description

Administration Guide

440

For URL, the value must be a non-relative
URI. For example,
http://testCA.example.com.

For iPAddress, the value must be a valid IP
address specified in dot-separated numeric
component notation. It can be the IP
address or the IP address including the
netmask. An IPv4 address must be in the
format n.n.n.n or n.n.n.n,m.m.m.m. For
example, 128.21.39.40 or
128.21.39.40,255.255.255.00. An IPv6
address uses a 128-bit namespace, with the
IPv6 address separated by colons and the
netmask separated by periods. For example,
0:0:0:0:0:0:13.1.68.3, FF01::43,
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:
FFFF:FFFF:255.255.255.0, and
FF01::43,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:
FF00:0000.

For OID, the value must be a unique, valid
OID specified in the dot-separated numeric
component notation. For example,
1.2.3.4.55.6.5.99. Although custom OIDs can
be used to evaluate and test the server, in a
production environment, comply with the
ISO rules for defining OIDs and for
registering subtrees of IDs.

For otherName, the names can be any
other format; this supports
PrintableString, IA5String, UTF8String,
BMPString, Any, and KerberosName.
PrintableString, IA5String, UTF8String,
BMPString, and Any set a string to a
base-64 encoded file specifying the
subtree, such as /var/lib/pki/pki-
tomcat/ca/othername.txt. KerberosName
has the format
Realm|NameType|NameStrings, such as
realm1|0|userID1,userID2. The name must be
the absolute path to the file that contains
the general name in its base-64 encoded
format. For example, /var/lib/pki/pki-
tomcat/ca/extn/ian/othername.txt.

Parameter Description

B.4.2.1.7. issuingDistributionPoint

The Issuing Distribution Point CRL extension identifies the CRL distribution point for a particular CRL
and indicates what kinds of revocation it covers, such as revocation of end-entity certificates only, CA
certificates only, or revoked certificates that have a limited set of reason codes.

PKIX Part I does not require this extension.

OID

2.5.29.28

Criticality

PKIX requires that this extension be critical if it exists.

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

441

Parameters

Table B.45. IssuingDistributionPoint Configuration Parameters

Parameter Description

enable Sets whether the extension is enabled; the default is
disabled.

critical Marks the extension as critical, the default, or
noncritical.

pointType Specifies the type of the issuing distribution point
from the following:

directoryName specifies that the type is
an X.500 directory name.

URI specifies that the type is a uniform
resource indicator.

RelativeToIssuer specifies that the type
is a relative distinguished name (RDN),
which represents a single node of a DN,
such as ou=Engineering.

pointName Gives the name of the issuing distribution point. The
name of the distribution point depends on the value
specified for the pointType parameter.

For directoryName, the name must be an
X.500 name. For example,
cn=CRLCentral,ou=Research
Dept,o=Example Corporation,c=US.

For URIName, the name must be a URI
that is an absolute pathname and specifies
the host. For example,
http://testCA.example.com/get/crls/here/.

NOTE

The CRL may be stored in the
directory entry corresponding to the
CRL issuing point, which may be
different than the directory entry of
the CA.

Administration Guide

442

onlySomeReasons Specifies the reason codes associated with the
distribution point.

Permissible values are a combination of reason codes
(unspecified, keyCompromise,
cACompromise, affiliationChanged,
superseded, cessationOfOperation,
certificateHold, and removeFromCRL)
separated by commas. Leave the field blank if the
distribution point contains revoked certificates with
all reason codes (default).

onlyContainsCACerts Specifies that the distribution point contains user
certificates only if set. By default, this is not set, which
means the distribution point contains all types of
certificates.

indirectCRL Specifies that the distribution point contains an
indirect CRL; by default, this is not selected.

Parameter Description

B.4.2.2. CRL Entry Extensions

The sections that follow lists the CRL entry extension types that are defined as part of the Internet
X.509 v3 Public Key Infrastructure proposed standard. All of these extensions are noncritical.

B.4.2.2.1. certificateIssuer

The Certificate Issuer extension identifies the certificate issuer associated with an entry in an indirect
CRL.

This extension is used only with indirect CRLs, which are not supported by the Certificate System.

OID

2.5.29.29

B.4.2.2.2. invalidityDate

The Invalidity Date extension provides the date on which the private key was compromised or that the
certificate otherwise became invalid.

OID

2.5.29.24

Parameters

Table B.46. InvalidityDate Configuration Parameters

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

443

Parameter Description

enable Sets whether the extension rule is enabled or
disabled. By default, this is enabled.

critical Marks the extension as critical or noncritical; by
default, this is noncritical.

B.4.2.2.3. CRLReason

The Reason Code extension identifies the reason for certificate revocation.

OID

2.5.29.21

Parameters

Table B.47. CRLReason Configuration Parameters

Parameter Description

enable Sets whether the extension rule is enabled or
disabled. By default, this is enabled.

critical Marks the extension as critical or noncritical. By
default, this is noncritical.

B.4.3. Netscape-Defined Certificate Extensions Reference

Netscape defined certain certificate extensions for its products. Some of the extensions are now
obsolete, and others have been superseded by the extensions defined in the X.509 proposed standard.
All Netscape extensions should be tagged as noncritical, so that their presence in a certificate does not
make that certificate incompatible with other clients.

B.4.3.1. netscape-cert-type

The Netscape Certificate Type extension can be used to limit the purposes for which a certificate can be
used. It has been replaced by the X.509 v3 extensions Section B.3.6, “extKeyUsage” and Section B.3.3,
“basicConstraints”.

If the extension exists in a certificate, it limits the certificate to the uses specified in it. If the extension is
not present, the certificate can be used for all applications, except for object signing.

The value is a bit-string, where the individual bit positions, when set, certify the certificate for particular
uses as follows:

bit 0: SSL Client certificate

bit 1: SSL Server certificate

Administration Guide

444

bit 2: S/MIME certificate

bit 3: Object Signing certificate

bit 4: reserved

bit 5: SSL CA certificate

bit 6: S/MIME CA certificate

bit 7: Object Signing CA certificate

OID

2.16.840.1.113730.1.1

B.4.3.2. netscape-comment

The value of this extension is an IA5String. It is a comment that can be displayed to the user when the
certificate is viewed.

OID

2.16.840.1.113730.13

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS

445

APPENDIX C. PUBLISHING MODULE REFERENCE
Several publisher, mapper, and rule modules are configured by default with the Certificate Manager.

Section C.1, “Publisher Plug-in Modules”

Section C.2, “Mapper Plug-in Modules ”

Section C.3, “Rule Instances”

C.1. PUBLISHER PLUG-IN MODULES

This section describes the publisher modules provided for the Certificate Manager. The modules are
used by the Certificate Manager to enable and configure specific publisher instances.

Section C.1.1, “FileBasedPublisher”

Section C.1.2, “LdapCaCertPublisher”

Section C.1.3, “LdapUserCertPublisher”

Section C.1.4, “LdapCrlPublisher”

Section C.1.5, “LdapDeltaCrlPublisher”

Section C.1.6, “LdapCertificatePairPublisher”

Section C.1.7, “OCSPPublisher”

C.1.1. FileBasedPublisher

The FileBasedPublisher plug-in module configures a Certificate Manager to publish certificates and
CRLs to file. This plug-in can publish base-64 encoded files, DER-encoded files, or both, depending on
the checkboxes selected when the publisher is configured. The certificate and CRL content can be
viewed by converting the files using the PrettyPrintCert and PrettyPrintCRL tools. For details on
viewing the content in base-64 and DER-encoded certificates and CRLs, see Section 9.11, “Viewing
Certificates and CRLs Published to File”.

By default, the Certificate Manager does not create an instance of the FileBasedPublisher module.

Table C.1. FileBasedPublisher Configuration Parameters

Parameter Description

Publisher ID Specifies a name for the publisher, an alphanumeric
string with no spaces. For example,
PublishCertsToFile.

directory Specifies the complete path to the directory to
which the Certificate Manager creates the files; the
path can be an absolute path or can be relative to the
Certificate System instance directory. For example,
/export/CS/certificates.

Administration Guide

446

C.1.2. LdapCaCertPublisher

The LdapCaCertPublisher plug-in module configures a Certificate Manager to publish or unpublish a
CA certificate to the caCertificate;binary attribute of the CA's directory entry.

The module converts the object class of the CA's entry to pkiCA or certificationAuthority, if it is not
used already. Similarly, it also removes the pkiCA or certificationAuthority object class when
unpublishing if the CA has no other certificates.

During installation, the Certificate Manager automatically creates an instance of the
LdapCaCertPublisher module for publishing the CA certificate to the directory.

Table C.2. LdapCaCertPublisher Configuration Parameters

Parameter Description

caCertAttr Specifies the LDAP directory attribute to publish the
CA certificate. This must be caCertificate;binary.

caObjectClass Specifies the object class for the CA's entry in the
directory. This must be pkiCA or
certificationAuthority.

C.1.3. LdapUserCertPublisher

The LdapUserCertPublisher plug-in module configures a Certificate Manager to publish or unpublish a
user certificate to the userCertificate;binary attribute of the user's directory entry.

This module is used to publish any end-entity certificate to an LDAP directory. Types of end-entity
certificates include SSL client, S/MIME, SSL server, and OCSP responder.

During installation, the Certificate Manager automatically creates an instance of the
LdapUserCertPublisher module for publishing end-entity certificates to the directory.

Table C.3. LdapUserCertPublisher Configuration Parameters

Parameter Description

certAttr Specifies the directory attribute of the mapped entry
to which the Certificate Manager should publish the
certificate. This must be userCertificate;binary.

C.1.4. LdapCrlPublisher

The LdapCrlPublisher plug-in module configures a Certificate Manager to publish or unpublish the
CRL to the certificateRevocationList;binary attribute of a directory entry.

During installation, the Certificate Manager automatically creates an instance of the LdapCrlPublisher
module for publishing CRLs to the directory.

Table C.4. LdapCrlPublisher Configuration Parameters

APPENDIX C. PUBLISHING MODULE REFERENCE

447

Parameter Description

crlAttr Specifies the directory attribute of the mapped entry
to which the Certificate Manager should publish the
CRL. This must be
certificateRevocationList;binary.

C.1.5. LdapDeltaCrlPublisher

The LdapDeltaCrlPublisher plug-in module configures a Certificate Manager to publish or unpublish a
delta CRL to the deltaRevocationList attribute of a directory entry.

During installation, the Certificate Manager automatically creates an instance of the
LdapDeltaCrlPublisher module for publishing CRLs to the directory.

Table C.5. LdapDeltaCrlPublisher Configuration Parameters

Parameter Description

crlAttr Specifies the directory attribute of the mapped entry
to which the Certificate Manager should publish the
delta CRL. This must be
deltaRevocationList;binary.

C.1.6. LdapCertificatePairPublisher

The LdapCertificatePairPublisher plug-in module configures a Certificate Manager to publish or
unpublish a cross-signed certificate to the crossCertPair;binary attribute of the CA's directory entry.

The module also converts the object class of the CA's entry to a pkiCA or certificationAuthority, if it is
not used already. Similarly, it also removes the pkiCA or certificationAuthority object class when
unpublishing if the CA has no other certificates.

During installation, the Certificate Manager automatically creates an instance of the
LdapCertificatePairPublisher module named LdapCrossCertPairPublisher for publishing the cross-
signed certificates to the directory.

Table C.6. LdapCertificatePairPublisher Parameters

Parameter Description

crossCertPairAttr Specifies the LDAP directory attribute to publish the
CA certificate. This must be
crossCertificatePair;binary.

caObjectClass Specifies the object class for the CA's entry in the
directory. This must be pkiCA or
certificationAuthority.

C.1.7. OCSPPublisher

Administration Guide

448

The OCSPPublisher plug-in module configures a Certificate Manager to publish its CRLs to an Online
Certificate Status Manager.

The Certificate Manager does not create any instances of the OCSPPublisher module at installation.

Table C.7. OCSPPublisher Parameters

Parameter Description

host Specifies the fully qualified hostname of the Online
Certificate Status Manager.

port Specifies the port number on which the Online
Certificate Status Manager is listening to the
Certificate Manager. This is the Online Certificate
Status Manager's SSL port number.

path Specifies the path for publishing the CRL. This must
be the default path, /ocsp/agent/ocsp/addCRL.

enableClientAuth Sets whether to use client (certificate-based)
authentication to access the OCSP service.

nickname Gives the nickname of the certificate in the OCSP
service's database to use for client authentication.
This is only used if the enableClientAuth option is
set to true.

C.2. MAPPER PLUG-IN MODULES

This section describes the mapper plug-in modules provided for the Certificate Manager. These
modules configure a Certificate Manager to enable and configure specific mapper instances.

The available mapper plug-in modules include the following:

Section C.2.1, “LdapCaSimpleMap”

Section C.2.2, “LdapDNExactMap”

Section C.2.3, “LdapSimpleMap”

Section C.2.4, “LdapSubjAttrMap”

Section C.2.5, “LdapDNCompsMap”

C.2.1. LdapCaSimpleMap

The LdapCaSimpleMap plug-in module configures a Certificate Manager to create an entry for the CA
in an LDAP directory automatically and then map the CA's certificate to the directory entry by
formulating the entry's DN from components specified in the certificate request, certificate subject
name, certificate extension, and attribute variable assertion (AVA) constants. For more information on
AVAs, check the directory documentation.

The CA certificate mapper specifies whether to create an entry for the CA, to map the certificate to an

APPENDIX C. PUBLISHING MODULE REFERENCE

449

The CA certificate mapper specifies whether to create an entry for the CA, to map the certificate to an
existing entry, or to do both.

If a CA entry already exists in the publishing directory and the value assigned to the dnPattern
parameter of this mapper is changed, but the uid and o attributes are the same, the mapper fails to
create the second CA entry. For example, if the directory already has a CA entry for
uid=CA,ou=Marketing,o=example.com and a mapper is configured to create another CA entry with
uid=CA,ou=Engineering,o=example.com, the operation fails.

The operation may fail because the directory has the UID Uniqueness plug-in set to a specific base DN.
This setting prevents the directory from having two entries with the same UID under that base DN. In
this example, it prevents the directory from having two entries under o=example.com with the same
UID, CA.

If the mapper fails to create a second CA entry, check the base DN to which the UID Uniqueness plug-in
is set, and check if an entry with the same UID already exists in the directory. If necessary, adjust the
mapper setting, remove the old CA entry, comment out the plug-in, or create the entry manually.

During installation, the Certificate Manager automatically creates two instances of the CA certificate
mapper module. The mappers are named as follows:

LdapCrlMap for CRLs (see Section C.2.1.2, “LdapCrlMap”)

LdapCaCertMap for CA certificates (see Section C.2.1.1, “LdapCaCertMap”).

Table C.8. LdapCaSimpleMap Configuration Parameters

Parameter Description

createCAEntry Creates a CA's entry, if selected (default).

If selected, the Certificate Manager first attempts to
create an entry for the CA in the directory. If the
Certificate Manager succeeds in creating the entry, it
then attempts to publish the CA's certificate to the
entry. If this is not selected, the entry must already
be present in order to publish to it.

Administration Guide

450

dnPattern Specifies the DN pattern the Certificate Manager
should use to construct to search for the CA's entry
in the publishing directory. The value of dnPattern
can be a list of AVAs separated by commas. An AVA
can be a variable, such as cn=$subj.cn, that the
Certificate Manager can derive from the certificate
subject name or a constant, such as o=Example
Corporation.

If the CA certificate does not have the cn
component in its subject name, adjust the CA
certificate mapping DN pattern to reflect the DN of
the entry in the directory where the CA certificate is
to be published. For example, if the CA certificate
subject DN is o=Example Corporation and the
CA's entry in the directory is cn=Certificate
Authority, o=Example Corporation, the pattern
is cn=Certificate Authority, o=$subj.o.

Example 1: uid=CertMgr, o=Example
Corporation

Example 2:
cn=$subj.cn,ou=$subj.ou,o=$subj.o,c
=US

Example 3:
uid=$req.HTTP_PARAMS.uid,
e=$ext.SubjectAlternativeName.RFC8
22Name,ou=$subj.ou

In the above examples, $req takes the attribute from
the certificate request, $subj takes the attribute
from the certificate subject name, and $ext takes the
attribute from the certificate extension.

Parameter Description

C.2.1.1. LdapCaCertMap

The LdapCaCertMap mapper is an instance of the LdapCaSimpleMap module. The Certificate
Manager automatically creates this mapper during installation.

This mapper creates an entry for the CA in the directory and maps the CA certificate to the CA's entry in
the directory.

By default, the mapper is configured to create an entry for the CA in the directory, The default DN
pattern for locating the CA's entry is as follows:

uid=$subj.cn,ou=people,o=$subj.o

C.2.1.2. LdapCrlMap

The LdapCrlMap mapper is an instance of the LdapCaSimpleMap module. The Certificate Manager
automatically creates this mapper during installation.

This mapper creates an entry for the CA in the directory and maps the CRL to the CA's entry in the
directory.

APPENDIX C. PUBLISHING MODULE REFERENCE

451

By default, the mapper is configured to create an entry for the CA in the directory. The default DN
pattern for locating the CA's entry is as follows:

uid=$subj.cn,ou=people,o=$subj.o

C.2.2. LdapDNExactMap

The LdapDNExactMap plug-in module configures a Certificate Manager to map a certificate to an
LDAP directory entry by searching for the LDAP entry DN that matches the certificate subject name. To
use this mapper, each certificate subject name must exactly match a DN in a directory entry. For
example, if the certificate subject name is uid=jdoe, o=Example Corporation, c=US, when searching
the directory for the entry, the Certificate Manager only searches for an entry with the DN uid=jdoe,
o=Example Corporation, c=US.

If no matching entries are found, the server returns an error and does not publish the certificate.

This mapper does not require any values for any parameters because it obtains all values from the
certificate.

C.2.3. LdapSimpleMap

The LdapSimpleMap plug-in module configures a Certificate Manager to map a certificate to an LDAP
directory entry by deriving the entry's DN from components specified in the certificate request,
certificate's subject name, certificate extension, and attribute variable assertion (AVA) constants. For
more information on AVAs, see the directory documentation.

By default, the Certificate Manager uses mapper rules that are based on the simple mapper. During
installation, the Certificate Manager automatically creates an instance of the simple mapper module,
named LdapUserCertMap. The default mapper maps various types of end-entity certificates to their
corresponding directory entries.

The simple mapper requires one parameter, dnPattern. The value of dnPattern can be a list of AVAs
separated by commas. An AVA can be a variable, such as uid=$subj.UID, or a constant, such as
o=Example Corporation.

Example 1: uid=CertMgr, o=Example Corporation

Example 2: cn=$subj.cn,ou=$subj.ou,o=$subj.o,c=US

Example 3: uid=$req.HTTP_PARAMS.uid,
e=$ext.SubjectAlternativeName.RFC822Name,ou=$subj.ou

In the examples, $req takes the attribute from the certificate request, $subj takes the attribute from
the certificate subject name, and $ext takes the attribute from the certificate extension.

C.2.4. LdapSubjAttrMap

The LdapSubjAttrMap plug-in module configures a Certificate Manager to map a certificate to an
LDAP directory entry using a configurable LDAP attribute. To use this mapper, the directory entries
must include the specified LDAP attribute.

This mapper requires the exact pattern of the subject DN because the Certificate Manager searches the
directory for the attribute with a value that exactly matches the entire subject DN. For example, if the
specified LDAP attribute is certSubjectDN and the certificate subject name is uid=jdoe, o=Example

Administration Guide

452

Corporation, c=US, the Certificate Manager searches the directory for entries that have the attribute
certSubjectDN=uid=jdoe, o=Example Corporation, c=US.

If no matching entries are found, the server returns an error and writes it to the log.

Table C.9, “LdapSubjAttrMap Parameters” describes these parameters.

Table C.9. LdapSubjAttrMap Parameters

Parameter Description

certSubjNameAttr Specifies the name of the LDAP attribute that
contains a certificate subject name as its value. The
default is certSubjectName, but this can be
configured to any LDAP attribute.

searchBase Specifies the base DN for starting the attribute
search. The permissible value is a valid DN of an
LDAP entry, such as o=example.com, c=US.

C.2.5. LdapDNCompsMap

The LdapDNCompsMap plug-in module implements the DN components mapper. This mapper maps a
certificate to an LDAP directory entry by constructing the entry's DN from components, such as cn, ou,
o, and c, specified in the certificate subject name, and then uses it as the search DN to locate the entry
in the directory. The mapper locates the following entries:

The CA's entry in the directory for publishing the CA certificate and the CRL.

End-entity entries in the directory for publishing end-entity certificates.

The mapper takes DN components to build the search DN. The mapper also takes an optional root
search DN. The server uses the DN components to form an LDAP entry to begin a subtree search and
the filter components to form a search filter for the subtree. If none of the DN components are
configured, the server uses the base DN for the subtree. If the base DN is null and none of the DN
components match, an error is returned. If none of the DN components and filter components match, an
error is returned. If the filter components are null, a base search is performed.

Both the DNComps and filterComps parameters accept valid DN components or attributes separated
by commas. The parameters do not accept multiple entries of an attribute; for example, filterComps can
be set to cn,ou but not to cn,ou2,ou1. To create a filter with multiple instances of the same attribute,
such as if directory entries contain multiple ou s, modify the source code for the LdapDNCompsMap
module.

The following components are commonly used in DNs:

uid represents the user ID of a user in the directory.

cn represents the common name of a user in the directory.

ou represents an organizational unit in the directory.

o represents an organization in the directory.

l represents a locality (city).

APPENDIX C. PUBLISHING MODULE REFERENCE

453

st represents a state.

c represents a country.

For example, the following DN represents the user named Jane Doe who works for the Sales
department at Example Corporation, which is located in Mountain View, California, United States:

cn=Jane Doe, ou=Sales, o=Example Corporation, l=Mountain View, st=California, c=US

The Certificate Manager can use some or all of these components (cn, ou, o, l, st, and c) to build a DN
for searching the directory. When creating a mapper rule, these components can be specified for the
server to use to build a DN; that is, components to match attributes in the directory. This is set through
the dnComps parameter.

For example, the components cn, ou, o, and c are set as values for the dnComps parameter. To locate
Jane Doe's entry in the directory, the Certificate Manager constructs the following DN by reading the
DN attribute values from the certificate, and uses the DN as the base for searching the directory:

cn=Jane Doe, ou=Sales, o=Example Corporation, c=US

A subject name does not need to have all of the components specified in the dnComps
parameter. The server ignores any components that are not part of the subject name, such as l
and st in this example.

Unspecified components are not used to build the DN. In the example, if the ou component is
not included, the server uses this DN as the base for searching the directory:

cn=Jane Doe, o=Example Corporation, c=US

For the dnComps parameter, enter those DN components that the Certificate Manager can use to
form the LDAP DN exactly. In certain situations, however, the subject name in a certificate may match
more than one entry in the directory. Then, the Certificate Manager might not get a single, distinct
matching entry from the DN. For example, the subject name cn=Jane Doe, ou=Sales, o=Example
Corporation, c=US might match two users with the name Jane Doe in the directory. If that occurs, the
Certificate Manager needs additional criteria to determine which entry corresponds to the subject of the
certificate.

To specify the components the Certificate Manager must use to distinguish between different entries in
the directory, use the filterComps parameter; for details, see Table C.10, “LdapDNCompsMap
Configuration Parameters”. For example, if cn, ou, o, and c are values for the dnComps parameter,
enter l for the filterComps parameter only if the l attribute can be used to distinguish between entries
with identical cn, ou, o, and c values.

If the two Jane Doe entries are distinguished by the value of the uid attribute ‐ one entry's uid is
janedoe1, and the other entry's uid is janedoe2 ‐ the subject names of certificates can be set to include
the uid component.

NOTE

The e, l, and st components are not included in the standard set of certificate request
forms provided for end entities. These components can be added to the forms, or the
issuing agents can be required to insert these components when editing the subject name
in the certificate issuance forms.

Administration Guide

454

C.2.5.1. Configuration Parameters of LdapDNCompsMap

With this configuration, a Certificate Manager maps its certificates with the ones in the LDAP directory
by using the dnComps values to form a DN and the filterComps values to form a search filter for the
subtree.

If the formed DN is null, the server uses the baseDN value for the subtree. If both the formed
DN and base DN are null, the server logs an error.

If the filter is null, the server uses the baseDN value for the search. If both the filter and base
DN are null, the server logs an error.

Table C.10, “LdapDNCompsMap Configuration Parameters” describes these parameters.

Table C.10. LdapDNCompsMap Configuration Parameters

Parameter Description

baseDN Specifies the DN to start searching for an entry in the
publishing directory. If the dnComps field is blank,
the server uses the base DN value to start its search
in the directory.

dnComps Specifies where in the publishing directory the
Certificate Manager should start searching for an
LDAP entry that matches the CA's or the end entity's
information.

For example, if dnComps uses the o and c
attributes of the DN, the server starts the search
from the o=org, c=country entry in the directory,
where org and country are replaced with values from
the DN in the certificate.

If the dnComps field is empty, the server checks the
baseDN field and searches the directory tree
specified by that DN for entries matching the filter
specified by filterComps parameter values.

The permissible values are valid DN components or
attributes separated by commas.

APPENDIX C. PUBLISHING MODULE REFERENCE

455

filterComps Specifies components the Certificate Manager
should use to filter entries from the search result.
The server uses the filterComps values to form an
LDAP search filter for the subtree. The server
constructs the filter by gathering values for these
attributes from the certificate subject name; it uses
the filter to search for and match entries in the LDAP
directory.

If the server finds more than one entry in the
directory that matches the information gathered
from the certificate, the search is successful, and the
server optionally performs a verification. For
example, if filterComps is set to use the email and
user ID attributes (filterComps=e,uid), the server
searches the directory for an entry whose values for
email and user ID match the information gathered
from the certificate.

The permissible values are valid directory attributes
in the certificate DN separated by commas. The
attribute names for the filters need to be attribute
names from the certificate, not from ones in the
LDAP directory. For example, most certificates have
an e attribute for the user's email address; LDAP
calls that attribute mail.

Parameter Description

C.3. RULE INSTANCES

This section discusses the rule instances that have been set.

C.3.1. LdapCaCertRule

The LdapCaCertRule can be used to publish CA certificates to an LDAP directory.

Table C.11. LdapCaCert Rule Configuration Parameters

Parameter Value Description

type cacert Specifies the type of certificate
that will be published.

predicate Specifies a predicate for the
publisher.

enable yes Enables the rule.

mapper LdapCaCertMap Specifies the mapper used with
the rule. See Section C.2.1.1,
“LdapCaCertMap” for details on
the mapper.

Administration Guide

456

publisher LdapCaCertPublisher Specifies the publisher used with
the rule. See Section C.1.2,
“LdapCaCertPublisher” for details
on the publisher.

Parameter Value Description

C.3.2. LdapXCertRule

The LdapXCertRule is used to publish cross-pair certificates to an LDAP directory.

Table C.12. LdapXCert Rule Configuration Parameters

Parameter Value Description

type xcert Specifies the type of certificate
that will be published.

predicate Specifies a predicate for the
publisher.

enable yes Enables the rule.

mapper LdapCaCertMap Specifies the mapper used with
the rule. See Section C.2.1.1,
“LdapCaCertMap” for details on
the mapper.

publisher LdapCrossCertPairPublisher Specifies the publisher used with
the rule. See Section C.1.6,
“LdapCertificatePairPublisher” for
details on this publisher.

C.3.3. LdapUserCertRule

The LdapUserCertRule is used to publish user certificates to an LDAP directory.

Table C.13. LdapUserCert Rule Configuration Parameters

Parameter Value Description

type certs Specifies the type of certificate
that will be published.

predicate Specifies a predicate for the
publisher.

enable yes Enables the rule.

APPENDIX C. PUBLISHING MODULE REFERENCE

457

mapper LdapUserCertMap Specifies the mapper used with
the rule. See Section C.2.3,
“LdapSimpleMap” for details on
the mapper.

publisher LdapUserCertPublisher Specifies the publisher used with
the rule. See Section C.1.3,
“LdapUserCertPublisher” for
details on the publisher.

Parameter Value Description

C.3.4. LdapCRLRule

The LdapCRLRule is used to publish CRLs to an LDAP directory.

Table C.14. LdapCRL Rule Configuration Parameters

Parameter Value Description

type crl Specifies the type of certificate
that will be published.

predicate Specifies a predicate for the
publisher.

enable yes Enables the rule.

mapper LdapCrlMap Specifies the mapper used with
the rule. See Section C.2.1.2,
“LdapCrlMap” for details on the
mapper.

publisher LdapCrlPublisher Specifies the publisher used with
the rule. See Section C.1.4,
“LdapCrlPublisher” for details on
the publisher.

Administration Guide

458

APPENDIX D. ACL REFERENCE
This section describes what each resource controls, lists the possible operations describing the outcome
of those operations, and provides the default ACIs for each ACL resource defined. Each subsystem
contains only those ACLs that are relevant to that subsystem.

D.1. ABOUT ACL CONFIGURATION FILES

Access control is the method to set rules on who can access part of a server and the operations that
user can perform. The four subsystems which depend on the LDAP directory service and use a Java
console — the CA, KRA, OCSP, and TKS — all implement LDAP-style access control to access their
resources. These access control lists (ACL) are located in the
/var/lib/pki/instance_name/conf/subsystem/acl.ldif file.

NOTE

This section provides only a very brief overview of access control concepts. Access
control is described in much more detail in the Managing Access Control chapter in the
Red Hat Directory Server Administration Guide .

The Certificate System ACL files are LDIF files that are loaded by the internal database. The individual
ACLs are defined as resourceACLS attributes which identify the area of the subsystem being
protected and then a list of all of the specific access controls being set.

resourceACLS: class_name:all rights: allow|deny (rights) type=target description

Each rule which allows or denies access to a resource is called an access control instruction (ACI). (The
sum of all of the ACIs for a resource is an access control list.) Before defining the actual ACI, the ACL
attribute is first applied to a specific plug-in class used by the Certificate System subsystem. This
focuses each ACL to a specific function performed by the subsystem, providing both more security for
the instance and better control over applying ACLs.

Example D.1. Default ACL to List Certificate Profiles

resourceACLS: certServer.ca.profiles:list:allow (list) group="Certificate Manager
Agents":Certificate Manager agents may list profiles

Because each subsystem (CA, KRA, OCSP, and TKS) has different resources for its operations, each
subsystem instance has its own acl.ldif file and its own defined ACLs.

Each ACI defines what access or behavior can be done (the right) and who the ACI applies to (the
target). The basic format of an ACI is, then:

allow|deny (rights) user|group

Rights are types of operations that the ACI allows a user to perform. For LDAP ACIs, there is a relatively
limited list of rights to directory entries, like search, read, write, and delete. The Certificate System uses
additional rights that cover common PKI tasks, like revoke, submit, and assign.

If an operation is not explicitly allowed in an ACI, then it is implicitly denied. If an operation is explicitly

APPENDIX D. ACL REFERENCE

459

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/managing_access_control

If an operation is not explicitly allowed in an ACI, then it is implicitly denied. If an operation is explicitly
denied in one ACI, then it trumps any ACI which explicitly allows it. Deny rules are always superior to
allow rules to provide additional security.

Each ACI has to apply to specific users or groups. This is set using a couple of common conditions,
usually user= or group=, though there are other options, like ipaddress= which defines client-based
access rather than entry-based access. If there is more than one condition, the conditions can be
composed using the double pipe (||) operator, signifying logical disjunction ("or"), and the double
ampersand (&&) operator, signifying logical conjunction ("and"). For example, group="group1" ||
"group2".

Each area of the resourceACLS attribute value is defined in Table D.1, “Sections of the ACL Attribute
Value”.

Table D.1. Sections of the ACL Attribute Value

Value Description

class_name The plug-in class to which the ACI is applied.

all operations The list of every operation covered in the ACI
definition. There can be multiple operations in a
single ACI and multiple ACIs in a single
resourceACLS attribute.

allow|deny Whether the action is being allowed for the target
user or group or denied to the target user or group.

(operations) The operations being allowed or denied.

type=target The target to identify who this applies to. This is
commonly a user (such as user="name") or a group
(group="group"). If there is more than one
condition, the conditions can be composed using the
double pipe (||) operator (logical "or") and the double
ampersand (&&) operator (logical "and"). For
example, group="group1" || "group2".

description A description of what the ACL is doing.

D.2. COMMON ACLS

This section covers the default access control configuration that is common for all four subsystem
types. These access control rules manage access to basic and common configuration settings, such as
logging and adding users and groups.

IMPORTANT

Administration Guide

460

IMPORTANT

These ACLs are common in that the same ACLs occur in each subsystem instance's
acl.ldif file. These are not shared ACLs in the sense that the configuration files or
settings are held in common by all subsystem instances. As with all other instance
configuration, these ACLs are maintained independently of other subsystem instances, in
the instance-specific acl.ldif file.

D.2.1. certServer.acl.configuration

Controls operations to the ACL configuration. The default configuration is:

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors";allow (modify) group="Administrators"

Table D.2. certServer.acl.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View ACL resources and
list ACL resources, ACL
listing evaluators, and
ACL evaluator types.

Allow
Administrators

Agents

Auditors

modify Add, delete, and update
ACL evaluators.

Allow Administrators

D.2.2. certServer.admin.certificate

Controls which users can import a certificate through a Certificate Manager. By default, this operation is
allowed to everyone. The default configuration is:

allow (import) user="anybody"

NOTE

This entry is associated with the CA administration web interface which is used to
configure the instance. This ACL is only available during instance configuration and is
unavailable after the CA is running.

Table D.3. certServer.admin.certificate ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

APPENDIX D. ACL REFERENCE

461

import Import a CA
administrator certificate,
and retrieve certificates
by serial number.

Allow Anyone

Operations Description Allow/Deny Access Targeted
Users/Groups

D.2.3. certServer.auth.configuration

Controls operations on the authentication configuration.

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors";allow (modify) group="Administrators

Table D.4. certServer.auth.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View authentication
plug-ins, authentication
type, configured
authentication manager
plug-ins, and
authentication
instances. List
authentication manager
plug-ins and
authentication manager
instances.

Allow
Administrators

Agents

Auditors

modify Add or delete
authentication plug-ins
and authentication
instances. Modify
authentication
instances.

Allow Administrators

D.2.4. certServer.clone.configuration

Controls who can read and modify the configuration information used in cloning. The default setting is:

allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" ||
group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators"

Table D.5. certServer.clone.configuration ACL Summary

Administration Guide

462

Operations Description Allow/Deny Access Targeted
Users/Groups

read View original instance
configuration.

Allow Enterprise
Administrators

modify Modify original instance
configuration.

Allow Enterprise
Administrators

D.2.5. certServer.general.configuration

Controls access to the general configuration of the subsystem instance, including who can view and edit
the CA's settings.

allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" ||
group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online
Certificate Status Manager Agents";allow (modify) group="Administrators"

Table D.6. certServer.general.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View the operating
environment, LDAP
configuration, SMTP
configuration, server
statistics, encryption,
token names, subject
name of certificates,
certificate nicknames, all
subsystems loaded by
the server, CA
certificates, and all
certificates for
management.

Allow
Administrators

Agents

Auditors

APPENDIX D. ACL REFERENCE

463

modify Modify the settings for
the LDAP database,
SMTP, and encryption.
Issue import certificates,
install certificates, trust
and untrust CA
certificates, import
cross-pair certificates,
and delete certificates.
Perform server restart
and stop operations.
Log in all tokens and
check token status. Run
self-tests on demand.
Get certificate
information. Process the
certificate subject name.
Validate the certificate
subject name, certificate
key length, and
certificate extension.

Allow Administrators

Operations Description Allow/Deny Access Targeted
Users/Groups

D.2.6. certServer.log.configuration

Controls access to the log configuration for the Certificate Manager, including changing the log settings.

allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" ||
group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online
Certificate Status Manager Agents";allow (modify) group="Administrators"

Table D.7. certServer.log.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View log plug-in
information, log plug-in
configuration, and log
instance configuration.
List log plug-ins and log
instances (excluding
NTEventLog).

Allow
Administrators

Agents

Auditors

modify Add and delete log plug-
ins and log instances.
Modify log instances,
including log rollover
parameters and log
level.

Allow Administrators

Administration Guide

464

D.2.7. certServer.log.configuration.fileName

Restricts access to change the file name of a log for the instance.

allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" ||
group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online
Certificate Status Manager Agents";deny (modify) user=anybody

Table D.8. certServer.log.configuration.fileName ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View the value of the
fileName parameter for
a log instance.

Allow
Administrators

Agents

Auditors

modify Change the value of the
fileName parameter for
a log instance.

Deny Anyone

D.2.8. certServer.log.content.system

Controls who can view the instance's logs.

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors"

Table D.9. certServer.log.content.system ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View log content. List all
logs.

Allow
Administrators

Agents

Auditors

D.2.9. certServer.log.content.signedAudit

Controls who has access to the signed audit logs. The default setting is:

allow (read) group="Auditors"

APPENDIX D. ACL REFERENCE

465

Table D.10. certServer.log.content.signedAudit ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View log content. List
logs.

Allow
Auditors

D.2.10. certServer.registry.configuration

Controls access to the administration registry, the file that is used to register plug-in modules.
Currently, this is only used to register certificate profile plug-ins.

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors";allow (modify) group="Administrators"

Table D.11. certServer.registry.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View the administration
registry, supported
policy constraints,
profile plug-in
configuration, and the
list of profile plug-ins.

Allow
Administrators

Agents

Auditors

modify Register individual
profile implementation
plug-ins.

Allow Administrators

D.3. CERTIFICATE MANAGER-SPECIFIC ACLS

This section covers the default access control configuration attributes which are set specifically for the
Certificate Manager. The CA ACL configuration also includes all of the common ACLs listed in
Section D.2, “Common ACLs” .

There are access control rules set for each of the CA's interfaces (administrative console and agents
and end-entities services pages) and for common operations like listing and downloading certificates.

D.3.1. certServer.admin.ocsp

Limits access to the Certificate Manager's OCSP configuration to members of the enterprise OCSP
administrators group.

allow (modify,read) group="Enterprise OCSP Administrators"

Table D.12. certServer.admin.ocsp ACL Summary

Administration Guide

466

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Modify the OCSP
configuration, OCSP
stores configuration,
and default OCSP store.

Allow Enterprise OCSP
Administrators

read Read the OCSP
configuration.

Allow Enterprise OCSP
Administrators

D.3.2. certServer.ca.certificate

Controls basic management operations for certificates in the agents services interface, including
importing and revoking certificates. The default configuration is:

allow (import,unrevoke,revoke,read) group="Certificate Manager Agents"

Table D.13. certServer.ca.certificate ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

import Retrieve a certificate by
serial number.

Allow Certificate Manager
Agents

unrevoke Change the status of a
certificate from
revoked.

Allow Certificate Manager
Agents

revoke Change the status of a
certificate to revoked.

Allow Certificate Manager
Agents

read Retrieve certificates
based on the request ID,
and display certificate
details based on the
request ID or serial
number.

Allow Certificate Manager
Agents

D.3.3. certServer.ca.certificates

Controls operations for listing or revoking certificates through the agent services interface. The default
configuration is:

allow (revoke,list) group="Certificate Manager Agents"|| group="Registration Manager Agents"

Table D.14. certServer.ca.certificates ACL Summary

APPENDIX D. ACL REFERENCE

467

Operations Description Allow/Deny Access Targeted
Users/Groups

revoke Revoke a certificates, or
approve certificate
revocation requests.
Revoke a certificate
from the TPS. Prompt
users for additional data
about a revocation
request.

Allow
Certificate Manager
Agents

Registration Manager
Agents

list List certificates based
on a search. Retrieve
details about a range of
certificates based on a
range of serial numbers.

Allow
Certificate Manager
Agents

Registration Manager
Agents

D.3.4. certServer.ca.configuration

Controls operations on the general configuration for a Certificate Manager. The default configuration is:

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors";allow (modify) group="Administrators"

Table D.15. certServer.ca.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View CRL plug-in
information, general CA
configuration, CA
connector configuration,
CRL issuing points
configuration, CRL
profile configuration,
request notification
configuration,
revocation notification
configuration, request in
queue notification
configuration, and CRL
extensions
configuration. List CRL
extensions configuration
and CRL issuing points
configuration.

Allow
Administrators

Agents

Auditors

Administration Guide

468

modify Add and delete CRL
issuing points. Modify
general CA settings, CA
connector configuration,
CRL issuing points
configuration, CRL
configuration, request
notification
configuration,
revocation notification
configuration, request in
queue notification
configuration, and CRL
extensions
configuration.

Allow Administrators

Operations Description Allow/Deny Access Targeted
Users/Groups

D.3.5. certServer.ca.connector

Controls operations to submit requests over a special connector to the CA. The default configuration is:

allow (submit) group="Trusted Managers"

Table D.16. certServer.ca.connector ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit requests from
remote trusted
managers.

Allow Trusted Managers

D.3.6. certServer.ca.connectorInfo

Controls access to the connector information to manage trusted relationships between a CA and KRA.
These trust relationships are special configurations which allow a CA and KRA to automatically connect
to perform key archival and recovery operations. These trust relationships are configured through
special connector plug-ins.

allow (read) group="Enterprise KRA Administrators";allow (modify) group="Enterprise KRA
Administrators" || group="Subsystem Group"

Table D.17. certServer.ca.connectorInfo ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

APPENDIX D. ACL REFERENCE

469

read Read connector plug-in
settings.

Allow Enterprise KRA
Administrators

modify Modify connector plug-
in settings.

Allow
Enterprise KRA
Administrators

Subsystem Group

Operations Description Allow/Deny Access Targeted
Users/Groups

D.3.7. certServer.ca.crl

Controls access to read or update CRLs through the agent services interface. The default setting is:

allow (read,update) group="Certificate Manager Agents"

Table D.18. certServer.ca.crl ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Display CRLs and get
detailed information
about CA CRL
processing.

Allow Certificate Manager
Agents

update Update CRLs. Allow Certificate Manager
Agents

D.3.8. certServer.ca.directory

Controls access to the LDAP directory used for publishing certificates and CRLs.

allow (update) group="Certificate Manager Agents"

Table D.19. certServer.ca.directory ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

update Publish CA certificates,
CRLs, and user
certificates to the LDAP
directory.

Allow Certificate Manager
Agents

D.3.9. certServer.ca.group

Administration Guide

470

Controls access to the internal database for adding users and groups for the Certificate Manager
instance.

allow (modify,read) group="Administrators"

Table D.20. certServer.ca.group ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Create, edit, or delete
user and group entries
for the instance. Add or
modify a user certificate
within attributes

Allow Administrators

read View user and group
entries for the instance.

Allow Administrators

D.3.10. certServer.ca.ocsp

Controls the ability to access and read OCSP information, such as usage statistics, through the agent
services interface.

allow (read) group="Certificate Manager Agents"

Table D.21. certServer.ca.ocsp ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Retrieve OCSP usage
statistics.

Allow Certificate Manager
Agents

D.3.11. certServer.ca.profile

Controls access to certificate profile configuration in the agent services pages.

allow (read,approve) group="Certificate Manager Agents"

Table D.22. certServer.ca.profile ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View the details of the
certificate profiles.

Allow Certificate Manager
Agents

APPENDIX D. ACL REFERENCE

471

approve Approve and enable
certificate profiles.

Allow Certificate Manager
Agents

Operations Description Allow/Deny Access Targeted
Users/Groups

D.3.12. certServer.ca.profiles

Controls access to list certificate profiles in the agent services interface.

allow (list) group="Certificate Manager Agents"

Table D.23. certServer.ca.profiles ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

list List certificate profiles. Allow Certificate Manager
Agents

D.3.13. certServer.ca.registerUser

Defines which group or user can create an agent user for the instance. The default configuration is:

allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" ||
group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" ||
group="Enterprise TPS Administrators"

Table D.24. certServer.ca.registerUser ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Register a new agent. Allow Enterprise
Administrators

read Read existing agent
information.

Allow Enterprise
Administrators

D.3.14. certServer.ca.request.enrollment

Controls how the enrollment request are handled and assigned. The default setting is:

allow (submit) user="anybody";allow (read,execute,assign,unassign) group="Certificate Manager
Agents"

Table D.25. certServer.ca.request.enrollment ACL Summary

Administration Guide

472

Operations Description Allow/Deny Access Targeted
Users/Groups

read View an enrollment
request.

Allow Certificate Manager
Agents

execute Modify the approval
state of a request.

Allow Certificate Manager
Agents

submit Sumbit a request. Allow Anybody

assign Assign a request to a
Certificate Manager
agent.

Allow Certificate Manager
Agents

unassign Change the assignment
of a request.

Allow Certificate Manager
Agents

D.3.15. certServer.ca.request.profile

Controls the handling of certificate profile-based requests. The default setting is:

allow (approve,read) group="Certificate Manager Agents"

Table D.26. certServer.ca.request.profile ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

approve Modify the approval
state of a certificate
profile-based certificate
request.

Allow Certificate Manager
Agents

read View a certificate
profile-based certificate
request.

Allow Certificate Manager
Agents

D.3.16. certServer.ca.requests

Controls who can list certificate requests in the agents services interface.

allow (list) group="Certificate Manager Agents"|| group="Registration Manager Agents"

Table D.27. certServer.ca.requests ACL Summary

APPENDIX D. ACL REFERENCE

473

Operations Description Allow/Deny Access Targeted
Users/Groups

list Retrieve details on a
range of requests, and
search for certificates
using a complex filter.

Allow
Certificate Manager
Agents

Registration Manager
Agents

D.3.17. certServer.ca.systemstatus

Controls who can view the statistics for the Certificate Manager instance.

allow (read) group="Certificate Manager Agents"

Table D.28. certServer.ca.systemstatus ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View statistics. Allow Certificate Manager
Agents

D.3.18. certServer.ee.certchain

Controls who can access the CA certificate chain in the end-entities page.

allow (download,read) user="anybody"

Table D.29. certServer.ee.certchain ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

download Download the CA's
certificate chain.

Allow Anyone

read View the CA's certificate
chain.

Allow Anyone

D.3.19. certServer.ee.certificate

Controls who can access certificates, for most operations like importing or revoking certificates, through
the end-entities page.

allow (renew,revoke,read,import) user="anybody"

Administration Guide

474

Table D.30. certServer.ee.certificate ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

renew Submit a request to
renew an existing
certificate.

Allow Anyone

revoke Submit a revocation
request for a user
certificate.

Allow Anyone

read Retrieve and view
certificates based on the
certificate serial number
or request ID.

Allow Anyone

import Import a certificate
based on serial number.

Allow Anyone

D.3.20. certServer.ee.certificates

Controls who can list revoked certificates or submit a revocation request in the end-entities page.

allow (revoke,list) user="anybody"

Table D.31. certServer.ee.certificates ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

revoke Submit a list of
certificates to revoke.

Allow Subject of Certificate to
be Revoked must match
Certificate presented to
authenticate to the CA.

list Search for certificates
matching specified
criteria.

Allow Anyone

D.3.21. certServer.ee.crl

Controls access to CRLs through the end-entities page.

allow (read,add) user="anybody"

Table D.32. certServer.ee.crl ACL Summary

APPENDIX D. ACL REFERENCE

475

Operations Description Allow/Deny Access Targeted
Users/Groups

read Retrieve and view the
certificate revocation
list.

Allow Anyone

add Add CRLs to the OCSP
server.

Allow Anyone

D.3.22. certServer.ee.profile

Controls some access to certificate profiles in the end-entities page, including who can view details
about a profile or submit a request through the profile.

allow (submit,read) user="anybody"

Table D.33. certServer.ee.profile ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit a certificate
request through a
certificate profile.

Allow Anyone

read Displaying details of a
certificate profile.

Allow Anyone

D.3.23. certServer.ee.profiles

Controls who can list active certificate profiles in the end-entities page.

allow (list) user="anybody"

Table D.34. certServer.ee.profiles ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

list List certificate profiles. Allow Anyone

D.3.24. certServer.ee.request.ocsp

Controls access, based on IP address, on which clients submit OCSP requests.

allow (submit) ipaddress=".*"

Table D.35. certServer.ee.request.ocsp ACL Summary

Administration Guide

476

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit OCSP requests. Allow All IP addresses

D.3.25. certServer.ee.request.revocation

Controls what users can submit certificate revocation requests in the end-entities page.

allow (submit) user="anybody"

Table D.36. certServer.ee.request.revocation ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit a request to
revoke a certificate.

Allow Anyone

D.3.26. certServer.ee.requestStatus

Controls who can view the status for a certificate request in the end-entities page.

allow (read) user="anybody"

Table D.37. certServer.ee.requestStatus ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Retrieve the status of a
request and serial
numbers of any
certificates that have
been issued against that
request.

Allow Anyone

D.3.27. certServer.job.configuration

Controls who can configure jobs for the Certificate Manager.

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors";allow (modify) group="Administrators"

Table D.38. certServer.job.configuration ACL Summary

APPENDIX D. ACL REFERENCE

477

Operations Description Allow/Deny Access Targeted
Users/Groups

read View basic job settings,
job instance settings,
and job plug-in settings.
List job plug-ins and job
instances.

Allow
Administrators

Agents

Auditors

modify Add and delete job plug-
ins and job instances.
Modify job plug-ins and
job instances.

Allow Administrators

D.3.28. certServer.profile.configuration

Controls access to the certificate profile configuration. The default setting is:

allow (read) group="Administrators" || group="Certificate Manager Agents" || group="Registration
Manager Agents" || group="Key Recovery Authority Agents" || group="Online Certificate Status
Manager Agents" || group="Auditors";allow (modify) group="Administrators"

Table D.39. certServer.profile.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View certificate profile
defaults and constraints,
input, output, input
configuration, output
configuration, default
configuration, policy
constraints
configuration, and
certificate profile
instance configuration.
List certificate profile
plug-ins and certificate
profile instances.

Allow
Administrators

Agents

Auditors

modify Add, modify, and delete
certificate profile
defaults and constraints,
input, output, and
certificate profile
instances. Add and
modify default policy
constraints
configuration.

Allow Administrators

Administration Guide

478

D.3.29. certServer.publisher.configuration

Controls who can view and edit the publishing configuration for the Certificate Manager. The default
configuration is:

allow (read) group="Administrators" || group="Auditors" || group="Certificate Manager Agents" ||
group="Registration Manager Agents" || group="Key Recovery Authority Agents" || group="Online
Certificate Status Manager Agents";allow (modify) group="Administrators"

Table D.40. certServer.publisher.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View LDAP server
destination information,
publisher plug-in
configuration, publisher
instance configuration,
mapper plug-in
configuration, mapper
instance configuration,
rules plug-in
configuration, and rules
instance configuration.
List publisher plug-ins
and instances, rules
plug-ins and instances,
and mapper plug-ins
and instances.

Allow
Administrators

Agents

Auditors

modify Add and delete
publisher plug-ins,
publisher instances,
mapper plug-ins,
mapper instances, rules
plug-ins, and rules
instances. Modify
publisher instances,
mapper instances, rules
instances, and LDAP
server destination
information.

Allow Administrators

D.3.30. certServer.securitydomain.domainxml

Controls access to the security domain information maintained in a registry by the domain host
Certificate Manager. The security domain configuration is directly accessed and modified by subsystem
instances during configuration, so appropriate access must always be allowed to subsystems, or
configuration could fail.

allow (read) user="anybody";allow (modify) group="Subsystem Group"

APPENDIX D. ACL REFERENCE

479

Table D.41. certServer.securitydomain.domainxml ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View the security domain
configuration.

Allow Anybody

modify Modify the security
domain configuration by
changing instance
information and adding
and removing instances.

Allow
Subsystem Groups

Enterprise
Administrators

D.4. KEY RECOVERY AUTHORITY-SPECIFIC ACLS

This section covers the default access control configuration which apply specifically to the KRA. The
KRA ACL configuration also includes all of the common ACLs listed in Section D.2, “Common ACLs” .

There are access control rules set for each of the KRA's interfaces (administrative console and agents
and end-entities services pages) and for common operations like listing and downloading keys.

D.4.1. certServer.job.configuration

Controls who can configure jobs for the KRA.

allow (read) group="Administrators" || group="Key Recovery Authority Agents" ||
group="Auditors";allow (modify) group="Administrators"

Table D.42. certServer.job.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View basic job settings,
job instance settings,
and job plug-in settings.
List job plug-ins and job
instances.

Allow
Administrators

Agents

Auditors

modify Add and delete job plug-
ins and job instances.
Modify job plug-ins and
job instances.

Allow Administrators

D.4.2. certServer.kra.certificate.transport

Controls who can view the transport certificate for the KRA.

Administration Guide

480

allow (read) user="anybody"

Table D.43. certServer.kra.certificate.transport ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View the transport
certificate for the KRA
instance.

Allow Anyone

D.4.3. certServer.kra.configuration

Controls who can configure and manage the setup for the KRA.

allow (read) group="Administrators" || group="Auditors" || group="Key Recovery Authority Agents" ||
allow (modify) group="Administrators"

Table D.44. certServer.kra.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Read the number of
required recovery agent
approvals.

Allow
Administrators

Agents

Auditors

modify Change the number of
required recovery agent
approvals.

Allow Administrators

D.4.4. certServer.kra.connector

Controls what entities can submit requests over a special connector configured on the CA to connect to
the KRA. The default configuration is:

allow (submit) group="Trusted Managers"

Table D.45. certServer.kra.connector ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit a new key
archival request (for
non-TMS only).

Allow Trusted Managers

APPENDIX D. ACL REFERENCE

481

D.4.5. certServer.kra.GenerateKeyPair

Controls who can submit key recovery requests to the KRA. The default configuration is:

allow (execute) group="Key Recovery Authority Agents"

Table D.46. certServer.kra.GenerateKeyPair ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

Execute Execute server-side key
generation (TMS only).

Allow KRA Agents

D.4.6. certServer.kra.getTransportCert

Controls who can submit key recovery requests to the KRA. The default configuration is:

allow (download) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" ||
group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" ||
group="Enterprise TPS Administrators"

Table D.47. certServer.kra.getTransportCert ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

download Retrieve KRA transport
certificate.

Allow Enterprise
Administrators

D.4.7. certServer.kra.group

Controls access to the internal database for adding users and groups for the KRA instance.

allow (modify,read) group="Administrators"

Table D.48. certServer.kra.group ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Create, edit, or delete
user and group entries
for the instance.

Allow Administrators

read View user and group
entries for the instance.

Allow
Administrators

D.4.8. certServer.kra.key

Administration Guide

482

Controls who can access key information through viewing, recovering, or downloading keys. The default
configuration is:

allow (read,recover,download) group="Key Recovery Authority Agents"

Table D.49. certServer.kra.key ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Display public
information about key
archival record.

Allow KRA Agents

recover Retrieve key information
from the database to
perform a recovery
operation.

Allow KRA Agents

download Download key
information through the
agent services pages.

Allow KRA Agents

D.4.9. certServer.kra.keys

Controls who can list archived keys through the agent services pages.

allow (list) group="Key Recovery Authority Agents"

Table D.50. certServer.kra.keys ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

list Search for and list a
range of archived keys.

Allow KRA Agents

D.4.10. certServer.kra.registerUser

Defines which group or user can create an agent user for the instance. The default configuration is:

allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" ||
group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" ||
group="Enterprise TPS Administrators"

Table D.51. certServer.kra.registerUser ACL Summary

APPENDIX D. ACL REFERENCE

483

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Register a new user. Allow Enterprise
Administrators

read Read existing user info. Allow Enterprise
Administrators

D.4.11. certServer.kra.request

Controls who can view key archival and recovery requests in the agents services interface.

allow (read) group="Key Recovery Authority Agents"

Table D.52. certServer.kra.request ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View a key archival or
recovery request.

Allow KRA Agents

D.4.12. certServer.kra.request.status

Controls who can view the status for a key recovery request in the end-entities page.

allow (read) group="Key Recovery Authority Agents"

Table D.53. certServer.kra.request.status ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Retrieve the status of a
key recovery request in
the agents services
pages.

Allow KRA Agents

D.4.13. certServer.kra.requests

Controls who can list key archival and recovery requests in the agents services interface.

allow (list) group="Key Recovery Authority Agents"

Table D.54. certServer.kra.requests ACL Summary

Administration Guide

484

Operations Description Allow/Deny Access Targeted
Users/Groups

list Retrieve details on a
range of key archival
and recovery requests.

Allow KRA Agents

D.4.14. certServer.kra.systemstatus

Controls who can view the statistics for the KRA instance.

allow (read) group="Key Recovery Authority Agents"

Table D.55. certServer.kra.systemstatus ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View statistics. Allow KRA Agents

D.4.15. certServer.kra.TokenKeyRecovery

Controls who can submit key recovery requests for a token to the KRA. This is a common request for
replacing a lost token. The default configuration is:

allow (submit) group="Key Recovery Authority Agents"

Table D.56. certServer.kra.TokenKeyRecovery ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit or initiate key
recovery requests for a
token recovery.

Allow KRA Agents

D.5. ONLINE CERTIFICATE STATUS MANAGER-SPECIFIC ACLS

This section covers the default access control configuration attributes which are set specifically for the
Online Certificate Status Manager. The OCSP responder's ACL configuration also includes all of the
common ACLs listed in Section D.2, “Common ACLs” .

There are access control rules set for each of the OCSP's interfaces (administrative console and agents
and end-entities services pages) and for common operations like listing and downloading CRLs.

D.5.1. certServer.ee.crl

Controls access to CRLs through the end-entities page.

APPENDIX D. ACL REFERENCE

485

allow (read) user="anybody"

Table D.57. certServer.ee.crl ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read Retrieve and view the
certificate revocation
list.

Allow Anyone

D.5.2. certServer.ee.request.ocsp

Controls access, based on IP address, on which clients submit OCSP requests.

allow (submit) ipaddress=".*"

Table D.58. certServer.ee.request.ocsp ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

submit Submit OCSP requests. Allow All IP addresses

D.5.3. certServer.ocsp.ca

Controls who can instruct the OCSP responder. The default setting is:

allow (add) group="Online Certificate Status Manager Agents"

Table D.59. certServer.ocsp.ca ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

Add Instruct the OCSP
responder to respond to
OCSP requests for a
new CA.

Allow OCSP Manager Agents

D.5.4. certServer.ocsp.cas

Controls who can list, in the agent services interface, all of the Certificate Managers which publish CRLs
to the Online Certificate Status Manager. The default setting is:

allow (list) group="Online Certificate Status Manager Agents"

Table D.60. certServer.ocsp.cas ACL Summary

Administration Guide

486

Operations Description Allow/Deny Access Targeted
Users/Groups

list Lists all of the
Certificate Managers
which publish CRLs to
the OCSP responder.

Allow Agents

D.5.5. certServer.ocsp.certificate

Controls who can validate the status of a certificate. The default setting is:

allow (validate) group="Online Certificate Status Manager Agents"

Table D.61. certServer.ocsp.certificate ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

validate Verifies the status of a
specified certificate.

Allow OCSP Agents

D.5.6. certServer.ocsp.configuration

Controls who can access, view, or modify the configuration for the Certificate Manager's OCSP services.
The default configuration is:

allow (read) group="Administrators" || group="Online Certificate Status Manager Agents" ||
group="Auditors";allow (modify) group="Administrators"

Table D.62. certServer.ocsp.configuration ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View OCSP plug-in
information, OCSP
configuration, and
OCSP stores
configuration. List
OCSP stores
configuration.

Allow
Administrators

Online Certificate
Status Manager
Agents

Auditors

modify Modify the OCSP
configuration, OCSP
stores configuration,
and default OCSP store.

Allow Administrators

APPENDIX D. ACL REFERENCE

487

D.5.7. certServer.ocsp.crl

Controls access to read or update CRLs through the agent services interface. The default setting is:

allow (add) group="Online Certificate Status Manager Agents" || group="Trusted Managers"

Table D.63. certServer.ocsp.crl ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

add Add new CRLs to those
managed by the OCSP
responder.

Allow
OCSP Agents

Trusted Managers

D.5.8. certServer.ocsp.group

Controls access to the internal database for adding users and groups for the Online Certificate Status
Manager instance.

allow (modify,read) group="Administrators"

Table D.64. certServer.ocsp.group ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Create, edit or delete
user and group entries
for the instance.

Allow Administrators

read View user and group
entries for the instance.

Allow Administrators

D.5.9. certServer.ocsp.info

Controls who can read information about the OCSP responder.

allow (read) group="Online Certificate Status Manager Agents"

Table D.65. certServer.ocsp.info ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

read View OCSP responder
information.

Allow OCSP Agents

Administration Guide

488

D.6. TOKEN KEY SERVICE-SPECIFIC ACLS

This section covers the default access control configuration attributes which are set specifically for the
Token Key Service (TKS). The TKS ACL configuration also includes all of the common ACLs listed in
Section D.2, “Common ACLs” .

There are access control rules set for the TKS's administrative console and for access by other
subsystems to the TKS.

D.6.1. certServer.tks.encrypteddata

Controls who can encrypt data.

allow(execute) group="Token Key Service Manager Agents"

Table D.66. certServer.tks.encrypteddata ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

Execute Encrypted data stored in
the TKS.

Allow TKS Agents

D.6.2. certServer.tks.group

Controls access to the internal database for adding users and groups for the TKS instance.

allow (modify,read) group="Administrators"

Table D.67. certServer.tks.group ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Create, edit, or delete
user and group entries
for the instance.

Allow Administrators

read View user and group
entries for the instance.

Allow Administrators

D.6.3. certServer.tks.importTransportCert

Controls who can import the transport certificate used by the TKS to deliver keys.

allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" ||
group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" ||
group="Enterprise TPS Administrators"

Table D.68. certServer.tks.importTransportCert ACL Summary

APPENDIX D. ACL REFERENCE

489

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Update the transport
certificate.

Allow Enterprise
Administrators

read Import the transport
certificate.

Allow Enterprise
Administrators

D.6.4. certServer.tks.keysetdata

Controls who can view information about key sets derived and stored by the TKS.

allow (execute) group="Token Key Service Manager Agents"

Table D.69. certServer.tks.keysetdata ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

Execute Create diversified key
set data.

Allow TKS Agents

D.6.5. certServer.tks.registerUser

Defines which group or user can create an agent user for the instance. The default configuration is:

allow (modify,read) group="Enterprise CA Administrators" || group="Enterprise KRA Administrators" ||
group="Enterprise OCSP Administrators" || group="Enterprise TKS Administrators" ||
group="Enterprise TPS Administrators"

Table D.70. certServer.tks.registerUser ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

modify Register a new agent. Allow Enterprise
Administrators

read Read existing agent
information.

Allow Enterprise
Administrators

D.6.6. certServer.tks.sessionkey

Controls who can create the session keys used by the TKS instance to connections to the TPS.

allow (execute) group="Token Key Service Manager Agents"

Table D.71. certServer.tks.sessionkey ACL Summary

Administration Guide

490

Operations Description Allow/Deny Access Targeted
Users/Groups

Execute Create session keys
generated by the TKS.

Allow TKS Agents

D.6.7. certServer.tks.randomdata

Controls who can create random data.

allow (execute) group="Token Key Service Manager Agents"

Table D.72. certServer.tks.randomdata ACL Summary

Operations Description Allow/Deny Access Targeted
Users/Groups

Execute Generate random data. Allow TKS Agents

APPENDIX D. ACL REFERENCE

491

APPENDIX E. AUDIT EVENTS
This Appendix provides individual audit events and their parameter description and format. Every audit
event in the log is accompanied by the following information:

The Java identifier of the thread. For example:

0.localhost-startStop-1

The time stamp the event occurred at. For example:

[21/Jan/2019:17:53:00 IST]

The log source (14 is SIGNED_AUDIT):

[14]

The current log level (6 is Security-related events. See the Log Levels (Message Categories)
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide . For
example:

[6]

The information about the log event (which is log event specific; see Section E.1, “Audit Event
Descriptions” for information about each field in a particular log event). For example:

[AuditEvent=AUDIT_LOG_STARTUP][SubjectID=$System$][Outcome=Success] audit
function startup

E.1. AUDIT EVENT DESCRIPTIONS

The following lists the audit events provided in Certificate System:

 ####################### SIGNED AUDIT EVENTS #############################
 # Common fields:
 # - Outcome: "Success" or "Failure"
 # - SubjectID: The UID of the user responsible for the operation
 # "$System$" or "SYSTEM" if system-initiated operation (e.g. log signing).
 #
 ###
 # Required Audit Events
 #
 # Event: ACCESS_SESSION_ESTABLISH with [Outcome=Failure]
 # Description: This event is used when access session failed to establish.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - ClientIP: Client IP address.
 # - ServerIP: Server IP address.
 # - SubjectID: Client certificate subject DN.
 # - Outcome: Failure

Administration Guide

492

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuring_logs#Log_Levels_Message_Categories

 # - Info: Failure reason.
 #
 LOGGING_SIGNED_AUDIT_ACCESS_SESSION_ESTABLISH_FAILURE=\
 <type=ACCESS_SESSION_ESTABLISH>:[AuditEvent=ACCESS_SESSION_ESTABLISH]{0}
access session establish failure
 #
 # Event: ACCESS_SESSION_ESTABLISH with [Outcome=Success]
 # Description: This event is used when access session was established successfully.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - ClientIP: Client IP address.
 # - ServerIP: Server IP address.
 # - SubjectID: Client certificate subject DN.
 # - Outcome: Success
 #
 LOGGING_SIGNED_AUDIT_ACCESS_SESSION_ESTABLISH_SUCCESS=\
 <type=ACCESS_SESSION_ESTABLISH>:[AuditEvent=ACCESS_SESSION_ESTABLISH]{0}
access session establish success
 #
 # Event: ACCESS_SESSION_TERMINATED
 # Description: This event is used when access session was terminated.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - ClientIP: Client IP address.
 # - ServerIP: Server IP address.
 # - SubjectID: Client certificate subject DN.
 # - Info: The TLS Alert received from NSS
 # - Outcome: Success
 # - Info: The TLS Alert received from NSS
 #
 LOGGING_SIGNED_AUDIT_ACCESS_SESSION_TERMINATED=\
 <type=ACCESS_SESSION_TERMINATED>:[AuditEvent=ACCESS_SESSION_TERMINATED]{0}
access session terminated
 #
 # Event: AUDIT_LOG_SIGNING
 # Description: This event is used when a signature on the audit log is generated (same as "flush"
time).
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: Predefined to be "$System$" because this operation
 # associates with no user.
 # - Outcome: Success
 # - sig: The base-64 encoded signature of the buffer just flushed.
 #
 LOGGING_SIGNED_AUDIT_AUDIT_LOG_SIGNING_3=[AuditEvent=AUDIT_LOG_SIGNING]
[SubjectID={0}][Outcome={1}] signature of audit buffer just flushed: sig: {2}
 #
 # Event: AUDIT_LOG_STARTUP
 # Description: This event is used at audit function startup.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $System$

APPENDIX E. AUDIT EVENTS

493

 # - Outcome:
 #
 LOGGING_SIGNED_AUDIT_AUDIT_LOG_STARTUP_2=<type=AUDIT_LOG_STARTUP>:
[AuditEvent=AUDIT_LOG_STARTUP][SubjectID={0}][Outcome={1}] audit function startup
 #
 # Event: AUTH with [Outcome=Failure]
 # Description: This event is used when authentication fails.
 # In case of TLS-client auth, only webserver env can pick up the TLS violation.
 # CS authMgr can pick up certificate mismatch, so this event is used.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID:
 # - Outcome: Failure
 # (obviously, if authentication failed, you won't have a valid SubjectID, so
 # in this case, SubjectID should be $Unidentified$)
 # - AuthMgr: The authentication manager instance name that did
 # this authentication.
 # - AttemptedCred: The credential attempted and failed.
 #
 LOGGING_SIGNED_AUDIT_AUTH_FAIL=<type=AUTH>:[AuditEvent=AUTH]{0} authentication
failure
 #
 # Event: AUTH with [Outcome=Success]
 # Description: This event is used when authentication succeeded.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of user who has been authenticated
 # - Outcome: Success
 # - AuthMgr: The authentication manager instance name that did
 # this authentication.
 #
 LOGGING_SIGNED_AUDIT_AUTH_SUCCESS=<type=AUTH>:[AuditEvent=AUTH]{0}
authentication success
 #
 # Event: AUTHZ with [Outcome=Failure]
 # Description: This event is used when authorization has failed.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of user who has failed to be authorized for an action
 # - Outcome: Failure
 # - aclResource: The ACL resource ID as defined in ACL resource list.
 # - Op: One of the operations as defined with the ACL statement
 # e.g. "read" for an ACL statement containing "(read,write)".
 # - Info:
 #
 LOGGING_SIGNED_AUDIT_AUTHZ_FAIL=<type=AUTHZ>:[AuditEvent=AUTHZ]{0} authorization
failure
 #
 # Event: AUTHZ with [Outcome=Success]
 # Description: This event is used when authorization is successful.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:

Administration Guide

494

 # - SubjectID: id of user who has been authorized for an action
 # - Outcome: Success
 # - aclResource: The ACL resource ID as defined in ACL resource list.
 # - Op: One of the operations as defined with the ACL statement
 # e.g. "read" for an ACL statement containing "(read,write)".
 #
 LOGGING_SIGNED_AUDIT_AUTHZ_SUCCESS=<type=AUTHZ>:[AuditEvent=AUTHZ]{0}
authorization success
 #
 # Event: CERT_PROFILE_APPROVAL
 # Description: This event is used when an agent approves/disapproves a certificate profile set by
the
 # administrator for automatic approval.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of the CA agent who approved the certificate enrollment profile
 # - Outcome:
 # - ProfileID: One of the profiles defined by the administrator
 # and to be approved by an agent.
 # - Op: "approve" or "disapprove".
 #
 LOGGING_SIGNED_AUDIT_CERT_PROFILE_APPROVAL_4=
<type=CERT_PROFILE_APPROVAL>:[AuditEvent=CERT_PROFILE_APPROVAL][SubjectID={0}]
[Outcome={1}][ProfileID={2}][Op={3}] certificate profile approval
 #
 # Event: CERT_REQUEST_PROCESSED
 # Description: This event is used when certificate request has just been through the approval
process.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: The UID of the agent who approves, rejects, or cancels
 # the certificate request.
 # - Outcome:
 # - ReqID: The request ID.
 # - InfoName: "certificate" (in case of approval), "rejectReason"
 # (in case of reject), or "cancelReason" (in case of cancel)
 # - InfoValue: The certificate (in case of success), a reject reason in
 # text, or a cancel reason in text.
 # - CertSerialNum:
 #
 LOGGING_SIGNED_AUDIT_CERT_REQUEST_PROCESSED=
<type=CERT_REQUEST_PROCESSED>:[AuditEvent=CERT_REQUEST_PROCESSED]{0}
certificate request processed
 #
 # Event: CERT_SIGNING_INFO
 # Description: This event indicates which key is used to sign certificates.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $System$
 # - Outcome: Success
 # - SKI: Subject Key Identifier of the certificate signing certificate
 # - AuthorityID: (applicable only to lightweight CA)
 #

APPENDIX E. AUDIT EVENTS

495

 LOGGING_SIGNED_AUDIT_CERT_SIGNING_INFO=<type=CERT_SIGNING_INFO>:
[AuditEvent=CERT_SIGNING_INFO]{0} certificate signing info
 #
 # Event: CERT_STATUS_CHANGE_REQUEST
 # Description: This event is used when a certificate status change request (e.g. revocation)
 # is made (before approval process).
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of uer who performed the action
 # - Outcome:
 # - ReqID: The request ID.
 # - CertSerialNum: The serial number (in hex) of the certificate to be revoked.
 # - RequestType: "revoke", "on-hold", "off-hold"
 #
 LOGGING_SIGNED_AUDIT_CERT_STATUS_CHANGE_REQUEST=
<type=CERT_STATUS_CHANGE_REQUEST>:[AuditEvent=CERT_STATUS_CHANGE_REQUEST]
{0} certificate revocation/unrevocation request made
 #
 # Event: CERT_STATUS_CHANGE_REQUEST_PROCESSED
 # Description: This event is used when certificate status is changed (revoked, expired, on-hold,
 # off-hold).
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: The UID of the agent that processed the request.
 # - Outcome:
 # - ReqID: The request ID.
 # - RequestType: "revoke", "on-hold", "off-hold"
 # - Approval: "complete", "rejected", or "canceled"
 # (note that "complete" means "approved")
 # - CertSerialNum: The serial number (in hex).
 # - RevokeReasonNum: One of the following number:
 # reason number reason
 # --------------------------------------
 # 0 Unspecified
 # 1 Key compromised
 # 2 CA key compromised (should not be used)
 # 3 Affiliation changed
 # 4 Certificate superceded
 # 5 Cessation of operation
 # 6 Certificate is on-hold
 # - Info:
 #
 LOGGING_SIGNED_AUDIT_CERT_STATUS_CHANGE_REQUEST_PROCESSED=
<type=CERT_STATUS_CHANGE_REQUEST_PROCESSED>:
[AuditEvent=CERT_STATUS_CHANGE_REQUEST_PROCESSED]{0} certificate status change
request processed
 #
 # Event: CLIENT_ACCESS_SESSION_ESTABLISH with [Outcome=Failure]
 # Description: This event is when access session failed to establish when Certificate System acts
as client.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - ClientHost: Client hostname.

Administration Guide

496

 # - ServerHost: Server hostname.
 # - ServerPort: Server port.
 # - SubjectID: SYSTEM
 # - Outcome: Failure
 # - Info:
 #
 LOGGING_SIGNED_AUDIT_CLIENT_ACCESS_SESSION_ESTABLISH_FAILURE=\
 <type=CLIENT_ACCESS_SESSION_ESTABLISH>:
[AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH]{0} access session failed to establish when
Certificate System acts as client
 #
 # Event: CLIENT_ACCESS_SESSION_ESTABLISH with [Outcome=Success]
 # Description: This event is used when access session was established successfully when
 # Certificate System acts as client.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - ClientHost: Client hostname.
 # - ServerHost: Server hostname.
 # - ServerPort: Server port.
 # - SubjectID: SYSTEM
 # - Outcome: Success
 #
 LOGGING_SIGNED_AUDIT_CLIENT_ACCESS_SESSION_ESTABLISH_SUCCESS=\
 <type=CLIENT_ACCESS_SESSION_ESTABLISH>:
[AuditEvent=CLIENT_ACCESS_SESSION_ESTABLISH]{0} access session establish successfully
when Certificate System acts as client
 #
 # Event: CLIENT_ACCESS_SESSION_TERMINATED
 # Description: This event is used when access session was terminated when Certificate System
acts as client.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - ClientHost: Client hostname.
 # - ServerHost: Server hostname.
 # - ServerPort: Server port.
 # - SubjectID: SYSTEM
 # - Outcome: Success
 # - Info: The TLS Alert received from NSS
 #
 LOGGING_SIGNED_AUDIT_CLIENT_ACCESS_SESSION_TERMINATED=\
 <type=CLIENT_ACCESS_SESSION_TERMINATED>:
[AuditEvent=CLIENT_ACCESS_SESSION_TERMINATED]{0} access session terminated when
Certificate System acts as client
 #
 # Event: CMC_REQUEST_RECEIVED
 # Description: This event is used when a CMC request is received.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: The UID of user that triggered this event.
 # If CMC requests is signed by an agent, SubjectID should
 # be that of the agent.
 # In case of an unsigned request, it would bear $Unidentified$.
 # - Outcome:

APPENDIX E. AUDIT EVENTS

497

 # - CMCRequest: Base64 encoding of the CMC request received
 #
 LOGGING_SIGNED_AUDIT_CMC_REQUEST_RECEIVED_3=
<type=CMC_REQUEST_RECEIVED>:[AuditEvent=CMC_REQUEST_RECEIVED][SubjectID={0}]
[Outcome={1}][CMCRequest={2}] CMC request received
 #
 # Event: CMC_RESPONSE_SENT
 # Description: This event is used when a CMC response is sent.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: The UID of user that triggered this event.
 # - Outcome:
 # - CMCResponse: Base64 encoding of the CMC response sent
 #
 LOGGING_SIGNED_AUDIT_CMC_RESPONSE_SENT_3=<type=CMC_RESPONSE_SENT>:
[AuditEvent=CMC_RESPONSE_SENT][SubjectID={0}][Outcome={1}][CMCResponse={2}] CMC
response sent
 #
 # Event: CMC_SIGNED_REQUEST_SIG_VERIFY
 # Description: This event is used when agent signed CMC certificate requests or revocation
requests
 # are submitted and signature is verified.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: the user who signed the CMC request (success case)
 # - Outcome:
 # - ReqType: The request type (enrollment, or revocation).
 # - CertSubject: The certificate subject name of the certificate request.
 # - SignerInfo: A unique String representation for the signer.
 #
 LOGGING_SIGNED_AUDIT_CMC_SIGNED_REQUEST_SIG_VERIFY=
<type=CMC_SIGNED_REQUEST_SIG_VERIFY>:
[AuditEvent=CMC_SIGNED_REQUEST_SIG_VERIFY]{0} agent signed CMC request signature
verification
 #
 # Event: CMC_USER_SIGNED_REQUEST_SIG_VERIFY
 # Description: This event is used when CMC (user-signed or self-signed) certificate requests or
revocation requests
 # are submitted and signature is verified.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: the user who signed the CMC request (success case)
 # - Outcome:
 # - ReqType: The request type (enrollment, or revocation).
 # - CertSubject: The certificate subject name of the certificate request.
 # - CMCSignerInfo: A unique String representation for the CMC request signer.
 # - info:
 #
 LOGGING_SIGNED_AUDIT_CMC_USER_SIGNED_REQUEST_SIG_VERIFY_FAILURE=
<type=CMC_USER_SIGNED_REQUEST_SIG_VERIFY>:
[AuditEvent=CMC_USER_SIGNED_REQUEST_SIG_VERIFY]{0} User signed CMC request
signature verification failure
 LOGGING_SIGNED_AUDIT_CMC_USER_SIGNED_REQUEST_SIG_VERIFY_SUCCESS=

Administration Guide

498

<type=CMC_USER_SIGNED_REQUEST_SIG_VERIFY>:
[AuditEvent=CMC_USER_SIGNED_REQUEST_SIG_VERIFY]{0} User signed CMC request
signature verification success
 #
 # Event: CONFIG_ACL
 # Description: This event is used when configuring ACL information.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_ACL_3=<type=CONFIG_ACL>:
[AuditEvent=CONFIG_ACL][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] ACL
configuration parameter(s) change
 #
 # Event: CONFIG_AUTH
 # Description: This event is used when configuring authentication.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 # --- Password MUST NOT be logged ---
 #
 LOGGING_SIGNED_AUDIT_CONFIG_AUTH_3=<type=CONFIG_AUTH>:
[AuditEvent=CONFIG_AUTH][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] authentication
configuration parameter(s) change
 #
 # Event: CONFIG_CERT_PROFILE
 # Description: This event is used when configuring certificate profile
 # (general settings and certificate profile).
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_CERT_PROFILE_3=<type=CONFIG_CERT_PROFILE>:
[AuditEvent=CONFIG_CERT_PROFILE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}]
certificate profile configuration parameter(s) change
 #
 # Event: CONFIG_CRL_PROFILE
 # Description: This event is used when configuring CRL profile
 # (extensions, frequency, CRL format).
 # Applicable subsystems: CA
 # Enabled by default: Yes

APPENDIX E. AUDIT EVENTS

499

 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_CRL_PROFILE_3=<type=CONFIG_CRL_PROFILE>:
[AuditEvent=CONFIG_CRL_PROFILE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] CRL
profile configuration parameter(s) change
 #
 # Event: CONFIG_DRM
 # Description: This event is used when configuring KRA.
 # This includes key recovery scheme, change of any secret component.
 # Applicable subsystems: KRA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 # --- secret component (password) MUST NOT be logged ---
 #
 LOGGING_SIGNED_AUDIT_CONFIG_DRM_3=<type=CONFIG_DRM>:
[AuditEvent=CONFIG_DRM][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}] DRM
configuration parameter(s) change
 #
 # Event: CONFIG_OCSP_PROFILE
 # Description: This event is used when configuring OCSP profile
 # (everything under Online Certificate Status Manager).
 # Applicable subsystems: OCSP
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_OCSP_PROFILE_3=<type=CONFIG_OCSP_PROFILE>:
[AuditEvent=CONFIG_OCSP_PROFILE][SubjectID={0}][Outcome={1}][ParamNameValPairs={2}]
OCSP profile configuration parameter(s) change
 #
 # Event: CONFIG_ROLE
 # Description: This event is used when configuring role information.
 # This includes anything under users/groups, add/remove/edit a role, etc.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #

Administration Guide

500

 LOGGING_SIGNED_AUDIT_CONFIG_ROLE=<type=CONFIG_ROLE>:
[AuditEvent=CONFIG_ROLE]{0} role configuration parameter(s) change
 #
 # Event: CONFIG_SERIAL_NUMBER
 # Description: This event is used when configuring serial number ranges
 # (when requesting a serial number range when cloning, for example).
 # Applicable subsystems: CA, KRA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_SERIAL_NUMBER_1=
<type=CONFIG_SERIAL_NUMBER>:[AuditEvent=CONFIG_SERIAL_NUMBER][SubjectID={0}]
[Outcome={1}][ParamNameValPairs={2}] serial number range update
 #
 # Event: CONFIG_SIGNED_AUDIT
 # Description: This event is used when configuring signedAudit.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id of administrator who performed the action
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_SIGNED_AUDIT=<type=CONFIG_SIGNED_AUDIT>:
[AuditEvent=CONFIG_SIGNED_AUDIT]{0} signed audit configuration parameter(s) change
 #
 # Event: CONFIG_TRUSTED_PUBLIC_KEY
 # Description: This event is used when:
 # 1. "Manage Certificate" is used to edit the trustness of certificates
 # and deletion of certificates
 # 2. "Certificate Setup Wizard" is used to import CA certificates into the
 # certificate database (Although CrossCertificatePairs are stored
 # within internaldb, audit them as well)
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: ID of administrator who performed this configuration
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_CONFIG_TRUSTED_PUBLIC_KEY=
<type=CONFIG_TRUSTED_PUBLIC_KEY>:[AuditEvent=CONFIG_TRUSTED_PUBLIC_KEY]{0}
certificate database configuration
 #
 # Event: CRL_SIGNING_INFO
 # Description: This event indicates which key is used to sign CRLs.
 # Applicable subsystems: CA

APPENDIX E. AUDIT EVENTS

501

 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $System$
 # - Outcome:
 # - SKI: Subject Key Identifier of the CRL signing certificate
 #
 LOGGING_SIGNED_AUDIT_CRL_SIGNING_INFO=<type=CRL_SIGNING_INFO>:
[AuditEvent=CRL_SIGNING_INFO]{0} CRL signing info
 #
 # Event: DELTA_CRL_GENERATION
 # Description: This event is used when delta CRL generation is complete.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $Unidentified$
 # - Outcome: "Success" when delta CRL is generated successfully, "Failure" otherwise.
 # - CRLnum: The CRL number that identifies the CRL
 # - Info:
 # - FailureReason:
 #
 LOGGING_SIGNED_AUDIT_DELTA_CRL_GENERATION=<type=DELTA_CRL_GENERATION>:
[AuditEvent=DELTA_CRL_GENERATION]{0} Delta CRL generation
 #
 # Event: FULL_CRL_GENERATION
 # Description: This event is used when full CRL generation is complete.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $System$
 # - Outcome: "Success" when full CRL is generated successfully, "Failure" otherwise.
 # - CRLnum: The CRL number that identifies the CRL
 # - Info:
 # - FailureReason:
 #
 LOGGING_SIGNED_AUDIT_FULL_CRL_GENERATION=<type=FULL_CRL_GENERATION>:
[AuditEvent=FULL_CRL_GENERATION]{0} Full CRL generation
 #
 # Event: PROFILE_CERT_REQUEST
 # Description: This event is used when a profile certificate request is made (before approval
process).
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: The UID of user that triggered this event.
 # If CMC enrollment requests signed by an agent, SubjectID should
 # be that of the agent.
 # - Outcome:
 # - CertSubject: The certificate subject name of the certificate request.
 # - ReqID: The certificate request ID.
 # - ProfileID: One of the certificate profiles defined by the
 # administrator.
 #
 LOGGING_SIGNED_AUDIT_PROFILE_CERT_REQUEST_5=
<type=PROFILE_CERT_REQUEST>:[AuditEvent=PROFILE_CERT_REQUEST][SubjectID={0}]
[Outcome={1}][ReqID={2}][ProfileID={3}][CertSubject={4}] certificate request made with certificate
profiles

Administration Guide

502

 #
 # Event: PROOF_OF_POSSESSION
 # Description: This event is used for proof of possession during certificate enrollment processing.
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: id that represents the authenticated user
 # - Outcome:
 # - Info: some information on when/how it occurred
 #
 LOGGING_SIGNED_AUDIT_PROOF_OF_POSSESSION_3=
<type=PROOF_OF_POSSESSION>:[AuditEvent=PROOF_OF_POSSESSION][SubjectID={0}]
[Outcome={1}][Info={2}] proof of possession
 #
 # Event: OCSP_ADD_CA_REQUEST_PROCESSED
 # Description: This event is used when an add CA request to the OCSP Responder is processed.
 # Applicable subsystems: OCSP
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: OCSP administrator user id
 # - Outcome: "Success" when CA is added successfully, "Failure" otherwise.
 # - CASubjectDN: The subject DN of the leaf CA cert in the chain.
 #
 LOGGING_SIGNED_AUDIT_OCSP_ADD_CA_REQUEST_PROCESSED=
<type=OCSP_ADD_CA_REQUEST_PROCESSED>:
[AuditEvent=OCSP_ADD_CA_REQUEST_PROCESSED]{0} Add CA for OCSP Responder
 #
 # Event: OCSP_GENERATION
 # Description: This event is used when an OCSP response generated is complete.
 # Applicable subsystems: CA, OCSP
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $NonRoleUser$
 # - Outcome: "Success" when OCSP response is generated successfully, "Failure" otherwise.
 # - FailureReason:
 #
 LOGGING_SIGNED_AUDIT_OCSP_GENERATION=<type=OCSP_GENERATION>:
[AuditEvent=OCSP_GENERATION]{0} OCSP response generation
 #
 # Event: OCSP_REMOVE_CA_REQUEST_PROCESSED with [Outcome=Failure]
 # Description: This event is used when a remove CA request to the OCSP Responder is processed
and failed.
 # Applicable subsystems: OCSP
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: OCSP administrator user id
 # - Outcome: Failure
 # - CASubjectDN: The subject DN of the leaf CA certificate in the chain.
 #
 LOGGING_SIGNED_AUDIT_OCSP_REMOVE_CA_REQUEST_PROCESSED_FAILURE=
<type=OCSP_REMOVE_CA_REQUEST_PROCESSED>:
[AuditEvent=OCSP_REMOVE_CA_REQUEST_PROCESSED]{0} Remove CA for OCSP Responder
has failed
 #
 # Event: OCSP_REMOVE_CA_REQUEST_PROCESSED with [Outcome=Success]
 # Description: This event is used when a remove CA request to the OCSP Responder is processed

APPENDIX E. AUDIT EVENTS

503

successfully.
 # Applicable subsystems: OCSP
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: OCSP administrator user id
 # - Outcome: "Success" when CA is removed successfully, "Failure" otherwise.
 # - CASubjectDN: The subject DN of the leaf CA certificate in the chain.
 #
 LOGGING_SIGNED_AUDIT_OCSP_REMOVE_CA_REQUEST_PROCESSED_SUCCESS=
<type=OCSP_REMOVE_CA_REQUEST_PROCESSED>:
[AuditEvent=OCSP_REMOVE_CA_REQUEST_PROCESSED]{0} Remove CA for OCSP Responder
is successful
 #
 # Event: OCSP_SIGNING_INFO
 # Description: This event indicates which key is used to sign OCSP responses.
 # Applicable subsystems: CA, OCSP
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $System$
 # - Outcome:
 # - SKI: Subject Key Identifier of the OCSP signing certificate
 # - AuthorityID: (applicable only to lightweight CA)
 #
 LOGGING_SIGNED_AUDIT_OCSP_SIGNING_INFO=<type=OCSP_SIGNING_INFO>:
[AuditEvent=OCSP_SIGNING_INFO]{0} OCSP signing info
 #
 # Event: ROLE_ASSUME
 # Description: This event is used when a user assumes a role.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID:
 # - Outcome:
 # - Role: One of the valid roles:
 # "Administrators", "Certificate Manager Agents", or "Auditors".
 # Note that customized role names can be used once configured.
 #
 LOGGING_SIGNED_AUDIT_ROLE_ASSUME=<type=ROLE_ASSUME>:
[AuditEvent=ROLE_ASSUME]{0} assume privileged role
 #
 # Event: SECURITY_DOMAIN_UPDATE
 # Description: This event is used when updating contents of security domain
 # (add/remove a subsystem).
 # Applicable subsystems: CA
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: CA administrator user ID
 # - Outcome:
 # - ParamNameValPairs: A name-value pair
 # (where name and value are separated by the delimiter ;;)
 # separated by + (if more than one name-value pair) of config params changed.
 #
 LOGGING_SIGNED_AUDIT_SECURITY_DOMAIN_UPDATE_1=
<type=SECURITY_DOMAIN_UPDATE>:[AuditEvent=SECURITY_DOMAIN_UPDATE][SubjectID=
{0}][Outcome={1}][ParamNameValPairs={2}] security domain update
 #

Administration Guide

504

GLOSSARY

A

access control

The process of controlling what particular users are allowed to do. For example, access control to
servers is typically based on an identity, established by a password or a certificate, and on rules
regarding what that entity can do. See also access control list (ACL) .

access control instructions (ACI)

An access rule that specifies how subjects requesting access are to be identified or what rights are
allowed or denied for a particular subject. See access control list (ACL) .

access control list (ACL)

A collection of access control entries that define a hierarchy of access rules to be evaluated when a
server receives a request for access to a particular resource. See access control instructions (ACI) .

administrator

The person who installs and configures one or more Certificate System managers and sets up
privileged users, or agents, for them. See also agent.

Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), like its predecessor Data Encryption Standard (DES), is a
FIPS-approved symmetric-key encryption standard. AES was adopted by the US government in
2002. It defines three block ciphers, AES-128, AES-192 and AES-256. The National Institute of
Standards and Technology (NIST) defined the AES standard in U.S. FIPS PUB 197. For more
information, see http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

agent

A user who belongs to a group authorized to manage agent services for a Certificate System
manager. See also Certificate Manager agent , Key Recovery Authority agent .

agent services

1. Services that can be administered by a Certificate System agent through HTML pages served by
the Certificate System subsystem for which the agent has been assigned the necessary privileges.

2. The HTML pages for administering such services.

 # Event: SELFTESTS_EXECUTION
 # Description: This event is used when self tests are run.
 # Applicable subsystems: CA, KRA, OCSP, TKS, TPS
 # Enabled by default: Yes
 # Fields:
 # - SubjectID: $System$
 # - Outcome:
 #
 LOGGING_SIGNED_AUDIT_SELFTESTS_EXECUTION_2=<type=SELFTESTS_EXECUTION>:
[AuditEvent=SELFTESTS_EXECUTION][SubjectID={0}][Outcome={1}] self tests execution (see
selftests.log for details)

GLOSSARY

505

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

agent-approved enrollment

An enrollment that requires an agent to approve the request before the certificate is issued.

APDU

Application protocol data unit. A communication unit (analogous to a byte) that is used in
communications between a smart card and a smart card reader.

attribute value assertion (AVA)

An assertion of the form attribute = value, where attribute is a tag, such as o (organization) or uid
(user ID), and value is a value such as "Red Hat, Inc." or a login name. AVAs are used to form the
distinguished name (DN) that identifies the subject of a certificate, called the subject name of the
certificate.

audit log

A log that records various system events. This log can be signed, providing proof that it was not
tampered with, and can only be read by an auditor user.

auditor

A privileged user who can view the signed audit logs.

authentication

Confident identification; assurance that a party to some computerized transaction is not an impostor.
Authentication typically involves the use of a password, certificate, PIN, or other information to
validate identity over a computer network. See also password-based authentication, certificate-
based authentication, client authentication, server authentication.

authentication module

A set of rules (implemented as a Java™ class) for authenticating an end entity, agent, administrator,
or any other entity that needs to interact with a Certificate System subsystem. In the case of typical
end-user enrollment, after the user has supplied the information requested by the enrollment form,
the enrollment servlet uses an authentication module associated with that form to validate the
information and authenticate the user's identity. See servlet.

authorization

Permission to access a resource controlled by a server. Authorization typically takes place after the
ACLs associated with a resource have been evaluated by a server. See access control list (ACL) .

automated enrollment

A way of configuring a Certificate System subsystem that allows automatic authentication for end-
entity enrollment, without human intervention. With this form of authentication, a certificate request
that completes authentication module processing successfully is automatically approved for profile
processing and certificate issuance.

B

bind DN

A user ID, in the form of a distinguished name (DN), used with a password to authenticate to Red Hat
Directory Server.

Administration Guide

506

C

CA certificate

A certificate that identifies a certificate authority. See also certificate authority (CA), subordinate
CA, root CA.

CA hierarchy

A hierarchy of CAs in which a root CA delegates the authority to issue certificates to subordinate
CAs. Subordinate CAs can also expand the hierarchy by delegating issuing status to other CAs. See
also certificate authority (CA), subordinate CA, root CA.

CA server key

The SSL server key of the server providing a CA service.

CA signing key

The private key that corresponds to the public key in the CA certificate. A CA uses its signing key to
sign certificates and CRLs.

certificate

Digital data, formatted according to the X.509 standard, that specifies the name of an individual,
company, or other entity (the subject name of the certificate) and certifies that a public key, which is
also included in the certificate, belongs to that entity. A certificate is issued and digitally signed by a
certificate authority (CA). A certificate's validity can be verified by checking the CA's digital signature
through public-key cryptography techniques. To be trusted within a public-key infrastructure (PKI), a
certificate must be issued and signed by a CA that is trusted by other entities enrolled in the PKI.

certificate authority (CA)

A trusted entity that issues a certificate after verifying the identity of the person or entity the
certificate is intended to identify. A CA also renews and revokes certificates and generates CRLs.
The entity named in the issuer field of a certificate is always a CA. Certificate authorities can be
independent third parties or a person or organization using certificate-issuing server software, such
as Red Hat Certificate System.

certificate chain

A hierarchical series of certificates signed by successive certificate authorities. A CA certificate
identifies a certificate authority (CA) and is used to sign certificates issued by that authority. A CA
certificate can in turn be signed by the CA certificate of a parent CA, and so on up to a root CA.
Certificate System allows any end entity to retrieve all the certificates in a certificate chain.

certificate extensions

An X.509 v3 certificate contains an extensions field that permits any number of additional fields to
be added to the certificate. Certificate extensions provide a way of adding information such as
alternative subject names and usage restrictions to certificates. A number of standard extensions
have been defined by the PKIX working group.

certificate fingerprint

A one-way hash associated with a certificate. The number is not part of the certificate itself, but is
produced by applying a hash function to the contents of the certificate. If the contents of the
certificate changes, even by a single character, the same function produces a different number.
Certificate fingerprints can therefore be used to verify that certificates have not been tampered
with.

GLOSSARY

507

Certificate Management Message Formats (CMMF)

Message formats used to convey certificate requests and revocation requests from end entities to a
Certificate Manager and to send a variety of information to end entities. A proposed standard from
the Internet Engineering Task Force (IETF) PKIX working group. CMMF is subsumed by another
proposed standard, Certificate Management Messages over Cryptographic Message Syntax (CMC) .
For detailed information, see https://tools.ietf.org/html/draft-ietf-pkix-cmmf-02.

Certificate Management Messages over Cryptographic Message Syntax (CMC)

Message format used to convey a request for a certificate to a Certificate Manager. A proposed
standard from the Internet Engineering Task Force (IETF) PKIX working group. For detailed
information, see https://tools.ietf.org/html/draft-ietf-pkix-cmc-02.

Certificate Manager

An independent Certificate System subsystem that acts as a certificate authority. A Certificate
Manager instance issues, renews, and revokes certificates, which it can publish along with CRLs to an
LDAP directory. It accepts requests from end entities. See certificate authority (CA).

Certificate Manager agent

A user who belongs to a group authorized to manage agent services for a Certificate Manager. These
services include the ability to access and modify (approve and reject) certificate requests and issue
certificates.

certificate profile

A set of configuration settings that defines a certain type of enrollment. The certificate profile sets
policies for a particular type of enrollment along with an authentication method in a certificate
profile.

Certificate Request Message Format (CRMF)

Format used for messages related to management of X.509 certificates. This format is a subset of
CMMF. See also Certificate Management Message Formats (CMMF) . For detailed information, see
https://tools.ietf.org/html/rfc2511.

certificate revocation list (CRL)

As defined by the X.509 standard, a list of revoked certificates by serial number, generated and
signed by a certificate authority (CA).

Certificate System

See Red Hat Certificate System, Cryptographic Message Syntax (CS) .

Certificate System console

A console that can be opened for any single Certificate System instance. A Certificate System
console allows the Certificate System administrator to control configuration settings for the
corresponding Certificate System instance.

Certificate System subsystem

One of the five Certificate System managers: Certificate Manager, Online Certificate Status
Manager, Key Recovery Authority, Token Key Service, or Token Processing System.

certificate-based authentication

Administration Guide

508

https://tools.ietf.org/html/draft-ietf-pkix-cmmf-02
https://tools.ietf.org/html/draft-ietf-pkix-cmc-02
https://tools.ietf.org/html/rfc2511

Authentication based on certificates and public-key cryptography. See also password-based
authentication.

chain of trust

See certificate chain.

chained CA

See linked CA.

cipher

See cryptographic algorithm.

client authentication

The process of identifying a client to a server, such as with a name and password or with a certificate
and some digitally signed data. See certificate-based authentication, password-based
authentication, server authentication.

client SSL certificate

A certificate used to identify a client to a server using the SSL protocol. See Secure Sockets Layer
(SSL).

CMC

See Certificate Management Messages over Cryptographic Message Syntax (CMC) .

CMC Enrollment

Features that allow either signed enrollment or signed revocation requests to be sent to a Certificate
Manager using an agent's signing certificate. These requests are then automatically processed by the
Certificate Manager.

CMMF

See Certificate Management Message Formats (CMMF) .

CRL

See certificate revocation list (CRL).

CRMF

See Certificate Request Message Format (CRMF) .

cross-certification

The exchange of certificates by two CAs in different certification hierarchies, or chains. Cross-
certification extends the chain of trust so that it encompasses both hierarchies. See also certificate
authority (CA).

cross-pair certificate

A certificate issued by one CA to another CA which is then stored by both CAs to form a circle of
trust. The two CAs issue certificates to each other, and then store both cross-pair certificates as a
certificate pair.

GLOSSARY

509

cryptographic algorithm

A set of rules or directions used to perform cryptographic operations such as encryption and
decryption.

Cryptographic Message Syntax (CS)

The syntax used to digitally sign, digest, authenticate, or encrypt arbitrary messages, such as CMMF.

cryptographic module

See PKCS #11 module .

cryptographic service provider (CSP)

A cryptographic module that performs cryptographic services, such as key generation, key storage,
and encryption, on behalf of software that uses a standard interface such as that defined by PKCS
#11 to request such services.

CSP

See cryptographic service provider (CSP) .

D

decryption

Unscrambling data that has been encrypted. See encryption.

delta CRL

A CRL containing a list of those certificates that have been revoked since the last full CRL was
issued.

digital ID

See certificate.

digital signature

To create a digital signature, the signing software first creates a one-way hash from the data to be
signed, such as a newly issued certificate. The one-way hash is then encrypted with the private key of
the signer. The resulting digital signature is unique for each piece of data signed. Even a single
comma added to a message changes the digital signature for that message. Successful decryption of
the digital signature with the signer's public key and comparison with another hash of the same data
provides tamper detection. Verification of the certificate chain for the certificate containing the
public key provides authentication of the signer. See also nonrepudiation, encryption.

distinguished name (DN)

A series of AVAs that identify the subject of a certificate. See attribute value assertion (AVA) .

distribution points

Used for CRLs to define a set of certificates. Each distribution point is defined by a set of certificates
that are issued. A CRL can be created for a particular distribution point.

dual key pair

Two public-private key pairs, four keys altogether, corresponding to two separate certificates. The

Administration Guide

510

private key of one pair is used for signing operations, and the public and private keys of the other
pair are used for encryption and decryption operations. Each pair corresponds to a separate
certificate. See also encryption key, public-key cryptography, signing key.

Key Recovery Authority

An optional, independent Certificate System subsystem that manages the long-term archival and
recovery of RSA encryption keys for end entities. A Certificate Manager can be configured to archive
end entities' encryption keys with a Key Recovery Authority before issuing new certificates. The Key
Recovery Authority is useful only if end entities are encrypting data, such as sensitive email, that the
organization may need to recover someday. It can be used only with end entities that support dual
key pairs: two separate key pairs, one for encryption and one for digital signatures.

Key Recovery Authority agent

A user who belongs to a group authorized to manage agent services for a Key Recovery Authority,
including managing the request queue and authorizing recovery operation using HTML-based
administration pages.

Key Recovery Authority recovery agent

One of the m of n people who own portions of the storage key for the Key Recovery Authority.

Key Recovery Authority storage key

Special key used by the Key Recovery Authority to encrypt the end entity's encryption key after it
has been decrypted with the Key Recovery Authority's private transport key. The storage key never
leaves the Key Recovery Authority.

Key Recovery Authority transport certificate

Certifies the public key used by an end entity to encrypt the entity's encryption key for transport to
the Key Recovery Authority. The Key Recovery Authority uses the private key corresponding to the
certified public key to decrypt the end entity's key before encrypting it with the storage key.

E

eavesdropping

Surreptitious interception of information sent over a network by an entity for which the information is
not intended.

Elliptic Curve Cryptography (ECC)

A cryptographic algorithm which uses elliptic curves to create additive logarithms for the
mathematical problems which are the basis of the cryptographic keys. ECC ciphers are more efficient
to use than RSA ciphers and, because of their intrinsic complexity, are stronger at smaller bits than
RSA ciphers.

encryption

Scrambling information in a way that disguises its meaning. See decryption.

encryption key

A private key used for encryption only. An encryption key and its equivalent public key, plus a signing
key and its equivalent public key, constitute a dual key pair.

end entity

GLOSSARY

511

In a public-key infrastructure (PKI), a person, router, server, or other entity that uses a certificate to
identify itself.

enrollment

The process of requesting and receiving an X.509 certificate for use in a public-key infrastructure
(PKI). Also known as registration.

extensions field

See certificate extensions.

F

Federal Bridge Certificate Authority (FBCA)

A configuration where two CAs form a circle of trust by issuing cross-pair certificates to each other
and storing the two cross-pair certificates as a single certificate pair.

fingerprint

See certificate fingerprint.

FIPS PUBS 140

Federal Information Standards Publications (FIPS PUBS) 140 is a US government standard for
implementations of cryptographic modules, hardware or software that encrypts and decrypts data or
performs other cryptographic operations, such as creating or verifying digital signatures. Many
products sold to the US government must comply with one or more of the FIPS standards. See
http://www.nist.gov.

firewall

A system or combination of systems that enforces a boundary between two or more networks.

I

impersonation

The act of posing as the intended recipient of information sent over a network. Impersonation can
take two forms: spoofing and misrepresentation.

input

In the context of the certificate profile feature, it defines the enrollment form for a particular
certificate profile. Each input is set, which then dynamically creates the enrollment form from all
inputs configured for this enrollment.

intermediate CA

A CA whose certificate is located between the root CA and the issued certificate in a certificate
chain.

IP spoofing

The forgery of client IP addresses.

J

Administration Guide

512

http://www.nist.gov

JAR file

A digital envelope for a compressed collection of files organized according to the Java™ archive
(JAR) format.

Java™ archive (JAR) format

A set of conventions for associating digital signatures, installer scripts, and other information with
files in a directory.

Java™ Cryptography Architecture (JCA)

The API specification and reference developed by Sun Microsystems for cryptographic services. See
http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.Introduction.

Java™ Development Kit (JDK)

Software development kit provided by Sun Microsystems for developing applications and applets
using the Java™ programming language.

Java™ Native Interface (JNI)

A standard programming interface that provides binary compatibility across different
implementations of the Java™ Virtual Machine (JVM) on a given platform, allowing existing code
written in a language such as C or C++ for a single platform to bind to Java™. See
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html.

Java™ Security Services (JSS)

A Java™ interface for controlling security operations performed by Network Security Services (NSS).

K

KEA

See Key Exchange Algorithm (KEA).

key

A large number used by a cryptographic algorithm to encrypt or decrypt data. A person's public key,
for example, allows other people to encrypt messages intended for that person. The messages must
then be decrypted by using the corresponding private key.

key exchange

A procedure followed by a client and server to determine the symmetric keys they will both use
during an SSL session.

Key Exchange Algorithm (KEA)

An algorithm used for key exchange by the US Government.

L

Lightweight Directory Access Protocol (LDAP)

A directory service protocol designed to run over TCP/IP and across multiple platforms. LDAP is a
simplified version of Directory Access Protocol (DAP), used to access X.500 directories. LDAP is
under IETF change control and has evolved to meet Internet requirements.

GLOSSARY

513

http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.Introduction
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

linked CA

An internally deployed certificate authority (CA) whose certificate is signed by a public, third-party
CA. The internal CA acts as the root CA for certificates it issues, and the third- party CA acts as the
root CA for certificates issued by other CAs that are linked to the same third-party root CA. Also
known as "chained CA" and by other terms used by different public CAs.

M

manual authentication

A way of configuring a Certificate System subsystem that requires human approval of each
certificate request. With this form of authentication, a servlet forwards a certificate request to a
request queue after successful authentication module processing. An agent with appropriate
privileges must then approve each request individually before profile processing and certificate
issuance can proceed.

MD5

A message digest algorithm that was developed by Ronald Rivest. See also one-way hash.

message digest

See one-way hash.

misrepresentation

The presentation of an entity as a person or organization that it is not. For example, a website might
pretend to be a furniture store when it is really a site that takes credit-card payments but never sends
any goods. Misrepresentation is one form of impersonation. See also spoofing.

N

Network Security Services (NSS)

A set of libraries designed to support cross-platform development of security-enabled
communications applications. Applications built using the NSS libraries support the Secure Sockets
Layer (SSL) protocol for authentication, tamper detection, and encryption, and the PKCS #11
protocol for cryptographic token interfaces. NSS is also available separately as a software
development kit.

non-TMS

Non-token management system. Refers to a configuration of subsystems (the CA and, optionally,
KRA and OCSP) which do not handle smart cards directly.

See Also token management system (TMS) .

nonrepudiation

The inability by the sender of a message to deny having sent the message. A digital signature
provides one form of nonrepudiation.

O

object signing

A method of file signing that allows software developers to sign Java code, JavaScript scripts, or any

Administration Guide

514

A method of file signing that allows software developers to sign Java code, JavaScript scripts, or any
kind of file and allows users to identify the signers and control access by signed code to local system
resources.

object-signing certificate

A certificate whose associated private key is used to sign objects; related to object signing.

OCSP

Online Certificate Status Protocol.

one-way hash

1. A number of fixed-length generated from data of arbitrary length with the aid of a hashing
algorithm. The number, also called a message digest, is unique to the hashed data. Any change in the
data, even deleting or altering a single character, results in a different value.

2. The content of the hashed data cannot be deduced from the hash.

operation

The specific operation, such as read or write, that is being allowed or denied in an access control
instruction.

output

In the context of the certificate profile feature, it defines the resulting form from a successful
certificate enrollment for a particular certificate profile. Each output is set, which then dynamically
creates the form from all outputs configured for this enrollment.

P

password-based authentication

Confident identification by means of a name and password. See also authentication, certificate-
based authentication.

PKCS #10

The public-key cryptography standard that governs certificate requests.

PKCS #11

The public-key cryptography standard that governs cryptographic tokens such as smart cards.

PKCS #11 module

A driver for a cryptographic device that provides cryptographic services, such as encryption and
decryption, through the PKCS #11 interface. A PKCS #11 module, also called a cryptographic module
or cryptographic service provider , can be implemented in either hardware or software. A PKCS #11
module always has one or more slots, which may be implemented as physical hardware slots in some
form of physical reader, such as for smart cards, or as conceptual slots in software. Each slot for a
PKCS #11 module can in turn contain a token, which is the hardware or software device that actually
provides cryptographic services and optionally stores certificates and keys. Red Hat provides a built-
in PKCS #11 module with Certificate System.

PKCS #12

GLOSSARY

515

The public-key cryptography standard that governs key portability.

PKCS #7

The public-key cryptography standard that governs signing and encryption.

private key

One of a pair of keys used in public-key cryptography. The private key is kept secret and is used to
decrypt data encrypted with the corresponding public key.

proof-of-archival (POA)

Data signed with the private Key Recovery Authority transport key that contains information about
an archived end-entity key, including key serial number, name of the Key Recovery Authority, subject
name of the corresponding certificate, and date of archival. The signed proof-of-archival data are
the response returned by the Key Recovery Authority to the Certificate Manager after a successful
key archival operation. See also Key Recovery Authority transport certificate .

public key

One of a pair of keys used in public-key cryptography. The public key is distributed freely and
published as part of a certificate. It is typically used to encrypt data sent to the public key's owner,
who then decrypts the data with the corresponding private key.

public-key cryptography

A set of well-established techniques and standards that allow an entity to verify its identity
electronically or to sign and encrypt electronic data. Two keys are involved, a public key and a private
key. A public key is published as part of a certificate, which associates that key with a particular
identity. The corresponding private key is kept secret. Data encrypted with the public key can be
decrypted only with the private key.

public-key infrastructure (PKI)

The standards and services that facilitate the use of public-key cryptography and X.509 v3
certificates in a networked environment.

R

RC2, RC4

Cryptographic algorithms developed for RSA Data Security by Rivest. See also cryptographic
algorithm.

Red Hat Certificate System

A highly configurable set of software components and tools for creating, deploying, and managing
certificates. Certificate System is comprised of five major subsystems that can be installed in
different Certificate System instances in different physical locations: Certificate Manager, Online
Certificate Status Manager, Key Recovery Authority, Token Key Service, and Token Processing
System.

registration

See enrollment.

root CA

Administration Guide

516

The certificate authority (CA) with a self-signed certificate at the top of a certificate chain. See also
CA certificate, subordinate CA.

RSA algorithm

Short for Rivest-Shamir-Adleman, a public-key algorithm for both encryption and authentication. It
was developed by Ronald Rivest, Adi Shamir, and Leonard Adleman and introduced in 1978.

RSA key exchange

A key-exchange algorithm for SSL based on the RSA algorithm.

S

sandbox

A Java™ term for the carefully defined limits within which Java™ code must operate.

secure channel

A security association between the TPS and the smart card which allows encrypted communciation
based on a shared master key generated by the TKS and the smart card APDUs.

Secure Sockets Layer (SSL)

A protocol that allows mutual authentication between a client and server and the establishment of an
authenticated and encrypted connection. SSL runs above TCP/IP and below HTTP, LDAP, IMAP,
NNTP, and other high-level network protocols.

security domain

A centralized repository or inventory of PKI subsystems. Its primary purpose is to facilitate the
installation and configuration of new PKI services by automatically establishing trusted relationships
between subsystems.

self tests

A feature that tests a Certificate System instance both when the instance starts up and on-demand.

server authentication

The process of identifying a server to a client. See also client authentication.

server SSL certificate

A certificate used to identify a server to a client using the Secure Sockets Layer (SSL) protocol.

servlet

Java™ code that handles a particular kind of interaction with end entities on behalf of a
Certificate System subsystem. For example, certificate enrollment, revocation, and key recovery
requests are each handled by separate servlets.

SHA

Secure Hash Algorithm, a hash function used by the US government.

signature algorithm

A cryptographic algorithm used to create digital signatures. Certificate System supports the MD5

GLOSSARY

517

A cryptographic algorithm used to create digital signatures. Certificate System supports the MD5
and SHA signing algorithms. See also cryptographic algorithm, digital signature.

signed audit log

See audit log.

signing certificate

A certificate whose public key corresponds to a private key used to create digital signatures. For
example, a Certificate Manager must have a signing certificate whose public key corresponds to the
private key it uses to sign the certificates it issues.

signing key

A private key used for signing only. A signing key and its equivalent public key, plus an encryption key
and its equivalent public key, constitute a dual key pair.

single sign-on

1. In Certificate System, a password that simplifies the way to sign on to Red Hat Certificate System
by storing the passwords for the internal database and tokens. Each time a user logs on, he is
required to enter this single password.

2. The ability for a user to log in once to a single computer and be authenticated automatically by a
variety of servers within a network. Partial single sign-on solutions can take many forms, including
mechanisms for automatically tracking passwords used with different servers. Certificates support
single sign-on within a public-key infrastructure (PKI). A user can log in once to a local client's
private-key database and, as long as the client software is running, rely on certificate-based
authentication to access each server within an organization that the user is allowed to access.

slot

The portion of a PKCS #11 module , implemented in either hardware or software, that contains a
token.

smart card

A small device that contains a microprocessor and stores cryptographic information, such as keys
and certificates, and performs cryptographic operations. Smart cards implement some or all of the
PKCS #11 interface.

spoofing

Pretending to be someone else. For example, a person can pretend to have the email address
jdoe@example.com, or a computer can identify itself as a site called www.redhat.com when it is
not. Spoofing is one form of impersonation. See also misrepresentation.

SSL

See Secure Sockets Layer (SSL) .

subject

The entity identified by a certificate. In particular, the subject field of a certificate contains a subject
name that uniquely describes the certified entity.

subject name

A distinguished name (DN) that uniquely describes the subject of a certificate.

Administration Guide

518

subordinate CA

A certificate authority whose certificate is signed by another subordinate CA or by the root CA. See
CA certificate, root CA.

symmetric encryption

An encryption method that uses the same cryptographic key to encrypt and decrypt a given
message.

T

tamper detection

A mechanism ensuring that data received in electronic form entirely corresponds with the original
version of the same data.

token

A hardware or software device that is associated with a slot in a PKCS #11 module . It provides
cryptographic services and optionally stores certificates and keys.

token key service (TKS)

A subsystem in the token management system which derives specific, separate keys for every smart
card based on the smart card APDUs and other shared information, like the token CUID.

token management system (TMS)

The interrelated subsystems — CA, TKS, TPS, and, optionally, the KRA — which are used to manage
certificates on smart cards (tokens).

token processing system (TPS)

A subsystem which interacts directly the Enterprise Security Client and smart cards to manage the
keys and certificates on those smart cards.

tree hierarchy

The hierarchical structure of an LDAP directory.

trust

Confident reliance on a person or other entity. In a public-key infrastructure (PKI), trust refers to the
relationship between the user of a certificate and the certificate authority (CA) that issued the
certificate. If a CA is trusted, then valid certificates issued by that CA can be trusted.

V

virtual private network (VPN)

A way of connecting geographically distant divisions of an enterprise. The VPN allows the divisions to
communicate over an encrypted channel, allowing authenticated, confidential transactions that
would normally be restricted to a private network.

INDEX

INDEX

519

A

active logs

default file location, Configuring Subsystem Logs

message categories, Services That Are Logged

adding

extensions

to CRLs, Setting CRL Extensions

administrators

creating, Creating Users

deleting, Deleting a Certificate System User

modifying

group membership, Changing Members in a Group

sudo permissions for, Setting sudo Permissions for Certificate System Services

tools provided

Certificate System console, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

agent certificate

requesting, Requesting and Receiving a Certificate through the End-Entities Page

agents

creating, Creating Users

deleting, Deleting a Certificate System User

enrolling users in person, Certificate Revocation Pages

modifying

group membership, Changing Members in a Group

role defined, Agents

See also Agent Services interface, Agents

archiving

rotated log files, Log File Rotation

auditors

creating, Creating Users

authentication

during certificate revocation, User-Initiated Revocation

managing through the Console, Setting up PIN-Based Enrollment

authentication modules

agent initiated user enrollment, Certificate Revocation Pages

Administration Guide

520

deleting, Registering Custom Authentication Plug-ins

registering new ones, Registering Custom Authentication Plug-ins

authorityInfoAccess, authorityInfoAccess

authorityKeyIdentifier, Setting Restrictions on CA Certificates , authorityKeyIdentifier,
authorityKeyIdentifier

B

backing up the Certificate System, Backing up and Restoring Certificate System

backups, Backing up and Restoring Certificate System

base-64 encoded file

viewing content, Viewing Certificates and CRLs Published to File

basicConstraints, basicConstraints

bridge certificates, Using Cross-Pair Certificates

buffered logging, Buffered and Unbuffered Logging

C

CA

configuring ECC signing algorithm, Setting the Signing Algorithms for Certificates

enabling SCEP enrollments, Enabling SCEP Enrollments

SCEP settings, Configuring Security Settings for SCEP

CA certificate mapper, LdapCaSimpleMap

CA certificate publisher, LdapCaCertPublisher, LdapCertificatePairPublisher

CA signing certificate, CA Signing Key Pair and Certificate

changing trust settings of, Changing the Trust Settings of a CA Certificate

deleting, Deleting Certificates from the Database

nickname, CA Signing Key Pair and Certificate

requesting, Requesting Certificates through the Console

viewing details of, Viewing Database Content through the Console

certificate

viewing content, Viewing Certificates and CRLs Published to File

certificate chains

installing in the certificate database, Installing Certificates through the Console

why install, About CA Certificate Chains

certificate database

how to manage, Managing the Certificate Database

what it contains, Managing the Certificate Database

where it is maintained, Managing the Certificate Database

Certificate Manager

INDEX

521

administrators

creating, Creating Users

agents

creating, Creating Users

configuring

SMTP settings for notifications, Configuring a Mail Server for Certificate System
Notifications

key pairs and certificates

CA signing certificate, CA Signing Key Pair and Certificate

OCSP signing certificate, OCSP Signing Key Pair and Certificate

SSL server certificate, SSL Server Key Pair and Certificate

subsystem certificate, Subsystem Certificate

TLS CA signing certificate, OCSP Signing Key Pair and Certificate

manual updates to publishing directory, Updating Certificates and CRLs in a Directory

serial number range, Changing the Restrictions for CAs on Issuing Certificates

certificate profiles

signing algorithms, Setting the Signing Algorithms for Certificates

certificate renewal, Configuring Profiles to Enable Renewal

certificate revocation

authentication during, User-Initiated Revocation

reasons for, Reasons for Revoking a Certificate

who can revoke certificates, Reasons for Revoking a Certificate

Certificate Setup Wizard

using to install certificate chains, Installing Certificates through the Console

using to install certificates, Installing Certificates through the Console

Certificate System

backing up, Backing up and Restoring Certificate System

restoring, Backing up and Restoring the Instance Directory

Certificate System console

Configuration tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

managing logs, Viewing Logs in the Console

Status tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

Certificate System Console

configuring authentication, Setting up Directory-Based Authentication, Setting up PIN-Based
Enrollment

Certificate System data

Administration Guide

522

where it is stored, Configuring the LDAP Database

certificateIssuer, certificateIssuer

certificatePolicies, certificatePoliciesExt

certificates

extensions for, Setting Restrictions on CA Certificates , Defaults, Constraints, and Extensions
for Certificates and CRLs

how to revoke, Reasons for Revoking a Certificate

installing, Installing Certificates in the Certificate System Database

publishing to files, Publishing to Files

publishing to LDAP directory

required schema, Configuring the LDAP Directory

revocation reasons, Reasons for Revoking a Certificate

signing algorithms, Setting the Signing Algorithms for Certificates

certutil

requesting certificates, Creating Certificate Signing Requests

changing

group members, Changing Members in a Group

trust settings in certificates, Changing the Trust Settings of a CA Certificate

why would you change, Changing the Trust Settings of a CA Certificate

command-line utilities

for adding extensions to Certificate System certificates, Requesting Signing Certificates,
Requesting Other Certificates

Configuration tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

CRL

viewing content, Viewing Certificates and CRLs Published to File

CRL Distribution Point extension, CRL Issuing Points

CRL extension modules

CRLReason, Freshest CRL Extension Default

CRL publisher, LdapCrlPublisher

CRL signing certificate, About Revoking Certificates

requesting, Requesting Certificates through the Console

cRLDistributionPoints, CRLDistributionPoints

CRLNumber, CRLNumber

CRLReason, CRLReason

CRLs

defined, About Revoking Certificates

INDEX

523

entering multiple update times, Configuring CRLs for Each Issuing Point

entering update period, Configuring CRLs for Each Issuing Point

extension-specific modules, About CRL Extensions

extensions for, Standard X.509 v3 CRL Extensions Reference

issuing or distribution points, CRL Issuing Points

publishing of, About Revoking Certificates

publishing to files, Publishing to Files

publishing to LDAP directory, Publishing CRLs, LDAP Publishing

required schema, Configuring the LDAP Directory

supported extensions, About Revoking Certificates

when automated updates take place, About Revoking Certificates

when generated, About Revoking Certificates

who generates it, About Revoking Certificates

cross-pair certificates, Using Cross-Pair Certificates

D

deleting

authentication modules, Registering Custom Authentication Plug-ins

log modules, Managing Log Modules

mapper modules, Registering Custom Mapper and Publisher Plug-in Modules

privileged users, Deleting a Certificate System User

publisher modules, Registering Custom Mapper and Publisher Plug-in Modules

deltaCRLIndicator, deltaCRLIndicator

DER-encoded file

viewing content, Viewing Certificates and CRLs Published to File

directory

removing expired certificates from, unpublishExpiredCerts (UnpublishExpiredJob)

DN components mapper, LdapDNCompsMap

downloading certificates, Installing Certificates in the Certificate System Database

E

ECC

configuring, Setting the Signing Algorithms for Certificates

requesting, Creating Certificate Signing Requests

encrypted file system (EFS), Extended Key Usage Extension Default

end-entity certificate publisher, LdapUserCertPublisher

end-entity certificates

renewal, Configuring Profiles to Enable Renewal

Administration Guide

524

enrollment

agent initiated, Certificate Revocation Pages

Enterprise Security Client, Enterprise Security Client

Error log

defined, Tomcat Error and Access Logs

expired certificates

removing from the directory, unpublishExpiredCerts (UnpublishExpiredJob)

Extended Key Usage extension

OIDs for encrypted file system, Extended Key Usage Extension Default

extensions, Setting Restrictions on CA Certificates , Defaults, Constraints, and Extensions for
Certificates and CRLs

an example, Standard X.509 v3 Certificate Extension Reference

authorityInfoAccess, authorityInfoAccess

authorityKeyIdentifier, Setting Restrictions on CA Certificates , authorityKeyIdentifier,
authorityKeyIdentifier

basicConstraints, basicConstraints

CA certificates and, Setting Restrictions on CA Certificates

certificateIssuer, certificateIssuer

certificatePolicies, certificatePoliciesExt

cRLDistributionPoints, CRLDistributionPoints

CRLNumber, CRLNumber

CRLReason, CRLReason

deltaCRLIndicator, deltaCRLIndicator

extKeyUsage, extKeyUsage

invalidityDate, invalidityDate

issuerAltName, issuerAltName Extension, issuerAltName

issuingDistributionPoint, issuingDistributionPoint

keyUsage, keyUsage

nameConstraints, nameConstraints

netscape-cert-type, netscape-cert-type

Netscape-defined, Netscape-Defined Certificate Extensions Reference

policyConstraints, policyConstraints

policyMappings, policyMappings

privateKeyUsagePeriod, privateKeyUsagePeriod

subjectAltName, subjectAltName

subjectDirectoryAttributes, subjectDirectoryAttributes

tool for joining, Requesting Signing Certificates, Requesting Other Certificates

tools for generating, Requesting Signing Certificates, Requesting Other Certificates

X.509 certificate, summarized, Standard X.509 v3 Certificate Extension Reference

X.509 CRL, summarized, Standard X.509 v3 CRL Extensions Reference

INDEX

525

extKeyUsage, extKeyUsage

F

Federal Bridge Certificate Authority, Using Cross-Pair Certificates

file-based publisher, FileBasedPublisher

flush interval for logs, Buffered and Unbuffered Logging

G

groups

changing members, Changing Members in a Group

H

host name

for mail server used for notifications, Configuring a Mail Server for Certificate System
Notifications

how to revoke certificates, Reasons for Revoking a Certificate

I

installing certificates, Installing Certificates in the Certificate System Database

internal database

default hostname, Changing the Internal Database Configuration

precaution for changing the hostname, Changing the Internal Database Configuration

defined, Configuring the LDAP Database

how to distinguish from other Directory Server instances, Restricting Access to the Internal
Database

name format, Restricting Access to the Internal Database

schema, Configuring the LDAP Database

what is it used for, Configuring the LDAP Database

when installed, Configuring the LDAP Database

invalidityDate, invalidityDate

IPv6

and SCEP certificates, Generating the SCEP Certificate for a Router

issuerAltName, issuerAltName Extension, issuerAltName

issuingDistributionPoint, issuingDistributionPoint

J

job modules

registering new ones, Registering a Job Module

jobs

Administration Guide

526

built-in modules

unpublishExpiredCerts, unpublishExpiredCerts (UnpublishExpiredJob)

compared to plug-in implementation, About Automated Jobs

configuring job notification messages, Customizing CA Notification Messages, Setting up
Automated Jobs

setting frequency, Setting up the Job Scheduler

specifying schedule for, Frequency Settings for Automated Jobs

turning on scheduler, Setting up the Job Scheduler

K

Key Recovery Authority

administrators

creating, Creating Users

agents

creating, Creating Users

key pairs and certificates

list of, Key Recovery Authority Certificates

storage key pair, Storage Key Pair

subsystem certificate, Subsystem Certificate

transport certificate, Transport Key Pair and Certificate

keyUsage, keyUsage

KRA transport certificate

requesting, Requesting Certificates through the Console

L

LDAP publishing

defined, LDAP Publishing

manual updates, Updating Certificates and CRLs in a Directory

when to do, Manually Updating Certificates in the Directory

who can do this, Updating Certificates and CRLs in a Directory

location of

active log files, Configuring Subsystem Logs

log modules

deleting, Managing Log Modules

registering new ones, Managing Log Modules

logging

INDEX

527

buffered vs. unbuffered, Buffered and Unbuffered Logging

log files

archiving rotated files, Log File Rotation

default location, Configuring Subsystem Logs

signing rotated files, Signing Log Files

timing of rotation, Log File Rotation

log levels, Log Levels (Message Categories)

default selection, Log Levels (Message Categories)

how they relate to message categories, Log Levels (Message Categories)

significance of choosing the right level, Log Levels (Message Categories)

managing from Certificate System console, Viewing Logs in the Console

services that are logged, Services That Are Logged

types of logs, Configuring Subsystem Logs

Error, Tomcat Error and Access Logs

M

mail server used for notifications, Configuring a Mail Server for Certificate System Notifications

managing

certificate database, Managing the Certificate Database

mapper modules

deleting, Registering Custom Mapper and Publisher Plug-in Modules

registering new ones, Registering Custom Mapper and Publisher Plug-in Modules

mappers

created during installation, Creating Mappers, LdapCaSimpleMap, LdapSimpleMap

mappers that use

CA certificate, LdapCaSimpleMap

DN components, LdapDNCompsMap

modifying

privileged user's group membership, Changing Members in a Group

N

Name extension modules

Issuer Alternative Name, Issuer Alternative Name Extension Default

nameConstraints, nameConstraints

naming convention

for internal database instances, Restricting Access to the Internal Database

Administration Guide

528

netscape-cert-type, netscape-cert-type

nickname

for CA signing certificate, CA Signing Key Pair and Certificate

for OCSP signing certificate, OCSP Signing Key Pair and Certificate

for signing certificate, OCSP Signing Key Pair and Certificate

for SSL server certificate, SSL Server Key Pair and Certificate, SSL Server Key Pair and
Certificate

for subsystem certificate, Subsystem Certificate, Subsystem Certificate, Subsystem Certificate

for TLS signing certificate, OCSP Signing Key Pair and Certificate

notifications

configuring the mail server

hostname, Configuring a Mail Server for Certificate System Notifications

port, Configuring a Mail Server for Certificate System Notifications

to agents about unpublishing certificates, unpublishExpiredCerts (UnpublishExpiredJob)

O

OCSP publisher, OCSPPublisher

OCSP signing certificate, OCSP Signing Key Pair and Certificate

nickname, OCSP Signing Key Pair and Certificate

requesting, Requesting Certificates through the Console

Online Certificate Status Manager

administrators

creating, Creating Users

agents

creating, Creating Users

key pairs and certificates

signing certificate, OCSP Signing Key Pair and Certificate

SSL server certificate, SSL Server Key Pair and Certificate

subsystem certificate, Subsystem Certificate

P

PIN Generator tool

delivering PINs to users, Setting up PIN-Based Enrollment

plug-in modules

for CRL extensions

CRLReason, Freshest CRL Extension Default

INDEX

529

for publishing

FileBasedPublisher, FileBasedPublisher

LdapCaCertPublisher, LdapCaCertPublisher, LdapCertificatePairPublisher

LdapCaSimpleMap, LdapCaSimpleMap

LdapCrlPublisher, LdapCrlPublisher

LdapDNCompsMap, LdapDNCompsMap

LdapUserCertPublisher, LdapUserCertPublisher

OCSPPublisher, OCSPPublisher

for scheduling jobs

unpublishExpiredCerts, unpublishExpiredCerts (UnpublishExpiredJob)

Issuer Alternative Name, Issuer Alternative Name Extension Default

policyConstraints, policyConstraints

policyMappings, policyMappings

ports

for the mail server used for notifications, Configuring a Mail Server for Certificate System
Notifications

privateKeyUsagePeriod, privateKeyUsagePeriod

privileged users

deleting, Deleting a Certificate System User

modifying privileges

group membership, Changing Members in a Group

types

agents, Agents

profiles

how profiles work , The Enrollment Profile

publisher modules

deleting, Registering Custom Mapper and Publisher Plug-in Modules

registering new ones, Registering Custom Mapper and Publisher Plug-in Modules

publishers

created during installation, Configuring LDAP Publishers, LdapCaCertPublisher,
LdapUserCertPublisher, LdapCertificatePairPublisher

publishers that can publish to

CA's entry in the directory, LdapCaCertPublisher, LdapCrlPublisher,
LdapCertificatePairPublisher

files, FileBasedPublisher

OCSP responder, OCSPPublisher

Administration Guide

530

users' entries in the directory, LdapUserCertPublisher

publishing

of certificates

to files, Publishing to Files

of CRLs, About Revoking Certificates

to files, Publishing to Files

to LDAP directory, Publishing CRLs, LDAP Publishing

queue, Enabling a Publishing Queue

(see also publishing queue)

viewing content, Viewing Certificates and CRLs Published to File

publishing directory

defined, LDAP Publishing

publishing queue, Enabling a Publishing Queue

enabling, Enabling a Publishing Queue

R

reasons for revoking certificates, Reasons for Revoking a Certificate

registering

authentication modules, Registering Custom Authentication Plug-ins

custom OIDs, Standard X.509 v3 Certificate Extension Reference

job modules, Registering a Job Module

log modules, Managing Log Modules

mapper modules, Registering Custom Mapper and Publisher Plug-in Modules

publisher modules, Registering Custom Mapper and Publisher Plug-in Modules

requesting certificates

agent certificate, Requesting and Receiving a Certificate through the End-Entities Page

CA signing certificate, Requesting Certificates through the Console

CRL signing certificate, Requesting Certificates through the Console

ECC certificates, Creating Certificate Signing Requests

KRA transport certificate, Requesting Certificates through the Console

OCSP signing certificate, Requesting Certificates through the Console

SSL client certificate, Requesting Certificates through the Console

SSL server certificate, Requesting Certificates through the Console

through the Console, Requesting Certificates through the Console

through the end-entities page, Requesting and Receiving a Certificate through the End-Entities
Page

user certificate, Requesting and Receiving a Certificate through the End-Entities Page

INDEX

531

using certutil, Creating Certificate Signing Requests

restarting

subsystem instance, Starting, Stopping, and Restarting a PKI Instance

sudo permissions for administrators, Setting sudo Permissions for Certificate System
Services

without the java security manager, Starting a Subsystem Instance without the Java Security
Manager

restore, Backing up and Restoring the Instance Directory

restoring the Certificate System, Backing up and Restoring the Instance Directory

revoking certificates

reasons, Reasons for Revoking a Certificate

who can revoke certificates, Reasons for Revoking a Certificate

roles

agent, Agents

rotating log files

archiving files, Log File Rotation

how to set the time, Log File Rotation

signing files, Signing Log Files

RSA

configuring, Setting the Signing Algorithms for Certificates

S

SCEP

enabling, Enabling SCEP Enrollments

setting allowed algorithms, Configuring Security Settings for SCEP

setting nonce sizes, Configuring Security Settings for SCEP

using a separate authentication certificate, Configuring Security Settings for SCEP

SCEP certificates

and IPv6, Generating the SCEP Certificate for a Router

setting CRL extensions, Setting CRL Extensions

signing

rotated log files, Signing Log Files

signing algorithms, Setting the Signing Algorithms for Certificates

ECC certificates, Setting the Signing Algorithms for Certificates

RSA certificates, Setting the Signing Algorithms for Certificates

signing certificate, OCSP Signing Key Pair and Certificate

Administration Guide

532

changing trust settings of, Changing the Trust Settings of a CA Certificate

deleting, Deleting Certificates from the Database

nickname, OCSP Signing Key Pair and Certificate

viewing details of, Viewing Database Content through the Console

SMTP settings, Configuring a Mail Server for Certificate System Notifications

SSL client certificate

requesting, Requesting Certificates through the Console

SSL server certificate, SSL Server Key Pair and Certificate, SSL Server Key Pair and Certificate

changing trust settings of, Changing the Trust Settings of a CA Certificate

deleting, Deleting Certificates from the Database

nickname, SSL Server Key Pair and Certificate, SSL Server Key Pair and Certificate

requesting, Requesting Certificates through the Console

viewing details of, Viewing Database Content through the Console

starting

subsystem instance, Starting, Stopping, and Restarting a PKI Instance

sudo permissions for administrators, Setting sudo Permissions for Certificate System
Services

without the java security manager, Starting a Subsystem Instance without the Java Security
Manager

Status tab, Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

stoping

subsystem instance

sudo permissions for administrators, Setting sudo Permissions for Certificate System
Services

stopping

subsystem instance, Starting, Stopping, and Restarting a PKI Instance

storage key pair, Storage Key Pair

subjectAltName, subjectAltName

subjectDirectoryAttributes, subjectDirectoryAttributes

subjectKeyIdentifier

subjectKeyIdentifier, subjectKeyIdentifier

subsystem certificate, Subsystem Certificate, Subsystem Certificate, Subsystem Certificate

nickname, Subsystem Certificate, Subsystem Certificate, Subsystem Certificate

subsystems for tokens

Enterprise Security Client, A Review of Certificate System Subsystems

sudo

INDEX

533

permissions for administrators, Setting sudo Permissions for Certificate System Services

T

templates

for notifications, Customizing CA Notification Messages

timing log rotation, Log File Rotation

TLS CA signing certificate, OCSP Signing Key Pair and Certificate

nickname, OCSP Signing Key Pair and Certificate

Token Key Service

administrators

creating, Creating Users

agents

creating, Creating Users

Token Management System

Enterprise Security Client, Enterprise Security Client

tokens

changing password of, Changing a Token's Password

managing, Managing Tokens Used by the Subsystems

viewing which tokens are installed, Viewing Tokens

TPS

setting profiles, Setting Profiles for Users

users, Creating and Managing Users for a TPS

transport certificate, Transport Key Pair and Certificate

changing trust settings of, Changing the Trust Settings of a CA Certificate

deleting, Deleting Certificates from the Database

viewing details of, Viewing Database Content through the Console

trusted managers

deleting, Deleting a Certificate System User

modifying

group membership, Changing Members in a Group

U

unbuffered logging, Buffered and Unbuffered Logging

user certificate

requesting, Requesting and Receiving a Certificate through the End-Entities Page

Administration Guide

534

users

creating, Creating Users

W

why to revoke certificates, Reasons for Revoking a Certificate

INDEX

535

APPENDIX F. REVISION HISTORY
Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
Certificate System.

Revision 10.1-1 Mon Jan 25 2021 Florian Delehaye
Various fixes and improvements.

Revision 10.1-0 Wed Dec 02 2020 Florian Delehaye
Red Hat Certificate System 10.1 release of the guide.

Revision 10.0-0 Wed Sep 17 2020 Florian Delehaye
Red Hat Certificate System 10.0 release of the guide.

Administration Guide

536

	Table of Contents
	CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM SUBSYSTEMS
	1.1. USES FOR CERTIFICATES
	1.2. A REVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS
	Enterprise Security Client

	1.3. A LOOK AT MANAGING CERTIFICATES (NON-TMS)
	1.4. A LOOK AT THE TOKEN MANAGEMENT SYSTEM (TMS)
	1.5. RED HAT CERTIFICATE SYSTEM SERVICES

	PART I. RED HAT CERTIFICATE SYSTEM USER INTERFACES
	CHAPTER 2. USER INTERFACES
	2.1. USER INTERFACES OVERVIEW
	2.2. CLIENT NSS DATABASE INITIALIZATION
	2.3. GRAPHICAL INTERFACE
	2.3.1. pkiconsole Initialization
	2.3.2. Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

	2.4. WEB INTERFACE
	2.4.1. Browser Initialization
	Importing a CA Certificate
	Importing a Client Certificate
	Accessing the Web Console

	2.4.2. The Administrative Interfaces
	2.4.3. Agent Interfaces
	2.4.4. End User Pages

	2.5. COMMAND LINE INTERFACES
	2.5.1. "pki" CLI
	2.5.1.1. pki CLI Initialization
	2.5.1.2. Using "pki" CLI

	2.5.2. AtoB
	2.5.3. AuditVerify
	2.5.4. BtoA
	2.5.5. CMCRequest
	2.5.6. CMCRevoke
	2.5.7. CMCSharedToken
	2.5.8. CRMFPopClient
	2.5.9. HttpClient
	2.5.10. OCSPClient
	2.5.11. PKCS10Client
	2.5.12. PrettyPrintCert
	2.5.13. PrettyPrintCrl
	2.5.14. TokenInfo
	2.5.15. tkstool

	2.6. ENTERPRISE SECURITY CLIENT

	PART II. SETTING UP CERTIFICATE SERVICES
	CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES)
	3.1. ABOUT CERTIFICATE PROFILES
	3.1.1. The Enrollment Profile
	3.1.2. Certificate Extensions: Defaults and Constraints
	3.1.3. Inputs and Outputs

	3.2. SETTING UP CERTIFICATE PROFILES
	3.2.1. Managing Certificate Enrollment Profiles Using the PKI Command-line Interface
	3.2.1.1. Enabling and Disabling a Certificate Profile
	3.2.1.2. Creating a Certificate Profile in Raw Format
	3.2.1.3. Editing a Certificate Profile in Raw Format
	3.2.1.4. Deleting a Certificate Profile

	3.2.2. Managing Certificate Enrollment Profiles Using the Java-based Administration Console
	3.2.2.1. Creating Certificate Profiles through the CA Console
	3.2.2.2. Editing Certificate Profiles in the Console

	3.2.3. Listing Certificate Enrollment Profiles
	3.2.4. Displaying Details of a Certificate Enrollment Profile

	3.3. DEFINING KEY DEFAULTS IN PROFILES
	3.4. CONFIGURING PROFILES TO ENABLE RENEWAL
	3.4.1. Renewing Using the Same Key
	3.4.2. Renewal Using a New Key

	3.5. SETTING THE SIGNING ALGORITHMS FOR CERTIFICATES
	3.5.1. Setting the CA's Default Signing Algorithm
	3.5.2. Setting the Signing Algorithm Default in a Profile

	3.6. MANAGING CA-RELATED PROFILES
	3.6.1. Setting Restrictions on CA Certificates
	3.6.2. Changing the Restrictions for CAs on Issuing Certificates
	3.6.3. Using Random Certificate Serial Numbers
	3.6.3.1. Enabling Random Certificate Serial Numbers

	3.6.4. Allowing a CA Certificate to Be Renewed Past the CA's Validity Period

	3.7. MANAGING SUBJECT NAMES AND SUBJECT ALTERNATIVE NAMES
	3.7.1. Using the Requester CN or UID in the Subject Name
	3.7.2. Inserting LDAP Directory Attribute Values and Other Information into the Subject Alt Name
	3.7.3. Using the CN Attribute in the SAN Extension
	3.7.4. Accepting SAN Extensions from a CSR
	3.7.4.1. Configuring a Profile to Retrieve SANs from a CSR
	3.7.4.2. Generating a CSR with SANs

	CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY
	4.1. CONFIGURING AGENT-APPROVED KEY RECOVERY IN THE CONSOLE
	4.2. TESTING THE KEY ARCHIVAL AND RECOVERY SETUP

	CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES
	5.1. ABOUT ENROLLING AND RENEWING CERTIFICATES
	5.2. CREATING CERTIFICATE SIGNING REQUESTS
	5.2.1. Generating CSRs Using Command-Line Utilities
	5.2.1.1. Creating a CSR Using certutil
	5.2.1.2. Creating a CSR Using PKCS10Client
	5.2.1.3. Creating a CSR Using CRMFPopClient
	5.2.1.4. Creating a CSR using client-cert-request in the PKI CLI

	5.2.2. Generating CSRs Using Server-Side Key Generation
	5.2.2.1. Functionality Highlights
	5.2.2.2. Enrolling a Certificate Using Server-Side Keygen
	Manual User Dual-Use Certificate Enrollment Using server-side Key generation
	Directory-authenticated User Dual-Use Certificate Enrollment Using server-side Key generation
	5.2.2.3. Key Recovery
	5.2.2.4. Additional Information

	5.3. REQUESTING AND RECEIVING CERTIFICATES
	5.3.1. Requesting and Receiving a Certificate through the End-Entities Page

	5.4. RENEWING CERTIFICATES
	5.4.1. Same Keys Renewal
	5.4.1.1. Reusing CSR
	5.4.1.2. Renewal by generating CSR with same keys

	5.4.2. Renewal by Re-keying Certificates

	5.5. SUBMITTING CERTIFICATE REQUESTS USING CMC
	5.5.1. Using CMC Enrollment
	5.5.1.1. Testing CMCEnroll

	5.5.2. The CMC Enrollment Process
	5.5.3. Practical CMC Enrollment Scenarios
	5.5.3.1. Obtaining System and Server Certificates
	5.5.3.2. Obtaining the First Signing Certificate for a User
	5.5.3.3. Obtaining an Encryption-only Certificate for a User

	5.6. PERFORMING BULK ISSUANCE
	5.7. ENROLLING A CERTIFICATE ON A CISCO ROUTER
	5.7.1. Enabling SCEP Enrollments
	5.7.2. Configuring Security Settings for SCEP
	5.7.3. Configuring a Router for SCEP Enrollment
	5.7.4. Generating the SCEP Certificate for a Router
	5.7.5. Working with Subordinate CAs
	5.7.6. Re-enrolling a Router
	5.7.7. Enabling Debugging
	5.7.8. Issuing ECC Certificates with SCEP

	5.8. USING CERTIFICATE TRANSPARENCY
	5.8.1. Testing Certificate Transparency

	CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TKS
	6.1. TPS PROFILES
	6.2. TPS OPERATIONS
	6.3. TOKEN POLICIES
	6.4. TOKEN OPERATION AND POLICY PROCESSING
	6.5. INTERNAL REGISTRATION
	6.6. EXTERNAL REGISTRATION
	6.6.1. Enabling External Registration
	6.6.2. Customizing User LDAP Record Attribute Names
	6.6.3. Configuring certsToAdd attributes
	6.6.4. Token to User Matching Enforcement
	6.6.5. Delegation Support
	6.6.6. SAN and DN Patterns

	6.7. MAPPING RESOLVER CONFIGURATION
	6.7.1. Key Set Mapping Resolver
	6.7.2. Token Type (TPS) Mapping Resolver

	6.8. AUTHENTICATION CONFIGURATION
	6.9. CONNECTORS
	6.10. REVOCATION ROUTING CONFIGURATION
	6.11. SETTING UP SERVER-SIDE KEY GENERATION
	6.12. SETTING UP NEW KEY SETS
	6.13. SETTING UP A NEW MASTER KEY
	6.13.1. Generating and Transporting Wrapped Master Keys (Key Ceremony)

	6.14. SETTING UP A TKS/TPS SHARED SYMMETRIC KEY
	6.14.1. Manually Generating and Transporting a Shared Symmetric Key

	6.15. USING DIFFERENT APPLETS FOR DIFFERENT SCP VERSIONS

	CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS
	7.1. ABOUT REVOKING CERTIFICATES
	7.1.1. User-Initiated Revocation
	7.1.2. Reasons for Revoking a Certificate
	7.1.3. CRL Issuing Points
	7.1.4. Delta CRLs
	7.1.5. Publishing CRLs
	7.1.6. Certificate Revocation Pages

	7.2. PERFORMING A CMC REVOCATION
	7.2.1. Revoking a Certificate Using CMCRequest
	7.2.2. Revoking a Certificate Using CMCRevoke
	7.2.2.1. Testing CMCRevoke

	7.3. ISSUING CRLS
	7.3.1. Configuring Issuing Points
	7.3.2. Configuring CRLs for Each Issuing Point
	7.3.3. Setting CRL Extensions
	7.3.4. Setting a CA to Use a Different Certificate to Sign CRLs
	7.3.5. Generating CRLs from Cache
	7.3.5.1. Configuring CRL Generation from Cache in the Console
	7.3.5.2. Configuring CRL Generation from Cache in CS.cfg

	7.4. SETTING FULL AND DELTA CRL SCHEDULES
	7.4.1. Configuring CRL Update Intervals in the Console
	7.4.2. Configuring Update Intervals for CRLs in CS.cfg
	7.4.3. Configuring CRL Generation Schedules over Multiple Days

	7.5. ENABLING REVOCATION CHECKING
	7.6. USING THE ONLINE CERTIFICATE STATUS PROTOCOL (OCSP) RESPONDER
	7.6.1. Setting up the OCSP Responder
	7.6.2. Identifying the CA to the OCSP Responder
	7.6.2.1. Verify Certificate Manager and Online Certificate Status Manager Connection
	7.6.2.2. Configure the Revocation Info Stores: Internal Database
	7.6.2.3. Configure the Revocation Info Stores: LDAP Directory
	7.6.2.4. Testing the OCSP Service Setup

	7.6.3. Setting the Response for Bad Serial Numbers
	7.6.4. Enabling the Certificate Manager's Internal OCSP Service
	7.6.5. Submitting OCSP Requests Using the OCSPClient program
	7.6.6. Submitting OCSP Requests Using the GET Method
	7.6.7. Setting up a Redirect for Certificates Issued in Certificate System 7.1 and Earlier

	CHAPTER 8. MANAGING PKI ACME RESPONDER
	8.1. ENABLING/DISABLING ACME SERVICES
	8.2. CHECKING THE STATUS OF PKI ACME RESPONDER

	PART III. ADDITIONAL CONFIGURATION TO MANAGE CA SERVICES
	CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS
	9.1. ABOUT PUBLISHING
	9.1.1. Publishers
	9.1.2. Mappers
	9.1.3. Rules
	9.1.4. Publishing to Files
	9.1.5. OCSP Publishing
	9.1.6. LDAP Publishing

	9.2. CONFIGURING PUBLISHING TO A FILE
	9.3. CONFIGURING PUBLISHING TO AN OCSP
	9.3.1. Enabling Publishing to an OCSP with Client Authentication

	9.4. CONFIGURING PUBLISHING TO AN LDAP DIRECTORY
	9.4.1. Configuring the LDAP Directory
	9.4.2. Configuring LDAP Publishers
	9.4.3. Creating Mappers
	9.4.4. Completing Configuration: Rules and Enabling

	9.5. CREATING RULES
	9.6. ENABLING PUBLISHING
	9.7. ENABLING A PUBLISHING QUEUE
	9.8. SETTING UP RESUMABLE CRL DOWNLOADS
	9.8.1. Retrieving CRLs Using wget

	9.9. PUBLISHING CROSS-PAIR CERTIFICATES
	9.10. TESTING PUBLISHING TO FILES
	9.11. VIEWING CERTIFICATES AND CRLS PUBLISHED TO FILE
	9.12. UPDATING CERTIFICATES AND CRLS IN A DIRECTORY
	9.12.1. Manually Updating Certificates in the Directory
	9.12.2. Manually Updating the CRL in the Directory

	9.13. REGISTERING CUSTOM MAPPER AND PUBLISHER PLUG-IN MODULES

	CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES
	10.1. CONFIGURING AGENT-APPROVED ENROLLMENT
	10.2. AUTOMATED ENROLLMENT
	10.2.1. Setting up Directory-Based Authentication
	Setting up Bound LDAP Connection
	Setting up External Authorization

	10.2.2. Setting up PIN-Based Enrollment
	10.2.3. Using Certificate-Based Authentication
	10.2.4. Configuring Flat File Authentication
	10.2.4.1. Configuring the flatFileAuth Module
	10.2.4.2. Editing flatfile.txt

	10.3. CMC AUTHENTICATION PLUG-INS
	10.4. CMC SHAREDSECRET AUTHENTICATION
	10.4.1. Creating a Shared Secret Token
	10.4.2. Setting a CMC Shared Secret
	10.4.2.1. Adding a CMC Shared Secret to a User Entry for Certificate Enrollment
	10.4.2.2. Adding a CMC Shared Secret to a Certificate for Certificate Revocations

	10.5. TESTING ENROLLMENT
	10.6. REGISTERING CUSTOM AUTHENTICATION PLUG-INS
	10.7. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE COMMAND LINE
	10.8. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE WEB INTERFACE

	CHAPTER 11. AUTHORIZATION FOR ENROLLING CERTIFICATES (ACCESS EVALUATORS)
	11.1. AUTHORIZATION MECHANISM
	11.2. DEFAULT EVALUATORS

	CHAPTER 12. USING AUTOMATED NOTIFICATIONS
	12.1. ABOUT AUTOMATED NOTIFICATIONS FOR THE CA
	12.1.1. Types of Automated Notifications
	12.1.2. Determining End-Entity Email Addresses

	12.2. SETTING UP AUTOMATED NOTIFICATIONS FOR THE CA
	12.2.1. Setting up Automated Notifications in the Console
	12.2.2. Configuring Specific Notifications by Editing the CS.cfg File
	12.2.3. Testing Configuration

	12.3. CUSTOMIZING NOTIFICATION MESSAGES
	12.3.1. Customizing CA Notification Messages

	12.4. CONFIGURING A MAIL SERVER FOR CERTIFICATE SYSTEM NOTIFICATIONS
	12.5. CREATING CUSTOM NOTIFICATIONS FOR THE CA

	CHAPTER 13. SETTING AUTOMATED JOBS
	13.1. ABOUT AUTOMATED JOBS
	13.1.1. Setting up Automated Jobs
	13.1.2. Types of Automated Jobs
	13.1.2.1. certRenewalNotifier (RenewalNotificationJob)
	13.1.2.2. requestInQueueNotifier (RequestInQueueJob)
	13.1.2.3. publishCerts (PublishCertsJob)
	13.1.2.4. unpublishExpiredCerts (UnpublishExpiredJob)

	13.2. SETTING UP THE JOB SCHEDULER
	13.3. SETTING UP SPECIFIC JOBS
	13.3.1. Configuring Specific Jobs Using the Certificate Manager Console
	13.3.2. Configuring Jobs by Editing the Configuration File
	13.3.3. Configuration Parameters of certRenewalNotifier
	13.3.4. Configuration Parameters of requestInQueueNotifier
	13.3.5. Configuration Parameters of publishCerts
	13.3.6. Configuration Parameters of unpublishExpiredCerts
	13.3.7. Frequency Settings for Automated Jobs

	13.4. REGISTERING A JOB MODULE

	PART IV. MANAGING THE SUBSYSTEM INSTANCES
	CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT
	14.1. PKI INSTANCES
	14.2. PKI INSTANCE EXECUTION MANAGEMENT
	14.2.1. Starting, Stopping, and Restarting a PKI Instance
	14.2.2. Restarting a PKI Instance after a Machine Restart
	14.2.3. Checking the PKI Instance Status
	14.2.4. Configuring a PKI Instance to Automatically Start Upon Reboot
	14.2.5. Setting sudo Permissions for Certificate System Services

	14.3. OPENING SUBSYSTEM CONSOLES AND SERVICES
	14.3.1. Finding the Subsystem Web Services Pages
	14.3.2. Starting the Certificate System Administrative Console
	14.3.3. Enabling SSL for the Java Administrative Console

	14.4. RUNNING SUBSYSTEMS UNDER A JAVA SECURITY MANAGER
	14.4.1. About the Security Manager Policy Files
	14.4.2. Starting a Subsystem Instance without the Java Security Manager

	14.5. CONFIGURING THE LDAP DATABASE
	14.5.1. Changing the Internal Database Configuration
	14.5.2. Using a Certificate Issued by Certificate System in Directory Server
	14.5.3. Enabling SSL/TLS Client Authentication with the Internal Database
	14.5.4. Restricting Access to the Internal Database

	14.6. VIEWING SECURITY DOMAIN CONFIGURATION
	14.7. MANAGING THE SELINUX POLICIES FOR SUBSYSTEMS
	14.7.1. About SELinux
	14.7.2. Viewing SELinux Policies for Subsystems
	14.7.3. Relabeling nCipher netHSM Contexts

	14.8. BACKING UP AND RESTORING CERTIFICATE SYSTEM
	14.8.1. Backing up and Restoring the LDAP Internal Database
	14.8.1.1. Backing up the LDAP Internal Database
	14.8.1.2. Restoring the LDAP Internal Database

	14.8.2. Backing up and Restoring the Instance Directory

	14.9. RUNNING SELF-TESTS
	14.9.1. Running Self-Tests
	14.9.1.1. Running Self-Tests from the Console
	14.9.1.2. Running TPS Self-Tests

	14.9.2. Self-Test Logging
	14.9.3. Configuring POSIX System ACLs
	14.9.3.1. Setting POSIX System ACLs for the CA, KRA, OCSP, TKS, and TPS

	CHAPTER 15. MANAGING CERTIFICATE SYSTEM USERS AND GROUPS
	15.1. ABOUT AUTHORIZATION
	15.2. DEFAULT GROUPS
	15.2.1. Administrators
	15.2.2. Auditors
	15.2.3. Agents
	15.2.4. Enterprise Groups

	15.3. MANAGING USERS AND GROUPS FOR A CA, OCSP, KRA, OR TKS
	15.3.1. Managing Groups
	15.3.1.1. Creating a New Group
	15.3.1.2. Changing Members in a Group

	15.3.2. Managing Users (Administrators, Agents, and Auditors)
	15.3.2.1. Creating Users
	15.3.2.2. Changing a Certificate System User's Certificate
	15.3.2.3. Renewing Administrator, Agent, and Auditor User Certificates
	15.3.2.4. Renewing an Expired Administrator, Agent, and Auditor User Certificate
	15.3.2.5. Deleting a Certificate System User

	15.4. CREATING AND MANAGING USERS FOR A TPS
	15.4.1. Listing and Searching for Users
	15.4.1.1. From the Web UI
	15.4.1.2. From the Command Line

	15.4.2. Adding Users
	15.4.2.1. From the Web UI

	15.4.3. Setting Profiles for Users
	15.4.4. Managing User Roles
	15.4.4.1. From the Web UI
	15.4.4.2. From the Command Line

	15.4.5. Managing User Certificates
	15.4.6. Renewing TPS Agent and Administrator Certificates
	15.4.7. Deleting Users

	15.5. CONFIGURING ACCESS CONTROL FOR USERS
	15.5.1. About Access Control
	15.5.2. Changing the Access Control Settings for the Subsystem
	15.5.3. Adding ACLs
	15.5.4. Editing ACLs

	CHAPTER 16. CONFIGURING SUBSYSTEM LOGS
	16.1. ABOUT CERTIFICATE SYSTEM LOGS
	16.1.1. Signed Audit Logs
	16.1.2. Debug Logs
	16.1.2.1. Installation Logs
	16.1.2.2. Tomcat Error and Access Logs
	16.1.2.3. Self-Tests Log

	16.2. MANAGING LOGS
	16.2.1. An Overview of Log Settings
	16.2.1.1. Services That Are Logged
	16.2.1.2. Log Levels (Message Categories)
	16.2.1.3. Buffered and Unbuffered Logging
	16.2.1.4. Log File Rotation

	16.2.2. Configuring Logs in the Console
	16.2.3. Configuring Logs in the CS.cfg File
	16.2.4. Managing Audit Logs
	16.2.4.1. A List of Audit Events
	16.2.4.2. Enabling Signed Audit Logging after Installation
	16.2.4.3. Configuring a Signed Audit Log in the Console
	16.2.4.4. Handling Audit Logging Failures
	16.2.4.5. Signing Log Files
	16.2.4.6. Filtering Audit Events

	16.2.5. Managing Log Modules

	16.3. USING LOGS
	16.3.1. Viewing Logs in the Console
	16.3.2. Using Signed Audit Logs
	16.3.2.1. Listing Audit Logs
	16.3.2.2. Downloading Audit Logs
	16.3.2.3. Verifying Signed Audit Logs

	16.3.3. Displaying Operating System-level Audit Logs
	16.3.3.1. Displaying Audit Log Deletion Events
	16.3.3.2. Displaying Access to the NSS Database for Secret and Private Keys
	16.3.3.3. Displaying Time Change Events
	16.3.3.4. Displaying Package Update Events
	16.3.3.5. Displaying Changes to the PKI Configuration

	16.3.4. Smart Card Error Codes

	CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES
	17.1. REQUIRED SUBSYSTEM CERTIFICATES
	17.1.1. Certificate Manager Certificates
	17.1.1.1. CA Signing Key Pair and Certificate
	17.1.1.2. OCSP Signing Key Pair and Certificate
	17.1.1.3. Subsystem Certificate
	17.1.1.4. SSL Server Key Pair and Certificate
	17.1.1.5. Audit Log Signing Key Pair and Certificate

	17.1.2. Online Certificate Status Manager Certificates
	17.1.2.1. OCSP Signing Key Pair and Certificate
	17.1.2.2. SSL Server Key Pair and Certificate
	17.1.2.3. Subsystem Certificate
	17.1.2.4. Audit Log Signing Key Pair and Certificate
	17.1.2.5. Recognizing Online Certificate Status Manager Certificates

	17.1.3. Key Recovery Authority Certificates
	17.1.3.1. Transport Key Pair and Certificate
	17.1.3.2. Storage Key Pair
	17.1.3.3. SSL Server Certificate
	17.1.3.4. Subsystem Certificate
	17.1.3.5. Audit Log Signing Key Pair and Certificate

	17.1.4. TKS Certificates
	17.1.4.1. SSL Server Certificate
	17.1.4.2. Subsystem Certificate
	17.1.4.3. Audit Log Signing Key Pair and Certificate

	17.1.5. TPS Certificates
	17.1.5.1. SSL Server Certificate
	17.1.5.2. Subsystem Certificate
	17.1.5.3. Audit Log Signing Key Pair and Certificate

	17.1.6. About Subsystem Certificate Key Types
	17.1.7. Using an HSM to Store Subsystem Certificates

	17.2. REQUESTING CERTIFICATES THROUGH THE CONSOLE
	17.2.1. Requesting Signing Certificates
	17.2.2. Requesting Other Certificates

	17.3. RENEWING SUBSYSTEM CERTIFICATES
	17.3.1. Re-keying Certificates in the End-Entities Forms
	17.3.2. Renewing Certificates in the Console
	17.3.3. Renewing Certificates Using certutil
	17.3.4. Renewing System Certificates

	17.4. CHANGING THE NAMES OF SUBSYSTEM CERTIFICATES
	17.5. USING CROSS-PAIR CERTIFICATES
	17.5.1. Installing Cross-Pair Certificates
	17.5.2. Searching for Cross-Pair Certificates

	17.6. MANAGING THE CERTIFICATE DATABASE
	17.6.1. Installing Certificates in the Certificate System Database
	17.6.1.1. Installing Certificates through the Console
	17.6.1.2. Installing Certificates Using certutil
	17.6.1.3. About CA Certificate Chains

	17.6.2. Viewing Database Content
	17.6.2.1. Viewing Database Content through the Console
	17.6.2.2. Viewing Database Content Using certutil

	17.6.3. Deleting Certificates from the Database
	17.6.3.1. Deleting Certificates through the Console
	17.6.3.2. Deleting Certificates Using certutil

	17.7. CHANGING THE TRUST SETTINGS OF A CA CERTIFICATE
	17.7.1. Changing Trust Settings through the Console
	17.7.2. Changing Trust Settings Using certutil

	17.8. MANAGING TOKENS USED BY THE SUBSYSTEMS
	17.8.1. Detecting Tokens
	17.8.2. Viewing Tokens
	17.8.3. Changing a Token's Password

	CHAPTER 18. SETTING TIME AND DATE IN RED HAT ENTERPRISE LINUX 7
	CHANGING THE CURRENT TIME
	CHANGING THE CURRENT DATE

	CHAPTER 19. DETERMINING CERTIFICATE SYSTEM PRODUCT VERSION
	CHAPTER 20. UPDATING RED HAT CERTIFICATE SYSTEM
	CHAPTER 21. TROUBLESHOOTING
	CHAPTER 22. SUBSYSTEM CONTROL AND MAINTENANCE
	22.1. STARTING, STOPPING, RESTARTING, AND OBTAINING STATUS
	22.2. SUBSYSTEM HEALTH CHECK
	22.2.1. Healthcheck in PKI
	22.2.1.1. PKI Healthcheck Test Modules
	22.2.1.2. PKI Healthcheck Configuration
	22.2.1.3. Running PKI Healthcheck
	22.2.1.4. Healthcheck Output Formats
	22.2.1.5. Healthcheck Results

	PART V. REFERENCES
	APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT REFERENCE
	A.1. INPUT REFERENCE
	A.1.1. Certificate Request Input
	A.1.2. CMC Certificate Request Input
	A.1.3. Dual Key Generation Input
	A.1.4. File-Signing Input
	A.1.5. Image Input
	A.1.6. Key Generation Input
	A.1.7. nsHKeyCertRequest (Token Key) Input
	A.1.8. nsNKeyCertRequest (Token User Key) Input
	A.1.9. Serial Number Renewal Input
	A.1.10. Subject DN Input
	A.1.11. Subject Name Input
	A.1.12. Submitter Information Input
	A.1.13. Generic Input
	A.1.14. Subject Alternative Name Extension Input

	A.2. OUTPUT REFERENCE
	A.2.1. Certificate Output
	A.2.2. PKCS #7 Output
	A.2.3. nsNSKeyOutput
	A.2.4. CMMF Output

	APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS
	B.1. DEFAULTS REFERENCE
	B.1.1. Authority Info Access Extension Default
	B.1.2. Authority Key Identifier Extension Default
	B.1.3. Authentication Token Subject Name Default
	B.1.4. Basic Constraints Extension Default
	B.1.5. CA Validity Default
	B.1.6. Certificate Policies Extension Default
	B.1.7. CRL Distribution Points Extension Default
	B.1.8. Extended Key Usage Extension Default
	B.1.9. Freshest CRL Extension Default
	B.1.10. Generic Extension Default
	B.1.11. Inhibit Any-Policy Extension Default
	B.1.12. Issuer Alternative Name Extension Default
	B.1.13. Key Usage Extension Default
	B.1.14. Name Constraints Extension Default
	B.1.15. Netscape Certificate Type Extension Default
	B.1.16. Netscape Comment Extension Default
	B.1.17. No Default Extension
	B.1.18. OCSP No Check Extension Default
	B.1.19. Policy Constraints Extension Default
	B.1.20. Policy Mappers Extension Default
	B.1.21. Private Key Usage Period Extension Default
	B.1.22. Signing Algorithm Default
	B.1.23. Subject Alternative Name Extension Default
	B.1.24. Subject Directory Attributes Extension Default
	B.1.25. Subject Info Access Extension Default
	B.1.26. Subject Key Identifier Extension Default
	B.1.27. Subject Name Default
	B.1.28. User Key Default
	B.1.29. User Signing Algorithm Default
	B.1.30. User Subject Name Default
	B.1.31. User Validity Default
	B.1.32. User Supplied Extension Default
	B.1.33. Validity Default

	B.2. CONSTRAINTS REFERENCE
	B.2.1. Basic Constraints Extension Constraint
	B.2.2. CA Validity Constraint
	B.2.3. Extended Key Usage Extension Constraint
	B.2.4. Extension Constraint
	B.2.5. Key Constraint
	B.2.6. Key Usage Extension Constraint
	B.2.7. Netscape Certificate Type Extension Constraint
	B.2.8. No Constraint
	B.2.9. Renewal Grace Period Constraint
	B.2.10. Signing Algorithm Constraint
	B.2.11. Subject Name Constraint
	B.2.12. Unique Key Constraint
	B.2.13. Unique Subject Name Constraint
	B.2.14. Validity Constraint

	B.3. STANDARD X.509 V3 CERTIFICATE EXTENSION REFERENCE
	B.3.1. authorityInfoAccess
	B.3.2. authorityKeyIdentifier
	B.3.3. basicConstraints
	B.3.4. certificatePoliciesExt
	B.3.5. CRLDistributionPoints
	B.3.6. extKeyUsage
	B.3.7. issuerAltName Extension
	B.3.8. keyUsage
	B.3.9. nameConstraints
	B.3.10. OCSPNocheck
	B.3.11. policyConstraints
	B.3.12. policyMappings
	B.3.13. privateKeyUsagePeriod
	B.3.14. subjectAltName
	B.3.15. subjectDirectoryAttributes
	B.3.16. subjectKeyIdentifier

	B.4. CRL EXTENSIONS
	B.4.1. About CRL Extensions
	B.4.1.1. Structure of CRL Extensions
	B.4.1.2. Sample CRL and CRL Entry Extensions

	B.4.2. Standard X.509 v3 CRL Extensions Reference
	B.4.2.1. Extensions for CRLs
	B.4.2.2. CRL Entry Extensions

	B.4.3. Netscape-Defined Certificate Extensions Reference
	B.4.3.1. netscape-cert-type
	B.4.3.2. netscape-comment

	APPENDIX C. PUBLISHING MODULE REFERENCE
	C.1. PUBLISHER PLUG-IN MODULES
	C.1.1. FileBasedPublisher
	C.1.2. LdapCaCertPublisher
	C.1.3. LdapUserCertPublisher
	C.1.4. LdapCrlPublisher
	C.1.5. LdapDeltaCrlPublisher
	C.1.6. LdapCertificatePairPublisher
	C.1.7. OCSPPublisher

	C.2. MAPPER PLUG-IN MODULES
	C.2.1. LdapCaSimpleMap
	C.2.1.1. LdapCaCertMap
	C.2.1.2. LdapCrlMap

	C.2.2. LdapDNExactMap
	C.2.3. LdapSimpleMap
	C.2.4. LdapSubjAttrMap
	C.2.5. LdapDNCompsMap
	C.2.5.1. Configuration Parameters of LdapDNCompsMap

	C.3. RULE INSTANCES
	C.3.1. LdapCaCertRule
	C.3.2. LdapXCertRule
	C.3.3. LdapUserCertRule
	C.3.4. LdapCRLRule

	APPENDIX D. ACL REFERENCE
	D.1. ABOUT ACL CONFIGURATION FILES
	D.2. COMMON ACLS
	D.2.1. certServer.acl.configuration
	D.2.2. certServer.admin.certificate
	D.2.3. certServer.auth.configuration
	D.2.4. certServer.clone.configuration
	D.2.5. certServer.general.configuration
	D.2.6. certServer.log.configuration
	D.2.7. certServer.log.configuration.fileName
	D.2.8. certServer.log.content.system
	D.2.9. certServer.log.content.signedAudit
	D.2.10. certServer.registry.configuration

	D.3. CERTIFICATE MANAGER-SPECIFIC ACLS
	D.3.1. certServer.admin.ocsp
	D.3.2. certServer.ca.certificate
	D.3.3. certServer.ca.certificates
	D.3.4. certServer.ca.configuration
	D.3.5. certServer.ca.connector
	D.3.6. certServer.ca.connectorInfo
	D.3.7. certServer.ca.crl
	D.3.8. certServer.ca.directory
	D.3.9. certServer.ca.group
	D.3.10. certServer.ca.ocsp
	D.3.11. certServer.ca.profile
	D.3.12. certServer.ca.profiles
	D.3.13. certServer.ca.registerUser
	D.3.14. certServer.ca.request.enrollment
	D.3.15. certServer.ca.request.profile
	D.3.16. certServer.ca.requests
	D.3.17. certServer.ca.systemstatus
	D.3.18. certServer.ee.certchain
	D.3.19. certServer.ee.certificate
	D.3.20. certServer.ee.certificates
	D.3.21. certServer.ee.crl
	D.3.22. certServer.ee.profile
	D.3.23. certServer.ee.profiles
	D.3.24. certServer.ee.request.ocsp
	D.3.25. certServer.ee.request.revocation
	D.3.26. certServer.ee.requestStatus
	D.3.27. certServer.job.configuration
	D.3.28. certServer.profile.configuration
	D.3.29. certServer.publisher.configuration
	D.3.30. certServer.securitydomain.domainxml

	D.4. KEY RECOVERY AUTHORITY-SPECIFIC ACLS
	D.4.1. certServer.job.configuration
	D.4.2. certServer.kra.certificate.transport
	D.4.3. certServer.kra.configuration
	D.4.4. certServer.kra.connector
	D.4.5. certServer.kra.GenerateKeyPair
	D.4.6. certServer.kra.getTransportCert
	D.4.7. certServer.kra.group
	D.4.8. certServer.kra.key
	D.4.9. certServer.kra.keys
	D.4.10. certServer.kra.registerUser
	D.4.11. certServer.kra.request
	D.4.12. certServer.kra.request.status
	D.4.13. certServer.kra.requests
	D.4.14. certServer.kra.systemstatus
	D.4.15. certServer.kra.TokenKeyRecovery

	D.5. ONLINE CERTIFICATE STATUS MANAGER-SPECIFIC ACLS
	D.5.1. certServer.ee.crl
	D.5.2. certServer.ee.request.ocsp
	D.5.3. certServer.ocsp.ca
	D.5.4. certServer.ocsp.cas
	D.5.5. certServer.ocsp.certificate
	D.5.6. certServer.ocsp.configuration
	D.5.7. certServer.ocsp.crl
	D.5.8. certServer.ocsp.group
	D.5.9. certServer.ocsp.info

	D.6. TOKEN KEY SERVICE-SPECIFIC ACLS
	D.6.1. certServer.tks.encrypteddata
	D.6.2. certServer.tks.group
	D.6.3. certServer.tks.importTransportCert
	D.6.4. certServer.tks.keysetdata
	D.6.5. certServer.tks.registerUser
	D.6.6. certServer.tks.sessionkey
	D.6.7. certServer.tks.randomdata

	APPENDIX E. AUDIT EVENTS
	E.1. AUDIT EVENT DESCRIPTIONS

	GLOSSARY
	INDEX
	APPENDIX F. REVISION HISTORY

