& RedHat

Red Hat Certificate System 10

Administration Guide

Updated for Red Hat Certificate System 10.4

Last Updated: 2023-08-25

Red Hat Certificate System 10 Administration Guide

Updated for Red Hat Certificate System 10.4

Florian Delehaye
Red Hat Customer Content Services
fdelehay@redhat.com

Marc Muehlfeld
Red Hat Customer Content Services

Petr Boko¢
Red Hat Customer Content Services

Filip Hanzelka
Red Hat Customer Content Services

Tomas Capek
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2020 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This manual covers all aspects of installing, configuring, and managing Certificate System
subsystems. It also covers management tasks such as adding users; requesting, renewing, and
revoking certificates; publishing CRLs; and managing smart cards. This guide is intended for
Certificate System administrators.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM SUBSYSTEMSo 6
11. USES FOR CERTIFICATES 6
1.2. AREVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS 6
1.3. ALOOK AT MANAGING CERTIFICATES (NON-TMS) 6
1.4. ALOOK AT THE TOKEN MANAGEMENT SYSTEM (TMS) 7
1.5. RED HAT CERTIFICATE SYSTEM SERVICES 7

PART I. RED HAT CERTIFICATE SYSTEM USER INTERFACES e 8

CHAPTER 2. USER INTERF ACES .. i i i i e e it 9
2.1. USER INTERFACES OVERVIEW 9
2.2. CLIENT NSS DATABASE INITIALIZATION 9
2.3. GRAPHICAL INTERFACE 10
2.4. WEB INTERFACE 12
2.5.COMMAND LINE INTERFACES 17
2.6. ENTERPRISE SECURITY CLIENT 23

PART Il. SETTING UP CERTIFICATE SERVICES ... i i i 25

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATEPROFILES) 26
3.1. ABOUT CERTIFICATE PROFILES 26
3.2.SETTING UP CERTIFICATE PROFILES 29
3.3. DEFINING KEY DEFAULTS IN PROFILES 41
3.4. CONFIGURING PROFILES TO ENABLE RENEWAL 42
3.5.SETTING THE SIGNING ALGORITHMS FOR CERTIFICATES 42
3.6. MANAGING CA-RELATED PROFILES 45
3.7.MANAGING SUBJECT NAMES AND SUBJECT ALTERNATIVE NAMES 53

CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY ... i 60
4.1. CONFIGURING AGENT-APPROVED KEY RECOVERY IN THE CONSOLE 60
4.2. TESTING THE KEY ARCHIVAL AND RECOVERY SETUP 61

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES ..., 63
5.1. ABOUT ENROLLING AND RENEWING CERTIFICATES 63
5.2. CREATING CERTIFICATE SIGNING REQUESTS 63
5.3. REQUESTING AND RECEIVING CERTIFICATES 73
5.4. RENEWING CERTIFICATES 76
5.5.SUBMITTING CERTIFICATE REQUESTS USING CMC 80
5.6. PERFORMING BULK ISSUANCE 94
5.7.ENROLLING A CERTIFICATE ON A CISCO ROUTER 96
5.8. USING CERTIFICATE TRANSPARENCY 102

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPSAND TKS 105
6.1. TPS PROFILES 105
6.2. TPS OPERATIONS 105
6.3. TOKEN POLICIES 106
6.4. TOKEN OPERATION AND POLICY PROCESSING 108
6.5. INTERNAL REGISTRATION 15
6.6. EXTERNAL REGISTRATION 116
6.7. MAPPING RESOLVER CONFIGURATION 121
6.8. AUTHENTICATION CONFIGURATION 123
6.9. CONNECTORS 125
6.10. REVOCATION ROUTING CONFIGURATION 126

Administration Guide

6.11. SETTING UP SERVER-SIDE KEY GENERATION 126
6.12. SETTING UP NEW KEY SETS 128
6.13. SETTING UP A NEW MASTER KEY 130
6.14. SETTING UP A TKS/TPS SHARED SYMMETRIC KEY 133
6.15. USING DIFFERENT APPLETS FOR DIFFERENT SCP VERSIONS 136
CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS e 137
7.1. ABOUT REVOKING CERTIFICATES 137
7.2. PERFORMING A CMC REVOCATION 140
7.3.1SSUING CRLS 144
7.4.SETTING FULL AND DELTA CRL SCHEDULES 153
7.5.ENABLING REVOCATION CHECKING 157
7.6. USING THE ONLINE CERTIFICATE STATUS PROTOCOL (OCSP) RESPONDER 157
CHAPTER 8. MANAGING PKIACME RESPONDER ... i i 17
8.1. ENABLING/DISABLING ACME SERVICES 171
8.2. CHECKING THE STATUS OF PKI ACME RESPONDER 171
PART Ill. ADDITIONAL CONFIGURATION TO MANAGE CASERVICES ...t 172
CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS ... o e 173
9.1. ABOUT PUBLISHING 173
9.2. CONFIGURING PUBLISHING TO AFILE 176
9.3. CONFIGURING PUBLISHING TO AN OCSP 179
9.4. CONFIGURING PUBLISHING TO AN LDAP DIRECTORY 181
9.5. CREATING RULES 188
9.6. ENABLING PUBLISHING 191
9.7. ENABLING A PUBLISHING QUEUE 193
9.8. SETTING UP RESUMABLE CRL DOWNLOADS 194
9.9. PUBLISHING CROSS-PAIR CERTIFICATES 195
9.10. TESTING PUBLISHING TO FILES 196
9.11. VIEWING CERTIFICATES AND CRLS PUBLISHED TO FILE 197
9.12. UPDATING CERTIFICATES AND CRLS IN A DIRECTORY 197
9.13. REGISTERING CUSTOM MAPPER AND PUBLISHER PLUG-IN MODULES 199
CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES ..o 201
10.1. CONFIGURING AGENT-APPROVED ENROLLMENT 201
10.2. AUTOMATED ENROLLMENT 201
10.3. CMC AUTHENTICATION PLUG-INS 21
10.4. CMC SHAREDSECRET AUTHENTICATION 213
10.5. TESTING ENROLLMENT 214
10.6. REGISTERING CUSTOM AUTHENTICATION PLUG-INS 215
10.7. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE COMMAND LINE 217
10.8. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE WEB INTERFACE 217
CHAPTER 11. AUTHORIZATION FOR ENROLLING CERTIFICATES (ACCESS EVALUATORS) 219
11.1. AUTHORIZATION MECHANISM 219
11.2. DEFAULT EVALUATORS 219
CHAPTER12. USING AUTOMATED NOTIFICATIONS ... e 221
12.1. ABOUT AUTOMATED NOTIFICATIONS FOR THE CA 221
12.2. SETTING UP AUTOMATED NOTIFICATIONS FOR THE CA 222
12.3. CUSTOMIZING NOTIFICATION MESSAGES 224
12.4. CONFIGURING A MAIL SERVER FOR CERTIFICATE SYSTEM NOTIFICATIONS 228
12.5. CREATING CUSTOM NOTIFICATIONS FOR THE CA 229

Table of Contents

CHAPTER13.SETTING AUTOMATED JOBS ... i i 230
13.1. ABOUT AUTOMATED JOBS 230
13.2. SETTING UP THE JOB SCHEDULER 231
13.3. SETTING UP SPECIFIC JOBS 232
13.4. REGISTERING A JOB MODULE 241

PART IV. MANAGING THE SUBSYSTEMINSTANCES i 243

CHAPTER 14. BASIC SUBSYSTEM MANAGEMENT ... i e 244
14.1. PKI INSTANCES 244
14.2. PKIINSTANCE EXECUTION MANAGEMENT 244
14.3. OPENING SUBSYSTEM CONSOLES AND SERVICES 248
14.4. RUNNING SUBSYSTEMS UNDER A JAVA SECURITY MANAGER 253
14.5. CONFIGURING THE LDAP DATABASE 254
14.6. VIEWING SECURITY DOMAIN CONFIGURATION 261
14.7. MANAGING THE SELINUX POLICIES FOR SUBSYSTEMS 262
14.8. BACKING UP AND RESTORING CERTIFICATE SYSTEM 264
14.9. RUNNING SELF-TESTS 269

CHAPTER 15. MANAGING CERTIFICATE SYSTEMUSERSAND GROUPS o, 273
15.1. ABOUT AUTHORIZATION 273
15.2. DEFAULT GROUPS 273
15.3. MANAGING USERS AND GROUPS FOR A CA, OCSP, KRA, OR TKS 277
15.4. CREATING AND MANAGING USERS FOR A TPS 286
15.5. CONFIGURING ACCESS CONTROL FOR USERS 291

CHAPTER 16. CONFIGURING SUBSYSTEMLOGS e 298
16.1. ABOUT CERTIFICATE SYSTEM LOGS 298
16.2. MANAGING LOGS 302
16.3. USING LOGS 3N

CHAPTER 17. MANAGING SUBSYSTEM CERTIFICATES ... i 317
17.1. REQUIRED SUBSYSTEM CERTIFICATES 317
17.2. REQUESTING CERTIFICATES THROUGH THE CONSOLE 324
17.3. RENEWING SUBSYSTEM CERTIFICATES 342
17.4. CHANGING THE NAMES OF SUBSYSTEM CERTIFICATES 345
17.5. USING CROSS-PAIR CERTIFICATES 349
17.6. MANAGING THE CERTIFICATE DATABASE 350
17.7. CHANGING THE TRUST SETTINGS OF A CA CERTIFICATE 356
17.8. MANAGING TOKENS USED BY THE SUBSYSTEMS 358

CHAPTER 18. SETTING TIME AND DATE IN RED HAT ENTERPRISE LINUX7 ..., 359
CHANGING THE CURRENT TIME 359
CHANGING THE CURRENT DATE 359

CHAPTER 19. DETERMINING CERTIFICATE SYSTEM PRODUCTVERSIONt 360

CHAPTER 20. UPDATING RED HAT CERTIFICATE SYSTEM ... e 361

CHAPTER 21. TROUBLESHOOTING ... i e e ittt 362

CHAPTER 22. SUBSYSTEM CONTROL AND MAINTENANCE 366
22.1. STARTING, STOPPING, RESTARTING, AND OBTAINING STATUS 366
22.2. SUBSYSTEM HEALTH CHECK 366

PART V. REFERENCES ... i i i i e e e it i 369

Administration Guide

APPENDIX A. CERTIFICATE PROFILE INPUT AND OUTPUT REFERENCE cooiiiiiiiitt
A1 INPUT REFERENCE
A.2. OUTPUT REFERENCE

APPENDIX B. DEFAULTS, CONSTRAINTS, AND EXTENSIONS FOR CERTIFICATES AND CRLS
B.1. DEFAULTS REFERENCE
B.2. CONSTRAINTS REFERENCE
B.3. STANDARD X.509 V3 CERTIFICATE EXTENSION REFERENCE
B.4. CRL EXTENSIONS

APPENDIX C. PUBLISHING MODULE REFERENCE s
C.1. PUBLISHER PLUG-IN MODULES
C.2. MAPPER PLUG-IN MODULES
C.3. RULE INSTANCES

APPENDIX D. ACL REFERENCE ..o i i i e i i it
D.1. ABOUT ACL CONFIGURATION FILES
D.2. COMMON ACLS
D.3. CERTIFICATE MANAGER-SPECIFIC ACLS
D.4. KEY RECOVERY AUTHORITY-SPECIFIC ACLS
D.5. ONLINE CERTIFICATE STATUS MANAGER-SPECIFIC ACLS
D.6. TOKEN KEY SERVICE-SPECIFIC ACLS

APPENDIX E. AUDIT EVENT S . i i i et i et it
E.1. AUDIT EVENT DESCRIPTIONS

370
375

376
376

a1
420
430

446
446
449
456

459
459
460
466
480
485
489

492
492

Table of Contents

Administration Guide

CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM
SUBSYSTEMS

Every common PKI operation — issuing, renewing and revoking certificates; archiving and recovering
keys; publishing CRLs and verifying certificate status — are carried out by interoperating subsystems
within Red Hat Certificate System. The functions of each individual subsystem and the way that they
work together to establish a robust and local PKl is described in this chapter.

1.1. USES FOR CERTIFICATES

The purpose of certificates is to establish trust. Their usage varies depending on the kind of trust they
are used to ensure. Some kinds of certificates are used to verify the identity of the presenter; others are
used to verify that an object or item has not been tampered with.

For information on how certificates are used, the types of certificates, or how certificates establish
identities and relationships, see the Certificates and Authentication section in the Red Hat
Certificate System Planning, Installation, and Deployment Guide.

1.2. AREVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS

Red Hat Certificate System provides five different subsystems, each focusing on different aspects of a
PKI deployment. These subsystems work together to create a public key infrastructure (PKI).
Depending on what subsystems are installed, a PKI can function as a token management system (TMS)
or a non token management system. For descriptions of the subsystems and TMS and non-TMS
environments, see the A Review of Certificate System Subsystems section in the Red Hat

Certificate System Planning, Installation, and Deployment Guide.

Enterprise Security Client

The Enterprise Security Client is not a subsystem since it does not perform any operations with
certificates, keys, or tokens. The Enterprise Security Client is a user interface which allows people to
manage certificates on smart cards very easily. The Enterprise Security Client sends all token
operations, such as certificate requests, to the token processing system (TPS), which then sends them
to the certificate authority (CA). For more information, see For more information, see Red Hat
Certificate System Managing Smart Cards with the Enterprise Security Client.

1.3. ALOOK AT MANAGING CERTIFICATES (NON-TMS)

A conventional PKI environment provides the basic framework to manage certificates stored in software
databases. This is a non-TMS environment, since it does not manage certificates on smart cards. At a
minimum, a non-TMS requires only a CA, but a non-TMS environment can use OCSP responders and
KRA instances as well.

For information on this topic, see the following sections in the Red Hat Certificate System Planning,
Installation, and Deployment Guide:

® Managing Certificates

® Using a Single Certificate Manager

Planning for Lost Keys: Key Archival and Recovery

Balancing Certificate Request Processing

Balancing Client OCSP Requests

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html#types-of-certificates
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/SubsystemOverview.html#overview-subsystems
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Managing_Smart_Cards_with_the_Enterprise_Security_Client/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/cert-lifecycle.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#sect-Deployment_Guide-Deployment_Scenarios-Single_Certificate_Manager
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#planning-for-lost-keys
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#load-balancing-requests
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/chap-deployment_guide-planning_your_crts#load-balancing-crls

CHAPTER 1. OVERVIEW OF RED HAT CERTIFICATE SYSTEM SUBSYSTEM¢S

1.4. ALOOK AT THE TOKEN MANAGEMENT SYSTEM (TMS)

Certificate System creates, manages, renews, and revokes certificates, and it also archives and recovers
keys. For organizations which use smart cards, the Certificate System has a token management system
— a collection of subsystems with established relationships — to generate keys and requests and receive
certificates to be used for smart cards.

For information on this topic, see the following sections in the Red Hat Certificate System Planning,
Installation, and Deployment Guide:

® Working with Smart Cards (TMS)

® Using Smart Cards

1.5. RED HAT CERTIFICATE SYSTEM SERVICES

There are various different interfaces for managing certificates and subsystems, depending on the user
type: administrators, agents, auditors, and end users. For an overview of the different functions that are
performed through each interface, see the User Interfaces section.

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/chap-Deployment_Guide-Planning_Your_CRTS.html#sect-Deployment_Guide-Deployment_Scenarios-Smart_Card_Enrollment
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/user_interfaces

Administration Guide

PART I|. RED HAT CERTIFICATE SYSTEM USER INTERFACES

CHAPTER 2. USER INTERFACES

CHAPTER 2. USER INTERFACES

There are different interfaces for managing certificates and subsystems, depending on the user's role:
administrators, agents, auditors, and end users.

2.1. USER INTERFACES OVERVIEW

Administrators can use the following interfaces to securely interact with a completed Certificate System
installation:

® The PKlI command-line interface and other command-line utilities
® The PKI Console graphical interface
® The Certificate System web interface.

These interfaces require configuration prior to use for secure communication with the

Certificate System server over TLS. Using these clients without proper configuration is not allowed.
Some of these tools use TLS client authentication. When required, their required initialization procedure
includes configuring this. Which interface is used depends on the administrator's preferences and
functionality available. Common actions using these interfaces are described in the remainder of the
guide after this chapter.

By default, the PKI command-line interface uses the NSS database in the user's ~/.dogtag/nssdb/
directory. Section 2.5.1.1, “pki CLI Initialization” provides detailed steps for initializing the NSS database
with the administrator's certificate and key. Some examples of using the PKI command-line utility are
described in Section 2.5.1.2, “Using "pki" CLI". Additional examples are shown through the rest of the
guide.

Interfacing with Certificate System (as an administrator in other user roles) can be done using various
command-line utilities to submit CMC requests, manage generated certificates, and so on. These are
described briefly in Section 2.5, “Command Line Interfaces”, such as Section 2.5.2, “AtoB". These utilities
are utilized in later sections such as Section 5.2.1.2, “Creating a CSR Using PKCS10Client".

The Certificate System web interface allows administrative access through the Firefox web browser.
Section 2.4.1, "Browser Initialization” describes instructions about configuring the client authentication.
Other sections in Section 2.4, "Web Interface” describe using the web interface of Certificate System.

The Certificate System's PKI Console is a graphical interface. Please note that it is being deprecated.
Section 2.3.1, “pkiconsole Initialization” describes how to initialize this console interface. Section 2.3.2,
“Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems” gives an overview of using it. Later
sections, such as Section 3.2.2, “Managing Certificate Enrollment Profiles Using the Java-based
Administration Console” go into greater detail for specific operations.

NOTE

To terminate a PKI Console session, click the EXit button. To terminate a web browser
session, close the browser. A command-line utility terminates itself as soon as it performs
the action and returns to the prompt, so no action is needed on the administrator's part
to terminate the session.

2.2. CLIENT NSS DATABASE INITIALIZATION

Administration Guide

On Red Hat Certificate System, certain interfaces may need to access the server using TLS client
certificate authentication (mutual authentication). Before performing server-side admin tasks, you need
to:

1. Prepare an NSS database for the client. This can be a new database or an existing one.

2. Import the CA certificate chain and trust them.

3. Have a certificate and corresponding key. They can be generated in the NSS database or
imported from somewhere else, such as from a PKCS #12 file.

Based on the utility, you need to initialize the NSS database accordingly. See:
® Section 2.5.1.1, “pki CLI Initialization”
® Section 2.3.1, “pkiconsole Initialization”

® Section 2.4.1, "Browser Initialization”

2.3. GRAPHICAL INTERFACE

IMPORTANT

pkiconsole is being deprecated.

The Certificate System console,pkiconsole, is a graphical interface that is designed for users with the
Administrator role privilege to manage the subsystem itself. This includes adding users, configuring logs,
managing profiles and plug-ins, and the internal database, among many other functions. This utility
communicates with the Certificate System server via TLS using client-authentication and can be used to
manage the server remotely.

2.3.1. pkiconsole Initialization

To use the pkiconsole interface for the first time, specify a new password and use the following
command:

I $ pki -c password -d ~/.redhat-idm-console client-init

This command creates a new client NSS database in the ~/.redhat-idm-console/ directory.

To import the CA certificate into the PKI client NSS database, see the Importing a certificate into an NSS
Database section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

To request a new client certificate, see Chapter 5, Requesting, Enrolling, and Managing Certificates.

Execute the following command to extract the admin client certificate from the .p12 file:

I $ openssl pkcs12 -in file -clcerts -nodes -nokeys -out file.crt

Validate and import the admin client certificate as described in the Managing Certificate/Key Crypto
Token section in the Red Hat Certificate System Planning, Installation, and Deployment Guide:

I $ PKICertlmport -d ~/.redhat-idm-console -n "nickname" -t ",," -a -i file.crt-u C

10

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/importing_certificate_into_nssdb
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing_certificate_key_crypto_token

CHAPTER 2. USER INTERFACES

IMPORTANT

Make sure all intermediate certificates and the root CA certificate have been imported
before importing the CA admin client certificate.

To import an existing client certificate and its key into the client NSS database:

$ pki -c password -d ~/.redhat-idm-console pkcs12-import --pkcs12-file file --pkcs12-password
pkcs12-password
Verify the client certificate with the following command:

I $ certutil -V -u C -n "nickname" -d ~/.redhat-idm-console

2.3.2. Using pkiconsole for CA, OCSP, KRA, and TKS Subsystems

The Java console is used by four subsystems: the CA, OCSP, KRA, and TKS. The console is accessed
using a locally-installed pkiconsole utility. It can access any subsystem because the command requires
the host name, the subsystem's administrative TLS port, and the specific subsystem type.

I pkiconsole https://server.example.com:admin_port/subsystem_type

If DNS is not configured, you can use an IPv4 or IPv6 address to connect to the console. For example:

https://192.0.2.1:8443/ca
https://[2001:DB8::1111]:8443/ca

This opens a console, as in Figure 2.1, “Certificate System Console”.

Console Edit Yiew Help

Configuration

Fed Hat Certificate Systerm: 9543

f Internal Database |/ SMTP r Self Tests
U=zers and Groups

Arcess Control List Database Settings
Log : :
Systern Keys and Certificates Host name: [localhost |
Adthentication : Port number: [2025 |
o= |ok Scheduler :
o= Certificate Manager B Directory manager DN: ||:n=Direct|:|rv Manager |

Figure 2.1. Certificate System Console

The Configuration tab controls all of the setup for the subsystem, as the name implies. The choices
available in this tab are different depending on which subsystem type the instance is; the CA has the
most options since it has additional configuration for jobs, notifications, and certificate enrollment
authentication.

All subsystems have four basic options:

® Users and groups

® Access control lists

11

Administration Guide

® | og configuration

® Subsystem certificates (meaning the certificates issued to the subsystem for use, for example,
in the security domain or audit signing)

The Status tab shows the logs maintained by the subsystem.

2.4. WEB INTERFACE

2.4.1. Browser Initialization

This section explains browser initialization for Firefox to access PKl services.

Importing a CA Certificate

1. Click Menu — Preferences — Privacy & Security— View certificates.

Certificates

When a server requests your personal certificate
Select one automatically
® Askyou every time

Query OCSP responder servers to confirm the current validity of View Certificates...

certificates . .
Security Devices...

2. Select the Authorities tab and click the Import button.
Certificate Manager X

Your Certificates People Servers Authorities

You have certificates on file that identify these certificate authorities

Certificate Name Security Device

v AC Camerfirma S.A.

3

Chambers of Commerce Root - 2008 Default Trust

Global Chambersign Root - 2008 Default Trust
v AC Camerfirma SA CIF AB2743287

Camerfirma Chambers of Commerce Root Default Trust

Camerfirma Global Chambersign Reot Default Trust
v ACCV

ACCVRAIZ1 Default Trust

~ Actalis 5.p.A./03358520967

View... Edit Trust... Import... Export... Delete or Distrust...

oK

3. Select the ca.crt file and click Import.

Importing a Client Certificate

1. Click Options = Preferences — Privacy & Security— View certificates.

12

2. Select the Your Certificates tab.

Certificate Manager
Your Certificates People Servers Authorities
fou have certificates from these organizations that identify you
Certificate Name Security Device
View... Backup... Backup AlL... Import... Delete...

CHAPTER 2. USER INTERFACES

Serial Number Expires On

a

oK

3. Click on Import and select the client p12 file, such as ca_admin_cert.p12.

4. Enter the password for the client certificate on the prompt.

Cancel

~~ Please enter the password that was used to encrypt this certificate backup:

OK

5. Click OK.

6. Verify that an entry is added under Your Certificates.

13

Administration Guide

Certificate Manager X

Your Certificates People Servers Authorities

You have certificates from these organizations that identify you

a

Certificate Name Security Device Serial Number Expires On
~ EXAMPLEDOMAIN
PKI Administrator Software Security Device 06 November 30, 2020

View... Backup... Backup AlL.. Import Delete...

oK

Accessing the Web Console
You can access the PKl services by opening https://host_name:portin your browser.

2.4.2. The Administrative Interfaces

The all subsystems use HTML-based administrative interface. It is accessed by entering the host name
and secure port as the URL, authenticating with the administrator's certificate, and clicking the
appropriate Administrators link.

NOTE

There is a single TLS port for all subsystems which is used for both administrator and
agent services. Access to those services is restricted by certificate-based authentication.

The HTML admin interface is much more limited than the Java console; the primary administrative
function is managing the subsystem users.

The TPS only allows operations to manage users for the TPS subsystem. However, the TPS admin page

can also list tokens and display all activities (including normally-hidden administrative actions)
performed on the TPS.

14

CHAPTER 2. USER INTERFACES

Red Hat® TPS Services

Administrator Operations

Tokens
» List/Search Tolkens
» Add New Token

Users
» Add User
» List Users

» Search Users

Activities
* List/'Search Actrvities

Self Tests
» Bun Self Tests

Auditing
» Configure Signed Audit

Advanced Configuration
* Profiles

+ Subsvstem Connections

+ Profile Mappings

+ Authentication Sources

* General

15

Figure 2.2. TPS Admin Page

2.4.3. Agent Interfaces

The agent services pages are where almost all of the certificate and token management tasks are
performed. These services are HTML-based, and agents authenticate to the site using a special agent
certificate.

Red Hat® Agent Services

Certificate Manager

List Requests List Requests
Use this form to show a list of certificate requests.

Request type: Show enrollment requests |+
Request status: | Show pending requests |+

Starting request number: |p

first |20 records

Figure 2.3. Certificate Manager's Agent Services Page
The operations vary depending on the subsystem:
® The Certificate Manager agent services include approving certificate requests (which issues the
certificates), revoking certificates, and publishing certificates and CRLs. All certificates issued
by the CA can be managed through its agent services page.
® The TPS agent services, like the CA agent services, manages all of the tokens which have been
formatted and have had certificates issued to them through the TPS. Tokens can be enrolled,
suspended, and deleted by agents. Two other roles (operator and admin) can view tokens in web

services pages, but cannot perform any actions on the tokens.

® KRA agent services pages process key recovery requests, which set whether to allow a
certificate to be issued reusing an existing key pair if the certificate is lost.

® The OCSP agent services page allows agents to configure CAs which publish CRLs to the
OCSP, to load CRLs to the OCSP manually, and to view the state of client OCSP requests.

The TKS is the only subsystem without an agent services page.

2.4.4. End User Pages

CHAPTER 2. USER INTERFACES

The CA and TPS both process direct user requests in some way. That means that end users have to
have a way to connect with those subsystems. The CA has end-user, or end-entities, HTML services. The
TPS uses the Enterprise Security Client.

The end-user services are accessed over standard HTTP using the server's host name and the standard
port number; they can also be accessed over HTTPS using the server's host name and the specific end-
entities TLS port.

For CAs, each type of TLS certificate is processed through a specific online submission form, called a
profile. There are about two dozen certificate profiles for the CA, covering all sorts of certificates — user
TLS certificates, server TLS certificates, log and file signing certificates, email certificates, and every
kind of subsystem certificate. There can also be custom profiles.

Red Hat® Certificate Manager

Enrollment Revocation Retrieval

List Certificate Certificate Profile
Profiles Use this form to select a certificate profile for the request.
Certificate Profile Name Description

This certificz
certificates.

This certifica

certificates,
Enrollment later.

® Manual User Dual-Use Certificate Enrollment

® Manual User Signing & Encryption Certificates

This profile is

& PRIkl L AA Siamima Carkifieate Errallrman e

Figure 2.4. Certificate Manager's End-Entities Page

End users retrieve their certificates through the CA pages when the certificates are issued. They can
also download CA chains and CRLs and can revoke or renew their certificates through those pages.

2.5. COMMAND LINE INTERFACES

This section discusses command-line utilities.

2.5.1. "pki" CLI

The pki command-line interface (CLI) provides access to various services on the server using the REST
interface (see the REST Interface section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide. The CLI can be invoked as follows:

I $ pki [CLI options] <command> [command parameters]

Note that the CLI options must be placed before the command, and the command parameters after the
command.

17

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/sect-certificate-system-architecture-overview#sect-architecture-overview-resteasy

Administration Guide

2.5.1.1. pki CLI Initialization

To use the command line interface for the first time, specify a new password and use the following
command:

I $ pki -c <password> client-init
This will create a new client NSS database in the ~/.dogtag/nssdb directory. The password must be

specified in all CLI operations that uses the client NSS database. Alternatively, if the password is stored
in a file, you can specify the file using the -C option. For example:

I $ pki -C password_file client-init

To import the CA certificate into the client NSS database refer to the Importing a certificate into an NSS
Database section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

Some commands may require client certificate authentication. To import an existing client certificate
and its key into the client NSS database, specify the PKCS #12 file and the password, and execute the

following command:

Execute the following command to extract the admin client certificate from the .p12 file:

I $ openssl pkcs12 -in file -clcerts -nodes -nokeys -out file.crt

Validate and import the admin client certificate as described in the Managing Certificate/Key Crypto
Token section in the Red Hat Certificate System Planning, Installation, and Deployment Guide:

I $ PKICertlmport -d ~/.dogtag/nssdb -n "nickname" -t ",," -a -i file.crt-u C

IMPORTANT

Make sure all intermediate certificates and the root CA certificate have been imported
before importing the CA admin client certificate.

To import an existing client certificate and its key into the client NSS database, specify the PKCS #12 file
and the password, and execute the following command:

I $ pki -c <password> pkcs12-import --pkes12-file <file> --pkcs12-password <password>
Verify the client certificate with the following command:
I certutil -V -u C -n "nickname" -d ~/.dogtag/nssdb

2.5.1.2. Using "pki" CLI

The command line interface supports a number of commands organized in a hierarchical structure. To
list the top-level commands, execute the pki command without any additional commands or
parameters:

| 5o

18

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/importing_certificate_into_nssdb
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing_certificate_key_crypto_token

CHAPTER 2. USER INTERFACES

Some commands have subcommands. To list them, execute pki with the command name and no
additional options. For example:

I $ pki ca

I $ pki ca-cert

To view command usage information, use the --help option:

I $ pki --help

I $ pki ca-cert-find --help

To view manual pages, specify the command line help command:
I $ pki help

I $ pki help ca-cert-find

To execute a command that does not require authentication, specify the command and its parameters
(if required), for example:

I $ pki ca-cert-find

To execute a command that requires client certificate authentication, specify the certificate nickname,
the client NSS database password, and optionally the server URL:

I $ pki -U <server URL> -n <nickname> -c <password> <command> [command parameters]
For example:
I $ pki -n jsmith -c password ca-user-find ...

By default, the CLI communicates with the server at http://local_host_name:8080. To communicate
with a server at a different location, specify the URL with the -U option, for example:

I $ pki -U https://server.example.com:8443 -n jsmith -¢c password ca-user-find

2.5.2. AtoB

The AtoB utility decodes the Base64-encoded certificates to their binary equivalents. For example:
I $ AtoB input.ascii output.bin

For further details, more options, and additional examples, see the AtoB(1) man page.

2.5.3. AuditVerify

The AuditVerify utility verifies integrity of the audit logs by validating the signature on log entries.

Example:

19

Administration Guide

I $ AuditVerify -d ~jsmith/auditVerifyDir -n Log Signing Certificate -a ~jsmith/auditVerifyDir/logListFile -
P nn 'V

The example verifies the audit logs using the Log Signing Certificate (-n) in the ~jsmith/auditVerifyDir
NSS database (-d). The list of logs to verify (-a) are in the ~jsmith/auditVerifyDir/logListFile file,
comma-separated and ordered chronologically. The prefix (-P) to prepend to the certificate and key
database file names is empty. The output is verbose (-v).

For further details, more options, and additional examples, see the AuditVerify(1) man page or
Section 16.3.2, “Using Signed Audit Logs”.

2.5.4. BtoA

The BtoA utility encodes binary data in Base64. For example:
I $ BtoA input.bin output.ascii

For further details, more options, and additional examples, see the BtoA(1) man page.

2.5.5. CMCRequest

The CMCRequest utility creates a certificate issuance or revocation request. For example:

I $ CMCRequest example.cfg

NOTE

All options to the CMCRequest utility are specified as part of the configuration filed
passed to the utility. See the CMCRequest(1) man page for configuration file options and
further information. Also see 4.3. Requesting and Receiving Certificates Using CMC and
Section 7.2.1, “Revoking a Certificate Using CMCRequest”.

2.5.6. CMCRevoke

Legacy. Do not use.

2.5.7. CMCSharedToken

The CMCSharedToken utility encrypts a user passphrase for shared-secred CMC requests. For
example:

$ CMCSharedToken -d . -p myNSSPassword -s "shared_passphrase" -o cmcSharedTok2.b64 -n
"subsystemCert cert-pki-tomcat”

The shared passphrase (-8) is encrypted and stored in the cmcSharedtok2.b64 file (-0) using the
certificate named subsystemCert cert-pki-tomcat (-n) found in the NSS database in the current
directory (-d). The default security token internal is used (as -h is not specified) and the token
password of myNSSPassword is used for accessing the token.

For further details, more options, and additional examples, see the CMCSharedtoken(1) man page and
also Section 7.2.1, “Revoking a Certificate Using CMCRequest".

20

CHAPTER 2. USER INTERFACES

2.5.8. CRMFPopClient

The CRMFPopClient utility is Certificate Request Message Format (CRMF) client using NSS databases
and supplying Proof of Possession.

Example:

$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b kra.transport -w
"AES/CBC/PKCS5Padding” -t false -v -0 /user_or_entity_database_directory/example.csr

This example creates a new CSR with the cn=subject_name subject DN (-n), NSS database in the
current directory (-d), certificate to use for transport kra.transport (-b), the
AES/CBC/PKCS5Padding key wrap algorithm verbose output is specified (-v) and the resulting CSR is
written to the /user_or_entity database_directory/example.csr file (-0).

For further details, more options, and additional examples, see the output of the CRMFPopClient --
help command and also Section 7.2.1, “Revoking a Certificate Using CMCRequest”.

2.5.9. HttpClient

The HttpClient utility is an NSS-aware HTTP client for submitting CMC requests.

Example:

I $ HitpClient request.cfg

NOTE

All parameters to the HttpClient utility are stored in the request.cfq file. For further
information, see the output of the HttpClient --help command.

2.5.10. OCSPClient

An Online Certificate Status Protocol (OCSP) client for checking the certificate revocation status.

Example:

I $ OCSPClient -h server.example.com -p 8080 -d /etc/pki/pki-tomcat/alias -¢ "caSigningCert cert-pki-
ca" --serial 2

This example queries the server.example.com OCSP server (-h) on port 8080 (-p) to check whether
the certificate signed by caSigningcet cert-pki-ca (-¢) with serial number 2 (--serial) is valid. The NSS
database in the /etc/pki/pki-tomcat/alias directory is used.

For further details, more options, and additional examples, see the output of the OCSPClient --help
command.

2.5.11. PKCS10Client

The PKCS10Client utility creates a CSR in PKCSI10 format for RSA and EC keys, optionally on an HSM.

Example:

21

Administration Guide

$ PKCS10Client -d /etc/dirsrv/slapd-instance_name/ -p password -a rsa -| 2048 -0 ~/ds.csr -n
"CN=$HOSTNAME"

This example creates a new RSA (-a) key with 2048 bits (-I) in the /etc/dirsrv/slapd-instance_name/
directory (-d with database password password (-p). The output CSR is stored in the ~/ds.cfg file (-0)
and the certificate DN is CN=$HOSTNAME (-n).

For further details, more options, and additional examples, see the PKCS10Client(1) man page.

2.5.12. PrettyPrintCert

The PrettyPrintCert utility displays the contents of a certificate in a human-readable format.

Example:

I $ PrettyPrintCert ascii_data.cert

This command parses the output of the ascii_data.cert file and displays its contents in human readable
format. The output includes information like signature algorithm, exponent, modulus, and certificate
extensions.

For further details, more options, and additional examples, see the PrettyPrintCert(1) man page.

2.5.13. PrettyPrintCrl

The PrettyPrintCrl utility displays the content of a CRL file in a human readable format.

Example:
I $ PrettyPrintCrl ascii_data.crl
This command parses the output of the ascii_data.crl and displays its contents in human readable

format. The output includes information, such as revocation signature algorithm, the issuer of the
revocation, and a list of revoked certificates and their reason.

For further details, more options, and additional examples, see the PrettyPrintCrl(1) man page.

2.5.14. TokenlInfo

The TokenlInfo utility lists all tokens in an NSS database.

Example:

I $ TokenlInfo ./nssdb/

This command lists all tokens (HSMs, soft tokens, and so on) registered in the specified database
directory.

For further details, more options, and additional examples, see the output of the Tokenlnfo command

2.5.15. tkstool

The tkstool utility is interacting with the token Key Service (TKS) subsystem.

22

CHAPTER 2. USER INTERFACES

Example:

I $ tkstool -M -n new_master -d /var/lib/pki/pki-tomcat/alias -h token_name

This command creates a new master key (-M) named new_master (-n) in the /var/lib/pki/pki-
tomcat/alias NSS database on the HSM token_name

For further details, more options, and additional examples, see the output of the tkstool -H command.

2.6. ENTERPRISE SECURITY CLIENT

The Enterprise Security Client is a tool for Red Hat Certificate System which simplifies managing smart
cards. End users can use security tokens (smart cards) to store user certificates used for applications
such as single sign-on access and client authentication. End users are issued the tokens containing
certificates and keys required for signing, encryption, and other cryptographic functions.

The Enterprise Security Client is the third part of Certificate System's complete token management
system. Two subsystems — the Token Key Service (TKS) and Token Processing System (TPS) — are
used to process token-related operations. The Enterprise Security Clientis the interface which allows
the smart card and user to access the token management system.

After a token is enrolled, applications such as Mozilla Firefox and Thunderbird can be configured to
recognize the token and use it for security operations, like client authentication and S/MIME mail.
Enterprise Security Client provides the following capabilities:

® Supports JavaCard 2.1 or higher cards and Global Platform 2.01-compliant smart cards like
Safenet's 330J smart card.

® Supports Gemalto TOP IM FIPS CY2 tokens, both the smart card and GemPCKey USB form
factor key.

® Supports SafeNet Smart Card 650 (SC650).

® FEnrolls security tokens so they are recognized by TPS.

® Maintains the security token, such as re-enrolling a token with TPS.

® Provides information about the current status of the token or tokens being managed.

® Supports server-side key generation so that keys can be archived and recovered on a separate
token if a token is lost.

The Enterprise Security Client is a client for end users to register and manage keys and certificates on
smart cards or tokens. This is the final component in the Certificate System token management system,
with the Token Processing System (TPS) and Token Key Service (TKS).

The Enterprise Security Client provides the user interface of the token management system. The end
user can be issued security tokens containing certificates and keys required for signing, encryption, and
other cryptographic functions. To use the tokens, the TPS must be able to recognize and communicate
with them. Enterprise Security Client is the method for the tokens to be enrolled.

Enterprise Security Client communicates over an SSL/TLS HTTP channel to the back end of the TPS. It

is based on an extensible Mozilla XULRunner framework for the user interface, while retaining a legacy
web browser container for a simple HTML-based Ul

23

Administration Guide

After a token is properly enrolled, web browsers can be configured to recognize the token and use it for
security operations. Enterprise Security Client provides the following capabilities:

® Allows the user to enroll security tokens so they are recognized by the TPS.

® Allows the user to maintain the security token. For example, Enterprise Security Client makes it
possible to re-enroll a token with the TPS.

® Provides support for several different kinds of tokens through default and custom token
profiles. By default, the TPS can automatically enroll user keys, device keys, and security officer
keys; additional profiles can be added so that tokens for different uses (recognized by
attributes such as the token CUID) can automatically be enrolled according to the appropriate
profile.

® Provides information about the current status of the tokens being managed.

24

PART Il. SETTING UP CERTIFICATE SERVICES

PART IIl. SETTING UP CERTIFICATE SERVICES

25

Administration Guide

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES
(CERTIFICATE PROFILES)

The Certificate System provides a customizable framework to apply policies for incoming certificate
requests and to control the input request types and output certificate types; these are called certificate
profiles. Certificate profiles set the required information for certificate enrollment forms in the
Certificate Manager end-entities page. This chapter describes how to configure certificate profiles.

3.1. ABOUT CERTIFICATE PROFILES

A certificate profile defines everything associated with issuing a particular type of certificate, including
the authentication method, the authorization method, the default certificate content, constraints for the
values of the content, and the contents of the input and output for the certificate profile. Enrollment
and renewal requests are submitted to a certificate profile and are then subject to the defaults and
constraints set in that certificate profile. These constraints are in place whether the request is submitted
through the input form associated with the certificate profile or through other means. The certificate
that is issued from a certificate profile request contains the content required by the defaults with the
information required by the default parameters. The constraints provide rules for what content is
allowed in the certificate.

For details about using and customizing certificate profiles, see Section 3.2, “Setting up Certificate
Profiles”.

The Certificate System contains a set of default profiles. While the default profiles are created to satisfy
most deployments, every deployment can add their own new certificate profiles or modify the existing
profiles.

® Authentication. In every certification profile can be specified an authentication method.
® Authorization. In every certification profile can be specified an authorization method.

® Profile inputs. Profile inputs are parameters and values that are submitted to the CA when a
certificate is requested. Profile inputs include public keys for the certificate request and the
certificate subject name requested by the end entity for the certificate.

® Profile outputs. Profile outputs are parameters and values that specify the format in which to
provide the certificate to the end entity. Profile outputs are CMC responses which contain a
PKCS#7 certificate chain, when the request was successful.

e Certificate content. Each certificate defines content information, such as the name of the entity
to which it is assigned (the subject name), its signing algorithm, and its validity period. What is
included in a certificate is defined in the X.509 standard. With version 3 of the X509 standard,
certificates can also contain extensions. For more information about certificate extensions, see
Section B.3, “Standard X.509 v3 Certificate Extension Reference”.

All of the information about a certificate profile is defined in the set entry of the profile policy in
the profile's configuration file. When multiple certificates are expected to be requested at the
same time, multiple set entries can be defined in the profile policy to satisfy needs of each
certificate. Each policy set consists of a number of policy rules and each policy rule describes a
field in the certificate content. A policy rule can include the following parts:

o Profile defaults. These are predefined parameters and allowed values for information

contained within the certificate. Profile defaults include the validity period of the certificate,
and what certificate extensions appear for each type of certificate issued.

26

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

o Profile constraints. Constraints set rules or policies for issuing certificates. Amongst other,
profile constraints include rules to require the certificate subject name to have at least one
CN component, to set the validity of a certificate to a maximum of 360 days, to define the
allowed grace period for renewal, or to require that the subjectalthame extension is always
set to true.

3.1.1. The Enrollment Profile

The parameters for each profile defining the inputs, outputs, and policy sets are listed in more detail in
Table 11.1. Profile Configuration File Parameters in Red Hat Certificate System Planning, Installation and
Deployment Guide.

A profile usually contains inputs, policy sets, and outputs, as illustrated in the caUserCert profile in
Example 3.1, “Example caCMCUserCert Profile”.

Example 3.1. Example caCMCUserCert Profile

The first part of a certificate profile is the description. This shows the name, long description,
whether it is enabled, and who enabled it.

desc=This certificate profile is for enrolling user certificates by using the CMC certificate request
with CMC Signature authentication.

visible=true

enable=true

enableBy=admin

name=Signed CMC-Authenticated User Certificate Enroliment

NOTE

L

The missing auth.instance_id= entry in this profile means that with this profile,
authentication is not needed to submit the enrollment request. However, manual
approval by an authorized CA agent will be required to get an issuance.

Next, the profile lists all of the required inputs for the profile:

input.list=i1
input.i1.class_id=cmcCertReqlnputimp

For the caCMCUserCert profile, this defines the certificate request type, which is CMC.

Next, the profile must define the output, meaning the format of the final certificate. The only one
available is certOutputimpl, which results in CMC response to be returned to the requestor in case of
success.

output.list=01

output.oi.class_id=certOutputimpl
The last — largest — block of configuration is the policy set for the profile. Policy sets list all of the
settings that are applied to the final certificate, like its validity period, its renewal settings, and the
actions the certificate can be used for. The policyset.list parameter identifies the block name of the
policies that apply to one certificate; the policyset.userCertSet.list lists the individual policies to

apply.

27

Administration Guide

For example, the sixth policy populates the Key Usage Extension automatically in the certificate,
according to the configuration in the policy. It sets the defaults and requires the certificate to use

those defaults by setting the constraints:

policyset.list=userCertSet
policyset.userCertSet.list=1,10,2,3,4,5,6,7,8,9
policyset.userCertSet.6.constraint.class_id=keyUsageExtConstraintimpl

policyset.userCertSet.6.constraint.name=Key Usage Extension Constraint
policyset.userCertSet.6.constraint.params.keyUsageCritical=true
policyset.userCertSet.6.constraint.params.keyUsageDigitalSignature=true
policyset.userCertSet.6.constraint.params.keyUsageNonRepudiation=true
policyset.userCertSet.6.constraint.params.keyUsageDataEncipherment=false
policyset.userCertSet.6.constraint.params.keyUsageKeyEncipherment=true
policyset.userCertSet.6.constraint.params.keyUsageKeyAgreement=false
policyset.userCertSet.6.constraint.params.keyUsageKeyCertSign=false
policyset.userCertSet.6.constraint.params.keyUsageCrlSign=false
policyset.userCertSet.6.constraint.params.keyUsageEncipherOnly=false
policyset.userCertSet.6.constraint.params.keyUsageDecipherOnly=false
policyset.userCertSet.6.default.class_id=keyUsageExtDefaultimpl
policyset.userCertSet.6.default.name=Key Usage Default
policyset.userCertSet.6.default.params.keyUsageCiritical=true
policyset.userCertSet.6.default.params.keyUsageDigitalSignature=true
policyset.userCertSet.6.default.params.keyUsageNonRepudiation=true
policyset.userCertSet.6.default.params.keyUsageDataEncipherment=false
policyset.userCertSet.6.default.params.keyUsageKeyEncipherment=true
policyset.userCertSet.6.default.params.keyUsageKeyAgreement=false
policyset.userCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.userCertSet.6.default.params.keyUsageCrlSign=false
policyset.userCertSet.6.default.params.keyUsageEncipherOnly=false
policyset.userCertSet.6.default.params.keyUsageDecipherOnly=false

3.1.2. Certificate Extensions: Defaults and Constraints

An extension configures additional information to include in a certificate or rules about how the
certificate can be used. These extensions can either be specified in the certificate request or taken from
the profile default definition and then enforced by the constraints.

A certificate extension is added or identified in a profile by adding the default which corresponds to the
extension and sets default values, if the certificate extension is not set in the request. For example, the
Basic Constraints Extension identifies whether a certificate is a CA signing certificate, the maximum
number of subordinate CAs that can be configured under the CA, and whether the extension is critical
(required):

policyset.caCertSet.5.default.name=Basic Constraints Extension Default
policyset.caCertSet.5.default.params.basicConstraintsCritical=true
policyset.caCertSet.5.default.params.basicConstraintslsCA=true
policyset.caCertSet.5.default.params.basicConstraintsPathLen=-1

The extension can also set required values for the certificate request called constraints. If the contents
of a request do not match the set constraints, then the request is rejected. The constraints generally
correspond to the extension default, though not always. For example:

28

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

policyset.caCertSet.5.constraint.class_id=basicConstraintsExtConstraintimpl
policyset.caCertSet.5.constraint.name=Basic Constraint Extension Constraint
policyset.caCertSet.5.constraint.params.basicConstraintsCritical=true
policyset.caCertSet.5.constraint.params.basicConstraintslsCA=true
policyset.caCertSet.5.constraint.params.basicConstraintsMinPathLen=-1
policyset.caCertSet.5.constraint.params.basicConstraintsMaxPathLen=-1

NOTE

To allow user supplied extensions to be embedded in the certificate requests and ignore
the system-defined default in the profile, the profile needs to contain the User Supplied
Extension Default, which is described in Section B.1.32, “User Supplied Extension
Default”.

3.1.3. Inputs and Outputs

Inputs set information that must be submitted to receive a certificate. This can be requester information,
a specific format of certificate request, or organizational information.

The outputs configured in the profile define the format of the certificate that is issued.
In Certificate System, profiles are accessed by users through enrollment forms that are accessed
through the end-entities pages. (Even clients, such as TPS, submit enrollment requests through these

forms.) The inputs, then, correspond to fields in the enrollment forms. The outputs correspond to the
information contained on the certificate retrieval pages.

3.2.SETTING UP CERTIFICATE PROFILES

In Certificate System, you can add, delete, and modify enrollment profiles:
® Using the PKI command-line interface
® Using the Java-based administration console

This section provides information on each method.

3.2.1. Managing Certificate Enrollment Profiles Using the PKI Command-line
Interface

This section describes how to manage certificate profiles using the pki utility. For further details, see the

pki-ca-profile(1) man page.

NOTE

Using the raw format is recommended. For details on each attribute and field of the
profile, see the section Creating and Editing Certificate Profiles Directly on the File
System in Red Hat Certificate System Planning, Installation and Deployment Guide.

-

3.2.1.1. Enabling and Disabling a Certificate Profile

Before you can edit a certificate profile, you must disable it. After the modification is complete, you can
re-enable the profile.

29

Administration Guide

NOTE

Only CA agents can enable and disable certificate profiles.
For example, to disable the caCMCECserverCert certificate profile:

I # pki -c password -n caagent ca-profile-disable caCMCECserverCert
For example, to enable the caCMCECserverCert certificate profile:

I # pki -c password -n caagent ca-profile-enable caCMCECserverCert
3.2.1.2. Creating a Certificate Profile in Raw Format

To create a new profile in raw format:

I # pki -c password -n caadmin ca-profile-add profile_name.cfg --raw

NOTE

In raw format, specify the new profile ID as follows:

I profileld=profile_name

3.2.1.3. Editing a Certificate Profile in Raw Format

CA administrators can edit a certificate profile in raw format without manually downloading the
configuration file.

For example, to edit the caCMCECserverCert profile:
I # pki -c password -n caadmin ca-profile-edit caCMCECserverCert

This command automatically downloads the profile configuration in raw format and opens it in the VI
editor. When you close the editor, the profile configuration is updated on the server.

You do not need to restart the CA after editing a profile.

IMPORTANT

Before you can edit a profile, disable the profile. For details, see Section 3.2.1.1, “Enabling
and Disabling a Certificate Profile”.

Example 3.2. Editing a Certificate Profile in RAW Format

For example, to edit the caCMCserverCert profile to accept multiple user-supplied extensions:

1. Disable the profile as a CA agent:

I # pki -c password -n caagemt ca-profile-disable caCMCserverCert

30

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES
2. Edit the profile as a CA administrator:
a. Download and open the profile in the Vl editor:
I # pki -c password -n caadmin ca-profile-edit caCMCserverCert

b. Update the configuration to accept the extensions. For details, see Example B.3,
“Multiple User Supplied Extensions in CSR”".

3. Enable the profile as a CA agent:

I # pki -c password -n caagent ca-profile-enable caCMCserverCert

3.2.1.4. Deleting a Certificate Profile

To delete a certificate profile:

I # pki -c password -n caadmin ca-profile-del profile_name

IMPORTANT

Before you can delete a profile, disable the profile. For details, see Section 3.2.1.],
“Enabling and Disabling a Certificate Profile”.

3.2.2. Managing Certificate Enrollment Profiles Using the Java-based
Administration Console

IMPORTANT

pkiconsole is being deprecated.

3.2.2.1. Creating Certificate Profiles through the CA Console

For security reasons, the Certificate Systems enforces separation of roles whereby an existing
certificate profile can only be edited by an administrator after it was allowed by an agent. To add a new
certificate profile or modify an existing certificate profile, perform the following steps as the
administrator:

1. Login to the Certificate System CA subsystem console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager, and then select Certificate Profiles.

The Certificate Profile Instances Management tab, which lists configured certificate profiles,
opens.

3. To create a new certificate profile, click Add.

31

Administration Guide

In the Select Certificate Profile Plugin Implementation window, select the type of certificate
for which the profile is being created.

B3| Sselect Certificate Profile Plugin Im'ﬁ'lé'ﬁié.'ﬁt'-:-"lt'i'-:':-'l'

CA Certificate Enrollment Profile B
Ceneric Certificate Enrallment Profile
Server Certificate Enrollment Prafile
ser Certificate Enrollment Profile
-
Mext Cancel Help

4. Fillin the profile information in the Certificate Profile Instance Editor.

* Ceftificate Profile Instance 1D: | |

Certificate Profile Name: | |

Certificate Profile Description: | |

End User Certificate Profile: |true -

Certificate Profile Authentication: | |

Certificate Profile Plugin ID: callserCertEnrolll...

Ok Cancel Help

o Certificate Profile Instance ID. This is the ID used by the system to identify the profile.

32

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

o Certificate Profile Name. This is the user-friendly name for the profile.
o Certificate Profile Description.

o End User Certificate Profile. This sets whether the request must be made through the
input form for the profile. This is usually set to true. Setting this to false allows a signed
request to be processed through the Certificate Manager's certificate profile framework,
rather than through the input page for the certificate profile.

o Certificate Profile Authentication. This sets the authentication method. An automated
authentication is set by providing the instance ID for the authentication instance. If this field
is blank, the authentication method is agent-approved enrollment; the request is submitted
to the request queue of the agent services interface.

Unless it is for a TMS subsystem, administrators must select one of the following
authentication plug-ins:

® CMCAuth: Use this plug-in when a CA agent must approve and submit the enrollment
request.

® CMCUserSignedAuth: Use this plug-in to enable non-agent users to enroll own
certificates.

. Click OK. The plug-in editor closes, and the new profile is listed in the profiles tab.

. Configure the policies, inputs, and outputs for the new profile. Select the new profile from the
list, and click Edit/View.

. Set up policies in the Policies tab of the Certificate Profile Rule Editor window. The Policies
tab lists policies that are already set by default for the profile type.

1. To add a policy, click Add.

ﬁ] Certificate Profile Policy R

Authority Info Access Extension Default -
Default Althority Fey [dentifier Extension Default =

Auto Eeguest Assignment Default

Basic Constraints Extension Default

Basic Constraints Extension Constraint -
Constraint Extension Constraint
Mo Canstraint

Ok Cancel Help

2. Choose the default from the Default field, choose the constraints associated with that
policy in the Constraints field, and click OK.

33

Administration Guide

[E] ------- New Certificate Profile Editor
Centificate Profile Instance ID:
Policy Set ID: |setl
Policy 1D: |
[Default | Constraint |
| Parameter Yalue
|hasicCunstraintsCritical false -
[basicConstraintslsCA true -
basicConstraintsPathLen -1
Criticality
Ok Cancel Help

3. Fillin the policy set ID. When issuing dual key pairs, separate policy sets define the policies
associated with each certificate. Then fill in the certificate profile policy ID, a name or
identifier for the certificate profile policy.

4. Configure any parameters in the Defaults and Constraints tabs.

34

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

v [New Certificate Profile Editor

Certificate Profile Instance 1D:

Policy Set ID: |setl

Policy ID: |
[Default | Constraint |
| Parameter Yalue
|hasicCunstraintsCritical false -
[basicConstraintslsCA true -
|[basicConstraintsMinPathLen -1
basicConstraintsMaxPathLen 100

[z CA

Ok Cancel Help

Defaults defines attributes that populate the certificate request, which in turn determines
the content of the certificate. These can be extensions, validity periods, or other fields
contained in the certificates. Constraints defines valid values for the defaults.

See Section B.1, “Defaults Reference” and Section B.2, “Constraints Reference” for
complete details for each default or constraint.

To modify an existing policy, select a policy, and click Edit. Then edit the default and constraints
for that policy.

To delete a policy, select the policy, and click Delete.

8. Setinputsin the Inputs tab of the Certificate Profile Rule Editor window. There can be more
than one input type for a profile.

NOTE

Unless you configure the profile for a TMS subsystem, select only
cmcCertReqlnput and delete other profiles by selecting them and clicking the
Delete button.

1. To add aninput, click Add.

35

Administration Guide

36

w Certificate Profile Rule Editor

Certificate Profile Instance 1D:

Certificate Profile Mame: ||:|ther

Certificate Profile Description: ||:|ther

End User Certificate Profile: |true

Certificate Profile Authentication: |

Certificate Profile Plugin ID: caServerCertEnrolllmpl

(Policies | Inputs | Outputs |

Id | Ingputs | Add

Certificate Profile Input Editor, Delete

Select one of the following inputs:

Edit

mage Input
Fey Generation Input
nsHEeW_ertREeginputlmpgl

[b

L4

nsMEev_ertREeginputlmgl
Subject DN Input

Subject Mame Input

Submitter Information Input

[4

Ok Cancel

2. Choose the input from the list, and click OK. See Section A1, “Input Reference” for
complete details of the default inputs.

3. The New Certificate Profile Editor window opens. Set the input ID, and click OK.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

Inputs can be added and deleted. It is possible to select edit for an input, but since inputs have

lE] -------- New Certificate Profile Editor
Certificate Profile Instance 1D:
ID: |
Farameter Walue
sn_uid frue
sn_g frue
sn_cn frue
shn_ou3 false
sh_ouz alse
sn_oul false
sn_au frue
sn_n frue
sn_c frue
Ok Cancel Help

no parameters or other settings, there is nothing to configure.

To delete an input, select the input, and click Delete.

. Set up outputs in the Outputs tab of the Certificate Profile Rule Editor window.

Outputs must be set for any certificate profile that uses an automated authentication method;
no output needs to be set for any certificate profile that uses agent-approved authentication.
The Certificate Output type is set by default for all profiles and is added automatically to
custom profiles.

Unless you configure the profile for a TMS subsystem, select only certOutput.

37

Administration Guide

38

hd Certificate Profile Rule Editor »

Certificate Profile Instance 1D:

Certificate Profile Name: ||:|ther |

Certificate Profile Description: ||:|ther |

End User Centificate Profile: [true -

Certificate Profile Authentication: | |

Cenrtificate Profile Plugin ID: caServerCertEnrolllmpl

(" Policies | Inputs | Outputs |

Id Qutputs Add
ol Certificate Qutput ~
Certificate Profile Output Editor Delete
Edit

Select one of the following outputs:

Certificate Qutput
CMMF Eesponse Cutput
nsME eyt pUtimgl
PECET Output

[b

Outputs can be added and deleted. It is possible to select edit for an output, but since outputs
have no parameters or other settings, there is nothing to configure.

1. To add an output, click Add.
2. Choose the output from the list, and click OK.
3. Give a name or identifier for the output, and click OK.

This output will be listed in the output tab. You can edit it to provide values to the
parameters in this output.

To delete an output, select the output from list, and click Delete.

10. Restart the CA to apply the new profile.
I systemctl restart pki-tomcatd-nuxwdog@instance _name.service

1. After creating the profile as an administrator, a CA agent has to approve the profile in the agent
services pages to enable the profile.

1. Open the CA's services page.

I https://server.example.com:8443/ca/services

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

2. Click the Manage Certificate Profiles link. This page lists all of the certificate profiles that
have been set up by an administrator, both active and inactive.

3. Click the name of the certificate profile to approve.

4. At the bottom of the page, click the Enable button.

tificate Recora
files #0{Pattern:srequest.req.

T}rpe:RFCEEENamE,EnabI_E

s SP"E 9 |[This default populates th
e Algorithm. The default va
Algorithm=SHA1withRSA

NOTE

If this profile will be used with a TPS, then the TPS must be configured to recognized the
profile type. This is in 11.1.4. Managing Smart Card CA Profiles in Red Hat Certificate
System's Planning, Installation, and Deployment Guide.

Authorization methods for the profiles can only be added to the profile using the command line, as
described in the section Creating and Editing Certificate Profiles Directly on the File System in Red Hat
Certificate System Planning, Installation and Deployment Guide.

3.2.2.2. Editing Certificate Profiles in the Console
To modify an existing certificate profile:
1. Loginto the agent services pages and disable the profile.
Once a certificate profile is enabled by an agent, that certificate profile is marked enabled in the
Certificate Profile Instance Management tab, and the certificate profile cannot be edited in

any way through the console.

2. Login to the Certificate System CA subsystem console.
I pkiconsole https://server.example.com:8443/ca

3. In the Configuration tab, select Certificate Manager, and then select Certificate Profiles.
4. Select the certificate profile, and click Edit/View.

5. The Certificate Profile Rule Editor window appears. Many any changes to the defaults,
constraints, inputs, or outputs.

NOTE

The profile instance ID cannot be modified.

39

Administration Guide

If necessary, enlarge the window by pulling out one of the corners of the window.
6. Restart the CA to apply the changes.

7. In the agent services page, re-enable the profile.

NOTE

Delete any certificate profiles that will not be approved by an agent. Any certificate
profile that appears in the Certificate Profile Instance Management tab also appears in
the agent services interface. If a profile has already been enabled, it must be disabled by
the agent before it can be deleted from the profile list.

3.2.3. Listing Certificate Enrollment Profiles

The following pre-defined certificate profiles are ready to use and set up in this environment when the
Certificate System CAis installed. These certificate profiles have been designed for the most common
types of certificates, and they provide common defaults, constraints, authentication methods, inputs,
and outputs.

To list the available profiles on the command line, use the pki utility. For example:

pki -c password -n caadmin ca-profile-find

Profile ID: caCMCserverCert
Name: Server Certificate Enrollment using CMC
Description: This certificate profile is for enrolling server certificates using CMC.

Profile ID: caCMCECserverCert
Name: Server Certificate wth ECC keys Enroliment using CMC
Description: This certificate profile is for enrolling server certificates with ECC keys using CMC.

Profile ID: caCMCECsubsystemCert
Name: Subsystem Certificate Enrollment with ECC keys using CMC
Description: This certificate profile is for enrolling subsystem certificates with ECC keys using CMC.

Profile ID: caCMCsubsystemCert
Name: Subsystem Certificate Enrollment using CMC
Description: This certificate profile is for enrolling subsystem certificates using CMC.

Number of entries returned 20

For further details, see the pki-ca-profile(1) man page. Additional information can also be found at
Red Hat Certificate System Planning, Installation, and Deployment Guide.

3.2.4. Displaying Details of a Certificate Enrollment Profile

For example, to display a specific certificate profile, such as caECFullCMCUserSignedCert:

I $ pki -c password -n caadmin ca-profile-show caECFullCMCUserSignedCert

40

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/9/html/Planning_Installation_and_Deployment_Guide/certificate_profiles_configuration

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

Profile "caECFullCMCUserSignedCert"

Profile ID: caECFullCMCUserSignedCert

Name: User-Signed CMC-Authenticated User Certificate Enroliment

Description: This certificate profile is for enrolling user certificates with EC keys by using the CMC
certificate request with non-agent user CMC authentication.

Name: Certificate Request Input
Class: cmcCertReqglnputimpl

Attribute Name: cert_request
Attribute Description: Certificate Request
Attribute Syntax: cert_request

Name: Certificate Output
Class: certOutputimpl

Attribute Name: pretty_cert
Attribute Description: Certificate Pretty Print
Attribute Syntax: pretty_print

Attribute Name: b64 cert
Attribute Description: Certificate Base-64 Encoded
Attribute Syntax: pretty_print

For example, to display a specific certificate profile, such as caECFullCMCUserSignedCert, in raw
format:

$ pki -c password -n caadmin ca-profile-show caECFullCMCUserSignedCert --raw
#Wed Jul 25 14:41:35 PDT 2018

auth.instance_id=CMCUserSignedAuth
policyset.cmcUserCertSet.1.default.params.name=
policyset.cmcUserCertSet.4.default.class_id=authorityKeyldentifierExtDefaultimpl
policyset.cmcUserCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.cmcUserCertSet.10.default.class_id=noDefaultimpl
policyset.cmcUserCertSet.10.constraint.name=Renewal Grace Period Constraint
output.oi.class_id=certOutputimpl

For further details, see the pki-ca-profile(1) man page.

3.3. DEFINING KEY DEFAULTS IN PROFILES

When creating certificate profiles, the Key Default must be added before the Subject Key Identifier
Default. Certificate System processes the key constraints in the Key Default before creating or applying
the Subject Key Identifier Default, so if the key has not been processed yet, setting the key in the
subject name fails.

For example, an object-signing profile may define both defaults:

policyset.set1.p3.constraint.class_id=noConstraintimpl
policyset.set1.p3.constraint.name=No Constraint
policyset.set1.p3.default.class_id=subjectKeyldentifierExtDefaultimpl

41

Administration Guide

policyset.set1.p3.default.name=Subject Key Identifier Default

policyset.set1.p11.constraint.class_id=keyConstraintimpl
policyset.set1.p11.constraint.name=Key Constraint
policyset.set1.p11.constraint.params.keyType=RSA
policyset.set1.p11.constraint.params.keyParameters=1024,2048,3072,4096
policyset.set1.p11.default.class_id=userKeyDefaultimpl
policyset.set1.p11.default.name=Key Default

In the policyset list, then, the Key Default (p11) must be listed before the Subject Key Identifier Default
(p3).

I policyset.set1.list=p1,p2,p11,p3,p4,p5,p6,p7,p8,p9,p10

3.4. CONFIGURING PROFILES TO ENABLE RENEWAL

This section discusses how to set up profiles for certificate renewals. For more information on how to
renew certificates, see Section 5.4, "Renewing Certificates”.

A profile that allows renewal is often accompanied by the renewGracePeriodConstraint entry. For
example:

policyset.cmcUserCertSet.10.constraint.class_id=renewGracePeriodConstraintimpl
policyset.cmcUserCertSet.10.constraint.name=Renewal Grace Period Constraint
policyset.cmcUserCertSet.10.constraint.params.renewal.graceBefore=30
policyset.cmcUserCertSet.10.constraint.params.renewal.graceAfter=30
policyset.cmcUserCertSet.10.default.class_id=noDefaultimpl
policyset.cmcUserCertSet.10.default.name=No Default

3.4.1. Renewing Using the Same Key

A profile that allows the same key to be submitted for renewal has the allowSameKeyRenewal
parameter set to true in the uniqueKeyConstraint entry. For example:

policyset.cmcUserCertSet.9.constraint.class_id=uniqueKeyConstraintimpl
policyset.cmcUserCertSet.9.constraint.name=Unique Key Constraint
policyset.cmcUserCertSet.9.constraint.params.allowSameKeyRenewal=true
policyset.cmcUserCertSet.9.default.class_id=noDefaultimpl
policyset.cmcUserCertSet.9.default.name=No Default

3.4.2. Renewal Using a New Key

To renew a certificate with a new key, use the same profile with a new key. Certificate System uses the
subjectDN from the user signing certificate used to sign the request for the new certificate.

3.5.SETTING THE SIGNING ALGORITHMS FOR CERTIFICATES

The CA's signing certificate can sign the certificates it issues with any public key algorithm supported by
the CA. For example, an ECC signing certificate can sign both ECC and RSA certificate requests as long
as both ECC and RSA algorithms are supported by the CA. An RSA signing certificate can can sign a
PKCS #10 request with EC keys, but may not be able to sign CRMF certificate requests with EC keys if
the ECC module is not available for the CA to verify the CRMF proof of possession (POP).

42

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

ECC and RSA are public key encryption and signing algorithms. Both public key algorithms support
different cipher suites, algorithms used to encrypt and decrypt data. Part of the function of the CA
signing certificate is to issue and sign certificates using one of its supported cipher suites.

Each profile can define which cipher suite the CA should use to sign certificates processed through that
profile. If no signing algorithm is set, then the profile uses whatever the default signing algorithm is.

3.5.1. Setting the CA's Default Signing Algorithm

1. Open the CA console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager tree.

3. In the General Settings tab, set the algorithm to use in the Algorithm drop-down menu.

Configuration

Fed Hat Certificate System:94 l/ ® General Settings |/ Connectors

‘3}_ sers and Groups g
@M Access Contral List o| - Certificate Validity
Log :
@3 System Keys and Certifical -
&y Authentication :
o @ Job Scheduler :| Certificate Serial Number
¢ [Certificate Manager :
Certificate Profiles _
€ Motification §§ Ending Serial Number: (0x)
e &Y CRL Issuing Points :

o & Publishing

[| Override validity nesting requiren

Mext Serial Number: (0x)

Default Signing Algorithm

Algorithm: [SHAIwithRSA -

SHA1IwithR5A
5HA256withRSA
SHAS512withRSA
MDSwithRSA h
MD2withRSA

NOTE

P pkiconsole is being deprecated.

3.5.2. Setting the Signing Algorithm Default in a Profile

Each profile has a Signing Algorithm Default extension defined. The default has two settings: a default
algorithm and a list of allowed algorithms, if the certificate request specifies a different algorithm. If no
signing algorithms are specified, then the profile uses whatever is set as the default for the CA.

43

Administration Guide

In the profile's .cfg file, the algorithm is set with two parameters:

policyset.cmcUserCertSet.8.constraint.class_id=signingAlgConstraintimpl
policyset.cmcUserCertSet.8.constraint.name=No Constraint
policyset.cmcUserCertSet.8.constraint.params.signingAlgsAllowed=SHA256withRSA,SHA512withRSA,!
HA256withEC,SHA384withRSA,SHA384withEC,SHA512withEC
policyset.cmcUserCertSet.8.default.class_id=signingAlgDefaultimpl
policyset.cmcUserCertSet.8.default.name=Signing Alg
policyset.cmcUserCertSet.8.default.params.signingAlg=-

To configure the Signing Algorithm Default through the console:

a4

NOTE

Before a profile can be edited, it must first be disabled by an agent.

1. Open the CA console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager tree.
3. Click the Certificate Profiles item.

4. Click the Policies tab.

5. Select the Signing Alg policy, and click the Edit button.

6. To set the default signing algorithm, set the value in the Defaults tab. If this is set to -, then the
profile uses the CA's default.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

- Certificate Profile Rule Editor

Centificate Profile Instance 1D;
Certificate Profile Description:

Certificate Profile Policy 1D:

1/ Default |/ Constraint

Farameter Yalue
signingAlg - -

MD2withRSA
MD5withRSA
5HAIwithRSA
5HA256wWithR5A k
SHAS12withRSA

Signing Algorithm

Ok Cancel Help

7. To set alist of allowed signing algorithms which can be accepted in a certificate request, open
the Constraints tab, and set the list of algorithms in the Value field for signingAlgsAllowed.

The possible values for the constraint are listed in Section B.2.10, “Signing Algorithm
Constraint”.

NOTE

pkiconsole is being deprecated.

3.6. MANAGING CA-RELATED PROFILES

Certificate profiles and extensions must be used to set rules on how subordinate CAs can issue
certificates. There are two parts to this:

® Managing the CA signing certificate

® Definingissuance rules

3.6.1. Setting Restrictions on CA Certificates

When a subordinate CA is created, the root CA can impose limits or restrictions on the subordinate CA.
For example, the root CA can dictate the maximum depth of valid certification paths (the number of
subordinate CAs allowed to be chained below the new CA) by setting the pathLenConstraint field of the
Basic Constraints extension in the CA signing certificate.

45

Administration Guide

A certificate chain generally consists of an entity certificate, zero or more intermediate CA certificates,
and a root CA certificate. The root CA certificate is either self-signed or signed by an external trusted
CA. Once issued, the root CA certificate is loaded into a certificate database as a trusted CA.

An exchange of certificates takes place when performing a TLS handshake, when sending an S/MIME
message, or when sending a signed object. As part of the handshake, the sender is expected to send the
subject certificate and any intermediate CA certificates needed to link the subject certificate to the
trusted root. For certificate chaining to work properly the certificates should have the following
properties:

® CA certificates must have the Basic Constraints extension.

® CA certificates must have the keyCertSign bit set in the Key Usage extension.

® When the CAs generate new keys, they must add the Authority Key Identifier extension to all
subject certificates. This extensions helps distinguish the certificates from the older CA

certificates. The CA certificates must contain the Subject Key Identifier extension.

For more information on certificates and their extensions, see Internet X.509 Public Key Infrastructure -
Certificate and Certificate Revocation List (CRL) Profile (RFC 5280), available at RFC 5280.

These extensions can be configured through the certificate profile enrollment pages. By default, the CA
contains the required and reasonable configuration settings, but it is possible to customize these
settings.

NOTE

This procedure describes editing the CA certificate profile used by a CA to issue CA
certificates to its subordinate CAs.

The profile that is used when a CA instance is first configured is
/var/lib/pki/instance_name/ca/conf/caCert.profile. This profile cannot be edited in
pkiconsole (since it is only available before the instance is configured). It is possible to
edit the policies for this profile in the template file before the CA is configured using a
text editor.

To modify the default in the CA signing certificate profile used by a CA:
1. If the profile is currently enabled, it must be disabled before it can be edited. Open the agent
services page, select Manage Certificate Profiles from the left navigation menu, select the
profile, and click Disable profile.

2. Open the CA Console.
I pkiconsole https://server.example.com:8443/ca

3. In the left navigation tree of the Configuration tab, select Certificate Manager, then
Certificate Profiles.

4. Select caCACert, or the appropriate CA signing certificate profile, from the right window, and
click Edit/View.

5. In the Policies tab of the Certificate Profile Rule Editor, select and edit the Key Usage or
Extended Key Usage Extension Default if it exists or add it to the profile.

46

http://www.ietf.org/rfc/rfc3280.txt

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

6. Select the Key Usage or Extended Key Usage Extension Constraint, as appropriate, for the
default.

7. Set the default values for the CA certificates. For more information, see Section B.1.13, “Key
Usage Extension Default” and Section B.1.8, “Extended Key Usage Extension Default”.

8. Set the constraint values for the CA certificates. There are no constraints to be set for a Key
Usage extension; for an Extended Key Usage extension, set the appropriate OID constraints for

the CA. For more information, see Section B.1.8, "Extended Key Usage Extension Default”.

9. When the changes have been made to the profile, log into the agent services page again, and
re-enable the certificate profile.

NOTE

pkiconsole is being deprecated.
For more information on modifying certificate profiles, see Section 3.2, “Setting up Certificate Profiles”.

3.6.2. Changing the Restrictions for CAs on Issuing Certificates

The restrictions on the certificates issued are set by default after the subsystem is configured. These
include:

® Whether certificates can be issued with validity periods longer than the CA signing certificate.
The default is to disallow this.

® The signing algorithm used to sign certificates.

® The serial number range the CAis able to use to issue certificates.
Subordinate CAs have constraints for the validity periods, types of certificates, and the types of
extensions which they can issue. It is possible for a subordinate CA to issue certificates that violate these
constraints, but a client authenticating a certificate that violates those constraints will not accept that
certificate. Check the constraints set on the CA signing certificate before changing the issuing rules for
a subordinate CA.

To change the certificate issuance rules:

1. Open the Certificate System Console.
I pkiconsole https://server.example.com:8443/ca

2. Select the Certificate Manager item in the left navigation tree of the Configuration tab.

47

Administration Guide

48

[configuration 7 starus

Red Hat Certificate System: 9543 © " General Settings | Connectors |
Uszers and Groups i

Access Control List || ~certificate Vvalidity
Lo :
Svgtem Keys and Certificates © [| Override validity nesting requirement

Authentication
o= |ob Zcheduler

; o . Certificate Serial Mumber
o= :i_grtificate Manager:

Mext Serial Number: (0x)
Ending Serial Number (@)

Default Signing Algorithm

Algorithm: |[SHA1withRSA ‘ hd |

Figure 3.1. The General Settings Tab in non-subordinate CAs by default

3. By default, in non-cloned CAs, the General Settings tab of the Certificate Manager menu item
contains these options:

o Override validity nesting requirement. This checkbox sets whether the Certificate

Manager can issue certificates with validity periods longer than the CA signing certificate
validity period.

If this checkbox is not selected and the CA receives a request with validity period longer
than the CA signing certificate's validity period, it automatically truncates the validity period
to end on the day the CA signing certificate expires.

o Certificate Serial Number. These fields display the serial number range for certificates

issued by the Certificate Manager. The server assigns the serial number in the Next serial
number field to the next certificate it issues and the number in the Ending serial number
to the last certificate it issues.

The serial number range allows multiple CAs to be deployed and balances the number of
certificates each CAissues. The combination of an issuer name and a serial number uniquely
identifies a certificate.

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

NOTE

The serial number ranges with cloned CAs are fluid. All cloned CAs share a
common configuration entry which defines the next available range. When
one CA starts running low on available numbers, it checks this configuration
entry and claims the next range. The entry is automatically updated, so that
the next CA gets a new range.

The ranges are defined in begin*Number and end*Number attributes, with
separate ranges defined for requests and certificate serial numbers. For
example:

dbs.beginRequestNumber=1
dbs.beginSerialNumber=1
dbs.enableSerialManagement=true
dbs.endRequestNumber=9980000
dbs.endSerialNumber=ffe0000
dbs.ldap=internaldb
dbs.newSchemaEntryAdded=true
dbs.replicaCloneTransferNumber=5

Serial number management can be enabled for CAs which are not cloned.
However, by default, serial number management is disabled unless a system
is cloned, when it is automatically enabled.

The serial number range cannot be updated manually through the console. The serial
number ranges are read-only fields.

o Default Signing Algorithm. Specifies the signing algorithm the Certificate Manager uses to

sign certificates. The options are SHA256withRSA, and SHA512withRSA, if the CA's
signing key type is RSA.

The signing algorithm specified in the certificate profile configuration overrides the
algorithm set here.

4. By default, in cloned CAs, the General Settings tab of the Certificate Manager menu item
contains these options:

o Enable serial number management
o Enable random certificate serial numbers

Select both check boxes.

49

Administration Guide

cal.example.com - Red Hat Certificate System - instancelD - | O

Console Edit View Help

Certificate System
[Confiquration | Status |

Red Hat Certificate Systern:9445 | General Settings | Connectors |
"-':}, Users and Groups i

% Access Contral List Certificate Validity

Log P
System Keys and Certificates
futhentication :

o { Job Scheduler :| Certificate Serial Number
o g Certificate Manager :

[[] override validity nesting requirement

[] Enable serial numbar managament

O

Default Signing Algorithm

Algorithm: 5HA256withR5A|v|

Figure 3.2. The General Settings Tab in cloned CAs by default

5. Click Save.
S IAY NOTE
eld
AN, pkiconsole is being deprecated.

3.6.3. Using Random Certificate Serial Numbers

Red Hat Certificate System contains a serial number range management for requests, certificates, and
replica IDs. This allows the automation of cloning when installing Identity Management (IdM).

There are these ways to reduce the likelihood of hash-based attacks:
® making part of the certificate serial number unpredictable to the attacker
® adding arandomly chosen component to the identity

® making the validity dates unpredictable to the attacker by skewing each one forwards or
backwards

The random certificate serial number assignment method adds a randomly chosen component to the
identity. This method:

® works with cloning

® allows resolving conflicts

® is compatible with the current serial number management method

® is compatible with the current workflows for administrators, agents, and end entities

e fixes the existing bugs in sequential serial number management

50

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

T

NOTE

Administrators must enable random certificate serial numbers.

3.6.3.1. Enabling Random Certificate Serial Numbers

You can enable automatic serial number range management either from the command line or from the
console UL.

To enable automatic serial number management from the console Ul:

1. Tick the Enable serial number management option in the General Settings tab.

cal.example.com - Red Hat Certificate System - instancelD - [O

Console Edit View Help

Certificate System
[Confiquration | Status |

Red Hat Certificate Systern:9445 | General Settings | Connectors |
£} Uzers and Groups 5 . .
@] access Control List || Certificate Validity
(ﬁ Log ;
System Keys and Certificates
futhentication 55
o { Job Scheduler :| Certificate Serial Number
o g Certificate Manager :

[[] override validity nesting requirement

Enable serial number management

Enable random certificate serial numbers

Default Signing Algorithm

Algorithm: 5HA256withR5A|v|

Figure 3.3. The General Settings Tab when Random Serial Number Assignment is enabled

2. Tick the Enable random certificate serial numbers option.

IR, NOTE
C:JIC ' i
4

4 pkiconsole is being deprecated.

3.6.4. Allowing a CA Certificate to Be Renewed Past the CA's Validity Period

Normally, a certificate cannot be issued with a validity period that ends after the issuing CA certificate's
expiration date. If a CA certificate has an expiration date of December 31, 2015, then all of the
certificates it issues must expire by or before December 31, 2015.

This rule applies to other CA signing certificates issued by a CA — and this makes renewing a root CA

certificate almost impossible. Renewing a CA signing certificate means it would necessarily have to have
a validity period past its own expiration date.

51

Administration Guide

This behavior can be altered using the CA Validity Default. This default allows a setting

(bypassCAnotafter) which allows a CA certificate to be issued with a validity period that extends past
the issuing CA's expiration (notAfter) date.

» New Certificate Profile Editor '3

Certificate Profile Instance ID:

Policy Set ID: | |
Policy ID: | |
l/ Default | Constraint
Parameter Value |
range 2922 |
startTime B0 |
bypassCAnotafter false -

Jl

Bypass CA notAfter constraint

oK Cancel Help

Figure 3.4. CA Validity Default Configuration

In real deployments, what this means is that a CA certificate for a root CA can be renewed, when it might
otherwise be prevented.

To enable CA certificate renewals past the original CA's validity date:
1. Open the caCACert.cfg file.

I vim /var/lib/pki/instance_name/ca/conf/caCACert.cfg

2. The CA Validity Default should be present by default. Set the value to true to allow a CA
certificate to be renewed past the issuing CA's validity period.

policyset.caCertSet.2.default.name=CA Certificate Validity Default
policyset.caCertSet.2.default.params.range=2922
policyset.caCertSet.2.default.params.startTime=0
policyset.caCertSet.2.default.params.bypassCAnotafter=true

3. Restart the CA to apply the changes.

52

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

When an agent reviews a renewal request, there is an option in the Extensions/Fields area that allows
the agent to choose to bypass the normal validity period constraint. If the agent selects false, the
constraint is enforced, even if bypassCAnotafter=true is set in the profile. If the agent selects true
when the bypassCAnotafter value is not enabled, then the renewal request is rejected by the CA.

Certificate Manager

requestor_email | T

List Requests Emall

=4 Requestor

requestor_phone

Search for Phone

Requests
Policy Information
g:;tll:ji_cate R caCertSet
|Extensions / Fields Cons

1 |This default populates a User-Supplied Certificate Subject Mame |(This
to the request.

Subject Name: CN=Certificate Authority, 0U=pki-ca.(
2 [This default populates a Certificate Validity to the requast. The |This
default values are Range=2922 in days
Not Before: 2011-12-21 11:47:18
Not After: 2020012-2111:47-18
Bypass CA notAfter true
constraint:
T | 1N default populates a User- supplied Ceruiicate Rey to the This
request.

OCSP Service
Key T s RSA - 1.2.840,.113549.1.1.1

Figure 3.5. Bypass CA Constraints Option in the Agent Services Page

NOTE

The CA Validity Default only applies to CA signing certificate renewals. Other certificates
must still be issued and renewed within the CA's validity period.

A separate configuration setting for the CA, ca.enablePastCATime, can be used to allow
certificates to be renewed past the CA's validity period. However, this applies to every
certificate issued by that CA. Because of the potential security issues, this setting is not
recommended for production environments.

3.7.MANAGING SUBJECT NAMES AND SUBJECT ALTERNATIVE
NAMES

The subject name of a certificate is a distinguished name (DN) that contains identifying information
about the entity to which the certificate is issued. This subject name can be built from standard LDAP
directory components, such as common names and organizational units. These components are defined
in X.500. In addition to — or even in place of — the subject name, the certificate can have a subject
alternative name, which is a kind of extension set for the certificate that includes additional information
that is not defined in X.500.

53

Administration Guide

The naming components for both subject names and subject alternative names can be customized.

IMPORTANT

If the subject name is empty, then the Subject Alternative Name extension must be
present and marked critical.

3.7.1. Using the Requester CN or UID in the Subject Name

The cn or uidvalue from a certificate request can be used to build the subject name of the issued
certificate. This section demonstrates a profile that requires the naming attribute (CN or UID) being
specified in the Subject Name Constraint to be present in the certificate request. If the naming attribute
is missing, the request is rejected.

There are two parts to this configuration:
e The CN or UID format is set in the pattern configuration in the Subject Name Constraint.

® The format of the subject DN, including the CN or UID token and the specific suffix for the
certificate, is set in the Subject Name Default.

For example, to use the CN in the subject DN:

policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintimpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[",]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultimpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=3$request.req_subject_name.cn$,DC=example,
DC=com

In this example, if a request comes in with the CN of en=Jdohn Smith, then the certificate will be issued
with a subject DN of en=John Smith,DC=example, DC=com. If the request comes in but it has a UID of
uid=jsmith and no CN, then the request is rejected.

The same configuration is used to pull the requester UID into the subject DN:

policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintimpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=UID=[",]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultimpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=UID=$request.req_subject_name.uid$,DC=example,
DC=com

The format for the pattern parameter is covered in Section B.2.11, “Subject Name Constraint” and
Section B.1.27, "Subject Name Default”.

3.7.2. Inserting LDAP Directory Attribute Values and Other Information into the
Subject Alt Name

Information from an LDAP directory or that was submitted by the requester can be inserted into the

54

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

subject alternative name of the certificate by using matching variables in the Subject Alt Name
Extension Default configuration. This default sets the type (format) of information and then the
matching pattern (variable) to use to retrieve the information. For example:

policyset.userCertSet.8.default.class_id=subjectAltNameExtDefaultimpl
policyset.userCertSet.8.default.name=Subject Alt Name Constraint
policyset.userCertSet.8.default.params.subjAltNameExtCritical=false
policyset.userCertSet.8.default.params.subjAltExtType_0=RFC822Name
policyset.userCertSet.8.default.params.subjAltExtPattern_0=$request.requestor_email$
policyset.userCertSet.8.default.params.subjAExtGNEnable_0=true

This inserts the requester's email as the first CN component in the subject alt name. To use additional
components, increment the Type_, Pattern_, and Enable_ values numerically, such as Type_1.

Configuring the subject alt name is detailed in Section B.1.23, “Subject Alternative Name Extension
Default”, as well.

To insert LDAP components into the subject alt name of the certificate:

1. Inserting LDAP attribute values requires enabling the user directory authentication plug-in,
SharedSecret.

1. Open the CA Console.
I pkiconsole https://server.example.com:8443/ca

2. Select Authentication in the left navigation tree.

3. In the Authentication Instance tab, click Add, and add an instance of the SharedSecret
authentication plug-in.

4. Enter the following information:

Authentication InstancelD=SharedToken
shrTokAttr=shrTok
Idap.ldapconn.host=server.example.com
Idap.ldapconn.port=636
Idap.ldapconn.secureConn=true
Idap.ldapauth.bindDN=cn=Directory Manager
password=password
Idap.ldapauth.authtype=BasicAuth
Idap.basedn=ou=People,dc=example,dc=org

5. Save the new plug-in instance.

NOTE

pkiconsole is being deprecated.

For information on setting a CMC shared token, see Section 10.4.2, “Setting a CMC Shared
Secret”.

2. The IdapStringAttributes parameter instructs the authentication plug-in to read the value of
the mail attribute from the user's LDAP entry and put that value in the certificate request.

55

Administration Guide

When the value is in the request, the certificate profile policy can be set to insert that value for
an extension value.

The format for the dnpattern parameter is covered in Section B.2.11, “Subject Name Constraint”
and Section B.1.27, “Subject Name Default”.

3. To enable the CA to insert the LDAP attribute value in the certificate extension, edit the
profile's configuration file, and insert a policy set parameter for an extension. For example, to
insert the mail attribute value in the Subject Alternative Name extension in the
caFullCMCSharedTokenCert profile, change the following code:

I policyset.setlD.8.default.params.subjAltExtPattern_0=$request.auth_token.mail[0]$

For more details about editing a profile, see Section 3.2.1.3, “Editing a Certificate Profile in Raw
Format”.

4. Restart the CA.
I systemctl restart pki-tomcatd-nuxwdog@instance _name.service

For this example, certificates submitted through the caFullCMCSharedTokenCert profile enrollment
form will have the Subject Alternative Name extension added with the value of the requester's mail
LDAP attribute. For example:

Identifier: Subject Alternative Name - 2.5.29.17
Critical: no
Value:
RFC822Name: jsmith@example.com

There are many attributes which can be automatically inserted into certificates by being set as a token
(X) in any of the Pattern_ parameters in the policy set. The common tokens are listed in Table 3.1,
“Variables Used to Populate Certificates”, and the default profiles contain examples for how these
tokens are used.

Table 3.1. Variables Used to Populate Certificates

Policy Set Token Description

$request.auth_token.cn[0]$ The LDAP common name (€n) attribute of the user
who requested the certificate.

$request.auth_token.mail[0]$ The value of the LDAP email (mail) attribute of the
user who requested the certificate.

$request.auth_token.tokencertsubject$ The certificate subject name.

$request.auth_token.uid$ The LDAP user ID (uid) attribute of the user who
requested the certificate.

$request.auth_token.userdn$ The user DN of the user who requested the
certificate.

56

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

Policy Set Token Description

$request.auth_token.userid$ The value of the user ID attribute for the user who
requested the certificate.

$request.uid$ The value of the user ID attribute for the user who
requested the certificate.

$request.requestor_email$ The email address of the person who submitted the
request.

$request.requestor_name$ The person who submitted the request.

$request.upn$ The Microsoft UPN. This has the format

(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.upn$.

$server.source$ Instructs the server to generate a version 4 UUID
(random number) component in the subject name.
This always has the format
(IA5String)1.2.3.4,$server.source$.

$request.auth_token.user$ Used when the request was submitted by TPS. The
TPS subsystem trusted manager who requested the
certificate.

$request.subject$ Used when the request was submitted by TPS. The

subject name DN of the entity to which TPS has

resolved and requested for. For example,
cn=John.Smith.123456789,0=TMS Org

3.7.3. Using the CN Attribute in the SAN Extension

Several client applications and libraries no longer support using the Common Name (CN) attribute of
the Subject DN for domain name validation, which has been deprecated in RFC 2818. Instead, these
applications and libraries use the dNSName Subject Alternative Name (SAN) value in the certificate
request.

Certificate System copies the CN only if it matches the preferred name syntax according to RFC 1034
Section 3.5 and has more than one component. Additionally, existing SAN values are preserved. For

example, the dNSName value based on the CN is appended to existing SANSs.

To configure Certificate System to automatically use the CN attribute in the SAN extension, edit the
certificate profile used to issue the certificates. For example:

1. Disable the profile:

pki -c password -p 8080\
-n "PKI Administrator for example.com" ca-profile-disable profile_name

2. Edit the profile:

57

http://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc1034#section-3.5

Administration Guide

pki -c password -p 8080\
-n "PKI Administrator for example.com" ca-profile-edit profile_name

a. Add the following configuration with a unique set number for the profile. For example:

policyset.serverCertSet.12.constraint.class_id=noConstraintimpl
policyset.serverCertSet.12.constraint.name=No Constraint
policyset.serverCertSet.12.default.class_id=commonNameToSANDefaultimpl
policyset.serverCertSet.12.default.name=Copy Common Name to Subject

The previous example uses 12 as the set number.

b. Append the new policy set number to the policyset.userCertSet.list parameter. For
example:

I policyset.userCertSet.list=1,10,2,3,4,5,6,7,8,9,12

c. Save the profile.

3. Enable the profile:

pki -c password -p 8080\
-n "PKI Administrator for example.com" ca-profile-enable profile_name

NOTE

All default server profiles contain the commonNameToSANDefaultimpl default.

3.7.4. Accepting SAN Extensions from a CSR

In certain environments, administrators want to allow specifying Subject Alternative Name (SAN)
extensions in Certificate Signing Request (CSR).

3.7.4.1. Configuring a Profile to Retrieve SANs from a CSR

To allow retrieving SANs from a CSR, use the User Extension Default. For details, see Section B.1.32,
“User Supplied Extension Default”.

NOTE

A SAN extension can contain one or more SANSs.

To accept SANs from a CSR, add the following default and constraint to a profile, such as
caCMCECserverCert:

prefix.constraint.class_id=noConstraintimpl
prefix.constraint.name=No Constraint

prefix.default.class_id=userExtensionDefaultimpl

prefix.default.name=User supplied extension in CSR
prefix.default.params.userExtO1D=2.5.29.17

58

CHAPTER 3. MAKING RULES FOR ISSUING CERTIFICATES (CERTIFICATE PROFILES

3.7.4.2. Generating a CSR with SANs

For example, to generate a CSR with two SANs using the certutil utility:

certutil -R -k ec -q nistp256 -d . -s "cn=Example Multiple SANs" --extSAN
dns:www.example.com,dns:www.example.org -a -o /root/request.csr.p10

After generating the CSR, follow the steps described in Section 5.5.2, “The CMC Enrollment Process” to
complete the CMC enrollment.

59

Administration Guide

CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY

For more information on Key Archival and Recovery, see the Archiving, Recovering, and Rotating Keys
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

This chapter explains how to setup the Key Recovery Authority (KRA), previously known as Data
Recovery Manager (DRM), to archive private keys and to recover archived keys for restoring encrypted
data.

NOTE

This chapter only discusses archiving keys through client-side key generation. Server-
side key generation and archivals, whether it's initiated through TPS, or through CA's End
Entity portal, are not discussed here.

For information on smart card key recovery, see Section 6.11, “Setting Up Server-side Key
Generation”.

For information on server-side key generation provided at the CA's EE portal, see
Section 5.2.2, “Generating CSRs Using Server-Side Key Generation” .

NOTE

Gemalto SafeNet LunaSA only supports PKI private key extraction in its CKE - Key
Export model, and only in non-FIPS mode. The LunaSA Cloning model and the CKE
model in FIPS mode do not support PKI private key extraction.

When KRA is installed, it joins a security domain, and is paired up with the CA. At such time, itis
configured to archive and recover private encryption keys. However, if the KRA certificates are issued by
an external CA rather than one of the CAs within the security domain, then the key archival and recovery
process must be set up manually.

For more information, see the Manually Setting up Key Archival section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

NOTE

In a cloned environment, it is necessary to set up key archival and recovery manually. For
more information, see the Updating CA-KRA Connector Information After Cloning section
in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

4.1. CONFIGURING AGENT-APPROVED KEY RECOVERY IN THE
CONSOLE

NOTE

While the number of key recovery agents can be configured in the Console, the group to
use can only be set directly in the CS.cfg file. The Console uses the Key Recovery
Authority Agents Group by default.

1. Open the KRA's console. For example:

60

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/managing-pki#Archiving_and_Recovering_Keys
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuring-key-recovery-authority#Setting_up_Key_Archival
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/clone-kra-cxn

CHAPTER 4. SETTING UP KEY ARCHIVAL AND RECOVERY

I pkiconsole https://server.example.com:8443/kra

2. Click the Key Recovery Authority link in the left navigation tree.

3. Enter the number of agents to use to approve key recover in the Required Number of Agents
field.

localhost - Red Hat Certificate System - instancelD
Console Edit View Object Help

Certificate System

Configuration

Red Hat Certificate System:10: /|" » General Settings |
2} Users and Groups :
@ Access Control List A =ERE =

Log ‘| Required Number of Agents: 3
System Keys and Certificat :
[Data Recovery Manager ;

NOTE

For more information on how to configure agent-approved key recovery in the CS.cfg
file, see the Configuring Agent-Approved Key Recovery in the Command Line section in
the Red Hat Certificate System Planning, Installation, and Deployment Guide .

4.2. TESTING THE KEY ARCHIVAL AND RECOVERY SETUP

NOTE

Newer browsers do not support key archival from the browser; for Step 1, one should
substitute CRMF generation clients for those browsers.

To test whether a key can be successfully archived:

1. Enroll for dual certificates using the CA's Manual User Signing & Encryption Certificates
Enrollment form.

2. Submit the request. Log in to the agent services page, and approve the request.

3. Loginto the end-entities page, and check to see if the certificates have been issued. In the list
of certificates, there should be two new certificates with consecutive serial numbers.

4. Import the certificates into the web browser.

5. Confirm that the key has been archived. In the KRA's agent services page, select Show
completed requests. If the key has been archived successfully, there will be information about
that key. If the key is not shown, check the logs, and correct the problem. If the key has been
successfully archived, close the browser window.

6. Verify the key. Send a signed and encrypted email. When the email is received, open it, and
check the message to see if it is signed and encrypted. There should be a security icon at the
top-right corner of the message window that indicates that the message is signed and
encrypted.

61

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/setting_up_key_recovery#agent-recovery-cs-cfg
creating_a_csr_using_crmfpopclient

Administration Guide

62

7. Delete the certificate. Check the encrypted email again; the mail client should not be able to
decrypt the message.

8. Test whether an archived key can be recovered successfully:

1.

Open the KRA's agent services page, and click the Recover Keys link. Search for the key by
the key owner, serial number, or public key. If the key has been archived successfully, the
key information will be shown.

Click Recover.

In the form that appears, enter the base-64 encoded certificate that corresponds to the
private key to recover; use the CA to get this information. If the archived key was searched
for by providing the base-64 encoded certificate, then the certificate does not have to be
supplied here.

Make sure that the Async Recovery checkbox is selected to allow the browser session to
be closed while recovery is ongoing.

NOTE

An async recovery is the default and recommended way to perform a key
recovery. If you want to perform a synchronous key recovery, the browser
window cannot be shut and the KRA cannot be stopped during the recovery
process.

Depending on the agent scheme, a specified number of agents must authorize this key
recovery. Have the agents search for the key to recover and then to approve the initiated
recovery.

Once all the agents have authorized the recovery, the next screen requests a password to
encrypt the PKCS #12 file with the certificate.

The next screen returns a link to download a PKCS #12 blob containing the recovered key
pair. Follow the link, and save the blob to file.

IMPORTANT

Opening the PKCS #12 file directly from the browser in the ger-viewer utility
can fail in certain situations. To work around the problem, download the file
and manually open it in gcr-viewer.

9. Restore the key to the browser's database. Import the .p12 file into the browser and mail client.

10. Open the test email. The message should be shown again.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING
CERTIFICATES

Certificates are requested and used by end users. Although certificate enrollment and renewal are
operations that are not limited to administrators, understanding the enrollment and renewal processes
can make it easier for administrators to manage and create appropriate certificate profiles, as described
in Section 3.2, “Setting up Certificate Profiles”, and to use fitting authentication methods (described in
Chapter 10, Authentication for Enrolling Certificates) for each certificate type.

This chapter discusses requesting, receiving, and renewing certificates for use outside

Certificate System. For information on requesting and renewing Certificate System subsystem
certificates, see Chapter 17, Managing Subsystem Certificates.

5.1. ABOUT ENROLLING AND RENEWING CERTIFICATES
Enrollment is the process for requesting and receiving a certificate. The mechanics for the enrollment
process are slightly different depending on the type of certificate, the method for generating its key
pair, and the method for generating and approving the certificate itself. Whatever the specific method,
certificate enrollment, at a high level, has the same basic steps:

1. A certificate request (CSR) is generated.

2. The certificate request is submitted to the CA.

3. The request is verified by authenticating the entity which requested it and by confirming that
the request meets the certificate profile rules which were used to submit it.

4. The request is approved.
5. The requesting party retrieves the new certificate.

When the certificate reaches the end of its validity period, it can be renewed.

5.2. CREATING CERTIFICATE SIGNING REQUESTS
Traditionally, the following methods are used to generate Certificate requests (CSRs):

® Generating CSRs using command line utilities

® Generating CSRs inside a supporting browser

® Generating CSRs inside an application, such as the installer of a server
Some of these methods support direct submission of the CSRs, while some do not.
Starting from RHCS 9.7, Server-Side key generation is supported to overcome the inconvenience
brought on by the removal of the key generation support inside newer versions of browsers, such as
Firefox v69 and up, as well as Chrome. For this reason, in this section, we will not discuss browser
support for key generation. Although there is no reason to believe that older versions of those browsers

should not continue to function as specified in older RHCS documentation.

CSRs generated from an application generally take the form of PKCS#10. Provided that they are
generated correctly, they should be supported by RHCS.

In the following subsections, we are going to go over the following methods supported by RHCS:

63

Administration Guide

® Command-line utilities

® Server-Side Key Generation

5.2.1. Generating CSRs Using Command-Line Utilities

Red Hat Certificate System supports using the following utilities to create CSRs:
e certutil: Supports creating PKCS #10 requests.
o PKCS10Client: Supports creating PKCS #10 requests.
® CRMFPopClient: Supports creating CRMF requests.
® pki client-cert-request: Supports both PKCS#10 and CRMF requests.

The following sections provide some examples on how to use these utilities with the feature-rich
enrollment profile framework.

5.2.1.1. Creating a CSR Using certutil
This section describes examples on how to use the certutil utility to create a CSR.
For further details about using certutil, see:

® The certutil(1) man page

® The output of the certutil --help command

5.2.1.1.1. Using certutil to Create a CSR with EC Keys

The following procedure demonstrates how to use the certutil utility to create an Elliptic Curve (EC) key
pair and CSR:

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

I $ cd /user_or_entity database _directory/

2. Create the binary CSR and store it in the /user_or_entity_database _directory/request.csr
file:

$ certutil -d . -R -k ec -q nistp256 -s "CN=subject_name" -o
/user_or_entity database_directory/request-bin.csr

Enter the required NSS database password when prompted.
For further details about the parameters, see the certutil(1) man page.

3. Convert the created binary format CSR to PEM format:

$ BtoA /user_or_entity database _directory/request-bin.csr
/user_or_entity database_directory/request.csr

64

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

4. Optionally, verify that the CSR file is correct:

$ cat /user_or_entity database_directory/request.csr

MIICbTCCAVUCAQAWKDEQMA4GA1UEChMHRXhhbXBsZTEUMBIGA1UEAXMLZXhhbXBs

This is a PKCS#10 PEM certificate request.

5.2.1.1.2. Using certutil to Create a CSR With User-defined Extensions

The following procedure demonstrates how to create a CSR with user-defined extensions using the
certutil utility.

Note that the enrollment requests are constrained by the enrollment profiles defined by the CA. See
Example B.3, "Multiple User Supplied Extensions in CSR" .

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

I $ cd /user_or_entity database _directory/

2. Create the CSR with user-defined Key Usage extension as well as user-defined Extended Key
Usage extension and store it in the /user_or_entity _database_directory/request.csr file:

$ certutil -d . -R -k rsa -g 1024 -s "CN=subject_name" --keyUsage
keyEncipherment,dataEncipherment,critical --extKeyUsage
timeStamp,msTrustListSign,critical -a -o /user_or_entity database _directory/request.csr

Enter the required NSS database password when prompted.
For further details about the parameters, see the certutil(1) man page.

3. Optionally, verify that the CSR file is correct:

$ cat /user_or_entity _database_directory/request.csr
Certificate request generated by Netscape certutil
Phone: (not specified)

Common Name: user 4-2-1-2
Email: (not specified)
Organization: (not specified)
State: (not specified)
Country: (not specified)

This is a PKCS#10 PEM certificate request.

5.2.1.2. Creating a CSR Using PKCS10Client
This section describes examples how to use the PKCS10Client utility to create a CSR.

For further details about using PKCS10Client, see:

65

Administration Guide

® The PKCSIOClient(1) man page

® The output of the PKCS10Client --help command

5.2.1.2.1. Using PKCS10Client to Create a CSR

The following procedure explains how to use the PKCS10Client utility to create an Elliptic Curve (EC)
key pair and CSR:

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

I $ cd /user_or_entity database _directory/
2. Create the CSR and store it in the /user_or_entity database_directory/example.csr file:

$ PKCS10Client -d . -p NSS_password -a ec -c nistp256 -0
/user_or_entity database_directory/example.csr-n "CN=subject_name"

For further details about the parameters, see the PKCS10Client(1) man page.

3. Optionally, verify that the CSRis correct:

$ cat /user_or_entity database_directory/example.csr

5.2.1.2.2. Using PKCS10Client to Create a CSR for SharedSecret-based CMC

The following procedure explains how to use the PKCS10Client utility to create an RSA key pair and
CSR for SharedSecret-based CMC. Use it only with the CMC Shared Secret authentication method
which is, by default, handled by the caFullCMCSharedTokenCert and caECFullCMCSharedTokenCert
profiles.

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

I $ cd /user_or_entity database _directory/
2. Create the CSR and store it in the /user_or_entity database_directory/example.csr file:

$ PKCS10Client -d . -p NSS_password -0 /user_or_entity database _directory/example.csr -y
true -n "CN=subject_name"

For further details about the parameters, see the PKCS10Client(1) man page.

3. Optionally, verify that the CSR is correct:

$ cat /user_or_entity database_directory/example.csr

MIICzzCCAbcCAQAwgYkx

66

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

5.2.1.3. Creating a CSR Using CRMFPopClient

Certificate Request Message Format (CRMF) is a CSR format accepted in CMC that allows key archival
information to be securely embedded in the request.

This section describes examples how to use the CRMFPopClient utility to create a CSR.

For further details about using CRMFPopClient, see the CRMFPopClient(1) man page.

5.2.1.3.1. Using CRMFPopClient to Create a CSR with Key Archival

The following procedure explains how to use the CRMFPopClient utility to create an RSA key pair and a
CSR with the key archival option:

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

I $ cd /user_or_entity database _directory/
2. Retrieve the KRA transport certificate:

$ pki ca-cert-find --name "DRM Transport Certificate"

Serial Number: 0x7

Subject DN: CN=DRM Transport Certificate, O=EXAMPLE
Status: VALID

Type: X.509 version 3

Key A Igorithm: PKCS #1 RSA with 2048-bit key

Not Valid Before: Thu Oct 22 18:26:11 CEST 2015

Not Valid After: Wed Oct 11 18:26:11 CEST 2017

Issued On: Thu Oct 22 18:26:11 CEST 2015

Issued By: caadmin

Number of entries returned 1
3. Export the KRA transport certificate:
I $ pki ca-cert-show 0x7 --output kra.transport
4. Create the CSR and store it in the /user_or_entity database_directory/example.csr file:

$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b
kra.transport -w "AES/CBC/PKCS5Padding" -v -0
/user_or_entity database_directory/example.csr

To create an Elliptic Curve (EC) key pair and CSR, pass the -a ec -t false options to the
command.

67

Administration Guide

For further details about the parameters, see the CRMFPopClient(1) man page.

5. Optionally, verify that the CSRis correct:

$ cat /user_or_entity database_directory/example.csr

5.2.1.3.2. Using CRMFPopClient to Create a CSR for SharedSecret-based CMC

The following procedure explains how to use the CRMFPopClient utility to create an RSA key pair and
CSR for SharedSecret-based CMC. Use it only with the CMC Shared Secret authentication method
which is, by default, handled by the caFullCMCSharedTokenCert and caECFullCMCSharedTokenCert
profiles.

1. Change to the certificate database directory of the user or entity for which the certificate is
being requested, for example:

I $ cd /user_or_entity database _directory/
2. Retrieve the KRA transport certificate:

$ pki ca-cert-find --name "DRM Transport Certificate"

Serial Number: 0x7

Subject DN: CN=DRM Transport Certificate, O=EXAMPLE
Status: VALID

Type: X.509 version 3

Key A Igorithm: PKCS #1 RSA with 2048-bit key

Not Valid Before: Thu Oct 22 18:26:11 CEST 2015

Not Valid After: Wed Oct 11 18:26:11 CEST 2017

Issued On: Thu Oct 22 18:26:11 CEST 2015

Issued By: caadmin

Number of entries returned 1
3. Export the KRA transport certificate:
I $ pki ca-cert-show 0x7 --output kra.transport
4. Create the CSR and store it in the /user_or_entity database_directory/example.csr file:

$ CRMFPopClient -d . -p password -n "cn=subject_name" -q POP_SUCCESS -b
kra.transport -w "AES/CBC/PKCS5Padding" -y -v -0
/user_or_entity database_directory/example.csr

To create an EC key pair and CSR, pass the -a ec -t false options to the command.

638

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

For further details about the parameters, see the output of the CRMFPopClient --help
command.

5. Optionally, verify that the CSRis correct:

$ cat /user_or_entity database_directory/example.csr

5.2.1.4. Creating a CSR using client-cert-request in the PKICLI

The pkicommand-line tool can also be used with the client-cert-request command to generate a CSR.
However, unlike the previously discussed tools, CSR generated with pki are submitted directly to the CA.
Both PKCS#10 or CRMF requests can be generated.

Example on generating a PKCS#10 request:

pki -d user token db directory -P https -p 8443 -h host.test.com -c user token db passwd client-cert-
request "uid=test2" --length 4096 --type pkcs10

Example on generating a CRMF request:

pki -d user token db directory -P https -p 8443 -h host.test.com -c user token db passwd client-cert-
request "uid=test2" --length 4096 --type crmf

A request id will be returned upon success.

Once a request is submitted, an agent could approve it by using the pki ca-cert-request-approve
command.

For example:

pki -d agent token db directory -P https -p 8443 -h host.test.com -c agent token db passwd -n <CA
agent cert nickname> ca-cert-request-approve request id

For more information, see the man page by running the pki client-cert-request --help command.

5.2.2. Generating CSRs Using Server-Side Key Generation

Many newer versions of browsers, including Firefox v69 and up, as well as Chrome, have removed the
functionality to generate PKI keys and the support for CRMF for key archival. On RHEL, CLIs such as
CRMFPopClient (see CRMFPopClient --help) or pki (see pki client-cert-request --help) could be
used as a workaround.

Server-Side Keygen enrollment has been around for a long time since the introduction of Token Key
Management System (TMS), where keys could be generated on a KRA instead of locally on smart cards.
Red Hat Certificate System now adopts a similar mechanism to resolve the browser keygen deficiency
issue. Keys are generated on the server (specifically, on the KRA) and then transferred securely back to
the client in PKCS#12.

69

Administration Guide

NOTE

It is highly recommended to employ the Server-Side Keygen mechanism only for
encryption certificates.

5.2.2.1. Functionality Highlights

e Certificate request keys are generated on the KRA (Note: a KRA must be installed to work with
the CA)

® The profile default plugin, serverKeygenUserKeyDefaultimpl, provides selection to enable or
disable key archival (i.e. the enableArchival parameter)

® Support for both RSA and EC keys

® Support for both manual (agent) approval and automatic approval (e.g. directory password-
based)

5.2.2.2. Enrolling a Certificate Using Server-Side Keygen

The default Sever-Side Keygen enrollment profile can be found on the EE page, under the List
Certificate Profiles tab:

Manual User Dual-Use Certificate Enrollment Using server-side Key generation

CA Agent b - o N
& [~ (1) - - - & ¥ m o & =
3 Most Visited @ Fedora Docs] Fedora Mag B3 Fedora Project B User Communities BB Red Hat B3 Free Content

List Certificate Cenificate Profile
Profiles U ths: o 10 Submil the nequest

Cartificate Profile - Manual User Dual-Use Certificate Enrollment using server-side Key generation
This certificate profile is for enrolling user certificates using server-side Key generation.
Inputs

Server-Side Key Generation
® Server-Side Key Generation P12 Password

FECS #12 Password: eses

PECS #12 Password again: eeee

* Server-Side Key Generation Key Type ECC v

& Server-Side Key Generation Key Size nistp2s6 v~
Subject Hame

= D test

* Email test@example.com

* Common Name Test User One

* Organizational Unit 3

* Organizational Unit 2

* Organirational Unit 1

* Organizational Unst

& Organization test

& Couniry
infarmation

Figure 5.1. Server-Side Keygen Enrollment that requires agent manual approval

70

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

Directory-authenticated User Dual-Use Certificate Enroliment Using server-side Key
generation

CA Agent X | CAEnd-Entity x [- o x

< ¢ e D £ - "hiipsiffhiost exanipléeermadd 3lcalealcal - B & @O &
£+ Most Visited @ Fedora Docs [Fedora Magazine [0 Fedora Project B User Communities B3

Red Hat B9 Free Content

Red Hat® Certificate System 9.7 Certificate Manager

| List certificare Certificate Profile
Prafiles Use this form 1o submit the request

Cartificate Profile - Manual User Dual-Use Certificate Enroliment using server-side Key generation
This certificate profile is for enrolling user certificates using server-side Key generabion

Authentication - LDAP UID & Password Authentication
This plugin suthenticates the usemame and password provided by the user against an LDAP directory. R works with the Dir-Based Enrollment HTML fonm

® LDAP User ID user]
® LDAP User Password ssssss
Inputs

Sarver-Side Key Ganaration
® ServerSide Key Generation P12 Password

PHCS #12 Password: sssss
PECS #12 Password again: eseess

® Server-Side Key Generathon Key Type RSA »

® Server-Side Key Generation Key Size 2048

Subject Nama

* UiD userl

* Email userl@example.com
® Common Name User One

® Organizational Unit 3

® Organizational Unit 2

Figure 5.2. Server-Side Keygen Enrollment that will be automatically approved upon successful
LDAP uid/pwd authentication

Regardless of how the request is approved, the Server-Side Keygen Enrollment mechanism requires the

End Entity user to enter a password for the PKCS#12 package which will contain the issued certificate as
well as the encrypted private key generated by the server once issued.

IMPORTANT

Users should not share their passwords with anyone. Not even the CA or KRA agents.

When the enrollment request is approved, the PKCS#12 package will be generated and,

® |n case of manual approval, the PKCS#12 file will be returned to the CA agent that approves the
request; the agent is then expected to forward the PKCS#12 file to the user.

® |n case of automatic approval, the PKCS#12 file will be returned to the user who submitted the
request

71

Administration Guide

Certificate Manager

L ality: faleei s
List Requests |
o] | |Comma-Séparated st 1.3.6,1,5.5.7.3.2,1,3.6,1.5.5.7.3.4
Openirg serverkeyGenCert pl2 u Ibject identifievs:

serverkeyGenCert pl2 |’
| default populates a Subjéct Altemative Name Extension (2.5.29.17) to the |No Constraint
lest, The default values are Criticality=false, Record
Pattern: $request.requestor_emails Pattern

BRFCB22Name Enable:true }
feality: falis v
leval Names
™ n1|5hx!|-|¢ult populates the Certificate Signing Algarithm, The default values are |This constraint accepts only the Signing Algorithms of
3 _I.ﬂ lgorithm=5HAZSGwIthRSA SHALWIthRSA, SHAZS3GwIthRSA, SHAS 1 2withRSA, SHALWItREC, SHAZ SGwi
Y | /P55, 5HAS 1 2withRSA/PSS
r‘ -. 3 a :‘.lr;urllq Algovithm: SHAZ5EWIthRSA .

3".":]':.“5 dditiansl Nobes

Approve request submit

Figure 5.3. Enrollment manually approved by an agent

Once the PKCS#12 file is received, the user could use a CLI such as pkes12util to import this file into
their own user internal cert/key database for each application. E.g. the Firefox nss database of the user.

5.2.2.3. Key Recovery

If the enableArchival parameter is set to true in the certificate enrollment profile, then the private keys
are archived at the time of Server-Side Keygen enrollment. The archived private keys could then be
recovered by the authorized KRA agents.

5.2.2.4. Additional Information
5.2.2.4.1. KRA Request Records

NOTE

Due to the nature of this mechanism, in case the enableArchival parameter is set to true
in the profile, there are two KRA requests records per Server-Side keygen request:

® One for the request type asymkeyGenRequest

This request type cannot be filtered using List Requests on the KRA agent page; you can
select Show All Requests to see them listed.

® One for the request type recovery

5.2.2.4.2. Audit Records

Some audit records could be observed if enabled:

CA

72

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

e SERVER_SIDE_KEYGEN_ENROLL_KEYGEN_REQUEST
e SERVER_SIDE_KEYGEN_ENROLL_KEY_RETRIEVAL_REQUEST
KRA
e SERVER_SIDE_KEYGEN_ENROLL_KEYGEN_REQUEST_PROCESSED

e SERVER_SIDE_KEYGEN_ENROLL_KEY_RETRIEVAL_REQUEST_PROCESSED (not yet
implemented)

5.3. REQUESTING AND RECEIVING CERTIFICATES

As explained in Section 5.1, “About Enrolling and Renewing Certificates”, once CSRs are generated, they
need to be submitted to the CA for issuance. Some of the methods discussed in Section 5.2, “Creating
Certificate Signing Requests” submit CSRs to the CA directly, while some would require submission of
the CSRs in a separate step, which could either be carried out by the user or pre-signed by an agent.

In this section, we are going to discuss the separate submission steps supported by the RHCS CA.
® Section 5.3.1, “Requesting and Receiving a Certificate through the End-Entities Page”

® Section 5.5, “Submitting Certificate requests Using CMC"

5.3.1. Requesting and Receiving a Certificate through the End-Entities Page

At the CA End Entity portal (i.e. https://host.domain;port#/ca/ee/ca), end entities can use the HTML
enrollment forms presented at each applicable enrollment profile under the Enroliment/Renewal tab to
submit their certificate requests (CSRs, see Section 5.2, “Creating Certificate Signing Requests” for how
to generate CSRs).

Many of the default enrollment profiles provide a Certificate Request text box where one could paste in
the Base64 encoded CSR, along with a Certificate Request Type selection drop down list.

In the certificate enrollment form, enter the required information.

73

Administration Guide

Red Hat® Certificate Manager

Enrollment Revocation Retrieval

List Certificate

Certificate Profile - Manual Server Certificate Enrollment

Profiles

This certificate profile is for enrolling server certificates.

Inputs

Certificate
Request Input

s Certificate Request

Type PKCS#10 [+ |

XIuemVkYnVkY2 9t cHVOZX TubGo 3 “MYWwwg Z BwDQY
JEOZIhvcHAQEEBQADGYORMIGIA0GEAL4cRAS CAWW
TnusHEyxmMEgW "M1pR7Ghjgf O3BLWbeVIWwGE9mE&E
¢ Certificate Request TaBfSHYFYBLHGZ31TItEzYDgmSfpe2s5tr3w,/WE™
MlziFeRglS+kesHDzX=rShRxnRwl 7 ZvgdHY eNEvqu
NFCSHaRfkEScR43k1Tfghs564 "M/ frWBcBTZVEYE
qduEC+hRgMEARGGMDAUEgkghkiGIWOBCQ4xITLFM

BOGA1UAEQQW MMESEEMpzbW102EBleGFtcGx1LuN
vhbTANBokghkiGowlBAQUFALOBgQB4tZ rsMuFe ~MM

Requestor
Information
* Requestor Name John Smith
* Requestor Email jtsmithi@example.com

* Requestor Phone 9185551330

The standard requirements are as follows:

74

Certificate Request Type. This is either PKCS#10 or CRMF. Certificate requests created
through the subsystem administrative console are PKCS #10; those created through the
certutil tool and other utilities are usually PKCS #10.

Requester Name. This is the common name of the person requesting the certificate.
Requester Email. This is the email address of the requester. The agent or CA system will use
this address to contact the requester when the certificate is issued. For example,

jdoe@someCompany.com.

Requester Phone. This is the contact phone number of the requester.

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

The submitted request is queued for agent approval. An agent needs to process and approve the
certificate request.

NOTE

Some enrollment profiles may allow automatic approval such as by using the LDAP
uid/pwd authentication method offered by Red Hat Certificate System. Enrollments
through those profiles would not require manual agent approval in the next section. See
Chapter 10, Authentication for Enrolling Certificates for supported approval methods.

In case of manual approval, once the certificate is approved and generated, you can retrieve the
certificate.

1. Open the Certificate Manager end-entities page, for example:
I https://server.example.com:8443/ca/ee/ca

2. Click the Retrieval tab.

3. Fillin the request ID number that was created when the certificate request was submitted, and
click Submit.

4. The next page shows the status of the certificate request. If the status is complete, then there
is a link to the certificate. Click the Issued certificate link.

|i neEU NMMac weEluairieale i"iailia

Enrollment Revocation

Request Status

Request: &

Submitted 5/19/2009 9:36:18
on:

Status: complete

Issued 0x000DD0D00G
certificate:

5. The new certificate information is shown in pretty-print format, in base-64 encoded format,
and in PKCS #7 format.

75

Administration Guide

Revocation Retrieval

Certificate 0x02b

Certificate contents

Certificate:
Data:
Version: w3
Serial Humber: 0xZB
Signature Algorithm: SHAIwithRSA - 1.2.840.113545.1.1.5
Issuer: CH=Certificate Authority,=Redbudcomputer Domain
Validity:
Hot Before: Wednesday, May 20, 2009 12:51:27 PM CDT Amera
Hot After: Monday, November 16, 2009 11:51:27 AM C5T Ame
Subject: UID=dlackey,E=dlackevy@redhat.com,CH=Deon Lackey, 0lU=¢
Subject Pubklic Eey Info:
Algorithm: RSAZ - 1.2.840.11354%9.1.1.1
Public EKey:
Exponent: 65537
Public Eey Modulus: (512 bits)

D4:3B:68:03:25:FE:6D0:26:52:96:2:TE:99:36:5F:A2:
BT7:56:BB:60:A9:06:DD:1A:AB:62: T4 :AC:92:56:5E:63:
DD:A9:6B:TC:6D:F3:3F:60:8E:99 :FC:BA:9A: 1A :EB:EE:
BD:0D:B0:4F:83:C3:D9:48:8A:B1:8A:C1:78:11:0C:75

Extensions:
Identifier: Authority Eey Identifier - 2.5.29.35
Critical: no
Eey Identifier:
BE:17:T7TF:AE:4B:7C:B6:64:DT7:AC:51:92:DC:07:F6:53:
C2:8F:4B:22

The following actions can be taken through this page:

o Toinstall this certificate on a server or other application, scroll down to the Installing This
Certificate in a Server section, which contains the base-64 encoded certificate.

6. Copy the base-64 encoded certificate, including the ----- BEGIN CERTIFICATE----- and ====-
END CERTIFICATE----- marker lines, to a text file. Save the text file, and use it to store a copy

of the certificate in the security module of the entity where the private key resides. See
Section 15.3.2.1, “Creating Users”.

5.4. RENEWING CERTIFICATES

This section discusses how to renew certificates. For more information on how to set up certificate
renewal, see Section 3.4, “Configuring Profiles to Enable Renewal”.

Renewing a certificate consists in regenerating the certificate with the same properties to be used for
the same purpose as the original certificate. In general, there are two types of renewals:

® Same key Renewal takes the original key, profile, and request of the certificate and recreates a
new certificate with a new validity period and expiration date using the identical key. This can be
done by either of the following methods:

o resubmitting the original certificate request (CSR) through the original profile, or

o regenerating a CSR with the original keys by using supporting tools such as certutil

76

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

® Re-keying a certificate requires regeneration of a certificate request with the same information,
so that a new key pair is generated. The CSR is then submitted through the original profile.

5.4.1. Same Keys Renewal

5.4.1.1. Reusing CSR

There are three approval methods for same key renewal at the end entity portal.

® Agent-approved method requires submitting the serial number of the certificate to be renewed,;
This method would require a CA agent'’s approval.

® Directory-based renewal requires submitting the serial number of the certificate to be renewed,
and the CA draws the information from its current certificate directory entry. The certificate is

automatically approved if the Idap uid/pwd is authenticated successfully.

e Certificate-based renewal uses the certificate in the browser database to authenticate and
have the same certificate re-issued.

5.4.1.1.1. Agent-Approved or Directory-Based Renewals

Sometimes, a certificate renewal request has to be manually approved, either by a CA agent or by
providing login information for the user directory.

1. Open the end-entities services page for the CA which issued the certificate (or its clone).
I https://server.example.com:8443/ca/ee/ca

2. Click the name of the renewal form to use.

3. Enter the serial number of the certificate to renew. This can be in decimal or hexadecimal form.

Revocation Retrieval

Certificate Profile

Use this form to submit the request.

Certificate Profile - Renew certificate to be manually approved by agents

This certificate profile is for renewing certificates to be approved manually by agents.

Inputs

Serial Number of Certificate to
Renew

¢ Searial Number of Certificate to Renew

4. Click the renew button.

77

Administration Guide

5. The request is submitted. For directory-based renewals, the renewed certificate is automatically
returned. Otherwise, the renewal request will be approved by an agent.

Revocation Retrieval

Certificate Profile

Congratulations, your request has been processed successfully
Your request ID is 55.

Outputs
¢ Certificate Pretty Print

Cercificate:

-

5.4.1.1.2. Certificate-Based Renewal

Some user certificates are stored directly in your browser, so some renewal forms will simply check your
browser certificate database for a certificate to renew. If a certificate can be renewed, then the CA
automatically approved and reissued it.

IMPORTANT

If the certificate which is being renewed has already expired, then it probably cannot be
used for certificate-based renewal. The browser client may disallow any SSL client
authentication with an expired certificate.

In that case, the certificate must be renewed using one of the other renewal methods.

1. Open the end-entities services page for the CA which issued the certificate (or its clone).
I https://server.example.com:8443/ca/ee/ca

2. Click the name of the renewal form to use.
3. Thereis no input field, so click the Renew button.

4. When prompted, select the certificate to renew.

78

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

e

User ldentification Request

This site has requested that you identify yourself with a certificate:
wilbur.redbudcomputer.local: 9444

Crganization: "Redbudcomputer Domain™

Issued Under: "Redbudcomputer Domain™

Choose a certificate to present as identification:
Jaye Tyler's Example Domain [D [31]

Jaye Tyler's Example Domain ID [31]

Malcolm Reynolds's Example Domain ID [28]

QCSP Administrator of Instance pki-ocsp's Example Domain ID [21]
TPS Administrator's Example Domain ID [18]

KR.& Administrator of Instance pki-kra's Example Domain 1D [14]
TES Administrator of Instance pki-tks's Example Domain ID [0E]
John Smith's Example Domain ID [0A]

R.A Administrator's Example Domain ID [09]

CA Administrator of Instance pki-ca's Example Domain ID [0&]

| Ik | | Cancel

5. The request is submitted and the renewed certificate is automatically returned.

Certificate Profile

Congratulations, your request has been processed successfully

Your request ID is 55.
Outputs
¢ Certificate Pretty Print

Cercificate:

-

5.4.1.2. Renewal by generating CSR with same keys

79

Administration Guide

Sometimes, the original CSR might not be available. The certutil tool allows one to regenerate a CSR
with the same keys, provided that the key pair is in the NSS database. This can be achieved by doing the
following:

1. Find the corresponding key id in the NSS db:
I Certutil -d <nssdb dir>-K
2. Generate a CSR using a specific key:
I Certutil -d <nssdb dir>-R -k <key id> -s <subject DN> -0 <CSR output file>

Alternatively, instead of keyid, if a key is associated with a certificate in the NSS db, nickname could be
used:

® Generate a CSR using an existing nickname:

I Certutil -d <nssdb dir>-R -k <nickname> -s <subject DN> -0 <CSR output file>

5.4.2. Renewal by Re-keying Certificates
Since renewal by re-keying is basically generating a new CSR with the same info as the old certificate,

just follow any one of the methods described in Section 5.2, “Creating Certificate Signing Requests”. Be
mindful to enter the same information as the old certificate.

5.5.SUBMITTING CERTIFICATE REQUESTS USING CMC

This section describes the procedure to enroll a certificate using Certificate Management over CMS
(CMQ).

For general information about configuration and the workflow of enrolling certificates using CMC, see:

® The Configuration for CMC section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

® The Enrolling with CMC section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

® CMCRequest(1) man page
® CMCResponse(1) man page

CMC enrollment is possible in various ways to meet the requirements for different scenarios.

Section 5.5.2, “The CMC Enrollment Process” supplements the Enrolling with CMC section in the

Red Hat Certificate System Planning, Installation, and Deployment Guide with more details. Additionally,
the Section 5.5.3, “Practical CMC Enrollment Scenarios” section enables administrators to decide which
mechanisms should be used in which scenario.

5.5.1. Using CMC Enrollment

CMC enrollment allows an enrollment client to use a CMCAuth plug-in for authentication, by which the
certificate request is pre-signed with an agent certificate. The Certificate Manager automatically issues
certificates when a valid request signed with the agent certificate is received.

80

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/configuration_for_cmc
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing-pki#enrolling_with_cmc
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing-pki#enrolling_with_cmc

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

NOTE

CMC enrollments are enabled by default. It should not be necessary to enable the CMC
enrollment authentication plug-ins or profiles unless the configuration has been changed.

The CMCAuth authentication plug-in also provides CMC revocation for the client. CMC revocation
allows the client to have the certificate request signed by the agent certificate, and then send such a
request to the Certificate Manager. The Certificate Manager automatically revokes certificates when a
valid request signed with the agent certificate is received. CMC revocation can be created with the
CMCRevoke command line tool. For more information about CMCRevoke, see Section 7.2, “Performing
a CMC Revocation”.

A CMC request can be submitted through browser end-entities forms or using a tool such as HttpClient
to post the request to the appropriate profile. The CMCRequest tool generates a signed certificate
request which can then be submitted using the HttpClient tool or the browser end-entities forms to
enroll and receive the certificate automatically and immediately.

The CMCRequest tool has a simple command syntax, with all the configuration given in the .cfg input
file:

I CMCRequest /path/to/file.ctg

A single CMC enrollment can also be created using the CMCEnroll tool, with the following syntax:

CMCEnroll -d 7agent's/certificate/directory -h password -n cert_nickname -r certrequest.file -p
certDB_passwd [-c "comment']

These tools are described in more detail in the CMCEnroll(1) man page.

NOTE

Surround values that include spaces in quotation marks.

5.5.1.1. Testing CMCEnroll

1. Create a certificate request using the certutil tool.

2. Copy the PKCS #10 ASCIl output to a text file.

3. Run the CMCEnroll utility.
For example, if the input file called request34.txt, the agent certificate is stored in the browser
databases, the certificate common name of the agent certificate is

CertificateManagerAgentsCert, and the password for the certificate database is secret, the
command is as follows:

CMCEnroll -d ~jsmith/.mozilla/firefox/1234.jsmith -n "CertificateManagerAgentsCert" -r
/export/requests/request34.ixt -p secret

The output of this command is stored in a file with the same filename with .out appended to the
filename.

4. Submit the signed certificate through the end-entities page.

81

Administration Guide

1. Open the end-entities page.

I https://server.example.com:8443/ca/ee/ca

2. Select the CMC enrollment form from the list of certificate profiles.
3. Paste the content of the output file into the Certificate Request text area of this form.

4. Remove ----- BEGIN NEW CERTIFICATE REQUEST----- and ----END NEW CERTIFICATE
REQUEST----- from the pasted content.

5. Fill'in the contact information, and submit the form.
5. The certificate is immediately processed and returned.

6. Use the agent page to search for the new certificate.

5.5.2. The CMC Enrollment Process

Use the following general procedure to request and issue a certificate using CMC:
1. Create a Certificate Signing Request (CSR) in one of the following formats:
o PKCS #10 format
o Certificate Request Message Format (CRMF) format

For details about creating CSRs in these formats, see Section 5.2, “Creating Certificate Signing
Requests”.

2. Import the admin certificate into the client NSS database. For example:

o Execute the command below to extract the admin client certificate from the .p12 file:

$ openssl pkcs12 -in /root/.dogtag/instance/ca_admin_cert.p12 -clcerts -nodes -nokeys -
out /root/.dogtag/instance/ca_admin_cert.crt

o Validate and import the admin client certificate according to guidance in Managing
Certificate/Key Crypto Token section in the Red Hat Certificate System Planning,
Installation, and Deployment Guide:

$ PKICertimport -d . -n "CA Admin - Client Certificate" -t ",," -a -i
/root/.dogtag/instance/ca_admin_cert.crt -u C

IMPORTANT

Make sure all intermediate certificates and the root CA certificate have been
imported before importing the CA Admin client certificate.

o Import the private keys associated with the certificates.

$ pki -c password pkcs12-import --pkcs12-file /root/.dogtag/instance/ca_admin_cert.p12 -
-pkcs12-password-file /root/.dogtag/instance/ca/pkcs12_password.conf

82

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/managing_certificate_key_crypto_token

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

3. Create a configuration file for a CMC request, such as /home/user_name/cmc-request.cfg,
with the following content:

NSS database directory where CA agent certificate is stored
dbdir=/home/user_name/.dogtag/nssdb/

NSS database password
password=password

Token name (default is internal)
tokenname=internal

Nickname for signing certificate
nickname=subsystem_admin

Request format: pkcs10 or crmf
format=pkcs10

Total number of PKCS10/CRMF requests
numRequests=1

Path to the PKCS10/CRMF request

The content must be in Base-64 encoded format.

Multiple files are supported. They must be separated by space.
input=/home/user_name/file.csr

Path for the CMC request
output=/home/user_name/cmc-request.bin

For further details, see the CMCRequest(1) man page.

4. Create the CMC request:

I $ CMCRequest /home/user_name/cmc-request.cfg

If the command succeeds, the CMCRequest utility stored the CMC request in the file specified
in the output parameter in the request configuration file.

5. Create a configuration file for HttpClient, such as /home/user_name/cmc-submit.cfg, which

you use in a later step to submit the CMC request to the CA. Add the following content to the
created file:

PKI server host name
host=server.example.com

PKI server port number
port=8443

Use secure connection
secure=true

Use client authentication
clientmode=true

NSS database directory where the CA agent certificate is stored.

83

Administration Guide

dbdir=/home/user_name/.dogtag/nssdb/

NSS database password
password=password

Token name (default: internal)
tokenname=internal

Nickname of signing certificate
nickname=subsystem_admin

Path for the CMC request
input=/home/user_name/cmc-request.bin

Path for the CMC response
output=/home/user_name/cmc-response.bin

IMPORTANT

The nickname of the certificate specified in the nickname parameter must
match the one previously used for the CMC request.

6. Depending on what type of certificate you request, add the following parameter to the
configuration file created in the previous step:

I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=profile_name
For example, for a CA signing certificate:

I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCcaCert

IMPORTANT

When an agent submits the CMC request in the next step, the profile specified in
this parameter must use the CMCAuth authentication plug-in. Whereas in user-
initiated enrollments, the profile must use the CMCUserSignedAuth plug-in. For
further details, see the Section 10.3, “CMC Authentication Plug-ins”.

7. Submit the CMC request to the CA:
I $ HttpClient /home/user_name/cmc-submit.cfg

8. To convert the CMC response to a PKCS #7 certificate chain, pass the CMC response file to the
-i parameter of the CMCResponse utility. For example:

I $ CMCResponse -i /home/user_name/cmc-response.bin -o /home/user_name/cert_chain.crt

5.5.3. Practical CMC Enrollment Scenarios

This section describes frequent practical usage scenarios and their workflows to enable CA
administrators to decide which CMC method to use in which situation.

84

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

For a general process of enrolling a certificate using CMC, see Section 5.5.2, “The CMC Enrollment
Process”.

5.5.3.1. Obtaining System and Server Certificates

If a service, such as LDAP or a web server, requires a TLS server certificate, the administrator of this
server creates a CSR based on the documentation of the service and sends it to the CA's agent for
approval. Use the procedure described in Section 5.5.2, “The CMC Enrollment Process” for this process.
Additionally, consider the following requirements:

Enrollment Profiles

The agent must either use one of the existing CMC profiles listed in Section 10.3, “CMC
Authentication Plug-ins”, or, alternatively, create a custom profile that uses the CMCAuth
authentication mechanism.

CMC Signing Certificate

For system certificates, the CA agent must generate and sign the CMC request. For this, set the
nickname parameter in the CMCRequest configuration file to the nickname of the CA agent.

NOTE

The CA agent must have access to its own private key.

HttpClient TLS Client Nickname

Use the same certificate for signing in the CMCRequest utility's configuration file as for TLS client
authentication in the configuration file for HttpClient.

HttpClient serviet Parameter

The servletin the configuration file passed to the HttpClient utility refers to the CMC servlet and
the enrollment profile which handles the request.

Depending on what type of certificate you request, add one of the following entries to the
configuration file created in the previous step:

® Fora CAsigning certificate:
I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCcaCert
® ForaKRA transport certificate:
I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCkraTransportCert
® Fora OCSP signing certificate:
I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCocspCert
® For aaudit signing certificate:

I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCauditSigningCert

85

Administration Guide

® Forasubsystem certificate:

o For RSA certificates:
I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCsubsystemCert
o For ECC certificates:

I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCECCsubsystemCert

® ForaTLS server certificate:

o For RSA certificates:
I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCserverCert
o For ECC certificates:
I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caCMCECCserverCert
® Foranadmin certificate:

I servlet=/ca/ee/ca/profileSubmitCMCFull?profileld=caFull CMCUserCert

Further details:
® When an agent pre-signs a CSR, the Proof of Identification is considered established because
the agent examines the CSR for identification. No additional CMC-specific identification proof

is required.

® PKCS #10 files already provide Proof of Possession information and no additional Proof of
Possession (POP) is required.

® |nagent pre-approved requests, the PopLinkWittnessV2 feature must be disabled because
the identification is checked by the agent.

5.5.3.2. Obtaining the First Signing Certificate for a User

There are two ways to approve a user's first signing certificate:

® An agent signs the CMC request. See Section 5.5.3.2.1, “Signing a CMC Request with an Agent
Certificate”.

e Certificate enrollment is authenticated by using a Shared Secret. See Section 5.5.3.2.2,
“Authenticating for Certificate Enrollment Using a Shared Secret”.

5.5.3.2.1. Signing a CMC Request with an Agent Certificate

The process for signing a CMC request with an agent certificate is the same as for system and server
certificates described in Section 5.5.3.1, “Obtaining System and Server Certificates”. The only difference
is that the user creates the CSR and sends it to a CA agent for approval.

86

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

5.5.3.2.2. Authenticating for Certificate Enrollment Using a Shared Secret

When a user wants to obtain the first signing certificate and the agent cannot approve the request as
described in Section 5.5.3.2.1, “Signing a CMC Request with an Agent Certificate” , you can use a Shared
Token. With this token, the user can obtain the first signing certificate. This certificate can then be used
to sign other certificates of the user.

In this scenario, use the Shared Secret mechanism to obtain the first signing certificate of the user. Use
the following information together with Section 5.5.2, “The CMC Enrollment Process”:

1. Create a Shared Token either as the user or CA administrator. For details, see The Shared
Secret Workflow section in the Red Hat Certificate System Planning, Installation, and Deployment
Guide.

Note that:

o |f the user created the token, the user must send the token to the CA administrator.

o |[f the CA administrator created the token, the administrator must share the password used
to generate the token with the user. Use a secure way to transmit the password.

2. As the CA administrator, add the Shared Token to the user entry in LDAP. For details, see
Section 10.4.2.1, “Adding a CMC Shared Secret to a User Entry for Certificate Enrollment” and
the Enabling the CMC Shared Secret Feature section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

3. Use the following parameters in the configuration file passed to the CMCRequest utility:

o identification.enable

o witness.sharedSecret

o identityProofV2.enable

o identityProofV2.hashAlg
o identityProofV2.macAlg
o request.useSharedSecret

o request.privKeyld

4. If required by the CA, additionally use the following parameters in the configuration file passed
to the CMCRequest utility:

o popLinkWitnessV2.enable
o poplLinkWitnessV2.keyGenAlg

o popLinkWitnessV2.macAlg

5.5.3.3. Obtaining an Encryption-only Certificate for a User

This section describes the workflow for obtaining an encryption-only certificate which is signed with an
existing user signing certificate:

87

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/managing-pki#the_shared_secret_workflow
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/planning_installation_and_deployment_guide/index?lb_target=stage#enabling_the_cmc_shared_secret_feature

Administration Guide

NOTE

If a user owns multiple certificates for different usages, where one is signing, the user
must obtain the signing certificate first. Once the user owns a signing certificate, it can be
used for Proof Of Origin without requiring to set up and rely on the CMC Shared Secret
mechanism.

For details about obtaining a user's first signing certificate, see Section 5.5.3.2,
“Obtaining the First Signing Certificate for a User”.

As a user:

1. Use the cryptographic token stored in a Network Security Services (NSS) database or on a
smart card that contains the user's signing certificate and keys.

2. Generate the CSR in PKCS #10 or the CRMF format.

NOTE

Use the CRMF format, if key archival is required.

3. Generate the CMC request.
Since this is an encryption-only certificate, the private key is not able to sign. Therefore, Proof
Of Possession (POP) is not included. For this reason, the enrollment requires two steps: If the
initial request is successful, results in a CMC status with the EncryptedPOP control. The user

then uses the response and generates a CMC request that contains the DecryptedPOP control
and submits it in the second step.

a. For the first step, in addition to the default parameters, the user must set the following
parameters in the configuration file passed to the CMCRequest utility:

m jdentification.enable

® witness.sharedSecret

m jdentityProofV2.enable

m jdentityProofV2.hashAlg

m jdentityProofV2.macAlg

m popLinkWitnessV2.enable if required by the CA
m popLinkWitnessV2.keyGenAlg if required by the CA
m popLinkWitnessV2.macAlg if required by the CA
®m request.privKeyld

For details, see the CMCRequest(1) man page.
The response contains:

B A CMC encrypted POP control

88

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

The CMCStatusinfoV2 control with the POP required error

The request ID

b. For the second step, in addition to the default parameters, the user must set the following
parameters in the configuration file passed to the CMCRequest utility:

m decryptedPop.enable

m encryptedPopResponseFile
m decryptedPopRequestFile

®m request.privKeyld

For details, see the CMCRequest(1) man page.

5.5.3.3.1. Example on Obtaining an Encryption-only certificate with Key Archival

To perform an enrollment with key archival, generate a CMC request that contains the user's encrypted
private key in the CRMF request. The following procedure assumes that the user already owns a signing
certificate. The nickname of this signing certificate is set in the configuration files in the procedure.

NOTE

The following procedure describes the two-trip issuance used with encryption-only keys,
which cannot be used for signing. If you use a key which can sign certificates, pass the -q
POP_SUCCESS option instead of -q POP_NONE to the CRMFPopClient utility for a
single-trip issuance.

For instructions about using CRMFPoPClient with POP_SUCCESS, see Section 5.2.1.3.],
“Using CRMFPopClient to Create a CSR with Key Archival” and Section 5.2.1.3.2, “Using
CRMFPopClient to Create a CSR for SharedSecret-based CMC” .

1. Search for the KRA transport certificate. For example:

I $ pki cert-find --name KRA_transport certificate_subject CN

. Use the serial number of the KRA transport certificate, which you retrieved in the previous step,
to store the certificate in a file. For example, to store the certificate with the 712345 serial
number in the /home/user_name/kra.cert file:

I $ pki cert-show 12345 --output /home/user_name/kra.cert

. Use the CRMFPopClient utility to:

o Create a CSR with key archival:

1. Change to the certificate database directory of the user or entity for which the
certificate is being requested, for example:

I $ cd /home/user_name/

89

Administration Guide

20

Z. Use the CKMIPopCIlient utility to create a CKIVIF request, where the KSA private key Is
wrapped by the KRA transport certificate. For example, to store the request in the
/home/user_name/crmf.req file:

$ CRMFPopClient -d . -p token_password -n subject DN -q POP_NONE \
-b /home/user_name/kra.cert -w "AES/CBC/PKCS5Padding” \
-v -0 /home/user_name/crmf.req

Note the ID of the private key displayed by the command. The ID is required in a later
step as value in the request.privKeyld parameter in the configuration file for the
second trip.

4. Create a configuration file for the CRMRequest utility, such as /home/user_name/cmc.cfg with
the following content:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format
input=/home/user_name/crmf.req

#output: full path for the CMC request in binary format
output=/home/user_name/cmc.req

#tokenname: name of token where agent signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for user certificate which will be used
#to sign the CMC full request.

nickname=signing_certificate

#dbdir: directory for cert9.db, key4.db and pkcs11.ixt
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert9.db which stores the agent certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

5. Create the CMC request:

I $ CMCRequest /home/user_name/cmc.cfg

If the command succeeds, the CMCRequest utility stored the CMC request in the file specified
in the output parameter in the request configuration file.

6. Create a configuration file for HttpClient, such as /home/user_name/cmc-submit.cfg, which
you use in a later step to submit the CMC request to the CA. Add the following content to the
created file:

#host: host name for the http server
host=server.example.com

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

#port: port number
port=8443

#tsecure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enroliment request, the content must be in
#binary format
input=/home/user_name/cmc.req

#output: full path for the response in binary format
output=/home/user_name/cmc-response_round_1.bin

#tokenname: name of token where TLS client authentication cert can be found
#(default is internal)

#This parameter will be ignored if secure=false

tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.ixt

#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false

clientmode=true

#password: password for cert9.db

#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate

#This parameter will be ignored if clientmode=false

nickname=signing_certificate

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull?profileld=caFull CMCUserSignedCert

7. Submit the CMC request to the CA:

I $ HttpClient /home/user_name/cmc-submit.cfg

If the command succeeds, the HTTPClient utility stored the CMC response in the file specified
in the output parameter in the configuration file.

8. Verify the response by passing the response file to the CMCResponse utility. For example:

$ CMCResponse -d /home/user_name/.dogtag/nssdb/ -i /home/user_name/cmc-
response_round_1.bin
If the first trip was successful, CMCResponse displays output similar to the following:

Certificates:
Certificate:
Data:

91

Administration Guide

92

Version: v3
Serial Number: 0x1
Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
Issuer: CN=CA Signing Certificate, OU=pki-tomcat, O=unknown00262DFC6A5E Security
Domain
Validity:
Not Before: Wednesday, May 17, 2017 6:06:50 PM PDT America/Los _Angeles
Not After: Sunday, May 17, 2037 6:06:50 PM PDT America/Los_Angeles
Subject: CN=CA Signing Certificate, OU=pki-tomcat,O=unknown00262DFC6A5E Security
Domain

Number of controls is 3

Control #0: CMC encrypted POP
OID:{136155779}
encryptedPOP decoded

Control #1: CMCStatusInfoV2
OID:{1361557 725}
BodyList: 1
Otherinfo type: FAIL
faillnfo=POP required

Control #2: CMC Responselnfo
requestID: 15

9. For the second trip, create a configuration file for DecryptedPOP, such as
/home/user_name/cmc_DecryptedPOP.cfg, which you use in a later step. Add the following
content to the created file:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#input: full path for the PKCS10 request or CRMF request,
#the content must be in Base-64 encoded format

#this field is actually unused in 2nd trip
input=/home/user_name/crmf.req

#output: full path for the CMC request in binary format
#this field is actually unused in 2nd trip
output=/home/user_name/cmc2.req

#tokenname: name of token where agent signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for agent certificate which will be used
#to sign the CMC full request.
nickname=signing_certificate

#dbdir: directory for cert9.db, key4.db and pkcs11.ixt
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert9.db which stores the agent
#certificate
password=password

#format: request format, either pkcs10 or crmf
format=crmf

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

decryptedPop.enable=true
encryptedPopResponseFile=/home/user_name/cmc-response_round_1.bin
request.privKeyld=-25aa0a8aad395ebac7e6a19c364f0dcb5350cfef
decryptedPopRequestFile=/home/user_name/cmc.DecryptedPOP.req

10. Create the DecryptPOP CMC request:

1.

I $ CMCRequest /home/user_name/cmc.DecryptedPOP.cfg

If the command succeeds, the CMCRequest utility stored the CMC request in the file specified
in the decryptedPopRequestFile parameter in the request configuration file.

Create a configuration file for HttpClient, such as /home/user_name/decrypted_POP_cmc-
submit.cfg, which you use in a later step to submit the DecryptedPOP CMC request to the CA.
Add the following content to the created file:

#host: host name for the http server
host=server.example.com

#port: port number
port=8443

#tsecure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enroliment request, the content must be in binary format
input=/home/user_name/cmc.DecryptedPOP.req

#output: full path for the response in binary format
output=/home/user_name/cmc-response_round_2.bin

#tokenname: name of token where TLS client authentication cert can be found (default is
internal)

#This parameter will be ignored if secure=false

tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.ixt
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client authentication
#This parameter will be ignored if secure=false
clientmode=true

#password: password for cert9.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate
#This parameter will be ignored if clientmode=false

nickname=singing_certificate

#servlet: servlet name
servlet=/ca/ee/ca/profileSubmitUserSignedCMCFull?profileld=caFullCMCUserCert

93

Administration Guide

12. Submit the DecryptedPOP CMC request to the CA:

I $ HttpClient /home/user_name/decrypted POP_cmc-submit.cfg

If the command succeeds, the HTTPClient utility stored the CMC response in the file specified
in the output parameter in the configuration file.

13. To convert the CMC response to a PKCS #7 certificate chain, pass the CMC response file to the
-i parameter of the CMCResponse utility. For example:

$ CMCResponse -i /home/user_name/cmc-response_round_2.bin -0
/home/user_name/certs.p7

Alternatively, to display the individual certificates in PEM format, pass the -v to the utility.

If the second trip was successful, CMCResponse displays output similar to the following:

Certificates:
Certificate:
Data:
Version: v3
Serial Number: 0x2D
Signature Algorithm: SHA256withRSA - 1.2.840.113549.1.1.11
Issuer: CN=CA Signing Certificate, OU=pki-tomcat, O=unknown00262DFC6A5E Security
Domain
Validity:
Not Before: Thursday, June 15, 2017 3:43:45 PM PDT America/Los_Angeles
Not After: Tuesday, December 12, 2017 3:43:45 PM PST America/Los_Angeles
Subject: CN=user_name,UID=example,OU=keyArchivalExample

Number of controls is 1
Control #0: CMCStatuslinfo
OID:{136155771}
BodyList: 1
Status: SUCCESS

5.6. PERFORMING BULK ISSUANCE

There can be instances when an administrator needs to submit and generate a large number of
certificates simultaneously. A combination of tools supplied with Certificate System can be used to post
a file containing certificate requests to the CA. This example procedure uses the PKCS10Client
command to generate the requests and the sslget command to send the requests to the CA.

1. Since this process is scripted, multiple variables need to be set to identify the CA (host, port)
and the items used for authentication (the agent certificate and certificate database and
password). For example, set these variables for the session by exporting them in the terminal:

export d=/var/tmp/testDir
export p=password

export f=/var/tmp/server.csr.txt
export nick="CA agent cert"
export cahost=1.2.3.4

export caport=8443

24

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

NOTE

The local system must have a valid security database with an agent's certificate in
it. To set up the databases:

1. Export or download the agent user certificate and keys from the browser and
save to a file, such as agent.p12.

2. If necessary, create a new directory for the security databases.
I mkdir ${d}
3. If necessary, create new security databases.
I certutil -N -d ${d}
4. Stop the Certificate System instance.
I pki-server stop instance_name
5. Use pk12util to import the certificates.
I # pki2util -i /tmp/agent.p12 -d ${d} -W p12filepassword
If the procedure is successful, the command prints the following output:
I pk12util: PKCS12 IMPORT SUCCESSFUL

6. Start the Certificate System instance.

I pki-server start instance_name

2. Two additional variables must be set. A variable that identify the CA profile to be used to
process the requests, and a variable that is used to send a post statement to supply the
information for the profile form.

export
post="cert_request_type=pkcs10&xmlOutput=true&profileld=caAgentServerCert&cert_request=

export url="/ca/ee/ca/profileSubmitSSLClient"

NOTE

This example submits the certificate requests to the caAgentServerCert profile
(identified in the profileld element of the post statement. Any certificate profile
- can be used, including custom profiles.

3. Test the variable configuration.

I echo ${d} ${p} ${f} ${nick} ${cahost} ${caport} ${post} ${url}

95

Administration Guide

4. Generate the certificate requests using (for this example) PKCS10Client:

time for i in {1..10}; do /usr/bin/PKCS10Client -d ${d} -p ${p} -0 ${f}.${i} -s
"cn=testms${i}.example.com"; cat ${f}.${i} >> ${f}; done

perl -pi -e 'sA\N\n//;s/\+/%2B/g;s/N/%2F/g" ${f}

we -1 ${f)

5. Submit the bulk certificate request file created in step 4 to the CA profile interface using
sslget. For example:

cat ${f} | while read thisreq; do /usr/bin/sslget -n "${nick}" -p ${p} -d ${d} -e ${post}${thisreq} -
v -r ${url} ${cahost}:${caport}; done

5.7.ENROLLING A CERTIFICATE ON A CISCO ROUTER

Simple Certificate Enrollment Protocol (SCEP), designed by Cisco, is a way for a router to communicate
a certificate issuing authority, such as a CA, to enroll certificates for the router.

Normally, a router installer enters the CA's URL and a challenge password (also called a one-time PIN)
into the router and issues a command to initiate the enroliment. The router then communicates with the
CA over SCEP to generate, request, and retrieve the certificate. The router can also check the status of
a pending request using SCEP.

5.7.1. Enabling SCEP Enrollments

For security reasons, SCEP enrollments are disabled by default in the CA. To allow routers to be
enrolled, SCEP enrollments must be manually enabled for the CA.

1. Stop the CA server, so that you can edit the configuration files.
I pki-server stop instance_name

2. Open the CA's CS.cfg file.
I vim /var/lib/pki/instance_namelca/conf/CS.cfg

3. Set the ca.scep.enable to true. If the parameter is not present, then add a line with the
parameter.

I ca.scep.enable=true
4. Restart the CA server.

I pki-server start instance_name

5.7.2. Configuring Security Settings for SCEP

Several different parameters allow administrators to set specific security requirements for SCEP
connections, such as not using the same certificate for enrollment authentication and regular certificate
enrollments, or setting allowed encryption algorithms to prevent downgrading the connection strength.

96

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

These parameters are listed in Table 5.1, “Configuration Parameters for SCEP Security”.

Table 5.1. Configuration Parameters for SCEP Security

Parameter Description

ca.scep.encryptionAlgorithm Sets the default or preferred encryption algorithm.

ca.scep.allowedEncryptionAlgorithms Sets a comma-separated list of allowed encryption
algorithms.

ca.scep.hashAlgorithm Sets the default or preferred hash algorithm.

ca.scep.allowedHashAlgorithms Sets a comma-separated list of allowed hash
algorithms.

ca.scep.nickname Gives the nickname of the certificate to use for

SCEP communication. The default is to use the CA's
key pair and certificate unless this parameter is set.

ca.scep.nonceSizeLimit Sets the maximum nonce size, in bytes, allowed for
SCEP requests. The default is 16 bytes.

To set security settings for connections for SCEP enrollments:

1. Stop the CA server, so that you can edit the configuration files.
I pki-server stop instance_name

2. Open the CA's CS.cfg file.
I vim /var/lib/pki/instance_namelca/conf/CS.cfg

3. Set the desired security parameters, as listed in Table 5.1, “Configuration Parameters for SCEP
Security”. If the parameter is not already present, then add it to the CS.cfg file.

ca.scep.encryptionAlgorithm=DES3
ca.scep.allowedEncryptionAlgorithms=DES3
ca.scep.hashAlgorithm=SHA1
ca.scep.allowedHashAlgorithms=SHA1,SHA256,SHA512
ca.scep.nickname=Server-Cert
ca.scep.nonceSizeLimit=20

4. Restart the CA server.

I pki-server start instance_name

5.7.3. Configuring a Router for SCEP Enrollment

97

Administration Guide

NOTE

Not all versions of router IOS have the relevant crypto features. Make sure that the
firmware image has the Certification Authority Interoperability feature.

Certificate System SCEP support was tested on a Cisco 2611 router running I0S C2600
Software (C2600-JK9S-M), version 12.2(40), RELEASE SOF TWARE (fcl).

Before enrolling SCEP certificates on the router, make sure that the router is appropriately configured:
® The router must be configured with an IP address, DNS server, and routing information.
® The router's date/time must be correct.
® The router's hostname and dnsname must be configured.

See the router documentation for instructions on configuring the router hardware.

5.7.4. Generating the SCEP Certificate for a Router

The following procedure details how to generate the SCEP certificate for a router.
1. Pick a random PIN.

2. Add the PIN and the router's ID to the flatfile.txt file so that the router can authenticate directly
against the CA. For example:

vim /var/lib/pki/instance_namelca/conf/flatfile.txt

UID:172.16.24.238
PWD:Uojs93wkfd0IS

Be sure to insert an empty line after the PWD line.
The router's IP address can be an IPv4 address or an IPv6 address.

Using flat file authentication is described in Section 10.2.4, “Configuring Flat File
Authentication”.

3. Loginto the router's console. For this example, the router's name is scep:
I scep>

4. Enable privileged commands.
I scep> enable

5. Enter configuration mode.
I scep# conf t

6. Import the CA certificate for every CA in the certificate chain, starting with the root. For
example, the following command sequence imports two CA certificates in the chain into the
router:

928

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

scep(config)# crypto ca trusted-root1

scep(ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
scep(ca-root)# crl optional

scep(ca-root)# exit

scep(config)# cry ca authenticate 1

scep(config)# crypto ca trusted-root0

scep(ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
scep(ca-root)# crl optional

scep(ca-root)# exit

scep(config)# cry ca authenticate 0

7. Set up a CAidentity, and enter the URL to access the SCEP enrollment profile. For example, for
the CA:

scep(config)# crypto ca identity CA
scep(ca-identity)# enrollment url http://server.example.com:8080/ca/cgi-bin
scep(ca-identity)# crl optional

8. Get the CA's certificate.

scep(config)# crypto ca authenticate CA

Certificate has the following attributes:

Fingerprint: 145E3825 31998BA7 FOO1EA9A B4001F57
% Do you accept this certificate? [yes/no]: yes

9. Generate RSA key pair.

scep(config)# crypto key generate rsa

The name for the keys will be: scep.server.example.com

Choose the size of the key modulus in the range of 360 to 2048 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take
a few minutes.

How many bits in the modulus [512]:
Generating RSA keys ...
[OK]

10. Lastly, generate the certificate on the router.

scep(config)# crypto ca enroll CA

Yo

% Start certificate enrollment ..

% Create a challenge password. You will need to verbally provide this
password to the CA Administrator in order to revoke your certificate.

For security reasons your password will not be saved in the configuration.
Please make a note of it.

Password: secret
Re-enter password: secret

% The subject name in the certificate will be: scep.server.example.com
% Include the router serial number in the subject name? [yes/no]: yes
% The serial number in the certificate will be: 57DE391C

% Include an IP address in the subject name? [yes/no]: yes

29

Administration Guide

% Interface: Ethernet0/0

% Request certificate from CA? [yes/no]: yes

% Certificate request sent to Certificate Authority

% The certificate request fingerprint will be displayed.

% The 'show crypto ca certificate' command will also show the fingerprint.

% Fingerprint:D89DB555 E64CC2F7 123725B4 3DBDF263

Jan 12 13:41:17.348: %CRYPTO-6-CERTRET: Certificate received from Certificate
11. Close configuration mode.
I scep(config)# exit

12. To make sure that the router was properly enrolled, list all of the certificates stored on the
router.

scep# show crypto ca certificates
Certificate
Status: Available
Certificate Serial Number: 0C
Key Usage: General Purpose
Issuer:
CN = Certificate Authority
O = Sfbay Red hat Domain 20070111d12
Subject Name Contains:
Name: scep.server.example.com
IP Address: 10.14.1.94
Serial Number: 57DE391C
Validity Date:
start date: 21:42:40 UTC Jan 12 2007
end date: 21:49:50 UTC Dec 31 2008
Associated Identity: CA

CA Certificate

Status: Available

Certificate Serial Number: 01

Key Usage: Signature

Issuer:

CN = Certificate Authority

O = Sfbay Red hat Domain 20070111d12
Subject:

CN = Certificate Authority

O = Sfbay Red hat Domain 20070111d12
Validity Date:

start date: 21:49:50 UTC Jan 11 2007
end date: 21:49:50 UTC Dec 31 2008
Associated Identity: CA

5.7.5. Working with Subordinate CAs

Before a router can authenticate to a CA, every CA certificate in the CA's certificate chain must be
imported into the router, starting with the root. For example, the following command sequence imports
two CA certificates in the chain into the router:

100

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

scep
scep
scep
scep
scep
scep
scep
scep
scep
scep

config)# crypto ca trusted-root1

ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
ca-root)# crl optional

ca-root)# exit

config)# cry ca authenticate 1

config)# crypto ca trusted-root0

ca-root)# root CEP http://server.example.com:8080/ca/cgi-bin/pkiclient.exe
ca-root)# crl optional

ca-root)# exit

config)# cry ca authenticate 0

—_— A AR AR ARARAAA

If the CA certificates do not have the CRL distribution point extension set, turn off the CRL requirement
by setting it to optional:

I scep(ca-root)# crl optional

After that, set up the CA identity as described in Section 5.7.4, “"Generating the SCEP Certificate for a
Router”.

5.7.6. Re-enrolling a Router

Before a router can be re-enrolled with new certificates, the existing configuration has to be removed.

1. Remove (zeroize) the existing keys.

scep(config)# crypto key zeroize rsa
% Keys to be removed are named scep.server.example.com.
Do you really want to remove these keys? [yes/no]: yes

2. Remove the CA identity.

scep(config)# no crypto ca identity CA
% Removing an identity will destroy all certificates received from
the related Certificate Authority.

Are you sure you want to do this? [yes/no]: yes
% Be sure to ask the CA administrator to revoke your certificates.

No enrollment sessions are currently active.

5.7.7. Enabling Debugging

The router provides additional debugging during SCEP operations by enabling the debug statements.

scep# debug crypto pki callbacks
Crypto PKI callbacks debugging is on

scep# debug crypto pki messages
Crypto PKI Msg debugging is on

scep# debug crypto pki transactions
Crypto PKI Trans debugging is on

101

Administration Guide

scep#debug crypto verbose
verbose debug output debugging is on

5.7.8. Issuing ECC Certificates with SCEP

By default, an ECC CA does not support SCEP out of box. However, it is possible to work around it by
using a designated RSA certificate to handle each of the following two areas:

® encryption/decryption cert - designate an RSA cert having encryption/decryption capability;
(scepRSAcert in the following example)

® signature cert - get an RSA cert to use on the client side for signing purpose instead of self-
signed; (signingCert cert in the following example)

For example, with scepRSAcert cert being the encrypt/decrypt cert, and signingCert being the signing
cert:

sscep enroll -c ca.crt -e scepRSAcert.crt -k local.key -r local.csr -K sign.key -O sign.crt -E 3des -S
sha256 -| cert.crt -u 'http://example.example.com:8080/ca/cgi-bin/pkiclient.exe’

5.8. USING CERTIFICATE TRANSPARENCY

Certificate System provides a basic version of Certificate Transparency (CT) V1support (rfc 6962). It
has the capability of issuing certificates with embedded Signed Certificate Time stamps (SCTs) from
any trusted log where each deployment site choses to have its root CA cert included. You can also
configure the system to support multiple CT logs. A minimum of one trusted CT log is required for this
feature to work.

IMPORTANT

It is the responsibility of the deployment site to establish its trust relationship with a
trusted CT log server.

For more information on how to configure Certificate Transparency, see the Configuring Certificate
Transparency section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

5.8.1. Testing Certificate Transparency

As example on how to test a CT setup, the following procedure describes an actual test against Google
CT test logs. A more comprehensive test procedure would involve setting up a TLS server and test for
the inclusion of its certs from its specified CT logs. However, the following serves as a quick test that
checks for inclusion of the SCT extension once a certificate has been issued.

The test procedure consists in generating and submitting a Certificate Signing Request (CSR), in order
to verify its SCT extension using openssl. The test configuration in the CS.cfg file is as follows:

ca.certTransparency.mode=enabled

ca.certTransparency.log.1.enable=true
ca.certTransparency.log.1.pubKey=MFkwEwWYHKo0ZIzj0CAQY1KoZIzj0DAQcDQgAEwWS8i8S7qiGEsINXv
0ZJFh6uuOm<snip>

ca.certTransparency.log.1.url=http://ct.googleapis.com:80/testtube/
ca.certTransparency.log.1.version=1

102

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/configuring-certificate-transparency

CHAPTER 5. REQUESTING, ENROLLING, AND MANAGING CERTIFICATES

ca.certTransparency.log.2.enable=true
ca.certTransparency.log.2.pubKey=MFkwEwWYHKo0ZIzj0CAQY1KoZIzjoODAQcDQgAEKATI2B3SAbxyzG
OfNRB+AytNTG<snip>

ca.certTransparency.log.2.url=http://ct.googleapis.com:80/logs/crucible/
ca.certTransparency.log.2.version=1

ca.certTransparency.log.3.enable=false
ca.certTransparency.log.3.pubKey=MFkwEwWYHKo0ZIzj0CAQY1KoZIzjoODAQcDQgAEiKfIWtuoWCPMEzS
KySjMjXpo38W<snip>

ca.certTransparency.log.3.url=http://ct.googleapis.com:80/logs/solera2020/
ca.certTransparency.log.3.version=1

ca.certTransparency.log.num=3

1. First, generate a CSR, e.q:

PKCS10Client -d . -p passwd -1 2048 -n "cn=user.test.domain.com,OU=user-
TEST,O=TestDomain" -o pkcs10-TLS.req

2. Next, submit the CSR to an enrollment profile depending on the CT mode defined by the
ca.certTransparency.mode parameter in CS.cfg:

o if the parameter is set to enabled, use any enrollment profile
o if the parameter is set to perProfile, use one of the CT profiles: e.g. caServerCertWithSCT
3. Copy the issued b64 certinto a file, e.g. .ct1.pem.

4. Convert the pem to binary:

I # AtoB ct1.pem ct1.bin
5. Display the DER certificate content:

I # openssl x509 -noout -text -inform der -in ct1.bin
6. Observe that the SCT extension is present, e.g:

CT Precertificate SCTs:
Signed Certificate Timestamp:
Version :v1 (0x0)
Log ID :B0:CC:83:E5:A5:F9:7D:6B:AF:7C:09:CC:28:49:04:87:
2A:C7:E8:8B:13:2C:63:50:B7:C6:FD:26:E1:6C:6C:77
Timestamp : Jun 11 23:07:14.146 2020 GMT
Extensions: none
Signature : ecdsa-with-SHA256
30:44:02:20:6E:E7:DC:D6:6B:A6:43:E3:BB:8E:1D:28:
63:C6:6B:03:43:4E:7A:90:0F:D6:2B:E8:ED:55:1D:5F:
86:0C:5A:CE:02:20:53:EB:75:FA:75:54:9C:9F:D3:7A:
D4:E7:C6:6C:9B:33:2A:75:D8:AB:DE:7D:B9:FA:2B:19:
56:22:BB:EF:19:AD
Signed Certificate Timestamp:
Version :v1 (0x0)
Log ID :C3:BF:03:A7:E1:CA:88:41:C6:07:BA:E3:FF:42:70:FC:
A5:EC:45:B1:86:EB:BE:4E:2C:F3:FC:77:86:30:F5:F6
Timestamp : Jun 11 23:07:14.516 2020 GMT

103

Administration Guide

Extensions: none

Signature : ecdsa-with-SHA256
30:44:02:20:4A:C9:4D:EF:64:02:A7:69:FF:34:4E:41:
F4:87:E1:6D:67:B9:07:14:E6:01:47:C2:0A:72:88:7A:
A9:C3:9C:90:02:20:31:26:15:75:60:1E:E2:C0:A3:C2:
ED:CF:22:A0:3B:A4:10:86:D1:C1:A3:7F:68:CC:1A:DD:
6A:5E:10:B2:F1:8F

Alternatively, verify the SCT by running an asn1 dump:
I # openssl asniparse -i -inform der -in ct1.bin

and observe the hex dump, e.g:

740:d=4 hl=4 |=258 cons: SEQUENCE

744:0=5 hl=2 1= 10 prim: OBJECT :CT Precertificate SCTs
756:d=5 hl=3 |=243 prim: OCTET STRING [HEX
DUMP]:0481FO00EE007500BOCC83E5A5F97D6B<snip>

104

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

CHAPTER 6. USING AND CONFIGURING THE TOKEN
MANAGEMENT SYSTEM: TPS AND TKS

This chapter provides procedures for using hardware security modules, also called HSMs or tokens, to
generate and store Certificate System instance certificates and keys.

This chapter only contains administration procedures. For general information on the concepts behind
the Token Management System, see the Red Hat Certificate System Planning, Installation and
Deployment Guide.

6.1. TPS PROFILES

NOTE

See the TPS Profiles section of the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

Unlike CA enrollment profiles, which are defined and stored in individual files or in LDAP, TPS profiles
(also known as token types) are defined in the TPS configuration file, CS.cfg.

TPS profile (token type) configuration parameters are set in the following format:

I op.<explicit op>.<profile id>.<implicit op>.<key type>.*

In the above, <explicit op> and <implicit op> are one of the explicit and implicit operations discussed in
the TPS Operations section below, and <key type> is the name given for each certificate type.

An example configuration parameter may look like the following example:

I op.enroll.userKey.keyGen.encryption.*

6.2. TPS OPERATIONS

Explicit Operations

An explicit operation is an operation called by a user. Explicit operations include enroll (op.enroll.*),
format (op.format.*), and pinReset (op.pinReset.*).

Implicit Operations

An implicit operation is an operation that takes place due to the policy or status of a token at a time
when an explicit operation is being processed. Implicit operations include keyGen
(op.enroll.userKey.keyGen.*), renewal (op.enroll.userKey.renewal.*), update.applet
(op.enroll.userKey.update.applet.*), and key update (op.enroll.userKey.update.symmetricKeys.*).

Some implicit operations are controlled per key type. These include recovery, serverKeygen, and
revocation.

The following example of a TPS profile specifies user keys to be generated on the server side:

op.enroll.userKey.keyGen.encryption.serverKeygen.archive=true
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=krat
op.enroll.userKey.keyGen.encryption.serverKeygen.enable=true

105

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/SubsystemOverview.html
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tps-profiles

Administration Guide

Additionally, the following example tells TPS that a token whose keys are compromised should revoke
the certification with revocation reason 1 during the state transition:

op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert=true
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert.reason=1

According to RFC 5280, possible revocation reasons and their codes are defined as follows:

Table 6.1. Revocation Reasons and Codes

unspecified 0

keyCompromise 1

CACompromise 2
affiliationChanged 3
superseded 4
cessationOfOperation 5
certificateHold 6
removeFromCRL 8
privilegeWithdrawn 9
AACompromise 10

6.3. TOKEN POLICIES

This section provides a list of token policies that can be applied on a per token basis using the TPS UI.
Ech section will show how each policy is reflected in the configuration.

NOTE

See the Token Policies section of the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

ol

nonn

The policy is a collection of policies each separated by a semicolon (";""). Each policy can be turned on or
off with the keywords YES or NO. Each policy in the list below will be introduced with its default value -
the action taken by TPS if the setting did not exist at all in the policy string.

RE_ENROLL=YES

106

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tps-token-policies

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

This policy controls whether or not a token allows a reenroll operation. This allows an already enrolled
token (with certificates) to be reenrolled and given new ones. If set to NO, the server will return an
error if a reenrollment is attempted.

This policy does not require special configuration. The enrollment will proceed with the standard
enrollment profile, which likely enrolled the token originally.

RENEW=NO;RENEW_KEEP_OLD_ENC_CERTS=YES

Renewal allows a token to have their profile generated certificates to be renewed in place on the
token. If RENEW is set to YES, a simple enrollment from the Enterprise Security Client (ESC) will
result in a renewal instead of a reenrollment as discussed above.

The RENEW_KEEP_OLD_ENC_CERTS setting determines if a renewal operation will retain the
previous version of the encryption certificate. Retaining the previous certificate allows users to
access data encrypted with the old certificate. Setting this option to NO will mean that anything
encrypted with the old certificate will no longer be recoverable.

Configuration:

op.enroll.userKey.renewal.encryption.ca.conn=ca1l
op.enroll.userKey.renewal.encryption.ca.profileld=caTokenUserEncryptionKeyRenewal
op.enroll.userKey.renewal.encryption.certAttrld=c2
op.enroll.userKey.renewal.encryption.certld=C2
op.enroll.userKey.renewal.encryption.enable=true
op.enroll.userKey.renewal.encryption.gracePeriod.after=30
op.enroll.userKey.renewal.encryption.gracePeriod.before=30
op.enroll.userKey.renewal.encryption.gracePeriod.enable=false
op.enroll.userKey.renewal.keyType.num=2
op.enroll.userKey.renewal.keyType.value.0=signing
op.enroll.userKey.renewal.keyType.value.1=encryption
op.enroll.userKey.renewal.signing.ca.conn=ca1
op.enroll.userKey.renewal.signing.ca.profileld=caTokenUserSigningKeyRenewal
op.enroll.userKey.renewal.signing.certAttrld=c1
op.enroll.userKey.renewal.signing.certld=C1
op.enroll.userKey.renewal.signing.enable=true
op.enroll.userKey.renewal.signing.gracePeriod.after=30
op.enroll.userKey.renewal.signing.gracePeriod.before=30
op.enroll.userKey.renewal.signing.gracePeriod.enable=false

This type of renewal configuration mirrors the basic userKey standard enrollment profile with a few
added settings that are renewal specific. This parity is needed because we went to renew exactly the
number and type of certs that were enrolled originally on to the token before renewal is to be put
into play.

FORCE_FORMAT=NO

This policy causes every enrollment operation to prompt a format operation if enabled. This is a last-
step option to allow tokens to be reset without a user having to return it to an administrator. If set to
YES, every enrollment operation initiated by the user will cause a format to happen, esentially
resetting the token to the formatted state.

No additional configuration is necessary. A simple format occurs given the same TPS profile used to
perform a standard format operation.

PIN_RESET=NO

107

Administration Guide

This policy determines if an already enrolled token can perform an explicit “pin reset” change using
the ESC. This value must be set to YES or the attempted operation will be rejected with an error by
the server.

Configuration:

op.enroll.userKey.pinReset.enable=true
op.enroll.userKey.pinReset.pin.maxLen=10
op.enroll.userKey.pinReset.pin.maxRetries=127
op.enroll.userKey.pinReset.pin.minLen=4

In the above example, the settings for minLen and maxLen put constraints on the length of a
chosen password, and the maxRetries setting sets the token to only allow a given number of retries
before locking up.

TPS policies can be edited easily using the latest TPS user interface. Navigate to the token that needs a
policy change and click Edit. This will bring up a dialog that will allow you to edit the field, which is a
collection of semi colon separated policies strung together. Each supported policy must be set to
<POLICYNAME>=YES or <POLICYNAME>=NO in order to be recognized by TPS.

6.4. TOKEN OPERATION AND POLICY PROCESSING

This section discusses major operations (both explicit and implicit) that involve a token. The list below
will discuss each feature and its configuration.

NOTE

See the Token Policiessection in the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

Format

The Format operation (user-initiated) takes a token in a completely blank state as supplied by the
manufacturer, and loads a Coolkey applet on it.

Configuration example:

#specify that we want authentication for format. We almost always want this at true:
op.format.userKey.auth.enable=true

#specify the Idap authentication configuration, so TPS knows where to validate credentials:
op.format.userKey.auth.id=Idap1

#specify the connection the the CA

op.format.userKey.ca.conn=caf

#specify id of the card manager applet on given token
op.format.userKey.cardmgr_instance=A0000000030000

#specify if we need to match the visa cuid to the nist sp800sp derivation algorithm KDD value.
Mostly will be false:
op.format.userKey.cuidMustMatchKDD=false

#enable ability to restrict key changoever to a specific range of key set:
op.format.userKey.enableBoundedGPKeyVersion=true

#enable the phone home url to write to the token:
op.format.userKey.issuerinfo.enable=true

108

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tps-token-policies

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

#actual home url to write to token:
op.format.userKey.issuerinfo.value=http://server.example.com:8080/tps/phoneHome

#specify whether to request a login from the client. Mostly true, external reg may want this to be
false:

op.format.userKey.loginRequest.enable=true

#Actual range of desired keyset numbers:

op.format.userKey.maximumGPKeyVersion=FF

op.format.userKey.minimumGPKeyVersion=01

#Whether or not to revoke certs on the token after a format, and what the reason will be if so:
op.format.userKey.revokeCert=true

op.format.userKey.revokeCert.reason=0

#This will roll back the reflected keyyset version of the token in the tokendb. After a failed key
changeover operation. This is to keep the value in sync with reality in the tokendb. Always false,
since this version of TPS avoids this situation now:
op.format.userKey.rollbackKeyVersionOnPutKeyFailure=false

#specify connection to the TKS:

op.format.userKey.tks.conn=tks1

#where to get the actual applet file to write to the token:
op.format.userKey.update.applet.directory=/usr/share/pki/tps/applets

#Allows a completely blank token to be recognized by TPS. Mostly should be true:
op.format.userKey.update.applet.emptyToken.enable=true

#Always should be true, not supported:
op.format.userKey.update.applet.encryption=true

#Actual version of the applet file we want to upgrade to. This file will have a name something like:
1.4.54de7a99.ijc:

op.format.userKey.update.applet.requiredVersion=1.4.54de790f

#Symm key changeover:

op.format.userKey.update.symmetricKeys.enable=false
op.format.userKey.update.symmetricKeys.requiredVersion=1

#Make sure the token db is in sync with reality. Should always be true:
op.format.userKey.validateCardKeylInfoAgainstTokenDB=true

Enrollment

The basic enrollment operation takes a formatted token and places certs and keys onto the token in
an effort to personalize the token. The following configuration example will explain how this can be
controlled.

The example shows basic enrollment which does not deal with renewal and internal recovery.
Settings not discussed here are either covered in the Format section, or not crucial.

op.enroll.userKey.auth.enable=true
op.enroll.userKey.auth.id=ldap1
op.enroll.userKey.cardmgr_instance=A0000000030000
op.enroll.userKey.cuidMustMatchKDD=false

op.enroll.userKey.enableBoundedGPKeyVersion=true
op.enroll.userKey.issuerinfo.enable=true
op.enroll.userKey.issuerinfo.value=http://server.example.com:8080/tps/phoneHome
#configure the encryption cert and keys we want on the token:

#connection the the CA, which issues the certs:

op.enroll.userKey.keyGen.encryption.ca.conn=caf
#Profile id we want the CA to use to issue our encrytion cert:

109

Administration Guide

110

op.enroll.userKey.keyGen.encryption.ca.profileld=caTokenUserEncryptionKeyEnroliment

#These two cover the indexes of the certs written to the token. Each cert needs a unique index or
“slot”. In our sample the enc cert will occupy slot 2 and the signing cert, shown later, will occupy
slot 1. Avoid overlap with these numbers:

op.enroll.userKey.keyGen.encryption.certAttrld=c2
op.enroll.userKey.keyGen.encryption.certld=C2

op.enroll.userKey.keyGen.encryption.cuid_label=$cuid$

#specify size of generated private key:

op.enroll.userKey.keyGen.encryption.keySize=1024
op.enroll.userKey.keyGen.encryption.keyUsage=0
op.enroll.userKey.keyGen.encryption.keyUser=0

#specify pattern for what the label of the cert will look like when the cert nickname is displayed in
browsers and mail clients:

op.enroll.userKey.keyGen.encryption.label=encryption key for $userid$

#specify if we want to overwrite certs on a re-enrollment operation. This is almost always the case:
op.enroll.userKey.keyGen.encryption.overwrite=true

#The next several settings specify the capabilities that the private key on the final token will inherit.
For instance this will determine if the cert can be used for encryption or digital signatures. There
are settings for both the private and public key.

op.enroll.userKey.keyGen.encryption.private.keyCapabilities.decrypt=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.derive=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.encrypt=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.private=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.sensitive=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.sign=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.signRecover=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.token=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.unwrap=true
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.verify=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.verifyRecover=false
op.enroll.userKey.keyGen.encryption.private.keyCapabilities.wrap=false
op.enroll.userKey.keyGen.encryption.privateKeyAttrld=k4
op.enroll.userKey.keyGen.encryption.privateKeyNumber=4
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.decrypt=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.derive=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.encrypt=true
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.private=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.sensitive=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.sign=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.signRecover=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.token=true
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.unwrap=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.verify=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.verifyRecover=false
op.enroll.userKey.keyGen.encryption.public.keyCapabilities.wrap=true

#The following index numbers correspond to the index or slot that the private and public keys
occupy. The common formula we use is that the public key index will be 2 * certid + 1, and the
private key index, shown above will be 2 * cert id. In this example the cert id is 2, so the key ids will
be 4 and 5 respectively. When composing these, be careful not to create conflicts. This applies to
the signing key section below.

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

op.enroll.userKey.keyGen.encryption.publicKeyAttrld=k5
op.enroll.userKey.keyGen.encryption.publicKeyNumber=5

#specify if, when a certificate is slated for revocation, based on other rules, we want to check to
see if some other token is using this cert in a shared situation. If this is set to true, and this
situation is found the cert will not be revoked until the last token wants to revoke this cert:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.holdRevocationUntilLastCredential=false

#specify, if we want server side keygen, if we want to have that generated key archived to the
drm. This is almost always the case, since we want the ability to later recover a cert and its
encryption private key back to a new token:
op.enroll.userKey.keyGen.encryption.serverKeygen.archive=true

#connection to drm to generate the key for us:
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=krat

#specify server side keygen of the encryption private key. This most often will be desired:
op.enroll.userKey.keyGen.encryption.serverKeygen.enable=true

#This setting tells us how many certs we want to enroll for this TPS profile, in the case “userKey”.
Here we want 2 total certs. The next values then go on to index into the config what two types of
certs we want, signing and encryption:

op.enroll.userKey.keyGen.keyType.num=2

op.enroll.userKey.keyGen.keyType.value.0=signing
op.enroll.userKey.keyGen.keyType.value.1=encryption

#configure the signing cert and keys we want on the token the settings for these are similar to the
encryption settings already discussed, except the capability flags presented below, since this is a
signing key.

op.enroll.userKey.keyGen.signing.ca.conn=caf
op.enroll.userKey.keyGen.signing.ca.profileld=caTokenUserSigningKeyEnrollment
op.enroll.userKey.keyGen.signing.certAttrid=c1
op.enroll.userKey.keyGen.signing.certld=C1
op.enroll.userKey.keyGen.signing.cuid_label=$cuid$
op.enroll.userKey.keyGen.signing.keySize=1024
op.enroll.userKey.keyGen.signing.keyUsage=0
op.enroll.userKey.keyGen.signing.keyUser=0
op.enroll.userKey.keyGen.signing.label=signing key for $userid$
op.enroll.userKey.keyGen.signing.overwrite=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.decrypt=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.derive=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.encrypt=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.private=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.sensitive=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.sign=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.signRecover=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.token=true
op.enroll.userKey.keyGen.signing.private.keyCapabilities.unwrap=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.verify=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.verifyRecover=false
op.enroll.userKey.keyGen.signing.private.keyCapabilities.wrap=false
op.enroll.userKey.keyGen.signing.privateKeyAttrld=k2
op.enroll.userKey.keyGen.signing.privateKeyNumber=2
op.enroll.userKey.keyGen.signing.public.keyCapabilities.decrypt=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.derive=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.encrypt=false

111

Administration Guide

op.enroll.userKey.keyGen.signing.public.keyCapabilities.private=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.sensitive=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.sign=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.signRecover=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.token=true
op.enroll.userKey.keyGen.signing.public.keyCapabilities.unwrap=false
op.enroll.userKey.keyGen.signing.public.keyCapabilities.verify=true
op.enroll.userKey.keyGen.signing.public.keyCapabilities.verifyRecover=true
op.enroll.userKey.keyGen.signing.public.keyCapabilities.wrap=false
op.enroll.userKey.keyGen.signing.publicKeyAttrld=k3
op.enroll.userKey.keyGen.signing.publicKeyNumber=3

Pin Reset

The configuration for pin reset is discussed in Section 6.3, “Token Policies”, because pin reset relies
on a policy to determine if it is to be legally performed or not.

Renewal

The configuration for renewal is discussed in Section 6.3, “Token Policies”, since renewal relies on a
policy to determine if it is legal to perform or not upon an already enrolled token.

Recovery

Recovery is implicitly set into motion when the user of the TPS user interface marks a previously
active token into an unfavorable state such as “lost” or “destroyed”. Once this happens, the next
enrollment of a new token by the same user will adhere to the following configuration to recover the
certificates from the user’s old token, to this new token.

The end result of this operation is that the user will have a new physical token that may contain the
encryption certificates recovered from the old token, so that the user can continue to encrypt and
decrypt data as needed. A new signing certificate is also usually placed on this token as shown in the
sample config examples below.

The following is a list of supported states into which a token can be placed manually in the TPS user
interface, as seen in the configuration:

e tokendb._069=# - DAMAGED (1): Corresponds to destroyed in the recovery configuration.
Used when a token has been physically damaged.

o tokendb. 070=# - PERM_LOST (2): Corresponds to keyCompromisein the recovery
configuration. Used when a token has been lost permanently.

e tokendb._ 071=# - SUSPENDED (3): Corresponds to onHold in the recovery configuration.
Used when a token has been temporarily misplaced, but the user expects to find it again.

o tokendb. 072=# - TERMINATED (6): Corresponds to terminated in the recovery
configuration. Used to take a token out of service forever for internal reasons.

Example recovery configuration:

#When a token is marked destroyed, don’t revoke the certs on the token unless all other tokens do
not have the certs included:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.holdRevocationUntilLastCredential=false

#specify if we even want to revoke certs a token is marked destroyed:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.revokeCert=false

112

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

#if we want to revoke any certs here, specify the reason for revocation that will be sent to the CA:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.revokeCert.reason=0

#speficy if we want to revoke expired certs when marking the token destroyed:
op.enroll.userKey.keyGen.encryption.recovery.destroyed.revokeExpiredCerts=false

Additional settings are used to specify what kind of supported static recovery should be used when
performing a recovery operation to a new token (when the original token has been marked
destroyed). The following schemes are supported:

® Recover Last (RecoverLast): Recover the latest encryption certificate to be placed on the
token.

® Generate New Key and Recover Last (GenerateNewKeyAndRecoverLast): Same as
Recover Last, but also generate a new encryption certificate and upload it to the token as
well. The new token will then have two certificates.

® Generate New Key (GenerateNewKey): Generate a new encryption certificate and place it
on the token. Do not recover any old certificates.

For example:

I op.enroll.userKey.keyGen.encryption.recovery.destroyed.scheme=RecoverLast

The following configuration example determines how to recover tokens marked as permanently lost:

op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.holdRevocationUntilLastCredential=t
alse

op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert=true
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeCert.reason=1
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.revokeExpiredCerts=false
op.enroll.userKey.keyGen.encryption.recovery.keyCompromise.scheme=GenerateNewKey

Section when a token is marked terminated.
op.enroll.userKey.keyGen.encryption.recovery.terminated.holdRevocationUntilLastCredential=false

op.enroll.userKey.keyGen.encryption.recovery.terminated.revokeCert=true
op.enroll.userKey.keyGen.encryption.recovery.terminated.revokeCert.reason=1
op.enroll.userKey.keyGen.encryption.recovery.terminated.revokeExpiredCerts=false
op.enroll.userKey.keyGen.encryption.recovery.terminated.scheme=GenerateNewKey

This section details the recovery profile with respect to which certs and of what kind get
recovered on the token.

op.enroll.userKey.keyGen.recovery.destroyed.keyType.num=2
op.enroll.userKey.keyGen.recovery.destroyed.keyType.value.0=signing
op.enroll.userKey.keyGen.recovery.destroyed.keyType.value.1=encryption

Finally, the following example determines what the system will do about the signing certificate that
was on the old token. In most cases, the GenerateNewKey recovery scheme should be used in order
to avoid potentially having multiple copies of a signing private key available (for example, one that is
recovered on a new token, and one on an old token that was permanently lost but found by
somebody else).

I op.enroll.userKey.keyGen.recovery.keyCompromise.keyType.value.0=signing

113

Administration Guide

op.enroll.userKey.keyGen.recovery.keyCompromise.keyType.value.1=encryption
op.enroll.userKey.keyGen.recovery.onHold.keyType.num=2
op.enroll.userKey.keyGen.recovery.onHold.keyType.value.0=signing
op.enroll.userKey.keyGen.recovery.onHold.keyType.value.1=encryption

op.enroll.userKey.keyGen.signing.recovery.destroyed.holdRevocationUntilLastCredential=false
op.enroll.userKey.keyGen.signing.recovery.destroyed.revokeCert=true
op.enroll.userKey.keyGen.signing.recovery.destroyed.revokeCert.reason=0
op.enroll.userKey.keyGen.signing.recovery.destroyed.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.destroyed.scheme=GenerateNewKey
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.holdRevocationUntilLastCredential=fals

op.enroll.userKey.keyGen.signing.recovery.keyCompromise.revokeCert=true
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.revokeCert.reason=1
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.keyCompromise.scheme=GenerateNewKey
op.enroll.userKey.keyGen.signing.recovery.onHold.holdRevocationUntilLastCredential=false
op.enroll.userKey.keyGen.signing.recovery.onHold.revokeCert=true

op.enroll.userKey.keyGen.signing.recovery.onHold.revokeCert.reason=6
op.enroll.userKey.keyGen.signing.recovery.onHold.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.onHold.scheme=GenerateNewKey
op.enroll.userKey.keyGen.signing.recovery.terminated.holdRevocationUntilLastCredential=false
op.enroll.userKey.keyGen.signing.recovery.terminated.revokeCert=true
op.enroll.userKey.keyGen.signing.recovery.terminated.revokeCert.reason=1
op.enroll.userKey.keyGen.signing.recovery.terminated.revokeExpiredCerts=false
op.enroll.userKey.keyGen.signing.recovery.terminated.scheme=GenerateNewKey

Configuration for the case when we mark a token “onHold” or temporarily lost

op.enroll.userKeyTemporary.keyGen.encryption.recovery.onHold.revokeCert=true
op.enroll.userKeyTemporary.keyGen.encryption.recovery.onHold.revokeCert.reason=0
op.enroll.userKeyTemporary.keyGen.encryption.recovery.onHold.scheme=RecoverLast
op.enroll.userKeyTemporary.keyGen.recovery.onHold.keyType.num=2
op.enroll.userKeyTemporary.keyGen.recovery.onHold.keyType.value.0O=signing
op.enroll.userKeyTemporary.keyGen.recovery.onHold.keyType.value.1=encryption
op.enroll.userKeyTemporary.keyGen.signing.recovery.onHold.revokeCert=true
op.enroll.userKeyTemporary.keyGen.signing.recovery.onHold.revokeCert.reason=0
op.enroll.userKeyTemporary.keyGen.signing.recovery.onHold.scheme=GenerateNewKey

Applet Update

The following example shows how to configure a Coolkey applet update operation. This operation
can be performed during format, enrollment, and PIN reset operations:

op.format.userKey.update.applet.directory=/usr/share/pki/tps/applets
op.format.userKey.update.applet.emptyToken.enable=true
op.format.userKey.update.applet.encryption=true
op.format.userKey.update.applet.requiredVersion=1.4.54de790f

Some of these options have already been demonstrated in the Format section. They provide
information needed to determine if applet upgrade should be allowed, where to find the applet files,
and the applet version to upgrade the token to. The version in the requiredVersion maps to a file
name inside the directory.

Key Update

114

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

This operation, which can take place during format, enroliment, and PIN reset operations, allows the
user to have their Global Platform key set version upgraded from the default supplied by the
manufacturer.

TPS

The following options will instruct the TPS to upgrade the keyset from 1to 2 during the next
format operation requested on behalf of a given token. After this is done, the TKS must derive the
three new keys that will be written to the token, Afterwards, the token must be used with the
same TPS and TKS installation, otherwise it will become locked.

op.format.userKey.update.symmetrickeys.enable=true
op.format.userKey.update.symmetricKeys.requiredVersion=2

You can also specify a version lower than current to downgrade the keyset instead.

TKS

As mentioned above, the TKS must be configured to generate the new keys to write to the token.
First, the new master key identifier, 02, must be mapped to its PKCS #11 object nickname in the
TKS CS.cfg, as shown in the following example:

tks.mk_mappings.#02#01=internal:new_master
tks.defKeySet.mk_mappings.#02#01=internal:new_master

The above will map a key set number to an actual master key which exists in the TKS NSS
database.

Master keys are identified by IDs such as 01. The TKS maps these IDs to PKCS #11 object
nicknames specified in the masterKeyld part of the mapping. Therefore, the first number is
updated as the master key version is updated, and the second number stays consistent.

When attempting to upgrade from version 1to version 2, the mapping determines how to find the
master key nickname which will be used to derive the 3 parts of the new key set.

The setting of internal in the above example references the name of the token where the master

key resides. It could also be an external HSM module with a name such as nethsm. The strong
new_master is an example of the master key nickname itself.

6.5. INTERNAL REGISTRATION

NOTE

See the TPS Profiles section of the Red Hat Certificate System Planning, Installation and
Deployment Guide for general information.

In case of Internal Registration, the TPS profile (token type) is determined by the Mapping Resolver. In
contrast with External Registration, authentication information is defined within the profile itself. For
example:

op.enroll.userKey.auth.enable=true
op.enroll.userKey.auth.id=ldap1

115

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tps-profiles

Administration Guide

Another difference from External Registration is that the CA and KRA connector information is defined
under each key type of each profile. For example:

op.enroll.userKey.keyGen.encryption.ca.conn=caf
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=krat

TKS connector information, however, is defined per profile:

I op.enroll.userKey.tks.conn=tks1

NOTE

Switching registration types between Internal and External Registration means you have

- to format all previously registered tokens before you can continue using them.

6.6. EXTERNAL REGISTRATION

External Registration obtains the token type (TPS profile) from the authenticated user LDAP record. It
also allows certificate/key recovery information to be specified in the same user record.

An External Registration TPS profile is similar to the Internal Registration profile discussed previously. It
allows you to specify new certificate enrollments for both client-side and server-side key generation.
Unlike Internal Registration, it allows you to choose specific certificate (and its matching keys) to be
retrieved and loaded onto the token.

/ NOTE

Switching registration types between Internal and External Registration means you have
to format all previously registered tokens before you can continue using them.

6.6.1. Enabling External Registration

External Registration can only be enabled globally for an entire TPS instance. The following example
shows a set of global configuration parameters pertaining to External Registration:

externalReg.allowRecoverlnvalidCert.enable=true
externalReg.authld=Idap1
externalReg.default.tokenType=externalRegAddToToken
externalReg.delegation.enable=true
externalReg.enable=true
externalReg.recover.byKeylD=false
externalReg.format.loginRequest.enable=true
externalReg.mappingResolver=keySetMappingResolver

6.6.2. Customizing User LDAP Record Attribute Names

Authentication parameters pertaining to External Registration are shown in the following example (with
their default values):

auths.instance.ldap1.externalReg.certs.recoverAttributeName=certsToAdd
auths.instance.ldap1.externalReg.cuidAttributeName=tokenCUID
auths.instance.ldapi.externalReg.tokenTypeAttributeName=tokenType

116

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

The LDAP record attribute names can be customized here. Make sure that the actual attributes in the
user's LDAP records match this configuration.

6.6.3. Configuring certsToAdd attributes

The certsToAdd attribute takes multiple values in the following form:

I <cert serial # in decimal>,<CA connector ID>,<key ID>,<kra connector ID>

For example:

I 59,cat,0,kral

IMPORTANT

By default, key recovery searches for the key by certificate, which makes the <key ID>
value irrelevant. However, the TPS can optionally be configured to search for the key
using this attribute, and therefore it is typically simpler to set the value to O. That value is
invalid, which avoids the possibility of retrieving an unmatched key.

Recovering by key ID is not recommended, because the KRA can not verify if the
certificate matches with the key in this situation.

When specifying the certsToAdd attribute with only certificate and CA information, the TPS assumes
that the certificate in question is already on the token, and that it should be preserved. This concept is
called Key Retention.

The following examples show relevant attributes in the user LDAP record:

tokenType: externalRegAddToToken
certstoadd: 59,cal,0,krat
certstoadd: 134,cal,0,kral
Certstoadd: 24,cat

6.6.4. Token to User Matching Enforcement

Optionally, you can set the system up so that the token used for registration must match the token
record card-unique ID (CUID) attribute in the user record. If this attribute (tokencuid) is missing from
the record, CUID matching is not enforced.

I Tokencuid: a10192030405028001c0

Another attribute about External Registration is that the Token Policies on each token are bypassed.

117

Administration Guide

NOTE

For the certificate and keys to be “recovered” in External Registration, connector
information for CA and KRA is specified in the user LDAP record. Any CA and/or KRA
connector information specified in the TPS profile pertaining to the certificate/keys to be
“recovered” is to be ignored.

I certstoadd: 59,cal,0,kral

6.6.5. Delegation Support

Delegation support is useful where a user has delegates who can act on their behalf (for example, an
executive at a company has one or more delegates) in terms of authentication (logins), data encryption
and decryption, or signing (with limitations).

An example scenario could be that each delegate has their own token which they use to act on behalf of
the executive. This token contains a combination of the following certificates and keys (determined by
TPS profiles):

e Authentication certificate/keys: The CN contains the name and unique ID of the delegate. The
Subject Alternative Name (SAN) extension contains the Principal Name (UPN) of the executive.

® Encryption certificate: An exact copy of the executive's encryption certificate.

® Signing certificate: The CN contains the delegate's name and unique ID. The SAN contains the
RFC822Name of the executive.

Use the following parameter to enable delegation support:

I externalReg.delegation.enable=true

IMPORTANT

To work around a bug, manually set the
op.enroll.delegatelSEtoken.keyGen.encryption.ca.profileld parameter in the
/var/lib/pki/instance_namel/tps/conf/CS.cfg file to
caTokenUserDelegateAuthKeyEnroliment:

eyEnroliment

I op.enroll.delegatelSEtoken.keyGen.encryption.ca.profileld=caTokenUserDelegate AuthK

6.6.6. SAN and DN Patterns

The auths.instance.<authlID>.ldapStringAttributes in the authentication instance configuration
specifies which attributes will be retrieved during authentication. For example:

auths.instance.ldap1.ldapStringAttributes=mail,cn,uid,edipi,pcc,firsthame,lastname,exec-edipi,exec-
pcc,exec-mail,certsToAdd,tokenCUID,tokenType

Once retrieved from the user's LDAP record, the values of these attributes can be referenced and used
to form the Subject Alternative Name (SAN) or Distinguished Name (DN) of the certificate in the
format of $auth.<attribute name>$. For example:

118

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

op.enroll.delegatelEtoken.keyGen.authentication.SANpattern=$auth.exec-edipi$.$auth.exec-
pcc$@EXAMPLE.com
op.enroll.delegatelEtoken.keyGen.authentication.dnpattern=cn=$auth.firstname$.$auth.lastname$.$aut
h.edipi$,e=$auth.mail$,0=TMS Org

When patterns are used in TPS profiles for SAN and DN, it is important to ensure the CA enrollment
profile specified in the TPS profile is set up correctly. For example:

On TPS, in profile delegatelEtoken

I op.enroll.delegatelEtoken.keyGen.authentication.ca.profileld=caTokenUserDelegateAuthKeyEnrollm
ent

On CA, in enrollment profile caTokenUserDelegateAuthKeyEnrollment

The subjectDNInputimpl plug-in must be specified as one of the inputs in order to allow the DN to
be specified by the TPS profile above:

input.i2.class_id=subjectDNInputimpl
input.i2.name=subjectDNInputimpl

Similarly, to allow the SAN to be specified by the above TPS profile, the
subjectAltNameExtInputimpl plug-in must be specified:

input.i3.class_id=subjectAltNameExtinputimpl
input.i3.name=subjectAltNameExtInputimpl

The subjAltExtpattern must be specified as well:

policyset.set1.p6.default.params.subjAltExtPattern_0=
(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.req_san_pattern_0$

In the above example, the OID 1.3.6.1.4.1.311.20.2.3 is the OID for the User Principal Name (UPN),
and request.req_san_pattern_0 is the first SAN pattern specified in the delegatelEtoken SAN
pattern.

You can specify multiple SANs at the same time. On the TPS side, specify multiple SANs in the

non

SANpattern, delimited by a comma (","). On the CA side, a corresponding amount of subjARExtPattern
needs to be defined in the following format:

I policyset.<policy set id>.<policy id>.default.params.subjAltExtPattern_<ordered number>=

In the above, the <ordered number> starts with O and increases by one for each SAN pattern specified on
the TPS side:

policyset.set1.p6.default.params.subjAltExtPattern_0=
policyset.set1.p6.default.params.subjAltExtPattern_1=

The following is a complete example:

I Example 6.1. SANpattern and DNpattern configuration

119

Administration Guide

The LDAP record contains the following information:

givenName: useria

mail: userta@example.org
firstname: useria

edipi: 123456789

pcc: AA

exec-edipi: 999999999

exec-pcc: BB

exec-mail: usertb@EXAMPLE.com
tokenType: delegatelSEtoken
certstoadd: 59,cai1,0,kral

TPS External Registration profile delegatelEtoken contains:

e SANpattern:

op.enroll.delegatelSEtoken.keyGen.authentication.SANpattern=$auth.exec-
edipi$.$auth.exec-pcc$@EXAMPLE.com

o DNPattern:

op.enroll.delegatelSEtoken.keyGen.authentication.dnpattern=cn=$auth.firstname$.$auth.las
tname$.$auth.edipi$,e=$auth.mail$,0=TMS Org

CA caTokenUserDelegate AuthKeyEnrollment contains:

input.i2.class_id=subjectDNInputimpl
input.i2.name=subjectDNInputimpl
input.i3.class_id=subjectAltNameExtinputimpl
input.i3.name=subjectAltNameExtInputimpl

policyset.set1.p6.constraint.class_id=noConstraintimpl
policyset.set1.p6.constraint.name=No Constraint
policyset.set1.p6.default.class_id=subjectAltNameExtDefaultimpl
policyset.set1.p6.default.name=Subject Alternative Name Extension Default
policyset.set1.p6.default.params.subjAREXtGNEnable_0=true
policyset.set1.p6.default.params.subjAltExtPattern_0=
(UTF8String)1.3.6.1.4.1.311.20.2.3,$request.req_san_pattern_0$
policyset.set1.p6.default.params.subjAltExtType 0=0OtherName
policyset.set1.p6.default.params.subjAltNameExtCritical=false
policyset.set1.p6.default.params.subjAltNameNumGNs=1

The resulting certificate then contains:

120

Subject: CN=useria..123456789,E=useria@example.org,0=TMS Org
Identifier: Subject Alternative Name - 2.5.29.17
Critical: no
Value:
OtherName: (UTF8String)1.3.6.1.4.1.311.20.2.3,999999999.BB@EXAMPLE.com

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

6.7. MAPPING RESOLVER CONFIGURATION

The Token Processing System provides a single mapping resolver by default. The resolver is called
FilterMappingResolver. This section will cover its configuration.

NOTE

See the Mapping Resolver section of the Red Hat Certificate System Planning, Installation,
and Deployment Guide for general information about the Mapping Resolver.

6.7.1. Key Set Mapping Resolver

During External Registration, the key set must be resolved using the resolver before a user can
authenticate.

The key set mapping resolver name is defined as follows:

I externalReg.mappingResolver=<keySet mapping resolver name>

For example:

I externalReg.mappingResolver=keySetMappingResolver

The following configuration example shows a full instance configuration:

mappingResolver.keySetMappingResolver.class_id=filterMappingResolverimpl
mappingResolver.keySetMappingResolver.mapping.0.filter.appletMajorVersion=0
mappingResolver.keySetMappingResolver.mapping.0.filter.appletMinorVersion=0
mappingResolver.keySetMappingResolver.mapping.0.filter.keySet=
mappingResolver.keySetMappingResolver.mapping.0.filter.tokenATR=
mappingResolver.keySetMappingResolver.mapping.0.filter.tokenCUID.end=a1000000000000000000
mappingResolver.keySetMappingResolver.mapping.0.filter.tokenCUID.start=a0000000000000000000

mappingResolver.keySetMappingResolver.mapping.0.target.keySet=defKeySet
mappingResolver.keySetMappingResolver.mapping.1.filter.appletMajorVersion=1
mappingResolver.keySetMappingResolver.mapping.1.filter.appletMinorVersion=1
mappingResolver.keySetMappingResolver.mapping.1.filter.keySet=
mappingResolver.keySetMappingResolver.mapping.1.filter.tokenATR=1234
mappingResolver.keySetMappingResolver.mapping.1.filter.tokenCUID.end=
mappingResolver.keySetMappingResolver.mapping.1.filter.tokenCUID.start=
mappingResolver.keySetMappingResolver.mapping.1.target.keySet=defKeySet
mappingResolver.keySetMappingResolver.mapping.2.filter.appletMajorVersion=
mappingResolver.keySetMappingResolver.mapping.2.filter.appletMinorVersion=
mappingResolver.keySetMappingResolver.mapping.2.filter.keySet=
mappingResolver.keySetMappingResolver.mapping.2.filter.tokenATR=
mappingResolver.keySetMappingResolver.mapping.2.filter.tokenCUID.end=
mappingResolver.keySetMappingResolver.mapping.2.filter.tokenCUID.start=
mappingResolver.keySetMappingResolver.mapping.2.target.keySet=jForte
mappingResolver.keySetMappingResolver.mapping.order=0,1,2

The above example defines three mappings named 0, 1, and 2. They are ordered in ascending order
using the mappingResolver.keySetMappingResolver.mapping.order=0,1,2 line in the example. This
order means the input parameters will be run against the mapping filter 0 first; only if they do not match

121

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tps-mapping-resolver

Administration Guide

that filter, the next one in the mapping order will be tried. For example, if a token with the following
characteristics is evaluated:

CUID=a0000000000000000011
appletMajorVersion=0
appletMinorVersion=0

Then it would pass mapping 0 and be assigned its target, which is configured to defKeySet, because the
applet version matches and the CUID falls within the CUID start and end range for that mapping.

On the other hand, if a token has the following parameters:

CUID=b0000000000000000000
ATR=2222
appletMajorVersion=1
appletMinorVersion=1

In this case this token fails mapping 0 because it is outside the specified CUID range. It also fails mapping
1 because while the applet versions match, the ATR does not. The above token will be assigned to
mapping 2 and its target, jForte.

Note how mapping 2 has no assignments for any of its filters. This causes the mapping to match all
tokens, effectively making it a "default” value. Mappings like this must be specified last in the mapping
order, because any other mappings after it will never be evaluated.

6.7.2. Token Type (TPS) Mapping Resolver

There are three default tokenType mapping resolvers defined in the Token Processing System:
formatProfileMappingResolver, enrollProfileMappingResolver, and
pinResetProfileMappingResolver. Compared to the External Registration case discussed in the
previous section, in the Internal Registration case token types are actually calculated from the defined
mapping resolver.

The token type mapping resolver names are defined as follows:

I op.<op>.mappingResolver=<mapping resolver name>

For example:

I op.enroll. mappingResolver=enrollProfileMappingResolver

The following configuration example describes the enrollProfileMappingResolver:

mappingResolver.enrollProfileMappingResolver.class_id=filterMappingResolverimpl
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.appletMajorVersion=1
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.appletMinorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenATR=
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenCUID.end=b10000000000000000
00
mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenCUID.start=b0000000000000000
000

mappingResolver.enrollProfileMappingResolver.mapping.0.filter.tokenType=userKey
mappingResolver.enrollProfileMappingResolver.mapping.0.target.tokenType=userKey
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.appletMajorVersion=1

122

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

mappingResolver.enrollProfileMappingResolver.mapping.1.filter.appletMinorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenATR=

mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenCUID.end=a00000000000000010

00

mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenCUID.start=a0000000000000000

000
mappingResolver.enrollProfileMappingResolver.mapping.1.filter.tokenType=soKey
mappingResolver.enrollProfileMappingResolver.mapping.1.target.tokenType=soKey
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.appletMajorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.appletMinorVersion=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenATR=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenCUID.end=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenCUID.start=
mappingResolver.enrollProfileMappingResolver.mapping.2.filter.tokenType=
mappingResolver.enrollProfileMappingResolver.mapping.2.target.tokenType=userKey
mappingResolver.enrollProfileMappingResolver.mapping.order=1,0,2

Three mappings are defined for the enrollProfileMappingResolver in the above example. The
mappings are named 0, 1, and 2. The
mappingResolver.enrollProfileMappingResolver.mapping.order=1,0,2 line defines the order in
which the mappings will be processed. If a token matches a mapping, no further mappings in the order
will be evaluated:; if it does not match a mapping, the next one in the order will be tried.

In case of a token with the following parameters:

CUID=a0000000000000000011
appletMajorVersion=1
appletMinorVersion=0
extension: tokenType=soKey

A token with this configuration will match the filters for mapping 1 because the applet version matches,
the CUID fails within the specified start and end range, and the extension tokenType matches.
Therefore, this token will be assigned the target for that mapping - soKey.

In another case, if the token has the following parameters:

CUID=b0000000000000000010
appletMajorVersion=1
appletMinorVersion=1

In this case, the token will fail mapping 1 because the CUID is outside the specified range. Then it will
also fail mapping 0, because the tokenType extension is missing. This token will then match mapping 2,
because it has no specified filters in order to match all tokens which did not match any of the previous
filters.

6.8. AUTHENTICATION CONFIGURATION

The Token Processing System supports directory-based authentication using a user ID and password
(UidPwdDirAuthentication) by default. Authentication instances are defined in the CS.cfg file using the
following pattern:

I auths.instance.<auths ID>.*

123

Administration Guide

The <auths ID> is the authenticator name to be referenced by the TPS profiles for authentication
preferences. For example:

I op.enroll.userKey.auth.id=ldap1

The following configuration example shows a full definition of an authentication instance:

auths.impl.UidPwdDirAuth.class=com.netscape.cms.authentication.UidPwdDirAuthentication
auths.instance.ldap1.pluginName=UidPwdDirAuth
auths.instance.ldap1.authCredName=uid

auths.instance.ldap1.dnpattern=
auths.instance.ldap1.externalReg.certs.recoverAttributeName=certsToAdd
auths.instance.ldap1.externalReg.cuidAttributeName=tokenCUID
auths.instance.ldap1.externalReg.tokenTypeAttributeName=tokenType
auths.instance.ldap1.ldap.basedn=dc=sjc,dc=example,dc=com
auths.instance.ldap1.ldap.ldapauth.authtype=BasicAuth
auths.instance.ldap1.ldap.ldapauth.bindDN=
auths.instance.ldap1.ldap.ldapauth.bindPWPrompt=Idap1
auths.instance.ldap1.ldap.ldapauth.clientCertNickname=subsystemCert cert-pki-tomcat
auths.instance.ldap1.ldap.ldapconn.host=host1.EXAMPLE.com
auths.instance.ldap1.ldap.ldapconn.port=389
auths.instance.ldap1.ldap.ldapconn.secureConn=False
auths.instance.ldap1.ldap.ldapconn.version=3

auths.instance.ldap1.ldap.maxConns=15

auths.instance.ldap1.ldap.minConns=3

auths.instance.ldap1.ldapByteAttributes=
auths.instance.ldap1.ldapStringAttributes=mail,cn,uid,edipi,pcc,firsthame,lastname,exec-edipi,exec-
pcc,exec-mail,certsToAdd,tokenCUID,tokenType
auths.instance.ldap1.ldapStringAttributes._OQ00=######HHHHHHHHHHHHHHHEHHHHEHE
auths.instance.ldap1.ldapStringAttributes._001=# For isExternalReg
auths.instance.ldap1.ldapStringAttributes._002=# attributes will be available as
auths.instance.ldap1.ldapStringAttributes._003=# $<attribute>$
auths.instance.ldap1.ldapStringAttributes._004=# attributes example:
auths.instance.ldap1.ldapStringAttributes._005=#mail,cn,uid,edipi,pcc,firstname,lasthame,exec-
edipi,exec-pcc,exec-mail,certsToAdd,tokenCUID,tokenType
auths.instance.ldap1.ldapStringAttributes._Q06=######HHHHHHHHHHHHHHHHHHHHHEHE
auths.instance.ldap1.pluginName=UidPwdDirAuth
auths.instance.ldapi.ui.description.en=This authenticates user against the LDAP directory.
auths.instance.ldap1.ui.id.PASSWORD.credMap.authCred=pwd
auths.instance.ldap1.ui.id.PASSWORD.credMap.msgCred.extlogin=PASSWORD
auths.instance.ldap1.ui.id.PASSWORD.credMap.msgCred.login=password
auths.instance.ldap1.ui.id. PASSWORD.description.en=LDAP Password
auths.instance.ldap1.ui.id. PASSWORD.name.en=LDAP Password
auths.instance.ldap1.ui.id.UID.credMap.authCred=uid
auths.instance.ldap1.ui.id.UID.credMap.msgCred.extlogin=UID
auths.instance.ldap1.ui.id.UID.credMap.msgCred.login=screen_name
auths.instance.ldap1.ui.id.UID.description.en=LDAP User ID
auths.instance.ldap1.ui.id.UID.name.en=LDAP User ID

auths.instance.ldap1.ui.retries=3

auths.instance.ldap1.ui.title.en=LDAP Authentication

TPS authentication instances are configured in a way similar to the CA's UidPwdDirAuthentication
authentication instance, since both are handled by the same plug-in. However, the TPS requires several
extra parameters on top of the CA configuration.

124

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

In case of common operations (for both Internal and External registration), profiles that call for this
authentication method allow TPS to project how the UID and password will be labeled on the client side.
This is controlled by the auths.instance.ldap1.ui.id.UID.name.en=LDAP User ID and
auths.instance.ldap1.ui.id.PASSWORD.name.en=LDAP Password parameters in the above
example; this configuration tells clients to display the UID/password pair as "LDAP User ID" and "LDAP
Password". Both parameters can be customized.

The credMap.authCred entries configure how the internal authentication plug-in accepts information
presented to it, and the credMap.msgCred entries configure how this information is passed to the TPS.
These fields allow you to use customized plug-in implementations, and should be left at their default
values unless you are using a custom authentication plug-in.

Parameters related to External Registration are discussed in Section 6.6, “External Registration”.

Similarly to CA authentication configuration, you can define multiple authentication instances for the
same authentication implementation. This may be useful when the TPS serves multiple groups of users;
you can direct each group to use its own TPS profile, each configured to use its own directory server
authentication.

6.9. CONNECTORS

Connectors define how the TPS communicates with other subsystems - namely CA, KRA, and TKS. In
general, these parameters are set up during TPS installation. The following is an example of connector
configuration:

tps.connector.cal.enable=true
tps.connector.cal.host=host1.EXAMPLE.com
tps.connector.cal.maxHttpConns=15
tps.connector.cal.minHttpConns=1
tps.connector.cal.nickName=subsystemCert cert-pki-tomcat
tps.connector.cal.port=8443

tps.connector.cal.timeout=30
tps.connector.cal.uri.enrollment=/ca/ee/ca/profileSubmitSSLClient
tps.connector.cal.uri.getcert=/ca/ee/ca/displayBySerial
tps.connector.cal.uri.renewal=/ca/ee/ca/profileSubmitSSLClient
tps.connector.cal.uri.revoke=/ca/ee/subsystem/ca/doRevoke
tps.connector.cal.uri.unrevoke=/ca/ee/subsystem/ca/doUnrevoke
tps.connector.krai.enable=true
tps.connector.kral.host=host1.EXAMPLE.com
tps.connector.kral.maxHttpConns=15
tps.connector.kral.minHttpConns=1
tps.connector.kral.nickName=subsystemCert cert-pki-tomcat
tps.connector.kral.port=8443

tps.connector.krai.timeout=30
tps.connector.kral.uri.GenerateKeyPair=/kra/agent/kra/GenerateKeyPair
tps.connector.kral.uri.TokenKeyRecovery=/kra/agent/kra/TokenKeyRecovery
tps.connector.tks1.enable=true
tps.connector.tks1.generateHostChallenge=true
tps.connector.tks1.host=host1.EXAMPLE.com
tps.connector.tks1.keySet=defKeySet
tps.connector.tks1.maxHttpConns=15
tps.connector.tks1.minHttpConns=1
tps.connector.tks1.nickName=subsystemCert cert-pki-tomcat
tps.connector.tks1.port=8443
tps.connector.tks1.serverKeygen=true

125

Administration Guide

tps.connector.tks1.timeout=30
tps.connector.tks1.tksSharedSymKeyName=sharedSecret
tps.connector.tks1.uri.computeRandomData=/tks/agent/tks/computeRandomData
tps.connector.tks1.uri.computeSessionKey=/tks/agent/tks/computeSessionKey
tps.connector.tks1.uri.createKeySetData=/tks/agent/tks/createKeySetData
tps.connector.tks1.uri.encryptData=/tks/agent/tks/encryptData

TPS profiles refer to these connectors by their IDs. For example
I op.enroll.userKey.keyGen.signing.ca.conn=ca1

Multiple connector of the same kind (for example, multiple CA connectors) can be defined. This may be
useful when one TPS instance serves multiple backend Certificate System servers for different groups
of tokens.

NOTE

Automatic failover for connectors in TPS is currently not supported. A manual failover
procedure must be performed to point the TPS to alternate CA, KRA, or TKS, as long as
they are clones of the original systems.

6.10. REVOCATION ROUTING CONFIGURATION

To configure revocation routing, you must first define a list of relevant CA connectors and add them to
the connector list in the following format:

I tps.connCAList=cal,ca2
Additionally, you must add the CA signing certificate to the TPS nssdb and set up trust:
I #cd <TPS instance directory>/alias

I #certutil -d . -A -n <CA signing cert nickname> -t “CT,C,C” -i <CA signing cert b64 file name>

Finally, the nickname of the CA signing certificate must be added to the connector using the following
option:

I tps.connector.cal.caNickname=caSigningCert cert-pki-tomcat CA

NOTE

During CA discovery, the TPS may automatically calculate the Authority Key Identifier of
the CA and add it to the connector configuration. For example:

I tps.connector.cal.caSKI=i9wOnN0OQZLkzkndAB1MKMcjbRP8=

This behavior is expected.

6.1. SETTING UP SERVER-SIDE KEY GENERATION

Server-side key generation means that keys are generated by a Key Recovery Authority (KRA), an

126

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

optional Certificate System subsystem. Generating keys by the KRA is necessary to allow recovery of
keys on lost or damaged tokens, or key retrieval in the case of external registration. This section
describes how to configure server-side key generation in TMS.

During TPS installation you are asked to specify whether you want to use key archival. If you confirm,
setup will perform automatic basic configuration, specifically the following parameters:

TPS connector parameters for the KRA:

tps.connector.krai.enable=true
tps.connector.kral.host=host1.EXAMPLE.com
tps.connector.kral.maxHttpConns=15

tps.connector.kral.minHttpConns=1
tps.connector.kral.nickName=subsystemCert cert-pki-tomcat
tps.connector.kral.port=8443

tps.connector.krail.timeout=30
tps.connector.kral.uri.GenerateKeyPair=/kra/agent/kra/GenerateKeyPair
tps.connector.kral.uri.TokenKeyRecovery=/kra/agent/kra/TokenKeyRecovery

TPS profile-specific parameters for server-side key generation:
op.enroll.userKey.keyGen.encryption.serverKeygen.archive=true
op.enroll.userKey.keyGen.encryption.serverKeygen.drm.conn=kraft
op.enroll.userKey.keyGen.encryption.serverKeygen.enable=true

Set the serverKeygen.enable=true option for serverKeygen.archive to take effect.

IMPORTANT

The LunaSA HSM does not support a smaller key size than 2048 bits for RSA
encryption.

For example, to configure a key size of 2048 bits, set the following parameter in the
/var/lib/pki/instance_name/tps/conf/CS.cfg file:

I op.enroll.userKey.keyGen.encryption.keySize=2048

TKS configuration:
The following configures the nickname of the transport certificate used for communication between
the TKS and KRA (via TPS):

I tks.drm_transport_cert_nickname=transportCert cert-pki-tomcat KRA

The referenced transport certificate must also exist in the TKS instance security module. For
example:

I transportCert cert-pki-tomcat KRA u,u,u

KRA configuration

127

Administration Guide

Depending on the PKCS#11 token, parameters kra.keygen.temporaryPairs,
kra.keygen.sensitivePairs, and kra.keygen.extractablePairs can be customized for key generation
options. These parameters are all set to false by default.

The following values for these parameters have been tested with some of the security modules
supported by Red Hat Certificate System:

NSS (when in FIPS mode):

I kra.keygen.extractablePairs=true

nCipher nShield Connect 6000 (works by default without specifying):
For specifying RSA keys:

I kra.keygen.temporaryPairs=true
(Do not specify any other parameters.)

For generating ECC keys:

kra.keygen.temporaryPairs=true
kra.keygen.sensitivePairs=false
kra.keygen.extractablePairs=true

LunaSA CKE - Key Export Model (non-FIPS mode):

kra.keygen.temporaryPairs=true
kra.keygen.sensitivePairs=true
kra.keygen.extractablePairs=true

NOTE
Gemalto SafeNet LunaSA only supports PKI private key extraction in its CKE - Key

Export model, and only in non-FIPS mode. The LunaSA Cloning model and the CKE
model in FIPS mode do not support PKI private key extraction.

NOTE

When LunaSA CKE - Key Export Model is in FIPS mode, pki private keys cannot be
extracted.

6.12. SETTING UP NEW KEY SETS

This section describes setting up an alternative to the default key set in the Token Processing System
(TPS) and in the Token Key Service (TKS).

TKS configuration

The default key set is configured in the TKS using the following options in the
/var/lib/pki/instance_name/tks/conf/CS.cfq file:

128

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

tks.defKeySet._000=##

tks.defKeySet._001=## Axalto default key set:

tks.defKeySet._002=##

tks.defKeySet._003=## tks.defKeySet.mk_mappings.#02#01=<tokenname>:<nickname>
tks.defKeySet._004=##
tks.defKeySet.auth_key=#40#41#42#43#44#ASHACHATH#AB#A#4a#t4bHtdc#Ad#4e#4f
tks.defKeySet.kek _key=#40#41#42#43#4A#ASHACHATHABHAI#4a#tdbHt4c#Ad#4e#af
tks.defKeySet.mac_key=#40#41#42#43#44#45#46#47#48#49#4a#4b#Ac#Ad#4e#4f
tks.defKeySet.nistSP800-108KdfOnKeyVersion=00
tks.defKeySet.nistSP800-108KdfUseCuidAsKdd=false

The above configuration defines settings specific to a certain type or class of tokens that can be
used in the TMS. The most important part are the 3 developer or (out of the box) session keys, which
are used to create a secure channel before symmetric key handover takes place. A different type of
key may have different default values for these keys.

The settings describing the nistSP800 key diversification method control whether this method or
the standard Visa method is used. Specifically, the value of the tks.defKeySet.nistSP800-
108KdfOnKeyVersion option determines that the NIST version will be used. The nistSP800-
108KdfUseCuidAsKdd option allows you to use the legacy key ID value of CUID during processing.
The newer KDD value is most commonly used and therefore this option is disabled (false) by default.
This allows you to configure a new key set to enable support for a new class of keys.

To enable support for the jForte class, set:

tks.jForte._000=##
tks.jForte._001=## SAFLink's jForte default key set:
tks.jForte._002=##
tks.jForte._003=## tks.jForte.mk_mappings.#02#01=<tokenname>:<nickname>
tks.jForte._004=##
tks.jForte.auth_key=#30#31#32#33#34#35#36#37#38#39#3a#3b#3c#3d#3e#3f
tks.jForte.kek_key=#50#51#52#53#54#55#56#57#58#59#5a#5b#5c#5d#5e#5f
tks.jForte.mac_key=#40#41#42#43#44#45#46#47#48#49#4adb#AcH4d#4e#4f
tks.jForte.nistSP800-108KdfOnKeyVersion=00
tks.jForte.nistSP800-108KdfUseCuidAsKdd=false

Example 6.2. Enabling Support for thejForte Class
Note the difference in the 3 static session keys compared to the previous example.

Certificate System supports the Secure Channel Protocol 03 (SCPO3) for Giesecke & Devrient
(G&D) Smart Cafe 6 smart cards. To enable SCPO3 support for these smart cards in a TKS, set in
the /var/lib/pki/instance_nameltks/conf/CS.cfg file:

tks.defKeySet.prot3.divers=emv
tks.defKeySet.prot3.diversVer1Keys=emv
tks.defKeySet.prot3.devKeyType=DES3
tks.defKeySet.prot3.masterKeyType=DES3

TPS configuration

The TPS must be configured to recognize the new key set when a supported client attempts to
perform an operation on a token. The default defKeySet is used most often.

129

Administration Guide

The primary method to determine the keySet in the TPS involves Section 6.7, “Mapping Resolver
Configuration”. See the linked section for a discussion of the exact settings needed to establish this
resolver mechanism.

If the KeySet Mapping Resolver is not present, several fallback methods are available for the TPS to
determine the correct keySet:

® You can add the tps.connector.tks1.keySet=defKeySet to the CS.cfg configuration file of
the TPS.

e Certain clients can possibly be configured to explicitly pass the desired keySet value.
However, the Enterprise Security Client does not have this ability at this point.

® When the TPS calculates the proper keySet based on the desired method, all requests to the

TKS to help create secure channels pass the keySet value as well. The TKS can then use its
own keySet configuration (described above) to determine how to proceed.

6.13. SETTING UP A NEW MASTER KEY

This section will describe the procedures and configuration required to set up a new master key in the
Token Key Service (TKS). See the Red Hat Certificate System Planning, Installation, and Deployment
Guide for background information.

Procedure 6.1. Creating a New Master Key

1. Obtain internal the PIN required to access the TKS security databases:

cat /var/lib/pki/pki-tomcat/tks/conf/password.conf
internal=649713464822

internaldb=secret12

replicationdb=-752230707

2. Open the alias/ directory of the TKS instance:
I # cd /var/lib/pki/pki-tomcat/alias
3. Generate a new master key using the tkstool utility. For example:

tkstool -M -n new_master -d /var/lib/pki/pki-tomcat/alias -h <token_name>
Enter Password or Pin for "NSS Certificate DB":

Generating and storing the master key on the specified token . . .

Naming the master key "new_master" . ..

Computing and displaying KCV of the master key on the specified token . . .
new_master key KCV: CA5E 1764

4. Verify that the keys have been properly added to the database:

I # tkstool -L -d .

130

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/manages-tokens.html#sect-tms-tks-keys

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB

Enter Password or Pin for "NSS Certificate DB":
<0> new_master

6.13.1. Generating and Transporting Wrapped Master Keys (Key Ceremony)

If a master key is going to be used on an external token or in multiple locations, then it must be wrapped
so that it can be safely transported to the hardware tokens. The tkstool utility can be used to generate
transport keys, which are then used to send the master key to the facility where the tokens are
generated. The process of transferring wrapped master keys is commonly called a Key Ceremony.

NOTE
Transport keys can only be used with the master key they were generated with.

Procedure 6.2. Generating and Transporting Wrapped Master Keys
1. Obtain the internal PIN required to access the Token Key Service security databases:
cat /var/lib/pki/pki-tomcat/tks/conf/password.conf
internal=649713464822

internaldb=secret12
replicationdb=-752230707

2. Open the TKS instance alias/ directory:
I # cd /var/lib/pki/pki-tomcat/alias
3. Create a transport key named transport:

I # tkstool -T -d . -n transport

NOTE

The tkstool utility prints out the key shares and KCV values for each of the three
session keys generated. Save them to a file as they are necessary to regenerate
the transport key in new databases later in this procedure, and to regenerate the
key if lost.

4. When prompted, fill in the database password. Then, follow on-screen instructions to generate a
random seed.

A random seed must be generated that will be used in the
creation of your key. One of the easiest ways to create a
random seed is to use the timing of keystrokes on a keyboard.

To begin, type keys on the keyboard until this progress meter
is full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

131

Administration Guide

132

Continue typing until the progress meter is full:

|**

Finished.

Type the word "proceed" and press enter

. The next prompt will generate a series of session keys. Follow on-screen instructions until the

final message:

I Successfully generated, stored, and named the transport key!

. Use the transport key to generate and wrap a master key and store it in a file named file:

tkstool -W -d . -n new_master -t transport -o file

Enter Password or Pin for "NSS Certificate DB":

Retrieving the transport key (for wrapping) from the specified token . . .
Generating and storing the master key on the specified token . . .
Naming the master key "new_master" . ..

Successfully generated, stored, and named the master key!

Using the transport key to wrap and store the master key . . .

Writing the wrapped data (and resident master key KCV) into the

file called "file" . . .

wrapped data: 47C0 06DB 7D3F D9ED
FE91 7E6F A7E5 91B9
master key KCV: CED9 4A7B
(computed KCV of the master key residing inside the wrapped data)

. Copy the wrapped master key over to the appropriate locations or facility.

. If necessary, generate new security databases on the HSM or at the facility:

I # tkstool -N -d <directory>

Alternatively, add the -l option to produce a key identical to the one generated originally in a the
new database. Regenerating the transport key in this way requires that you input the session key
share and KCV for each of the session keys generated earlier in this procedure.

I # tkstool -1 -d <dlirectory> -n verify_transport

. Use the transport key to unwrap the master key stored in the file. Provide the security database

PIN when prompted:

tkstool -U -d directory -n new_master -t verify_transport -i file
Enter Password or Pin for "NSS Certificate DB":

Retrieving the transport key from the specified token (for
unwrapping) . . .

Reading in the wrapped data (and resident master key KCV) from
the file called "file" . . .

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

wrapped data: 47C0 06DB 7D3F D9ED
FE91 7E6F A7E5 91B9
master key KCV: CED9 4A7B
(pre-computed KCV of the master key residing inside the wrapped data)

Using the transport key to temporarily unwrap the master key to
recompute its KCV value to check against its pre-computed KCV value . . .
master key KCV: CED9 4A7B
(computed KCV of the master key residing inside the wrapped data)
master key KCV: CED9 4A7B
(pre-computed KCV of the master key residing inside the wrapped data)

Using the transport key to unwrap and store the master key on the
specified token . . .

Naming the master key "new_master" . ..

Successfully unwrapped, stored, and named the master key!

10. Verify that the keys have been added to the database properly:

tkstool -L -d
slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB

Enter Password or Pin for "NSS Certificate DB":
<0> transport
<1> new_master

6.14. SETTING UP A TKS/TPS SHARED SYMMETRIC KEY

The shared symmetric key must be present in the NSS databases of both the TPS and TKS subsystems.
This key is automatically generated when creating the a TPS subsystem. If both the TPS and TKS are
installed within the same Tomcat instance, no additional setup is required as the TKS will automatically
use the key created by TPS; however, if both subsystems are on separate instances, or even different
physical hosts, you must follow the procedure described in this section to securely transport the key to
the TKS.

Several possible methods are available to securely transport the shared key between the TPS and TKS:

® The authomatic method: This method works in cases where the subsystem certificates for the
TPS are kept in the software NSS database.

e |f the above method fails, a fallback manual method is available where the shared key is
generated on the TPS using the tkstool utility, which can wrap the key from the TPS, allowing
for secure transport without exposing the key in transit, and unwrap it into the TKS NSS
database.

The following describes the general configuration for both the TPS and TKS, regardless of the method
which will be used to import the key. Note that the automatic method will generate these configurations

automatically.

TKS

tks.useNewSharedSecretNames=true
tps.0.host=dhcp-16-206.sjc.example.com

133

Administration Guide

tps.0.nickname=TPS-<ips host name>-8443 sharedSecret
tps.0.port=8443

tps.0.userid=,TPS-<tps host name>-8443

tps.list=0

NOTE

The above list can be extended when one TKS is connecting to multiple TPS instances.

TPS

I conn.tks1.tksSharedSymKeyName=TPS-<ips host name>-8443 sharedSecret

NOTE

The host name must be the same as the one configured on the TKS side.

6.14.1. Manually Generating and Transporting a Shared Symmetric Key

This section describes how to generate and transport a shared symmetric key manually. This method is
useful in cases where automatic generation and transport fails, but should be avoided otherwise.

The manual method consists of two procedures. The first one is performed on the Token Key Service
side, and the second one on the Token Processing System.

Procedure 6.3. Manual Shared Secret Key Method - TKS side

1. Install the Token Key Service on the first system. See the Red Hat Certificate System Planning,
Installation, and Deployment Guide for installation instructions.

2. Stop the TKS service:
I #pki-server stop pki-tomcat

3. Change into the /var/lib/pki/pki-tomcat/alias directory, and use tkstool to create the shared
secret key on the TKS. Make sure to generate the shared key before you restart the new TKS
instance.

IMPORTANT

The tkstool script will display information about the key during the key creation
process. Make sure to note down this information, because it will be required
later to import the key into the TPS.

#cd /var/lib/pki/pki-tomcat/alias
#tkstool -T -d /var/lib/pki/pki-tomcat/tks/alias -n TPS-<ips host name>-8443 sharedSecret
Generating the first session key share . . .
first session key share: 792F AB89 8989 D902
9429 6137 8632 7CC4
first session key share KCV: D1B6 14FD

134

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/index

CHAPTER 6. USING AND CONFIGURING THE TOKEN MANAGEMENT SYSTEM: TPS AND TK!

Generating the second session key share . . .
second session key share: 4CDF C8EOQ B385 68EC
380B 6D5E 1C19 3E5D
second session key share KCV: 1EC7 8D4B
Generating the third session key share . . .
third session key share: ~ CD32 3140 25B3 C789
B54F 2C94 26C4 9752
third session key share KCV: 73D6 8633
Generating first symmetric key . . .
Generating second symmetric key . . .
Generating third symmetric key . . .
Extracting transport key from operational token . . .
transport key KCV: A8DO0 97A2
Storing transport key on final specified token . . .
Naming transport key "sharedSecret" . . .
Successfully generated, stored, and named the transport key!

4. Configure the new key in the TKS:

tks.useNewSharedSecretNames=true
tps.0.host=dhcp-16-206.sjc.redhat.com
tps.0.nickname=TPS-<ips host name>-8443 sharedSecret
tps.0.port=8443

tps.0.userid=TPS-<tps host name>-8443 sharedSecret
tps.list=0

5. Start the TKS:

I #pki-server start pki-tomcat

Procedure 6.4. Manual Shared Secret Key Method - TPS side

1. Install the Token Processing System on the second system. See the Red Hat Certificate System
10 Planning, Installation, and Deployment Guide for installation instructions.

2. Stop the TPS service:
I #pki-server stop pki-tomcat

3. Change into the /var/lib/pki/pki-tomcat/alias directory, and use tkstool to import the shared
key into the NSS software token:

#cd /var/lib/pki/pki-tomcat/alias
#tkstool -1 -d . -n TPS-<ips host name>-8443 sharedSecret

At this point, the script will prompt you for session key shares which were displayed to you when
generating and wrapping the shared keys on the TKS side in the procedure above.

4. Configure the shared secret in the TPS:
I conn.tks1.tksSharedSymKeyName=TPS-<ips host name>-8443 sharedSecret

5. Start the TPS service:

135

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/index

Administration Guide

I #pki-server start pki-tomcat

6.15. USING DIFFERENT APPLETS FOR DIFFERENT SCP VERSIONS

In Certificate System, the following parameter in the /var/lib/instance_nameitps/conf/CS.cfg file
specifies which applet should be loaded for all Secure Channel Protocol (SCP) versions for each token
operation:

I op.operation.token_type.update.applet.requiredVersion=version

However, you can also set individual applets for specific SCP versions, by adding the following
parameter:

I op.operation.token_type.update.applet.requiredVersion.prot.protocol_version=version

Certificate System supports setting individual protocol versions for the following operations:
e format
e enroll

® pinReset

Example 6.3. Setting Protocol Versions for Enrollment Operations

To configure a specific applet for SCPO3 and a different applet for all other protocols when
performing enroliment operations for the userKey token:

1. Edit the /var/lib/instance_nameltps/conf/CS.cfg file:

a. Setthe op.enroll.userKey.update.applet.requiredVersion parameter to specify the
applet used by default. For example:

I op.enroll.userKey.update.applet.requiredVersion=1.4.58768072

b. Set the op.enroll.userKey.update.applet.requiredVersion.prot.3 parameter to
configure the applet Certificate System uses for the SCPO3 protocol. For example:

I op.enroll.userKey.update.applet.requiredVersion.prot.3=1.5.558cdcff
2. Restart Certificate System:
I pki-server restart instance_name

For details about enabling SCPO3 for Giesecke & Devrient (G&D) Smart Cafe 6 smart cards in a TKS,
see Section 6.12, “Setting Up New Key Sets”.

136

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

The Certificate System provides methods for revoking certificates and for producing lists of revoked
certificates, called certificate revocation lists (CRLs). This chapter describes the methods for revoking a
certificate, describes CMC revocation, and provides details about CRLs and setting up CRLs.

7.1. ABOUT REVOKING CERTIFICATES

Certificates can be revoked by an end user (the original owner of the certificate) or by a Certificate
Manager agent. End users can revoke certificates by using the revocation form provided in the end-
entities page. Agents can revoke end-entity certificates by using the appropriate form in the agent

services interface. Certificate-based (SSL/TLS client authentication) is required in both cases.

An end user can revoke only certificates that contain the same subject name as the certificate
presented for authentication. After successful authentication, the server lists the certificates belonging
to the end user. The end user can then select the certificate to be revoked or can revoke all certificates
in the list. The end user can also specify additional details, such as the date of revocation and revocation
reason for each certificate or for the list as a whole.

Agents can revoke certificates based on a range of serial numbers or based on subject name
components. When the revocation request is submitted, agents receive a list of certificates from which
they can pick the ones to be revoked. For instructions on how agents revoke end-entity certificates, see
the Red Hat Certificate System Planning, Installation, and Deployment Guide .

When revocation requests are approved, the Certificate Manager marks the corresponding certificate
records in its internal database as revoked, and, if configured to do so, removes the revoked certificates
from the publishing directory. These changes are reflected in the next CRL which the CA issues.

Server and client applications that use public-key certificates as ID tokens need access to information
about the validity of a certificate. Because one of the factors that determines the validity of a certificate
is its revocation status, these applications need to know whether the certificate being validated has been
revoked. The CA has a responsibility to do the following:

® Revoke the certificate if a revocation request is received by the CA and approved.

® Make the revoked certificate status available to parties or applications that need to verify its
validity status.

Whenever a certificate is revoked, the Certificate Manager automatically updates the status of the
certificate in its internal database, it marks the copy of the certificate in its internal database as revoked
and removes the revoked certificate from the publishing directory, if the Certificate Manager is
configured to remove the certificate from the database.

One of the standard methods for conveying the revocation status of certificates is by publishing a list of
revoked certificates, known a certificate revocation list (CRL). A CRL is a publicly available list of
certificates that have been revoked.

The Certificate Manager can be configured to generate CRLs. These CRLs can be created to conform
to X.509 standards by enabling extension-specific modules in the CRL configuration. The server
supports standard CRL extensions through its CRL issuing points framework; see Section 7.3.3, “Setting
CRL Extensions” for more information on setting up CRL extensions for issuing points. The Certificate
Manager can generate a CRL every time a certificate is revoked and at periodic intervals. If publishing is
set up, the CRLs can be published to a file, an LDAP directory, or an OCSP responder.

A CRL is issued and digitally signed by the CA that issued the certificates listed in the CRL or by an
entity that has been authorized by that CA to issue CRLs. The CA may use a single key pair to sign both

137

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/managing-pki.html#Revocation

Administration Guide

the certificates and CRLs it issues or two separate key pairs, one for signing certificates and another one
for signing CRLs.

By default, the Certificate Manager uses a single key pair for signing the certificates it issues and CRLs it
generates. To create another key pair for the Certificate Manager and use it exclusively for signing
CRLs, see Section 7.3.4, “Setting a CA to Use a Different Certificate to Sign CRLs" .

CRLs are generated when issuing points are defined and configured and when CRL generation is
enabled.

When CRLs are enabled, the server collects revocation information as certificates are revoked. The
server attempts to match the revoked certificate against all issuing points that are set up. A given
certificate can match none of the issuing points, one of the issuing points, several of the issuing points,
or all of the issuing points. When a certificate that has been revoked matches an issuing point, the server
stores the information about the certificate in the cache for that issuing point.

The cache is copied to the internal directory at the intervals set for copying the cache. When the interval
for creating a CRL is reached, a CRL is created from the cache. If a delta CRL has been set up for this
issuing point, a delta CRL is also created at this time. The full CRL contains all revoked certificate
information since the Certificate Manager began collecting this information. The delta CRL contains all
revoked certificate information since the last update of the full CRL.

The full CRLs are numbered sequentially, as are delta CRLs. A full CRL and a delta CRL can have the
same number; in that case, the delta CRL has the same number as the next full CRL. For example, if the
full CRL is the first CRL, it is CRL 1. The delta CRL is Delta CRL 2. The data combined in CRL 1and Delta
CRL 2 is equivalent to the next full CRL, which is CRL 2.

NOTE

When changes are made to the extensions for an issuing point, no delta CRL is created
with the next full CRL for that issuing point. A delta CRL is created with the second full
CRL that is created, and then all subsequent full CRLs.

L

The internal database stores only the latest CRL and delta CRL. As each new CRL is created, the old one
is overwritten.

When CRLs are published, each update to the CRL and delta CRL is published to the locations specified
in the publishing set up. The method of publishing determines how many CRLs are stored. For file
publishing, each CRL that is published to a file using the number for the CRL, so no file is overwritten.
For LDAP publishing, each CRL that is published replaces the old CRL in the attribute containing the
CRL in the directory entry.

By default, CRLs do not contain information about revoked expired certificates. The server can include
revoked expired certificates by enabling that option for the issuing point. If expired certificates are
included, information about revoked certificates is not removed from the CRL when the certificate
expires. If expired certificates are not included, information about revoked certificates is removed from
the CRL when the certificate expires.

7.1.1. User-Initiated Revocation

When an end user submits a certificate revocation request, the first step in the revocation process is for
the Certificate Manager to identify and authenticate the end user to verify that the user is attempting
to revoke his own certificate, not a certificate belonging to someone else.

In SSL/TSL client authentication, the server expects the end user to present a certificate that has the

138

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

same subject name as the one to be revoked and uses that for authentication purposes. The server
verifies the authenticity of a revocation request by mapping the subject name in the certificate
presented for client authentication to certificates in its internal database. The server revokes the
certificate only if the certificate maps successfully to one or more valid or expired certificates in its
internal database.

After successful authentication, the server lists the valid or expired certificates that match the subject

name of the certificate presented for client authentication. The user can then either select the
certificates to be revoked or revoke all certificates in the list.

7.1.2. Reasons for Revoking a Certificate

A Certificate Manager can revoke any certificate it has issued. There are generally accepted reason
codes for revoking a certificate that are often included in the CRL, such as the following:

e 0. Unspecified; no particular reason is given.

® 1. The private key associated with the certificate was compromised.

2. The private key associated with the CA that issued the certificate was compromised.

3. The owner of the certificate is no longer affiliated with the issuer of the certificate and either
no longer has rights to the access gained with the certificate or no longer needs it.

4. Another certificate replaces this one.

5. The CA that issued the certificate has ceased to operate.

6. The certificate is on hold pending further action. It is treated as revoked but may be taken off
hold in the future so that the certificate is active and valid again.

8. The certificate is going to be removed from the CRL because it was removed from hold. This
only occurs in delta CRLs.

9. The certificate is revoked because the privilege of the owner of the certificate has been
withdrawn.

A certificate can be revoked by administrators, agents, and end entities. Agents and administrators with
agent privileges can revoke certificates using the forms in the agent services page. End users can
revoke certificates using the forms in the Revocation tab of the end-entity interface. End users can
revoke only their own certificates, whereas agents and administrators can revoke any certificates issued
by the server. End users are also required to authenticate to the server in order to revoke a certificate.

Whenever a certificate is revoked, the Certificate Manager updates the status of the certificate in its
internal database. The server uses the entries in the internal database to track of all revoked certificates,
and, when configured, it makes the CRLs public by publishing it to a central repository to notify other
users that the certificates in the list are no longer valid.

7.1.3. CRL Issuing Points

Because CRLs can grow very large, there are several methods to minimize the overhead of retrieving
and delivering large CRLs. One of these methods partitions the entire certificate space and associates a
separate CRL with every partition. This partition is called a CRL issuing point, the location where a subset
of all the revoked certificates is maintained. Partitioning can be based on whether the revoked
certificate is a CA certificate, whether it was revoked for a specific reason, or whether it was issued using
a specific profile. Each issuing point is identified by its name.

139

Administration Guide

By default, the Certificate Manager generates and publishes a single CRL, the master CRL. An issuing
point can generate CRLs for all certificates, for only CA signing certificates, or for all certificates
including expired certificates.

Once the issuing points have been defined, they can be included in certificates so that an application
that needs to check the revocation status of a certificate can access the CRL issuing points specified in
the certificate instead of the master or main CRL. Since the CRL maintained at the issuing point is
smaller than the master CRL, checking the revocation status is much faster.

CRL distribution points can be associated with certificates by setting the CRLDistributionPoint
extension.

7.1.4. Delta CRLs

Delta CRLs can be issued for any defined issuing point. A delta CRL contains information about any
certificates revoked since the last update to the full CRL. Delta CRLs for an issuing point are created by
enabling the DeltaCRLIndicator extension.

7.1.5. Publishing CRLs

The Certificate Manager can publish the CRL to a file, an LDAP-compliant directory, or to an OCSP
responder. Where and how frequently CRLs are published are configured in the Certificate Manager, as
described in Chapter 9, Publishing Certificates and CRLs.

Because CRLs can be very large, publishing CRLs can take a very long time, and it is possible for the
process to be interrupted. Special publishers can be configured to publish CRLs to a file over HTTP1.1,
and, if the process is interrupted, the CA subsystem's web server can resume publishing at the point it
was interrupted, instead of having to begin again. This is described in Section 9.8, “Setting up
Resumable CRL Downloads”.

7.1.6. Certificate Revocation Pages

The end-entities page of the Certificate Manager includes default HTML forms for revocation
authenticated by an SSL/TLS client. The forms are accessible from the Revocation tab. You can see
the form for such a revocation by clicking the User Certificate link.

To change the form appearance to suit organization's requirements, edit the UserRevocation.html, the

form that allows the SSL/TSL client authenticated revocation of client or personal certificates. The file
is in the /var/lib/instance_name/webapps/subsystem_typelee/subsystem_type directory.

7.2. PERFORMING A CMC REVOCATION

Similar to Certificate Management over CMS (CMC) enrollment, CMC revocation enables users to set
up a revocation client, and sign the revocation request with either an agent certificate or a user
certificate with a matching subjectDN attribute. Then the user can send the signed request to the
Certificate Manager.

Alternatively, CMC revocation can also be authenticated using the Shared Secret Token mechanism. For
details, see Enabling the CMC Shared Secret Feature .

Regardless of whether a user or agent signs the request or if a Shared Secret Token is used, the
Certificate Manager automatically revokes the certificate when it receives a valid revocation request.

Certificate System provides the following utilities for CMC revocation requests:

140

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_for_cmc#enabling_the_cmc_shared_secret_feature

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

® CMCRequest. For details, see Section 7.2.1, “Revoking a Certificate Using CMCRequest”.
® CMCRevoke. For details, see Section 7.2.2, "Revoking a Certificate Using CMCRevoke”.

IMPORTANT

Red Hat recommends using the CMCRequest utility to generate CMC revocation
requests, because it provides more options than CMCRevoke.

7.2.1. Revoking a Certificate Using CMCRequest
To revoke a certificate using CMCRequest:

1. Create a configuration file for the CMC revocation request, such as /lhome/user_name/cmc-
request.cfg, with the following content:

#numRequests: Total number of PKCS10 requests or CRMF requests.
numRequests=1

#output: full path for the CMC request in binary format
output=/home/user_name/cmc.revoke.userSigned.req

#tokenname: name of token where user signing cert can be found
#(default is internal)
tokenname=internal

#nickname: nickname for user signing certificate which will be used
#to sign the CMC full request.
nickname=signer_user_certificate

#dbdir: directory for cert9.db, key4.db and pkcs11.ixt
dbdir=/home/user_name/.dogtag/nssdb/

#password: password for cert9.db which stores the user signing
#certificate and keys
password=myPass

#format: request format, either pkcs10 or crmf.
format=pkcs10

revocation parameters
revRequest.enable=true
revRequest.serial=45
revRequest.reason=unspecified
revRequest.comment=user fest revocation
revRequest.issuer=issuer
revRequest.sharedSecret=shared secret

2. Create the CMC request:

I # CMCRequest /home/user_name/cmc-request.cfg

If the command succeeds, the CMCRequest utility stores the CMC request in the file specified
in the output parameter in the request configuration file.

141

Administration Guide

3. Create a configuration file, such as /home/user_name/cmc-submit.cfg, which you use in a later
step to submit the CMC revocation request to the CA. Add the following content to the created
file:

#host: host name for the http server
host=>server.example.com

#port: port number
port=8443

#tsecure: true for secure connection, false for nonsecure connection
secure=true

#input: full path for the enrollment request, the content must be
#in binary format
input=/home/user_name/cmc.revoke.userSigned.req

#output: full path for the response in binary format
output=/home/user_name/cmc.revoke.userSigned.resp

#tokenname: name of token where SSL client authentication certificate
#can be found (default is internal)

#This parameter will be ignored if secure=false

tokenname=internal

#dbdir: directory for cert9.db, key4.db and pkcs11.ixt
#This parameter will be ignored if secure=false
dbdir=/home/user_name/.dogtag/nssdb/

#clientmode: true for client authentication, false for no client
#authentication. This parameter will be ignored if secure=false
clientmode=true

#password: password for cert9.db
#This parameter will be ignored if secure=false and clientauth=false
password=password

#nickname: nickname for client certificate

#This parameter will be ignored if clientmode=false
nickname=signer_user_certificate

IMPORTANT

If the CMC revocation request is signed, set the secure and clientmode
parameters to true and, additionally, fill the nickname parameter.

4. Depending on who signed the request, the servlet parameter in the configuration file for
HttpClient must be set accordingly:

o If an agent signed the request, set:
I servlet=/ca/ee/ca/profileSubmitCMCFull

o If auser signed the request, set:

142

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

I servlet=/ca/ee/ca/profileSubmitSelfSignedCMCFull
5. Submit the CMC request:
I # HttpClient /nome/user_name/cmc-submit.cfg

For further details about revoking a certificate using CMCRequest, see the CMCRequest(1) man page.

7.2.2. Revoking a Certificate Using CMCRevoke

The CMC revocation utility, CMCRevoke, is used to sign a revocation request with an agent's certificate.
This utility simply passes the required information — certificate serial number, issuer name, and
revocation reason — to identify the certificate to revoke, and then the require information to identify the
CA agent performing the revocation (certificate nickname and the database with the certificate).

The reason the certificate is being revoked can be any of the following (with the number being the value
passed to the CMCRevoke utility):

® (0 — unspecified

® 1 — the key was compromised

® 2 — the CA key was compromised

e 3 —the employee's affiliation changed
® 4 — the certificate has been superseded
® 5 — cessation of operation

® 6 — the certificate is on hold

The available tool arguments are described in detail in the Command-Line Tools Guide.

7.2.2.1. Testing CMCRevoke

1. Create a CMC revocation request for an existing certificate.

CMCRevoke -d/path/to/agent-cert-db -nnickname -iissuerName -sserialName -mreason -
ccomment

For example, if the directory containing the agent certificate is ~jsmith/.mozilla/firefox/, the
nickname of the certificate is AgentCert, and the serial number of the certificate is 22, the
command is as shown:

CMCRevoke -d"~jsmith/.mozilla/firefox/" -n"ManagerAgentCert" -i"cn=agentAuthMgr" -s22 -
mO -c"test comment"

NOTE

Surround values that include spaces in quotation marks.

143

Administration Guide

IMPORTANT

Do not have a space between the argument and its value. For example, giving a
serial number of 26 is -s26, not -s 26.

2. Open the end-entities page.
I https://server.example.com:8443/ca/ee/ca

3. Select the Revocation tab.
4. Select the CMC Revoke link on the menu.
5. Paste the output from the CMCRevoke into the text area.

6. Remove ----- BEGIN NEW CERTIFICATE REQUEST----- and ----END NEW CERTIFICATE
REQUEST----- from the pasted content.

7. Click Submit.

8. The returned page should confirm that correct certificate has been revoked.

7.3.ISSUING CRLS

1. The Certificate Manager uses its CA signing certificate key to sign CRLs. To use a separate
signing key pair for CRLs, set up a CRL signing key and change the Certificate Manager
configuration to use this key to sign CRLs. See Section 7.3.4, “Setting a CA to Use a Different
Certificate to Sign CRLs" for more information.

2. Set up CRL issuing points. An issuing point is already set up and enabled for a master CRL.

Console Edit Yiew Help

Red Hat Certificate System: 9443 2| CRL Issuing Points
Users and Groups :
Arcess Control List §§ List of CRL issuing points:
Lag 5
System Keys and Certificates © - Add
Authentication H
o= Job Scheduler
¢ Certificate Manager 2
Folicies : Delete
Certificate Profiles
MHotification
¢ CEL Issuing Foints
¢ MasterCRL
CEL Extensiaons
o= Puhlizhing

Figure 7.1. Default CRL Issuing Point

Additional issuing points for the CRLs can be created. See Section 7.3.1, “Configuring Issuing
Points” for details.

There are five types of CRLs the issuing points can create, depending on the options set when
configuring the issuing point to define what the CRL will list:

o Master CRL contains the list of revoked certificates from the entire CA.

144

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

o ARL is an Authority Revocation List containing only revoked CA certificates.
o CRL with expired certificates includes revoked certificates that have expired in the CRL.

o CRL from certificate profiles determines the revoked certificates to include based on the
profiles used to create the certificates originally.

o CRLs by reason code determines the revoked certificates to include based on the
revocation reason code.

3. Configure the CRLs for each issuing point. See Section 7.3.2, “Configuring CRLs for Each
Issuing Point” for details.

4. Set up the CRL extensions which are configured for the issuing point. See Section 7.3.3,
“Setting CRL Extensions” for details.

5. Set up the delta CRL for an issuing point by enabling extensions for that issuing point,
DeltaCRLIndicator or CRLNumber.

6. Set up the CRLDistributionPoint extension to include information about the issuing point.

7. Set up publishing CRLs to files, an LDAP directory, or an OCSP responder. See Chapter 9,
Publishing Certificates and CRLs for details about setting up publishing.

7.3.1. Configuring Issuing Points

Issuing points define which certificates are included in a new CRL. A master CRL issuing point is created
by default for a master CRL containing a list of all revoked certificates for the Certificate Manager.

To create a new issuing point, do the following:

1. Open the Certificate System Console.

I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand Certificate Manager from the left navigation menu. Then
select CRL Issuing Points.

3. To edit anissuing point, select the issuing point, and click Edit. The only parameters which can
be edited are the name of the issuing point and whether the issuing point is enabled or disabled.

To add anissuing point, click Add. The CRL Issuing Point Editor window opens.

145

Administration Guide

~ [T S i, |

Enable

CRL issuing point name: | |

Description: | |

Ok Cancel Help

Figure 7.2. CRL Issuing Point Editor

NOTE

If some fields do not appear large enough to read the content, expand the
window by dragging one of the corners.

Fill in the following fields:
o Enable. Enables the issuing point if selected; deselect to disable.
o CRL Issuing Point name. Gives the name for the issuing point; spaces are not allowed.
o Description. Describes the issuing point.
4. Click OK.

To view and configure a new issuing point, close the CA Console, then open the Console again. The new
issuing point is listed below the CRL Issuing Points entry in the navigation tree.

Configure CRLs for the new issuing point, and set up any CRL extensions that will be used with the CRL.
See Section 7.3.2, "Configuring CRLs for Each Issuing Point” for details on configuring an issuing point.

See Section 7.3.3, "Setting CRL Extensions” for details on setting up the CRL extensions. All the CRLs
created appear on the Update Revocation List page of the agent services pages.

NOTE
pkiconsole is being deprecated.

7.3.2. Configuring CRLs for Each Issuing Point

Information, such as the generation interval, the CRL version, CRL extensions, and the signing algorithm,
can all be configured for the CRLs for the issuing point. The CRLs must be configured for each issuing
point.

1. Open the CA console.

I pkiconsole https://server.example.com:8443/ca

146

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

2. In the navigation tree, select Certificate Manager, and then select CRL Issuing Points.
3. Select the issuing point name below the Issuing Points entry.

4. Configure how and how often the CRLs are updated by supplying information in the Update tab
for the issuing point. This tab has two sections, Update Schema and Update Frequency.

Console Edit View Help

Configuration

Fed Hat Certificate System: 9442 l/ Updates r Cache rFurmat |
Users and Groups :

Arcess Contral List Update Schema
Log : L
System Keys and Certificates Enable CRL generation:
Althentication :
: Generate full CRL every |3 deltags).
o Jok Scheduler : w3l ©
¢ Certificate Manager | Bdaend next update time in full CRLs []
Palicies :
Certificate Profiles :
Motification Ll ragpeiey

9 CEL Issuing Points
% MastercRL

CRL Extensions [] Update CRL at
o Publishing :
Update CRL every 24 minuies

MWext update grace period |0 minutes

[] Every time a certificate is revoked or released from hold

o The Update Schema section has the following options:

m Enable CRL generation. This checkbox sets whether CRLs are generated for that
issuing point.

m Generate full CRL every # delta(s). This field sets how frequently CRLs are created in
relation to the number of changes.

m Extend next update time in full CRLs. This provides an option to set the nextUpdate
field in the generated CRLs. The nextUpdate parameter shows the date when the next
CRL is issued, regardless of whether it is a full or delta CRL. When using a combination
of full and delta CRLs, enabling Extend next update time in full CRLs will make the
nextUpdate parameter in a full CRL show when the next full CRL will be issued.
Otherwise, the nextUpdate parameter in the full CRL will show when the next de/ta CRL
will be issued, since the delta will be the next CRL to be issued.

o The Update Frequency section sets the different intervals when the CRLs are generated
and issued to the directory.

= Every time a certificate is revoked or released from hold. This sets the Certificate
Manager to generate the CRL every time it revokes a certificate. The Certificate
Manager attempts to issue the CRL to the configured directory whenever it is
generated. Generating a CRL can be time consuming if the CRL is large. Configuring
the Certificate Manager to generate CRLs every time a certificate is revoked may
engage the server for a considerable amount of time; during this time, the server will not
be able to update the directory with any changes it receives.

This setting is not recommended for a standard installation. This option should be

selected to test revocation immediately, such as testing whether the server issues the
CRL to a flat file.

147

Administration Guide

148

m Update the CRL at. This field sets a daily time when the CRL should be updated. To
specify multiple times, enter a comma-separate list of times, such as 01:50,04:55,06:55.
To enter a schedule for multiple days, enter a comma-separated list to set the times
within the same day, and then a semicolon separated list to identify times for different
days. For example, this sets revocation on Day 1 of the cycle at 1:50am, 4:55am, and
6:55am and then Day 2 at 2am, 5am, and 5pm:

I 01:50,04:55,06:55;02:00,05:00,17:00

m Update the CRL every. This checkbox enables generating CRLs at the interval setin
the field. For example, to issue CRLs every day, select the checkbox, and enter 1440 in
this field.

®m Next update grace period. If the Certificate Manager updates the CRL at a specific
frequency, the server can be configured to have a grace period to the next update time
to allow time to create the CRL and issue it. For example, if the server is configured to
update the CRL every 20 minutes with a grace period of 2 minutes, and if the CRL is
updated at 16:00, the CRL is updated again at 16:18.

IMPORTANT

Due to a known issue, when currently setting full and delta Certificate Revocation
List schedules, the Update CRL every time a certificate is revoked or
released from hold option also requires you to fill out the two grace period
settings. Thus, in order to select this option you need to first select the Update
CRL every option and enter a number for the Next update grace period #
minutes box.

5. The Cache tab sets whether caching is enabled and the cache frequency.

Configuration

Red Hat Certificate System:< -
£} Users and Groups B

[Updates | Cache | Format |

%ACCESS Control List CRL Cache 1
Log B Enable CRL cache:

System Keys and Certific =

@5 Authentication : Save cache every |15 minutes

o & Job Scheduler
9 [Certificate Manager :
Certificate Profiles | Enable CRL cache testing: []
@ Notification : |
¢ CRL Issuing Points

Enable cache recovery:

Figure 7.3. CRL Cache Tab

o Enable CRL cache. This checkbox enables the cache, which is used to create delta CRLs. If
the cache is disabled, delta CRLs will not be created. For more information about the cache,
see Section 7.1, "About Revoking Certificates”.

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

o Update cache every. This field sets how frequently the cache is written to the internal
database. Set to 0 to have the cache written to the database every time a certificate is
revoked.

o Enable cache recovery. This checkbox allows the cache to be restored.

o Enable CRL cache testing. This checkbox enables CRL performance testing for specific
CRL issuing points. CRLs generated with this option should not be used in deployed CAs, as
CRLs issued for testing purposed contain data generated solely for the purpose of

performance testing.

6. The Format tab sets the formatting and contents of the CRLs that are created. There are two
sections, CRL Format and CRL Contents.

Console Edit View Help

Configuration

Fed Hat Certificate System: 9443 ¢ r Updates | Cache | Format |
Uzers and Groups g
Accass Control List ;| ~CRL Format
Log : o .
Tystem Keys and Certificates Revocation list signing algorithm: |SHA1withR5A |v|
Authentication 5 i
o ok Scheduler §§ Allow extensions for CRLs v2;
¢ Certificate Manager :;
Policies ‘| CRL Contents
Cerificate Profiles :
Mlatification gi [Include expired certificates
¢ CEL Issuing Points :
9 MasterCRL : [] CA certificates only
CRL Extensions :
o= Publishing g [| Certificates issued according to profiles:

Figure 7.4. CRL Format Tab

o The CRL Format section has two options:

m Revocation list signing algorithm is a drop down list of allowed ciphers to encrypt the
CRL.

m Allow extensions for CRL v2is a checkbox which enabled CRL v2 extensions for the
issuing point. If this is enabled, set the required CRL extensions described in
Section 7.3.3, “Setting CRL Extensions”.

: NOTE

3

X

C""In

o Extensions must be turned on to create delta CRLs.

o The CRL Contents section has three checkboxes which set what types of certificates to
include in the CRL:

® Include expired certificates. This includes revoked certificates that have expired. If this
is enabled, information about revoked certificates remains in the CRL after the
certificate expires. If this is not enabled, information about revoked certificates is
removed when the certificate expires.

149

Administration Guide

m CA certificates only. This includes only CA certificates in the CRL. Selecting this
option creates an Authority Revocation List (ARL), which lists only revoked CA
certificates.

m Certificates issued according to profiles. This only includes certificates that were
issued according to the listed profiles; to specify multiple profiles, enter a comma-
separated list.

7. Click Save.

8. Extensions are allowed for this issuing point and can be configured. See Section 7.3.3, "Setting
CRL Extensions” for details.

NOTE

pkiconsole is being deprecated.
7.3.3. Setting CRL Extensions

NOTE

Extensions only need configured for an issuing point if the Allow extensions for CRLs
v2 checkbox is selected for that issuing point.

When the issuing point is created, three extensions are automatically enabled: CRLReason,
InvalidityDate, and CRLNumber. Other extensions are available but are disabled by default. These can
be enabled and modified. For more information about the available CRL extensions, see Section B.4.2,
“Standard X.509 v3 CRL Extensions Reference”.

To configure CRL extensions, do the following:

1. Open the CA console.
I pkiconsole https://server.example.com:8443/ca

2. In the navigation tree, select Certificate Manager, and then select CRL Issuing Points.

3. Select the issuing point name below the Issuing Points entry, and select the CRL Extension
entry below the issuing point.

The right pane shows the CRL Extensions Management tab, which lists configured extensions.

150

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

Console Edit Yiew Ohbject Help

Configuration | Status

Red Hat Certificate System:S443 .||” CRL Extensions Management |
sers and Groups 3

Access Contraol List Rule Status Edit; Vi..
Log : Enahbled -

Fystem Keys and Centificates o | peltaCRLIndicator Disahled
Authentication 2| | Issueralternativelame Disabled
&= Joh Scheduler 2 [invalidityDate Enabled
§ Certificate Manager | | AuthorityKeydentifier Disabled
Policies . | | FreshestcRL Disabled
CE“_'_f'faFE Profiles CELMumber Enahbled
Hotification - PT— - -
¢ CEL Issuing Points i IsswngDmtnputmanm D!sabled
% MasterCRL §§ HuoldInstruction Disabled
CFL Extensions :
&= Puhlishing

Figure 7.5. CRL Extensions

4. To modify arule, select it, and click Edit/View.

5. Most extensions have two options, enabling them and setting whether they are critical. Some
require more information. Supply all required values. See Section B.4.2, “Standard X.509 v3
CRL Extensions Reference” for complete information about each extension and the parameters
for those extensions.

6. Click OK.

7. Click Refresh to see the updated status of all the rules.

NOTE

pkiconsole is being deprecated.

7.3.4. Setting a CA to Use a Different Certificate to Sign CRLs

For instruction on how to configure this feature by editing the CS.cfg file, see the Setting a CA to Use a
Different Certificate to Sign CRLs section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

7.3.5. Generating CRLs from Cache

By default, CRLs are generated from the CA's internal database. However, revocation information can
be collected as the certificates are revoked and kept in memory. This revocation information can then

be used to update CRLs from memory. Bypassing the database searches that are required to generate
the CRL from the internal database significantly improves performance.

NOTE

Because of the performance enhancement from generating CRLs from cache, enable the
enableCRLCache parameter in most environments. However, the Enable CRL cache
testing parameter should not be enabled in a production environment.

7.3.5.1. Configuring CRL Generation from Cache in the Console

151

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#Using_a_Different_Certificate_to_sign_crls

Administration Guide

NOTE

pkiconsole is being deprecated.

1. Open the console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager folder and the CRL Issuing Points
subfolder.

3. Select the MasterCRL node.

Fed Hat Certificate System: 9.
Users and Groups
'-“_ Arcess Control List

Configuration

ks System Keys and Certifica
Authenticatinn
o= &4 Job Scheduler
¢ [Cenrtificate Manager
‘ Certificate Profiles
~ Motification
¢ &Y CRL Issuing Points
o~ @& MasterCRL
o~ & Publishing

4. Select Enable CRL cache.

Configuration

. Red Hat Certificate System:€ :
% Users and Groups
"E Access Control List

[Updates | Cache | Format |

CRL Cache

. Authentication
o= - - Job Scheduler
9 [Certificate Manager
Certificate Profiles

Nohﬂcatlun
?

5. Save the changes.

152

(39 System Keys and Cer‘nflc

Enable CRL cache:

Save cache every (15 minutes

Enable CRL cache testing: []

Enable cache recovery:

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

7.3.5.2. Configuring CRL Generation from Cache in CS.cfg

For instruction on how to configure this feature by editing the CS.cfg file, see the Configuring CRL
Generation from Cache in CS.cfg section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

7.4.SETTING FULL AND DELTA CRL SCHEDULES

CRLs are generated periodically. Setting that period is touched on in the configuration in Section 7.3.2,
“Configuring CRLs for Each Issuing Point”.

CRLs are issued according to a time-based schedule. CRLs can be issued every single time a certificate
is revoked, at a specific time of day, or once every so-many minutes.

Time-based CRL generation schedules apply to every CRL that is generated. There are two kinds of
CRLs, full CRLs and delta CRLs. A full CRL has a record of every single revoked certificate, whereas

delta CRLs contain only the certificates that have been revoked since the last CRL (delta or full) was
generated.

By default, full CRLs are generated at every specified interval in the schedule. It is possible space out
the time between generating full CRLs by generating interim de/ta CRLs. The generation interval is
configured in the CRL schema, which sets the scheme for generating delta and full CRLs.

If the interval is set to 3, for example, then the first CRL generated will be both a full and delta CRL, then
the next two generation updates are delta CRLs only, and then the fourth interval is both a full and delta
CRL again. In other words, every third generation interval has both a full CRL and a delta CRL.

Interval 1,2,3,4,5,6,7 ...
Full CRL 1 4 7 ..
DeltaCRL 1,2,3,4,5,6,7 ...

NOTE

For delta CRLs to be generated in addition to full CRLs, the CRL cache must be enabled.
7.4.1. Configuring CRL Update Intervals in the Console

NOTE
pkiconsole is being deprecated.
1. Open the console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, expand the Certificate Manager folder and the CRL Issuing Points
subfolder.

3. Select the MasterCRL node.

153

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#configuring_CRL_generation_from_cache_in_cs-cfg

Administration Guide

Fed Hat Certificate System: 9
< Users and Groups
W] Access Control List

Configuration

'rs System Keys and Certifica
‘Authentlcatmn
o= - 1 Job Scheduler
¢ [Cenrtificate Manager
‘ Certificate Profiles
~ Motification
& 'z CEL Issuing Foints
o ‘ MasterCRL
o- % Fublishing

4. Enter the required interval in the Generate full CRL every # delta(s) field.

l/ » Updates | Cache | Format
: Update Schema
Enable CRL generation:

Generate full CRL every |3_I | deltaqs).

Extend next update time in full CRLs [|

5. Set the update frequency, either by specifying the occasion of a certificate revocation, a cyclical
interval or set times for the updates to occur:

o Select the Update CRL every time a certificate is revoked or released from hold
checkbox. The Update CRL every time a certificate is revoked or released from hold
option also requires you to fill out the two Grace period settings. This is a known issue, and
the bug is being tracked in Red Hat Bugzilla.

o Select the Update CRL every time a certificate is revoked or released from hold
checkbox.

o Select the Update CRL at checkbox and enter specific times separated by commas, such as
01:50,04:55,06:55.

154

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

| Updates | Cache | Format

Update Schema
Enable CRL generation:

Generate full CRL every |3 delta(s).

Extend next update time in full CRLs [|

Update Fregquency

[|Every time a certificate is revoked or released from hold

Update CRL at |1:5CI,D£1:55,06:55

[|update CRL every minutes

Next update grace period |0 minutes

o Select Update CRL every checkbox and enter the required interval, such as 240.

Console Edit View Object Help

Configuration

Fed Hat Certificate Systerm: 9443 1’ Updates |’ Cache rFurmat |
sers and Croups :

Accass Cantrol List Update Schema
Log 3 _—
Systern Keys and Certificates - Enable CRL generation:
Authentication :
: Generate full CRL every |3 delta(s).
&= |ob Scheduler : & Q -
¢ Cenificate Manager §§ Extend next update time in full CRLs []
Policies 1
Certificate Profiles 3
Matification : Update Frequency

% CRELIzsuing Foints
¢ MasterCRL

CRL Extensions [] Update CRL at
o= Puhklishing i
Update CRL every 240 minutes

Mext update grace period |0 minutes

[| Bvery time a certificate is revoked or released from hold

6. Save the changes.

IMPORTANT

The Update CRL every time a certificate is revoked or released from hold option also
requires you to fill out the two grace period settings. This is a known issue, and the bug is
being tracked in Red Hat Bugzilla.

155

Administration Guide

NOTE

Schedule drift can occur when updating CRLs by interval. Typically, drift occurs as a result
of manual updates and CA restarts.

To prevent schedule drift, select the Update CRL at checkbox and enter a value. The
interval updates will resynchronize with the Update CRL at value every 24 hours.

Updates | Cache | Format |

Update Schema
Enable CRL generation:

Generate full CRL every (3 delta(s).

Extend next update time in full CRLs [|

Update Frequency

[| Every time a certificate is revoked or released from hold

Update CRL at 11:00
Upcdate CRL every 240 minutes

MNext update grace period |0 minutes

Only one Update CRL at value will be accepted when updating CRLs by interval.

7.4.2. Configuring Update Intervals for CRLs in CS.cfg

For instruction on how to configure this feature by editing the CS.cfg file, see the Configuring Update
Intervals for CRLs in CS.cfg section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide.

7.4.3. Configuring CRL Generation Schedules over Multiple Days

By default, CRL generation schedules cover 24 hours. Also, by default, when full and delta CRLs are
enabled full CRLs occur at specific intervals in place of one or all delta CRLs, i.e., every third update.

To set CRL generation schedules across multiple days, the list of times uses commas to separate times
within the same day and a semicolon to delimit days:

I ca.crl.MasterCRL.dailyUpdates=01:00,03:00,18:00;02:00,05:00,17:00

This example updates CRLs on day one of the schedule at 01:00, 03:00, and 18:00, and on day two of
the schedule at 02:00, 05:00, and 17:00. On day three the cycle starts again.

NOTE

The semicolon indicates a new day. Starting the list with a semicolon results in an initial
day where no CRLs are generated. Likewise, ending the list with a semicolon adds a final
day to the schedule where no CRLs are generated. Two semicolons together result in a
day with no CRL generation.

156

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#configuring-crl-update-intervals-cmd

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

To set full CRL updates independent of delta updates, the list of times accepts time values prepended
with an asterisk to indicate when full CRL updates should occur:

I ca.crl.MasterCRL.dailyUpdates=01:00,03:00,18:00,*23:00;02:00,05:00,21:00,*23:30

This example generates delta CRL updates on day one at 01:00, 03:00, and 18:00, with a full and delta
CRL update at 23:00. On day two, delta CRLs are updated at 02:00, 05:00, and 21:00, with a full and
delta CRL update at 23:30. On day three, the cycle starts again.

NOTE

The semicolon and asterisk syntax works in both the console and when manually editing
the CS.cfg file.

7.5. ENABLING REVOCATION CHECKING

Revocation checking means that a Certificate System subsystem verifies that a certificate is both valid
and not revoked when an agent or administrator attempts to access the instance's secure interfaces.
This leverages a local OCSP service (either a CA's internal OCSP service or a separate OCSP responder)
to check the revocation status of the certificate.

OCSP configuration is covered in Section 7.6, "Using the Online Certificate Status Protocol (OCSP)
Responder”.

See Enabling Automatic Revocation Checking on the CA in the Red Hat Certificate System Planning,
Installation, and Deployment Guide.

See Enabling Certificate Revocation Checking for Subsystems in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

7.6. USING THE ONLINE CERTIFICATE STATUS PROTOCOL (OCSP)
RESPONDER

7.6.1. Setting up the OCSP Responder

If a CA within the security domain is selected when the Online Certificate Status Manager is configured,
there is no extra step required to configure the OCSP service. The CA's CRL publishing is set up
automatically, and its signing certificate is automatically added and trusted in the Online Certificate
Status Manager's certificate database. However, if a non-security domain CA is selected, then the
OCSP service must be manually configured after the Online Certificate Status Manager is configured.

NOTE

Not every CA within the security domain to which the OCSP Manager belongs is
automatically trusted by the OCSP Manager when it is configured. Every CA in the
certificate chain of the CA configured in the CA panel is trusted automatically by the
OCSP Manager. Other CAs within the security domain but not in the certificate chain
must be trusted manually.

To set up the Online Certificate Status Manager for a Certificate Manager outside the security domain:

1. Configure the CRLs for every CA that will publish to an OCSP responder.

157

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/index#Checking_the_Revocation_Status_of_Agent_Certificates
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/index#enabling-ocsp-checking-for-the-tks-and-kra

Administration Guide

2. Enable publishing, set up a publisher, and set publishing rules in every CA that the OCSP service
will handle (Chapter 9, Publishing Certificates and CRLs). This is not necessary if the Certificate
Managers publish to an LDAP directory and the Online Certificated Status Manager is set up to
read from that directory.

3. The certificate profiles must be configured to include the Authority Information Access
extension, pointing to the location at which the Certificate Manager listens for OCSP service
requests (Section 7.6.4, “"Enabling the Certificate Manager's Internal OCSP Service”).

4. Configure the OCSP Responder.

o Configure the Revocation Info store (Section 7.6.2.2, “Configure the Revocation Info
Stores: Internal Database” and Section 7.6.2.3, “Configure the Revocation Info Stores:
LDAP Directory”).

o l|dentify every publishing Certificate Manager to the OCSP responder (Section 7.6.2,
“Identifying the CA to the OCSP Responder”).

o If necessary, configure the trust settings for the CA which signed the OCSP signing
certificate (Section 17.7, “Changing the Trust Settings of a CA Certificate”).

5. Restart both subsystems after configuring them.

6. Verify that the CA is properly connected to the OCSP responder (Section 7.6.2.1, “Verify
Certificate Manager and Online Certificate Status Manager Connection”).

7.6.2. Identifying the CA to the OCSP Responder

Before a CAis configured to publish CRLs to the Online Certificate Status Manager, the CA must be
identified to the Online Certificate Status Manager by storing the CA signing certificate in the internal
database of the Online Certificate Status Manager. The Certificate Manager signs CRLs with the key
pair associated with this certificate; the Online Certificate Status Manager verifies the signature against
the stored certificate.

NOTE

If a CA within the security domain is selected when the Online Certificate Status Manager
is configured, there is no extra step required to configure the Online Certificate Status
Manager to recognize the CA; the CA signing certificate is automatically added and
trusted in the Online Certificate Status Manager's certificate database. However, if a
non-security domain CA is selected, then the CA signing certificate must be manually
added to the certificate database after the Online Certificate Status Manager is
configured.

It is not necessary to import the certificate chain for a CA which will publish its CRL to the Online
Certificate Status Manager. The only time a certificate chain is needed for the OCSP service is if the CA
connects to the Online Certificate Status Manager through SSL/TLS authentication when it publishes
its CRL. Otherwise, the Online Certificate Status Manager does not need to have the complete
certificate chain.

However, the Online Certificate Status Manager must have the certificate which signed the CRL, either

a CA signing certificate or a separate CRL signing certificate, in its certificate database. The OCSP
service verifies the CRL by comparing the certificate which signed the CRL against the certificates in its

158

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

database, not against a certificate chain. If both a root CA and one of its subordinate CAs publish CRLs
to the Online Certificate Status Manager, the Online Certificate Status Manager needs the CA signing
certificate of both CAs.

To import the CA or CRL signing certificate which is used to sign the certificates the CA is publishing to
the Online Certificate Status Manager, do the following:

1. Get the Certificate Manager's base-64 CA signing certificate from the end-entities page of the
CA.

2. Open the Online Certificate Status Manager agent page. The URL has the format
https://hostname:SSLport/ocsp/agent/ocsp.

3. Inthe left frame, click Add Certificate Authority.

4. In the form, paste the encoded CA signing certificate inside the text area labeled Base 64
encoded certificate (including the header and footer).

5. To verify that the certificate is added successfully, in the left frame, click List Certificate
Authorities.

The resulting form should show information about the new CA. The This Update, Next Update, and
Requests Served Since Startup fields should show a value of zero (0).

7.6.2.1. Verify Certificate Manager and Online Certificate Status Manager Connection

When the Certificate Manager is restarted, it tries to connect to the Online Certificate Status Manager's
SSL/TLS port. To verify that the Certificate Manager did indeed communicate with the Online
Certificate Status Manager, check the This Update and Next Update fields, which should be updated
with the appropriate timestamps of the CA's last communication with the Online Certificate Status
Manager. The Requests Served Since Startup field should still show a value of zero (0) since no client
has tried to query the OCSP service for certificate revocation status.

7.6.2.2. Configure the Revocation Info Stores: Internal Database

The Online Certificate Status Manager stores each Certificate Manager's CRL in its internal database
and uses it as the CRL store for verifying the revocation status of certificates. To change the
configuration that the Online Certificate Status Manager uses for storing the CRLs in its internal
database:

1. Open the Online Certificate Status Manager Console.

I pkiconsole https://server.example.com:8443/ocsp

2. In the Configuration tab, select Online Certificate Status Manager, and then select
Revocation Info Stores.

159

Administration Guide

Certificate System

Configuration

Red Hat Certificate System:1 || Revocation Info Store Management |
2} Users and Groups i
@4 Access Control List : Store Name Status | Set Default |
Log il = defstore Enabled
System Keys and Certific IdapStore Disabled | Edit/View |
% [Online Certificate Status | &
Revocation Info Store

The right pane shows the two repositories the Online Certificate Status Manager can use; by
default, it uses the CRL in its internal database.

3. Select the defStore, and click Edit/View.

4. Edit the defStore values.

=) Revocation Info Store Editor |

Revocation Info Store ID: defStore
Store Plugin ID: com.netscape.cms....

notFoundAsGood
byName
includeNextUpdate | |

Return GOOD if the requested senal number was
not found.

oK Cancel Help

o notFoundAsGood. Sets the OCSP service to return an OCSP response of GOOD if the
certificate in question cannot be found in any of the CRLs. If this is not selected, the
response is UNKNOWN, which, when encountered by a client, results in an error message.

o byName. The OCSP Responder only supports the basic response type, which includes the
ID of the OCSP Responder making the response. The ResponderlD field within the basic

160

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

response type is determined by the value of the ocsp.store.defStore.byName parameter.
If byName parameter is true or is missing, the OCSP authority signing certificate subject
name is used as the ResponderlID field of the OCSP response. If byName parameter is false,
the OCSP authority signing certificate key hash will be the ResponderlD field of the OCSP
response.

o includeNextUpdate. Includes the timestamp of the next CRL update time.

% NOTE

b
ey pkiconsole is being deprecated.

7.6.2.3. Configure the Revocation Info Stores: LDAP Directory

Although the OCSP Manager stores the CA CRLs in its internal database by default, it can be configured
to use a CRL published to an LDAP directory instead.

IMPORTANT

If the IdapStore method is enabled, the OCSP user interface does not check the
certificate status.

To configure the Online Certificate Status Manager to use an LDAP directory:

1. Open the Online Certificate Status Manager Console.

I pkiconsole https://server.example.com:8443/ocsp

2. In the Configuration tab, select Online Certificate Status Manager, and then select
Revocation Info Stores.

Certificate System

Configuration

Red Hat Certificate System:1 || Revocation Info Store Management |
2} Users and Groups

@ Access Control List : Store Name Status | Set Default |
Log : B defStore Enabled

System Keys and Certific Idapstore Disabled | Edit/View |
(3 Online Certificate Status | -
Revocation Info Store

The right pane shows the two repositories the Online Certificate Status Manager can use; by
default, it uses the CRL in its internal database.

3. Touse the CRLs in LDAP directories, click Set Default to enable the IdapStore option.
4. Select IdapStore, and click Edit/View.

5. Set the IdapStore parameters.

161

Administration Guide

162

o

o

o

o

o

o

o

Revocation Info Store ID: |ldapStore

Revocation Info S5tore Editor

Store Plugin ID: com.netscape.cms....

numConns |0

byName

caCertAttr [cACertificate binary

crlAttr [certificateRevocationList;binar

notFoundAsGood

includeNextUpdate | |

|4 T

The total number of LDAP connections.

oK Cancel

Help

numConns. The total number of LDAP directories the OCSP service should check. By
default, this is set to 0. Setting this value shows the corresponding number of host, port,

baseDN, and refreshinSec fields.

host. The fully-qualified DNS hostname of the LDAP directory.

port. The non-SSL/TLS port of the LDAP directory.

baseDN. The DN to start searching for the CRL. For example, O=example.com.
refreshinSec. How often the connection is refreshed. The default is 86400 seconds (daily).

caCertAttr. Leave the default value, cACertificate;binary, as it is. It is the attribute to which

the Certificate Manager publishes its CA signing certificate.

crlAttr. Leave the default value, certificateRevocationList;binary, as it is. It is the attribute

to which the Certificate Manager publishes CRLs.

notFoundAsGood. Sets the OCSP service to return an OCSP response of GOOD if the
certificate in question cannot be found in any of the CRLs. If this is not selected, the
response is UNKNOWN, which, when encountered by a client, results in an error message.

byName. The OCSP Responder only supports the basic response type, which includes the
ID of the OCSP Responder making the response. The Responder|D field within the basic
response type is determined by the value of the ocsp.store.defStore.byName parameter.

L

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

If byName parameter is true or is missing, the OCSP authority signing certificate subject
name is used as the ResponderlID field of the OCSP response. If byName parameter is false,
the OCSP authority signing certificate key hash will be the ResponderID field of the OCSP
response.

o includeNextUpdate. The Online Certificate Status Manager can include the timestamp of
the next CRL update time.

NOTE

pkiconsole is being deprecated.

7.6.2.4. Testing the OCSP Service Setup

Test whether the Certificate Manager can service OCSP requests properly by doing the following:

1.

2.

1.

Turn on revocation checking in the browser or client.

Request a certificate from the CA that has been enabled for OCSP services.
Approve the request.

Download the certificate to the browser or client.

Make sure the CAis trusted by the browser or client.

Check the status of Certificate Manager's internal OCSP service.

Open the CA agent services page, and select the OCSP Services link.

Test the independent Online Certificate Status Manager subsystem.

Open the Online Certificate Status Manager agent services page, and click the List Certificate
Authorities link.

The page should show information about the Certificate Manager configured to publish CRLs to
the Online Certificate Status Manager. The page also summarizes the Online Certificate Status
Manager's activity since it was last started.

Revoke the certificate.

Verify the certificate in the browser or client. The server should return that the certificate has
been revoked.

. Check the Certificate Manager's OCSP-service status again to verify that these things

happened:
o The browser sent an OCSP query to the Certificate Manager.
o The Certificate Manager sent an OCSP response to the browser.

o The browser used that response to validate the certificate and returned its status, that the
certificate could not be verified.

Check the independent OCSP service subsystem again to verify that these things happened:

o The Certificate Manager published the CRL to the Online Certificate Status Manager.

163

Administration Guide

o The browser sent an OCSP response to the Online Certificate Status Manager.
o The Online Certificate Status Manager sent an OCSP response to the browser.

o The browser used that response to validate the certificate and returned its status, that the
certificate could not be verified.

7.6.3. Setting the Response for Bad Serial Numbers

OCSP responders check the revocation status and expiration date of a certificate before determining
whether the certificate is valid; by default, the OCSP does not validate other information on the
certificate.

The notFoundAsGood parameter sets how the OCSP handles a certificate with an invalid serial
number. This parameter is enabled by default, which means that if a certificate is present with a bad
serial number but the certificate is otherwise valid, the OCSP returns a status of GOOD for the
certificate.

To have the OCSP check and reject certificates based on bad serial numbers as well as revocation
status, change the notFoundAsGood setting. In that case, the OCSP returns a status of UNKNOWN
with a certificate with a bad serial number. The client interprets that as an error and can respond
accordingly.

1. Open the Online Certificate Status Manager Console.

I pkiconsole https://server.example.com:8443/ocsp

2. In the Configuration tab, select Online Certificate Status Manager, and then select
Revocation Info Stores.

Certificate System

Configuration

Red Hat Certificate System:1 1’ Revocation Info Store Management |
2 Users and Groups :

@ Access Control List : Store Name Status | Set Default |
Log B defStore Enabled
System Keys and Certific Idapstore Disabled | Edit/View |

(3 Online Certificate Status | -
Revocation Info Store

3. Select the defStore, and click Edit/View.
4. Edit the notFoundAsGood value. Selecting the checkbox means that the OCSP returns a value

of GOOD even if the serial number on the certificate is bad. Unselecting the checkbox means
that the OCSP sends a value of UNKNOWN, which the client can intrepret as an error.

164

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

> Revocation Info S5tore Editor x

Revocation Info Store ID: defStore
Store Plugin ID: com.netscape.cms....

notFoundAsGood
byName
includeNextUpdate | |

Return GOOD if the requested senal number was
not found.

oK Cancel Help

5. Restart the OCSP Manager.

I |# pki-server restart instance-name

NOTE

pkiconsole is being deprecated.

7.6.4. Enabling the Certificate Manager's Internal OCSP Service

The Certificate Manager has a built-in OCSP service, which can be used by OCSP-compliant clients to
query the Certificate Manager directly about the revocation status of the certificate. When the
Certificate Manager is installed, an OCSP signing certificate is issued and the OCSP service is turned on
by default. This OCSP signing certificate is used to sign all responses to OCSP service requests. Since
the internal OCSP service checks the status of certificates stored in the Certificate Manager's internal
database, publishing does not have to be configured to use this service.

Clients can query the OCSP service through the non-SSL/TLS end-entity port of the Certificate
Manager. When queried for the revocation status of a certificate, the Certificate Manager searches its
internal database for the certificate, checks its status, and responds to the client. Since the Certificate
Manager has real-time status of all certificates it has issued, this method of revocation checking is the
most accurate.

165

Administration Guide

Every CA's built-in OCSP service is turned on at installation. However, to use this service, the CA needs
to issue certificates with the Authority Information Access extension.

1. Go to the CA's end-entities page. For example:
I https://server.example.com:8443/ca/ee/ca

2. Find the CA signing certificate.

3. Look for the Authority Info Access extension in the certificate, and note the Location URIName
value, such as https://server.example.com:8443/ca/ocsp.

4. Update the enrollment profiles to enable the Authority Information Access extension, and set
the Location parameter to the Certificate Manager's URI. For information on editing the

certificate profiles, see Section 3.2, “Setting up Certificate Profiles”.

5. Restart the CA instance.

I |# pki-server restart instance-name

NOTE

To disable the Certificate Manager's internal OCSP service, edit the CA's CS.cfg file and
change the value of the ca.ocsp parameter to false.

I ca.ocsp=false

7.6.5. Submitting OCSP Requests Using the OCSPClient program

The OCSPClient program can be used for performing OCSP requests. For example:

[# OCSPClient -h server.example.com -p 8080 -d /etc/pki/pki-tomcat/alias -c "caSigningCert cert-pki-
ca" --serial 2

CertlD.serialNumber=2

CertStatus=Good

The OCSPClient command can be used with the following command-line options:

Table 7.1. Available OCSPClient Options

Option Description

-d database Security database location (default: current directory)
-h hostname OCSP server hostname (default: example.com)

-p port OCSP server port number (default: 8080)

-t path OCSP service path (default: /ocsp/ee/ocsp)

-c nickname CA certificate nickname (defaut: CA Signing Certificate)

166

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

Option Description

-n times Number of submissions (default: 1)

--serial serial_number Serial number of certificate to be checked

--input input_file Input file containing DER-encoded OCSP request
--output output._file Output file to store DER-encoded OCSP response
-v, --verbose Run in verbose mode

--help Show help message

7.6.6. Submitting OCSP Requests Using the GET Method

OCSP requests which are smaller than 255 bytes can be submitted to the Online Certificate Status
Manager using a GET method, as described in RFC 6960. To submit OCSP requests over GET:

1. Generate an OCSP request for the certificate the status of which is being queried. For example:

]# openssl ocsp -CAfile ca.pem -issuer issuer.pem -serial serial_number -reqout - | base64

MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABKyiClhU4JpmIBewdDnn8ZgQUbyBZ44kgy
3507xW5BMzM8F Tvy TWCAQE=

2. Paste the URL in the address bar of a web browser to return the status information. The
browser must be able to handle OCSP requests.

https://server.example.com:8443/ocsp/ee/ocsp/MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4
cyABkyiClhU4JpmIBewdDnn8ZgQUbyBZ44kgy3507xW5BMzM8FTvy TwCAQE=

3. The OCSP Manager responds with the certificate status which the browser can interpret. The
possible statuses are GOOD, REVOKED, and UNKNOWN.

Alternatively, run the OCSP from the command line by using a tool such as curl to send the request and
openssl to parse the response. For example:

1. Generate an OCSP request for the certificate the status of which is being queried. For example:

]# openssl ocsp -CAfile ca.pem -issuer issuer.pem -serial serial_number -reqout - | base64

MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4cyABkyiClhU4JpmIBewdDnn8ZgQUbyBZ44kgy
3507xW5BMzM8F Tvy TWCAQE=

2. Connect to the OCSP Manager using curl to send the OCSP request.

curl
https://server.example.com:8443/ocsp/ee/ocsp/MEIwQDA+MDwwOjAJBgUrDgMCGgUABBT4
cyABkyiClhU4JpmIBewdDnn8ZgQUbyBZ44kgy3507xW5BMzM8FTvy TwCAQE= >

167

Administration Guide

I ocspresp.der
3. Parse the response using openssl:
I openssl ocsp -respin ocspresp.der -resp_text

For certificates issued by a 7.1 CA with the Authority Information Access extension to be sent to the
OCSP with the GET method, a redirect needs to be created to forward the requests to the appropriate
URL, as described in Section 7.6.7, “Setting up a Redirect for Certificates Issued in Certificate System 7.1
and Earlier”.

7.6.7. Setting up a Redirect for Certificates Issued in Certificate System 7.1and
Earlier

The location for the OCSP user pages, specified in the URL with the file root /ocsp/ee/ocsp/, is
different in Certificate System 10 or Certificate System 8.1 than the location in Certificate System 7.1,
which was simply /ocsp/. In order for certificates issued by a 7.1 or earlier CA with the Authority
Information Access extension to be sent to the OCSP, create a redirect to forward the requests to the
appropriate URL.

NOTE

Setting the redirect is only required to manage certificates issued by a 7.1 or earlier CA
with the Authority Information Access extension. If the certificates are issued by a later
version Certificate Manager or do not contain the Authority Information Access
extension, then this configuration is not necessary.

1. Stop the OCSP Responder.
I J# pki-server stop instance-name

2. Change to the OCSP's end user web applications directory. For example:
I J# cd /var/lib/pki-ocsp/webapps/ocsp

3. Change to the ROOT/WEB-INF/ directory in the ROOT folder of the OCSP's web applications
directory. For example:

I J# cd /var/lib/pki-ocsp/webapps/ocsp/ROOT/WEB-INF/

4. Create and open the lib/ directory in the ROOT folder of the OCSP's web applications
directory.

J# mkdir lib
1# cd lib/

5. Create a symlink that links back to the /usr/share/java/pki/cms.jar JAR file. For example:
I # In -s /usr/share/java/pki/cms.jar cms.jar

6. Move up to the main web application directory. For example:

168

CHAPTER 7. REVOKING CERTIFICATES AND ISSUING CRLS

I J# cd /var/lib/pki-ocsp/webapps/ocsp/
7. Rename the current instance (ocsp) directory. For example:

I [# mv /var/lib/pki-ocsp/webapps/ocsp/ocsp /var/lib/pki-ocsp/webapps/ocsp/ocsp2
8. Change to the WEB-INF/ directory in the original ocsp/ directory. For example:

I [# cd /var/lib/pki-ocsp/webapps/ocsp/ocsp/WEB-INF

9. In the original ocsp/WEB-INF/ directory, edit the web.xml file and add lines mapping between
the eeocspAddCRL and csadmin-wizard servlets.

<servlet-mapping>
<servlet-name> ocspOCSP </servlet-name>
<url-pattern> /ee/ocsp/* </url-pattern>
</servlet-mapping>

10. Create and install the web.xml file in the ROOT directory. For example:

<?xml version="1.0" encoding="ISO-8859-1"7>
<web-app>

<display-name>Welcome to Tomcat</display-name>
<description>

Welcome to Tomcat
</description>

<servlet>
<servlet-name>ocspProxy</servlet-name>
<servlet-class>com.netscape.cms.servlet.base.ProxyServlet</servlet-class>
<init-param>
<param-name>destContext</param-name>
<param-value>/ocsp2</param-value>
</init-param>
<init-param>
<param-name>destServlet</param-name>
<param-value>/ee/ocsp</param-value>
</init-param>
</serviet>

<servlet>

<servlet-name>ocspOther</servlet-name>

<servlet-class>com.netscape.cms.servlet.base.ProxyServlet</servlet-class>

<init-param>
<param-name>destContext</param-name>
<param-value>/ocsp2</param-value>

</init-param>

<init-param>
<param-name>srcContext</param-name>
<param-value>/ocsp</param-value>

</init-param>

<init-param>
<param-name>destServlet</param-name>

169

Administration Guide

<param-value></param-value>

</init-param>

<init-param>
<param-name>matchURIStrings</param-name>

<param-value>/ocsp/registry,/ocsp/acl,/ocsp/jobsScheduler,/ocsp/ug,/ocsp/server,/ocsp/log,
/ocsp/auths,/ocsp/start,/ocsp/ocsp,/ocsp/services,/ocsp/agent,/ocsp/ee,
/ocsp/admin</param-value>
</init-param>
<init-param>
<param-name>destServletOnNoMatch</param-name>
<param-value>/ee/ocsp</param-value>
</init-param>
<init-param>
<param-name>appendPathInfoOnNoMatch</param-name>
<param-value>/ocsp</param-value>
</init-param>
</serviet>

<servlet-mapping>
<servlet-name>ocspProxy</servlet-name>
<url-pattern>/ocsp</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>ocspOther</servlet-name>
<url-pattern>/ocsp/*</url-pattern>
</servlet-mapping>

</web-app>
11. Edit the /var/lib/pki-ocsp/conf/context.xml file, changing the following line:

<Context>
to
<Context crossContext="true" >

12. Edit the /var/lib/pki-ocsp/webapps/ocsp/ocsp2/services.template file and change the
following line:

result.recordSet][i].uri);
to
result.recordSet][i].uri + "/");

13. Start the OCSP instance.

I J# pki-server start instance-name

170

CHAPTER 8. MANAGING PKI ACME RESPONDER

CHAPTER 8. MANAGING PKI ACME RESPONDER

This chapter describes how to manage PKI ACME Responder.

For information on how to set up PKI ACME Responder, see the Setting up PKI ACME Responder
chapter in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

8.1. ENABLING/DISABLING ACME SERVICES

Users that belong to the Administrators group can enable or disable services in the ACME responder.
The user can authenticate either with basic authentication or client certificate authentication.

® To enable or disable ACME services with basic authentication, specify the username and
password:

I $ pki -u <username> -p <password> acme-<enable/disable>

® To enable or disable ACME services with client certificate authentication, specify the certificate
nickname and NSS database password:

I $ pki -n <nickname> -c <password> acme-<enable/disable>

8.2. CHECKING THE STATUS OF PKI ACME RESPONDER

® To check the status of the ACME responder, run the following command:

$ pki acme-info

Status: Available

Terms of Service: https://www.example.com/acme/tos.pdf
Website: https://www.example.com

CAA |dentities: example.com

External Account Required:false

If the services are disabled, the command will show the following result:

$ pki acme-info
Status: Unavailable

NOTE

The actual output depends on what is configured in the metadata.conf configuration file.

171

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/planning_installation_and_deployment_guide/setting_up_acme_responder

Administration Guide

PART lll. ADDITIONAL CONFIGURATION TO MANAGE CA
SERVICES

172

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

Red Hat Certificate System includes a customizable publishing framework for the Certificate Manager,
enabling certificate authorities to publish certificates, certificate revocation lists (CRLs), and other
certificate-related objects to any of the supported repositories: an LDAP-compliant directory, a flat file,
and an online validation authority. This chapter explains how to configure a Certificate Manager to
publish certificates and CRLs to a file, to a directory, and to the Online Certificate Status Manager.

The general process to configure publishing is as follows:
1. Configure publishing to a file, LDAP directory, or OCSP responder.

There can be a single publisher or multiple publishers, depending on how many locations will be
used. The locations can be split by certificates and CRLs or narrower definitions, such as
certificate type. Rules determine which type to publish and to what location by being associated
with the publisher.

2. Setrules to determine what certificates are published to the locations. Any rule which a
certificate or CRL matches is activated, so the same certificate can be published to a file and to
an LDAP directory by matching a file-based rule and matching a directory-based rule.

Rules can be set for each object type: CA certificates, CRLs, user certificates, and cross-pair
certificates. Disable all rules that will not be used.

3. Configure CRLs. CRLs must be configured before they can be published. See Chapter 7,
Revoking Certificates and Issuing CRLs.

4. Enable publishing after setting up publishers, mappers, and rules. Once publishing is enabled,
the server starts publishing immediately. If the publishers, mappers, and rules are not completely
configured, publishing may not work correctly or at all.

9.1. ABOUT PUBLISHING

The Certificate System is capable of publishing certificates to a file or an LDAP directory and of
publishing CRLs to a file, an LDAP directory, or to an OCSP responder.

For additional flexibility, specific types of certificates or CRLs can be published to a single format or all
three. For example, CA certificates can be published only to a directory and not to a file, and user
certificates can be published to both a file and a directory.

NOTE

An OCSP responder only provides information about CRLs; certificates are not published
to an OCSP responder.

Different publishing locations can be set for certificates files and CRL files, as well as different
publishing locations for different types of certificates files or different types of CRL files.

Similarly, different types of certificates and different types of CRLs can be published to different places
in a directory. For example, certificates for users from the West Coast division of a company can be
published in one branch of the directory, while certificates for users in the East Coast division can be
published to another branch in the directory.

When publishing is enabled, every time a certificate or a CRL is issued, updated, or revoked, the
publishing system is invoked. The certificate or CRL is evaluated by the rules to see if it matches the

173

Administration Guide

type and predicate set in the rule. The type specifies if the object is a CRL, CA certificate, or any other
certificate. The predicate sets more criteria for the type of object being evaluated. For example, it can
specify user certificates, or it can specify West Coast user certificates. To use predicates, a value needs
to be entered in the predicate field of the publishing rule, and a corresponding value (although
formatted somewhat differently) needs to be contained in the certificate or certificate request to
match. The value in the certificate or certificate request may be derived from information in the
certificate, such as the type of certificate, or may be derived from a hidden value that is placed in the
request form. If no predicate is set, all certificates of that type are considered to match. For example, all
CRLs match the rule if CRL is set as the type.

Every rule that is matched publishes the certificate or CRL according to the method and location
specified in that rule. A given certificate or CRL can match no rules, one rule, more than one rule, or all
rules. The publishing system attempts to match every certificate and CRL issued against all rules.

When a rule is matched, the certificate or CRL is published according to the method and location
specified in the publisher associated with that rule. For example, if a rule matches all certificates issued
to users, and the rule has a publisher that publishes to a file in the location /etc/CS/certificates, the
certificate is published as a file to that location. If another rule matches all certificates issued to users,
and the rule has a publisher that publishes to the LDAP attribute userCertificate;binary attribute, the
certificate is published to the directory specified when LDAP publishing was enabled in this attribute in
the user's entry.

For rules that specify to publish to a file, a new file is created when either a certificate or a CRL is issued
in the stipulated directory.

For rules that specify to publish to an LDAP directory, the certificate or CRL is published to the entry
specified in the directory, in the attribute specified. The CA overwrites the values for any published
certificate or CRL attribute with any subsequent certificate or CRL. Simply put, any existing certificate
or CRL that is already published is replaced by the next certificate or CRL.

For rules that specify to publish to an Online Certificate Status Manager, a CRL is published to this
manager. Certificates are not published to an Online Certificate Status Manager.

For LDAP publishing, the location of the user's entry needs to be determined. Mappers are used to
determine the entry to which to publish. The mappers can contain an exact DN for the entry, some
variable that associates information that can be gotten from the certificate to create the DN, or enough
information to search the directory for a unique attribute or set of attributes in the entry to ascertain
the correct DN for the entry.

When a certificate is revoked, the server uses the publishing rules to locate and delete the
corresponding certificate from the LDAP directory or from the filesystem.

When a certificate expires, the server can remove that certificate from the configured directory. The
server does not do this automatically; the server must be configured to run the appropriate job. For
details, see Chapter 13, Setting Automated Jobs.

Setting up publishing involves configuring publishers, mappers, and rules.

9.1.1. Publishers

Publishers specify the location to which certificates and CRLs are published. When publishing to a file,
publishers specify the filesystem publishing directory. When publishing to an LDAP directory, publishers
specify the attribute in the directory that stores the certificate or CRL; a mapper is used to determine
the DN of the entry. For every DN, a different formula is set for deriving that DN. The location of the
LDAP directory is specified when LDAP publishing is enabled. When publishing a CRL to an OCSP
responder, publishers specify the hostname and URI of the Online Certificate Status Manager.

174

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

9.1.2. Mappers

Mappers are only used in LDAP publishing. Mappers construct the DN for an entry based on information
from the certificate or the certificate request. The server has information from the subject name of the
certificate and the certificate request and needs to know how to use this information to create a DN for
that entry. The mapper provides a formula for converting the information available either to a DN or to
some unique information that can be searched in the directory to obtain a DN for the entry.

9.1.3. Rules

Rules for file, LDAP, and OCSP publishing tell the server whether and how a certificate or CRL is to be
published. A rule first defines what is to be published, a certificate or CRL matching certain
characteristics, by setting a type and predicate for the rule. A rule then specifies the publishing method
and location by being associated with a publisher and, for LDAP publishing, with a mapper.

Rules can be as simple or complex as necessary for the PKI deployment and are flexible enough to
accommodate different scenarios.

9.1.4. Publishing to Files

The server can publish certificates and CRLs to flat files, which can then be imported into any repository,
such as a relational database. When the server is configured to publish certificates and CRLs to file, the
published files are DER-encoded binary blobs, base-64 encoded text blobs, or both.

® For each certificate the server issues, it creates a file that contains the certificate in either DER-
encoded or base-64 encoded format. Each file is named either cert-serial nhumber.der or
cert-serial number.b64. The serial number is the serial number of the certificate contained in
the file. For example, the filename for a DER-encoded certificate with the serial number 1234 is
cert-1234.der.

® FEvery time the server generates a CRL, it creates a file that contains the new CRL in either DER-
encoded or base-64 encoded format. Each file is named either issuing_point_name-
this_update.der or issuing_point_name-this_update.b64, depending on the format. The
issuing_point_name identifies the CRL issuing point which published the CRL, and this_update
specifies the value derived from the time-dependent update value for the CRL contained in the
file. For example, the filename for a DER-encoded CRL with the value This Update: Friday
January 28 15:36:00 PST 2020, is MasterCRL-20200128-153600.der.

9.1.5. OCSP Publishing

There are two forms of Certificate System OCSP services, an internal service for the Certificate
Manager and the Online Certificate Status Manager. The internal service checks the internal database of
the Certificate Manager to report on the status of a certificate. The internal service is not set for
publishing; it uses the certificates stored in its internal database to determine the status of a certificate.
The Online Certificate Status Manager checks CRLs sent to it by Certificate Manager. A publisher is set
for each location a CRL is sent and one rule for each type of CRL sent.

For detailed information on both OCSP services, see Section 7.6, “Using the Online Certificate Status
Protocol (OCSP) Responder”.

9.1.6. LDAP Publishing

In LDAP publishing, the server publishes the certificates, CRLs, and other certificate-related objects to a
directory using LDAP or LDAPS. The branch of the directory to which it publishes is called the publishing
directory.

175

Administration Guide

® F[or each certificate the server issues, it creates a blob that contains the certificate in its DER-
encoded format in the specified attribute of the user's entry. The certificate is published as a
DER encoded binary blob.

® FEvery time the server generates a CRL, it creates a blob that contains the new CRL in its DER-
encoded format in the specified attribute of the entry for the CA.

The server can publish certificates and CRLs to an LDAP-compliant directory using the LDAP protocol
or LDAP over SSL (LDAPS) protocol, and applications can retrieve the certificates and CRLs over
HTTP. Support for retrieving certificates and CRLs over HTTP enables some browsers to import the
latest CRL automatically from the directory that receives regular updates from the server. The browser
can then use the CRL to check all certificates automatically to ensure that they have not been revoked.

For LDAP publishing to work, the user entry must be present in the LDAP directory.
If the server and publishing directory become out of sync for some reason, privileged users

(administrators and agents) can also manually initiate the publishing process. For instructions, see
Section 9.12.2, “Manually Updating the CRL in the Directory” .

9.2. CONFIGURING PUBLISHING TO A FILE

The general process to configure publishing involves setting up a publisher to publish the certificates or
CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how
many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such
as certificate type. Rules determine which type to publish and to what location by being associated with
the publisher.

Publishing to file simply publishes the CRLs or certificates to text files on a given host.

Publishers must be created and configured for each publishing location; publishers are not automatically
created for publishing to a file. To publish all files to a single location, create one publisher. To publish to
different locations, create a publisher for each location. A location can either contain an object type, like
user certificates, or a subset of an object type, like West Coast user certificates.

To create publishers for publishing to files:

1. Loginto the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Publishers.

The Publishers Management tab, which lists configured publisher instances, opens on the
right.

176

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

Fed Hat Certificate Systern: f Publishers Management |/ Publisher Plugin Registration |
Users and Groups ;
Arcess Contral List : Publisher Plugin Marne Add
Log LdapCrossCertPairPublisher |LdapCertificatePairPublisher -
Systern Keys and Centifi o} | oCsPPublisher OCSPPublisher Delete
Authentication ‘| | LdapcacCenPublisher LoapCaCerPublisher
2= Job Scheduler Al | ciapUserCertPublisher LdapUserCertPubilisher Edit; View
¥ Lerificate Manager | [LdapDeNtaCriPublisher LlapDehaCriPublisher
Cartificate Frofiles LdapCriPublisher LdapCriPukilisher
Muotification
o= CEL Issuing Paints
¢ Puhllishing
Mappers
Puhlishers
Fules

3. Click Add to open the Select Publisher Plug-in Implementation window, which lists registered
publisher modules.

FileBasedPublisher
LdapCaCertPublisher
LdapCertificatePairPublisher
LdapCriPublisher
LdapDeltaCriPublisher
LdapUserCertPublisher
QC5PPublisher

|4

Mext Cancel Help

4. Select the FileBasedPublisher module, then open the editor window.

This is the module that enables the Certificate Manager to publish certificates and CRLs to files.

177

Administration Guide

g Publisher Editor

Publisher ID: [FileFublisher
Publisher Plugin ID: FileBasedPublisher

directory |/export/C5/crls

Filename.der

Filename.b64

timeStamp [LocalTime -

latestCriLink [|

criLinkExt |

zipCRLs [|

ZipLevel -

Stores the certificates or CRLs into files. Cedificate is
names as cern-<=serialno=.der or*.b64, and CEL is
names as <|ssuingPoint=-<thislUpdate-time=.der ar
*hiEd.

oK Cancel Help

5. Configure the information for publishing the certificate:

o

o

o

The publisher ID, an alphanumeric string with no spaces like PublishCertsToFile

The path to the directory in which the Certificate Manager should publish the files. The path
can be an absolute path or can be relative to the Certificate System instance directory. For
example, /export/CS/certificates.

The file type to publish, by selecting the checkboxes for DER-encoded files, base-64
encoded files, or both.

For CRLs, the format of the timestamp. Published certificates include serial numbers in
their file names, while CRLs use timestamps.

For CRLs, whether to generate a link in the file to go to the latest CRL. If enabled, the link
assumes that the name of the CRL issuing point to use with the extension will be supplied in
the crlLinkExt field.

For CRLs, whether to compress (zip) CRLs and the compression level to use.

After configuring the publisher, configure the rules for the published certificates and CRLs, as described
in Section 9.5, “Creating Rules”.

178

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

NOTE

pkiconsole is being deprecated.

9.3. CONFIGURING PUBLISHING TO AN OCSP

The general process to configure publishing involves setting up a publisher to publish the certificates or
CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how
many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such
as certificate type. Rules determine which type to publish and to what location by being associated with
the publisher.

Publishing to an OCSP Manager is a way to publish CRLs to a specific location for client verification.
A publisher must be created and configured for each publishing location; publishers are not
automatically created for publishing to the OCSP responder. Create a single publisher to publish

everything to s single location, or create a publisher for every location to which CRLs will be published.
Each location can contain a different kind of CRL.

9.3.1. Enabling Publishing to an OCSP with Client Authentication

1. Loginto the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Publishers.

Red Hat Centificate Systern: f Publishers Management |/ Publisher Plugin Registration |
Users and Groups s
Arcess Contraol List : Publisher Plugin Marne Add
Log LdapCrossCertPairPublisher |LdapCertificatePairPublisher -
Tystem keys and Centifi o} | oCSPRublisher OCSPPublisher Delete
Adthentication ‘| [LdapCacCenPublisher LdapCaCerPublisher
2= Job Scheduler Al LcapUserCertPublisher LdapUserCertPublisher Edit; View
¥ Lerificate Manager | [LdapDeNtaCriPublisher LdapDehaCriPublisher
Cartificate Frofiles LdapCriPublisher LdapCriPukilisher
Muotification
o= CREL Issuing Paints
% Publishing
Mappers
Fublishers
Fules

3. Click Add to open the Select Publisher Plug-in Implementation window, which lists registered
publisher modules.

179

Administration Guide

FileBasedPublisher
LdapCaCertPublisher
LdapCertificatePairPublisher
LdapCriPublisher
LdapDeltaCriPublisher
LdapUserCertPublisher
DC5PPublisher

Mext Cancel Help

4. Select the OCSPPublisher module, then open the editor window. This is the publisher module
that enables the Certificate Manager to publish CRLs to the Online Certificate Status Manager.

> Publisher Editor

Publisher ID: |(0CSPPublisher
Publisher Plugin ID: OCSPPublisher

host |ocsp.example.com |

port (11443 |

path |jocsp/agent/ocsp/addCRL |
enablecClientAuth

nickName [subsystemCert cert-pki-ca |

oK Cancel Help

o The publisher ID must be an alphanumeric string with no spaces, like PublishCertsToOCSP.

180

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

o The host can be the fully-qualified domain name, such as ocspResponder.example.com,
or an IPv4 or IPv6 address.

o The default path is the directory to send the CRL to, like /ocsp/agent/ocsp/addCRL.

o If client authentication is used (enableClientAuth is checked), then the nickname field
gives the nickname of the certificate to use for authentication. This certificate must already
exist in the OCSP security database; this will usually be the CA subsystem certificate.

5. Create a user entry for the CA on the OCSP Manager. The user is used to authenticate to the
OCSP when sending a new CRL. There are two things required:

o Name the OCSP user entry after the CA server, like CA-hostname-EEport.

o Use whatever certificate was specified in the publisher configuration as the user certificate
in the OCSP user account. This is usually the CA's subsystem certificate.

Setting up subsystem users is covered in Section 15.3.2.1, “Creating Users”.

After configuring the publisher, configure the rules for the published certificates and CRLs, as described
in Section 9.5, “Creating Rules”.

NOTE

pkiconsole is being deprecated.

Lo~

9.4. CONFIGURING PUBLISHING TO AN LDAP DIRECTORY

The general process to configure publishing involves setting up a publisher to publish the certificates or
CRLs to the specific location. There can be a single publisher or multiple publishers, depending on how
many locations will be used. The locations can be split by certificates and CRLs or finer definitions, such
as certificate type. Rules determine which type to publish and to what location by being associated with
the publisher.

Configuring LDAP publishing is similar to other publishing procedures, with additional steps to configure
the directory:

1. Configure the Directory Server to which certificates will be published. Certain attributes have to
be added to entries and bind identities and authentication methods have to be configured.

2. Configure a publisher for each type of object published: CA certificates, cross-pair certificates,
CRLs, and user certificates. The publisher declares in which attribute to store the object. The
attributes set by default are the X.500 standard attributes for storing each object type. This
attribute can be changed in the publisher, but generally, it is not necessary to change the LDAP
publishers.

3. Set up mappers to enable an entry's DN to be derived from the certificate's subject name. This
generally does not need set for CA certificates, CRLs, and user certificates. There can be more
than one mapper set for a type of certificate. This can be useful, for example, to publish
certificates for two sets of users from different divisions of a company who are located in
different parts of the directory tree. A mapper is created for each of the groups to specify a
different branch of the tree.

For details about setting up mappers, see Section 9.4.3, “Creating Mappers”.

4. Create rules to connect publishers to mappers, as described in Section 9.5, “Creating Rules”.

181

Administration Guide
5. Enable publishing, as described in Section 9.6, “Enabling Publishing”.

9.4.1. Configuring the LDAP Directory

Before certificates and CRLs can be published, the Directory Server must be configured to work with
the publishing system. This means that user entries must have attributes that allow them to receive
certificate information, and entries must be created to represent the CRLs.

1. Set up the entry for the CA. For the Certificate Manager to publish its CA certificate and CRL,
the directory must include an entry for the CA.

NOTE

When LDAP publishing is configured, the Certificate Manager automatically
creates or converts an entry for the CA in the directory. This option is set in both
the CA and CRL mapper instances and enabled by default. If the directory
restricts the Certificate Manager from creating entries in the directory, turn off
this option in those mapper instances, and add an entry for the CA manually in
the directory.

‘PP Mapper Plugin ID: LdapCaSimpleMap
Ldz
i h g dnPattern |L.IID=$5ubi.cn,DU:peuple,Q=$5ubi
1 No
] Ldd |createCAEntry

When adding the CA's entry to the directory, select the entry type based on the DN of the CA:

o If the CA's DN begins with the cn component, create a new person entry for the CA.
Selecting a different type of entry may not allow the en component to be specified.

o If the CA's DN begins with the ou component, create a new organizationalunit entry for
the CA.

The entry does not have to be in the pkiCA or certificationAuthority object class. The

Certificate Manager will convert this entry to the pkiCA or certificationAuthority object class
automatically by publishing its CA's signing certificate.

NOTE
The pkiCA object class is defined in RFC 4523, while the certificationAuthority
object class is defined in the (obsolete) RFC 2256. Either object class is

acceptable, depending on the schema definitions used by the Directory Server. In
some situations, both object classes can be used for the same CA entry.

For more information on creating directory entries, see the Red Hat Directory Server
documentation.

2. Add the correct schema elements to the CA and user directory entries.

182

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

For a Certificate Manager to publish certificates and CRLs to a directory, it must be configured
with specific attributes and object classes.

Object Type

End-entity certificate

CA certificate

Schema

userCertificate;binary
(attribute)

caCertificate;binary (attribute)

Reason

This is the attribute to which
the Certificate Manager
publishes the certificate.

This is a multi-valued attribute,
and each value is a DER-
encoded binary X.509
certificate. The LDAP object
class named inetOrgPerson
allows this attribute. The
strongAuthenticationUser
object class allows this
attribute and can be combined
with any other object class to
allow certificates to be
published to directory entries
with other object classes. The
Certificate Manager does not
automatically add this object
class to the schema table of
the corresponding Directory
Server.

If the directory object that it
finds does not allow the
userCertificate;binary
attribute, adding or removing
the certificate fails.

This is the attribute to which
the Certificate Manager
publishes the certificate.

The Certificate Manager
publishes its own CA
certificate to its own LDAP
directory entry when the server
starts. The entry corresponds
to the Certificate Manager's
issuer name.

This is a required attribute of
the pkiCA or
certificationAuthority
object class. The Certificate
Manager adds this object class
to the directory entry for the
CAifit can find the CA's
directory entry.

183

Administration Guide

Object Type

CRL

Delta CRL

Schema

certificateRevocationList;binar
y (attribute)

deltaRevocationList;binary
(attribute)

Reason

This is the attribute to which
the Certificate Manager
publishes the CRL.

The Certificate Manager
publishes the CRL to its own
LDAP directory entry. The
entry corresponds to the
Certificate Manager's issuer
name.

This is an attribute of the
pkiCA or
certificationAuthority
object class. The value of the
attribute is the DER-encoded
binary X.509 CRL. The CA's
entry must already contain the
pkiCA or
certificationAuthority
object class for the CRL to be
published to the entry.

This is the attribute to which
the Certificate Manager
publishes the delta CRL. The
Certificate Manager publishes
the delta CRL to its own LDAP
directory entry, separate from
the full CRL. The delta CRL
entry corresponds to the
Certificate Manager's issuer
name.

This attribute belongs to the
deltaCRL or
certificationAuthority-V2
object class. The value of the
attribute is the DER-encoded
binary X.509 delta CRL.

3. Set up a bind DN for the Certificate Manager to use to access the Directory Server.

The Certificate Manager user must have read-write permissions to the directory to publish
certificates and CRLs to the directory so that the Certificate Manager can modify the user
entries with certificate-related information and the CA entry with CA's certificate and CRL

related information.

The bind DN entry can be either of the following:

o

184

An existing DN that has write access, such as the Directory Manager.

A new user which is granted write access. The entry can be identified by the Certificate
Manager's DN, such as cn=testCA, ou=Research Dept, o=Example Corporation,

st=California, c=US.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

NOTE

Carefully consider what privileges are given to this user. This user can be
restricted in what it can write to the directory by creating ACLs for the
account. Forinstructions on giving write access to the Certificate Manager's
entry, see the Directory Server documentation.

4. Set the directory authentication method for how the Certificate Manager authenticates to
Directory Server. There are three options: basic authentication (simple username and
password); SSL without client authentication (simple username and password); and SSL with
client authentication (certificate-based).

See the Red Hat Directory Server documentation for instructions on setting up these methods
of communication with the server.

9.4.2. Configuring LDAP Publishers

The Certificate Manager creates, configures, and enables a set of publishers that are associated with
LDAP publishing. The default publishers (for CA certificates, user certificates, CRLs, and cross-pair
certificates) already conform to the X.500 standard attributes for storing certificates and CRLs and do
not need to be changed.

Table 9.1. LDAP Publishers

Publisher Description

LdapCaCertPublisher Publishes CA certificates to the LDAP directory.
LdapCrlPublisher Publishes CRLs to the LDAP directory.
LdapDeltaCrlPublisher Publishes delta CRLs to the LDAP directory.
LdapUserCertPublisher Publishes all types of end-entity certificates to the

LDAP directory.

LdapCrossCertPairPublisher Publishes cross-signed certificates to the LDAP
directory.

9.4.3. Creating Mappers

Mappers are only used with LDAP publishing. Mappers define a relationship between a certificate's
subject name and the DN of the directory entry to which the certificate is published. The Certificate
Manager needs to derive the DN of the entry from the certificate or the certificate request so it can
determine which entry to use. The mapper defines the relationship between the DN for the user entry
and the subject name of the certificate or other input information so that the exact DN of the entry can
be determined and found in the directory.

When it is configured, the Certificate Manager automatically creates a set of mappers defining the most
common relationships. The default mappers are listed in Table 9.2, “Default Mappers”.

Table 9.2. Default Mappers

185

Administration Guide

Mapper Description

LdapUserCertMap Locates the correct attribute of user entries in the
directory in order to publish user certificates.

LdapCriMap Locates the correct attribute of the CA's entry in the
directory in order to publish the CRL.

LdapCaCertMap Locates the correct attribute of the CA's entry in the
directory in order to publish the CA certificate.

To use the default mappers, configure each of the macros by specifying the DN pattern and whether to
create the CA entry in the directory. To use other mappers, create and configure an instance of the
mapper. For more information, see Section C.2, “Mapper Plug-in Modules ".

1. Loginto the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Mappers.

The Mappers Management tab, which lists configured mappers, opens on the right.

Console Edit Yiew Object Help

Configuration
Red Hat Cerificate Systerm: 1/ Mappers Management | Mapper Plugin Registration |
sers and Groups :
Access Control List : Mapper Plugin Marme Add
Log : LdapCaCertMap LdapZasimpled ap -
Tystern keys and Certifi &) |EEETIET e g e LdapSimpleMap Delete
Althentication 2| MoMap Mohdap
o= |ob Scheduler i ; . .
o Centificate Manager 55 LdapCriMap LdapZasimpled ap Edit/ View
Falicies :
Certificate Profiles
Motification
o= CEL [ssuing Points
¢ Publizhi
Publishers
Fules

3. To create a new mapper instance, click Add. The Select Mapper Plugin Implementation
window opens, which lists registered mapper modules. Select a module, and edit it. For
complete information about these modules, see Section C.2, “Mapper Plug-in Modules ".

186

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

LdapCasimpleMap

| b

LdapDMExactMap
LdapEnhancedMap
LdapsimpleMap
Ldapsubjartrid ap
MoMap

|4

Mext Cancel Help

4. Edit the mapper instance, and click OK.

- Mapper Editor

Mapper ID: LdapCaCertMap
Mapper Plugin ID: LdapCaSimpleMap

dnPattern |UID=%subj.cn,0U=people, 0=$%subj

createCAEntry

|4 [[1]

Describes how to form the Ldap Subject name in
the directory. Example 1: ‘uid=CertMgr,
o=Fedora'. Example 2:
'uid=%req.HTTP_PARAMS uid,
E=%ext.SubjectAlternativeName RFCB22Name,
ou=%subj.ou'. $req means: take the attribute from
the request. $subj means: take the attribute from
the certificate subject name. $ext means: take the
attribute from the certificate extension

oK Cancel Help

See Section C.2, “Mapper Plug-in Modules " for detailed information about each mapper.

187

Administration Guide

% NOTE
€ A %

eyl pkiconsole is being deprecated.

9.4.4. Completing Configuration: Rules and Enabling

After configuring the mappers for LDAP publishing, configure the rules for the published certificates
and CRLs, as described in Section 9.5, “Creating Rules”.

Once the configuration is complete, enable publishing, as described in Section 9.6, “Enabling
Publishing”.

9.5. CREATING RULES

Rules determine what certificate object is published in what location. Rules work independently, not in
tandem. A certificate or CRL that is being published is matched against every rule. Any rule which it
matches is activated. In this way, the same certificate or CRL can be published to a file, to an Online
Certificate Status Manager, and to an LDAP directory by matching a file-based rule, an OCSP rule, and
matching a directory-based rule.

Rules can be set for each object type: CA certificates, CRLs, user certificates, and cross-pair
certificates. The rules can be more detailed for different kinds of certificates or different kinds of CRLs.

The rule first determines if the object matches by matching the type and predicate set up in the rule
with the object. Where matching objects are published is determined by the publisher and mapper
associated with the rule.

Rules are created for each type of certificate the Certificate Manager issues.

Modify publishing rules by doing the following:

1. Log into the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing, and then Rules.

The Rules Management tab, which lists configured rules, opens on the right.

Console Edit View Help

Configuration

Red Hat Certificate System: | Rules Management |
Uzers and Croups :
Acfcess Contral List : Rule Status

i Add
Log i | ocsprule Enablecd -
System Keys and Certifi o} | |dapCaCenRule Enabled Delete
I ﬁuéh;&t:daﬂ:zp ‘| | LdapXCeriRule Enabled
B daplserCertRule i s
¢ Certificate Manager HF'UIE EEZE:ES Rl
Folicies i
Certificate Profiles
rotification
o= CEL lssuing Points
& Puklizhing
Mappers

Publishers
5

188

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

3. To edit an existing rule, select that rule from the list, and click Edit. This opens the Rule Editor

window.

Rule Editor

Rule 1D: LdapUserCertRule

Rule Plugin ID: Rule

predicate |
enable

mapper

publisher

type |Ccerts

LdapUserCerthMap

LdapUserCertPublisher

4. To create arule, click Add. This opens the Select Rule Plug-in Implementation window.

Ok

Cancel

Help

Mext

Cancel

Help

189

Administration Guide

Select the Rule module. This is the only default module. If any custom modules have been been
registered, they are also available.

5. Edit the rule.

@ N

Rule 1D: LdapUserCertRule
Rule Plugin ID: Rule

type |Ccerts -

predicate |

enable

mapper |LdapUserCertMap -

publisher |[LdapUserCertPublisher -

Ok Cancel Help

o type. Thisis the type of certificate for which the rule applies. For a CA signing certificate,
the value is cacert. For a cross-signed certificate, the value is xcert. For all other types of
certificates, the value is certs. For CRLs, specify crl.

o predicate. This sets the predicate value for the type of certificate or CRL issuing point to
which this rule applies. The predicate values for CRL issuing points, delta CRLs, and
certificates are listed in Table 9.3, “Predicate Expressions”.

o enable.

o mapper. Mappers are not necessary when publishing to a file; they are only needed for
LDAP publishing. If this rule is associated with a publisher that publishes to an LDAP
directory, select an appropriate mapper here. Leave blank for all other forms of publishing.

o publisher. Sets the publisher to associate with the rule.

Table 9.3, “Predicate Expressions” lists the predicates that can be used to identify CRL issuing points
and delta CRLs and certificate profiles.

Table 9.3. Predicate Expressions

190

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

Predicate Type Predicate

CRL Issuing Point issuingPointld==/ssuing_Point_Instance_ID &&
isDeltaCRL==[true|false]

To publish only the master CRL, set
isDeltaCRL==false. To publish only the delta CRL,
set isDeltaCRL==true. To publish both, set a rule
for the master CRL and another rule for the delta
CRL.

Certificate Profile profileld==profile_name

To publish certificates based on the profile used to
issue them, set profileld== to a profile name, such
as caServerCert.

NOTE

pkiconsole is being deprecated.

9.6. ENABLING PUBLISHING
Publishing can be enabled for only files, only LDAP, or both. Publishing should be enabled after setting
up publishers, rules, and mappers. Once enabled, the server attempts to begin publishing. If publishing

was not configured correctly before being enabled, publishing may exhibit undesirable behavior or may
fail.

NOTE

Configure CRLs. CRLs must be configured before they can be published. See Chapter 7,
Revoking Certificates and Issuing CRLs.

1. Loginto the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing.

The right pane shows the details for publishing to an LDAP-compliant directory.
3. To enable publishing to a file only, select Enable Publishing.

4. To enable LDAP publishing, select both Enable Publishing and Enable Default LDAP
Connection.

191

Administration Guide

192

Certificate System

Configuration

.4 Red Hat Certificate S || » General |
£} Users and Group: -
@ Access Control

Enable Publishing
Log :
System Keys and
Authentication :
o @ Job Scheduler :
¢ (3 Certificate Manag
Certificate Pro -
& Notification : Host name: |5eruer.examp|e.com |

-

CRL Issuing Po -
¢ & Publishing : Port number: [389 | []use SSL communication

Enable Publishing Queue

Enable Default LDAP Connection

Destination

Mappers Directory manager DN: |cn=Directory Manager |
Publishers :
Rules Password: [ssssseeeees |

LDAP version: Bﬂ

Authentication: |Basic authentication |v|

In the Destination section, set the information for the Directory Server instance.

o

Host name. If the Directory Server is configured for SSL client authenticated
communication, the name must match the en component in the subject DN of the Directory
Server's SSL server certificate.

The hostname can be the fully-qualified domain name or an IPv4 or IPv6 address.
Port number.

Directory Manager DN. This is the distinguished name (DN) of the directory entry that has
Directory Manager privileges. The Certificate Manager uses this DN to access the directory
tree and to publish to the directory. The access control set up for this DN determines
whether the Certificate Manager can perform publishing. It is possible to create another DN
that has limited read-write permissions for only those attributes that the publishing system
actually needs to write.

Password. This is the password which the CA uses to bind to the LDAP directory to which
the certificate or CRL is published. The Certificate Manager saves this password in its
password.conf file. For example:

I CA LDAP Publishing:password

NOTE

The parameter name which identifies the publishing password (CA LDAP
Publishing) is set in the Certificate Manager's CS.cfg file in the
ca.publish.ldappublish.ldap.ldapauth.bindPWPrompt parameter, and it
can be edited.

Client certificate. This sets the certificate the Certificate Manager uses for SSL client
authentication to the publishing directory. By default, the Certificate Manager uses its SSL
server certificate.

LDAP version. Select LDAP version 3.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

o Authentication. The way the Certificate Manager authenticates to the Directory Server.
The choices are Basic authentication and SSL client authentication.

If the Directory Server is configured for basic authentication or for SSL communication
without client authentication, select Basic authentication and specify values for the
Directory manager DN and password.

If the Directory Server is configured for SSL communication with client authentication,
select SSL client authentication and the Use SSL communication option, and identify
the certificate that the Certificate Manager must use for SSL client authentication to the
directory.

The server attempts to connect to the Directory Server. If the information is incorrect, the server
displays an error message.

NOTE

pkiconsole is being deprecated.

9.7. ENABLING A PUBLISHING QUEUE

Part of the enrollment process includes publishing the issued certificate to any directories or files. This,
essentially, closes out the initial certificate request. However, publishing a certificate to an external
network can significantly slow down the issuance process — which leaves the request open.

To avoid this situation, administrators can enable a publishing queue. The publishing queue separates
the publishing operation (which may involve an external LDAP directory) from the request and
enrollment operations, which uses a separate request queue. The request queue is updated immediately
to show that the enrollment process is complete, while the publishing queue sends the information at
the pace of the network traffic.

The publishing queue sets a defined, limited number of threads that publish generated certificates,
rather than opening a new thread for each approved certificate.

The publishing queue is disabled by default. It can be enabled in the CA Console, along with enabling
publishing.

NOTE

pkiconsole is being deprecated.

NOTE

While the publishing queue is disabled by default, the queue is automatically enabled if
LDAP publishing is enabled in the Console. Otherwise, the queue can be enabled
manually.

193

Administration Guide

Console Edit View Ohbject Help

Certificate System

Configuration

Red Hat Certificate System:< [General |
£} Users and Groups :
@] Access Control List ;| [vIEnable Publishing

Log :
System Keys and Certif|c : Enable Publishing Queue
Authentication 3

o @ Job Scheduler | [Enable Default LDAP Connect
9 [g Certificate Manager :
Certificate Profiles :
@] nNotification : Host name:

o= (&Y CRL Issuing Points :
o & Biib g : Port number:

Destination

Figure 9.1. Enabling the Publishing Queue

NOTE

Enabling the publishing queue by editing the CS.cfg file allows administrators to set other
options for publishing, like the number of threads to use for publishing operations and the
queue page size.

For instruction on how to configure this feature by editing the CS.cfg file, see the
Enabling and Configuring a Publishing Queue section in the Red Hat Certificate System
Planning, Installation, and Deployment Guide.

9.8. SETTING UP RESUMABLE CRL DOWNLOADS

Certificate System provides option for interrupted CRL downloads to be resumed smoothly. This is done
by publishing the CRLs as a plain file over HTTP. This method of downloading CRLs gives flexibility in
retrieving CRLs and lowers overall network congestion.

9.8.1. Retrieving CRLs Using wget

Because CRLs can be published as a text file over HTTP, they can be manually retrieved from the CA
using a tool such as wget. The wget command can be used to retrieve any published CRL. For example,
to retrieve a full CRL which is newer than the previous full CRL:

[root@server ~]# wget --no-check-certificate -d
https://server.example.com:8443/ca/ee/ca/crl/MasterCRL.bin

The relevant parameters for wget are summarized in Table 9.4, “wget Options to Use for Retrieving
CRLs".

Table 9.4. wget Options to Use for Retrieving CRLs

Argument Description

no argument Retrieves the full CRL.

194

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/configuration_files#publishing-queue

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

Argument Description

-N Retrieves the CRL that is newer than the local copy
(delta CRL).

-C Retrieves a partially-downloaded file.

--no-check-certificate Skips SSL for the connection, so it is not necessary to

configure SSL between the host and client.

-d Prints debug information.

9.9. PUBLISHING CROSS-PAIR CERTIFICATES
The cross-pair certificates can be published as a crossCertificatePair entry to an LDAP directory or to a
file; this is enabled by default. If this has been disabled, it can be re-enabled through the Certificate

Manager Console by doing the following:

1. Open the CA console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select the Certificate Manager link in the left pane, then the
Publishing link.

3. Click the Rules link under Publishing. This opens the Rules Management pane on the right.

4. If the rule exists and has been disabled, select the enable checkbox. If the rule has been
deleted, then click Add and create a new rule.

1. Select xcerts from the type drop-down menu.

2. Make sure the enable checkbox is selected.

3. Select LdapCaCertMap from the mapper drop-down menu.

4. Select LdapCrossCertPairPublisher from the publisher drop-down menu.
The mapper and publisher specified in the publishing rule are both listed under Mapper and Publisher
under the Publishing link in the left navigation window of the CA Console. The mapper,
LdapCaCertMap, by default designates that the crossCertificatePair be stored to the
LdapCaSimpleMap LDAP entry. The publisher, LDAPCrossPairPublisher, by default sets the
attribute to store the cross-pair certificate in the CA entry to crossCertificatePair;binary.

For more information on using cross-pair certificates, see Section 17.5, "Using Cross-Pair Certificates”.

For more information on creating cross-pair certificate profiles, see the Configuring Cross-Pair profiles
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

NOTE

pkiconsole is being deprecated.

195

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/planning_installation_and_deployment_guide/certificate_profiles_configuration#configuring-cross-pair-profiles

Administration Guide

9.10. TESTING PUBLISHING TO FILES

To verify that the Certificate Manager is publishing certificates and CRLs correctly to file:

196

1.

2.

3.

Open the CA's end-entities page, and request a certificate.
Approve the request through the agent services page, if required.

Retrieve the certificate from the end-entities page, and download the certificate into the
browser.

Check whether the server generated the DER-encoded file containing the certificate.

Open the directory to which the binary blob of the certificate is supposed to be published. The
certificate file should be named cert-serial_number.der.

Convert the DER-encoded certificate to its base 64-encoded format using the Binary to ASCII
tool. For more information on this tool, refer to the BtoA(1) man page.

I BtoA input_file output _file

input_file sets the path to the file that contains the DER-encoded certificate, and output_file
sets the path to the file to write the base-64 encoded certificate.

Open the ASCII file; the base-64 encoded certificate is similar to the one shown:

MMIIBtgYJYIZIAYb4QglFolIBpzCCAZ8wggGbMIIBRaADAgEAAgGEBMAOGCSqGSIb3DQEBB
AUAMFcxC
AJBgNVBAYTAIVTMSwwKgYDVQQKEYNOZXRzY2FwZSBDb21tdW5pY2F0aWhfyyuougjgijjg
mkgjkgmjg
fifgjijafyifyj9ucyBDb3Jwb3JhdGlvbjpMEaMBgGA1UECxMRSXNzdWIuZyhgdfhbfdpffjphotoo
gdhkBBdXRob3JpdHkwHhcNOTYXMTA4MDkwNzMOWhcNOTgxMTA4MDkwNzMMOW]BXMQ
swCQYDVQQGEwJ
VUzEsMCoGA1UEChMjTmV0c2NhcGUgQ29tbXVuaWNhdGIvbnMgQ29ycG9yY2F0aW9ucyB
Db3Jwb3Jhd

GlvbjpMEaMBgGA1UECXxMRSXNzdWIuZyBBdXRob3JpdHkwHh

Convert the base 64-encoded certificate to a readable form using the Pretty Print Certificate
tool. For more information on this tool, refer to the PrettyPrintCert(1) man page.

I PrettyPrintCert input_file [output _file]
input_file sets the path to the ASCII file that contains the base-64 encoded certificate, and
output_file, optionally, sets the path to the file to write the certificate. If an output file is not set,

the certificate information is written to the standard output.

Compare the output with the certificate issued; check the serial number in the certificate with
the one used in the filename.

If everything matches, the Certificate Manager is configured correctly to publish certificates to
file.

Revoke the certificate.

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

10. Check whether the server generated the DER-encoded file containing the CRL.
Open the directory to which the server is to publish the CRL as a binary blob. The CRL file
should have a name in the form crl-this_update.der. this_update specifies the value derived from

the time-dependent This Update variable of the CRL.

1. Convert the DER-encoded CRL to its base 64-encoded format using the Binary to ASCII tool.
I BtoA input_file output _file

12. Convert the base 64-encoded CRL to readable form using the Pretty Print CRL tool.
I PrettyPrintCrl input_file [output file]

13. Compare the output.

9.11. VIEWING CERTIFICATES AND CRLS PUBLISHED TO FILE

Certificates and CRLs can be published to two types of files: base-64 encoded or DER-encoded. The
content of these files can be viewed by converting the files to pretty-print format using the dumpasn1
tool or the PrettyPrintCert or PrettyPrintCrl tool.

To view the content in a base-64 encoded file:

1. Convert the base-64 file to binary. For example:
I AtoB /tmp/example.b64 /tmp/example.bin

2. Use the PrettyPrintCert or PrettyPrintCrl tool to convert the binary file to pretty-print format.
For example:

I PrettyPrintCert example.bin example.cert

To view the content of a DER-encoded file, simply run the dumpasn1, PrettyPrintCert, or
PrettyPrintCrl tool with the DER-encoded file. For example:

I PrettyPrintCrl example.der example.crl

9.12. UPDATING CERTIFICATES AND CRLS IN A DIRECTORY

The Certificate Manager and the publishing directory can become out of sync if certificates are issued
or revoked while the Directory Server is down. Certificates that were issued or revoked need to be
published or unpublished manually when the Directory Server comes back up.

To find certificates that are out of sync with the directory - valid certificates that are not in the directory
and revoked or expired certificates that are still in the directory - the Certificate Manager keeps a record
of whether a certificate in its internal database has been published to the directory. If the Certificate
Manager and the publishing directory become out of sync, use the Update Directory option in the
Certificate Manager agent services page to synchronize the publishing directory with the internal
database.

The following choices are available for synchronizing the directory with the internal database:

197

Administration Guide

® Search the internal database for certificates that are out of sync and publish or unpublish.

® Publish certificates that were issued while the Directory Server was down. Similarly, unpublish
certificates that were revoked or that expired while Directory Server was down.

® Publish or unpublish a range of certificates based on serial numbers, from serial number xx to
serial number yy.

A Certificate Manager's publishing directory can be manually updated by a Certificate Manager agent
only.
9.12.1. Manually Updating Certificates in the Directory

The Update Directory Server form in the Certificate Manager agent services page can be used to
update the directory manually with certificate-related information. This form initiates a combination of
the following operations:

e Update the directory with certificates.
® Remove expired certificates from the directory.

Removing expired certificates from the publishing directory can be automated by scheduling an
automated job. For details, see Chapter 13, Setting Automated Jobs.

® Remove revoked certificates from the directory.
Manually update the directory with changes by doing the following:
1. Open the Certificate Manager agent services page.
2. Select the Update Directory Server link.
3. Select the appropriate options, and click Update Directory.

The Certificate Manager starts updating the directory with the certificate information in its
internal database. If the changes are substantial, updating the directory can take considerable
time. During this period, any changes made through the Certificate Manager, including any
certificates issued or any certificates revoked, may not be included in the update. If any
certificates are issued or revoked while the directory is updated, update the directory again to
reflect those changes.

When the directory update is complete, the Certificate Manager displays a status report. If the process is
interrupted, the server logs an error message.

If the Certificate Manager is installed as a root CA, the CA signing certificate may get published using
the publishing rule set up for user certificates when using the agent interface to update the directory
with valid certificates. This may return an object class violation error or other errors in the mapper.
Selecting the appropriate serial number range to exclude the CA signing certificate can avoid this
problem. The CA signing certificate is the first certificate a root CA issues.

® Modify the default publishing rule for user certificates by changing the value of the predicate
parameter to profileld!=caCACert.

® Use the LdapCaCertPublisher publisher plug-in module to add another rule, with the predicate
parameter set to profileld=caCACert, for publishing subordinate CA certificates.

198

CHAPTER 9. PUBLISHING CERTIFICATES AND CRLS

9.12.2. Manually Updating the CRL in the Directory

The Certificate Revocation List form in the Certificate Manager agent services page manually updates
the directory with CRL-related information.

Manually update the CRL information by doing the following:

1. Open the Certificate Manager agent services page.

2. Select Update Revocation List.

3. Click Update.
The Certificate Manager starts updating the directory with the CRL in its internal database. If the CRL is
large, updating the directory takes considerable time. During this period, any changes made to the CRL

may not be included in the update.

When the directory is updated, the Certificate Manager displays a status report. If the process is
interrupted, the server logs an error message.

9.13. REGISTERING CUSTOM MAPPER AND PUBLISHER PLUG-IN
MODULES

New mapper or publisher plug-in modules can be registered in a Certificate Manager's publishing
framework. Unwanted mapper or publisher plug-in modules can be deleted. Before deleting a module,
delete all the rules that are based on this module.

1. Create the custom job class. For this example, the custom publisher plug-in is called
MyPublisher.java.

2. Compile the new class.
I javac -d . -classpath $CLASSPATH MyPublisher.java

3. Create a directory in the CA's WEB-INF web directory to hold the custom classes, so that the
CA can access them.

I mkdir /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

4. Copy the new plug-in files into the new classes directory, and set the owner to the
Certificate System system user (pkiuser).

cp -pr com /var/lib/pki/instance _name/ca/webapps/ca/WEB-INF/classes

chown -R pkiuser:pkiuser /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF/classes

5. Register the plug-in.

1. Loginto the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Certificate Manager from the navigation tree on the left.
Select Publishing.

199

Administration Guide

3. Toregister a mapper module, select Mappers, and then select the Mapper Plugin
Registration tab.

To register a publisher module, select Publishers, and then select the Publisher Plug-in
Registration tab.

4. Toregister a plug-in, click Register.
5. Set the plug-in name and plug-in class name. The class name is, the path to the
implementing Java class. If this class is part of a package, include the package name. For

example, to register a class named customMapper in a package named
com.customplugins, the name is com.customplugins.customMapper.

NOTE

pkiconsole is being deprecated.

200

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

CHAPTER 10. AUTHENTICATION FOR ENROLLING
CERTIFICATES

This chapter covers how to enroll end entity certificates, how to create and manage server certificates,
the authentication methods available in the Certificate System to use when enrolling end entity
certificates, and how to set up those authentication methods.

Enrollment is the process of issuing certificates to an end entity. The process is creating and submitting
the request, authenticating the user requesting it, and then approving the request and issuing the
certificate.

The method used to authenticate the end entity determines the entire enrollment process. There are
three ways that the Certificate System can authenticate an entity:

® |nagent-approved enrollment, end-entity requests are sent to an agent for approval. The agent
approves the certificate request.

® |nautomatic enrollment, end-entity requests are authenticated using a plug-in, and then the
certificate request is processed; an agent is not involved in the enrollment process.

® |n CMC enrollment, a third party application can create a request that is signed by an agent and
then automatically processed.

A Certificate Manager is initially configured for agent-approved enrollment and for CMC authentication.
Automated enrollment is enabled by configuring one of the authentication plug-in modules. More than
one authentication method can be configured in a single instance of a subsystem.

NOTE

An email can be automatically sent to an end entity when the certificate is issued for any
authentication method by configuring automated notifications. See Chapter 12, Using
Automated Notifications for more information on notifications.

10.1. CONFIGURING AGENT-APPROVED ENROLLMENT

The Certificate Manager is initially configured for agent-approved enrollment. An end entity makes a
request which is sent to the agent queue for an agent's approval. An agent can modify request, change
the status of the request, reject the request, or approve the request. Once the request is approved, the
signed request is sent to the Certificate Manager for processing. The Certificate Manager processes the
request and issues the certificate.

The agent-approved enrollment method is not configurable. If a Certificate Manager is not configured
for any other enrollment method, the server automatically sends all certificate-related requests to a
queue where they await agent approval. This ensures that all requests that lack authentication
credentials are sent to the request queue for agent approval.

To use agent-approved enrollment, leave the authentication method blank in the profile's .cfg file. For
example:

I auth.instance_id=

10.2. AUTOMATED ENROLLMENT

201

Administration Guide

In automated enrollment, an end-entity enrollment request is processed as soon as the user successfully
authenticates by the method set in the authentication plug-in module; no agent approval is necessary.
The following authentication plug-in modules are provided:

Directory-based enrollment. End entities are authenticated against an LDAP directory using
their user ID and password or their DN and password. See Section 10.2.1, “Setting up Directory-
Based Authentication”.

PIN-based enrollment. End entities are authenticated against an LDAP directory using their user
ID, password, and a PIN set in their directory entry. See Section 10.2.2, “Setting up PIN-Based
Enrollment”.

Certificate-based authentication. Entities of some kind — both end users and other entities, like
servers or tokens — are authenticated to the CA using a certificate issued by the CA which
proves their identity. This is most commonly used for renewal, where the original certificate is
presented to authenticate the renewal process. See Section 10.2.3, "Using Certificate-Based
Authentication”.

AgentCertAuth. This method automatically approves a certificate request if the entity
submitting the request is authenticated as a subsystem agent. A user authenticates as an agent
by presenting an agent certificate. If the presented certificate is recognized by the subsystem as
an agent certificate, then the CA automatically processes the certificate request.

This form of automatic authentication can be associated with the certificate profile for enrolling
for server certificates.

This plug-in is enabled by default and has no parameters.

Flat file-based enrollment. Used exclusively for router (SCEP) enrollments, a text file is used
which contains a list of IP addresses, hostnames, or other identifier and a password, which is
usually a random PIN. A router authenticates to the CA using its ID and PIN, and then the CA
compares the presented credentials to the list of identities in the text file. See Section 10.2.4,
“Configuring Flat File Authentication”.

10.2.1. Setting up Directory-Based Authentication

The UidPwdDirAuth and the UdnPwdDirAuth plug-in modules implement directory-based
authentication. End users enroll for a certificate by providing their user IDs or DN and password to
authenticate to an LDAP directory.

1.

202

Create an instance of either the UidPwdDirAuth or UdnPwdDirAuth authentication plug-in
module and configure the instance.

1. Open the CA Console.

I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Authentication in the navigation tree.

The right pane shows the Authentication Instance tab, which lists the currently configured
authentication instances.

NOTE

The UidPwdDirAuth plug-in is enabled by default.

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

3. Click Add.

The Select Authentication Plug-in Implementation window appears.

4. Select UidPwdDirAuth for user ID and password authentication, or select UdnPwdDirAuth
for DN and password authentication.

5. Fillin the following fields in the Authentication Instance Editor window:

Authentication Instance ID. Accept the default instance name, or enter a new name.

dnpattern. Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

IdapStringAttributes. Specifies the list of LDAP string attributes that should be
considered authentic for the end entity. If specified, the values corresponding to these
attributes are copied from the authentication directory into the authentication token
and used by the certificate profile to generate the subject name. Entering values for this
parameter is optional.

IdapByteAttributes. Specifies the list of LDAP byte (binary) attributes that should be
considered authentic for the end entity. If specified, the values corresponding to these
attributes will be copied from the authentication directory into the authentication token
for use by other modules, such as adding additional information to users' certificates.

Entering values for this parameter is optional.

Idap.ldapconn.host. Specifies the fully-qualified DNS hostname of the authentication
directory.

Idap.ldapconn.port. Specifies the TCP/IP port on which the authentication directory
listens to requests; if the Idap.ldapconn.secureConn. checkbox is selected, this should
be the SSL port number.

Idap.ldapconn.secureConn. Specifies the type, SSL or non-SSL, of the port on which
the authentication directory listens to requests from the Certificate System. Select if
this is an SSL port.

Idap.ldapconn.version. Specifies the LDAP protocol version, either 2 or 3. The default
is 3, since all Directory Servers later than version 3.x are LDAPV3.

Idap.basedn. Specifies the base DN for searching the authentication directory. The
server uses the value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

Idap.minConns. Specifies the minimum number of connections permitted to the
authentication directory. The permissible values are 1 to 3.

Idap.maxConns. Specifies the maximum number of connections permitted to the
authentication directory. The permissible values are 3 to 10.

6. Click OK. The authentication instance is set up and enabled.

2. Set the certificate profiles to use to enroll users by setting policies for specific certificates.
Customize the enrollment forms by configuring the inputs in the certificate profiles, and include
inputs for the information needed by the plug-in to authenticate the user. If the default inputs

203

Administration Guide

do not contain all of the information that needs to be collected, submit a request created with a
third-party tool.

For information on configuring the profiles, see Section 3.7.2, “Inserting LDAP Directory
Attribute Values and Other Information into the Subject Alt Name”.

NOTE

pkiconsole is being deprecated.

Setting up Bound LDAP Connection

Some environments require disallowing an anonymous bind for the LDAP server that is used for
authentication. To create a bound connection between a CA and the LDAP server, you need to make the
following configuration changes:

® Set up directory-based authentication according to the following example in CS.cfg:

auths.instance.UserDirEnroliment.ldap.ldapBoundConn=true
auths.instance.UserDirEnrollment.ldap.ldapauth.authtype=BasicAuth
auths.instance.UserDirEnroliment.ldap.ldapauth.bindDN=cn=Directory Manager
auths.instance.UserDirEnroliment.ldap.ldapauth.bindPWPrompt=externalLDAP
externalLDAP.authPrefix=auths.instance.UserDirEnroliment
cms.passwordlist=internaldb,replicationdb,externalLDAP

where bindPWPrompt is the tag or prompt that is used in the password.conf file; it is also the
name used under the cms.passwordlist and authPrefix options.

® Add the tag or prompt from CS.cfg with its password in password.conf:
I externalLDAP=your _password

Setting up External Authorization
A directory-based authentication plug-in can also be configured to evaluate the group membership of
the user for authentication. To set up the plug-in this way, the following options has to be configured in
CS.cfg:

e groupsEnable is a boolean option that enables retrieval of groups. The default value is false.

e groupsBasedn is the base DN of groups. It needs to be specified when it differs from the
default basedn.

e groupsis the DN component for groups. The default value is ou=groups.

e groupObjectClass is one of the following group object classes: groupofuniquenames,
groupofnames. The default value is groupofuniquenames.

e groupUseridName is the name of the user ID attribute in the group object member attribute.
The default value is cn.

e useridName is the name of the user ID DN component. The default value is uid.
o searchGroupUserByUserdn is a boolean option that determines whether to search the group

object member attribute for the userdn or ${groupUserldName}=${uid} attributes. The
default value is true.

204

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

For example:

auths.instance.UserDirEnroliment.pluginName=UidPwdDirAuth
auths.instance.UserDirEnrollment.ldap.basedn=cn=users,cn=accounts,dc=local
auths.instance.UserDirEnrollment.ldap.groupObjectClass=groupofnames
auths.instance.UserDirEnrollment.ldap.groups=cn=groups
auths.instance.UserDirEnrollment.ldap.groupsBasedn=cn=accounts,dc=local
auths.instance.UserDirEnroliment.ldap.groupsEnable=true
auths.instance.UserDirEnroliment.ldap.ldapconn.host=local
auths.instance.UserDirEnrollment.ldap.ldapconn.port=636
auths.instance.UserDirEnrollment.ldap.ldapconn.secureConn=true

Finally, you have to modify the /instance_path/cal/profiles/ca/profile_id.cfg file to configure the profile
to use the UserDirEnroliment auth instance defined in CS.cfg, and if appropriate, provide an ACL for
authorization based on groups. For example:

auth.instance_id=UserDirEnrollment
auths.acl=group="cn=devlab-access,ou=engineering,dc=example,dc=com

10.2.2. Setting up PIN-Based Enrollment

PIN-based authentication involves setting up PINs for each user in the LDAP directory, distributing
those PINs to the users, and then having the users provide the PIN along with their user ID and
password when filling out a certificate request. Users are then authenticated both against an LDAP
directory using their user ID and password and against the PIN in their LDAP entry. When the user
successfully authenticates, the request is automatically processed, and a new certificate is issued.

The Certificate System provides a tool, setpin, that adds the necessary schema for PINs to the
Directory Server and generates the PINs for each user.

The PIN tool performs the following functions:
® Adds the necessary schema for PINs to the LDAP directory.
® Adds a PIN manager user who has read-write permissions to the PINs that are set up.

® Sets up ACls to allow for PIN removal once the PIN has been used, giving read-write
permissions for PINs to the PIN manager, and preventing users from creating or changing PINs.

® Creates PINs in each user entry.

NOTE

This tool is documented in the Certificate System Command-Line Tools Guide.

1. Use the PIN tool to add schema needed for PINs, add PINs to the user entries, and then
distribute the PINs to users.

1. Open the /usr/share/pki/native-tools/ directory.
2. Open the setpin.conf file in a text editor.

3. Follow the instructions outlined in the file and make the appropriate changes.

205

Administration Guide

206

Usually, the parameters which need updated are the Directory Server's host name, Directory
Manager's bind password, and PIN manager's password.

. Run the setpin command with its optfile option pointing to the setpin.conf file.

I setpin optfile=/usr/share/pki/native-tools/setpin.conf

The tool modifies the schema with a new attribute (by default, pin) and a new object class
(by default, pinPerson), creates a pinmanager user, and sets the ACI to allow only the
pinmanager user to modify the pin attribute.

. To generate PINs for specific user entries or to provide user-defined PINs, create an input

file with the DNs of those entries listed. For ezample:

dn:uid=bjensen,ou=people,dc=example,dc=com
dn:uid=jsmith,ou=people,dc=example,dc=com
dn:jtyler,ou=people,dc=example,dc=com

For information on constructing an input file, see the PIN generator chapter in the
Certificate System Command-Line Tools Guide.

. Disable setup mode for the setpin command. Either comment out the setup line or change

the value to no.
vim /usr/share/pki/native-tools/setpin.conf
setup=no

Setup mode creates the required uers and object classes, but the tool will not generate
PINs while in setup mode.

. Run the setpin command to create PINs in the directory.

NOTE

Test-run the tool first without the write option to generate a list of PINs
without actually changing the directory.

For example:

setpin host=yourhost port=9446 length=11 input=infile output=outfile write
"binddn=cn=pinmanager,o=example.com" bindpw="password" basedn=0=example.com
"filter=(uid=u*)" hash=sha256

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

'@ WARNING
Do not set the hash argument to none. Running the setpin command

with hash=none results in the pin being stored in the user LDAP entry
as plain text.

8. Use the output file for delivering PINs to users after completing setting up the required
authentication method.

After confirming that the PIN-based enrollment works, deliver the PINs to users so they can
use them during enrollment. To protect the privacy of PINs, use a secure, out-of-band
delivery method.

2. Set the policies for specific certificates in the certificate profiles to enroll users. See Chapter 3,
Making Rules for Issuing Certificates (Certificate Profiles) for information about certificate
profile policies.

3. Create and configure an instance of the UidPwdPinDirAuth authentication plug-in.

1. Open the CA Console.
I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Authentication in the navigation tree.

The right pane shows the Authentication Instance tab, which lists the currently configured
authentication instances.

3. Click Add.
The Select Authentication Plug-in Implementation window appears.
4. Select the UidPwdPinDirAuth plug-in module.
5. Fillin the following fields in the Authentication Instance Editor window:
m Authentication Instance ID. Accept the default instance name or enter a new name.

® removePin. Sets whether to remove PINs from the authentication directory after end
users successfully authenticate. Removing PINs from the directory restricts users from
enrolling more than once, and thus prevents them from getting more than one
certificate.

® pinAttr. Specifies the authentication directory attribute for PINs. The PIN Generator
utility sets the attribute to the value of the objectclass parameter in the setpin.conf
file; the default value for this parameter is pin.

®m dnpattern. Specifies a string representing a subject name pattern to formulate from the
directory attributes and entry DN.

m |dapStringAttributes. Specifies the list of LDAP string attributes that should be
considered authentic for the end entity. Entering values for this parameter is optional.

207

Administration Guide

= |dapByteAttributes. Specifies the list of LDAP byte (binary) attributes that should be
considered authentic for the end entity. If specified, the values corresponding to these
attributes will be copied from the authentication directory into the authentication token
for use by other modules, such as adding additional information to users' certificates.

Entering values for this parameter is optional.

m |dap.ldapconn.host. Specifies the fully-qualified DNS host name of the authentication
directory.

m |dap.ldapconn.port. Specifies the TCP/IP port on which the authentication directory
listens to requests from the Certificate System.

m |dap.ldapconn.secureConn. Specifies the type, SSL or non-SSL, of the port on which
the authentication directory listens to requests. Select if this is an SSL port.

m |dap.ldapconn.version. Specifies the LDAP protocol version, either 2 or 3. By default,
this is 3, since all Directory Server versions later than 3.x are LDAPV3.

m |dap.ldapAuthentication.bindDN. Specifies the user entry as whom to bind when
removing PINs from the authentication directory. Specify this parameter only if the
removePin checkbox is selected. It is recommended that a separate user entry that has
permission to modify only the PIN attribute in the directory be created and used. For
example, do not use the Directory Manager's entry because it has privileges to modify
the entire directory content.

®m password. Gives the password associated with the DN specified by the
Idap.ldapauthbindDN parameter. When saving changes, the server stores the
password in the single sign-on password cache and uses it for subsequent start ups. This
parameter needs set only if the removePin checkbox is selected.

= |dap.ldapAuthentication.clientCertNickname. Specifies the nickname of the
certificate to use for SSL client authentication to the authentication directory to
remove PINs. Make sure that the certificate is valid and has been signed by a CA that is
trusted in the authentication directory's certificate database and that the
authentication directory's certmap.conf file has been configured to map the certificate
correctly to a DN in the directory. This is needed for PIN removal only.

= |dap.ldapAuthentication.authtype. Specifies the authentication type, basic
authentication or SSL client authentication, required in order to remove PINs from the
authentication directory.

® BasicAuth specifies basic authentication. With this option, enter the correct values
for Idap.ldapAuthentication.bindDN and password parameters; the server uses
the DN from the Idap.ldapAuthentication.bindDN attribute to bind to the
directory.

m SsiClientAuth specifies SSL client authentication. With this option, set the value of
the Idap.ldapconn.secureConn parameter to true and the value of the
Idap.ldapAuthentication.clientCertNickname parameter to the nickname of the
certificate to use for SSL client authentication.

m |dap.basedn. Specifies the base DN for searching the authentication directory; the

server uses the value of the uid field from the HTTP input (what a user enters in the
enrollment form) and the base DN to construct an LDAP search filter.

208

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

m |dap.minConns. Specifies the minimum number of connections permitted to the
authentication directory. The permissible values are 1 to 3.

®m |dap.maxConns. Specifies the maximum number of connections permitted to the
authentication directory. The permissible values are 3 to 10.

6. Click OK.

4. Customize the enrollment forms by configuring the inputs in the certificate profiles. Include the
information that will be needed by the plug-in to authenticate the user. If the default inputs do
not contain all of the information that needs to be collected, submit a request created with a
third-party tool.

NOTE

pkiconsole is being deprecated.

10.2.3. Using Certificate-Based Authentication

Certificate-based authentication is when a certificate is presented that verifies the identity of the
requester and automatically validates and authenticates the request being submitted. This is most
commonly used for renewal processes, when the original certificate is presented by the user, server, and
application and that certificate is used to authenticate the request.

There are other circumstances when it may be useful to use certificate-based authentication for initially
requesting a certificate. For example, tokens may be bulk-loaded with generic certificates which are
then used to authenticate the users when they enroll for their user certificates or, alternatively, users can
be issued signing certificates which they then use to authenticate their requests for encryption
certificates.

The certificate-based authentication module, SSLclientCertAuth, is enabled by default, and this
authentication method can be referenced in any custom certificate profile.

10.2.4. Configuring Flat File Authentication

A router certificate is enrolled and authenticated using a randomly-generated PIN. The CA uses the
flatFileAuth authentication module to process a text file which contains the router's authentication
credentials.

10.2.4.1. Configuring the flatFileAuth Module

Flat file authentication is already configured for SCEP enrollments, but the location of the flat file and
its authentication parameters can be edited.

1. Open the CA Console.

I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, select Authentication in the navigation tree.

3. Select the flatFileAuth authentication module.

209

Administration Guide

Configuration

Fed Hat Certificate System. 9< ;il/Authenticatiun Instance rAuthentil:atinn Plugin Registration |

<%, Users and Groups :

{1 Access Control List : Instance Mame Flugin Mame Add

& Log s raCertauth AgentCertduth -

@y Systemn Keys and Cer‘[|f|ca1 AgentCertAuth AgentCertiuth Delete

@5 Authentication :5 SsLelientCertAuth SsLclientCertauth
= -] Job Scheduler Hl ES flatFileduth, FlatFileAuth Edit/ View
% [Certificate Manager Tokenauth TokenAuth

Certificate Profiles @ CMCAuth CMCAuth

4. Click Edit/View.
5. To change the file location and name, reset the fileName field.

To change the authentication name parameter, reset the keyAttributes value to another value
submitted in the SCEP enrollment form, like CN. It is also possible to use multiple name
parameters by separating them by commas, like UID,CN. To change the password parameter
name, reset the authAttributes field.

- Authentication Instance Editor x|

Authentication Instance ID: flatFileAuth
Authentication Plugin ID: FlatFileAuth

fileName |fu‘ar,flit:u;'pki,.fpki—-:a,-'cafcunf,u'flatﬁle_ml

keyAttributes (UID |

authAttributes [FWD |

deferOnFailure

Fathname of password file

oK Cancel Help

6. Save the edits.

210

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

NOTE

pkiconsole is being deprecated.

10.2.4.2. Editing flatfile.txt

The same flatfile.txt file is used to authenticate every SCEP enroliment. This file must be manually
updated every time a new PIN is issued to a router.

By default, this file is in /var/lib/pki/pki-ca/ca/conf/ and specifies two parameters per authentication
entry, the UID of the site (usually its IP address, either IPv4 or IPv6) and the PIN issued by the router.

UID:192.168.123.123
PIN:HU89d;

Each entry must be followed by a blank line. For example:

UID:192.168.123.123
PIN:HU89d;

UID:12.255.80.13
PIN:fiowlO89

U1D:0.100.0.100
PIN:GRIQ;jisf

If the authentication entries are not separated by an empty line, then when the router attempts to
authenticate to the CA, it will fail. For example:

... flatfile.txt entry ...
UlD:192.168.123.123
PIN:HU89d;
UID:12.255.80.13
PIN:fiowlO89

... error log entry ...

[13/Jun/2020:13:03:09][http-9180-Processor24]: FlatFileAuth: authenticating user: finding user from
key: 192.168.123.123

[13/Jun/2020:13:03:09][http-9180-Processor24]: FlatFileAuth: User not found in password file.

10.3. CMC AUTHENTICATION PLUG-INS

CMC enrollment allows an enrollment client to use a CMC Authentication plug-in for authentication, by
which the certificate request is either pre-signed with an agent certificate or a user certificate,
depending on the plug-in. The Certificate Manager automatically issues certificates when a CMC
request signed with a valid certificate is received.

The CMC authentication plug-ins also provide CMC revocation for the client. CMC revocation allows
the client to have the certificate request either signed by the agent certificate, or a verifiable user that
owns the certificate, and then send such a request to the Certificate Manager. The Certificate Manager
automatically revokes certificates when a CMC revocation request signed with a valid certificate is
received.

Certificate System provides the following CMC authentication plug-ins:

211

Administration Guide

CMCAuth
Use this plug-in when a CA agent signs CMC requests.

To use the CMCAuth plug-in, set the following in the enrollment profile:

I auth.instance_id=CMCAuth

By default, the following enrollment profiles use the CMCAuth plug-in:
® Forsystem certificates:
o caCMCauditSigningCert
o caCMCcaCert
o caCMCECserverCert
o caCMCECsubsystemCert
o caCMCECUserCert
o caCMCkraStorageCert
o caCMCkraTransportCert
o caCMCocspCert
o caCMCserverCert
o caCMCsubsystemCert
® For user certificates:
o caCMCUserCert
o caECFullCMCUserCert

o caFullCMCUserCert

CMCUserSignedAuth

Use this plug-in when users submit signed or SharedSecret-based CMC requests.

To use the CMCUserSignedAuth plug-in, set the following in the enrollment profile:
I auth.instance_id=CMCUserSignedAuth

A user-signed CMC request must be signed by the user's certificate which contains the same
subjectDN attribute as the requested certificate. You can only use a user-signed CMC request if the
user already obtained a signing certificate which can be used to prove the user's identity for other
certificates.

A SharedSecret-based CMC request means that the request was signed by the private key of the
request itself. In this case, the CMC request must use the Shared Secret mechanism for
authentication. A SharedSecret-based CMC request is typically used to obtain the user's first signing
certificate, which is later used to obtain other certificates. For further details, see Section 10.4, “"CMC
SharedSecret Authentication”.

212

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

By default, the following enrollment profiles use the CMCUserSignedAuth plug-in:
e caFullCMCUserSignedCert
e caECFullCMCUserSignedCert
e caFullCMCSharedTokenCert

o caECFullICMCSharedTokenCert

10.4. CMC SHAREDSECRET AUTHENTICATION

Use the Shared Secret feature to enable users to send unsigned CMC requests to the server. For
example, this is necessary if a user wants to obtain the first signing certificate. This signing certificate
can later be used to sign other certificates of this user.

10.4.1. Creating a Shared Secret Token

The The Shared Secret Workflow section in the Red Hat Certificate System Planning, Installation, and
Deployment Guide describes the workflow when using a Shared Secret Token. Depending on the
situation, either an end entity user or an administrator creates the Shared Secret Token.

NOTE

To use the shared secret token, Certificate System must use an RSA issuance protection
certificate. For details, see Enabling the CMC Shared Secret Feature section located in
RHCS Planning, Installation, and Deployment Guide.

To create a Shared Secret Token, enter:

CMCSharedToken -d /home/user_name/.dogtag/-p NSS_password \
-s "CMC_enrollment_password" -o /home/user_name/CMC_shared_token.b64 \
-n "issuance_protection_certificate _nickname"

If you use an HSM, additionally pass the -h token_name option to the command to set the HSM security
token name.

For further details about the CMCSharedToken utility, see the CMCSharedToken(8) man page.

NOTE
The generated token is encrypted and only the user who generated knows the password.

If a CA administrator generates the token for a user, the administrator must provide the
password to the user using a secure way.

After creating the Shared Token, an administrator must add the token to a user or certificate record. For
details, see Section 10.4.2, “Setting a CMC Shared Secret”.

10.4.2. Setting a CMC Shared Secret

Depending on the planned action, an administrator must store a Shared Secret Token after generating it
in the LDAP entry of the user or certificate.

213

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/planning_installation_and_deployment_guide/the_shared_secret_workflow

Administration Guide

For details about the workflow and when to use a Shared Secret, see the The Shared Secret Workflow
section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

10.4.2.1. Adding a CMC Shared Secret to a User Entry for Certificate Enroliment

To use the Shared Secret Token for certificate enrollment, store it as an administrator in the LDAP entry
of the user:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: uid=user_name,ou=People,dc=example,dc=com
changetype: modify

replace: shrTok
shrTok: base64-encoded token

10.4.2.2. Adding a CMC Shared Secret to a Certificate for Certificate Revocations

To use the Shared Secret Token for certificate revocations, store it as an administrator in the LDAP
entry of the certificate to be revoked:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=certificate_id,ou=certificateRepository,ou=ca,o=pki-tomcat-CA
changetype: modify

replace: shrTok
shrTok: base64-encoded token

10.5. TESTING ENROLLMENT
For information on testing enrollment through the profiles, see Chapter 3, Making Rules for Issuing
Certificates (Certificate Profiles). To test whether end users can successfully enroll for a certificate

using the authentication method set:

1. Open the end-entities page.

I https://server.example.com:8443/ca/ee/ca

2. Inthe Enrollment tab, open the customized enrollment form.

3. Fillin the values, and submit the request.

4. Enter the password to the key database when prompted.

5. When the correct password is entered, the client generates the key pair.
Do not interrupt the key-generation process. Upon completion of the key generation, the
request is submitted to the server to issue the certificate. The server subjects the request to the
certificate profile and issues the certificate only if the request meets all the requirements.

When the certificate is issued, install the certificate in the browser.

6. Verify that the certificate is installed in the browser's certificate database.

214

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/planning_installation_and_deployment_guide/the_shared_secret_workflow

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

7. If PIN-based directory authentication was configured with PIN removal, re-enroll for another
certificate using the same PIN. The request should be rejected.

10.6. REGISTERING CUSTOM AUTHENTICATION PLUG-INS

Custom authentication plug-in modules can be registered through the CA Console. Authentication
plug-in modules can also be deleted through the CA Console. Before deleting a module, delete
instances that are based on that module.

NOTE

For writing custom plug-ins, refer to the Authentication Plug-in Tutorial.

1. Create the custom authentication class. For this example, the custom authentication plug-in is
called UidPwdDirAuthenticationTestms.java.

2. Compile the new class.
I javac -d . -classpath $CLASSPATH UidPwdDirAuthenticationTestms.java

3. Create a directory in the CA's WEB-INF web directory to hold the custom classes, so that the
CA can access them for the enrollment forms.

I mkdir /usr/share/pki/ca/webapps/ca/WEB-INF/classes

4. Copy the new plug-in files into the new classes directory, and set the owner to the
Certificate System system user (pkiuser).

cp -pr com /usr/share/pki/ca/webapps/ca/WEB-INF/classes

chown -R pkiuser:pkiuser /usr/share/pki/ca/webapps/ca/WEB-INF/classes
5. Loginto the console.
I pkiconsole https://server.example.com:8443/ca

6. Register the plug-in.

1. In the Configuration tab, click Authentication in the navigation tree.

2. Inthe right pane, click the Authentication Plug-in Registration tab.
The tab lists modules that are already registered.

3. Toregister a plug-in, click Register.
The Register Authentication Plug-in Implementation window appears.

4. Specify which module to register by filling in the two fields:

® Plugin name. The name for the module.

m Class name. The full name of the class for this module. This is the path to the

215

http://pki.fedoraproject.org/wiki/PKI_Authentication_Plug-ins

Administration Guide

216

implementing Java™ class. If this class is part of a package, include the package name.
For example, to register a class named customAuth in a package named
com.customplugins, the class name is com.customplugins.customAuth.

7. After registering the module, add the module as an active authentication instance.

1.

2.

3.

In the Configuration tab, click Authentication in the navigation tree.
In the right pane, click the Authentication Instance tab.

Click Add.

. Select the custom module, UidPwdDirAuthenticationTestms.java, from the list to add the

module. Fill in the appropriate configuration for the module.

NOTE

pkiconsole is being deprecated.

8. Create a new end-entity enrollment form to use the new authentication module.

cd /var/lib/pki/pki-tomcat/ca/profiles/ca
cp -p caDirUserCert.cfg caDirUserCertTestms.cfg
vi caDirUserCertTestms.cfg

desc=Test ms - This certificate profile is for enrolling user certificates with directory-based
authentication.

visible=true

enable=true

enableBy=admin

name=Test ms - Directory-Authenticated User Dual-Use Certificate Enroliment
auth.instance _id=testms

9. Add the new profile to the CA's CS.cfq file.

NOTE

Back up the CS.cfg file before editing it.

vim /var/lib/pki/instance-name/ca/conf/CS.cfg

profile.list=caUserCert,caDualCert,caSignedLogCert,caTPSCert,caRARouterCert,caRouterCer
t,caServerCert,caOtherCert,caCACert,calnstall CACert,caRACert,caOCSPCert,caTransportCe
rt,caDirUserCert,caAgentServerCert,caAgentFileSigning,caCMCUserCert,caFullCMCUserCert

,caSimpleCMCUserCert,caTokenDeviceKeyEnroliment,caTokenUserEncryptionKeyEnroliment,
caTokenUserSigningKeyEnrollment,caTempTokenDeviceKeyEnroliment,caTempTokenUserEn
cryptionKeyEnrollment,caTempTokenUserSigningKeyEnrollment,caAdminCert,calnternalAuthS

erverCert,calnternalAuthTransportCert,calnternalAuthKRAstorageCert,calnternalAuthSubsyste
mCert,calnternalAuthOCSPCert,DomainController,caDirUserCertTestms

CHAPTER 10. AUTHENTICATION FOR ENROLLING CERTIFICATES

profile.caDirUserCertTestms.class_id=caEnrollimpl
profile.caDirUserCertTestms.config=/var/lib/pki/pki-
tomcat/ca/profiles/ca/caDirUserCertTestms.cfg

10. Restart the CA.

I pki-server restart instance_name

10.7. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE
COMMAND LINE

To review certificate requests, ensure that you are authenticated as an agent with proper permissions to
approve certificate requests. For details about configuring the pki command-line interface, see
Section 2.5.1.1, “pki CLI Initialization”.

To review the requests:

1. Display the list of pending certificate requests:

I $ pki agent_authentication_parameters ca-cert-request-find --status pending

This command lists all pending certificate requests.

2. Download a particular certificate request:
I $ pki agent_authentication_parameters ca-cert-request-review id --file request.xml

3. Open the request.xml file in an editor or a separate terminal, and review the contents of the
request to ensure it is legitimate. Then answer the prompt: if the request is valid, answer
"approve and press Enter. If the request is invalid, answer reject and press Enter. Organizations
can subscribe semantic differences to reject and cancel; both result in no certificate being
issued.

10.8. MANUALLY REVIEWING THE CERTIFICATE STATUS USING THE
WEB INTERFACE

1. Open the following URL in a web browser:
I https://server_host_name:8443/ca/agent/ca

2. Authenticate as an agent. For information about authenticating as a user and configuring your
browser, see Section 2.4.1, “Browser Initialization”.

3. On the sidebar on the left, click the List requests link.

4. Filter the requests by selecting Show all requests for Request type and Show pending
requests for Request status.

5. Click Find in the lower right corner.

217

Administration Guide

218

List Requests

Use this form to show a list of certificate requests.

Request type: | ghou all requests W

Request status: Show pending requests

Starting request number:

Find first | 20 records

6. The results page lists all pending requests waiting for review. Click on the request number to

review a request.

. Review the request information and ensure that it is a legitimate request. If necessary, modify

the policy information to correct any mistakes or make any desired changes to the certificate,
such as changing the not valid after field. Optionally, leave an additional note.

Additional Notes

Approve request W submit

The drop down menu includes several review status updates. Select Approve request to
approve the request or Reject request to deny it, and click Submit. Organizations can
subscribe semantic differences to Reject request and Cancel Request, both result in no
certificate being issued.

CHAPTER 11. AUTHORIZATION FOR ENROLLING CERTIFICATES (ACCESS EVALUATORS;

CHAPTER 1. AUTHORIZATION FOR ENROLLING
CERTIFICATES (ACCESS EVALUATORS)

This chapter describes the authorization mechanism using access evaluators.

11.1. AUTHORIZATION MECHANISM

In addition to the authentication mechanism, each enrollment profile can be configured to have its own
authorization mechanism. The authorization mechanism is executed only after a successful
authentication.

The authorization mechanism is provided by the Access Evaluator plug-in framework. Access evaluators
are pluggable classes that are used for evaluating access control instructions (ACI) entries. The
mechanism provides an evaluate method that takes a predefined list of arguments (thatis, type, op,
value), evaluates an expression such as group='Certificate Manager Agents' and returns a boolean
depending on the result of evaluation.

11.2. DEFAULT EVALUATORS

Red Hat Certificate System provides four default evaluators. The following entries are listed by default
in the CS.cfq file:

accessEvaluator.impl.group.class=com.netscape.cms.evaluators.GroupAccessEvaluator
accessEvaluator.impl.ipaddress.class=com.netscape.cms.evaluators.IPAddressAccessEvaluator
accessEvaluator.impl.user.class=com.netscape.cms.evaluators.UserAccessEvaluator
accessEvaluator.impl.user_origreq.class=com.netscape.cms.evaluators.UserOrigRegAccessEvaluator

The group access evaluator evaluates the group membership properties of a user. For example, in the
following enrollment profile entry, only the CA agents are allowed to go through enrollment with that
profile:

I authz.acl=group="Certificate Manager Agents"

The ipaddress access evaluator evaluates the IP address of the requesting subject. For example, in the
following enrollment profile entry, only the host bearing the specified IP address can go through
enrollment with that profile:

I authz.acl=ipaddress="a.b.c.d.e.f"

The user access evaluator evaluates the user ID for exact match. For example, in the following
enrollment profile entry, only the user matching the listed user is allowed to go through enrollment with
that profile:

I authz.acl=user="bob"

The user_origreq access evaluator evaluates the authenticated user against a previous matching
request for equality. This special evaluator is designed specifically for renewal purpose to make sure the
user requesting the renewal is the same user that owns the original request. For example, in the
following renewal enrollment profile entry, the UID of the authenticated user must match the UID of the
user requesting the renewal:

I authz.acl=user_origreq="auth_token.uid"

219

Administration Guide

New evaluators can be written in the current framework and can be registered through the CS console.
The default evaluators can be used as templates to expand and customize into more targeted plug-ins.

220

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

The Certificate System can be configured to send automatic email notifications to end users when
certificates are issued or revoked or to an agent when a new request has arrived in the agent request
queue. This chapter describes automated notifications and details how to enable, configure, and
customize the notification email messages that are sent.

NOTE

Because of the types of notifications that can be sent, only Certificate Managers have
the ability to be configured for notifications; this option is not available on the other
subsystems.

12.1. ABOUT AUTOMATED NOTIFICATIONS FOR THE CA

Automated notifications are email messages sent when a specified event occurs. The system uses
listeners that monitor the system to determine when a particular event has occurred; when the event
happens, then the system is triggered to send an email to the configured recipient. Each type of
notification uses a template, either in plain text or HTML, to construct the notification message. The
template contains text and tokens that are expanded to fill in the correct information for a particular
event. The messages can be customized by changing the text and tokens contained in the templates.
The HTML templates can also be customized for different appearances and formatting.

12.1.1. Types of Automated Notifications
There are three types of automated notifications:
® Certificate Issued.

A notification message is automatically sent to users who have been issued certificates. A
rejection message is sent to a user if the user's certificate request is rejected.

® Certificate Revocation.
A notification message is automatically sent to users when the user certificate is revoked.
® Requestin Queue.

A notification message is automatically sent to one or more agents when a request enters the
agent request queue, using the email addresses set for the agent. This notification type sends
an email every time a message enters the queue. For more information about the request in
queue job, see Section 13.1.2.2, “requestinQueueNotifier (RequestinQueueJob)”.

There is also a job that sends a notification to agents about the status of the queue, which
includes a summary of the queue status at certain intervals.

12.1.2. Determining End-Entity Email Addresses

The notification system determines the email address of an end entity by checking first the certificate
request or revocation request, then the subject name of the certificate, and last the Subject Alternative
Name extension of the certificate, if the certificate contains this extension. If an email address cannot be
found, the notification is sent to the email address specified in the Sender's Email Address field of the
Notification panel.

221

Administration Guide

12.2. SETTING UP AUTOMATED NOTIFICATIONS FOR THE CA

12.2.1. Setting up Automated Notifications in the Console

1. Open the Certificate Manager Console.
I pkiconsole https://server.example.com:8443/ca

2. Open the Configuration tab.

3. Open the Certificate Manager heading in the navigation tree on the left. Then select
Notification.

The Notification tabs appear in the right side of the window.

Console Edit View Help

Configuration

Red Hat Certificate System: 9443 ||” Certificate Issued | Centificate Revoked | Request In Queue |

d=ers and Groups

Access Cantrol List Enable Certificate Issued notification

Laog i
wystem Keys and Centificates §§ Email Information Settings
Authentication i - . .
o |oh Scheduler ; Senders E-mail Address: |adm|n@example.com |
¥ CE”F:EE?ESM&”&Q” Subject: [Your Cenificate Request |
Certificate Profiles Content template path: |,fusr,fIib;rhpki—ca;emails;cer‘tlssued_CAhtml |

o= Publishinn

4. Notifications can be sent for three kinds of events: newly-issued certificates, revoked
certificates, and new certificate requests. To send a notification for any event, select the tab,
check the Enable checkbox, and specify information in the following fields:

o Sender's E-mail Address. Type the sender's full email address of the user who is notified
of any delivery problems.

o Recipient's E-mail Address. These are the email addresses of the agents who will check
the queue. To list more than one recipient, separate the email addresses with commas. For
new requests in queue only.

o Subject. Type the subject title for the notification.

o Content template path. Type the path, including the filename, to the directory that contains
the template to use to construct the message content.

5. Click Save.

EanS NOTE

Make sure the mail server is set up correctly. See Section 12.4, “Configuring a
oo v Mail Server for Certificate System Notifications”.

6. Customize the notification message templates. See Section 12.3, “Customizing Notification
Messages” for more information.

222

12.2.2.

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

Test the configuration. See Section 12.2.3, “Testing Configuration”.

NOTE

pkiconsole is being deprecated.

Configuring Specific Notifications by Editing the CS.cfg File

Stop the CA subsystem.
I pki-server stop instance_name

Open the CS.cfq file for that instance. This file is in the instance's conf/ directory.
Edit all of the configuration parameters for the notification type being enabled.

For certificate issuing notifications, there are four parameters:

ca.notification.certlssued.emailSubject
ca.notification.certlssued.emailTemplate
ca.notification.certlssued.enabled
ca.notification.certlssued.senderEmail

For certificate revocation notifications, there are four parameters:

ca.notification.certRevoked.emailSubject
ca.notification.certRevoked.emailTemplate
ca.notification.certRevoked.enabled
ca.notification.certRevoked.senderEmail

For certificate request notifications, there are five parameters:

ca.notification.requestinQ.emailSubject
ca.notification.requestinQ.emailTemplate
ca.notification.requestinQ.enabled
ca.notification.requestinQ.recipientEmail
ca.notification.requestinQ.senderEmail

The parameters for the notification messages are explained in Section 12.2, “Setting up

Automated Notifications for the CA”.

. Save the file.

Restart the CA instance.

I pki-server start instance_name

If a job has been created to send automated messages, check that the mail server is correctly
configured. See Section 12.4, “Configuring a Mail Server for Certificate System Notifications”.

The messages that are sent automatically can be customized; see Section 12.3, “Customizing
Notification Messages” for more information.

223

Administration Guide

12.2.3. Testing Configuration

To test whether the subsystem sends email notifications as configured, do the following:

1. Change the email address in the notification configuration for the request in queue notification
to an accessible agent or administrator email address.

2. Open the end-entities page, and request a certificate using the agent-approved enrollment
form.

When the request gets queued for agent approval, a request-in-queue email notification should
be sent. Check the message to see if it contains the configured information.

3. Loginto the agent interface, and approve the request.

When the server issues a certificate, the user receive a certificate-issued email notification to
the address listed in the request. Check the message to see if it has the correct information.

4. Loginto the agent interface, and revoke the certificate.

The user email account should contain an email message reading that the certificate has been
revoked. Check the message to see if it has the correct information.

12.3. CUSTOMIZING NOTIFICATION MESSAGES

The email notifications are constructed using a template for each type of message. This allows
messages to be informative, easily reproducible, and easily customizable. The CA uses templates for its
notification messages. Separate templates exist for HTML and plain text messages.

12.3.1. Customizing CA Notification Messages

Each type of CA notification message has an HTML template and a plain text template associated with
it. Messages are constructed from text, tokens, and, for the HTML templates, HTML markup. Tokens are
variables, identified by a dollar sign ($), in the message that are replaced by the current value when the
message is constructed. See Table 12.3, “Notification Variables” for a list of available tokens.

The contents of any message type can be modified by changing the text and tokens in the message
template. The appearance of the HTML messages can be changed by modifying the HTML commands
in the HTML message template.

The default text version of the certificate-issuance-notification message is as follows:

Your certificate request has been processed successfully.
SubjectDN= $SubjectDN

IssuerDN= $lssuerDN

notAfter= $NotAfter

notBefore= $NotBefore

Serial Number= 0x$HexSerialNumber

To get your certificate, please follow this URL:
https://$HttpHost:$HttpPort/displayBySerial ?op=displayBySerial &
serialNumber=$SerialNumber

Please contact your admin if there is any problem.

And, of course, this is just a \$SAMPLE\$ email notification form.

224

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

This template can be customized as desired, by rearranging, adding, or removing tokens and text, as
shown:

THE EXAMPLE COMPANY CERTIFICATE ISSUANCE CENTER
Your certificate has been issued!

You can pick up your new certificate at the following website:
https://$HttpHost:$HttpPort/displayBySerial ?op=displayBySerial &
serialNumber=$SerialNumber

This certificate has been issued with the following information:
Serial Number= 0x$HexSerialNumber

Name of Certificate Holder = $SubjectDN

Name of Issuer = $IssuerDN

Certificate Expiration Date = $NotAfter

Certificate Validity Date = $NotBefore

Contact IT by calling X1234, or going to the IT website http:/IT

if you have any problems.

Notification message templates are located in the /var/lib/pki/instance_name/ca/emails directory.

The name and location of these messages can be changed; make the appropriate changes when
configuring the notification. All template names can be changed except for the certificate rejected
templates; these names must remain the same. The templates associated with certificate issuance and
certificate rejection must be located in the same directory and must use the same extension.

Table 12.1, “Notification Templates” lists the default template files provided for creating notification
messages. Table 12.2, “Job Notification Email Templates” lists the default template files provided for

creating job summary messages.

Table 12.1. Notification Templates

Filename Description

certlssued_CA Template for plain text notification emails to end
entities when certificates are issued.

certlssued_CA.html Template for HTML-based notification emails to end
entities when certificates are issued.

certRequestRejected.html Template for HTML-based notification emails to end
entities when certificate requests are rejected.

certRequestRevoked_CA Template for plain text notification emails to end
entities when a certificate is revoked.

certRequestRevoked_CA.html Template for HTML-based notification emails to end
entities when a certificate is revoked.

reqinQueue_CA Template for plain text notification emails to agents
when a request enters the queue.

reqinQueue_CA html Template for HTML-based notification emails to
agents when a request enters the queue.

225

Administration Guide

Table 12.2. Job Notification Email Templates

EHETN Description

rnJobl.txt Template for formulating the message content sent
to end entities to inform them that their certificates
are about to expire and that the certificates should
be renewed or replaced before they expire.

rnJoblSummary.txt Template for constructing the summary report to be
sent to agents and administrators. Uses the
rnJob1ltem.txt template to format items in the
message.

rnJoblltem.txt Template for formatting the items included in the
summary report.

riglitem.html Template for formatting the items included in the
summary table, which is constructed using the
rigiSummary.html template.

rigiSummary.html Template for formulating the report or table that
summarizes how many requests are pending in the
agent queue of a Certificate Manager.

publishCerts Template for the report or table that summarizes the
certificates to be published to the directory. Uses the
publishCertsltem.html template to format the
items in the table.

publishCertsltem.html Template for formatting the items included in the
summary table.

ExpiredUnpublishdob Template for the report or table that summarizes
removal of expired certificates from the directory.
Uses the ExpiredUnpublishJobltem template to
format the items in the table.

ExpiredUnpublishJobltem Template for formatting the items included in the
summary table.

Table 12.3, “Notification Variables” lists and defines the variables that can be used in the notification
message templates.

Table 12.3. Notification Variables

Token Description

226

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

Token Description

$CertType

$ExecutionTime

$HexSerialNumber

$HttpHost

$HttpPort

$InstancelD

$lssuerDN

$NotAfter

$NotBefore

$RecipientEmail

$Requestld

$RequestorEmail

$RequestType

$RevocationDate

$SenderEmail

Specifies the type of certificate; these can be any of
the following:

o TLSclient (client)
e TLS server (server)
e CAssigning certificate (ca)

e other (other).

Gives the time the job was run.

Gives the serial number of the certificate that was
issued in hexadecimal format.

Gives the fully qualified host name of the Certificate
Manager to which end entities should connect to
retrieve their certificates.

Gives the Certificate Manager's end-entities (non-
TLS) port number.

Gives the ID of the subsystem that sent the
notification.

Gives the DN of the CA that issued the certificate.

Gives the end date of the validity period.

Gives the beginning date of the validity period.

Gives the email address of the recipient.

Gives the request ID.

Gives the email address of the requester.

Gives the type of request that was made.

Gives the date the certificate was revoked.

Gives the email address of the sender; this is the
same as the one specified in the Sender's E-mail
Address field in the notification configuration.

227

Administration Guide

Token Description

$SerialNumber Gives the serial number of the certificate that has
been issued; the serial number is displayed as a
hexadecimal value in the resulting message.

$Status Gives the request status.
$SubjectDN Gives the DN of the certificate subject.
$SummaryltemList Lists the items in the summary notification. Each item

corresponds to a certificate the job detects for
renewal or removal from the publishing directory.

$SummaryTotalFailure Gives the total number of items in the summary
report that failed.

$SummaryTotalNum Gives the total number of certificate requests that
are pending in the queue or the total number of
certificates to be renewed or removed from the
directory in the summary report.

$SummaryTotalSuccess Shows how many of the total number of items in the
summary report succeeded.

12.4. CONFIGURING A MAIL SERVER FOR CERTIFICATE SYSTEM
NOTIFICATIONS

The notifications and jobs features use the mail server configured in the Certificate System CA
instances to send notification messages.

Before you start setting up the mail server, ensure the following parameters are specified in the CS.cfg
configuration file:

smtp.host=localhost
smtp.port=25

Set up a mail server by doing the following:
1. Open the CA subsystem administrative console. For example:

I pkiconsole https://server.example.com:8443/ca

2. In the Configuration tab, highlight the instance name at the top, and select the SMTP tab.
3. Supply the server name and port number of the mail server.
The server name is the fully qualified DNS hostname of the machine on which the mail server is

installed, such as mail.example.com. By default, the hostname of the mail server is localhost
instead of the actual hostname.

228

CHAPTER 12. USING AUTOMATED NOTIFICATIONS

The default port number on which the SMTP mail server listens is 25.

4. Click Save.

NOTE

pkiconsole is being deprecated.

12.5. CREATING CUSTOM NOTIFICATIONS FOR THE CA

It can be possible to create custom notification functions to handle other PKI operations, such as token
enrollments, by editing existing email notifications plug-ins for the Certificate System CA. Before
attempting to create or use custom notification plug-ins, contact Red Hat support services.

229

Administration Guide

CHAPTER13. SETTING AUTOMATED JOBS

The Certificate System provides a customizable Job Scheduler that supports various mechanisms for
scheduling cron jobs. This chapter explains how to configure Certificate System to use specific job
plug-in modules for accomplishing jobs.

13.1. ABOUT AUTOMATED JOBS

The Certificate Manager Console includes a Job Scheduler option that can execute specific jobs at
specified times. The Job Scheduler is similar to a traditional Unix cron daemon; it takes registered cron
jobs and executes them at a pre-configured date and time. If configured, the scheduler checks at
specified intervals for jobs waiting to be executed; if the specified execution time has arrived, the
scheduler initiates the job automatically.

Jobs are implemented as Java™ classes, which are then registered with Certificate System as plug-in
modules. One implementation of a job module can be used to configure multiple instances of the job.
Each instance must have a unique name (an alphanumeric string with no spaces) and can contain
different input parameter values to apply to different jobs.

13.1.1. Setting up Automated Jobs

The automated jobs feature is set up by doing the following:

U

® Enabling and configuring the Job Scheduler; see Section 13.2, “Setting up the Job Scheduler’
for more information.

® Enabling and configuring the job modules and setting preferences for those job modules; see
Section 13.3, "Setting up Specific Jobs" for more information.

e Customizing the email notification messages sent with these jobs by changing the templates
associated with the types of notification. The message contents are composed of both plain
text messages and HTML messages; the appearance is modified by changing the HTML
templates. See Section 12.3.1, “Customizing CA Notification Messages” for more information.

13.1.2. Types of Automated Jobs

The types of automated jobs are RenewalNotificationdob, RequestinQueuedJob, PublishCertsJob,
and UnpublishExpiredJob. One instance of each job type is created when Certificate System is
deployed.

13.1.2.1. certRenewalNotifier (RenewalNotificationJob)

The certRenewalNotifier job checks for certificates that are about to expire in the internal database.
When it finds one, it automatically emails the certificate's owner and continues sending email reminders
for a configured period of time or until the certificate is replaced. The job collects a summary of all
renewal notifications and mails the summary to the configured agents or administrators.

The job determines the email address to send the notification using an email resolver. By default, the
email address is found in the certificate itself or in the certificate's associated enrollment request.

13.1.2.2. requestinQueueNotifier (RequestinQueuedJob)

230

CHAPTER 13. SETTING AUTOMATED JOBS

The requestinQueueNotifier job checks the status of the request queue at pre-configured time
intervals. If any deferred enrollment requests are waiting in the queue, the job constructs an email
message summarizing its findings and sends it to the specified agents.

13.1.2.3. publishCerts (PublishCertsJob)

The publishCerts job checks for any new certificates that have been added to the publishing directory
that have not yet been published. When these new certificates are added, they are automatically
published to an LDAP directory or file by the publishCerts job.

NOTE

Most of the time, publishers immediately publish any certificates that are created
matching their rules to the appropriate publishing directory.

If a certificate is successfully published when it is created, then the publishCerts job will
not re-publish the certificate. Therefore, the new certificate will not be listed in the job
summary report, since the summary only lists certificates published by the publishCerts
job.

13.1.2.4. unpublishExpiredCerts (UnpublishExpiredJob)

Expired certificates are not automatically removed from the publishing directory. If a Certificate
Manager is configured to publish certificates to an LDAP directory, over time the directory will contain
expired certificates.

The unpublishExpiredCerts job checks for certificates that have expired and are still marked as
published in the internal database at the configured time interval. The job connects to the publishing
directory and deletes those certificates; it then marks those certificates as unpublished in the internal

database. The job collects a summary of expired certificates that it deleted and mails the summary to
the agents or administrators specified by the configuration.

NOTE

This job automates removing expired certificates from the directory. Expired certificates
can also be removed manually; for more information on this, see Section 9.12, “Updating
