& RedHat

Red Hat build of Node.js 18

Node.js Runtime Guide

Use Node.js 18 to develop scalable network applications that run on OpenShift and on
stand-alone RHEL

Last Updated: 2023-01-31

Red Hat build of Node.js 18 Node.js Runtime Guide

Use Node.js 18 to develop scalable network applications that run on OpenShift and on stand-alone
RHEL

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details on using the Node.js runtime.

Table of Contents

Table of Contents

[3 Y O AP 3
CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENTWITHNODE.JSccoiiiiiviinns, 4
1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES 4
1.2. OVERVIEW OF NODE.JS 4
1.2.1. Supported Architectures by Node.js 5
1.2.2. Support for Federal Information Processing Standard (FIPS) 5
1.2.2.1. Additional resources 5
1.2.2.2. Verifying that Node.js is running in FIPS mode 5
CHAPTER 2. DEVELOPING AND DEPLOYING ANODE.JS APPLICATION ... ittt iiiinneanns 7
2.1. DEVELOPING A NODE.JS APPLICATION 7
2.2. DEPLOYING A NODE.JS APPLICATION TO OPENSHIFT 8
2.2.1. Preparing Node.js application for OpenShift deployment 8
2.2.2. Deploying a Node.js application to OpenShift 9

2.3. DEPLOYING A NODE.JS APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX 10
CHAPTER 3. DEBUGGING YOUR NODE.US BASED APPLICATION ...ttt ieienneennns 1
3.1. REMOTE DEBUGGING 11
3.1.1. Starting your application locally and attaching the native debugger 1
3.1.2. Starting your application locally and attaching the V8 inspector 1
3.1.3. Starting your application on OpenShift in debugging mode 12

3.2. DEBUG LOGGING 13
3.2.1. Add debug logging 13
3.2.2. Accessing debug logs on localhost 14
3.2.3. Accessing Node.js debug logs on OpenShift 15
APPENDIX A. ABOUT NODESHIF T ottt it it ettt ettt ee e eenaeeaneeraneeaneeeaneennnens 17
APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION 18

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR NODE.JS APPLICATION

WITH NO D ESHIF T o e e et et e ettt e it eneanene 20

Next steps 21
APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIEScoiiiiiiiiiiiiiiiiiiiiiiinnn, 22
APPENDIX E. ADDITIONAL NODE.JSRESOURCESottt ittt 24
APPENDIX F. APPLICATION DEVELOPMENT RESOURCESottt 25
APPENDIX G. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESSttt 26

Red Hat build of Node.js 18 Node.js Runtime Guide

PREFACE

PREFACE

This guide covers concepts as well as practical details needed by developers to use the Node.js runtime.

Red Hat build of Node.js 18 Node.js Runtime Guide

CHAPTER 1. INTRODUCTION TO APPLICATION
DEVELOPMENT WITH NODE.JS

This section explains the basic concepts of application development with Red Hat runtimes. It also
provides an overview about the Node.s runtime.

1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT
RUNTIMES

Red Hat OpenShift is a container application platform, which provides a collection of cloud-native
runtimes. You can use the runtimes to develop, build, and deploy Java or JavaScript applications on
OpenShift.

Application development using Red Hat Runtimes for OpenShift includes:

® A collection of runtimes, such as, Eclipse Vert.x, Thorntail, Spring Boot, and so on, designed to
run on OpenShift.

® A prescriptive approach to cloud-native development on OpenShift.

OpenShift helps you manage, secure, and automate the deployment and monitoring of your
applications. You can break your business problems into smaller microservices and use OpenShift to
deploy, monitor, and maintain the microservices. You can implement patterns such as circuit breaker,
health check, and service discovery, in your applications.

Cloud-native development takes full advantage of cloud computing.
You can build, deploy, and manage your applications on:

OpenShift Container Platform
A private on-premise cloud by Red Hat.

Red Hat CodeReady Studio

An integrated development environment (IDE) for developing, testing, and deploying applications.

This guide provides detailed information about the Node.js runtime. For more information on other
runtimes, see the relevant runtime documentation.

1.2. OVERVIEW OF NODE.JS

Node.js is based on the V8 JavaScript engine from Google and allows you to write server-side
JavaScript applications. It provides an I/O model based on events and non-blocking operations that
enables you to write efficient applications. Node.js also provides a large module ecosystem called npm.
Check out Additional Resources for further reading on Node.js.

The Node.js runtime enables you to run Node.js applications and services on OpenShift while providing
all the advantages and conveniences of the OpenShift platform such as rolling updates, continuous
delivery pipelines, service discovery, and canary deployments. OpenShift also makes it easier for your
applications to implement common microservice patterns such as externalized configuration, health
check, circuit breaker, and failover.

Red Hat provides different supported releases of Node.js. For more information how to get support, see
Getting Node.js and support from Red Hat .

https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.openshift.com/products/container-platform/
https://access.redhat.com/products/red-hat-codeready-studio
https://access.redhat.com/documentation/en-us
https://v8.dev//
https://www.npmjs.com/
https://access.redhat.com/articles/4485361

CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH NODE.JS

1.2.1. Supported Architectures by Node.js
Node.js supports the following architectures:

® x86_64 (AMD64)

® |BM Z (s390x) in the OpenShift environment

® |BM Power Systems (ppc64le) in the OpenShift environment

1.2.2. Support for Federal Information Processing Standard (FIPS)

The Federal Information Processing Standards (FIPS) provides guidelines and requirements for
improving security and interoperability across computer systems and networks. The FIPS 140-2 and
140-3 series apply to cryptographic modules at both the hardware and software levels.

The Federal Information Processing Standard (FIPS) Publication 140-2 is a computer security standard
developed by the U.S. Government and industry working group to validate the quality of cryptographic
modules. See the official FIPS publications at NIST Computer Security Resource Center.

Red Hat Enterprise Linux (RHEL) provides an integrated framework to enable FIPS 140-2 compliance
system-wide. When operating in the FIPS mode, software packages using cryptographic libraries are
self-configured according to the global policy.

To learn about compliance requirements, see the Red Hat Government Standards page.

Red Hat build of Node.js runs on a FIPS-enabled RHEL system and uses FIPS-certified libraries
provided by RHEL.

1.2.2.1. Additional resources

® For more information on how to install RHEL with FIPS mode enabled, see Installing a RHEL 8
system with FIPS mode enabled.

® For more information on how to enable FIPS mode after installing RHEL, see Switching the
system to FIPS mode.

1.2.2.2. Verifying that Node.js is running in FIPS mode

You can use crypto.fips to verify that Node.js is running in FIPS mode.

Prerequisites

® F[IPSis enabled on the RHEL host.

Procedure

1. In your Node.s project, create an application file named, for example, app.js.

2. In the app.js file, enter the following details:

const crypto = require('crypto’);
console.log(crypto.fips);

3. Save the app.js file.

https://csrc.nist.gov/publications/fips
https://access.redhat.com/articles/2918071
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/assembly_installing-a-rhel-8-system-with-fips-mode-enabled_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies

Red Hat build of Node.js 18 Node.js Runtime Guide

Verification
® |nyour Node.js project, run the app.js file:
I node app.js

If FIPS is enabled, the application prints 1 to the console. If FIPS is disabled, the application
prints 0 to the console.

CHAPTER 2. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION

CHAPTER 2. DEVELOPING AND DEPLOYING A NODE.JS
APPLICATION

You can create new Node.js applications and deploy them to OpenShift.

2.1. DEVELOPING A NODE.JS APPLICATION

For a basic Node.js application, you must create a JavaScript file containing Node.js methods.

Prerequisites

® npminstalled.

Procedure

1. Create a new directory myApp, and navigate to it.

$ mkdir myApp
$ cd MyApp
This is the root directory for the application.
2. Initialize your application with npm.

The rest of this example assumes the entry point is app.js, which you are prompted to set when
running npm init.

$ cd myApp
$ npm init

3. Create the entry pointin a new file called app.js.

Example app.js

const http = require('http");

const server = http.createServer((request, response) => {
response.statusCode = 200;
response.setHeader('Content-Type', 'application/json');

const greeting = {content: 'Hello, World!};

response.write(JSON.stringify(greeting));
response.end();

h;

server.listen(8080, () => {
console.log('Server running at http://localhost:8080");

hE

4. Start your application.

$ node app.js
Server running at http://localhost:8080

Red Hat build of Node.js 18 Node.js Runtime Guide

5. Using curl or your browser, verify your application is running at http://localhost:8080.

$ curl http://localhost:8080
{"content":"Hello, World!"}

Additional information

® The Node.js runtime provides the core Node.js APl which is documented in the Node.js API
documentation.

2.2. DEPLOYING A NODE.JS APPLICATION TO OPENSHIFT

To deploy your Node.js application to OpenShift, add nodeshift to the application, configure the

package.json file and then deploy using nodeshift.

2.2.1. Preparing Node.js application for OpenShift deployment

To prepare a Node.js application for OpenShift deployment, you must perform the following steps:
® Add nodeshift to the application.

e Add openshift and start entries to the package.json file.

Prerequisites

® npminstalled.

Procedure

1. Add nodeshift to your application.

I $ npm install nodeshift --save-dev

2. Add the openshift and start entries to the scripts section in package.json.

{
"name": "myApp",
"version": "1.0.0",
"description": ",
"main": "app.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"openshift": "nodeshift --expose --
dockerlmage=registry.access.redhat.com/rhscl/ubi8/nodejs-12",
"start": "node app.js”,

}...

The openshift script uses nodeshift to deploy the application to OpenShift.

http://localhost:8080
https://nodejs.org/api/

CHAPTER 2. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION

NOTE

Universal base images and RHEL images are available for Node.js. See the
Node.js release notes for more information on image names.

3. Optional: Add a files section in package.json.

{

"name": "myApp",

"version": "1.0.0",

"description": ",

"main": "app.js",

"scripts": {

b

"files™: [
"package.json",

"app.jS"
]

}...

The files section tells nodeshift what files and directories to include when deploying to
OpenShift. nodeshift uses the node-tar module to create a tar file based on the files and
directories you list in the files section. This tar file is used when nodeshift deploys your
application to OpenShift. If the files section is not specified, nodeshift will send the entire
current directory, excluding:

e node_modules/

o it/

e tmp/

It is recommended that you include a files section in package.json to avoid including
unnecessary files when deploying to OpenShift.

2.2.2. Deploying a Node.js application to OpenShift

You can deploy a Node.js application to OpenShift using nodeshift.

Prerequisites

® The oc CLI client installed.
® npminstalled.

® Ensure all the ports used by your application are correctly exposed when configuring your routes.

Procedure

1. Login to your OpenShift instance with the oc client.
I $ oc login ...

2. Use nodeshift to deploy the application to OpenShift.

https://github.com/npm/node-tar

Red Hat build of Node.js 18 Node.js Runtime Guide

I $ npm run openshift

2.3. DEPLOYING A NODE.JS APPLICATION TO STAND-ALONE RED
HAT ENTERPRISE LINUX

You can deploy a Node.js application to stand-alone Red Hat Enterprise Linux using npm.
Prerequisites

® A Node.js application.

® npm 6.14.8 installed

e RHEL 7 or RHEL 8 installed.

® Node s installed

Procedure

1. If you have specified additional dependencies in the package.json file of your project, ensure
that you install them before running your applications.

I $ npm install

2. Deploy the application from the application’s root directory.

$ node app.js
Server running at http://localhost:8080

Verification steps

1. Use curl or your browser to verify your application is running at http:/localhost:8080

I $ curl http://localhost:8080

10

http://localhost:8080

CHAPTER 3. DEBUGGING YOUR NODE.JS BASED APPLICATION

CHAPTER 3. DEBUGGING YOUR NODE.JS BASED
APPLICATION

This section contains information about debugging your Node.js-based application and using debug
logging in both local and remote deployments.

3.1. REMOTE DEBUGGING

To remotely debug an application, you need to start it in a debugging mode and attach a debugger to it.

3.1.1. Starting your application locally and attaching the native debugger

The native debugger enables you to debug your Node.js-based application using the built-in debugging
client.

Prerequisites

® An application you want to debug.

Procedure

1. Start the application with the debugger enabled.
The native debugger is automatically attached and provides a debugging prompt.

Example application with the debugger enabled

$ node inspect app.js
< Debugger listening on ws://127.0.0.1:9229/12345678-aaaa-bbbb-cccc-0123456789ab
< For help see https://nodejs.org/en/docs/inspector
< Debugger attached.
debug>
If you have a different entry point for your application, you need to change the command to
specify that entry point:

I $ node inspect path/to/entrypoint

For example, when using the express generator to create your application, the entry point is set
to ./bin/www by default.

2. Use the debugger prompt to perform debugging commands.

3.1.2. Starting your application locally and attaching the V8 inspector

The V8 inspector enables you to debug your Node.js-based application using other tools, such as
Chrome DevTools, that use the Chrome Debugging Protocol.

Prerequisites

® An application you want to debug.

1

https://expressjs.com/en/starter/generator.html
https://nodejs.org/api/debugger.html#debugger_command_reference
https://developers.google.com/web/tools/chrome-devtools/
https://chromedevtools.github.io/debugger-protocol-viewer/1-2/

Red Hat build of Node.js 18 Node.js Runtime Guide

® The V8inspector installed, such as the one provided in the Google Chrome Browser.

Procedure
1. Start your application with the V8 inspector integration enabled.
I $ node --inspect app.js

If you have a different entry point for your application, you need to change the command to
specify that entry point:

I $ node --inspect path/to/entrypoint

For example, when using the express generator to create your application, the entry point is set
to ./bin/www by default.

2. Attach the V8 inspector and perform debugging commands.
For example, if using Google Chrome:

a. Navigate to chrome://inspect.
b. Select your application from below Remote Target.

c. You can now see the source of your application and can perform debugging actions.

3.1.3. Starting your application on OpenShift in debugging mode

To debug your Node.js-based application on OpenShift remotely, you must set the NODE_ENV
environment variable inside the container to development and configure port forwarding so that you
can connect to your application from a remote debugger.

Prerequisites

® Your application running on OpenShift.
® The oc binary installed.

® The ability to execute the oc port-forward command in your target OpenShift environment.

Procedure
1. Using the oc command, list the available deployment configurations:

I $ oc getdc

2. Set the NODE_ENV environment variable in the deployment configuration of your application
to development to enable debugging. For example:

I $ oc set env dc/MY_APP_NAME NODE_ENV=development

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

I $ oc rollout latest de/MY_APP_NAME

12

https://www.google.com/chrome/index.html
https://nodejs.org/api/debugger.html#debugger_v8_inspector_integration_for_node_js
https://expressjs.com/en/starter/generator.html

CHAPTER 3. DEBUGGING YOUR NODE.JS BASED APPLICATION

4. Configure port forwarding from your local machine to the application pod:

a.

b.

List the currently running pods and find one containing your application:
$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 0/1 Running 0 6s
Configure port forwarding:

I $ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5858

Here, SLOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. Attach the V8 inspector and perform debugging commands.
For example, if using Google Chrome:

a.

b.

e.

f.

Navigate to chrome://inspect.

Click Configure.

. Add 127.0.0.1:$LOCAL_PORT_NUMBER.

Click Done.
Select your application from below Remote Target.

You can now see the source of your application and can perform debugging actions.

6. When you are done debugging, unset the NODE_ENV environment variable in your application
pod. For example:

I $ oc set env dc/MY_APP_NAME NODE_ENV-

3.2. DEBUG LOGGING

Debug logging is a way to add detailed information to the application log when debugging. This allows

you to:

e Keep minimal logging output during normal operation of the application for improved readability
and reduced disk space usage.

® View detailed information about the inner workings of the application when resolving issues.

3.2.1. Add debug logging

This example uses the debug package, but there are also other packages available that can handle
debug logging.

Prerequisites

® You have an application that you want to debug.

13

https://www.npmjs.com/package/debug
https://www.npmjs.com/search?q=log

Red Hat build of Node.js 18 Node.js Runtime Guide

Procedure

1. Add the debug logging definition.
I const debug = require('debug’)('myexample’);
2. Add debug statements.

app.use('/api/greeting’, (request, response) => {
const name = request.query ? request.query.name : undefined;
//log name in debugging
debug('name: '+name);

response.send({content: "Hello, ${name || 'World'}'});

h;

3. Add the debug module to package.json.

"dependencies": {
"debug": ""3.1.0"
}

Depending on your application, this module may already be included. For example, when using
the express generator to create your application, the debug module is already added to
package.json.

4. Install the application dependencies.

I $ npm install

3.2.2. Accessing debug logs on localhost

Use the DEBUG environment variable when starting your application to enable debug logging.

Prerequisites

® An application with debug logging.
Procedure
1. Set the DEBUG environment variable when starting your application to enable debug logging.
I $ DEBUG=myexample npm start

The debug module can use wildcards to filter debugging messages. This is set using the
DEBUG environment variable.

2. Test your application to invoke debug logging.
For example, the following command is based on an example REST API level O application where
debug logging is set to log the name variable in the /api/greeting method:

I $ curl http://localhost:8080/api/greeting?name=Sarah

14

https://www.npmjs.com/package/debug
https://expressjs.com/en/starter/generator.html
https://www.npmjs.com/package/debug#wildcards

CHAPTER 3. DEBUGGING YOUR NODE.JS BASED APPLICATION

3. View your application logs to see your debug messages.

I myexample name: Sarah +3m

3.2.3. Accessing Node.js debug logs on OpenShift

Use the the DEBUG environment variable in your application pod in OpenShift to enable debug logging.

Prerequisites

® An application with debug logging.

® The oc CLI client installed.

Procedure

1. Use the oc CLlI client to log into your OpenShift instance.
I $ oc login ...

2. Deploy your application to OpenShift.
I $ npm run openshift
This runs the openshift npm script, which wraps direct calls to nodeshift.
3. Find the name of your pod and follow the logs to watch it start.
$ oc get pods

$ oc logs -f pod/POD_NAME

IMPORTANT

After your pod has started, leave this command running and execute the
remaining steps in a new terminal window. This allows you to follow the logs and
see new entries made to it.

4. Test your application.
For example, the following command is based on an example REST API level O application where
debug logging is set to log the nhame variable in the /api/greeting method:

$ oc get routes

$ curl SAPPLICATION_ROUTE/api/greeting?name=Sarah

5. Return to your pod logs and notice there are no debug logging messages in the logs.

6. Setthe DEBUG environment variable to enable debug logging.

15

Red Hat build of Node.js 18 Node.js Runtime Guide

$ oc getdc

$ oc set env dc DC_NAME DEBUG=myexample

7. Return to your pod logs to watch the update roll out.
After the update has rolled out, your pod will stop and you will no longer be following the logs.

8. Find the name of your new pod and follow the logs.
$ oc get pods

$ oc logs -f pod/POD_NAME

IMPORTANT

After your pod has started, leave this command running and execute the
remaining steps in a different terminal window. This allows you to follow the logs
and see new entries made to it. Specifically, the logs will show your debug
messages.

9. Test the application to invoke debug logging.

$ oc get routes

$ curl SAPPLICATION_ROUTE/api/greeting?name=Sarah

10. Return to your pod logs to see the debug messages.

I myexample name: Sarah +3m
To disable debug logging, remove the DEBUG environment variable from the pod:

I $ oc set env dc DC_NAME DEBUG-

Additional resources

More details on environment variables are available in the OpenShift documentation.

16

https://docs.openshift.com/container-platform/latest/builds/build-configuration.html

APPENDIX A. ABOUT NODESHIFT

APPENDIX A. ABOUT NODESHIFT

Nodeshift is a module for running OpenShift deployments with Node.js projects.

IMPORTANT

Nodeshift assumes you have the oc CLI client installed, and you are logged into your
OpenShift cluster. Nodeshift also uses the current project the oc CLI client is using.

Nodeshift uses resource files in the .nodeshift folder located at the root of the project to handle
creating OpenShift Routes, Services and DeploymentConfigs. More details on Nodeshift are available
on the Nodeshift project page.

17

https://github.com/nodeshift/nodeshift
https://github.com/nodeshift/nodeshift

Red Hat build of Node.js 18 Node.js Runtime Guide

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For examples that
use the Fabric8 Maven Plugin, the YAML files are located in the src/main/fabric8/ directory. For
examples using Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by the Fabric8 Maven Plugin and Nodeshift do
not have to be full OpenShift resource definitions. Both Fabric8 Maven Plugin and
Nodeshift can take the deployment configuration files and add some missing information
to create a full OpenShift resource definition. The resource definitions generated by the
Fabric8 Maven Plugin are available in the target/classes/META-INF/fabric8/ directory.
The resource definitions generated by Nodeshift are available in the
tmp/nodeshift/resource/ directory.

Prerequisites

® An existing example project.

® The oc CLI client installed.

Procedure
1. Edit an existing YAML file or create an additional YAML file with your configuration update.

® For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

spec:
template:
spec:
containers:
readinessProbe:
httpGet:
path: /path/to/probe
port: 8080
scheme: HTTP

e |f a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.
3. Verify that your configuration updates show in the deployed version of your example.
$ oc export all --as-template="my-template’

apiVersion: template.openshift.io/v1
kind: Template

18

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

metadata:
creationTimestamp: null
name: my-template

objects:

- apiVersion: template.openshift.io/v1
kind: DeploymentConfig

spec:
template:

spec:
containers:

livenessProbe:

failureThreshold: 3
httpGet:

path: /path/to/different/probe

port: 8080

scheme: HTTP
initialDelaySeconds: 60
periodSeconds: 30
successThreshold: 1
timeoutSeconds: 1

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

19

Red Hat build of Node.js 18 Node.js Runtime Guide

APPENDIX C. CONFIGURING A JENKINS FREESTYLE
PROJECT TO DEPLOY YOUR NODE.JS APPLICATION WITH
NODESHIFT

Similar to using nodeshift from your local host to deploy a Node.js application, you can configure Jenkins
to use nodeshift to deploy a Node.js application.

Prerequisites

® Access to an OpenShift cluster.

® The Jenkins container image running on same OpenShift cluster.

® The Node,js plugin installed on your Jenkins server.

® A Node.js application configured to use nodeshift and the Red Hat base image.

Example using the Red Hat base image with nodeshift
I $ nodeshift --dockerlmage=registry.access.redhat.com/rhscl/ubi8/nodejs-12 ...

® The source of the application available in GitHub.

Procedure
1. Create a new OpenShift project for your application:

a. Open the OpenShift Web console and log in.
b. Click Create Project to create a new OpenShift project.
c. Enter the project information and click Create.

2. Ensure Jenkins has access to that project.

For example, if you configured a service account for Jenkins, ensure that account has edit
access to the project of your application.

3. Create a new freestyle Jenkins project on your Jenkins server:

a. Click New Item.
b. Enter a name, choose Freestyle project, and click OK.
c. Under Source Code Management, choose Git and add the GitHub url of your application.

d. Under Build Environment, make sure Provide Node & npm bin/ folder to PATH is checked
and the Node.js environment is configured.

e. Under Build, choose Add build step and select Execute Shell.

f. Add the following to the Command area:

npm install -g nodeshift
nodeshift --dockerlmage=registry.access.redhat.com/rhscl/ubi8/nodejs-12 --
namespace=MY_PROJECT

20

https://docs.openshift.com/container-platform/latest/openshift_images/using_images/images-other-jenkins.html
https://plugins.jenkins.io/nodejs
https://github.com/nodeshift/nodeshift
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

“ONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR NODE.JS APPLICATION WITH NODESHIFT

Substitute MY_PROJECT with the name of the OpenShift project for your application.
g. Click Save.

4. Click Build Now from the main page of the Jenkins project to verify your application builds and
deploys to the OpenShift project for your application.
You can also verify that your application is deployed by opening the route in the OpenShift
project of the application.

Next steps

® Consider adding GITSCM polling or using the Poll SCM build trigger. These options enable
builds to run every time a new commit is pushed to the GitHub repository.

e Consider adding nodeshift as a global package when configuring the Node.js plugin. This allows
you to omit npm install -g nodeshift when adding your Execute Shell build step.

e Consider adding a build step that executes tests before deploying.

21

https://wiki.jenkins.io/display/JENKINS/Github+Plugin#GitHubPlugin-GitHubhooktriggerforGITScmpolling
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Buildsbysourcechanges
https://wiki.jenkins.io/display/JENKINS/NodeJS+Plugin

Red Hat build of Node.js 18 Node.js Runtime Guide

APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES

nodejs-rest-http/package.json

"name": "nodejs-rest-http",
"version": "4.0.0",
"author": "Red Hat, Inc.",
"license": "Apache-2.0",
"scripts": {
"pretest”: "eslint --ignore-path .gitignore .",
"test™: "nyc --reporter=Icov mocha",
"prepare": "echo 'To confirm CVE compliance, run \"npm audit\"" ",
"release": "standard-version -a",
"openshift": "nodeshift --dockerlmage=registry.access.redhat.com/ubi8/nodejs-16", g
"start": "node ."
b
"main": "./bin/www",
"standard-version": {
"scripts": {
"postbump": "npm run postinstall && node release.js",
"precommit": "git add .openshiftio/application.yaml"
}
b
"repository": {
"type": "git",
"url": "git://github.com/nodeshift-starters/nodejs-rest-http.git"

b
"files™: [6
"package.json",
"app.js”,
"public”,
"bin",
"LICENSE"
1,
"bugs": {
"url": "https://github.com/nodeshift-starters/nodejs-rest-http/issues”
b
"homepage": "https://github.com/nodeshift-starters/nodejs-rest-http",
"devDependencies": {
"eslint": "A7.32.0",
"eslint-config-semistandard": "*16.0.0",
"js-yaml": "*4.1.0",
"mocha": ""9.1.3",
"nodeshift": "~8.6.0",
"nyc": "~15.1.0",
"standard-version": ""9.3.2",
"supertest": "~6.1.6"
b
"dependencies": { ﬂ
"body-parser": "~1.19.0",
"debug": ""4.3.3",
"express": "~4.17.1",
"pino": "A7.5.1",

22

https://github.com/nodeshift-starters/nodejs-rest-http/blob/master/package.json

oSO 9606006 0 —m

——

}

APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES

"pino-debug": "*2.0.0",
"pino-pretty": "A7.2.0"

A npm script for running unit tests. Run with npm run test.

A npm script for deploying this application to OpenShift Container Platform. Run with npm run
openshift.

A npm script for starting this application. Run with npm start.
The primary entrypoint for the application when run with npm start.
Specifies the files to be included in the binary that is uploaded to OpenShift Container Platform.

A list of development dependencies to be installed from the npm registry. These are used for
testing and deployment to OpenShift Container Platform.

A list of dependencies to be installed from the npm registry.

23

Red Hat build of Node.js 18 Node.js Runtime Guide

APPENDIX E. ADDITIONAL NODE.JS RESOURCES

® Node.js Home Page

® npm Home Page

24

https://nodejs.org/
https://www.npmjs.com/

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

For additional information about application development with OpenShift, see:

® OpenShift Interactive Learning Portal

25

https://learn.openshift.com/

Red Hat build of Node.js 18 Node.js Runtime Guide

APPENDIX G. THE SOURCE-TO-IMAGE (S21) BUILD PROCESS

Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:
® The application sources hosted in an online SCM repository, such as GitHub.

® The S2| Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

® Optionally, you can also provide environment variables and parameters that are used by S2|
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

26

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO APPLICATION DEVELOPMENT WITH NODE.JS
	1.1. OVERVIEW OF APPLICATION DEVELOPMENT WITH RED HAT RUNTIMES
	1.2. OVERVIEW OF NODE.JS
	1.2.1. Supported Architectures by Node.js
	1.2.2. Support for Federal Information Processing Standard (FIPS)
	1.2.2.1. Additional resources
	1.2.2.2. Verifying that Node.js is running in FIPS mode

	CHAPTER 2. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION
	2.1. DEVELOPING A NODE.JS APPLICATION
	2.2. DEPLOYING A NODE.JS APPLICATION TO OPENSHIFT
	2.2.1. Preparing Node.js application for OpenShift deployment
	2.2.2. Deploying a Node.js application to OpenShift

	2.3. DEPLOYING A NODE.JS APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX

	CHAPTER 3. DEBUGGING YOUR NODE.JS BASED APPLICATION
	3.1. REMOTE DEBUGGING
	3.1.1. Starting your application locally and attaching the native debugger
	3.1.2. Starting your application locally and attaching the V8 inspector
	3.1.3. Starting your application on OpenShift in debugging mode

	3.2. DEBUG LOGGING
	3.2.1. Add debug logging
	3.2.2. Accessing debug logs on localhost
	3.2.3. Accessing Node.js debug logs on OpenShift

	APPENDIX A. ABOUT NODESHIFT
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR NODE.JS APPLICATION WITH NODESHIFT
	Next steps

	APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES
	APPENDIX E. ADDITIONAL NODE.JS RESOURCES
	APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX G. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

