& RedHat

Red Hat build of Eclipse Vert.x 4.3

Release Notes for Eclipse Vert.x 4.3

For use with Eclipse Vert.x 4.3.7

Last Updated: 2023-02-16

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

For use with Eclipse Vert.x 4.3.7

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This Release Note contains important information related to Eclipse Vert.x 4.3.7

Table of Contents

Table of Contents

PREF ACE . i i i e e e e e e 4
RED HAT BUILD OF ECLIPSE VERT.X4.3.7-PLANNEDENDOF LIFE ...t 5
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... i 6
MAKING OPEN SOURCE MORE INCLUSIVE ... i e i it 7
CHAPTER 1. REQUIRED INFRASTRUCTURE COMPONENT VERSIONSo, 8

CHAPTER 2. SUPPORTED ECLIPSE VERT.X RUNTIME COMPONENT CONFIGURATIONS AND

INTE G RATION S ittt ittt ettt ettt ettt et e et e e etaeeaneenaneeaneeeaneeseneeaneesaneennnas 9
CHAPTER 3. FEATURES ottt ittt ettt et e aeeaneeeaneeeneeenneeeaneesaneennneenneenns 10
3.1. NEW AND CHANGED FEATURES 10
3.1.1. New or changed features introduced in the 4.3 release 10
3.1.1.1. Micrometer adds the metric type to JMX object names 10
3.1.1.2. Eclipse Vert.x with GraphQL Java 19 uses platform locale by default 10
3.1.1.3. Users who use jackson-databind features must include this dependency in their projects 10
3.1.1.4. Changes in body handler setup with Eclipse Vert.x OpenAPI 10
3.1.1.5. Eclipse Vert.x reactive Oracle client enhancements for BLOB and RAW data values 1
3.1.1.6. Retrieval of automatically generated keys disabled by default 12
3.11.7. Use of io.vertx.core.shareddata.ClusterSerializable interface 12
3.1.1.8. Renaming of requestsTagsProvider option for Micrometer request metrics 12
3.1.1.9. OAuth2 OBO calls expect explicit OAuth2Credentials rather than TokenCredentials 12
3.1.1.10. RoutingContext.fileUploads() method returns a list 13
3.1.1.11. Single method to implement a sub router 13
3.1.1.12. Caching of parsed request body across multiple handler invocations 14
3.1.1.13. Changes in EventBus notification defaults 14
3.1.1.14. Changes in MySQL client batch execution 15
3.1.1.15. MongoDB enhancements for hints and hint strings 15
3.1.1.16. Changes in building a schema 15
3.1.2. New features introduced in earlier 4.x releases 16
3.1.2.1. Java 17 support 16
3.1.2.2. HTTP header validation in RequestOptions 16
3.1.2.3. Use simple as the default locale for collation 16
3.1.2.4. StaticHandler file system configuration changes 16
3.1.2.5. Random server port sharing within a verticle 17
3.1.2.6. HTTP Server cookie changes 17
3.1.2.7. Context management with GraphQLContext object 17
3.1.2.8. OpenJDKI11 OpenShift images support multiple architectures 18
3.1.2.9. Support Eclipse Vert.x Runtime on FIPS enabled Red Hat Enterprise Linux (RHEL) system 18
3.1.2.10. HTTP client redirect handler propagates headers 18
3.1.2.11. Upgrade to Infinispan 12 18
3.1.2.12. JSON configuration takes precedence over connection string options in MongoDB Client 19
3.1.2.13. Removed the deprecated JWT options methods 19
3.1.2.14. Deprecated the custom formatter method that accepts a function 19
3.1.2.15. New exception to handle HTTP failures 20
3.1.2.16. Support for RxJava 3 20
3.1.2.17. Context server interceptor binds all types of data and is more secure 20

3.1.2.18. Matching of ending slash (/) in route paths that end with wildcard character is no longer required 20
3.1.2.19. Removed the autoRegistrationOflmporters attribute from service discovery options 21
3.1.2.20. Authenticate method in authentication provider class updated to support token as input credentials

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

21
3.1.2.21. Get method for PEM keys returns Buffer instead of a String 21
3.1.2.22. Kubernetes service importer is no longer registered automatically 22
3.1.2.23. Use future methods for asynchronous operations 22
3.1.2.24. No dependency on the Jackson Databind library 22
3.1.2.25. Handling deprecations and removals 22
3.1.2.26. Support for distributed tracing 22
3.1.2.27. New publishing location for EventBus JavaScript Client 23
3.1.2.28. Deploy Eclipse Vert.x applications using OpenShift Maven plugin 23
3.1.2.29. Eclipse Vert.x metering labels for OpenShift 23
3.1.2.30. Support for OpenJDK 8 and OpenJDK 11 RHEL 8 Universal Base Images (UBI8) 24
3.2. DEPRECATED FEATURES 24
3.2.1. Features deprecated in the 4.3 release 24
3.2.2. Features deprecated in earlier 4.x releases 25
CHAPTER 4. RELEASE COMP ONENT S ...ttt et ieit et eieeeeeeaneennneennnennneenn 33
4.1. SUPPORTED ARTIFACTS INTRODUCED IN THIS RELEASE 33
4.2. TECHNOLOGY PREVIEW ARTIFACTS INTRODUCED IN THIS RELEASE 33
4.2.1. Technology Preview artifacts introduced in the 4.3 release 33
4.2.2. Technology Preview artifacts introduced in earlier 4.x releases 33
4.3. ARTIFACTS REMOVED IN THIS RELEASE 34
4.4. ARTIFACTS DEPRECATED IN THIS RELEASE 34
CHAPTER 5. FIXED ISSUES .ottt ettt ettt et eeateeaneeeaneeeneeeaneeeaneesaneeennesaneenn 35
5.1. FIXED ISSUES IN THE 4.3 RELEASE 35
5.1.1. Threads blocked with io.vertx.coreVertxException when using gRPC for client and server communication
35
5.1.2. JDBCClient error when searching table data by ROWID 35
5.1.3. JDBCPool error when parsing ROWID 35
5.1.4. Unexpected results in stored procedure calls when using a PostgreSQL JDBC driver 9.0 or later 35
5.2. FIXED ISSUES IN EARLIER 4.X RELEASES 36
5.2.1. Google Guava classes included in GraphQL builds 36
5.2.2. vertx-opentracing available in Eclipse Vert.x builds 36
CHAPTER 6. KNOWN ISSUES ...ttt ettt et eeateeaneeeaneeeneeeaneeeaneennneeannesaneenn 37
6.1. KNOWN ISSUES IN THE 4.3 RELEASE 37
6.2. KNOWN ISSUES IN EARLIER 4. X RELEASES 37
6.2.1. Tokens issued by RH-SSO result in OAuth2 validation failures after migrating to Eclipse Vert.x 4.2 37
6.2.2. Compilation error when using vertx-oracle-client with JDK 8 37
6.2.3. KubernetesServicelmporter() cannot be directly registered in Eclipse Vert.x Reactive Extensions (Rx)
37
6.2.4. Red Hat AMQ Streams images are not available for IBM Z and IBM Power Systems 38
6.2.5. Connection between a RHEL 8-based database application and a RHEL 7-based MySQL 5.7 database
fails due to TLS protocol version mismatch 38
6.2.6. False Connection reset by peer error messages when calling application endpoint 38
CHAPTER 7. ADVISORIES RELATED TO THIS RELEASEttt ittt iie et raieennnenns 40

Table of Contents

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

PREFACE

Date of release: 2023-02-13

RED HAT BUILD OF ECLIPSE VERT.X 4.3.7 - PLANNED END OF LIFE

RED HAT BUILD OF ECLIPSE VERT.X 4.3.7 - PLANNED END OF
LIFE

The Red Hat build of Eclipse Vert.x 4.3.7 is the last supported release that Red Hat plans to provide. The
full support ends on May 31, 2023. See the product life cycle page for details. Red Hat will continue to
deliver security and bug fixes for Red Hat build of Eclipse Vert.x with 4.3.x releases until the product end
of life.

You can migrate Eclipse Vert.x applications to the Red Hat build of Quarkus.

Red Hat build of Quarkus

Quarkus is a Kubernetes-native Java framework tailored for JVM and native compilation, created
using the best Java libraries and standards. It provides an effective solution for running Java
applications in environments such as serverless, microservices, containers, Kubernetes, FaaS, or the
cloud.

The reactive capabilities of Quarkus use Eclipse Vert.x internally, and you can reuse Eclipse Vert.x
applications in Quarkus. Therefore, migration of Eclipse Vert.x applications to Quarkus is the
recommended option.

See the Quarkus product page and documentation for more information.

We will create resources to help you with the migration process.

https://access.redhat.com/support/policy/updates/jboss_notes#p_vertx
https://access.redhat.com/products/quarkus/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. To provide feedback, you can highlight the textin a
document and add comments.

This section explains how to submit feedback.

Prerequisites

® You are logged in to the Red Hat Customer Portal.
® |nthe Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

CHAPTER 1. REQUIRED INFRASTRUCTURE COMPONENT
VERSIONS

When you work with Red Hat build of Eclipse Vert.x, you can use the following components. However,
Red Hat does not provide support for components listed below except Red Hat OpenShift cluster and
Red Hat OpenJDK.

Required components

The following components are required to build and develop applications using Eclipse Vert.x.

Component hame Version

Maven 3.6.0 or later
JDk(2] 8, Mor17

[a]A full JDK installation is required, because JRE does not provide tools for compiling Java applications from source.

Optional components

Red Hat recommends using the following components depending on your development and
production environments.

Component hame Version

git 2.0 or later
OpenShift Maven Plugin 111

oc command line tool 3.1 or laterl@]
Access to a Red Hat OpenShift cluster!P] 3.Mor later

[a] The version of the OC CLI tool should correspond to the version of OCP that you are using.

[b] OpenShiftCluster is supported by Red Hat

CHAPTER 2. SUPPORTED ECLIPSE VERT.X RUNTIME COMPONENT CONFIGURATIONS AND INTEGRATIONS

CHAPTER 2. SUPPORTED ECLIPSE VERT.X RUNTIME
COMPONENT CONFIGURATIONS AND INTEGRATIONS

The following resource defines the supported configurations and integrations of Red Hat products with
Eclipse Vert.x:

® For alist of technologies that are supported for integration with Eclipse Vert.x in production
environments see the Supported Eclipse Vert.x configurations and integrations.

® Foralist of Eclipse Vert.x runtime artifacts and their versions see the component details page.

https://access.redhat.com/articles/3348741#VERTX_3_x
https://access.redhat.com/articles/3348731

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

CHAPTER 3. FEATURES

3.1. NEW AND CHANGED FEATURES

This section describes the new functionalities introduced in this release. It also contains information
about changes in the existing functionalities.
3.1.1. New or changed features introduced in the 4.3 release

Eclipse Vert.x 4.3 provides the following new or changed features.

3.1.1.1. Micrometer adds the metric type to JMX object names

From Eclipse Vert.x 4.3.4 onward, because of the upgrade to Micrometer 1.9.3, object names now
include the metric type when using Eclipse Vert.x Micrometer Metrics with Java Management
Extensions (JMX).

This enhancement is only relevant for users of the micrometer-registry-jmx module.

3.1.1.2. Eclipse Vert.x with GraphQL Java 19 uses platform locale by default

From Eclipse Vert.x 4.3.3 onward, Eclipse Vert.x supports version 19 of GraphQL Java, which is the Java
server implementation of the GraphQL query language. When using GraphQL Java 19, if you do not set a
locale in the JVM, the GraphQL engine now uses the JVM default locale, which is the locale of the
platform where the JVM is installed. Alternatively, you can configure the JVM default Locale to use a
different value or you can use the Eclipse Vert.x Web GraphQL handler to set a custom locale.

NOTE

Eclipse Vert.x 4.3.3 or later also supports version 18 of GraphQL Java.

3.1.1.3. Users who use jackson-databind features must include this dependency in their
projects

From Eclipse Vert.x 4.3.2 onward, if you use the Jackson Databind library with the vertx-web-openapi,
vertx-auth-webauthn, or vertx-config-yaml module, you must add the following dependency to the
project descriptor:

<dependency>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-databind</artifactld>
</dependency>

Because the Jackson Databind library has caused some security vulnerabilities and other modules
typically only use Jackson Databind to perform some internal action, the use of Eclipse Vert.x parsers
supersedes any need to use the vertx-web-openapi, vertx-auth-webauthn, or vertx-config-yaml
module with Jackson Databind. However, if you want to continue using any of these modules with
Jackson Databind, you must explicitly include this dependency in your project, as shown in the preceding
example.

3.1.1.4. Changes in body handler setup with Eclipse Vert.x OpenAPI

10

CHAPTER 3. FEATURES

From Eclipse Vert.x 4.3.1 onward, Eclipse Vert.x OpenAPI requires use of the
routerBuilder.rootHandler() method, to ensure that the body handler is set up in the correct order after
any PLATFORM or SECURITY_POLICY handlers.

For example:

BodyHandler bodyHandler = BodyHandler.create("my-uploads");
routerBuilder.rootHandler(bodyHandler);

In earlier releases of Eclipse Vert.x, Eclipse Vert.x OpenAPI supported the routerBuild.bodyHandler()

method for adding the body handler. However, the bodyHandler() method had the following

disadvantages:

® Eclipse Vert.x did not perform any validation to ensure that the setup was in the correct order.

® Eclipse Vert.x OpenAPl stored the body handler as a special handler to ensure that it would
always be the first handler on the route, but this was not always guaranteed.

The bodyHandler() method is deprecated in Eclipse Vert.x 4.3.1. The preceding rootHandler call now
supersedes the following bodyHandler call that was available in previous versions:

BodyHandler bodyHandler = BodyHandler.create("my-uploads");
routerBuilder.bodyHandler(bodyHandler);

3.1.1.5. Eclipse Vert.x reactive Oracle client enhancements for BLOB and RAW data values

From Eclipse Vert.x 4.3.1 onward, the Eclipse Vert.x reactive Oracle client includes the following
enhancements for BLOB and RAW data:

® When reading BLOB or RAW data, the client now returns an io.vertx.core.buffer.Buffer value.
For example:

client.preparedQuery("SELECT data FROM images WHERE id = ?")
.execute(Tuple.of(id))
.onComplete(ar -> {
if (ar.succeeded()) {
Row row = ar.result().iterator().next();

/I Use io.vertx.core.buffer.Buffer when reading
Buffer data = row.getBuffer("data");

}
D;

NOTE

This change was introduced for consistency as part of fixing an issue with RAW
values as query parameters. In earlier releases of Eclipse Vert.x, BLOB or RAW
data was returned as a byte array.

e When writing or filtering BLOB data, the data is now represented by a new
io.vertx.oracleclient.data.Blob type.
For example:

1

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

client.preparedQuery("INSERT INTO images (name, data) VALUES (?, ?)")
/I Use io.vertx.oracleclient.data.Blob when inserting
.execute(Tuple.of("beautiful-sunset.jpg", Blob.copy(imageBuffer)))
.onComplete(ar -> {

// Do something

Ok

3.1.1.6. Retrieval of automatically generated keys disabled by default

From Eclipse Vert.x 4.3.1 onward, in the Eclipse Vert.x Oracle reactive client, the retrieval of
automatically generated keys is disabled by default. The Eclipse Vert.x Oracle reactive client does not
typically need to retrieve automatically generated keys, because most applications do not rely on the
ROWID.

This enhancement also facilitates queries such as INSERT...SELECT, which cannot run successfully
when the retrieval of automatically generated keys is enabled.

3.1.1.7. Use of io.vertx.core.shareddata.ClusterSerializable interface

From Eclipse Vert.x 4.3.0 onward, Eclipse Vert.x supports the
io.vertx.core.shareddata.ClusterSerializable interface for reading and writing objects to and from a
buffer, when these objects are either read from an AsyncMap or decoded from an EventBus message
body.

Earlier releases of Eclipse Vert.x supported the io.vertx.core.shareddata.impl.ClusterSerializable
interface. However, because this interface was provided in an implementation package, it was
considered potentially less reliable. The io.vertx.core.shareddata.impl.ClusterSerializable interface is
now deprecated in Eclipse Vert.x 4.3.0 and made public.

3.1.1.8. Renaming of requestsTagsProvider option for Micrometer request metrics

From Eclipse Vert.x 4.3.0 onward, in the MicrometerMetricsOptions class, the requestsTagsProvider
option for server request metrics is renamed serverRequestTagsProvider. This enhancement is
required because a similar clientRequestTagsProvider option is also now available for client request
metrics.

In earlier releases of Eclipse Vert.x, the requestsTagsProvider option used a getter and a setter, which
were named getRequestsTagsProvider and setRequestsTagsProvider, respectively. In Eclipse Vert.x

4.3.0 and later versions, the getter and setter for the serverRequestTagsProvider option are renamed
getServerRequestTagsProvider and setServerRequestTagsProvider.

3.1.1.9. OAuth2 OBO calls expect explicit OAuth2Credentials rather than TokenCredentials

From Eclipse Vert.x 4.3.0 onward, when OAuth2 authorization is configured in on-behalf-of (OBO)
mode, OAuth2 requires that an OAuth2Credentials object is explicitly specified to authorize requests.

For example:

oauth2.authenticate(
new Oauth2Credentials().setAssertion("head.body.signature").addScope("a").addScope("b"))

In earlier releases of Eclipse Vert.x, OAuth2 authorization in OBO mode allowed the use of
TokenCredentials. However, because the flow is optional, to allow reuse of the same
OAuth2Credentials object, the preceding Oauth2Credentials call now supersedes the following type

12

CHAPTER 3. FEATURES

of TokenCredentials call that was available in previous versions:

oauth2.authenticate(
new TokenCredentials("head.body.signature").addScope("a").addScope("b"));
3.1.1.10. RoutingContext.fileUploads() method returns a list

From Eclipse Vert.x 4.3.0 onward, the RoutingContext.fileUploads() method returns a
List<FileUpload> value. Storing file uploads in a list helps to preserve the order of the uploads.

For example:

I List<FileUpload> uploads = ctx.fileUploads();

In earlier releases of Eclipse Vert.x, the RoutingContext.fileUploads() method returned a
Set<FileUpload> value. However, storing file uploads in a set was not consistent with the World Wide
Web Consortium (W3C) specification for form content types, because it did not preserve the correct
order and users could not rely on the upload name to be a unique key. The preceding example now
supersedes the following method declaration that was available in previous versions:

I Set<FileUpload> uploads = ctx.fileUploads();

3.1.1.11. Single method to implement a sub router

From Eclipse Vert.x 4.3.0 onward, the Route.subRouter(Router) method is the only supported way to
implement a sub router.

Earlier releases of Eclipse Vert.x supported two different methods for implementing sub routers:

o Route.subRouter(Router)

® Router.mountSubRouter(String, Router)
However, the behavior between these two methods was inconsistent, because the
Router.mountSubRouter method allowed any path whereas the Route.subRouter method explicitly
requires a wildcard asterisk (*) to represent the sub routing path. The Router.mountSubRouter method

also delegated to the Route.subRouter method by appending the missing wildcard.

In Eclipse Vert.x 4.3.0 and later versions, the Router.mountSubRouter method is deprecated. Router
objects must now also use the Route.subRouter method to implement sub routers. For example:

I router.route("/eventbus/*").subRouter(otherRouter);

The preceding router.route().subRouter() call now supersedes the following type of
router.mountSubRouter() call that was available in previous versions:

I router.mountSubRouter("/eventbus”, otherRouter);

NOTE

In previous releases, router objects could also use the router.route().subRouter() call as
an alternative to using router.mountSubRouter().

13

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

3.1.1.12. Caching of parsed request body across multiple handler invocations

From Eclipse Vert.x 4.3.0 onward, after a body handler parses the body of a web request, the body
handler provides the body buffer to the routing context for the request. Caching the body buffer in the
routing context means that multiple different handlers that want a decoded view of the request body
can get the cached result without having to parse the body again. This enhancement also supports
situations where the body content is of type application/json.

The RoutingContext class provides a new body() method that is used to get the request body as a
specified type.

For example:

RoutingContext.body().asString()
RoutingContext.body().asString(String encoding)
RoutingContext.body().asdsonObject()
RoutingContext.body().asdsonArray()
RoutingContext.body().asdsonObject(int maxLength)
RoutingContext.body().asJsonArray(int maxLength)
RoutingContext.body().buffer()

The new body() getter also provides the following additional functionality:

// the length of the buffer (-1) for null buffers
RoutingContext.body().length()

/I Converting to POJO
RoutingContext.body().asPOJO(Class<T> clazz)
RoutingContext.body().asPOJO(Class<T> clazz, int maxLength)

This enhancement provides the following advantages:
® The body() getter is never null, which helps to avoid any need to perform null checks.

® The request body needs to be parsed only once unless the base buffer changes. Any changes to
the base buffer trigger another parse and the cached values are overridden at that point.

In earlier releases of Eclipse Vert.x, the RoutingContext class provided the following methods that are
now deprecated in favor of using the body() method:

RoutingContext.getBodyAsString()
RoutingContext.getBodyAsString(String encoding)
RoutingContext.getBodyAsJson()
RoutingContext.getBodyAsJsonArray()
RoutingContext.getBodyAsJson(int maxLength)
RoutingContext.getBodyAsJsonArray(int maxLength)
RoutingContext.getBody()

3.1.1.13. Changes in EventBus notification defaults

From Eclipse Vert.x 4.3.0 onward, to avoid unnecessary traffic, notifications about changes in the
Eclipse Vert.x circuit breaker state are disabled by default. To enable these notifications, call the
setNotificationAddress method of the CircuitBreakerOptions object with a parameter that is not null.

For example:

14

CHAPTER 3. FEATURES

CircuitBreakerOptions options = new CircuitBreakerOptions()
.setNotificationAddress(CircuitBreakerOptions.DEFAULT_NOTIFICATION_ADDRESS);

When you enable notifications as shown in the preceding example, the default behavior is to
send notifications to local consumers only. To send notifications on a cluster-wide basis, call the
setNotificationLocalOnly method with a parameter of false.

For example:

CircuitBreakerOptions options = new CircuitBreakerOptions()
.setNotificationAddress(CircuitBreakerOptions. DEFAULT_NOTIFICATION_ADDRESS)
.setNotificationLocalOnly(false);

3.1.1.14. Changes in MySQL client batch execution

From Eclipse Vert.x 4.3.0 onward, the Eclipse Vert.x reactive SQL client supports pipelined queries and
runs batch queries in pipelining mode by default. Pipelining means that requests are sent on the same
connection without waiting for responses to previous requests.

In earlier releases of Eclipse Vert.x, because MySQL does not have native protocol support for batching,
the SQL client ran batch queries by running prepared queries in a sequence, which the user could
operate directly through API calls.

3.1.1.15. MongoDB enhancements for hints and hint strings

From Eclipse Vert.x 4.3.0 onward, Eclipse Vert.x includes the following MongoDB enhancements for
hints and hint strings:

e FindOptions objects now support hints of type JSONObject. This supersedes the behavior in
previous releases where FindOptions objects supported hints of type String.

e BulkOperations and UpdateOptions objects also now support hints of type JSONODbject. The
BulkOperations and UpdateOptions classes each provide getHint() and setHint() methods for
this purpose.

e BulkOperations, UpdateOptions, and FindOptions objects also now support hint strings of

type String. The BulkOperations, UpdateOptions, and FindOptions classes each provide
getHintString() and setHintString() methods for this purpose.

3.1.1.16. Changes in building a schema

From Eclipse Vert.x 4.3.0 onward, when building a schema, use the JSON representation that the
Eclipse Vert.x JSON schema provides. The JSON representation allows use of any validator.

For example:
I JsonSchema schema = JsonSchema.of(dsl.todson());

In earlier releases of Eclipse Vert.x, the SchemaBuilder class provided a build() method, which required
use of a specific implementation of a validator. The build() method is deprecated in Eclipse Vert.x 4.3.0.
The preceding JsonSchema example now supersedes the following type of build() method call that was
available in previous versions:

I Schema schema = dsl.build(parser);

15

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

3.1.2. New features introduced in earlier 4.x releases

The following new features were introduced in earlier 4.x releases.

3.1.2.1. Java 17 support

From Eclipse Vert.x 4.2.7 onward, Eclipse Vert.x is certified for use with Red Hat OpenJDK 17.

3.1.2.2. HTTP header validation in RequestOptions

From Eclipse Vert.x 4.2.4 onward, the RequestOptions method validates HTTP headers, and the
request fails if a header name is invalid.

In earlier releases of Eclipse Vert.x, the HTTPClientRequest validated HTTP headers, because the
RequestOptions method used a Multimap implementation that did not validate header names.

3.1.2.3. Use simple as the default locale for collation
From Eclipse Vert.x 4.2.4 onward, the simple locale is used as the default locale for MongoDB collation.

Eclipse Vert.x 4.2.3 introduced support for the collation options to support language-specific rules for
comparing strings. In Eclipse Vert.x 4.2.3, the platform default was used as the default locale. However,
because the platform default is not a constant value, it could lead to failures on systems that use a locale
that is not supported by MongoDB. For example, Locale.FR would work successfully, but
Locale.FR_FR would not be supported

3.1.2.4. StaticHandler file system configuration changes

From Eclipse Vert.x 4.2.4 onward, the StaticHandler configuration properties for the webroot directory
and file system access are defined in the StaticHandler factory constructor call.

For example, the following constructor call defines a webroot directory, static/resources, and relative
file system access:

I StaticHandler.create(FileSystemAccess.RELATIVE, "static/resources");

For example, the following constructor call defines a webroot directory, /home/paulo/Public, and root
file system access:

I StaticHandler.create(FileSystemAccess.ROOT, "/home/paulo/Public");

In earlier releases of Eclipse Vert.x, the allowRootFileSystemAccess and webroot properties were
defined by using setters. However, these property values were not final, which could lead to invalid static
configuration. In Eclipse Vert.x 4.2.4, the preceding constructor call now supersedes the following setter
declarations:

StaticHandler.create()
.setAllowRootFileSystemAccess(irue)
.setWebRoot("/home/paulo/Public");

16

CHAPTER 3. FEATURES

NOTE

The StaticHandler.create() method still uses default values of RELATIVE and webroot
as in earlier releases.

3.1.2.5. Random server port sharing within a verticle

From Eclipse Vert.x 4.2.0 onward, two distinct HTTP servers that are bound with a negative port number,
such as -1, share the same random port within the instances of a specific verticle deployment. This
means that multiple HTTP servers bound with port -1 will share the same random port. Similarly, multiple
HTTP servers bound with port -2 will share the same random port, and so on. This port sharing behavior
that is based on negative port numbers is independent of the verticle, because it allows different HTTP
servers to have a different random port.

In earlier releases of Eclipse Vert.x, random server port sharing was based on two HTTP servers bound
with port 0. However, this prevented the same verticle from binding two HTTP servers with different
random ports within the instances of the same verticle.

3.1.2.6. HTTP Server cookie changes

Eclipse Vert.x 4.2.0 includes a new method, Set<Cookie> cookies(), that enables getting all cookies.

In earlier releases of Vert.x, the HttpServerRequest and HttpServerResponse interfaces used the
following method that is now deprecated in Eclipse Vert.x 4.2.0:

I Map<String, Cookie> cookieMap()

The RFC 6265 - HTTP State Management Mechanism specification states that each cookie is
uniquely identified based on the tuple <name, domain, path>. However, the Map<String, Cookie>
cookieMap() method used in earlier releases of Eclipse Vert.x wrongly assumed that cookies could be
identified based on their name only. This meant that when multiple cookies shared the same name, the
map held the last cookie to be parsed, and any previously parsed value was silently overwritten.

3.1.2.7. Context management with GraphQLContext object

Eclipse Vert.x 4.2.0 supports version 17 of GraphQL Java, which is the Java server implementation of
the GraphQL query language. With GraphQL Java 17, the GraphQLContext object is now the standard
for sharing contextual data between components of a GraphQL Java application.

Eclipse Vert.x 4.2.0 introduces the following new mechanism to configure GraphQL execution:

GraphQLHandler handler = GraphQLHandler.create(graphQL).beforeExecute(builderWithContext ->
{

DatalLoader<String, Link> linkDataLoader = DataLoaderFactory.newDataloader(linksBatchLoader);
DataloaderRegistry datalLoaderRegistry = new DatalLoaderRegistry().register("link",
linkDataLoader);
builderWithContext.builder().dataLoaderRegistry(dataLoaderRegistry);

h;

In earlier releases of Eclipse Vert.x, the following hooks were used in Vert.x Web GraphQL handlers to
configure a data loader. The following hooks are now deprecated in Eclipse Vert.x 4.2.0.

GraphQLHandler handler = GraphQLHandler.create(graphQL).dataLoaderRegistry(rc -> {
Dataloader<String, Link> linkDataLoader = DatalLoader.newDataloader(linksBatchLoader);

17

https://datatracker.ietf.org/doc/html/rfc6265#section-5.3

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

I return new DataLoaderRegistry().register("link", linkDataLoader);
}

L]

3.1.2.8. OpenJDKI11 OpenShift images support multiple architectures

Opend9 images for IBM Z and IBM Power Systems have been deprecated. The following OpenJDKI11
image has been updated to support multiple architectures:

e ubi8/openjdk-11

You can use the OpenJDKI1image with the following architectures:
® x86 (x86_64)
® s390x (IBMZ)

® ppc64le (IBM Power Systems)

3.1.2.9. Support Eclipse Vert.x Runtime on FIPS enabled Red Hat Enterprise Linux (RHEL)
system

Red Hat build of Eclipse Vert.x runs on a FIPS enabled RHEL system and uses FIPS certified libraries
provided by RHEL.

3.1.2.10. HTTP client redirect handler propagates headers

From Eclipse Vert.x 4.1.0 onward, if there are headers in an HTTP redirect, then the HTTP client redirect
handler propagates the headers to the next request. This change enables the redirect handler to have
more control over the entire redirected request.

In earlier releases of Eclipse Vert.x, where there were redirected requests with headers, the HTTP client
would handle the headers after the redirect.

The following example shows you how redirects are handled in Eclipse Vert.x 4.1.0:

RequestOptions options = new RequestOptions();
options.setMethod(HttpMethod.GET);
options.setHost(uri.getHost());
options.setPort(port);

options.setSsl(ssl);

options.setURI(requestURI);

// From 4.1.0 propagate headers
options.setHeaders(resp.request().headers());
options.removeHeader(CONTENT_LENGTH);

3.1.2.11. Upgrade to Infinispan 12

In Eclipse Vert.x 4.1.0, the Infinispan cluster manager has been updated and is based on Infinispan 12.
Infinispan 11 had a bug, which did not allow storing of byte arrays in a multimap cache. As a wordaround,

the Eclipse Vert.x cluster manager had to use an internal Infinispan class, WrappedBytes, to store
eventbus subscription data. This issue has been fixed in Infinispan 12.

18

CHAPTER 3. FEATURES

3.1.2.12. JSON configuration takes precedence over connection string options in MongoDB
Client

In Eclipse Vert.x 4.1.0, the JSON configuration options are applied even if a connection_string option is
available.

The following configuration options are now applied:

{
mongo:{
db_name: "mydb"
connection_string: "mongodb://localhost:27017"
maxPoolSize: 10
minPoolSize: 3
}
}

In earlier releases of Eclipse Vert.x, the JSON configuration options were ignored when connection string
was available. For example, consider the previous example. In earlier releases of Eclipse Vert.x, db_name,
maxPoolSize, and minPoolSize options would have been ignored.

3.1.2.13. Removed the deprecated JWT options methods

From Eclipse Vert.x 4.0 onward, the JWT and OAuth2 handlers are used to handle scopes.

From Eclipse Vert.x 4.1.0 onward, JWTOptions.setScopes(List<String>),
JWTOptions.addScope(String) and JWTOptions.withScopeDelimiter(String) methods have been
removed. These methods did not comply with the specification.

The following example shows you how to handle scopes in Eclipse Vert.x 4.1.0.

// before 4.1.0
JWTAuthOptions authConfig = new JWTAuthOptions()
.setJWTOptions(new JWTOptions()
.addScope("a")
.addScope("b")
.withScopeDelimiter(" ")));

JWTAuth authProvider = JWTAuth.create(vertx, authConfig);
router.route("/protected/*").handler(JWTAuthHandler.create(authProvider));

//in4.1.0
JWTAuth authProvider = JWTAuth.create(vertx, new JWTAuthOptions());

router.route("/protected/*").handler(
JWTAuthHandler.create(authProvider)
.addScope("a")
.addScope("b")
.withScopeDelimiter(" "));

3.1.2.14. Deprecated the custom formatter method that accepts a function

19

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

From Eclipse Vert.x 4.1.0, LoggerHandler.customFormatter(Function) method has been deprecated.
The function takes as input an HitpServerRequest and returns a formatted log string. Because the
output is a string, it is not possible to access the context.

Use the new method LoggerHandler customFormatter(LoggerFormatter formatter) instead. The
method takes as input a custom formatter that gives access to the context.

3.1.2.15. New exception to handle HTTP failures

From Eclipse Vert.x 4.1.0, a new exception class io.vertx.ext.web.handler.HttpException is available
that can be used to handle HTTP failures. You can use the exception to specify custom status codes
other than 500. For example, new HttpException(401, “Forbidden”) indicates that the requests that
are forbidden should return status code 401.

3.1.2.16. Support for RxJava 3

From Eclipse Vert.x 4.1.0, RxJava 3 is supported.
® Anew rxified APl is available in the io.vertx.rxjava3 package.

® |ntegration with Eclipse Vert.x JUnit5 is provided by the vertx-junits-rx-java3 binding.

3.1.2.17. Context server interceptor binds all types of data and is more secure

From Eclipse Vert.x 4.0.3, the ContextServerInterceptor.bind() method binds all types of data to the
context. The method is more secure now as it does not expose the storage details.

In releases prior to Eclipse Vert.x 4.0.3, the method used to bind only 'String' data type to context. It
also exposed the storage details.

To use the updated ContextServerinterceptor.bind() method, you must update your application.

The following example shows the code in releases prior to Eclipse Vert.x 4.0.3.

// Example code from previous releases

class X extends ContextServerlnterceptor {
@Override
public void bind(Metadata metadata, ConcurrentMap<String, String> context) {

The following example shows the replacing code fpr Eclipse Vert.x 4.0.3 release.

// Replacing code for Eclipse Vert.x 4.0.3 release

class X extends ContextServerinterceptor {
@Override
public void bind(Metadata metadata) {

3.1.2.18. Matching of ending slash (/) in route paths that end with wildcard character is no
longer required

In releases prior to Eclipse Vert.x 4.0.3, if routes were defined with a path ending in slash and a wildcard
/*, the routes would be called only if the matching request also included the ending slash /. This rule
caused problems when the wildcard was empty.

20

CHAPTER 3. FEATURES

From Eclipse Vert.x 4.0.3 onward, this rule is no longer applied. You can create routes whose paths end
in a slash (/). However, it is not mandatory to specify the slash in the request URLSs.

Also, you can create and use request URLSs to call routes that end with wildcards in their path instead of
slash (/). For example, routes with wildcard can be defined as /foo/*. Here the route has to match an open
wildcard at the end of the path. The request URL can be /foo.

The table shows the behavior in Eclipse Vert.x 4.0.3 and previous releases when you send a request URL
/foo/*. You can see that the ending slash is optional in Eclipse Vert.x 4.0.3 and request matches the
route.

Eclipse Vert.x 4.0.3 Releases prior to Eclipse Vert.x
4.0.3
/foo Match No Match
/foofighters No Match No Match
/foo/ Match Match
/foo/bar Match Match

3.1.2.19. Removed the autoRegistrationOflmporters attribute from service discovery options
The autoRegistrationOflmporters attribute has been removed from service discovery options.
3.1.2.20. Authenticate method in authentication provider class updated to support token as
input credentials

In releases prior to Eclipse Vert.x 4.0.3, the AuthenticationProvider.authenticate() method would
incorrectly take jwt: someValue as input credentials.

From Eclipse Vert.x 4.0.3, the AuthenticationProvider.authenticate() method has been updated and
takes token: someValue as input credentials. This change ensures that both JSON and typed APIs are

consistent and can be used interchangeably.

The following code shows the implementation for the authenticate method in releases prior to Eclipse
Vertx 4.0.3.

I new JsonObject().put("jwt", "token...");

The following code shows the implementation for the authenticate method in Eclipse Vert.x 4.0.3
release.

I new JsonObject().put("token", "token...");

3.1.2.21. Get method for PEM keys returns Buffer instead of a String
The PubSecKeyOptions.getBuffer() method returns the PEM or secret key buffer. In releases prior to

Eclipse Vert.x 4.0.2, the key buffer was stored and returned as a String. However, it is recommended to
save secrets as a Buffer. From Eclipse Vert.x 4.0.2 onward, the method stores and returns the key buffer

21

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

as a Buffer. This change improves the security and handling of secrets.

The PubSecKeyOptions.setBuffer() method continues to accept a String argument. In the set
method, an overload for Buffer has been added to safely handle non ASCII secret materials. This change
does not require any change to the existing code.

3.1.2.22. Kubernetes service importer is no longer registered automatically

From Eclipse Vert.x 4, the KubernetesServicelmporter discovery bridge is no longer registered
automatically. Even if you have added the bridge in the classpath of your Maven project, it will not be
automatically registered.

You must manually register the bridge after creating the ServiceDiscovery instance.

3.1.2.23. Use future methods for asynchronous operations

Eclipse Vert.x 4 uses futures for asynchronous operations. Every callback method has a corresponding
future method.

Futures can be used to compose asynchronous operations. When you use futures, the error handling is
better. Therefore, it is recommended to use a combination of callback and futures in your applications.

3.1.2.24. No dependency on the Jackson Databind library

In Eclipse Vert.x 4, Jackson Databind is an optional Maven dependency. If you want to use this
dependency, you must explicitly add it in the classpath. For example, if you are object mapping JSON,
then you must explicitly add the dependency.

3.1.2.25. Handling deprecations and removals

In Eclipse Vert.x 4, new enhanced features have been provided. The old features and functions have
been deprecated or removed in Eclipse Vert.x 4. Before you migrate your applications to Eclipse Vert.x
4, check for deprecations and removals.

The Java compiler generates warnings when deprecated APIs are used. You can use the compiler to
check for deprecated methods while migrating applications to Eclipse Vert.x 4.

3.1.2.26. Support for distributed tracing

Eclipse Vert.x 4 supports distributed tracing. You can use tracing to monitor microservices and identify
performance issues.

Eclipse Vert.x 4 integrates with OpenTracing system.
The following Eclipse Vert.x components can log traces:
® HTTP server and HTTP client
® Eclipse Vert.x SQL client

® Eclipse Vert.x Kafka client

22

https://opentracing.io

CHAPTER 3. FEATURES

IMPORTANT

Tracing is available as Technology Preview. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

3.1.2.27. New publishing location for EventBus JavaScript Client

In Eclipse Vert.x 4, the EventBus JavaScript client, vertx-web-client.js is not published as a Red Hat
artifact in the Maven repository.

The client is published in the npm repository. You can access the client from the following location:
@vertx/eventbus-bridge-client.js
3.1.2.28. Deploy Eclipse Vert.x applications using OpenShift Maven plugin

Use the OpenShift Maven plugin to deploy your Eclipse Vert.x applications on OpenShift. The Fabric8
Maven plugin is no longer supported. For more information, see the section migrating from Fabric8
Maven Plugin to Eclipse JKube.

3.1.2.29. Eclipse Vert.x metering labels for OpenShift

You can add metering labels to your Eclipse Vert.x pods and check Red Hat subscription details with the
OpenShift Metering Operator.

NOTE

® Do not add metering labels to any pods that an operator or a template deploys
and manages.

® You can apply labels to pods using the Metering Operator on OpenShift
Container Platform version 4.8 and earlier. From version 4.9 onward, the
Metering Operator is no longer available without a direct replacement.

Eclipse Vert.x should use the following metering labels:
e com.company: Red_Hat
e rht.prod_name: Red_Hat_Runtimes
e rht.prod_ver: 2023-Q1
e rht.comp: Vert.x
e rht.comp_ver: 4.3.7
e rht.subcomp: <leave_blank>

e rht.subcomp_t: application

23

https://access.redhat.com/support/offerings/techpreview/
https://www.npmjs.com/package/@vertx/eventbus-bridge-client.js
https://developers.redhat.com/blog/2020/09/21/migrating-from-fabric8-maven-plugin-to-eclipse-jkube-1-0-0/

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

AdQaitional resources

® Configuring and using Metering in OpenShift Container Platform

3.1.2.30. Support for OpenJDK 8 and OpenJDK 11 RHEL 8 Universal Base Images (UBI8)

Eclipse Vert.x introduces support for building and deploying Eclipse Vert.x applications to OpenShift
with OCl-compliant Universal Base Images for Red Hat OpenJDK 8 and Red Hat OpenJDK 11 on RHEL
8.

The RHEL 8 OpenJDK Universal Base Images replace the RHEL 8 OpenJDK builder images. The RHEL
8 OpenJDK base images are no longer supported for use with Eclipse Vert.x.

3.2. DEPRECATED FEATURES

This section lists the functionalities deprecated or removed in this release.

3.2.1. Features deprecated in the 4.3 release

The following functionalities are deprecated in the 4.3 release.

® Eclipse Vert.x Core

Removed elements Replacing elements

io.vertx.core.shareddata.impl.ClusterSeri io.vertx.core.shareddata.ClusterSerializa
alizable ble

® Eclipse Vert.x Micrometer Metrics

Deprecated methods Replacing methods

io.vertx.micrometer.MicrometerMetricsO
ptions.getRequestsTagsProvider()

io.vertx.micrometer.MicrometerMetricsO
ptions.setRequestsTagsProvider()

io.vertx.micrometer.VertxinfluxDbOption
s.getNumThreads()

io.vertx.micrometer.VertxinfluxDbOption
s.setNumThreads()

® Eclipse Vert.x Web

Deprecated methods

io.vertx.micrometer.MicrometerMetricsO
ptions.getServerRequestsTagsProvider()

io.vertx.micrometer.MicrometerMetricsO
ptions.setServerRequestsTagsProvider()

No replacing method

No replacing method

Replacing methods

Router.mountSubRouter(String, Router)

RoutingContext.getBodyAsString()

Router.route(String).subRouter(Router)

RoutingContext.body().asString()

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/metering/index
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://catalog.redhat.com/software/containers/ubi8/openjdk-8/5dd6a48dbed8bd164a09589a
https://catalog.redhat.com/software/containers/ubi8/openjdk-11/5dd6a4b45a13461646f677f4?container-tabs=overview
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/

CHAPTER 3. FEATURES

Deprecated methods Replacing methods

RoutingContext.getBodyAsString(String
encoding)

RoutingContext.getBodyAsdJson()

RoutingContext.getBodyAsJsonArray()

RoutingContext.getBodyAsdJson(int
maxLength)

RoutingContext.getBodyAsJsonArray(int
maxLength)

RoutingContext.getBody()

RouterBuilder.bodyHandler()

e SchemaBuilder

Removed methods

RoutingContext.body().asString(String
encoding)

RoutingContext.body().asJsonObject()

RoutingContext.body().asJsonArray()

RoutingContext.body().asJsonObject(int
maxLength)

RoutingContext.body().asJsonArray(int
maxLength)

RoutingContext.body().buffer()

RouterBuilder.rootHandler()

Replacing methods

build()

Use the JSON representation that the Eclipse
Vert.x Json Schema provides. For example:

JsonSchema schema =
JsonSchema.of(dsl.todson());

3.2.2. Features deprecated in earlier 4.x releases

The following functionalities were deprecated or removed in earlier 4.x releases.

e HttpServerOptions

Removed methods Replacing methods

getMaxWebsocketFrameSize()

getMaxWebSocketFrameSize()
setMaxWebsocketFrameSize() setMaxWebSocketFrameSize()
getMaxWebsocketMessageSize() getMaxWebSocketMessageSize()
setMaxWebsocketMessageSize() setMaxWebSocketMessageSize()

getPerFrameWebsocketCompressionSup
ported()

getPerFrameWebSocketCompressionSup
ported()

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

26

setPerFrameWebsocketCompressionSup
ported()

getPerMessageWebsocketCompressionS
upported()

setPerMessageWebsocketCompressionS
upported()

getWebsocketAllowServerNoContext()

setWebsocketAllowServerNoContext()

getWebsocketCompressionLevel()

setWebsocketCompressionLevel()

getWebsocketPreferredClientNoContext()

setWebsocketPreferredClientNoContext()

getWebsocketSubProtocols()

setWebsocketSubProtocols()

® Eclipse Vert.x Web

Removed elements Replacing elements

io.vertx.ext.web.Cookie

io.vertx.ext.web.handler.CookieHandler

io.vertx.ext.web.Locale

RoutingContext.acceptableLocales()

StaticHandler.create(String,
ClassLoader)

SessionHandler.setAuthProvider(AuthPr
ovider)

Removed methods Replacing methods

setPerFrameWebSocketCompressionSup
ported()

getPerMessageWebSocketCompressionS
upported()

setPerMessageWebSocketCompressionS
upported()

getWebSocketAllowServerNoContext()

setWebSocketAllowServerNoContext()

getWebSocketCompressionLevel()

setWebSocketCompressionLevel()

getWebSocketPreferredClientNoContext(
)

setWebSocketPreferredClientNoContext()

getWebSocketSubProtocols()

setWebSocketSubProtocols()

io.vertx.core.http.Cookie

io.vertx.core.http.Cookie

io.vertx.ext.web.LanguageHeader

RoutingContext.acceptableLanguages()

SessionHandler.addAuthProvider()

CHAPTER 3. FEATURES

Removed elements Replacing elements

HandlebarsTemplateEngine.getHandleba TemplateEngine.unwrap()
rs()HandlebarsTemplateEngine.getResol
vers()HandlebarsTemplateEngine.setRes
olvers()JadeTemplateEngine.getJadeCon
figuration()ThymeleafTemplateEngine.get

ThymeleafTemplateEngine() ThymeleafTe

mplateEngine.setMode()

® Messaging

Removed methods Replacing methods

MessageProducer<T>.send(T) MessageProducer<T>.write(T)

MessageProducer.send(T,Handler) EventBus.request(String,Object,Handler)

e EventBus

Removed methods Replacing methods

EventBus.send(..., replyAndRequest
Handler<AsyncResult<Message<T>>>)M

essage.reply(...,

Handler<AsyncResult<Message<T>>>)

e Handlers

Removed methods Replacing methods

Future<T>.setHandler() Future<T>.onComplete()Future<T>.onSu
ccess()Future<T>.onFailure()

HttpClientRequest.connectionHandler() HttpClient.connectionHandler()

e JSON
Removed Fields/Methods New methods
Json.mapper() field DatabindCodec.mapper()
Json.prettyMapper() field DatabindCodec.prettyMapper()
Json.decodeValue(Buffer, JacksonCodec.decodeValue(Buffer,
TypeReference<T>) TypeReference)

N

7

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

28

Removed Fields/Methods

Json.decodeValue(String,
TypeReference<T>)

e JUnit5

Deprecated methods

VertxTestContext.succeeding()

VertxTestContext.failing()

® Reactive Extensions (Rx)

Deprecated methods

WriteStreamSubscriber.onComplete()

® Circuit breaker

Removed methods

CircuitBreaker.executeCommand()

CircuitBreaker.executeCommandWithFall
back()

e MQTT

Removed methods

MqttWill.willMessage()

MqttWill.willTopic()

MqttWill.willQos()

MqttAuth.username()

MqttAuth.password()

MqttClientOptions.setKeepAliveTimeSec
onds()

New methods

JacksonCodec.decodeValue(String,
TypeReference)

New methods

VertxTestContext.succeedingThenCompl
ete()

VertxTestContext.failingThenComplete()

New methods

WriteStreamSubscriber.onWriteStreamEn
d()WriteStreamSubscriber.onWriteStream
Error()

Replacing methods

CircuitBreaker.execute()

CircuitBreaker.executeWithFallback()

Replacing methods

MqttWill.getWillMessage()

MqttWill.getWillTopic()

MqttWill.getWillQos()

MqttAuth.getUsername()

MqttAuth.getPassword()

MqttClientOptions.setKeepAlivelnterval()

o AMQRP client

Removed methods

CHAPTER 3. FEATURES

Replacing methods

AmgqpClient.createReceiver(String
address, Handler<AmgpMessage>
messageHandler, ...)

AmgpConnection createReceiver(...,
Handler<AsyncResult<AmqgpReceiver>>
completionHandler)

AmgpConnection createReceiver(..,
Handler<AmqgpMessage>
messageHandler,
Handler<AsyncResult<AmqgpReceiver>>
completionHandler)

o Authentication and authorization

AmqpClient createReceiver(String
address,
Handler<AsyncResult<AmqgpReceiver>>
completionHandler)

AmgpConnection createReceiver(String
address,
Handler<AsyncResult<AmqgpReceiver>>
completionHandler)

AmgpConnection createReceiver(String
address,
Handler<AsyncResult<AmqgpReceiver>>
completionHandler)

Removed elements Replacing elements

OAuth20ptions.isUseBasicAuthorization
Header()

OAuth20ptions.setUseBasicAuthorizatio
nHeader()

OAuth20ptions.getClientSecretParamete
rName()

OAuth20ptions.setClientSecretParamete
rName()

OAuth2Auth.createKeycloak()

OAuth2Auth.create(Vertx,
OAuth2FlowType, OAuth2ClientOptions)

)

OAuth2Auth.create(Vertx,
OAuth2FlowType)

User.isAuthorised()

AccessToken.refreshToken()

No replacing method

No replacing method

No replacing method

No replacing method

KeycloakAuth.create(vertx, JsonObject)

)

OAuth2Auth.create(vertx, new
OAuth2ClientOptions().setFlow(YOUR_D
ESIRED_FLOW))

OAuth2Auth.create(vertx, new
OAuth2ClientOptions().setFlow(YOUR_D
ESIRED_FLOW))

User.isAuthorized()

AccessToken.opaqueRefreshToken()

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

Removed elements Replacing elements

io.vertx.ext.auth.jwt.JWTOptions data io.vertx.ext.jwt.JWTOptions data object
object
SecretOptions class PubSecKeyOptions class

Deprecated methods Replacing methods

OAuth2Auth.decodeToken() AuthProvider.authenticate()
OAuth2Auth.introspectToken() AuthProvider.authenticate()
OAuth2Auth.getFlowType() No replacing method
OAuth2Auth.loadJWK() OAuth2Auth.jwkSet()

Oauth2ClientOptions.isUseAuthorization No replacing method
Header()

Deprecated class Replacing class

AbstractUser Create user objects using the °
User.create(JsonObject) ™ method.

AuthOptions No replacing class

JDBCAuthOptions JDBCAuthenticationOptions for
authentication and
JDBCAuthorizationOptions for
authorization

JDBCHashStrategy No replacing class

OAuth2RBAC AuthorizationProvider
Oauth2Response Recommended to use WebClient class
KeycloakHelper No replacing class

® Service discovery

30

CHAPTER 3. FEATURES

Removed methods Replacing methods

ServiceDiscovery.create(..., ServiceDiscovery.create(Vertx)
Handler<ServiceDiscovery>
completionHandler)

ServiceDiscovery.create(..., ServiceDiscovery.create(Vertx,
Handler<ServiceDiscovery> ServiceDiscoveryOptions)
completionHandler)

® Eclipse Vert.x configuration

Removed methods Replacing methods

ConfigRetriever.getConfigAsFuture() retriever.getConfig()

® MongoDB client

Removed methods Replacing methods

MongoClient.update() MongoClient.updateCollection()

MongoClient.updateWithOptions() MongoClient.updateCollectionWithOptio
ns()

MongoClient.replace() MongoClient.replaceDocuments()

MongoClient.replaceWithOptions() MongoClient.replaceDocumentsWithOpti
ons()

MongoClient.remove() MongoClient.removeDocuments()

MongoClient.removeWithOptions() MongoClient.removeDocumentsWithOpti
ons()

MongoClient.removeOne() MongoClient.removeDocument()

MongoClient.removeOneWithOptions MongoClient.removeDocumentsWithOpti
ons()

® Clients with no shared data sources

Deprecated Methods New Methods

MongoClient.createNonShared() MongoClient.create()

31

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

Deprecated Methods New Methods
JDBCClient.createNonShared() wJDBCClient.create()
CassandraClient.createNonShared() CassandraClient.create()
MailClient.createNonShared() MailClient.create()

® Hook methods

Removed Methods New Methods
Context.addCloseHook() No replacing method
Context.removeCloseHook() No replacing method

® Clone methods

Removed Methods New Methods
KeyCertOptions.clone() KeyCertOptions.copy()
TrustOptions.clone() TrustOptions.copy()
SSLEngineOptions.clone() SSLEngineOptions.copy()

e VertxOptions

Removed Methods New Methods
VertxOptions.equals() No replacing method
VertxOptions.hashCode() No replacing method

VertxOptions.fileResolverCachingEnable FileSystemOptions.isFileCachingEnabled
d() ()

® Pooled buffer

Removed Methods New Methods

TCPSSLOptions.isUsePooledBuffers() No replacing method

TCPSSLOptions.setUsePooledBuffers() No replacing method

32

CHAPTER 4. RELEASE COMPONENTS

CHAPTER 4. RELEASE COMPONENTS

4.1. SUPPORTED ARTIFACTS INTRODUCED IN THIS RELEASE

No artifacts have been moved from Technology Preview to fully supported in this release.

4.2. TECHNOLOGY PREVIEW ARTIFACTS INTRODUCED IN THIS
RELEASE

This section describes the Technology Preview artifacts introduced in this release.

4.2.1. Technology Preview artifacts introduced in the 4.3 release

The following artifacts are provided as Technology Preview in the 4.3 release.
® vertx-grpc-client
The Eclipse Vert.x gRPC Client is a new Google Remote Procedure Call (gRPC) client that relies
on the Eclipse Vert.x HTTP client. The Eclipse Vert.x gRPC Client provides two alternative ways
to interact with a server:

o A gRPC request-and-response-oriented API that does not require a generated stub

o A generated stub with a gRPC channel

NOTE

The Eclipse Vert.x gRPC Client supersedes the integrated Netty-based
gRPC client.

® vertx-grpc-server
The Eclipse Vert.x gRPC Server is a new Google Remote Procedure Call (gRPC) server that
relies on the Eclipse Vert.x HTTP server. The Eclipse Vert.x gRPC Server provides two
alternative ways to interact with a client:

o A gRPC request-and-response-oriented API that does not require a generated stub

o A generated stub with a service bridge

NOTE

The Eclipse Vert.x gRPC Server supersedes the integrated Netty-based
P gRPC server.

® vertx-grpc-common
The Eclipse Vert.x gRPC Common artifact provides common functionality that the Eclipse
Vert.x gRPC Client and the Eclipse Vert.x gRPC Server both use.

e vertx-grpc-aggregator
The Eclipse Vert.x gRPC Aggregator consists of a Project Object Model (POM) file. The Eclipse
Vert.x gRPC Aggregator does not provide any additional functionality.

4.2.2. Technology Preview artifacts introduced in earlier 4.x releases

33

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

The following artifacts that were available as Technology Preview from previous 4.x releases continue to
be Technology Preview in this release.

vertx-auth-otp

The Eclipse Vert.x OTP Auth provider is an implementation of the AuthenticationProvider
interface that uses one-time passwords to perform authentication. The Eclipse Vert.x OTP Auth
provider supports the Google Authenticator. You can use any convenient library to create the
quick response (QR) with a key. You can also transfer the key in base32 format.

vertx-oracle-client

The Eclipse Vert.x reactive Oracle client is a client for the Oracle server. It is an API that helps in
database scalability and has low overhead. Because the APl is reactive and non-blocking, you
can handle multiple database connections with a single thread.

NOTE

The Eclipse Vert.x reactive Oracle client requires that you use the Oracle JDBC
driver. Red Hat does not provide support for the Oracle JDBC driver.

The Eclipse Vert.x reactive Oracle client requires that you use JDK 11 or JDK 17.

vertx-http-proxy
The Eclipse Vert.x HTTP proxy is a reverse proxy. Using this module you can easily create
proxies. The proxy server can also dynamically resolve the DNS queries from origin server.

vertx-web-proxy
The Eclipse Vert.x web proxy enables you to mount an Eclipse Vert.x HTTP proxy in an Eclipse
Vert.x web router.

vertx-opentelemetry
Open Telemetry tracing is supported. You can use Open Telemetry for HTTP and event bus
tracing.

4.3. ARTIFACTS REMOVED IN THIS RELEASE

No artifacts are removed in this release.

4.4. ARTIFACTS DEPRECATED IN THIS RELEASE

No artifacts are marked as deprecated in this release.

34

CHAPTER 5. FIXED ISSUES

CHAPTER 5. FIXED ISSUES

This Eclipse Vert.x release incorporates all bugfixes from community release of version 4.3.7. Issues
resolved in the community release are listed in the Eclipse Vert.x 4.3.7 wiki page.

5.1. FIXED ISSUES IN THE 4.3 RELEASE

This section describes issues that are fixed in Eclipse Vert.x 4.3.

5.1.1. Threads blocked with io.vertx.coreVertxException when using gRPC for client and
server communication

In Eclipse Vert.x 4.3.4 or earlier, Google Remote Procedure Call (gRPC) communication between a
client and a server blocked threads and resulted in an io.vertx.core.VertxException error. This issue
occurred if the number of available event-loop threads was insufficient, which caused the Eclipse Vert.x
gRPC Server (vertx-grpc-server) or the Eclipse Vert.x gRPC Client (vertx-grpc-client) to self-
deadlock.

This issue is resolved in the Eclipse Vert.x 4.3.5 release. The internal context for the SSL initialization
now uses a worker context rather than an event-loop context.

5.1.2. JDBCClient error when searching table data by ROWID

In Eclipse Vert.x 4.2, the vertx-jdbc-client with the Oracle JDBC driver threw a java.sql.SQLException
when attempting to retrieve table data by using the ROWID. This issue occurred because, in Eclipse
Vert.x 4.2, the ROWID was available as an array of bytes. In earlier releases of Eclipse Vert.x, the ROWID
was available as a string type.

This issue is resolved in the Eclipse Vert.x 4.3.1release. Eclipse Vert.x 4.2 performed custom type casting
based on plain Java types. Even though this behavior typically produces correct results, it might
incorrectly identify special database types. Because custom type casting is not a built-in feature of
modern JDBC drivers, the JDBC client now relies on the driver to perform vendor-specific casts that
are more suitable than the old Eclipse Vert.x heuristics.

5.1.3. JDBCPool error when parsing ROWID

In Eclipse Vert.x 4.2, the JDBC pool threw a java.lang.UnsupportedOperationException when
attempting to parse the ROWID. This issue occurred because, in Eclipse Vert.x 4.2, the ROWID could
not be parsed directly as an array of bytes. In earlier releases of {VertX), the ROWID could be parsed as a
string type.

This issue is resolved in the Eclipse Vert.x 4.3.1 release based on the same solution described in the

preceding section.

5.1.4. Unexpected results in stored procedure calls when using a PostgreSQL JDBC
driver 9.0 or later

In Eclipse Vert.x 4.2, the vertx-jdbc-client with a PostgreSQL JDBC driver 9.0 or later produced
unexpected results in stored procedure calls. This issue occurred because, in Eclipse Vert.x 4.2, the
vertx-jdbc-client did not support the explicit SQL type information that modern PostgreSQL database
drivers and servers require when executing callable statements.

This issue is resolved in the Eclipse Vert.x 4.3.1release. Callable ResultSet metadata is now extracted

35

https://github.com/vert-x3/wiki/wiki/4.3.7-Release-Notes

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

from all sources involved in the query, from the first database response, as well as the individual result
sets that form part of the response. The complete information allows the JDBC client to correctly
identify the type of data in a column and to perform the correct casts.

5.2. FIXED ISSUES IN EARLIER 4. X RELEASES

This section describes issues that were fixed in earlier Eclipse Vert.x 4.x releases.

5.2.1. Google Guava classes included in GraphQL builds

In the Eclipse Vert.x 4.0.0 and 4.0.2 releases, the vertx-web-graphql dependency was not usable. This
was because an incomplete build of GraphQL Java with version 16.1.0.redhat-00001 was used. In the
incomplete GraphQL build, the Guava classes were missing.

This issue is resolved in the Eclipse Vert.x 4.0.3 release. The release includes the GraphQL Java

16.1.0.redhat-00002 version, which is a complete build with Guava classes. These Guava classes are
shaded into the jar.

5.2.2. vertx-opentracing available in Eclipse Vert.x builds

The vertx-opentracing dependency was introduced as a Technical Preview feature in Eclipse Vert.x
4.0.0. However, the dependency was not available in Eclipse Vert.x 4.0.0 and 4.0.2 releases.

This issue is resolved in the Eclipse Vert.x 4.0.3 release. The release includes the vertx-opentracing
dependency.

36

CHAPTER 6. KNOWN ISSUES

CHAPTER 6. KNOWN ISSUES

6.1. KNOWN ISSUES IN THE 4.3 RELEASE

No issues are known to affect this release.

6.2. KNOWN ISSUES IN EARLIER 4. X RELEASES

This section describes known issues from earlier Eclipse Vert.x 4.x releases.

6.2.1. Tokens issued by RH-SSO result in OAuth2 validation failures after migrating
to Eclipse Vert.x 4.2

Description

If you are using Red Hat Single Sign-On (RH-SSO) as an identity provider, tokens that were valid in
earlier releases of Eclipse Vert.x will fail validation checks when you migrate to Eclipse Vert.x 4.2.

Cause

In Eclipse Vert.x 4.2, OAuth2 authentication provides stricter security validation than earlier releases
of Eclipse Vert.x.

Workaround

By default, RH-SSO issues tokens with the account audience rather than the client ID. If you are
using RH-SSO as an identity provider, after you migrate to Eclipse Vert.x 4.2, you must explicitly add
the account audience and the client ID to the JWTOptions configuration to ensure that tokens are
successfully validated.

6.2.2. Compilation error when using vertx-oracle-client with JDK 8

Description

In Eclipse Vert.x 4.2, the vertx-oracle-client throws a bad class file compilation error when you use
OpendDK 8.

Cause

In Eclipse Vert.x 4.2, the vertx-oracle-client is designed to work with OpenJDK 11 or later.
Workaround

Use OpendDK 11 or OpendDK17.

6.2.3. KubernetesServicelmporter() cannot be directly registered in Eclipse Vert.x
Reactive Extensions (Rx)

Description

You cannot directly register KubernetesServicelmporter() with the Reactive Extensions (Rx) for
Eclipse Vert.x.

Cause
Service importers do not have a generated RxJava 2 implementation.
Workaround

You must create an instance of KubernetesServicelmporter and encapsulate it with {@link
io.vertx.reactivex.servicediscovery.spi.Servicelmporter} as shown in the following example:

37

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

examples.RxServiceDiscoveryExamples#register(io.vertx.reactivex.servicediscovery.ServiceDiscovery)}

I {@link

The following example shows how to register KubernetesServicelmporter() in Eclipse Vert.x Reactive
Extensions (Rx).

ServiceDiscovery discovery = ServiceDiscovery.create(vertx);
discovery.getDelegate().registerServicelmporter(new KubernetesServicelmporter(), new
JsonObject());

6.2.4. Red Hat AMQ Streams images are not available for IBM Z and IBM Power
Systems

The Red Hat AMQ Streams Operator and Kafka images are not available for IBM Z and IBM Power
Systems. Since the images are not available, the vertx-kafka-client module is not certified to work with
AMQ Streams on IBM Z and IBM Power Systems.

6.2.5. Connection between a RHEL 8-based database application and a RHEL 7-
based MySQL 5.7 database fails due to TLS protocol version mismatch

Description

Attempting to open a TLS-secured connection using OpenSSL between an application container built
on a RHEL 8-based OpenJDK builder image and a database container built on a RHEL 7-based MySQL
5.7 container image results in a connection failure due to a javax.net.ssl.SSLHandshakeException at
runtime: For more detail, view the issue in JIRA.

Caused by: javax.net.ssl.SSLHandshakeException: No appropriate protocol (protocol is disabled or
cipher suites are inappropriate)

Cause

The issue occurs due to a difference in the latest supported TLS protocol version between RHEL 7 and
RHEL 8. The TLS implementation on RHEL 7 supports TLS protocol versions 1.0 (deprecated), 1.1, and
1.2. The TLS implementation on RHEL 8 also supports TLS protocol version 1.3, which is also the default
TLS version used in RHEL 8-based builder images. This discrepancy may cause a TLS protocol version
mismatch between application components while negotiating a TLS handshake, which in turn causes the
connection between the application and database containers to fail.

Workaround

To prevent the issue described above, manually specify a TLS protocol version that is supported on
both operating system versions in your database connection string. For example:

I jdbc:mysql://testdb-mysql:3306/testdb?enabled TLSProtocols=TLSv1.2

6.2.6. False Connection reset by peer error messages when calling application
endpoint

Making an HTTP request on an endpoint of an Eclipse Vert.x application using either the curl tool or a
Java HTTP client, produces the following error in the logs after each request:

38

https://issues.jboss.org/browse/ENTSBT-178

CHAPTER 6. KNOWN ISSUES

io.vertx.core.net.impl.ConnectionBase
SEVERE: java.io.lIOException: Connection reset by peer

This behavior is caused by the interaction of the Netty application framework and the HAProxy load-
balancer used by OpenShift. The error occurs due to existing HTTP connections being re-used by
HAProxy without closing. Even though the error message is logged, no error condition occurs. HTTP
requests are handled correctly and the application responds as expected.

39

Red Hat build of Eclipse Vert.x 4.3 Release Notes for Eclipse Vert.x 4.3

CHAPTER 7. ADVISORIES RELATED TO THIS RELEASE

The following advisories have been issued to document enhancements, bugfixes, and CVE fixes
included in this release.

® RHSA-2023:0577

40

https://access.redhat.com/errata/RHSA-2023:0577

	Table of Contents
	PREFACE
	RED HAT BUILD OF ECLIPSE VERT.X 4.3.7 - PLANNED END OF LIFE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. REQUIRED INFRASTRUCTURE COMPONENT VERSIONS
	CHAPTER 2. SUPPORTED ECLIPSE VERT.X RUNTIME COMPONENT CONFIGURATIONS AND INTEGRATIONS
	CHAPTER 3. FEATURES
	3.1. NEW AND CHANGED FEATURES
	3.1.1. New or changed features introduced in the 4.3 release
	3.1.1.1. Micrometer adds the metric type to JMX object names
	3.1.1.2. Eclipse Vert.x with GraphQL Java 19 uses platform locale by default
	3.1.1.3. Users who use jackson-databind features must include this dependency in their projects
	3.1.1.4. Changes in body handler setup with Eclipse Vert.x OpenAPI
	3.1.1.5. Eclipse Vert.x reactive Oracle client enhancements for BLOB and RAW data values
	3.1.1.6. Retrieval of automatically generated keys disabled by default
	3.1.1.7. Use of io.vertx.core.shareddata.ClusterSerializable interface
	3.1.1.8. Renaming of requestsTagsProvider option for Micrometer request metrics
	3.1.1.9. OAuth2 OBO calls expect explicit OAuth2Credentials rather than TokenCredentials
	3.1.1.10. RoutingContext.fileUploads() method returns a list
	3.1.1.11. Single method to implement a sub router
	3.1.1.12. Caching of parsed request body across multiple handler invocations
	3.1.1.13. Changes in EventBus notification defaults
	3.1.1.14. Changes in MySQL client batch execution
	3.1.1.15. MongoDB enhancements for hints and hint strings
	3.1.1.16. Changes in building a schema

	3.1.2. New features introduced in earlier 4.x releases
	3.1.2.1. Java 17 support
	3.1.2.2. HTTP header validation in RequestOptions
	3.1.2.3. Use simple as the default locale for collation
	3.1.2.4. StaticHandler file system configuration changes
	3.1.2.5. Random server port sharing within a verticle
	3.1.2.6. HTTP Server cookie changes
	3.1.2.7. Context management with GraphQLContext object
	3.1.2.8. OpenJDK11 OpenShift images support multiple architectures
	3.1.2.9. Support Eclipse Vert.x Runtime on FIPS enabled Red Hat Enterprise Linux (RHEL) system
	3.1.2.10. HTTP client redirect handler propagates headers
	3.1.2.11. Upgrade to Infinispan 12
	3.1.2.12. JSON configuration takes precedence over connection string options in MongoDB Client
	3.1.2.13. Removed the deprecated JWT options methods
	3.1.2.14. Deprecated the custom formatter method that accepts a function
	3.1.2.15. New exception to handle HTTP failures
	3.1.2.16. Support for RxJava 3
	3.1.2.17. Context server interceptor binds all types of data and is more secure
	3.1.2.18. Matching of ending slash (/) in route paths that end with wildcard character is no longer required
	3.1.2.19. Removed the autoRegistrationOfImporters attribute from service discovery options
	3.1.2.20. Authenticate method in authentication provider class updated to support token as input credentials
	3.1.2.21. Get method for PEM keys returns Buffer instead of a String
	3.1.2.22. Kubernetes service importer is no longer registered automatically
	3.1.2.23. Use future methods for asynchronous operations
	3.1.2.24. No dependency on the Jackson Databind library
	3.1.2.25. Handling deprecations and removals
	3.1.2.26. Support for distributed tracing
	3.1.2.27. New publishing location for EventBus JavaScript Client
	3.1.2.28. Deploy Eclipse Vert.x applications using OpenShift Maven plugin
	3.1.2.29. Eclipse Vert.x metering labels for OpenShift
	3.1.2.30. Support for OpenJDK 8 and OpenJDK 11 RHEL 8 Universal Base Images (UBI8)

	3.2. DEPRECATED FEATURES
	3.2.1. Features deprecated in the 4.3 release
	3.2.2. Features deprecated in earlier 4.x releases

	CHAPTER 4. RELEASE COMPONENTS
	4.1. SUPPORTED ARTIFACTS INTRODUCED IN THIS RELEASE
	4.2. TECHNOLOGY PREVIEW ARTIFACTS INTRODUCED IN THIS RELEASE
	4.2.1. Technology Preview artifacts introduced in the 4.3 release
	4.2.2. Technology Preview artifacts introduced in earlier 4.x releases

	4.3. ARTIFACTS REMOVED IN THIS RELEASE
	4.4. ARTIFACTS DEPRECATED IN THIS RELEASE

	CHAPTER 5. FIXED ISSUES
	5.1. FIXED ISSUES IN THE 4.3 RELEASE
	5.1.1. Threads blocked with io.vertx.coreVertxException when using gRPC for client and server communication
	5.1.2. JDBCClient error when searching table data by ROWID
	5.1.3. JDBCPool error when parsing ROWID
	5.1.4. Unexpected results in stored procedure calls when using a PostgreSQL JDBC driver 9.0 or later

	5.2. FIXED ISSUES IN EARLIER 4.X RELEASES
	5.2.1. Google Guava classes included in GraphQL builds
	5.2.2. vertx-opentracing available in Eclipse Vert.x builds

	CHAPTER 6. KNOWN ISSUES
	6.1. KNOWN ISSUES IN THE 4.3 RELEASE
	6.2. KNOWN ISSUES IN EARLIER 4.X RELEASES
	6.2.1. Tokens issued by RH-SSO result in OAuth2 validation failures after migrating to Eclipse Vert.x 4.2
	6.2.2. Compilation error when using vertx-oracle-client with JDK 8
	6.2.3. KubernetesServiceImporter() cannot be directly registered in Eclipse Vert.x Reactive Extensions (Rx)
	6.2.4. Red Hat AMQ Streams images are not available for IBM Z and IBM Power Systems
	6.2.5. Connection between a RHEL 8-based database application and a RHEL 7-based MySQL 5.7 database fails due to TLS protocol version mismatch
	6.2.6. False Connection reset by peer error messages when calling application endpoint

	CHAPTER 7. ADVISORIES RELATED TO THIS RELEASE

