& RedHat

Red Hat Ansible Automation Platform
2.4

Red Hat Ansible Automation Platform
performance considerations for operator
based installations

Configure automation controller for improved performance on operator based
installations

Last Updated: 2024-06-04

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation
Platform performance considerations for operator based installations

Configure automation controller for improved performance on operator based installations

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides recommendations on how to configure automation controller and Container
Groups resource requests and other kubernetes configuration options to more efficiently run jobs
at scale on operator based installations of automation controller.

Table of Contents

Table of Contents

[3 Y O AP 3
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it e ettt et eaeeeneeeaneenaneennnes, 4
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt eii e eierieennneeannens 5
CHAPTER 1. POD SPECIFICATION MODIFICATIONS ...ttt ettt ettt ea e raneennneanns 6
1.1. INTRODUCTION 6
1.1.1. Customizing the pod specification 8
1.1.2. Enabling pods to reference images from other secured registries 9

1.2. RESOURCE MANAGEMENT FOR PODS AND CONTAINERS 10
1.2.1. Requests and limits 10
1.2.2. Resource types 1
1.2.3. Specifying resource requests and limits for pods and containers 1
1.2.4. Resource units in Kubernetes 1
1.2.5. Size recommendations for resource requests 12
CHAPTER 2. CONTROL PLANE ADJUSTMENT S ...ttt it e i ieiteraneennneenneenns 13
2.1. REQUESTS AND LIMITS FOR TASK CONTAINERS 13
2.2. CONTAINERS RESOURCE REQUIREMENTS 13
2.3. ALTERNATIVE CAPACITY LIMITING WITH AUTOMATION CONTROLLER SETTINGS 14
CHAPTER 3. SPECIFYING DEDICATED NODEStiiitiiitii it eiet et et eraneennneennnenns 16
3.1. ASSIGNING PODS TO SPECIFIC NODES 16
3.2. SPECIFY NODES FOR JOB EXECUTION 17
3.3. CUSTOM POD TIMEOUTS 19
3.4. JOBS SCHEDULED ON THE WORKER NODES 20

CHAPTER 4. CONFIGURING ANSIBLE AUTOMATION CONTROLLER ON OPENSHIFT CONTAINER
PLA T O RM o i e e e e e e 21

4.1. MINIMIZING DOWNTIME DURING OPENSHIFT CONTAINER PLATFORM UPGRADE 21

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

PREFACE

PREFACE

Deploying applications to a container orchestration platform such as Red Hat OpenShift Container
Platform provides a number of advantages from an operational perspective. For example, an update to
the base image of an application can be made through a simple in-place upgrade with little to no
disruption. Upgrading the required operating system of an application deployed to traditional virtual
machines can be a much more disruptive and risky process.

Although application and operator developers can provide many options to OpenShift Container
Platform users regarding the deployment of the application, these configurations must be provided by
the end user because they are dependent on the configuration of OpenShift Container Platform.

For example, use of node labels in the Openshift cluster can help ensure different workloads are run on
specific nodes. This type of configuration must be provided by the user as the Ansible Automation
Platform Operator has no way of inferring this.

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

If you have a suggestion to improve this documentation, or find an error, please contact technical
support at https://access.redhat.com to create an issue on the Ansible Automation Platform Jira
project using the docs-product component.

https://access.redhat.com

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

CHAPTER 1. POD SPECIFICATION MODIFICATIONS

1.1. INTRODUCTION

The Kubernetes concept of a pod is one or more containers deployed together on one host, and the
smallest compute unit that can be defined, deployed, or managed.

Pods are the equivalent of a machine instance (physical or virtual) to a container. Each pod is allocated
its own internal IP address, therefore owning its entire port space, and containers within pods can share
their local storage and networking.

Pods have a life cycle. They are defined, then they are assigned to run on a node, then they run until
their containers exit or they are removed for some other reason. Pods, depending on policy and exit
code, can be removed after exiting, or can be retained to enable access to the logs of their containers.

Red Hat Ansible Automation Platform provides a simple default pod specification, however, you can
provide a custom YAML, or JSON document that overrides the default pod specification. This custom
document uses custom fields, such as ImagePullSecrets, that can be serialized as valid Pod JSON or
YAML.

A full list of options can be found in the Openshift Online documentation.

Example of a pod that provides a long-running service.

This example demonstrates many features of pods, most of which are discussed in other topics and thus
only briefly mentioned here:

apiVersion: v1
kind: Pod
metadata:
annotations: { ... } ﬂ
labels:
deployment: docker-registry-1
deploymentconfig: docker-registry
docker-registry: default
generateName: docker-registry-1- g
spec:
containers: 6
- env: ﬂ
- name: OPENSHIFT_CA_DATA
value: ...
- name: OPENSHIFT_CERT_DATA
value: ...
- name: OPENSHIFT_INSECURE
value: "false"
- name: OPENSHIFT_KEY_DATA
value: ...
- name: OPENSHIFT_MASTER
value: https://master.example.com:8443
image: openshift/origin-docker-registry:v0.6.2 6
imagePullPolicy: IfNotPresent
name: registry

ports: (6]

- containerPort: 5000

https://docs.openshift.com/online/pro/architecture/core_concepts/pods_and_services.html

CHAPTER 1. POD SPECIFICATION MODIFICATIONS

protocol: TCP

resources: {} ﬂ
securityContext: { ... }
volumeMounts: Q

- mountPath: /registry
name: registry-storage
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
name: default-token-bréyz
readOnly: true
dnsPolicy: ClusterFirst
imagePullSecrets: @
- name: default-dockercfg-atO6w
restartPolicy: Always

serviceAccount: default @

volumes: (13)

- emptyDir: {}
name: registry-storage
- name: default-token-bréyz
secret:
secretName: default-token-bréyz

Label Description

annotations: Pods can be "tagged" with one or more labels, which can then be used to
select and manage groups of pods in a single operation. The labels are
stored in key:value format in the metadata hash. One label in this example is
docker-registry=default.

generateName: Pods must have a unique name within their namespace. A pod definition
can specify the basis of a name with the generateName attribute, and add
random characters automatically to generate a unique name.

containers: containers specifies an array of container definitions. In this case (as with
most), defines only one container.

env: Environment variables pass necessary values to each container.

image: Each container in the pod is instantiated from its own Docker-formatted
container image.

ports: The container can bind to ports made available on the pod’s IP.

resources: When you specify a pod, you can optionally describe how much of each
resource a container needs. The most common resources to specify are
CPU and memory (RAM). Other resources are available.

securityContext: OpensShift Online defines a security context for containers that specifies
whether they are permitted to run as privileged containers, run as a user of
their choice, and more. The default context is very restrictive but
administrators can change this as required.

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

Label Description

volumeMounts: The container specifies where external storage volumes should be mounted
within the container. In this case, there is a volume for storing the registry’s
data, and one for access to credentials the registry needs for making
requests against the OpenShift Online API.

ImagePullSecrets A pod can contain one or more containers, which must be pulled from some
registry. If containers come from registries that require authentication, you
can give a list of ImagePullSecrets: that refer tolmagePullSecrets
present in the namespace. Having these specified enables Red Hat
OpensShift Container Platform to authenticate with the container registry
when pulling the image. For further information, see Resource Management
for Pods and Containers in the Kubernetes documentation.

restartPolicy: The pod restart policy with possible values Always, OnFailure, and Never.
The default value is Always.

serviceAccount: Pods making requests against the OpenShift Online APl is a common
enough pattern that there is a serviceAccount field for specifying which
service account user the pod should authenticate as when making the
requests. This enables fine-grained access control for custom infrastructure
components.

volumes: The pod defines storage volumes that are available to its container(s) to
use. In this case, it provides an ephemeral volume for the registry storage
and a secret volume containing the service account credentials.

You can change the pod used to run jobs in a Kubernetes-based cluster by using automation controller
and editing the pod specification in the automation controller Ul. The pod specification that is used to
create the pod that runs the job is in YAML format. For further information about editing the pod
specifications, see Customizing the pod specification.

1.1.1. Customizing the pod specification

You can use the following procedure to customize the pod.

Procedure
1. In the automation controller Ul, go to Administration — Instance Groups.
2. Check Customize pod specification.

3. Inthe Pod Spec Override field, specify the namespace by using the toggle to enable and
expand the Pod Spec Override field.

4. Click Save.

5. Optional: Click Expand to view the entire customization window if you want to provide
additional customizations.

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

CHAPTER 1. POD SPECIFICATION MODIFICATIONS

The image used at job launch time is determined by the execution environment associated with the job.
If a Container Registry credential is associated with the execution environment, then automation
controller uses ImagePullSecret to pull the image. If you prefer not to give the service account
permission to manage secrets, you must pre-create the ImagePullSecret, specify it on the pod
specification, and omit any credential from the execution environment used.

1.1.2. Enabling pods to reference images from other secured registries

If a container group uses a container from a secured registry that requires a credential, you can
associate a Container Registry credential with the Execution Environment that is assigned to the job
template. Automation controller uses this to create an ImagePullSecret for you in the OpenShift
Container Platform namespace where the container group job runs, and cleans it up after the job is
done.

Alternatively, if the ImagePullSecret already exists in the container group namespace, you can specify
the ImagePullSecret in the custom pod specification for the ContainerGroup.

Note that the image used by a job running in a container group is always overridden by the Execution
Environment associated with the job.

Use of pre-created ImagePullSecrets (Advanced)

If you want to use this workflow and pre-create the ImagePullSecret, you can source the necessary
information to create it from your local .dockercfg file on a system that has previously accessed a
secure container registry.

Procedure

The .dockercfg file, or SBHOME/.docker/config.json for newer Docker clients, is a Docker credentials
file that stores your information if you have previously logged into a secured or insecure registry.

1. If you already have a .dockercfg file for the secured registry, you can create a secret from that
file by running the following command:

$ oc create secret generic <pull_secret_name> \
--from-file=.dockercfg=<path/to/.dockercfg> \
--type=kubernetes.io/dockercfg

2. Orif you have a SHOME/.docker/config.json file:

$ oc create secret generic <pull_secret_name> \
--from-file=.dockerconfigjson=<path/to/.docker/config.json> \
--type=kubernetes.io/dockerconfigjson

3. If you do not already have a Docker credentials file for the secured registry, you can create a
secret by running the following command:

$ oc create secret docker-registry <pull_secret_name>\
--docker-server=<registry_server>\
--docker-username=<user_name> \
--docker-password=<password> \
--docker-email=<email>

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

4. To use a secret for pulling images for pods, you must add the secret to your service account.
The name of the service account in this example must match the name of the service account
the pod uses. The default is the default service account.

I $ oc secrets link default <pull_secret_name> --for=pull

5. Optional: To use a secret for pushing and pulling build images, the secret must be mountable
inside a pod. You can do this by running:

I $ oc secrets link builder <pull_secret_name>

6. Optional: For builds, you must also reference the secret as the pull secret from within your build
configuration.

When the container group is successfully created, the Details tab of the newly created container group
remains. This allows you to review and edit your container group information. This is the same menu that

is opened if you click the Edit icon & from the Instance Group link. You can also edit instances and
review jobs associated with this instance group.

1.2. RESOURCE MANAGEMENT FOR PODS AND CONTAINERS

When you specify a pod, you can specify how much of each resource a container needs. The most
common resources to specify are CPU and memory (RAM).

When you specify the resource request for containers in a Pod, the kubernetes-scheduler uses this
information to allocate the node to place the Pod on.

When you specify a resource limit for a container, the kubelet, or node agent, enforces those limits so
that the running container is not permitted to use more of that resource than the limit you set. The

kubelet also reserves at least the requested amount of that system resource specifically for that
container to use.

1.2.1. Requests and limits

If the node where a pod is running has enough resources available, it is possible for a container to use
more resources than its request for that resource specifies. However, a container is not allowed to use
more than its resource limit.

For example, if you set a memory request of 256 MiB for a container, and that container is in a pod
scheduled to a Node with 8GiB of memory and no other pods, then the container can try to use more
RAM.

If you set a memory limit of 4GiB for that container, the kubelet and container runtime enforce the limit.
The runtime prevents the container from using more than the configured resource limit.

If a process in the container tries to consume more than the allowed amount of memory, the system
kernel terminates the process that attempted the allocation, with an Out Of Memory (OOM) error.

You can implement limits in two ways:
® Reactively: the system intervenes once it sees a violation.
® By enforcement: the system prevents the container from ever exceeding the limit.

Different runtimes can have different ways to implement the same restrictions.

10

CHAPTER 1. POD SPECIFICATION MODIFICATIONS

NOTE

If you specify a limit for a resource, but do not specify any request, and no admission-time
mechanism has applied a default request for that resource, then Kubernetes copies the
limit you specified and uses it as the requested value for the resource.

1.2.2. Resource types

CPU and memory are both resource types. A resource type has a base unit. CPU represents compute
processing and is specified in units of Kubernetes CPUs. Memory is specified in units of bytes.

CPU and memory are collectively referred to as compute resources, or resources. Compute resources
are measurable quantities that can be requested, allocated, and consumed. They are distinct from API
resources. APl resources, such as pods and services, are objects that can be read and modified through
the Kubernetes APl server.

1.2.3. Specifying resource requests and limits for pods and containers

For each container, you can specify resource limits and requests, including the following:

spec.containers[].resources.limits.cpu
spec.containers[].resources.limits.memory
spec.containers[].resources.requests.cpu
spec.containers[].resources.requests.memory

Although you can only specify requests and limits for individual containers, it is also useful to think about
the overall resource requests and limits for a pod. For a particular resource, a pod resource request or
limit is the sum of the resource requests or limits of that type for each container in the pod.

1.2.4. Resource units in Kubernetes

CPU resource units

Limits and requests for CPU resources are measured in CPU units. In Kubernetes, one CPU unit is equal
to one physical processor core, or one virtual core, depending on whether the node is a physical host or
a virtual machine running inside a physical machine.

Fractional requests are allowed. When you define a container with
spec.containers[].resources.requests.cpu set to 0.5, you are requesting half as much CPU time
compared to if you asked for 1.0 CPU. For CPU resource units, the quantity expression O.1is equivalent
to the expression 100m, which can be read as one hundred millicpu or one hundred millicores. millicpu
and millicores mean the same thing. CPU resource is always specified as an absolute amount of
resource, never as a relative amount. For example, 500m CPU represents the same amount of
computing power whether that container runs on a single-core, dual-core, or 48-core machine.

NOTE

To specify CPU units less than 1.0 or 1000m you must use the milliCPU form. For
example, use 5m, not 0.005 CPU.

Memory resource units

1

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

Limits and requests for memory are measured in bytes. You can express memory as a plain integer or as
a fixed-point number using one of these quantity suffixes: E, P, T, G, M, k. You can also use the power-
of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following represent roughly the same value:

I 128974848, 129e6, 129M, 128974848000m, 123Mi

Pay attention to the case of the suffixes. If you request 400m of memory, this is a request for 0.4 bytes,
not 400 mebibytes (400Mi) or 400 megabytes (400M).

Example CPU and memory specification

The following cluster has enough free resources to schedule a task pod with a dedicated 100m CPU and
250Mi. The cluster can also withstand bursts over that dedicated usage up to 2000m CPU and 2Gi
memory.

spec:
task_resource_requirements:
requests:
cpu: 100m
memory: 250Mi
limits:
cpu: 2000m
memory: 2Gi

Automation controller will not schedule jobs that use more resources than the limit set. If the task pod
does use more resources than the limit set, the container is OOMK:illed by Kubernetes and restarted.

1.2.5. Size recommendations for resource requests

All jobs that use a container group use the same pod specification. The pod specification includes the
resource requests for the pod that runs the job.

All jobs use the same resource requests. The specified resource requests for your particular job on the
pod specification affect how Kubernetes schedules the job pod based on resources available on worker
nodes. These are the default values.

® One fork typically requires 100Mb of memory. This is set by using system_task_forks_mem. If
your jobs have five forks, the job pod specification must request 500Mb of memory.

® Forjob templates that have a particularly high forks value or otherwise need larger resource
requests, you should create a separate container group with a different pod spec that indicates
larger resource requests. Then you can assign it to the job template. For example, a job
template with the forks value of 50 must be paired with a container group that requests 5GB of
memory.

e |f the fork value for a job is high enough that no single pod would be able to contain the job, use

the job slicing feature. This splits the inventory up such that the individual job “slices” fit in an
automation pod provisioned by the container group.

12

CHAPTER 2. CONTROL PLANE ADJUSTMENTS

CHAPTER 2. CONTROL PLANE ADJUSTMENTS

The control plane refers to the automation controller pods which contain the web and task containers
that, among other things, provide the user interface and handle the scheduling and launching of jobs. On
the automation controller custom resource, the number of replicas determines the number of
automation controller pods in the automation controller deployment.

2.1. REQUESTS AND LIMITS FOR TASK CONTAINERS

You must set a value for the task container’'s CPU and memory resource limits. For each job that is run
in an execution node, processing must occur on the control plane to schedule, open, and receive
callback events for that job.

For Operator deployments of automation controller, this control plane capacity usage is tracked on the
controlplane instance group. The available capacity is determined based on the limits the user sets on
the task container, using the task_resource_requirements field in the automation controller
specification, or in the OpenShift Ul, when creating automation controller.

You can also set memory and CPU resource limits that make sense for your cluster.

2.2. CONTAINERS RESOURCE REQUIREMENTS

You can configure the resource requirements of tasks and the web containers, at both the lower end
(requests) and the upper end (limits). The execution environment control plane is used for project
updates, but is normally the same as the default execution environment for jobs.

Setting resource requests and limits is a best practice because a container that has both defined is given
a higher Quality of Service class. This means that if the underlying node is resource constrained and the
cluster has to reap a pod to prevent running memory or other failure, the control plane pod is less likely
to be reaped.

These requests and limits apply to the control pods for automation controller and if limits are set,
determine the capacity of the instance. By default, controlling a job takes one unit of capacity. The
memory and CPU limits of the task container are used to determine the capacity of control nodes. For
more information about how this is calculated, see Resouce determination for capacity algorithm.

See also Jobs scheduled on the worker nodes

NETT Description Default
web_resource_requirements Web container resource requests: {CPU: 100m, memory:

requirements 128Mit
task_resource_requirements Task container resource requests: {CPU: 100m, memory:

requirements 128Mit
ee_resource_requirements EE control plane container requests: {CPU: 100m, memory:

resource requirements 128Mit
redis_resource_requirement Redis control plane container requests: {CPU:100m, memory:
S resource requirements 128Mit

13

https://docs.ansible.com/automation-controller/latest/html/userguide/jobs.html#resource-determination-for-capacity-algorithm

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

The use of topology_spread_constraints to maximally spread control nodes onto separate underlying
Kubernetes worker nodes is recommended. A reasonable set of requests and limits would be limits
whose sum is equal to the actual resources on the node. If only limits are set, then the request is
automatically set to be equal to the limit. But because some variability of resource usage between the
containers in the control pod is permitted, you can set requests to a lower amount, for example to 25%
of the resources available on the node. An example of container customization for a cluster where the
worker nodes have 4 CPUs and 16 GB of RAM could be:

spec:

web_resource_requirements:
requests:
cpu: 250m
memory: 1Gi
limits:
cpu: 1000m
memory: 4Gi
task_resource_requirements:
requests:
cpu: 250m
memory: 1Gi
limits:
cpu: 2000m
memory: 4Gi
redis_resource_requirements
requests:
cpu: 250m
memory: 1Gi
limits:
cpu: 1000m
memory: 4Gi
ee_resource_requirements:
requests:
cpu: 250m
memory: 1Gi
limits:
cpu: 1000m
memory: 4Gi

2.3. ALTERNATIVE CAPACITY LIMITING WITH AUTOMATION
CONTROLLERSETTINGS

The capacity of a control node in OpenShift is determined by the memory and CPU limits. However, if
these are not set then the capacity is determined by the memory and CPU detected by the pod on the
filesystem, which are actually the CPU and memory of the underlying Kubernetes node.

This can lead to issues with overwhelming the underlying Kubernetes pod if the automation controller
pod is not the only pod on that node. If you do not want to set limits directly on the task container, you
can use extra_settings, see Extra Settings in Custom pod timeouts section for how to configure the
following

SYSTEM_TASK_ABS_MEM = 3gi
SYSTEM_TASK_ABS_CPU = 750m

14

CHAPTER 2. CONTROL PLANE ADJUSTMENTS

This acts as a soft limit within the application that enables automation controller to control how much
work it attempts to run, while not risking any CPU throttling from Kubernetes itself, or being reaped if
memory usage peaks above the required limit. These settings accept the same format accepted by
resource requests and limits in the Kubernetes resource definition.

15

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

CHAPTER 3. SPECIFYING DEDICATED NODES

A Kubernetes cluster runs on top of many Virtual Machines or nodes (generally anywhere between 2
and 20 nodes). Pods can be scheduled on any of these nodes. When you create or schedule a new pod,
use the topology_spread_constraints setting to configure how new pods are distributed across the
underlying nodes when scheduled or created.

Do not schedule your pods on a single node, because if that node fails, the services that those pods
provide also fails.

Schedule the control plane nodes to run on different nodes to the automation job pods. If the control
plane pods share nodes with the job pods, the control plane can become resource starved and degrade
the performance of the whole application.

3.1. ASSIGNING PODS TO SPECIFIC NODES

You can constrain the automation controller pods created by the operator to run on a certain subset of
nodes.

® node_selector and postgres_selector constrain the automation controller pods to run only on
the nodes that match all the specified key, or value, pairs.

e tolerations and postgres_tolerations enable the automation controller pods to be scheduled
onto nodes with matching taints. See Taints and Toleration in the Kubernetes documentation
for further details.

The following table shows the settings and fields that can be set on the automation controller’s
specification section of the YAML (or using the OpenShift Ul form).

Name Description Default
postgres_image Path of the image to pull postgres
postgres_image_version Image version to pull 13
node_selector AutomationController pods'’

nodeSelector

unir

topology_spread_constraints AutomationController pods'’
topologySpreadConstraints

tolerations AutomationController pods’ tolerations
annotations AutomationController pods’ annotations
postgres_selector Postgres pods’ nodeSelector
postgres_tolerations Postgres pods' tolerations

topology_spread_constraints can help optimize spreading your control plane pods across the
compute nodes that match your node selector. For example, with the maxSkew parameter of this

16

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

CHAPTER 3. SPECIFYING DEDICATED NODES

option set to 100, this means maximally spread across available nodes. So if there are three matching
compute nodes and three pods, one pod will be assigned to each compute node. This parameter helps
prevent the control plane pods from competing for resources with each other.

Example of a custom configuration for constraining controller pods to specific nodes

spec:

node_selector: |
disktype: ssd
kubernetes.io/arch: amd64
kubernetes.io/os: linux
topology_spread_constraints: |
- maxSkew: 100
topologyKey: "topology.kubernetes.io/zone"
whenUnsatisfiable: "ScheduleAnyway"
labelSelector:
matchLabels:
app.kubernetes.io/name: "<resourcename>"
tolerations: |
- key: "dedicated"
operator: "Equal”
value: "AutomationController"
effect: "NoSchedule"
postgres_selector: |
disktype: ssd
kubernetes.io/arch: amd64
kubernetes.io/os: linux
postgres_tolerations: |
- key: "dedicated"
operator: "Equal”
value: "AutomationController"
effect: "NoSchedule"

3.2.SPECIFY NODES FOR JOB EXECUTION

You can add a node selector to the container group pod specification to ensure they only run against
certain nodes. First add a label to the nodes you want to run jobs against.

The following procedure adds a label to a node.

Procedure

1. List the nodes in your cluster, along with their labels:
I kubectl get nodes --show-labels

The output is similar to this (shown here in a table):

Name Status Roles Age Version Labels

17

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

Name Status Roles Age Version Labels

worker0 Ready <none> 1d v1.13.0 .
,kubernetes.io/hos
tname=worker0

worker1 Ready <none> 1d v1.13.0 ..
,kubernetes.io/hos
tname=worker1

worker2 Ready <none> 1d v1.13.0 ..
,kubernetes.io/hos
tname=worker2

2. Choose one of your nodes, and add a label to it by using the following command:
I kubectl label nodes <your-node-name> <aap_node_type>=<execution>

For example:

I kubectl label nodes <your-node-name> disktype=ssd

where <your-node-names> is the name of your chosen node.
3. Verify that your chosen node has a disktype=ssd label:

I kubectl get nodes --show-labels

4. The outputis similar to this (shown here in a table):

Name Status Roles Age Version Labels

worker0 Ready <none> 1d v1.13.0
disktype=ssd,kube
rnetes.io/hostnam

e=worker0
worker1 Ready <none> 1d v1.13.0 ..

,kubernetes.io/hos

tname=worker1
worker2 Ready <none> 1d v1.13.0

,kubernetes.io/hos
tname=worker2

You can see that the worker0 node now has a disktype=ssd label.

5. In the automation controller Ul, specify that label in the metadata section of your customized
pod specification in the container group.

18

CHAPTER 3. SPECIFYING DEDICATED NODES

apiVersion: v1
kind: Pod
metadata:
disktype: ssd
namespace: ansible-automation-platform
spec:
serviceAccountName: default
automountServiceAccountToken: false
nodeSelector:
aap_node_type: execution
containers:
- image: >-
registry.redhat.io/ansible-automation-platform-22/ee-supported-
rhel8@sha256:d134e198b179d1b21d3f067d745dd1a8e28167235¢312cdc233860410ea3ec3e
name: worker
args:
- ansible-runner
- worker
- --private-data-dir=/runner’
resources:
requests:
cpu: 250m
memory: 100Mi

Extra settings
With extra_settings, you can pass many custom settings by using the awx-operator. The parameter

extra_settings is appended to /etc/tower/settings.py and can be an alternative to the extra_volumes
parameter.

NET TS Description Default

extra_settings Extra settings "

Example configuration ofextra_settings parameter

spec:
extra_settings:

- setting: MAX_PAGE_SIZE
value: "500"

- setting: AUTH_LDAP_BIND_DN
value: "cn=admin,dc=example,dc=com"

- setting: SYSTEM_TASK_ABS_MEM
value: "500"

3.3.CUSTOM POD TIMEOUTS

A container group job in automation controller transitions to the running state just before you submit
the pod to the Kubernetes API. Automation controller then expects the pod to enter the Running state
before AWX_CONTAINER_GROUP_POD_PENDING_TIMEOUT seconds has elapsed. You can set

19

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

AWX_CONTAINER_GROUP_POD_PENDING_TIMEOUT to a higher value if you want automation
controller to wait for longer before canceling jobs that fail to enter the Running state.
AWX_CONTAINER_GROUP_POD_PENDING_TIMEOUT is how long automation controller waits from
creation of a pod until the Ansible work begins in the pod. You can also extend the time if the pod
cannot be scheduled because of resource constraints. You can do this using extra_settings on the
automation controller specification. The default value is two hours.

This is used if you are consistently launching many more jobs than Kubernetes can schedule, and jobs are
spending periods longer than AWX_CONTAINER_GROUP_POD_PENDING_TIMEOUT in pending.

Jobs are not launched until control capacity is available. If many more jobs are being launched than the
container group has capacity to run, consider scaling up your Kubernetes worker nodes.

3.4. JOBS SCHEDULED ON THE WORKER NODES
Both automation controller and Kubernetes play a role in scheduling a job.

When a job is launched, its dependencies are fulfilled, meaning any project updates or inventory updates
are launched by automation controller as required by the job template, project, and inventory settings.

If the job is not blocked by other business logic in automation controller and there is control capacity in
the control plane to start the job, the job is submitted to the dispatcher. The default settings of the
"cost" to control a job is T capacity. So, a control pod with 100 capacity is able to control up to 100 jobs at
a time. Given control capacity, the job transitions from pending to waiting.

The dispatcher, which is a background process in the control plan pod, starts a worker process to run the
job. This communicates with the Kubernetes API using a service account associated with the container
group and uses the pod specification as defined on the Container Group in automation controller to
provision the pod. The job status in automation controller is shown as running.

Kubernetes now schedules the pod. A pod can remain in the pending state for
AWX_CONTAINER_GROUP_POD_PENDING_TIMEOUT. If the pod is denied through a
ResourceQuota, the job starts over at pending. You can configure a resource quota on a namespace to
limit how many resources may be consumed by pods in the namespace. For further information about
ResourceQuotas, see Resource Quotas.

20

https://kubernetes.io/docs/concepts/policy/resource-quotas/

CHAPTER 4. CONFIGURING ANSIBLE AUTOMATION CONTROLLER ON OPENSHIFT CONTAINER PLATFORM

CHAPTER 4. CONFIGURING ANSIBLE AUTOMATION
CONTROLLER ON OPENSHIFT CONTAINER PLATFORM

During a Kubernetes upgrade, automation controller must be running.

4.1. MINIMIZING DOWNTIME DURING OPENSHIFT CONTAINER
PLATFORM UPGRADE

Make the following configuration changes in automation controller to minimize downtime during the
upgrade.

Prerequisites

® Ansible Automation Platform 2.4
® Ansible automation controller 4.4

® OpenShift Container Platform

o >410.42
o >41116
o >412.0
® High availability (HA) deployment of Postgres

® Multiple worker node that automation controller pods can be scheduled on

Procedure

1. Enable RECEPTOR_KUBE_SUPPORT_RECONNECT in AutomationController specification:

apiVersion: automationcontroller.ansible.com/vibetai
kind: AutomationController
metadata:
spec:
ee_extra_env: |

- name: RECEPTOR_KUBE_SUPPORT_RECONNECT
value: enabled

2. Enable the graceful termination feature in AutomationController specification:

I termination_grace_period_seconds: <time to wait for job to finish>

3. Configure podAntiAffinity for web and task the pod to spread out the deployment in
AutomationController specification:

task_affinity:
podAntiAffinity:

21

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform performance considerations for o

preferredDuringSchedulinglgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
matchExpressions:
- key: app.kubernetes.io/name
operator: In
values:
- awx-task
topologyKey: topology.kubernetes.io/zone
weight: 100
web_ affinity:
podAntiAffinity:
preferredDuringSchedulinglgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
matchExpressions:
- key: app.kubernetes.io/name
operator: In
values:
- awx-web
topologyKey: topology.kubernetes.io/zone
weight: 100

4. Configure PodDisruptionBudget in OpenShift Container Platform:

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: automationcontroller-job-pods
spec:
maxUnavailable: 0
selector:
matchExpressions:
- key: ansible-awx-job-id
operator: Exists
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: automationcontroller-web-pods
spec:
minAvailable: 1
selector:
matchExpressions:
- key: app.kubernetes.io/name
operator: In
values:
- <automationcontroller_instance _name>-web
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
name: automationcontroller-task-pods
spec:
minAvailable: 1

22

CHAPTER 4. CONFIGURING ANSIBLE AUTOMATION CONTROLLER ON OPENSHIFT CONTAINER PLATFORV

selector:
matchExpressions:
- key: app.kubernetes.io/name
operator: In
values:
- <automationcontroller_instance_name>-task

23

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. POD SPECIFICATION MODIFICATIONS
	1.1. INTRODUCTION
	1.1.1. Customizing the pod specification
	1.1.2. Enabling pods to reference images from other secured registries

	1.2. RESOURCE MANAGEMENT FOR PODS AND CONTAINERS
	1.2.1. Requests and limits
	1.2.2. Resource types
	1.2.3. Specifying resource requests and limits for pods and containers
	1.2.4. Resource units in Kubernetes
	1.2.5. Size recommendations for resource requests

	CHAPTER 2. CONTROL PLANE ADJUSTMENTS
	2.1. REQUESTS AND LIMITS FOR TASK CONTAINERS
	2.2. CONTAINERS RESOURCE REQUIREMENTS
	2.3. ALTERNATIVE CAPACITY LIMITING WITH AUTOMATION CONTROLLER SETTINGS

	CHAPTER 3. SPECIFYING DEDICATED NODES
	3.1. ASSIGNING PODS TO SPECIFIC NODES
	3.2. SPECIFY NODES FOR JOB EXECUTION
	3.3. CUSTOM POD TIMEOUTS
	3.4. JOBS SCHEDULED ON THE WORKER NODES

	CHAPTER 4. CONFIGURING ANSIBLE AUTOMATION CONTROLLER ON OPENSHIFT CONTAINER PLATFORM
	4.1. MINIMIZING DOWNTIME DURING OPENSHIFT CONTAINER PLATFORM UPGRADE

