‘® redhat.

Red Hat AMQ 7.1

Using the AMQ JavaScript Client

For Use with AMQ Clients 2.0

Last Updated: 2018-05-21

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

For Use with AMQ Clients 2.0

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This quide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTER1.OVERVIEW . ittt ittt iiiieeiieennaes

1.1. KEY FEATURES

1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS

1.4. TERMS AND CONCEPTS

1.5.DOCUMENT CONVENTIONS

CHAPTER 2. INSTALLATION ..ottt iiiiieiiieennes

2.1. PREREQUISITES

2.2.INSTALLING ON RED HAT ENTERPRISE LINUX
2.3.INSTALLING ON MICROSOFT WINDOWS

2.4. PREPARING THE LIBRARY FOR USE IN BROWSERS

CHAPTER 3. GETTING STARTED ...iiiiiiiiiiiiii it iiiiiiiiiiienne

3.1. PREPARING THE BROKER
3.2. RUNNING HELLO WORLD

CHAPTER4.EXAMPLES ... ittt ittt ieiiieennne

4.1. SENDING MESSAGES
Running the Example

4.2. RECEIVING MESSAGES
Running the Example

CHAPTERS5.USING THE APl ..ottt ittt iiiieeaae

5.1.BASIC OPERATION
5.1.1. Handling Messaging Events
5.1.2. Creating a Container
Setting the Container Identity
5.2. NETWORK CONNECTIONS
5.2.1. Creating Outgoing Connections
5.2.2. Configuring Reconnect
5.2.3. Configuring Failover
5.3. SECURITY
5.3.1. Securing Connections with SSL/TLS
5.3.2. Connecting with a User and Password
5.3.3. Configuring SASL Authentication
5.4. MORE INFORMATION

CHAPTER 6. INTEROPERABILITY ..ottt iiiiiiiiiiennnes

6.1. INTEROPERATING WITH OTHER AMQP CLIENTS
6.2. INTEROPERATING WITH AMQ JMS
JMS Message Types
6.3. CONNECTING TO AMQ BROKER
6.4. CONNECTING TO AMQ INTERCONNECT

APPENDIX A. USING YOUR SUBSCRIPTIONcciiiiiiiiiiiiiinnnnn,

Accessing Your Account

Activating a Subscription

Downloading Zip and Tar Files
Registering Your System for Packages

Table of Contents

o0 U1 U1 U A W W WW

~N o~

............................... 15

15
19
19
20
20

21
21
21
21

Red Hat AMQ 7.1 Using the AMQ JavasScript Client

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

AMQ JavaScript is a library for developing messaging applications. It enables you to write JavaScript
applications that send and receive AMQP messages.

AMQ JavaScript is part of AMQ Clients, a suite of messaging libraries supporting multiple languages
and platforms. See Introducing Red Hat AMQ 7 for an overview of the clients and other AMQ
components. See AMQ Clients 2.0 Release Notes for information about this release.

AMQ JavaScript is based on the Rhea messaging library.

1.1. KEY FEATURES
e An event-driven API that simplifies integration with existing applications
e SSL/TLS for secure communication
e Flexible SASL authentication
e Automatic reconnect and failover
e Seamless conversion between AMQP and language-native data types

o Access to all the features and capabilities of AMQP 1.0

1.2. SUPPORTED STANDARDS AND PROTOCOLS
AMQ JavaScript supports the following industry-recognized standards and network protocols.
e Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
e Versions 1.0,1.1,and 1.2 of the Transport Layer Security (TLS) protocol, the successor to SSL

e Simple Authentication and Security Layer (SASL) mechanisms ANONYMOUS, PLAIN, and
EXTERNAL

e Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

AMQ JavaScript supports the following OS and language versions.
o Red Hat Enterprise Linux 6 with Node.js 4, 6, and 8 from Software Collections
o Red Hat Enterprise Linux 7 with Node.js 4, 6, and 8 from Software Collections
e Microsoft Windows Server 2012 R2 with Node.js 4, 6, and 8

For more information, see Red Hat AMQ 7 Supported Configurations .

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl Terms

https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/introducing_red_hat_amq_7/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_clients_2.0_release_notes/
https://github.com/grs/rhea
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

Entity Description

Container A top-level container of connections

Connection A channel for communication between two peers on a network
Session A context for sending and receiving messages

Sender A channel for sending messages to a target

Receiver A channel for receiving messages from a source

Source A named point of origin for messages

Target A named destination for messages

Message A mutable holder of application data

Delivery A message transfer

AMQ JavaScript sends and receives messages. Messages are transferred between connected peers
over senders and receivers. Senders and receivers are established over sessions. Sessions are
established over connections. Connections are established between two uniquely identified containers.
Though a connection can have multiple sessions, often this is not needed. The API allows you to ignore
sessions unless you require them.

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or
topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a
source that identifies a queue or topic at the remote peer.

The sending of a message is called a delivery. The message is the content sent, including all metadata
such as headers and annotations. The delivery is the protocol exchange associated with the transfer of
that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side

learns that it has been settled, it will no longer communicate about that delivery. The receiver can also
indicate whether it accepts or rejects the message.

1.5. DOCUMENT CONVENTIONS

In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps required to install AMQ JavaScript in your environment.

2.1. PREREQUISITES

To begin installation, use your subscription to access AMQ distribution archives and package
repositories.

To use AMQ JavaScript, you must also install and configure Node.js for your environment. See the
Node.js website for more information.

AMQ JavaScript depends on the Node.js debug module. See the npm page for installation instructions.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
AMQ JavaScript is distributed as a zip archive. Follow these steps to install it in your environment.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Clients entry in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Click Red Hat AMQ Clients. The Software Downloads page opens.
4. Download the AMQ JavaScript Client zip file.

5. Use the unzip command to extract the file contents into a directory of your choosing. This will
create a new subdirectory called nodejs-rhea-VERSION.

$ unzip nodejs-rhea-VERSION.zip

Archive: nodejs-rhea-VERSION.zip
creating: nodejs-rhea-VERSION/
creating: nodejs-rhea-VERSION/node_modules/
creating: nodejs-rhea-VERSION/node_modules/rhea/

[...]

6. Configure your environment to use the installed library. Add the node_modules directory to
the NODE_PATH environment variable.

$ cd nodejs-rhea-VERSION
$ export NODE_PATH=$PWD/node_modules:$NODE_PATH

To make this configuration take effect for all new console sessions, set NODE_PATH in your
$HOME/ . bashrc file.

7. Test your installation. The following command will return zero if it can successfully import the
installed library.

I $ node -e 'require("rhea")'; echo $?
(C]

https://nodejs.org/en/
https://www.npmjs.com/package/debug
https://access.redhat.com/downloads

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

2.3.INSTALLING ON MICROSOFT WINDOWS

1.

Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

. Locate the Red Hat AMQ Clients entry in the JBOSS INTEGRATION AND AUTOMATION

category.

Click Red Hat AMQ Clients. The Software Downloads page opens.

. Download the AMQ JavaScript Client zip file.

Extract the file contents into a directory of your choosing by right-clicking on the zip file and
selecting Extract All. This will create a new subdirectory called nodejs-rhea-VERSION.

Configure your environment to use the installed library. Add the node_modules directory to
the NODE_PATH environment variable.

$ cd nodejs-rhea-VERSION
$ set NODE_PATH=%cd%\node_modules;%NODE_PATH%

2.4. PREPARING THE LIBRARY FOR USE IN BROWSERS

AMQ JavaScript can run inside a web browser. To create a browser-compatible version of the library,
use the npm run browserify command.

$ cd nodejs-rhea-VERSION/node_modules/rhea
$ npm install
$ npm run browserify

This will produce a file called rhea. js that can be used in browser-based applications.

https://access.redhat.com/downloads

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through a simple exercise to help you get started using AMQ JavaScript.
Before starting, make sure you have completed the steps in the Chapter 2, Installation chapter for your
environment.

3.1. PREPARING THE BROKER

The example programs require a running broker with a queue named examples. Follow these steps to
define the queue and start the broker.

1. Install the broker.
2. Create a broker instance. Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.

$ BROKER_INSTANCE_DIR/bin/artemis run

[...]
14:43:20,158 INFO
[org.apache.activemqg.artemis.integration.bootstrap] AMQ101000:

Starting ActiveMQ Artemis Server

[...]

15:01:39,686 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started Acceptor at 0.0.0.0:5672 for protocols [AMQP]

[...]

15:01:39,691 INFO [org.apache.activemq.artemis.core.server]
AMQ221007: Server is now live

4. Use the artemis queue command to create a queue called examples.

$ BROKER_INSTANCE_DIR/bin/artemis queue create --name examples --
auto-create-address --anycast

You are prompted to answer a series of questions. For yes|no questions, type N; otherwise,
press Enter to accept the default value.

3.2. RUNNING HELLO WORLD

The Hello World example sends a message to the examples queue on the broker and then fetches it
back. On success it prints Hel1lo World! to the console.

Using your configured installation environment, run the helloworld. js example.

$ cd nodejs-rhea-VERSION/node_modules/rhea/examples
$ node helloworld.js
Hello World!

https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_amq_broker/#installation
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_amq_broker/#creating_a_broker_instance

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ JavaScript through example programs. To run them, make
sure you have completed the steps in the Chapter 2, Installation chapter for your environment and you
have a running and configured broker.

See the Rhea examples for more sample programs. Note that some of the sample programs there
require the minimist package in order to parse command-line options.

4.1. SENDING MESSAGES

This client program connects to a server using CONNECTION_URL, creates a sender for target
ADDRESS, sends a message containing MESSAGE_BODY, closes the connection, and exits.

Example: Sending Messages

"use strict";

var rhea = require('"rhea");
var url = require("url");

if (process.argv.length == 5) {
console.error("Usage: send.js CONNECTION-URL ADDRESS MESSAGE-BODY");
process.exit(1);

var conn_url = url.parse(process.argv[2]);
var address = process.argv[3];
var message_body = process.argv[4];

var container = rhea.create_container();

container.on("sender_open", function (event) {
console.log("SEND: Opened sender for target address '" +
event.sender.target.address + "'");

1)

container.on("sendable", function (event) {
var message = {
"body": message_body
}

event.sender.send(message);
console.log("SEND: Sent message '" + message.body + "'");
event.sender.close();

event.connection.close();

var opts = {
host: conn_url.hostname,
port: conn_url.port || 5672

https://github.com/grs/rhea/tree/master/examples
https://www.npmjs.com/package/minimist

CHAPTER 4. EXAMPLES

var conn = container.connect(opts);
conn.open_sender (address);

Running the Example
To run the example program, copy it to a local file and invoke it using the node command.

I $ node send.js amqgp://localhost queuel hello

4.2. RECEIVING MESSAGES

This client program connects to a server using CONNECTION_URL, creates a receiver for source
ADDRESS, and receives messages until it is terminated or it reaches COUNT messages.

Example: Receiving Messages

"use strict";

var rhea = require('"rhea");
var url = require("url");

if (process.argv.length !== 4 && process.argv.length !== 5) {
console.error("Usage: receive.js CONNECTION-URL ADDRESS [MESSAGE-
COUNT]");
process.exit(1);

}

var conn_url = url.parse(process.argv[2]);
var address = process.argv[3];

var desired = 0;

var received = 0;

if (process.argv.length === 5) {
desired = parseInt(process.argv[4]);

}

var container = rhea.create_container();

container.on("receiver_open", function (event) {
console.log("RECEIVE: Opened receiver for source address '" +
event.receiver.source.address + "'");

1)

container.on("message", function (event) {
var message = event.message;

console.log("RECEIVE: Received message '" + message.body + "'");
received++;
if (received == desired) {

event.receiver.close();
event.connection.close();

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

1)
var opts = {

host: conn_url.hostname,
port: conn_url.port || 5672

iy

var conn = container.connect(opts);
conn.open_receiver (address);

Running the Example
To run the example program, copy it to a local file and invoke it using the python command.

I $ node receive.js amqgp://localhost queuel

10

CHAPTER 5. USING THE API

CHAPTER 5. USING THE API

This chapter explains how to use the AMQ JavaScript API to perform common messaging tasks.

5.1. BASIC OPERATION

5.1.1. Handling Messaging Events

AMQ JavaScript is an asynchronous event-driven API. To define how the application handles events,
the user registers event-handling functions on the container object. These functions are then called
as network activity or timers trigger new events.

Example: Handling Messaging Events

var rhea = require('"rhea");
var container = rhea.create_container();

container.on("sendable", function (event) {

console.log("A message can be sent");

1)

container.on("message", function (event) {
console.log("A message is received");

1)

These are only a few common-case events. The full set is documented in the API reference.

5.1.2. Creating a Container

The container is the top-level APl object. It is the entry point for creating connections, and it is
responsible for running the main event loop. It is often constructed with a global event handler.

Example: Creating a Container

var rhea = require('"rhea");
var container = rhea.create_container();

Setting the Container Identity

Each container instance has a unique identity called the container ID. When AMQ JavaScript makes a
network connection, it sends the container ID to the remote peer. To set the container ID, pass the id
option to the create_container method.

Example: Setting the Container Identity

I var container = rhea.create_container({"id": "job-processor-3"});

If the user does not set the ID, the library will generate a UUID when the container is constucted.

5.2. NETWORK CONNECTIONS

5.2.1. Creating Outgoing Connections

1

https://github.com/grs/rhea#api

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

To connect to a remote server, pass connection options containing the host and port to the
container.connect () method.

Example: Creating Outgoing Connections

container.on("connection_open", function (event) {
console.log("Connection " + event.connection + " is open");

1)

var opts = {
"host": "example.com",
"port": 5672

iy

container.connect(opts);

The default host is localhost. The default port is 5672.

See the Section 5.3, “Security” section for information about creating secure connections.

5.2.2. Configuring Reconnect

Reconnect allows a client to recover from lost connections. It is used to ensure that the components in
a distributed system reestablish communication after temporary network or component failures.

AMQ JavaScript enables reconnect by default. If a connection attempt fails, the client will try again
after a brief delay. The delay increases exponentially for each new attempt, up to a default maximum of
60 seconds.

To disable reconnect, set the reconnect connection option to false.

Example: Disabling Reconnect

var opts = {
"host": "example.com",
"reconnect": false

iy

container.connect(opts);

To control the delays between connection attempts, set the initial_reconnect_delay and
max_reconnect_delay connection options. Delay options are specified in milliseconds.

To limit the number of reconnect attempts, set the reconnect_limit option.

Example: Configuring Reconnect

var opts = {
"host": "example.com",
"initial_reconnect_delay": 100,
"max_reconnect_delay": 60 * 1000,
"reconnect_limit": 10

12

CHAPTER 5. USING THE API

iy

container.connect(opts);

5.2.3. Configuring Failover

AMQ JavaScript allows you to configure alternate connection endpoints programatically.

To specify multiple connection endpoints, define a function that returns new connection options and
pass the function in the connection_details option. The function is called once for each
connection attempt.

Example: Configuring Failover

["alpha.example.com", "beta.example.com"];
_1,

var hosts
var index

function failover_fn() {
index += 1;

if (index == hosts.length) index = 0;
return {"host": hosts[index].hostname};
var opts = {

"host": "example.com",
"connection_details": failover_fn

}

container.connect(opts);

This example implements repeating round-robin failover for a list of hosts. You can use this interface to
implement your own failover behavior.

5.3. SECURITY

5.3.1. Securing Connections with SSL/TLS

AMQ JavaScript uses SSL/TLS to encrypt communication between clients and servers.

To connect to a remote server with SSL/TLS, set the transport connection option to tls.

Example: Enabling SSL/TLS

var opts = {

"host": "example.com",
"port": 5671,
"transport": "tls"

iy

container.connect(opts);

13

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

NOTE

By default, the client will reject connections to servers with untrusted certificates. This
is sometimes the case in test environments. To bypass certificate authorization, set the
rejectUnauthorized connection option to false. Be aware that this compromises
the security of your connection.

5.3.2. Connecting with a User and Password

AMQ JavaScript can authenticate connections with a user and password.

To specify the credentials used for authentication, set the username and password connection
options.

Example: Connecting with a User and Password

var opts = {

"host": "example.com",
"username": "alice",
"password": "secret"

iy

container.connect(opts);

5.3.3. Configuring SASL Authentication

AMQ JavaScript uses the SASL protocol to perform authentication. SASL can use a number of
different authentication mechanisms. When two network peers connect, they exchange their allowed
mechanisms, and the strongest mechanism allowed by both is selected.

AMQ JavaScript enables SASL mechanisms based on the presence of user and password information. If
the user and password are both specified, PLAIN is used. If only a user is specified, ANONYMOUS is used.
If neither is specified, SASL is disabled.

5.4. MORE INFORMATION

For more information, see the API reference.

14

https://github.com/grs/rhea#api

CHAPTER 6. INTEROPERABILITY

CHAPTER 6. INTEROPERABILITY

This chapter discusses how to use AMQ JavaScript in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

6.1.INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ JavaScript automatically converts language-native types to AMQP-
encoded data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 6.1. AMQP Types

AMQP Type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

15

https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

AMQP Type Description

double A 64-bit floating point number

array A sequence of values of a single type

list A sequence of values of variable type

map A mapping from distinct keys to values

uuid A universally unique identifier

symbol A 7-bit ASCII string from a constrained domain
timestamp An absolute point in time

JavaScript has fewer native types than AMQP can encode. To send messages containing specific
AMQP types, use thewrap_ functions from the rhea/types. js module.

Table 6.2. AMQ JavaScript Types before Encoding and after Decoding

AMQP Type AMQ JavaScript Type before Encoding AMQ JavaScript Type after Decoding
null null null
boolean boolean boolean
char wrap_char (number) number
string string string
binary wrap_binary(string) string
byte wrap_byte (number) number
short wrap_short (number) number
int wrap_int (number) number
long wrap_long(number) number
ubyte wrap_ubyte(number) number
ushort wrap_ushort (number) number
uint wrap_uint (number) number

16

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

CHAPTER 6. INTEROPERABILITY

AMQP Type AMQ JavaScript Type before Encoding AMQ JavaScript Type after Decoding
ulong wrap_ulong(number) number
float wrap_float (number) number
double wrap_double(number) number
array wrap_array(Array, code) Array
list wrap_list(Array) Array
map wrap_map(object) object
uuid wrap_uuid(number) number
symbol wrap_symbol(string) string
timestamp wrap_timestamp (number) number

Table 6.3. AMQ JavaScript and Other AMQ Client Types (1 of 2)

AMQ JavaScript Type before Encoding AMQ C++ Type AMQ .NET Type
null nullptr null

boolean bool System.Boolean
wrap_char (number) wchar_t System.Char
string std::string System.String
wrap_binary(string) proton: :binary System.Byte[]
wrap_byte(number) int8_t System.SByte
wrap_short (number) int16_t System.Int16
wrap_int (number) int32_t System.Int32
wrap_long(number) int64_t System.Int64
wrap_ubyte(number) uint8_t System.Byte
wrap_ushort (number) uinti16_t System.UInt16

17

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

AMQ JavaScript Type before Encoding

wrap_uint (number)

wrap_ulong(number)

wrap_float (number)

wrap_double (number)

wrap_array(Array, code)

wrap_list(Array)

wrap_map(object)

wrap_uuid(number)

wrap_symbol(string)

wrap_timestamp(number)

AMQ C++ Type

uint32_t

uinté64_t

float

double

std: :vector

std: :map

proton: :uuid

proton: :symbol

proton::timestamp

Table 6.4. AMQ JavaScript and Other AMQ Client Types (2 of 2)

AMQ JavaScript Type before Encoding

null

boolean

wrap_char (number)

string

wrap_binary(string)

wrap_byte (number)

wrap_short (number)

wrap_int (number)

wrap_long(number)

wrap_ubyte(number)

18

AMQ Python Type

None

bool

unicode

unicode

bytes

int

int

long

long

long

AMQ .NET Type

System.UInt32

System.UInt64

System.Single

System.Double

Amqgp .List

Amqp . Map

System.Guid

Amqp . Symbol

System.DateTime

AMQ Ruby Type

nil

true, false

String

String

String

Integer

Integer

Integer

Integer

Integer

CHAPTER 6. INTEROPERABILITY

AMQ JavaScript Type before Encoding AMQ Python Type AMQ Ruby Type
wrap_ushort (number) long Integer
wrap_uint (number) long Integer
wrap_ulong(number) long Integer
wrap_float (number) float Float
wrap_double(number) float Float
wrap_array(Array, code) proton.Array Array
wrap_list(Array) list Array
wrap_map(object) dict Hash

wrap_uuid(number) - -
wrap_symbol(string) str Symbol

wrap_timestamp (number) long Time

6.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JMS Interoperability chapter.

JMS Message Types

AMQ JavaScript provides a single message type whose body type can vary. By contrast, the JMS API
uses different message types to represent different kinds of data. The table below indicates how
particular body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 6.5. AMQ JavaScript and JMS Message Types

AMQ JavaScript Body Type JMS Message Type

string TextMessage
null TextMessage
wrap_binary(string) BytesMessage

19

https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html

Red Hat AMQ 7.1 Using the AMQ JavaScript Client

AMQ JavaScript Body Type JMS Message Type

Any other type ObjectMessage

6.3. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging.

e Port 5672 in the network firewall is open.
e The AMQ Broker AMQP acceptor is enabled. See Configuring Network Access.
e The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

e The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

6.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly.

e Port 5672 in the network firewall is open.

e The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Interconnect Security.

20

http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_amq_broker/#configuring_network_access
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/using_amq_interconnect/#security

APPENDIX A. USING YOUR SUBSCRIPTION

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

Accessing Your Account
1. Go to access.redhat.com.
2. If you do not already have an account, create one.
3. Loginto your account.
Activating a Subscription
1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ entries in the JBOSS INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering Your System for Packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Revised on 2018-05-2115:54:34 EDT

21

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
	2.3. INSTALLING ON MICROSOFT WINDOWS
	2.4. PREPARING THE LIBRARY FOR USE IN BROWSERS

	CHAPTER 3. GETTING STARTED
	3.1. PREPARING THE BROKER
	3.2. RUNNING HELLO WORLD

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the Example

	4.2. RECEIVING MESSAGES
	Running the Example

	CHAPTER 5. USING THE API
	5.1. BASIC OPERATION
	5.1.1. Handling Messaging Events
	5.1.2. Creating a Container
	Setting the Container Identity

	5.2. NETWORK CONNECTIONS
	5.2.1. Creating Outgoing Connections
	5.2.2. Configuring Reconnect
	5.2.3. Configuring Failover

	5.3. SECURITY
	5.3.1. Securing Connections with SSL/TLS
	5.3.2. Connecting with a User and Password
	5.3.3. Configuring SASL Authentication

	5.4. MORE INFORMATION

	CHAPTER 6. INTEROPERABILITY
	6.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	6.2. INTEROPERATING WITH AMQ JMS
	JMS Message Types

	6.3. CONNECTING TO AMQ BROKER
	6.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Registering Your System for Packages

