& RedHat

Red Hat 3scale APl Management 2.1

Infrastructure

Learn more about deploying Red Hat 3scale APl Management on different platforms.

Last Updated: 2019-05-08

Red Hat 3scale APl Management 2.1 Infrastructure

Learn more about deploying Red Hat 3scale API Management on different platforms.

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents deployment and infrastructure management with Red Hat 3scale API
Management 2.1.

Table of Contents

Table of Contents

CHAPTER 1. UPGRADE 3SCALE 2.0 TO 2.1 .t tttttttttitt ettt eaieeeaeeeeneeeaneennneeanaenaneennneennns 4
1.1. PREREQUISITES: 4
1.2. SELECT THE PROJECT 4
1.3. PATCH SYSTEM COMPONENTS 4
1.4. SET IMAGECHANGE TRIGGERS 8
1.5. DEPLOY THE 2.1 TEMPLATE 9
1.6. VERIFY UPGRADE 9

CHAPTER 2. APIDEPLOYMENT ON MICROSOFT AZURE ...\ttt eiieniieenneenns 10
2.1. CREATE AND CONFIGURE MICROSOFT AZURE VM 10
2.2. INSTALL OPENRESTY 1
2.3. CONFIGURE YOUR GITHUB REPO 1

2.3.1. Warning 1
2.4. CONFIGURE YOUR API 1
2.4.1.0n 3scale 1
2.4.2. Capistrano setup 13
2.5. CAPISTRANO SETUP 14
2.6. DEPLOY 16
2.6.1. Troubleshooting 16

CHAPTER 3. DEPLOY AN API ON AMAZON EC2FORAWSROOKIESiiiiitiiiiiiiiniennnnenns 17
3.1. PREREQUISITES 17
3.2. CREATE AND CONFIGURE EC2 INSTANCE 17
3.3. PREPARE INSTANCE FOR DEPLOYMENT 17
3.4. DEPLOYING THE APPLICATION 18

3.4.1. Optional 19
3.5. ENABLING API MANAGEMENT WITH 3SCALE 19
3.6. INSTALL AND DEPLOY APICAST (YOUR API GATEWAY) 21

CHAPTER 4.3SCALE AMP ON-PREMISES INSTALLATIONGUIDEiiutiiiiiiiiiiianennnnenns 22
4.1.3SCALE AMP OPENSHIFT TEMPLATES 22
4.2. SYSTEM REQUIREMENTS 22

4.2.1. Environment Requirements 22
4.2.2. Hardware Requirements 22
4.3. CONFIGURE NODES AND ENTITLEMENTS 22
4.4. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE 23
4.4.1. Prerequisites: 23
4.4.2. Import the AMP Template 23
4.4.3. Configure SMTP Variables (Optional) 24
4.5.3SCALE AMP TEMPLATE PARAMETERS 25
4.6. USE APICAST WITH AMP ON OPENSHIFT 27
4.6.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing your AMP 27
4.6.2. Connect APIcast from an OpenShift Cluster Outside of an OpenShift Cluster Containing your AMP 28
4.6.3. Connect APIcast from Other Deployments 29
4.6.4. Change Built-in APIcast Default Behavior 29
4.6.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over Internal Service Routes 29
4.7.7. TROUBLESHOOTING 30
4.7.1. Previous Deployment Leaves Dirty Persistent Volume Claims 31
4.7.2. Incorrectly Pulling from the Docker Registry 31
4.7.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally 32
4.7.4. Unable to Upload Logo or Images Because Persistent Volumes are not Writable by OpenShift 32
4.7.5. Create Secure Routes on OpenShift 32

Red Hat 3scale APl Management 2.1 Infrastructure

4.7.6. APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets

CHAPTER 5. RED HAT 3SCALE AMP 2.1 ON-PREMISES OPERATIONS AND SCALING GUIDE
5.1. INTRODUCTION

5.1.1. Prerequisites

5.1.2. Further Reading

5.2. RE-DEPLOYING APICAST

5.3. APICAST BUILT-IN WILDCARD ROUTING (TECH PREVIEW)

5.3.1. Modify Wildcards

5.4. SCALING UP AMP ON PREMISES

5.4.1. Scaling up Storage
5.4.1.1. Method 1, Backup and Swap Persistent Volumes
5.4.1.2. Method 2. Back up and Redeploy AMP

5.4.2. Scaling up Performance
5.4.2.1. Configuring 3scale On-Premises Deployments
5.4.2.2. Vertical and Horizontal Hardware Scaling
5.4.2.3. Scaling Up Routers
5.4.2.4. Further Reading

5.5. OPERATIONS TROUBLESHOOTING

5.5.1. Access Your Logs

5.5.2. Job Queues

6.1.1. Step 1
6.1.2.Step 2
6.1.3.Step 3
6.1.4. Step 4
6.1.5.Step 5
6.1.6. Step 6
6.1.7.Step 7
6.1.8. Step 8
6.1.9. Step 9
6.1.10. Step 10
6.1.11. Step 11

6.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT

6.2.1.Step 1

6.2.2.Step 2
6.2.3.Step 3
6.2.4.Step 4
6.2.5.Step 5

6.3. PART 3: INTEGRATION OF YOUR API SERVICES
6.4. PART 4: TESTING THE API AND APl MANAGEMENT

6.4.1. Step 1

6.4.2.Step 2
6.4.3.Step 3
6.4.4.Step 4
6.45.Step 5

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT
6.1. PART 1: FUSE ON OPENSHIFT SETUP

33

34
34
34
34
34
35
35
35
35
36
36
36
36
37
37
37
38
38
38

40
40

41

41
42
43
44
44
45
45
46
47
47
47
47
48
49
49
50
50
50

51

51
52
52

Table of Contents

Red Hat 3scale APl Management 2.1 Infrastructure

CHAPTER 1. UPGRADE 3SCALE 2.0 TO 2.1

Perform the steps in this document to upgrade your on-premises AMP deployment from version 2.0 to
2.1

1.1. PREREQUISITES:

® You must be running 3scale On-Premises 2.0
® OpenShift CLI

® 3scale AMP 2.1templates

® Access and permissions to your openshift server and project

' WARNING
A This process may cause a disruption in service, Red Hat recommends you establish a

maintenance window when performing your upgrade.

1.2. SELECT THE PROJECT

1. Make backups

2. From a terminal session, log in to your openshift cluster:
I oc login https://<YOUR_OPENSHIFT_CLUSTER>:8443
3. Select the project you want to upgrade:

I oc project <YOUR_AMP_20_PROJECT>

1.3. PATCH SYSTEM COMPONENTS

Once you have selected your project, continue your in-place upgrade through the oc patch command.
The oc patch command allows you to patch your deployment configurations.

In this section of the upgrade, you must patch deployment configurations for the following pods:
® system-app
® system-resque
® system-sidekiq
® system-sphinx

Follow these steps to patch deployment configurations:

CHAPTER 1. UPGRADE 3SCALE 2.0 TO 2.1

1. Patch the system-app deployment configuration

a. Enter the following oc patch command:

oc patch dc/system-app -p '
spec:
strategy:
rollingParams:
pre:
execNewPod:
containerName: system-provider
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
template:
spec:
containers:
- name: system-provider
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: AMP_RELEASE
value: "2.1.0-CR2-redhat-1"
- name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
volumeMounts:
- name: system-config
mountPath: /opt/system/config/zync.yml
subPath: zync.yml
- name: system-config
mountPath: /opt/system/config/rolling_updates.yml
subPath: rolling_updates.yml
- name: system-developer
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: AMP_RELEASE
value: "2.1.0-CR2-redhat-1"
- name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
volumeMounts:
- name: system-config
mountPath: /opt/system/config/zync.yml
subPath: zync.yml
- name: system-config

Red Hat 3scale APl Management 2.1 Infrastructure

mountPath: /opt/system/config/rolling_updates.yml
subPath: rolling_updates.yml
volumes:
- name: system-config
configMap:

name: system

items:

- key: zync.yml
path: zync.yml

- key: rolling_updates.yml
path: rolling_updates.ymi

2. Patch the system-resque deployment configuration

a. Enter the following oc patch command:

oc patch dc/system-resque -p '
spec:
template:
spec:
containers:
- name: system-resque
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: AMP_RELEASE
value: "2.1.0-CR2-redhat-1"
- name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
volumeMounts:
- name: system-config
mountPath: /opt/system/config/zync.yml
subPath: zync.yml
- name: system-config
mountPath: /opt/system/config/rolling_updates.yml
subPath: rolling_updates.yml
- name: system-scheduler
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: AMP_RELEASE
value: "2.1.0-CR2-redhat-1"
- name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
volumeMounts:
- name: system-config
mountPath: /opt/system/config/zync.yml
subPath: zync.yml
- name: system-config

CHAPTER 1. UPGRADE 3SCALE 2.0 TO 2.1

mountPath: /opt/system/config/rolling_updates.yml
subPath: rolling_updates.yml
volumes:
- name: system-config
configMap:

name: system

items:

- key: zync.yml
path: zync.yml

- key: rolling_updates.yml
path: rolling_updates.ymi

3. Patch the system-sideqik deployment configuration

a. Enter the following oc patch command:

oc patch dc/system-sidekiq -p '
spec:
template:
spec:
containers:
- name: system-sidekiq
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: AMP_RELEASE
value: "2.1.0-CR2-redhat-1"
-name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
volumeMounts:
- name: system-config
mountPath: /opt/system/config/zync.yml
subPath: zync.yml
- name: system-config
mountPath: /opt/system/config/rolling_updates.yml
subPath: rolling_updates.yml
volumes:
- name: system-config
configMap:
name: system
items:
- key: zync.yml
path: zync.yml
- key: rolling_updates.yml
path: rolling_updates.ymi

4. Patch the system-sphinx deployment configuration

a. Enter the following oc patch command:

I oc patch dc/system-sphinx -p '

Red Hat 3scale APl Management 2.1 Infrastructure

spec:
template:
spec:
containers:
- name: system-sphinx
env:
- name: SSL_CERT_DIR
value: "/etc/pki/tls/certs”
- name: AMP_RELEASE
value: "2.1.0-CR2-redhat-1"
-name: ZYNC_AUTHENTICATION_TOKEN
valueFrom:
secretKeyRef:
name: zync
key: ZYNC_AUTHENTICATION_TOKEN
volumeMounts:
- name: system-config
mountPath: /opt/system/config/zync.yml
subPath: zync.yml
- name: system-config
mountPath: /opt/system/config/rolling_updates.yml
subPath: rolling_updates.yml
volumes:
- name: system-config
configMap:
name: system
items:
- key: zync.yml
path: zync.yml
- key: rolling_updates.yml
path: rolling_updates.yml

1.4. SET IMAGECHANGE TRIGGERS

Once you have selected your project and patched the system components, continue your in-place
upgrade through the oc set triggers command.

Follow these steps to set up image change triggers:

1. Enter the following oc set triggers commands for Backend:

oc set triggers dc/backend-cron --containers='backend-cron' --from-image=amp-

backend:latest
oc set triggers dc/backend-listener --containers="backend-listener' --from-image=amp-

backend:latest
oc set triggers dc/backend-worker --containers='backend-worker' --from-image=amp-

backend:latest

2. Enter the following oc set triggers commands for System:

oc set triggers dc/system-sphinx --containers='system-sphinx' --from-image=amp-
system:latest

oc set triggers dc/system-app --containers='system-developer,system-provider' --from-
image=amp-system:latest

CHAPTER 1. UPGRADE 3SCALE 2.0 TO 2.1

oc set triggers dc/system-sidekiq --containers='system-sidekiq' --from-image=amp-
system:latest

oc set triggers dc/system-resque --containers='system-scheduler,system-resque' --from-
image=amp-system:latest

3. Enter the following oc set triggers commands for APlcast:

oc set triggers dc/apicast-staging --containers="apicast-staging' --from-image=amp-
apicast:latest

oc set triggers dc/apicast-production --containers="apicast-production’ --from-image=amp-
apicast:latest

1.5. DEPLOY THE 2.1 TEMPLATE

Once you have patched system components and set imageChange triggers, you must deploy the 2.1
AMP template over your 2.0 deployment:

Using the existing wildcard domain of your current deployment, deploy the 2.1 template over top of your
2.0 project:

I oc new-app -f amp.yml --param WILDCARD_DOMAIN=<YOUR_DOMAIN>

NOTE

If you do not know the wildcard domain of your current deployment, you can find it with
the following command:

oc get dc/system-app -0 jsonpath="{.spec.template.spec.containers[?(@.name ==
"system-provider")].env[?(@.name == "THREESCALE_SUPERDOMAIN")].value}'

The 2.1 template will deploy over top of your 2.0 deplyment. This deployment will result in a set of errors;
these are expected and were resolved in the Patch System Componentssection.

1.6. VERIFY UPGRADE

Once you have performed the upgrade procedure, verify the success of your upgrade operation by
checking the version number in the lower-right corner of your 3scale Admin Portal.

NOTE

It may take some time for your redeployment operations to complete in OpenShift

Red Hat 3scale APl Management 2.1 Infrastructure

CHAPTER 2. API DEPLOYMENT ON MICROSOFT AZURE

Since APlIs are platform agnostic, they can be deployed on any platform. This tutorial is fast web API
deployment on Microsoft Azure. You will use the Ruby Grape gem to create the APl interface, an NGINX
proxy, Thin server, and Capistrano to deploy using the command line.

For the purpose of this tutorial, you can use any Ruby-based API running on Thin server, or you can
clone the Echo-API.

2.1. CREATE AND CONFIGURE MICROSOFT AZURE VM

Start to generate a X509 certificate with a 2048-bit RSA keypair to ssh into your Azure VM. It will be
useful when you will set up your VM.

To generate this type of key, you can run the following command:

I openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout myPrivateKey.key -out myCert.pem

Now, get started by creating your Microsoft Azure account. For this tutorial, you can use the free trial
option. Once the Azure account is created, go to the Dashboard on the Virtual Machines tab. There, you
will be guided to create your first VM. Choose the from gallery option and select an Ubuntu Server 12.04
LTS

On step 2 you will be able to upload the pem you created earlier, you should not be prompted for your
password again.

In steps 3 and 4, choose the options that best suit your needs.

It will take a couple of minutes for your VM to be ready. When it is, you will be able to access its
dashboard where you can monitor activity (CPU, disk, network) of your VM and upgrade its size.

The VM comes with a few packages installed, so you'll need to access it to install other components.
Once the key is created, you can ssh to your VM.

I ssh -i myPrivateKey.key -p 22 username@servicename.cloudapp.net

Once in the VM, run the following commands to install everything you need:

sudo apt-get -y update
sudo apt-get -y upgrade
sudo apt-get -y install ruby1.9.3 build-essential libsqlite3-dev libpcre3 libpcre3-dev libssl-dev openssi
libreadline6 libreadline6-dev libxml2-dev libxslt1-dev
You can check that Ruby installation is complete by running:
I ruby -v
It should output something like ruby 1.9.3p194 (2012-04-20 revision 35410) [x86_64-linux] .

You also need to install bundler and thin:

sudo gem install bundler
sudo gem install thin

10

http://www.3scale.net/wp-content/uploads/2012/06/What-is-an-API-1.0.pdf
http://windowsazure.com
http://github.com/intridea/grape
http://code.macournoyer.com/thin/
https://github.com/capistrano/capistrano
https://github.com/3scale/echo-api
https://azure.microsoft.com/en-us/free/
https://manage.windowsazure.com

CHAPTER 2. APIDEPLOYMENT ON MICROSOFT AZURE

Now, you should have everything you need on the VM. Go back to its dashboard and click on the
endpoints tab. There, add the HTTP endpoint on port 80, and the fields should autofill.

2.2.INSTALL OPENRESTY

In order to streamline this step, we recommend that you install the fantastic OpenResty web
application. It's the standard NGINX core bundled with almost all the necessary third-party NGINX
modules built in.

On your Azure VM Compile and install NGINX:

cd ~

sudo wget http:/agentzh.org/misc/nginx/ngx_openresty-VERSION.tar.gz

sudo tar -zxvf ngx_openresty-VERSION.tar.gz

cd ngx_openresty-VERSION/

sudo ./configure --prefix=/opt/openresty --with-luajit --with-http_iconv_module -j2
sudo make

sudo make install

2.3. CONFIGURE YOUR GITHUB REPO

This tutorial uses GitHub to host the code. If you don't already have a repo for your API, make sure to
create one and host it on github.com. If you're not familiar with Git and GitHub, check out this great
tutorial.

To use Git on your VM and have access to your GitHub repo, you need to generate an SSH key on your
VM and add it to Github as explained here.

2.3.1. Warning

Hosting your code on a public GitHub repo makes it vulnerable. Make sure it does not contain any
sensitive information such as provider keys before pushing it publicly.

2.4. CONFIGURE YOUR API
This is how the system will work:
1. Thin server will be launched on port 8000.
2. The upstream YOURAPINAME is listening on localhost:8000.

3. Upcoming connections on port 80 (as defined in the server section) are "redirected” to
YOURAPINAME.

2.4.1. On 3scale

Rather than reinvent the wheel and implement rate limits, access controls, and analytics from scratch,
you'll use 3scale. If you don't have an account yet, sign up here, activate it, and log in to the new instance
through the links provided. The first time you log in, choose the option for some sample data to be
created, so you'll have some APl keys to use later. Go through the tour to get a glimpse of the systems
functionality (optional) and then go ahead with implementation.

1

http://git-scm.com/docs/gittutorial
https://help.github.com/articles/generating-ssh-keys#platform-all
http://www.3scale.net/signup
http://www.3scale.net/api-key-generation-access-control-lp/

Red Hat 3scale APl Management 2.1 Infrastructure

To get some instant results, start with the API gateway in the staging environment, which can be used
while in development. Then configure an NGINX proxy, which can scale up for full production
deployments.

There is some documentation on configuring the API proxy here and more advanced configuration
options here.

Once you sign in to your 3scale account, launch your APl on the main Dashboard screen or Go to

API|-Select the service (APl)=Integration in the sidebar—Proxy https://www.3scale.net/2015/06/how-
to-deploy-an-api-amazon-ec2/

© Documentation o

:35cale

Dashboard Developers Applications Analylics Developer Portal Settings

Overview ActiveDocs

Definition

Integration

PRODUCTION DEPLOYMENT OPTION cancel

Application Plans

Settings GATEWAY

A gateway is the most maintainable and scalable way to integrate your APl with 3scale as you won't have to touch
your AP| at all; a gateway sits in front of your APl as a completely separate entity. Developers will make requests on
the gateway, the gateway will communicate (asynchronously) with 3scale for Access Control & Traffic Reporting and
forward the original requests to your API.

Alerts

APIcast Cloud Gateway NGIAX self-managed Gateway
1 click deployment of a Deploy your own gateway as
Nginx reverse proxy server an Nginx reverse proxy

ud for the shortest server for ultimate flexibility
time-to-live and customization.

OR PLUGIN

Plugins provide a wrapper for the 3scale API that enables API Access Control and API Traffic Reporting without having
to run another server. A plugin lives inside the code that powers your API. The plugin calls the 3scale API for Access
Control & Traffic Reporting.

Set the address of your API backend -

I “http://YOURAPP.cloudapp.net:80°

1. After creating some app credentials in 3scale, you can test your API by hitting the staging API
gateway endpoint:

“https://XXX.staging.apicast.io/v1/words/awesome.json?
app_id=APP_ID&app_key=APP_KEY"

where, XXX is specific to your staging API gateway and APP_ID and APP_KEY are the ID and key of
one of the sample applications you created when you first logged in to your 3scale account. (If you
missed that step, just create a developer account and an application within that account.)

Try it without app credentials, next with incorrect credentials. Then once authenticated, within and over
any rate limits that you've defined. Once it's working to your satisfaction, download the config files for
NGINX.

NOTE

Any time you have errors, check whether you can access the API directly: your-public-
dns:3000/vl/words/awesome.json. If it's not available, check whether the AWS instance
is running and whether the Thin server is running on the instance.*

12

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#apicast-overview
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#advanced-apicast-config
https://www.3scale.net/logmein/
https://www.3scale.net/2015/06/how-to-deploy-an-api-amazon-ec2/

CHAPTER 2. APIDEPLOYMENT ON MICROSOFT AZURE

There, you will be able to change your APl backend address to http://YOURAPP.cloudapp.net:80.

Once you're done, click on Download your nginx config. That will download an archive containing the
.conf and .lua file you're going to use to configure your app.

Modify the .conf accordingly:

If the API gateway and the APl are on the same VM, delete the block:

upstream backend_YOURAPP.cloudapp.net{
server

}

...and replace it with...

upstream YOURAPINAME {
server 127.0.0.1:8000;

}

' WARNING
A YOURAPINAME can only contain URL valid characters as defined in RFC 3986.

In the .lua file, modify the line ngx.var.proxy_pass = "http://backend_YOURAPP.cloudapp.net".
With ngx.var.proxy_pass = "http://YOURAPINAME" in all cases.

Replace server_name api.2445580546262.proxy.3scale.net; with

server_name YOURSERVICENAME.cloudapp.net;

In the server block, add this on top:

root /home/USERNAME/apps/YOURAPINAME/current;
access_log /home/USERNAME/apps/YOURAPINAME/current/log/thin.log;
error_log /home/USERNAME/apps/YOURAPINAME/current/log/error.log;

Replace access_by lua_file lua_tmp.lua;
..with... access_by_lua_file /opt/openresty/nginx/conf/lua_tmp.lua;

Before post_action /out_of band_authrep_action; add:

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;

Finally, rename those files nginx.conf and tmp_lua.lua.

2.4.2. Capistrano setup

13

http://yourapp.cloudapp.net:80
http://tools.ietf.org/html/rfc3986

Red Hat 3scale APl Management 2.1 Infrastructure

Use Capistrano to deploy the API. Capistrano is an automation tool, which will let you set up tasks for
your deployments and execute them using a command line interface. Capistrano is used on your local
machine to deploy on your remote VM.

To install Capistrano, add this line to your gem file: gem 'capistrano’
Run the following command locally to install the new gems and set up Capistrano: bundle capify.

Copy nginx.conf and tmp_lua.lua into /config.

2.5. CAPISTRANO SETUP

When you ran the capify command, you created two files, Capfile and deploy.rb. In deploy.rb, you
describe all the commands necessary to deploy your app.

In /config edit deploy.rb and replace the content with the following:

require "bundler/capistrano”

set :application, "YOURAPINAME"

set :user,"USERNAME"

set :scm, :git

set :repository, "git@github.com:GITHUBUSERNAME/REPO.git"
set :branch, "master"

set :use_sudo, false
server "VNDNSname", :web, :app, :db, primary: true

set :deploy_to, "/home/#{user}/apps/#{application}"
default_run_options[:pty] = true
ssh_options[:forward_agent] = false
ssh_options[:port] = 22

ssh_options[:keys] = ["/PATH/TO/myPrivateKey.key"]

namespace :deploy do
task :start, :roles => [:web, :app] do
run "cd #{deploy_to}/current && nohup bundle exec thin start -C config/production_config.yml -R
config.ru”
sudo "/opt/openresty/nginx/sbin/nginx -p /opt/openresty/nginx/ -c
/opt/openresty/nginx/conf/nginx.conf"
end

task :stop, :roles => [:web, :app] do
run "kill -QUIT cat /opt/openresty/nginx/logs/nginx.pid"
run "cd #{deploy_to}/current && nohup bundle exec thin stop -C config/production_config.yml -R
config.ru"
end

task :restart, :roles => [:web, :app] do
deploy.stop
deploy.start

end

task :setup_config, roles: :app do

sudo "In -nfs #{current_path}/config/nginx.conf /opt/openresty/nginx/conf/nginx.conf"
sudo "In -nfs #{current_path}/config/lua_tmp.lua /opt/openresty/nginx/conf/lua_tmp.lua"

14

CHAPTER 2. APIDEPLOYMENT ON MICROSOFT AZURE

sudo "mkdir -p #{shared_path}/config"
end
after "deploy:setup”, "deploy:setup_config"
end

This will ensure that Capistrano doesn’t try to run rake:migrate. (This is not a Rails project!)

task :cold do
deploy.update
deploy.start
end

In above text, replace the following:
o VNDNSnhame with your .cloudapp.net DNS.
® YOURAPINAME with your applicationame.
o USERNAME with the username used to login into the VM.
e GITHUBUSERNAME with your Github username.
e REPO with your Github repo name.
® /PATH/TO with the path to access the SSH key created before.

The above works well if you don’t have a database in your APL. If you do have a database, comment the
lines:

task :cold do
deploy.update
deploy.start
end

You also need to add a file production_config.ymlin /config to configure the Thin server.

environment: production

chdir: /nome/USERNAME/apps/YOURAPINAME/current/

address: 127.0.0.1

user: USERNAME

port: 8000

pid: /home/USERNAME/apps/YOURAPINAME/current/tmp/thin.pid
rackup: /home/USERNAME/apps/YOURAPINAME/current/config.ru
log: ’/home/USERNAME/apps/YOURAPINAME/current/log/thin.log
max_conns: 1024

timeout: 30

max_persistent_conns: 512

daemonize: true

Again, change usernames and paths accordingly.

Commit the changes on the project and upload them to GitHub.

15

Red Hat 3scale APl Management 2.1 Infrastructure

git add .
git commit -m "adding config files"
git push

You are almost done.

2.6. DEPLOY

From your local development machine, run the following command to set up the remote Azure VM:

I cap deploy:setup
You should not be prompted for a password if the path to your ssh key is correct.

Capistrano will connect to your VM and create an apps directory under the home directory of the user
account.

Now, you can deploy your APl to the VM and launch Thin server using the command: cap deploy:cold
This command should get the latest commit on your GitHub. Launch OpenResty and Thin server.
Your API should now be available on the URL:

MYAPI.cloudapp.net/path/to/resources

2.6.1. Troubleshooting

If you are not able to access to your API, ssh to your VM and check that you can call it on localhost using
curl. Like this:

I curl -X GET http://localhost:8000/v2/words/hello.json?app_id=APPID&app_key=APPKEY"
If it works, there is something wrong in nginx configuration.

You can check nginx logs on your VM with

I cat /opt/openresty/nginx/logs/error.log

You should now have an API running on an Azure Linux instance.

Hope you enjoyed this tutorial. Please let us know if you have any questions or comments. We look
forward to hearing from you.

16

CHAPTER 3. DEPLOY AN APl ON AMAZON EC2 FOR AWS ROOKIES

CHAPTER 3. DEPLOY AN API ON AMAZON EC2 FOR AWS
ROOKIES

At 3scale we find Amazon to be a fantastic platform for running APIs due to the complete control you
have on the application stack. However, for people new to AWS, the learning curve is quite steep. So we
put together our best practices into this short tutorial. Besides Amazon EC2, we'll use the Ruby Grape
gem to create the APl interface and an NGINX gateway to handle access control. Best of all everything
in this tutorial is completely free.

3.1. PREREQUISITES

For the purpose of this tutorial you'll need a running APl based on Ruby and Thin server. If you don't
have one you can simply clone an example repo as described below in the “Deploying the Application”
section.

We'll begin with the creation and configuration of the Amazon EC2 instance. If you already have an EC2
instance (micro or not), you can jump to the next step, “Preparing Instance for Deployment”.

3.2. CREATE AND CONFIGURE EC2 INSTANCE

Start by signing up for the Amazon Elastic Compute Cloud (Amazon EC2). The free tier is enough to
cover all your basic needs. Once the account is created, go to the EC2 dashboard under your AWS
Management Console and click on the “launch instance” button. That will transfer you to a pop-up
window where you'll continue the process:

® Choose the classic wizard

® Choose an AMI (Ubuntu Server 12.04.1 LTS 32bit, TImicro instance) leaving all the other settings
for “instance details” as default

® Create akey pair and download it. This will be the key that you'll use to make an ssh connection
to the server. It's VERY IMPORTANT!

® Addinbound rules for the firewall with source always 0.0.0.0/0 (HTTP, HTTPS, ALL ICMP, TCP
port 3000 used by the Ruby Thin server)

3.3. PREPARE INSTANCE FOR DEPLOYMENT

Once the instance is created and running, you can connect there directly from the console (Windows
users from PuTTY). Right click on your instance, connect, and choose Connect with a standalone SSH
Client.

Launch Instance Actions v

viewing: All Instanc Al lnctancs T - [Search)
Instance Management

Mame “* In Connect t Device Type State Status Checks Alarm Status Monitoring
- Get System Log
Demo @ Create Image (EBS AMI) t1.micro i running & 2/2 checks pi none [basic

Add/Edit Tags

Launch More Like This

Follow the steps and change the username to “ubuntu” (instead of “root”) in the given example.

17

http://aws.amazon.com/free/

Red Hat 3scale APl Management 2.1 Infrastructure

Terminal X Terminal x | Terminal

- :~/.sshS ssh -i amazon_aws.pem ubuntu@ec2- -73-23-174.compute-1.amazonaws.com

The authenticity of host 'ec2-184-73-23-174.compute a com (184.73.23.174)' can't be established.

ECDSA key fingerprint is e9:ff:d3:1c:3f:a9:64:a0:cc:89:da:f1:08:30:df:10.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'ec2-184-73-23-174.compute-1.amazonaws.com,184.73.23.174' (ECDSA) to the list of known hosts.
Welcome to Ubuntu 12.84.1 LTS (GNU/Linux 3.2.8-31-virtual 1686)

* Documentation: https://help.ubuntu.com/

System information as of Thu Jan 31 16:09:50 UTC 2013
system load: 0.0 Processes: 66
Usage of /: 18.7% of 7.87GB Users logged in: e

Memory usage: 6% IP address for eth®: 10.212.101.187
Swap usage: a%

Graph this data and manage this system at https://landscape.canonical.com/

21 packages can be updated.
8 updates are security updates.

Get cloud support with Ubuntu Advantage Cloud Guest
http://www.ubuntu.com/business/services/cloud
ubuntu@ip-10-212-1081-187:~%

After executing this step you are connected to your instance. You'll have to install new packages. Some
of them require root credentials, so you'll have to set a new root password: sudo passwd root. Then
login as root: su root.

Now with root credentials, execute: sudo apt-get update

Switch back to your normal user with exit command and install all required packages:

® |Install the libraries that will be required by rvm, Ruby, and Git:

sudo apt-get install build-essential git zlib1g-dev libssl-dev libreadline-gplv2-dev imagemagick
libxmlI2-dev libxslt1-dev openssl zlib1g libyaml-dev libxslt-dev autoconf libc6-dev ncurses-dev
automake libtool bison libpg-dev libpg5 libeditline-dev

sudo apt-get install libreadline6 libreadline6-dev

® |Install Git (on Linux rather than from Source)

® [nstall rvm

® |Install Ruby

rvm install 1.9.3
rvm use 1.9.3 --default

3.4. DEPLOYING THE APPLICATION

Our example, the Sentiment API, is located on GitHub. Try cloning the repository:
I git clone git@github.com:jerzyn/api-demo.git

You can review the code and tutorial on creating and deploying this app here and here. Note the
changes — we're using only v1, as authentication will go through the gateway.

Now you can deploy the app by issuing bundle install.

18

http://www.git-scm.com/book/en/Getting-Started-Installing-Git
https://rvm.io/rvm/install/
http://www.3scale.net/2012/06/the-10-minute-api-up-running-3scale-grape-heroku-api-10-minutes/
http://www.3scale.net/2012/07/how-to-out-of-the-box-api-analytics/

CHAPTER 3. DEPLOY AN APl ON AMAZON EC2 FOR AWS ROOKIES

Now you can start the thin server: thin start.

To access the API directly (without any security or access control) access: your-public-
ip:3000/v1/words/awesome.json You can find your public IP in the AWS EC2 Dashboard > Instancesin
the details window of your instance.

Instance: | i-0fc94bdf Public IP: 52.5.23.192

Description Status Checks Monitoring Tags

Instance 1D i-0fc94bdf Public DNS
Instance state running Public IP 52.523.192
3.4.1. Optional

If you want to assign a custom domain to your Amazon instance, you'll have to do one thing: Add an A
record to the DNS record of your domain, mapping the domain to the public IP address.

Your domain provider should either give you some way to set the A record (the IPv4 address), or it will
give you a way to edit the nameservers of your domain. If they don't allow you to set the A record directly
find a DNS management service, register your domain as a zone there, and the service will give you the
nameservers to enter in the admin panel of your domain provider. You can then add the A record for the
domain. Some possible DNS management services include ZoneEdit (basic, free) or Amazon route 53.

At this point, your APl is open to the world. This is good and bad—it's great that you're sharing, but bad
that without rate limits a few apps could kill the resources of your server and you would have no insight
into who is using your APl and how it's being used. The solution is to add APl management.

3.5. ENABLING APl MANAGEMENT WITH 3SCALE

Rather than reinventing the wheel and implement rate limits, access controls, and analytics from scratch,
you can leverage the 3scale APl Management Platform. Sign up for a 3scale account if you haven't
already, activate it, and log in through the links provided. The first time you log in, some sample data will
be created for you so you'll have an API key to use later. You can go through the wizard to get an idea of
the system’s functionality (optional). Then start with the implementation.

To get some instant results, we'll start with the API gateway in the staging environment which can be
used while in development. Then we'll configure an NGINX gateway that can scale up for full production
deployments. Here's some documentation on the configuration of the APl gateway, as well as more
advanced configuration options.

Once you've signed in to your 3scale account, go to Dashboard > API > Select the service (API) >
Integration > edit integration settings and then choose APlcast Self-managed.

19

http://www.3scale.net/
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#apicast-overview
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#advanced-apicast-config

Red Hat 3scale API Management 2.1 Infrastructure

Dashboard Developers Applications Billing Analytics API Developer Portal Settings
Overview ActiveDocs

Integration

Integration
Settings
. Dear 3scale,
Naming
Please take a moment to update your integration settings and tell us which deployment option you are using. If you're using multiple integration options, pick the one that's
Alerts most important to your business. This setting has no functional consequences, it adjusts the user interface to better suit your use case.
Application plans DEPLOYMENT OFTION

GATEWAY

A gateway is the most maintainable and scalable way to integrate your API with 3scale as you won't have to
touch your API at all; a gateway sits in front of your API as a completely separate entity. Developers will do
requests on the gateway, the gateway will communicate (asynchronously) with 3scale for Access Control &
Traffic Reporting and forward the original requests to your API.

APIaast Cloud Gateway NGiMX on-premise Gateway

1 click deploy of an Nginx Deploy your own gateway
reverse proxy server to the as an Nginx reverse proxy
cloud for the shortest server for ultimate flexibility
time-to-live and customization.

Dashboard Developers Applications Billing Analytice API Developer Portal Settings

Overview ActiveDocs

Integration

Integration
Settings
. edit integration setings
Naming
Deployment opt On-premise Gateway
Alerts

Authentic at APT Key (user_key)

Application plans

Configure your APT gateway in the staging environment. At any moment, you can download the nginx config files to deploy your on-premise API gateway to a suitable
production environment.

Staging - configure & test your integration

Private Base URL* 'O Use Hello World APT

Private address of your API that will be called by the API gateway. For end-to-end encryption your private base URL
scheme should be https.

APl GATEWAY ‘:‘:))

Public Base URL* http://apl.28816 proxy.3scalenet:80 9 Use 3scale Sandbox Proxy

Public address of your API gateway in the staging environment. You can use this address to call the API for testing
purposes.

» MAPPING RULES

* AUTHENTICATION SETTINGS

o
D CLIENT @

API test GET request

Optional client GET request to a API gateway endpoint. This call has been left blank and therefere it will not be
possible to test if the connection between client, API gateway & API is working correctly.

The API test GET request has been left blank. You
should set it before checking the connections
between client, gateway 8 API.

Save & Deploy

Production

On-premise API gateway

To deploy an on-premise API gateway, & Download the Nginx Config files and follow the documentation.

20

CHAPTER 3. DEPLOY AN APl ON AMAZON EC2 FOR AWS ROOKIES

Set the address of of your APl backend. This has to be the public IP address unless the custom domain
has been set, including http protocol and port 3000. Now you can save the changes to the API gateway
in the staging environment to test your API by hitting the staging endpoint.

I http://api.XXX.proxy.3scale.net/vi/words/awesome.json?user_key=USER_KEY

Where XXX is specific to your 3scale account and USER_KEY is the authentication key of one of the
sample applications created when you first logged into your 3scale account. (If you missed that step just
create a developer account and an application within that account.)

Try it without app credentials; next with incorrect credentials; and then once authenticated, within and

over any rate limits you have defined. Once it's working to your satisfaction you can download the config
files for NGINX.

NOTE
Whenever you have errors, check whether you can access the API directly: your-public-

dns:3000/vl/words/awesome.json. If that is not available, you need to check whether the
AWS instance is running and whether the Thin server is running on the instance.

3.6.INSTALL AND DEPLOY APICAST (YOUR API GATEWAY)

Finally, to deploy install and deploy APIcast, follow the steps in the APIcast 2.0 self-managed tutorial for
'local’ deploy.

You're almost finished! The last step is to start the NGINX gateway and put some traffic through it. If it's
not running yet (remember the Thin server has to be started first), go to your EC2 instance terminal (the

one you were connecting through ssh before) and start it now.

The last step will be verifying that the traffic goes through with a proper authorization. To do that,
access:

I http://your-public-ip/v1/words/awesome.json?app_id=APP_ID&app_key=APP_KEY

where APP_ID and APP_KEY are key and ID of the application you want to access through the API call.

Once everything is confirmed as working correctly, you'll want to block public access to the APl backend
on port 3000, which bypasses any access controls.

21

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#apicast-v2-self-managed

Red Hat 3scale APl Management 2.1 Infrastructure

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION
GUIDE

In this guide you'll learn how to install 3scale 2.1 (on-premises) on OpenShift using OpenShift templates.

4.1. 3SCALE AMP OPENSHIFT TEMPLATES

Red Hat 3scale APl Management Platform (AMP) 2.1 provides an OpenShift template that you can use
to deploy AMP onto OpenShift Container Platform.

The 3scale AMP template is composed of the following:
® Two built-in APIcast APl gateways

® One AMP admin portal and developer portal with persistent storage

4.2. SYSTEM REQUIREMENTS

The 3scale AMP OpenShift template requires the following:

4.2.1. Environment Requirements

AMP requires a supported configuration.

Persistent Volumes:
® 3 RWO (ReadWriteOnce) persistent volumes for Redis and MySQL persistence
® 1RWX (ReadWriteMany) persistent volume for CMS and System-app Assets

The RWX persistent volume must be configured to be group writable. For a list of persistent volume
types which support the required access modes, see the OpenShift documentation.

4.2.2. Hardware Requirements

Hardware requirements depend on your usage needs. Red Hat recommends you test and configure your
environment to meet your specific requirements. Consider the following recommendations when
configuring your environment for 3scale on OpenShift:

e Compute optimized nodes for deployments on cloud environments (AWS c4.2xlarge or Azure
Standard_F8)

® Very large installations may require a separate node (AWS M4 series or Azure Av2 series) for
Redis if memory needs exceed your current node’s available RAM

® Separate nodes between routing and compute tasks
® Dedicate compute nodes to 3scale specific tasks

o Setthe PUMA_WORKERS variable of the backend listener to the number of cores in your
compute node

4.3. CONFIGURE NODES AND ENTITLEMENTS

22

https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#persistent-volumes

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

Before you can deploy 3scale on OpenShift, you must configure your nodes and the entitlements
required for your environment to fetch images from Red Hat.

Perform the following steps to configure entitlements:
1. Install Red Hat Enterprise Linux (RHEL) on each node.
2. Register the nodes with Red Hat using the Red Hat Subscription Manager (RHSM).
3. Attach the nodes to your 3scale subscription using RHSM.

4. Install OpenShift on the nodes, complying with the following requirements:

® Use a supported OpenShift version
e Configure persistent storage on a file system that supports multiple writes.
5. Install the OpenShift command line interface.

6. Enable access to the rhel-7-server-3scale-amp-2.1-rpms repository using the subscription
manager:

I sudo subscription-manager repos --enable=rhel-7-server-3scale-amp-2.1-rpms

7. Install the 3scale-amp-template AMP template. The template will be saved in
/opt/amp/templates.

I sudo yum install 3scale-amp-template

4.4. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE

4.4.1. Prerequisites:

® An OpenShift cluster configured as specified in the Chapter 3, Configure Nodes and
Entitlements section.

e A domain, preferably wildcard, that resolves to your OpenShift cluster.
® Access to the Red Hat container catalog.
® (Optional) A working SMTP server for email functionality.
Follow these procedures to install AMP on OpenShift using a .yml template:
® |mport the AMP Template

® Configure SMTP Variables (Optional)

4.4.2. Import the AMP Template

Perform the following steps to import the AMP template into your OpenShift cluster:
1. Download amp.yml from the 3scale GitHub page.

2. From a terminal session log in to OpenShift:

23

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/registering-cmd
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/sect-red_hat_subscription_management-using_red_hat_subscription_management-section_3
https://docs.openshift.com/container-platform/latest/install_config/index.html
https://access.redhat.com/articles/2798521
https://docs.openshift.com/container-platform/latest/install_config/persistent_storage/index.html
https://docs.openshift.com/container-platform/3.4/cli_reference/get_started_cli.html#installing-the-cli
https://docs.openshift.com/container-platform/3.4/install_config/install/prerequisites.html#prereq-dns
https://access.redhat.com/containers/#/faq
https://raw.githubusercontent.com/3scale/3scale-amp-openshift-templates/2.1.0-GA/amp/amp.yml

Red Hat 3scale APl Management 2.1 Infrastructure

I oc login
3. Select the project, or create a new project:

I oc project <project_name>

I oc new-project <project_name>

4. Execute the oc new-app command:
a. Specify the --file option with the path to the amp.yml file.

b. Specify the --param option with the WILDCARD_DOMAIN parameter set to the domain of
your OpenShift cluster.

c. Optionally, specify the --param option with the WILDCARD_POLICY parameter set to

subdomain to enable the wildcard domain routing tech preview:
Without Wildcard Routing:

oc new-app --file /path/to/amp.yml --param WILDCARD_DOMAIN=
<WILDCARD_DOMAIN>

With Wildcard Routing:

oc new-app --file /path/to/amp.yml --param WILDCARD_DOMAIN=
<WILDCARD_DOMAIN> --param WILDCARD_POLICY=Subdomain

5. The terminal will show the URL and credentials for the newly created AMP admin portal. Save
these details for future reference.

NOTE

You may need to wait a few minutes for AMP to fully deploy on OpenShift for
your login and credentials to work.

4.4.3. Configure SMTP Variables (Optional)

OpenShift uses email to send notifications and invite new users. If you intend to use these features, you
must provide your own SMTP server and configure SMTP variables in the SMTP config map.

To configure the SMTP variables in the SMTP config map, take the following steps:

1. If you are not already logged in, log in to OpenShift:
I oc login

2. Configure variables for the SMTP config map. Use the oc patch command, specify the
configmap and smtp objects, followed by the -p option and write the following new values in
JSON for the following variables:

Variable Description

24

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/accounts#notifications
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/accounts#inviting-users-managing-rights

address

username

password

domain

port

authentication

openssl.verify.mode

Example:

Allows you to specify a remote mail server as a
relay

Specify your mail server username

Specify your mail server password

Specify a HELO domain

Specify the port on which the mail server is
listening for new connections

Specify the authentication type of your mail
server. Allowed values: plain (sends the
password in the clear), login (send password
Base64 encoded), or cram_md5 (exchange
information and a cryptographic Message Digest
5 algorithm to hash important information)

Specify how OpenSSL checks certificates when
using TLS. Allowed values: none, peer,
client_once, orfail_if_no_peer_cert.

oc patch configmap smtp -p '{"data":{"address":"<your_address>"}}'
oc patch configmap smtp -p '{"data":{"username":"<your_username>"}}'
oc patch configmap smtp -p '{"data":{"password":"<your_password>"}}'

3. After you have set the configmap variables, redeploy the system-app, system-resque, and

system-sidekiq pods:

oc deploy system-app --latest
oc deploy system-resque --latest
oc deploy system-sidekiq --latest

4.5. 3SCALE AMP TEMPLATE PARAMETERS

Template parameters configure environment variables of the AMP yml template during and after

deployment.
Name Description
AMP_RELEASE AMP release tag.

Default Value Required?

2.1.0-CR2-redhat-1 yes

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

25

ADMIN_PASSWORD

ADMIN_USERNAME

APICAST_ACCESS_TO
KEN

ADMIN_ACCESS_TOKE
N

WILDCARD_DOMAIN

WILDCARD_POLICY

TENANT_NAME

MYSQL_USER

MYSQL_PASSWORD

MYSQL_DATABASE

MYSQL_ROOT_PASSW
ORD

SYSTEM_BACKEND_US
ERNAME

Red Hat 3scale APl Management 2.1 Infrastructure

A randomly generated
AMP administrator
account password.

AMP administrator
account username.

Read Only Access Token
that APIcast will use to
download its
configuration.

Admin Access Token
with all scopes and write
permissions for API
access.

Root domain for the
wildcard routes. For
example, a root domain
example.com will
generate 3scale-
admin.example.com.

Enable wildcard routes
to built-in APIcast
gateways by setting the
value as "Subdomain”

Tenant name under the
root that Admin Ul will
be available with -admin
suffix.

Username for MySQL
user that will be used for
accessing the database.

Password for the
MySQL user.

Name of the MySQL
database accessed.

Password for Root user.

Internal 3scale API
username for internal
3scale api auth.

N/A

admin

N/A

N/A

N/A

none

3scale

mysq|

N/A

system

N/A

3scale_api_user

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

SYSTEM_BACKEND_PA
SSWORD

REDIS_IMAGE

MYSQL_IMAGE

SYSTEM_BACKEND_SH
ARED_SECRET

SYSTEM_APP_SECRET
_KEY_BASE

APICAST_MANAGEME
NT_API

APICAST_OPENSSL_VE
RIFY

APICAST_RESPONSE_
CODES

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

Internal 3scale API
password for internal
3scale api auth.

Redis image to use

Mysql image to use

Shared secret to import
events from backend to
system.

System application
secret key base

Scope of the APIcast
Management API. Can
be disabled, status or
debug. At least status
required for health
checks.

Turn on/off the
OpenSSL peer
verification when
downloading the
configuration. Can be
set to true/false.

Enable logging response
codes in APIcast.

N/A

rhscl/redis-32-rhel7:3.2

rhscl/mysql-56-
rhel7:5.6-13.5

N/A

N/A

status

false

true

4.6. USE APICAST WITH AMP ON OPENSHIFT

yes

yes

yes

yes

yes

no

no

no

APIcast with AMP on OpenShift differs from APIcast with AMP hosted and requires unique configuration

procedures.

The topics in this section explain how to deploy APIcast with AMP on OpenShift.

4.6.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing your

AMP

AMP OpenShift templates contain two built-in APIcast API gateways by default. If you require more API
gateways, or require separate APIcast deployments, you can deploy additional APIcast templates on

your OpenShift cluster.

Follow the steps below to deploy additional APl gateways on your OpenShift cluster:

1. Create an access token with the following configurations:

27

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/accounts/#tokens

Red Hat 3scale APl Management 2.1 Infrastructure

® scoped to Account Management API
® having read-only access

2. Login to your APIcast Cluster:
I oc login

3. Create a secret, which allows APIcast to communicate with AMP. Specify new-basicauth,
apicast-configuration-url-secret, and the --password parameter with the access token,
tenant name, and wildcard domain of your AMP deployment:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<APICAST_ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

NOTE

TENANT_NAME is the name under the root that Admin Ul will be available with.
The default value of TENANT_NAME is "3scale”. If you used a custom value in
your AMP deployment, then you must input that value here.

4. Import the APIcast template by downloading the apicast.yml, located on the 3scale GitHub, and
running the oc new-app command, specifying the --file option with the apicast.yml file:

I oc new-app --file /path/to/file/apicast.yml

4.6.2. Connect APIcast from an OpenShift Cluster Outside of an OpenShift Cluster
Containing your AMP

If you deploy APIcast on a different OpenShift cluster, outside of your AMP cluster, you must connect
over the public route.

1. Create an access token with the following configurations:

® scoped to Account Management API
® having read-only access

2. Login to your APIcast Cluster:
I oc login

3. Create a secret, which allows APIcast to communicate with AMP. Specify new-basicauth,
apicast-configuration-url-secret, and the --password parameter with the access token,
tenant name, and wildcard domain of your AMP deployment:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<APICAST_ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

28

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/accounts/#tokens

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

NOTE

TENANT_NAME is the name under the root that Admin Ul will be available with.
The default value for TENANT_NAME is "3scale". If you used a custom value in
your AMP deployment, then you must use that value here.

4. Deploy APIcast on an OpenShift cluster outside of the OpenShift Cluster with the oc new-app
command. Specify the -file option and the file path of your apicast.yml file:

I oc new-app --file /path/to/file/apicast.yml

5. Update the apicast BACKEND_ENDPOINT_OVERRIDE environment variable set to the URL
backend. followed by the wildcard domain of the OpenShift Cluster containing your AMP
deployment:

oc env dc/apicast --overwrite BACKEND_ENDPOINT_OVERRIDE=https://backend-
<TENANT_NAME>.<WILDCARD_ DOMAIN>

4.6.3. Connect APIcast from Other Deployments

Once you have deployed APIcast on other platforms, such as the /docs/deployment-options/apicast-
docker[Docker] containerized environment or /docs/deployment-options/apicast-v2-self-
managed[native installations], you can connect them to AMP on OpenShift by configuring the
BACKEND_ENDPOINT_OVERRIDE environment variable in your AMP OpenShift Cluster:

1. Login to your AMP OpenShift Cluster:
I oc login

2. Configure the system-app object BACKEND_ENDPOINT_OVERRIDE environment variable:
If you are using a native installation:

BACKEND_ENDPOINT_OVERRIDE=https://backend.<your_openshift_subdomain>
bin/apicast

If are using the Docker containerized environment:

docker run -e BACKEND_ENDPOINT_OVERRIDE=https://backend.
<your_openshift_subdomain>

4.6.4. Change Built-in APIcast Default Behavior

In external APIcast deployments, you can modify default behavior by changing the template parameters
in the APIcast OpenShift template.

In built-in APlcast deployments, AMP and APIcast are deployed from a single template. You must modify

environment variables after deployment if you wish to change default behavior for built-in APIcast
deployments.

4.6.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over
Internal Service Routes

29

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#apicast-openshift

Red Hat 3scale APl Management 2.1 Infrastructure

If you deploy multiple APlcast gateways into the same OpenShift cluster, you can configure them to
connect using internal routes through the backend listener service instead of the default external route
configuration.

You must have an OpenShift SDN plugin installed to connect over internal service routes. How you
connect depends on the SDN that you have installed.

ovs-subnet

If you are using the ovs-subnet OpenShift SDN plugin, follow these steps to connect over internal
routes:

1. Login to your OpenShift Cluster, if you have not already done so:
I oc login

2. Enter the oc new-app command with the path to the apicast.yml file:

® Specify the --param option with the BACKEND_ENDPOINT_OVERRIDE parameter set to
the domain of your OpenShift cluster’'s AMP project:

oc new-app -f apicast.yml --param BACKEND_ENDPOINT_OVERRIDE=http://backend-listener.
<AMP_PROJECT>.svc.cluster.local:3000
ovs-multitenant

If you are using the 'ovs-multitenant' Openshift SDN plugin, follow these steps to connect over internal
routes:

1. Login to your OpenShift Cluster, if you have not already done so:
I oc login

2. As admin, specify the oadm command with the pod-network and join-projects options to set
up communication between both projects:

I oadm pod-network join-projects --to=<AMP_PROJECT> <APICAST_PROJECT>

3. Enter the oc new-app option with the path to the apicast.yml file.

® Specify the --param option with the BACKEND_ENDPOINT_OVERRIDE parameter set to
the domain of your OpenShift cluster’'s AMP project:

oc new-app -f apicast.yml --param BACKEND_ENDPOINT_OVERRIDE=http://backend-listener.
<AMP_PROJECT>.svc.cluster.local:3000

More information

For information on Openshift SDN and project network isolation, visit: Openshift SDN.

4.7.7. TROUBLESHOOTING

This section contains a list of common installation issues, and provides guidance for resolution.

30

https://docs.openshift.com/container-platform/3.5/architecture/additional_concepts/sdn.html

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

® Previous Deployment Leaves Dirty Persistent Volume Claims

® Incorrectly Pulling from the Docker Registry

® Permissions Issues for MySQL when Persistent Volumes are Mounted Locally

® Unable to Upload Logo or Images Because Persistent Volumes are not Writable by OpenShift
® Create Secure Routes on OpenShift

® APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets

4.7.1. Previous Deployment Leaves Dirty Persistent Volume Claims

Problem

A previous deployment attempt leaves a dirty Persistent Volume Claim (PVC), causing the MySQL
container to fail to start.

Cause
Deleting a project in OpenShift does not clean the PVCs associated with it.
Solution

1. Find the PVC containing the erroneous MySQL data with oc get pvc:

oc get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
backend-redis-storage Bound vol003 100Gi RWO,RWX 4d
mysql-storage Bound vol006 100Gi RWO,RWX 4d

system-redis-storage Bound vol008 100Gi RWO,RWX 4d
system-storage Bound vol004 100Gi RWO,RWX 4d

2. Stop the deployment of the system-mysql pod by clicking cancel deployment in the OpenShift
Ul.

3. Delete everything under the MySQL path to clean the volume.

4. Start a new system-mysql deployment.

4.7.2. Incorrectly Pulling from the Docker Registry

Problem

The following error occurs during installation:

svc/system-redis - 1EX.AMP.LE.IP:6379
dc/system-redis deploys docker.io/rhscl/redis-32-rhel7:3.2-5.3
deployment #1 failed 13 minutes ago: config change

Cause

OpenShift searches for and pulls container images by issuing the docker command. This command
refers to the docker.io Docker registry, instead of the registry.access.redhat.com Red Hat container
registry.

31

Red Hat 3scale APl Management 2.1 Infrastructure

This occurs when the system contains an unexpected version of the Docker containerized environment.
Solution

Use the appropriate version of the Docker containerized environment.

4.7.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally

Problem

The system-msql pod crashes and does not deploy, causing other systems dependant on it to fail
deployment. The pod's log displays the following error:

[ERROR] Can't start server : on unix socket: Permission denied
[ERROR] Do you already have another mysqld server running on socket: /var/lib/mysql/mysql.sock ?
[ERROR] Aborting

Cause
The MySQL process is started with inappropriate user permissions.
Solution
1. The directories used for the persistent volumes MUST have the write permissions for the root

group. Having rw permissions for the root user is not enough, as the MySQL service runs as a
different user in the root group. Execute the following command as the root user:

I chmod -R g+w /path/for/pvs

2. Execute the following command to prevent SElinux from blocking access:

I chcon -Rt svirt_sandbox_file_t /path/for/pvs

4.7.4. Unable to Upload Logo or Images Because Persistent Volumes are not
Writable by OpenShift

Problem

Unable to upload a logo using OpenShift version 3.4. system-app logs display the following error:

I Errno::EACCES (Permission denied @ dir_s_mkdir - /opt/system/public//system/provider-name/2
Cause

Persistent volumes are not writable by OpenShift.

Solution

Ensure your persistent volume is writable by OpenShift. It should be owned by root group and be group
writable.

4.7.5. Create Secure Routes on OpenShift

Problem

32

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/

CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

Test calls do not work after creation of a new service and routes on OpenShift. Direct calls via curl also
fail, stating: service not available.

Cause
3scale requires HTTPS routes by default, and OpenShift routes are not secured.
Solution

Ensure the "secure route" checkbox is enabled in your OpenShift router settings.

4.7.6. APIcast on a Different Project from AMP Fails to Deploy Due to Problem with
Secrets

Problem

APlcast deploy fails (pod doesn’t turn blue). The following error appears in the logs:

update acceptor rejected apicast-3: pods for deployment "apicast-3" took longer than 600 seconds to
become ready

The following error appears in the pod:

Error synching pod, skipping: failed to "StartContainer" for "apicast" with RunContainerError:
"GenerateRunContainerOptions: secrets \"apicast-configuration-url-secret\" not found"

Cause
The secret was not properly set up.
Solution

When creating a secret with APIcast v3, specify apicast-configuration-url-secret:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.<WILDCARD_DOMAIN>

33

Red Hat 3scale APl Management 2.1 Infrastructure

CHAPTER 5. RED HAT 3SCALE AMP 2.1 ON-PREMISES
OPERATIONS AND SCALING GUIDE

35.1. INTRODUCTION

This document describes operations and scaling tasks of a Red Hat 3scale AMP 2.1 On-Premises
installation.

5.1.1. Prerequisites

Before you can perform the steps in this guide, you must have installed and initially configured AMP On-
Premises on a supported OpenShift version.

This document is not intended for local installations on laptops or similar end user equipment.

5.1.2. Further Reading

® Health and Liveness Monitoring

® OpenShift Documentation

5.2. RE-DEPLOYING APICAST
Once you have deployed AMP On-Premises and your chosen APIcast deployment method, you can test
and promote system changes through your AMP dashboard. By default, APIcast deployments on
OpenShift, both built-in and on other OpenShift clusters, are configured to allow you to publish changes
to your staging and production gateways through the AMP UlI.
Redeploy APIcast on OpenShift:
1. Make system changes
2. Inthe Ul, deploy to staging and test
3. Inthe Ul, promote to production
4. By default, APIcast retrieves and publishes the promoted update once every 5 minutes
If you are using APIcast on the Docker containerized environment or a native installation, you must
configure your staging and production gateways, as well as configure how often your gateway retrieves
published changes. Once you have configured your APlcast gateways, you can redeploy APIcast through
the AMP UL
To redeploy APIcast on the Docker containerized environment or a native installations:
1. Configure your APIcast gateway and connect it to AMP On-Premises
2. Make system changes
3. Inthe Ul, deploy to staging and test

4. Inthe Ul, promote to production

5. APIcast will retrieve and publish the promoted update at the configured frequency

34

https://access.redhat.com/articles/2798521
https://docs.openshift.com/container-platform/latest/dev_guide/application_health.html
https://docs.openshift.com/index.html

CHAPTER 5. RED HAT 3SCALE AMP 2.1 ON-PREMISES OPERATIONS AND SCALING GUIDE

5.3. APICAST BUILT-IN WILDCARD ROUTING (TECH PREVIEW)

The built-in APIcast gateways that accompany your on-preimses AMP deployment support wildcard
domain routing at the subdomain level. This feature allows you to name a portion of your subdomain for
your production and staging public base URLs. In order to use this feature, you must have enabled it
during your on-premises installation.

NOTE

Wildcard routing is in tech preview. The current tech preview contains the following
limitations:

® Any HTTP headers containing underscores will cause the service to fail with a
403 error code. As a workaround, remove underscores from all header names.

® You must set the template parameter TENANT_NAME to a value that does not
start with a number

The AMP does not provide DNS capabilities, so your specified public base URL must match the DNS
configuration specified in the WILDCARD_DOMAIN parameter of the OpenShift cluster on which it was
deployed.

5.3.1. Modify Wildcards

Perform the following steps to modify your wildcards:
1. login to your AMP

2. navigate to your APl gateway settings page: APIs = your API = Integration = edit APIcast
configuration

3. modify the staging and production public base URLs with a string prefix of your choice, adhere
to these requirements:

® APl endpoints must not begin with a numeric character

The following is an example of a valid wildcard for a staging gateway on the domain example.com:
I apiname-staging.example.com

More Information

For information on routing, refer to the OpenShift documentation.

5.4. SCALING UP AMP ON PREMISES

5.4.1. Scaling up Storage

As your APIcast deployment grows, you may need to increase the amount of storage available. How you
scale up storage depends on which type of file system you are using for your persistent storage.

If you are using a network file system (NFS), you can scale up your persistent volume using the oc edit
pv command:

35

https://www.google.com/url?q=https://docs.openshift.com/container-platform/3.5/install_config/router/default_haproxy_router.html%23using-wildcard-routes&sa=D&ust=1508264220901000&usg=AFQjCNF0fKVI-Tq0EAjwfUHVVX0mEIiwTw

Red Hat 3scale APl Management 2.1 Infrastructure

I oc edit pv <pv_name>

If you are using any other storage method, you must scale up your persistent volume manually using
either of the following methods:

5.4.1.1. Method 1, Backup and Swap Persistent Volumes

1.

2.

o

Back up the data on your existing persistent volume
Create and attach a target persistent volume, scaled for your new size requirements

Create a pre-bound persistent volume claim, specify: The size of your new PVC The persistent
volume name using the volumeName field

Restore data from your backup onto your newly created PV

Modify your deployment configuration with the name of your new PV:

I oc edit dc/system-app

. Verify your new PV is configured and working correctly

Delete your previous PVC to release its claimed resources

Method 2. Back up and Redeploy AMP

Back up the data on your existing persistent volume

. Shut down your 3scale pods

Create and attach a target persistent volume, scaled for your new size requirements
Restore data from your backup onto your newly created PV

Create a pre-bound persistent volume claim. Specify:

® The size of your new PVC

® The persistent volume name using the volumeName field
Deploy your AMP.yml
Verify your new PV is configured and working correctly.

Delete your previous PVC to release its claimed resources.

5.4.2. Scaling up Performance

5.4.2.1.

Configuring 3scale On-Premises Deployments

By default, 3scale deployments run 1 process per pod. You can increase performance by running more
processes per pod. Red Hat recommends running 1-2 processes per core on each node.

Perform the following steps to add more processes to a pod:

36

CHAPTER 5. RED HAT 3SCALE AMP 2.1 ON-PREMISES OPERATIONS AND SCALING GUIDE

1. Login to your OpenShift cluster
I oc login

2. Switch to your 3scale project
I oc project <project_name>

3. Set the appropriate environment variable to the the desired number of processes per pod

e APICAST_WORKERS for APIcast pods (Red Hat recommends no more than 2 per
deployment)

e PUMA_WORKERS for backend pods

e UNICORN_WORKERS for system pods

I oc env dc/apicast --overwrite APICAST_WORKERS=<number_of processes>
I oc env dc/backend --overwrite PUMA_WORKERS=<number_of processes>

I oc env dc/system-app --overwrite UNICORN_WORKERS=<number_of_processes>

5.4.2.2. Vertical and Horizontal Hardware Scaling

You can increase the performance of your AMP deployment on OpenShift by adding resources. You can
add more compute nodes as pods to your OpenShift cluster (horizontal scaling), or you can allocate
more resources to existing compute nodes (vertical scaling).

Horizontal Scaling

You can add more compute nodes as pods to your OpenShift. As long as your additional compute nodes
match the existing nodes in your cluster, you do not have to reconfigure any environment variables.

Vertical Scaling

You can allocate more resources to existing compute nodes. If you allocate more resources, you must
add additional processes to your pods to increase performance.

Note

Red Hat does not recommend mixing compute nodes of a different specification or configuration on
your 3scale deployment.

5.4.2.3. Scaling Up Routers

As your traffic increases, you must ensure your OCP routers can adequately handle requests. If your
routers are limiting the throughput of your requests, you must scale up your router nodes.

5.4.2.4. Further Reading

® Scaling tasks, adding hardware compute nodes to OpenShift

® Adding Compute Nodes

37

Red Hat 3scale APl Management 2.1 Infrastructure

® Routers

5.5. OPERATIONS TROUBLESHOOTING

5.5.1. Access Your Logs

Each component’s deployment configuration contains logs for access and exceptions. If you encounter
issues with your deployment, check these logs for details.

Follow these steps to access logs in 3scale:

1. Find the ID of the pod you want logs for:
I oc get pods

2. Enter oc logs and the ID of your chosen pod:
I oc logs <pod>

The system pod has 2 containers, each with a separate log. To access a container's log, specify the --
container parameter with the system-provider and system-developer:

oc logs <pod> --container=system-provider
oc logs <pod> --container=system-developer

5.5.2. Job Queues

Job Queues contain logs of information sent from the system-resque and system-sidekiq pods. Use
these logs to check if your cluster is processing data. You can query the logs using the OpenShift CLI:

I oc get jobs

I oc logs <job>

38

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION
WITH FUSE, 3SCALE, AND OPENSHIFT

This tutorial describes how to get a full-stack API solution (API design, development, hosting, access
control, monetization, etc.) using Red Hat JBoss xPaa$S for OpenShift and 3scale APl Management
Platform - Cloud.

The tutorial is based on a collaboration between Red Hat and 3scale to provide a full-stack APl solution.
This solution includes design, development, and hosting of your APl on the Red Hat JBoss xPaa$S for
OpenShift, combined with the 3scale APl Management Platform for full control, visibility, and
monetization features.

The APl itself can be deployed on Red Hat JBoss xPaaS for OpenShift, which can be hosted in the cloud
as well as on premise (that's the Red Hat part). The APl management (the 3scale part) can be hosted
on Amazon Web Services (AWS), using 3scale APlcast or OpenShift. This gives a wide range of different
configuration options for maximum deployment flexibility.

The diagram below summarizes the main elements of this joint solution. It shows the whole integration
chain including enterprise backend systems, middleware, APl management, and API customers.

RDBMS

Red Hat

SAP JBoss Middleware

Service APl ———

Agile mobile
development

NoSQL

APl management
platform by 3Scale

Developers

SFDC Service API Access control and security
Partners

Apps, data,
and services
integration

Open hybrid
cloud deployment

DevOps,
CI1/CD support

API contracts and rate limits Custom

Hadoop Service APl — |

Mobile app

Analytics and reporting

Custom app Affiliates

Service APl —— Developer portal and docs

Internal projects

Social Billing and payments

Service APl ————

T

Enterprise systems API provider API customer

JB0O0SS
For specific support questions, please contact support.
This tutorial shows three different deployment scenarios step by step:

1. Scenario 1- A Fuse on OpenShift application containing the API. The APl is managed by 3scale
with the API gateway hosted on Amazon Web Services (AWS) using the 3scale AMI.

2. Scenario 2 - A Fuse on OpenShift application containing the API. The APl is managed by 3scale
with the API gateway hosted on APIcast (3scale’s cloud hosted API gateway).

39

http://pages.3scale.net/rs/3scale/images/3scale-redhat-joint-solution-brief.pdf
https://www.openshift.com/xpaas
http://www.3scale.net/apicast/
https://access.redhat.com/support/
http://www.jboss.org/products/fuse
https://aws.amazon.com/marketplace/pp/B00QHIY9OW
http://www.3scale.net/apicast/

Red Hat 3scale APl Management 2.1 Infrastructure

3. Scenario 3 - A Fuse on OpenShift application containing the API. The APl is managed by 3scale
with the API gateway hosted on OpenShift

This tutorial is split into four parts:
® Part 1: Fuse on OpenShift setup to design and implement the API
® Part 2: Configuration of 3scale APlI Management
® Part 3: Integration of your APl services
® Part 4: Testing the APl and APl management

The diagram below shows the roles the various parts play in this configuration.

i ascale ﬁdpalnagemant
mptementafon NGIAX G toway
FUSE ESB 17/amazon Hosting
o Paas Engine API Managg;nzg; g:;ﬁguraﬁon

API Design, Implementation
and Hosting

6.1. PART 1: FUSE ON OPENSHIFT SETUP
You will create a Fuse on OpenShift application that contains the APl to be managed. You will use the

REST quickstart that is included with Fuse 6.1. This requires a medium or large gear, as using the small
gear will result in memory errors and/or horrible performance.

6.1.1. Step 1

Sign in to your OpenShift online account. Sign up for an OpenShift online account if you don’t already
have one.

40

https://www.openshift.com/
http://www.jboss.org/products/fuse
http://www.jboss.org/products/fuse

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

PERS SUPPORT ADD-OMS

THE CLOUD

6.1.2. Step 2

Click the "add application" button after signing in.

Add Application...

6.1.3.Step 3

Under xPaaS, select the Fuse type for the application.

41

Red Hat 3scale API Management 2.1 Infrastructure

xFPaas see all

@_ |Boss Data Virtualization 6 &
JaviA EE &

. JFEF:Esf..Enterprise Application Platform & —

|Boss Unified Push Server 1.0.0.Betal o

JEE FULL PROFILE

€ |Boss Bgeigpess Process Management Suite

¥ JBoss ss Rules Management System

|Boss Fuse 6.1

INTEGRATION MESSAGING

6.1.4.Step 4

Now configure the application. Enter the subdomain you'd like your application to show up under, such
as "restapitest”. This will give a full URL of the form "appname-domain.rhcloud.com" - in the example
below "restapitest-ossmentor.rhcloud.com”. Change the gear size to medium or large, which is required
for the Fuse cartridge. Now click on "create application”.

42

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

F Y -
Crgose a type of application 2) Configure the application 3| MNet

Based On JBoss Fuse 6.1 Quickstart ¥

Public URL nepsY | restapitest -ossmentor.rhcloud.com

Opensnift wi
your own domain name Ister.

Itomiatically re this domialn ’i"'éf:‘;‘:J’épF ication. 'You Can aod

Source Code

tof reasonabie

We'l craate 3 Gt code repostony In e Cioud, and populate It with 3
start with an exact copy of the

Gears medium ¥

23 plenty of resources. if you reg

Cartridges manifestymi

SC&“I’IS Mo scaling v

Opensnsft autormatically r
application 1o 5ca
a5 you nesd

your web gear,

ET and allocate m

Region Mo preference

o aws-us-east-1

aws-eu-west-1
aws-ap-southeast-2
Gaars witnin your application will run an senvers in the spectied region

Back Create Application =183

6.1.5.Step 5

Click "create application”.

43

Red Hat 3scale APl Management 2.1 Infrastructure

® aws-us-east-1
aws-eu-west-1
aws-ap-southeast-2

Gears withingyour fion wil Ver Decified region.

6.1.6. Step 6
Browse the application hawtio console and sign in.

................... || A= R

! i futespplicationtet-gsom: X

- c fuseapplicationtest-ossmentor.rhcoud.com/hawt e hitmi#fogir el + T
i Apps [FALLENABLEMENT ([dw-fuse Addto DZone [Raspberry [FSW (O] Red Hat Consulting Safari Books Online

3 redhat.

RED HAT JBOSS FUSE MANAGEMENT CONSOLE

Uisername |

Password |

B Remember me

6.1.7.Step 7

After signing in, click on the "runtime" tab and the container, and add the REST API example.

44

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

l..r'i’;ua;;li:atim Funtime = % %
L C' [} fuseapplication-ossmentor.rhcloud.comyhawtio/indexhtm# fabric/container/fuseapplication B £
55 Apps (O] FALLEMABLEMENT (O] dv-fuse || AddtoDZone (O] Raspbery (0 FSW (O] Red Hat Consulting - Safari Books Online (] DHS Servers (0] git)

= il

| RED HAT JBOSS FUSE Marssyement Console

Runtime Wikl Dashboand Health
Confainers Profiles Manage MO APls ElPs Registry
.) ' . ‘ =
® Container: fuseapplication Lopen, || G2wp || % Detete | 81
Associated Profiles Status Settings URLS Provision List
This i5 the cument set of profiles ihat are assigned 1o this
container. WUse the add and remove DUons 1o manage Version: 1.0
this list

Server Status: Running
+A0d | X Remove

Uncategorized Server Type: Karaf

SEERE Type: Fabnc Senver
& hawtio
& openshift Provision Stats: @ success

Root Container: yes

JMX Domains: jmecdperl

jolokia
Tuseapplic ation
6.1.8.Step 8

Click on the "add a profile" button.

Assoclated Profiles

This is the cument set of profiles that are assigned to this
container. Use the add and remove buttons to manage
this list.
Filter +Add % Remove
Uncategorized
[& fabric
(] & hawtio

6.1.9. Step 9

Scroll down to examples/quickstarts and click the "REST" checkbox, then "add". The REST profile should
show up on the container associated profile page.

45

Red Hat 3scale API Management 2.1 Infrastructure

Ardd profiles to container: fuseapplication

Select one or more profiles to add to this container

& emors
& jms

o & rest
& secure.rest
& secure soap
& soap

Feature

Feature / Camel

Feature / Fabric

Gateway

Hadoop

Insight -

6.1.10. Step 10

Click on the runtime/APIs tab to verify the REST API profile.

L o C 0 fuseapplication-ossmentor.rhcloud.comyhiawtiofindex html#/fabric/ap o f =

3% Apps () FALLENABLEMENT (O] dv-fuse |) AddteDZone (] Raspberry (] FSW (] Red Hat Consulting Safari Bocks Online 3 DHS Servers [0 git | €) kpeeplesidv-brmsei.. »

RED HAT JBOSS FUSE Management Console

Runtime Wiki Dashboard Health
Containers Profiies Manage MO APls EIPs Reqgistry
service APls Caontainer Version Location
{hitpefinest fuse quickstans jboss.orgCusiomersSenvice A WADL ® fuseapplication | 1.0 ntipiifuseapplication-ossmentor. Mcloud com:B0Vexiic m

fuseapplication

46

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

6.1.11. Step 1

Verify the REST APl is working. Browse to customer 123, which will return the ID and name in XML
format.

’f:" K¢ fuseapplication Runtime x_}{ [fuseapplication-ossment:
« C' | [fuseapplication-ossmentor.rhcloud.com/od/crm/customerservice/customers/123

i Apps (] FALLEMNABLEMENT (] dw-fuse [AddtoDZone [C] Raspberry (] FSW [T] Red Hat Consulting -+ Safari Books Online [

This XML file does not appear to have any style nformation associated with it. The document tree 1s shown below.

¥<Customer xmlns="http://rest.fuse.quickstarts.jboss.org/">
<id»123</id>
<name > John</name>
< fCustomers

6.2. PART 2: CONFIGURE 3SCALE APl MANAGEMENT

To protect the API that you just created in Part 1using 3scale APl Management, you first must conduct
the according configuration, which is then later deployed according to one of the three scenarios
presented.

Once you have your APl set up on OpenShift, you can start setting it up on 3scale to provide the
management layer for access control and usage monitoring.

6.2.1.Step 1

Log in to your 3scale account. You can sign up for a 3scale account at www.3scale.net if you don't
already have one. When you log in to your account for the first time, follow the wizard to learn the basics
about integrating your API with 3scale.

6.2.2. Step 2

In API > Integration, you can enter the public URL for the Fuse application on OpenShift that you just
created, e.g. "restapitest-ossmentor.rhcloud.com” and click on Test. This will test your setup against the
3scale APl Gateway in the staging environment. The staging API gateway allows you to test your 3scale
setup before deploying your proxy configuration to AWS.

47

http://www.3scale.net

Red Hat 3scale APl Management 2.1 Infrastructure

Staging: 3scale-hosted to configure & test your integration documentation

A -

Private Base URL* https://api-sentiment.3scale.net:443

E APl CATEWAY

Public Base URL* https://api-2445581450779.s5taging.apicast.io 443

address to call the API for testing purposes.

+ MAPPING RULES

» AUTHENTICATION SETTINGS

D CLIENT

APl test GET request | /v1/word/good.json

Private address of your API that will be called by the APl gateway.

deployed | deployment histo

@

D Use Echo API

Public address of your APl gateway in the staging environment. You can use this

Optional CET request to a APl gateway endpoint. We will use this call to validate
your APl gateway setup using credentials of the first live application. You can try

it yourself by copying the following command into your shell:

curl "https://api-2445581450779.5taging.apicast.io:443/vl/word/good. json?

user_key=44e72dedd214c812990clb3abl2f5bal3"

Connection between client, gateway & APl is
working correctly as reflected in the analytics
section.

6.2.3.Step 3

Update & Test Staging Configuration

The next step is to set up the APl methods that you want to monitor and rate limit. To do that go to API

>

48

Definition and click on '‘New method'.

3scale

Overview ActiveDocs

Definition
Integration
Application Plans
Settings Name: APl
System Name: api
Alerts
Methods

Add the methods of this APl to get data on their individual usage. Method calls trigger the built-in Hits—-metric. Usage limits and pricing rules for individual metl
from within each Application Plan. A method needs to be mapped to one or more URL patterns in the Mapping Rules section section of the integration page so spe:

APl up the count of specific methods.

Method System Name Unit Description

transactions/create_single transactions/create_single hit

transactions/create_multiple transactions/create_multiple hit

transactions/confirm transactions/confirm hit
transactions/destroy transactions/destroy hit
Metrics

Dashboard Developers Applications

Billing Analytics Developer Portal Settings

©

Create new method

s are defined
calls to your

Mapped © New method

v
v
v

Add a mapping rule

Hits are the built-in top-level metric and the parent metric of the methods. Other top level metrics can be added here if needed. A metric needs to be mapped to one or more URL
patterns in the Mapping Rules section section of the integration page so specific calls to your APl up the count of specific metrics. A

Metric System Name Unit Description
Hits hits hit Number of AP hits
Number of transactions transactions transaction

Create new metric
Mapped ’ © New metric

v

Add a mapping rule

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

For more details on creating methods, visit our API definition tutorial.

6.2.4.Step 4

Once you have all of the methods that you want to monitor and control set up under the application
plan, you'll need to map these to actual HTTP methods on endpoints of your API. Go back to the
integration page and expand the "mapping rules" section.

+ MAPPING RULES @
Verb Pattern + Metric or Method (Define)
GET Iy 1 hits y F W

© Add Mapping Rule

Create mapping rules for each of the methods you created under the application plan.

Rule Pattern +f- |) Create Proxy Rule

POST =+ | /setAB 1 Eauls
getHelloMethodSystemName

Once you have done that, your mapping rules will look something like this:

e
W

* MAPPING RULES

Verb Pattern + Metric or Method (Define)
GET s jvl/words/{waord}.json 1 get word 5 # W
GET 5 Jvl/sentences/{sentence}.json 1 get_sente y & ®W
POST & /vl/words/{word}.json 1 set word 3| # W

© Add Mapping Rule

For more details on mapping rules, visit our tutorial about mapping rules.

6.2.5.Step 5

Once you've clicked "update and test" to save and test your configuration, you are ready to download
the set of configuration files that will allow you to configure your APl gateway on AWS. For the API
gateway, you should use a high-performance, open-source proxy called nginx. You will find the
necessary configuration files for nginx on the same integration page by scrolling down to the
"production” section.

49

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/access_control#api-definition-methods-metrics
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/access_control#mapping-rules
http://nginx.org/

Red Hat 3scale API Management 2.1 Infrastructure

Production: On-premises Gateway

To deploy an on-premises APl gateway, add the Public Base URL of your AP, download the Nginx Cenfig files and follow the documentation to install in your servers.

APl

Private Base URL https://hello-world-api.3scale.net:443

APl CATEWAY

Public Base URL

Public address of your APl gateway in the production environment. This is used to
customize the server_name directive in the Nginx Config file which will otherwise
be set to the variable $hostname.

| Update Production Configuration
_‘4 I & Download the Nginx Config files

The next section will now take you through various hosting scenarios.

6.3. PART 3: INTEGRATION OF YOUR API SERVICES

There are different ways in which you can integrate your APl services in 3scale. Choose the one that best
fits your needs:

® APlcast hosted on AWS
® APlcast hosted

® APlcast on OpenShift

6.4. PART 4: TESTING THE API AND APl MANAGEMENT

Testing the correct functioning of the APl and the APl Management is independent from the chosen
scenario. You can use your favorite REST client and run the following commands.

6.4.1. Step 1

Retrieve the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers/1237?
user_key=b9871b41027002e68ca061faeb2f972b

50

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#aws-proxy-ami
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#apicast-hosted
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.1/html-single/deployment_options#apicast-openshift

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

P hitp:ii54 149 46 234 /extlermicustomerservice/customers! 1237user_key=baB71b4 1027002e88ca06 1faeb2f972b

& GET POST PUT PATCH ' DELETE HEAD OPTIONS Other

Raw Form Headers
Clear Send
Status 200 OK ¥ Loading time: 358 ms
Request User-Agent: Mozilla/5.0 (Windows NT 8.1, WOWS4) AppleWebKiv537.36 (KHTML, like Gecko) Chrome/30.0.2171.95 Satari/537 36
headers Content-Type: textplain; charset=utt8
Accept: **
Accept-Encoding: ozip. deflate, sdch
Accept-Language: sn-US 2ng=0.8
Response Server: ngx_openresty/1 286
headers Date! Mon, 22 Det 2014 18:16:08 GMT
Content Type: applicationfumi
Content-Length: 148
Connaction; keep-alive
Vary: Accept-Encoding
Content-Encoding: gz
Accept-Ranges: none
Raw XML Response
Copy te clipboard Save as file
v Customers
<id>123</id>
<name>John</name>
</Customery
6.4.2.Step 2
Create a customer.
http://54.149.46.234/cxf/crm/customerservice/customers?
user_key=b9871b41027002e68ca061faeb2f972b
P it 448,40 238icxdimls _bhayectdT
GET #POST OPUT OPATCHODELETE ©MEAD O OPTIONS © Otw
rom Headers
St]
aw Form Pt Payloxd
seplaamenlm A UNSEE T co Corears Type” boucee 13 cveenrte i vakos
Send
Status 403 Forbidden *F Losding tre: 205 ms.
Sequest Usar Agent M‘_‘:\:l! O (Winsews NT 8. 1. WOWWES) Ao iWesiGuSE7. 38 (4TML. Eie Getin) Cheoma/35 0.2171 65 Safast3r 8

Crigin chromepatanine | tgmkeltzephicen Sitlbeios
Contard-Type: testinsd

neaders

Aceepn Encoding G2ip, Safte
Linguge: #7-U5 42350 §

aesporse Server ng_
Dots: e, 72 Dae 201

. Costard. Type 14
Tramfer-Encodng =
Comnestion: kedg-alve

Raw PAME | Response

Spen output i new window _ Copy o cipbosrd Save ss fie Spen n JECH tab
SUThanticatien gaeamaTens REIIAE

Gt NROIGPERG Thanks 15 Cade Mirrer

6.4.3.Step 3

Update the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers?
user_key=b9871b41027002e68ca061faeb2f972b

51

Red Hat 3scale API Management 2.1 Infrastructure

¥ | heipii54.148.46. ey
GET OPOST ®PUT OPATCHODELETE OHEAD OQPTIONS O Other

aw Fom Headers

Content-Type: text/zml

Raw Fom Fms(o) | Payload

<Qustomer xming="hita: //L98%: TUik QUACkIRATES. 10088008/ Y
<namesiaryc/nase>
Ad128¢/58r
«/Customers
4

appieatonix.woweform utencesed v | o T - [Ty
Clear Senc

Status 403 Forbidden 0 Loading tere 200 s,
Roquest User-Agert: Mozila/®. (Vindows NT 8. 1: WOWS4) Apple\Vebk(2/537.32 (KHTML. ke Gecko) Cheomei30.0.2171 98 Satarv£37.38
Origin chaomi-extensionihgekoctddiienphigeelhdfbitpsios
Contert-Typs: textixml
Fwaders Bccept *"
Acoept-Encoding 5o, Seflats, sdch
AcceptLangage: en-USenie=l i

L

Raw Barssd Response

Open cutpt in new window Copy 10 Gipbosrd_ Siwe 85 fie_Open n JSON tab
Zuthenticatien paramevers missin .

Code ngnigheing thaks 16 Cooe Mirrer

6.4.4.Step 4

Delete the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers/123?
user_key=b9871b41027002e68ca061faeb2f972b

P empi8e.149.46.23 3Puse|
OGET OPosT OPUT OPATCH®DELETE O HEAD O OPTIONS © Other

aw Fom Headers

Raw Form FUa0) Paload

QG SN R TS Lt R

| appicarons- s |
| spptcatons-wvetonntencoses | ey n e peacto O

Slana 403 Forbidden @ Loadng time: 211 ms

Requast User-Agent Mssiia'S 0 (Vindous NT & 1: WOVIEA) AppieWABKEISST. 38 (KMTVL. ke Gésks) Chret/0.02171 95 Safsrys37.38
rigin chrome-qxtans e hgmiboldciidnphigeemafolbmion

Content-Type: 3pzesatin e e criensoied

nessers o
AccaptEncoding gz, defiate. soch
AecaptLanguage: #n-U5 en.a=D
Response
nesders
g
Connection: keto-dive
Raw Parnsd | Fesponse
Open cutpad i new window Copy B Sipboard_Save as fie_Open in JSON tab
Zuthertication paramerers mizsin ,

Cade highiighting thaniks to Code Meror

6.4.5.Step 5
Check the API Management analytics of your API.

If you now log back in to your 3scale account and go to Monitoring > Usage, you can see the various hits
of the APl endpoints represented as graphs.

52

CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

Usage
10 hits
Methods Year Month Week
Hits » 4 Dec -
Methods
4 Get Customer
10 hits
Set customers
3 ° 0 hits
getOrders
0 hits
2 o— Update Customers

0 hits

Delete customer

0 hits
\—.—A—._‘_-_‘_‘_‘ - s s =

4, Dec 04:00 08:00 12:00 16:00 20:00

-

Using time zone (GMT+00:00) UTC

Download CSV

This is just one element of APl Management that brings you full visibility and control over your API.
Other features include:

1. Access control

2. Usage policies and rate limits

3. Reporting

4. APl documentation and developer portals
5. Monetization and billing

For more details about the specific APl Management features and their benefits, please refer to the
3scale API Management Platform product description.

For more details about the specific Red Hat JBoss Fuse product features and their benefits, please refer
to the JBOSS FUSE Overview.

For more details about running Red Hat JBoss Fuse on OpenShift, please refer to the Getting Started
with JBoss Fuse on OpenShift.

53

http://www.3scale.net/api-management/
http://www.jboss.org/products/fuse/overview/
https://blog.openshift.com/getting-started-with-jboss-fuse-on-openshift/

	Table of Contents
	CHAPTER 1. UPGRADE 3SCALE 2.0 TO 2.1
	1.1. PREREQUISITES:
	1.2. SELECT THE PROJECT
	1.3. PATCH SYSTEM COMPONENTS
	1.4. SET IMAGECHANGE TRIGGERS
	1.5. DEPLOY THE 2.1 TEMPLATE
	1.6. VERIFY UPGRADE

	CHAPTER 2. API DEPLOYMENT ON MICROSOFT AZURE
	2.1. CREATE AND CONFIGURE MICROSOFT AZURE VM
	2.2. INSTALL OPENRESTY
	2.3. CONFIGURE YOUR GITHUB REPO
	2.3.1. Warning

	2.4. CONFIGURE YOUR API
	2.4.1. On 3scale
	2.4.2. Capistrano setup

	2.5. CAPISTRANO SETUP
	2.6. DEPLOY
	2.6.1. Troubleshooting

	CHAPTER 3. DEPLOY AN API ON AMAZON EC2 FOR AWS ROOKIES
	3.1. PREREQUISITES
	3.2. CREATE AND CONFIGURE EC2 INSTANCE
	3.3. PREPARE INSTANCE FOR DEPLOYMENT
	3.4. DEPLOYING THE APPLICATION
	3.4.1. Optional

	3.5. ENABLING API MANAGEMENT WITH 3SCALE
	3.6. INSTALL AND DEPLOY APICAST (YOUR API GATEWAY)

	CHAPTER 4. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE
	4.1. 3SCALE AMP OPENSHIFT TEMPLATES
	4.2. SYSTEM REQUIREMENTS
	4.2.1. Environment Requirements
	4.2.2. Hardware Requirements

	4.3. CONFIGURE NODES AND ENTITLEMENTS
	4.4. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE
	4.4.1. Prerequisites:
	4.4.2. Import the AMP Template
	4.4.3. Configure SMTP Variables (Optional)

	4.5. 3SCALE AMP TEMPLATE PARAMETERS
	4.6. USE APICAST WITH AMP ON OPENSHIFT
	4.6.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing your AMP
	4.6.2. Connect APIcast from an OpenShift Cluster Outside of an OpenShift Cluster Containing your AMP
	4.6.3. Connect APIcast from Other Deployments
	4.6.4. Change Built-in APIcast Default Behavior
	4.6.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over Internal Service Routes

	4.7. 7. TROUBLESHOOTING
	4.7.1. Previous Deployment Leaves Dirty Persistent Volume Claims
	4.7.2. Incorrectly Pulling from the Docker Registry
	4.7.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally
	4.7.4. Unable to Upload Logo or Images Because Persistent Volumes are not Writable by OpenShift
	4.7.5. Create Secure Routes on OpenShift
	4.7.6. APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets

	CHAPTER 5. RED HAT 3SCALE AMP 2.1 ON-PREMISES OPERATIONS AND SCALING GUIDE
	5.1. INTRODUCTION
	5.1.1. Prerequisites
	5.1.2. Further Reading

	5.2. RE-DEPLOYING APICAST
	5.3. APICAST BUILT-IN WILDCARD ROUTING (TECH PREVIEW)
	5.3.1. Modify Wildcards

	5.4. SCALING UP AMP ON PREMISES
	5.4.1. Scaling up Storage
	5.4.1.1. Method 1, Backup and Swap Persistent Volumes
	5.4.1.2. Method 2. Back up and Redeploy AMP

	5.4.2. Scaling up Performance
	5.4.2.1. Configuring 3scale On-Premises Deployments
	5.4.2.2. Vertical and Horizontal Hardware Scaling
	5.4.2.3. Scaling Up Routers
	5.4.2.4. Further Reading

	5.5. OPERATIONS TROUBLESHOOTING
	5.5.1. Access Your Logs
	5.5.2. Job Queues

	CHAPTER 6. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT
	6.1. PART 1: FUSE ON OPENSHIFT SETUP
	6.1.1. Step 1
	6.1.2. Step 2
	6.1.3. Step 3
	6.1.4. Step 4
	6.1.5. Step 5
	6.1.6. Step 6
	6.1.7. Step 7
	6.1.8. Step 8
	6.1.9. Step 9
	6.1.10. Step 10
	6.1.11. Step 11

	6.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT
	6.2.1. Step 1
	6.2.2. Step 2
	6.2.3. Step 3
	6.2.4. Step 4
	6.2.5. Step 5

	6.3. PART 3: INTEGRATION OF YOUR API SERVICES
	6.4. PART 4: TESTING THE API AND API MANAGEMENT
	6.4.1. Step 1
	6.4.2. Step 2
	6.4.3. Step 3
	6.4.4. Step 4
	6.4.5. Step 5

