
OpenShift Container Platform 4.10

Networking

Configuring and managing cluster networking

Last Updated: 2023-10-20





OpenShift Container Platform 4.10 Networking

Configuring and managing cluster networking



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING
1.1. OPENSHIFT CONTAINER PLATFORM DNS
1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

1.2.1. Comparing routes and Ingress
1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING

CHAPTER 2. ACCESSING HOSTS
2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER

CHAPTER 3. NETWORKING OPERATORS OVERVIEW
3.1. CLUSTER NETWORK OPERATOR
3.2. DNS OPERATOR
3.3. INGRESS OPERATOR
3.4. EXTERNAL DNS OPERATOR
3.5. NETWORK OBSERVABILITY OPERATOR

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. CLUSTER NETWORK OPERATOR
4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

4.5.1. Cluster Network Operator configuration object
defaultNetwork object configuration

Configuration for the OpenShift SDN CNI cluster network provider
Configuration for the OVN-Kubernetes CNI cluster network provider

kubeProxyConfig object configuration
4.5.2. Cluster Network Operator example configuration

4.6. ADDITIONAL RESOURCES

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. DNS OPERATOR
5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE
5.3. CONTROLLING DNS POD PLACEMENT
5.4. VIEW THE DEFAULT DNS
5.5. USING DNS FORWARDING
5.6. DNS OPERATOR STATUS
5.7. DNS OPERATOR LOGS
5.8. SETTING THE COREDNS LOG LEVEL
5.9. SETTING THE COREDNS OPERATOR LOG LEVEL

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
6.2. THE INGRESS CONFIGURATION ASSET
6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

6.3.1. Ingress Controller TLS security profiles
6.3.1.1. Understanding TLS security profiles
6.3.1.2. Configuring the TLS security profile for the Ingress Controller
6.3.1.3. Configuring mutual TLS authentication

6.4. VIEW THE DEFAULT INGRESS CONTROLLER
6.5. VIEW INGRESS OPERATOR STATUS
6.6. VIEW INGRESS CONTROLLER LOGS

18
18
18
19
19

22

22

23
23
23
23
23
23

24
24
24
25
25
25
26
27
27
28
30
31
31

32
32
32
33
34
34
37
37
37
38

39
39
39
39
49
49
51
52
54
54
54

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.7. VIEW INGRESS CONTROLLER STATUS
6.8. CONFIGURING THE INGRESS CONTROLLER

6.8.1. Setting a custom default certificate
6.8.2. Removing a custom default certificate
6.8.3. Scaling an Ingress Controller
6.8.4. Configuring Ingress access logging
6.8.5. Setting Ingress Controller thread count
6.8.6. Ingress Controller sharding

6.8.6.1. Configuring Ingress Controller sharding by using route labels
6.8.6.2. Configuring Ingress Controller sharding by using namespace labels

6.8.7. Configuring an Ingress Controller to use an internal load balancer
6.8.8. Configuring global access for an Ingress Controller on GCP
6.8.9. Configuring the default Ingress Controller for your cluster to be internal
6.8.10. Configuring the route admission policy
6.8.11. Using wildcard routes
6.8.12. Using X-Forwarded headers

Example use cases
6.8.13. Enabling HTTP/2 Ingress connectivity
6.8.14. Configuring the PROXY protocol for an Ingress Controller
6.8.15. Specifying an alternative cluster domain using the appsDomain option
6.8.16. Converting HTTP header case
6.8.17. Using router compression
6.8.18. Exposing router metrics
6.8.19. Customizing HAProxy error code response pages

6.9. ADDITIONAL RESOURCES

CHAPTER 7. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
7.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

7.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal
7.1.2. Configuring the Ingress Controller endpoint publishing scope to External

7.2. ADDITIONAL RESOURCES

CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT
8.1. CONNECTION HEALTH CHECKS PERFORMED
8.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
8.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

Connection log fields
8.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER NETWORK
9.1. ABOUT THE CLUSTER MTU

9.1.1. Service interruption considerations
9.1.2. MTU value selection
9.1.3. How the migration process works

9.2. CHANGING THE CLUSTER MTU
9.3. ADDITIONAL RESOURCES

CHAPTER 10. CONFIGURING THE NODE PORT SERVICE RANGE
10.1. PREREQUISITES
10.2. EXPANDING THE NODE PORT RANGE
10.3. ADDITIONAL RESOURCES

CHAPTER 11. CONFIGURING IP FAILOVER
11.1. IP FAILOVER ENVIRONMENT VARIABLES

54
54
55
56
57
58
60
61
61

62
63
65
66
67
68
69
69
70
71
72
74
75
76
77
80

81
81

82
83
83

84
84
84
84
86
87

92
92
92
92
92
94

100

101
101
101
102

103
104

OpenShift Container Platform 4.10 Networking

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.2. CONFIGURING IP FAILOVER
11.3. ABOUT VIRTUAL IP ADDRESSES
11.4. CONFIGURING CHECK AND NOTIFY SCRIPTS
11.5. CONFIGURING VRRP PREEMPTION
11.6. ABOUT VRRP ID OFFSET
11.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES
11.8. HIGH AVAILABILITY FOR INGRESSIP
11.9. REMOVING IP FAILOVER

CHAPTER 12. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL
CLUSTER

12.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER
PLATFORM

12.1.1. Example configurations using SCTP protocol
12.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
12.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

CHAPTER 13. USING PTP HARDWARE
13.1. ABOUT PTP HARDWARE
13.2. ABOUT PTP

13.2.1. Elements of a PTP domain
13.2.2. Advantages of PTP over NTP

13.3. INSTALLING THE PTP OPERATOR USING THE CLI
13.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE
13.5. CONFIGURING PTP DEVICES

13.5.1. Discovering PTP capable network devices in your cluster
13.5.2. Configuring linuxptp services as a grandmaster clock
13.5.3. Configuring linuxptp services as an ordinary clock
13.5.4. Configuring linuxptp services as a boundary clock
13.5.5. Intel Columbiaville E800 series NIC as PTP ordinary clock reference
13.5.6. Configuring FIFO priority scheduling for PTP hardware

13.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES
13.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK

13.7.1. About PTP and clock synchronization error events
13.7.2. About the PTP fast event notifications framework
13.7.3. Installing the AMQ messaging bus
13.7.4. Configuring the PTP fast event notifications publisher
13.7.5. Subscribing DU applications to PTP events REST API reference

13.7.5.1. api/ocloudNotifications/v1/subscriptions
13.7.5.1.1. HTTP method

13.7.5.1.1.1. Description
13.7.5.1.2. HTTP method

13.7.5.1.2.1. Description
13.7.5.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>

13.7.5.2.1. HTTP method
13.7.5.2.1.1. Description

13.7.5.3. api/ocloudNotifications/v1/subscriptions/status/<subscription_id>
13.7.5.3.1. HTTP method

13.7.5.3.1.1. Description
13.7.5.4. api/ocloudNotifications/v1/health/

13.7.5.4.1. HTTP method
13.7.5.4.1.1. Description

13.7.6. Monitoring PTP fast event metrics using the CLI

105
108
109

111
112
112
113
113

116

116
116
117
118

121
121
121
121
122
122
124
124
125
125
129
134
140
140
142
144
144
145
146
147
148
149
149
149
149
150
150
150
150
150
150
151
151
151
151
151

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.7.7. Monitoring PTP fast event metrics in the web console

CHAPTER 14. EXTERNAL DNS OPERATOR
14.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

14.1.1. External DNS Operator
14.1.2. External DNS Operator logs

14.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS
14.2.1. Installing the External DNS Operator

14.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
14.3.1. External DNS Operator configuration parameters

14.4. CREATING DNS RECORDS ON AWS
14.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator

14.5. CREATING DNS RECORDS ON AZURE
14.5.1. Creating DNS records on an public DNS zone for Azure by using Red Hat External DNS Operator

14.6. CREATING DNS RECORDS ON GCP
14.6.1. Creating DNS records on an public managed zone for GCP by using Red Hat External DNS Operator

14.7. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
14.7.1. Configuring the External DNS Operator to trust the certificate authority of the cluster-wide proxy

CHAPTER 15. NETWORK POLICY
15.1. ABOUT NETWORK POLICY

15.1.1. About network policy
15.1.2. Optimizations for network policy
15.1.3. Next steps
15.1.4. Additional resources

15.2. LOGGING NETWORK POLICY EVENTS
15.2.1. Network policy audit logging
15.2.2. Network policy audit configuration
15.2.3. Configuring network policy auditing for a cluster
15.2.4. Enabling network policy audit logging for a namespace
15.2.5. Disabling network policy audit logging for a namespace
15.2.6. Additional resources

15.3. CREATING A NETWORK POLICY
15.3.1. Creating a network policy
15.3.2. Example NetworkPolicy object
15.3.3. Additional resources

15.4. VIEWING A NETWORK POLICY
15.4.1. Viewing network policies
15.4.2. Example NetworkPolicy object

15.5. EDITING A NETWORK POLICY
15.5.1. Editing a network policy
15.5.2. Example NetworkPolicy object
15.5.3. Additional resources

15.6. DELETING A NETWORK POLICY
15.6.1. Deleting a network policy

15.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
15.7.1. Modifying the template for new projects
15.7.2. Adding network policies to the new project template

15.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
15.8.1. Configuring multitenant isolation by using network policy
15.8.2. Next steps
15.8.3. Additional resources

CHAPTER 16. MULTIPLE NETWORKS

152

154
154
154
154
155
155
155
155
158
158
159
159
161
161

163
164

165
165
165
167
168
168
168
168
169
170
174
175
176
176
176
178
178
178
178
180
180
180
182
182
182
182
183
183
184
186
186
189
189

190

OpenShift Container Platform 4.10 Networking

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16.1. UNDERSTANDING MULTIPLE NETWORKS
16.1.1. Usage scenarios for an additional network
16.1.2. Additional networks in OpenShift Container Platform

16.2. CONFIGURING AN ADDITIONAL NETWORK
16.2.1. Approaches to managing an additional network
16.2.2. Configuration for an additional network attachment

16.2.2.1. Configuration of an additional network through the Cluster Network Operator
16.2.2.2. Configuration of an additional network from a YAML manifest

16.2.3. Configurations for additional network types
16.2.3.1. Configuration for a bridge additional network

16.2.3.1.1. bridge configuration example
16.2.3.2. Configuration for a host device additional network

16.2.3.2.1. host-device configuration example
16.2.3.3. Configuration for an IPVLAN additional network

16.2.3.3.1. ipvlan configuration example
16.2.3.4. Configuration for a MACVLAN additional network

16.2.3.4.1. macvlan configuration example
16.2.4. Configuration of IP address assignment for an additional network

16.2.4.1. Static IP address assignment configuration
16.2.4.2. Dynamic IP address (DHCP) assignment configuration
16.2.4.3. Dynamic IP address assignment configuration with Whereabouts
16.2.4.4. Creating a Whereabouts reconciler daemon set

16.2.5. Creating an additional network attachment with the Cluster Network Operator
16.2.6. Creating an additional network attachment by applying a YAML manifest

16.3. ABOUT VIRTUAL ROUTING AND FORWARDING
16.3.1. About virtual routing and forwarding

16.3.1.1. Benefits of secondary networks for pods for telecommunications operators
16.4. CONFIGURING MULTI-NETWORK POLICY

16.4.1. Differences between multi-network policy and network policy
16.4.2. Enabling multi-network policy for the cluster
16.4.3. Working with multi-network policy

16.4.3.1. Prerequisites
16.4.3.2. Creating a multi-network policy
16.4.3.3. Editing a multi-network policy
16.4.3.4. Viewing multi-network policies
16.4.3.5. Deleting a multi-network policy

16.4.4. Additional resources
16.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

16.5.1. Adding a pod to an additional network
16.5.1.1. Specifying pod-specific addressing and routing options

16.6. REMOVING A POD FROM AN ADDITIONAL NETWORK
16.6.1. Removing a pod from an additional network

16.7. EDITING AN ADDITIONAL NETWORK
16.7.1. Modifying an additional network attachment definition

16.8. REMOVING AN ADDITIONAL NETWORK
16.8.1. Removing an additional network attachment definition

16.9. ASSIGNING A SECONDARY NETWORK TO A VRF
16.9.1. Assigning a secondary network to a VRF

16.9.1.1. Creating an additional network attachment with the CNI VRF plugin

CHAPTER 17. HARDWARE NETWORKS
17.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS

17.1.1. Components that manage SR-IOV network devices

190
190
190
191
191
191

192
192
193
193
194
195
195
196
196
197
198
198
198
199

200
201

202
204
204
204
205
205
205
206
206
206
206
208
209
210
211
211
211
213
217
217
217
217
218
218
219
219
219

222
222
222

Table of Contents

5



17.1.1.1. Supported platforms
17.1.1.2. Supported devices
17.1.1.3. Automated discovery of SR-IOV network devices

17.1.1.3.1. Example SriovNetworkNodeState object
17.1.1.4. Example use of a virtual function in a pod
17.1.1.5. DPDK library for use with container applications
17.1.1.6. Huge pages resource injection for Downward API

17.1.2. Next steps
17.2. INSTALLING THE SR-IOV NETWORK OPERATOR

17.2.1. Installing SR-IOV Network Operator
17.2.1.1. CLI: Installing the SR-IOV Network Operator
17.2.1.2. Web console: Installing the SR-IOV Network Operator

17.2.2. Next steps
17.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

17.3.1. Configuring the SR-IOV Network Operator
17.3.1.1. SR-IOV Network Operator config custom resource
17.3.1.2. About the Network Resources Injector
17.3.1.3. About the SR-IOV Network Operator admission controller webhook
17.3.1.4. About custom node selectors
17.3.1.5. Disabling or enabling the Network Resources Injector
17.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook
17.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
17.3.1.8. Configuring the SR-IOV Network Operator for single node installations

17.3.2. Next steps
17.4. CONFIGURING AN SR-IOV NETWORK DEVICE

17.4.1. SR-IOV network node configuration object
17.4.1.1. SR-IOV network node configuration examples
17.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

17.4.2. Configuring SR-IOV network devices
17.4.3. Troubleshooting SR-IOV configuration
17.4.4. Assigning an SR-IOV network to a VRF

17.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin
17.4.5. Next steps

17.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
17.5.1. Ethernet device configuration object

17.5.1.1. Configuration of IP address assignment for an additional network
17.5.1.1.1. Static IP address assignment configuration
17.5.1.1.2. Dynamic IP address (DHCP) assignment configuration
17.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts
17.5.1.1.4. Creating a Whereabouts reconciler daemon set

17.5.2. Configuring SR-IOV additional network
17.5.3. Next steps
17.5.4. Additional resources

17.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
17.6.1. InfiniBand device configuration object

17.6.1.1. Configuration of IP address assignment for an additional network
17.6.1.1.1. Static IP address assignment configuration
17.6.1.1.2. Dynamic IP address (DHCP) assignment configuration
17.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts
17.6.1.1.4. Creating a Whereabouts reconciler daemon set

17.6.2. Configuring SR-IOV additional network
17.6.3. Next steps
17.6.4. Additional resources

223
223
224
224
226
227
227
228
228
228
228
230
231
231
231
231

232
233
233
233
234
235
236
236
236
236
239
240
242
243
243
243
245
245
246
247
247
249
250
250
251

252
253
253
253
253
254
255
256
257
258
259
259

OpenShift Container Platform 4.10 Networking

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
17.7.1. Runtime configuration for a network attachment

17.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
17.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

17.7.2. Adding a pod to an additional network
17.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
17.7.4. Additional resources

17.8. USING HIGH PERFORMANCE MULTICAST
17.8.1. High performance multicast
17.8.2. Configuring an SR-IOV interface for multicast

17.9. USING DPDK AND RDMA
17.9.1. Using a virtual function in DPDK mode with an Intel NIC
17.9.2. Using a virtual function in DPDK mode with a Mellanox NIC
17.9.3. Using a virtual function in RDMA mode with a Mellanox NIC
17.9.4. Additional resources

17.10. USING POD-LEVEL BONDING
17.10.1. Configuring a bond interface from two SR-IOV interfaces

17.10.1.1. Creating a bond network attachment definition
17.10.1.2. Creating a pod using a bond interface

17.11. CONFIGURING HARDWARE OFFLOADING
17.11.1. About hardware offloading
17.11.2. Supported devices
17.11.3. Prerequisites
17.11.4. Configuring a machine config pool for hardware offloading
17.11.5. Configuring the SR-IOV network node policy
17.11.6. Creating a network attachment definition
17.11.7. Adding the network attachment definition to your pods

17.12. UNINSTALLING THE SR-IOV NETWORK OPERATOR
17.12.1. Uninstalling the SR-IOV Network Operator

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
18.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

18.1.1. OpenShift SDN network isolation modes
18.1.2. Supported default CNI network provider feature matrix

18.2. CONFIGURING EGRESS IPS FOR A PROJECT
18.2.1. Egress IP address architectural design and implementation

18.2.1.1. Platform support
18.2.1.2. Public cloud platform considerations

18.2.1.2.1. Amazon Web Services (AWS) IP address capacity limits
18.2.1.2.2. Google Cloud Platform (GCP) IP address capacity limits
18.2.1.2.3. Microsoft Azure IP address capacity limits

18.2.1.3. Limitations
18.2.1.4. IP address assignment approaches

18.2.1.4.1. Considerations when using automatically assigned egress IP addresses
18.2.1.4.2. Considerations when using manually assigned egress IP addresses

18.2.2. Configuring automatically assigned egress IP addresses for a namespace
18.2.3. Configuring manually assigned egress IP addresses for a namespace
18.2.4. Additional resources

18.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
18.3.1. How an egress firewall works in a project

18.3.1.1. Limitations of an egress firewall
18.3.1.2. Matching order for egress firewall policy rules
18.3.1.3. How Domain Name Server (DNS) resolution works

259
259
260
260
261

264
265
265
265
265
267
267
270
273
276
276
276
277
278
279
279
280
280
280
282
283
284
284
284

286
286
286
286
287
287
287
288
289
289
289
289
290
290
291
291
292
294
294
294
296
296
296

Table of Contents

7



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18.3.2. EgressNetworkPolicy custom resource (CR) object
18.3.2.1. EgressNetworkPolicy rules
18.3.2.2. Example EgressNetworkPolicy CR objects

18.3.3. Creating an egress firewall policy object
18.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

18.4.1. Viewing an EgressNetworkPolicy object
18.5. EDITING AN EGRESS FIREWALL FOR A PROJECT

18.5.1. Editing an EgressNetworkPolicy object
18.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT

18.6.1. Removing an EgressNetworkPolicy object
18.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

18.7.1. About an egress router pod
18.7.1.1. Egress router modes
18.7.1.2. Egress router pod implementation
18.7.1.3. Deployment considerations
18.7.1.4. Failover configuration

18.7.2. Additional resources
18.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

18.8.1. Egress router pod specification for redirect mode
18.8.2. Egress destination configuration format
18.8.3. Deploying an egress router pod in redirect mode
18.8.4. Additional resources

18.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
18.9.1. Egress router pod specification for HTTP mode
18.9.2. Egress destination configuration format
18.9.3. Deploying an egress router pod in HTTP proxy mode
18.9.4. Additional resources

18.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
18.10.1. Egress router pod specification for DNS mode
18.10.2. Egress destination configuration format
18.10.3. Deploying an egress router pod in DNS proxy mode
18.10.4. Additional resources

18.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
18.11.1. Configuring an egress router destination mappings with a config map
18.11.2. Additional resources

18.12. ENABLING MULTICAST FOR A PROJECT
18.12.1. About multicast
18.12.2. Enabling multicast between pods

18.13. DISABLING MULTICAST FOR A PROJECT
18.13.1. Disabling multicast between pods

18.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
18.14.1. Prerequisites
18.14.2. Joining projects
18.14.3. Isolating a project
18.14.4. Disabling network isolation for a project

18.15. CONFIGURING KUBE-PROXY
18.15.1. About iptables rules synchronization
18.15.2. kube-proxy configuration parameters
18.15.3. Modifying the kube-proxy configuration

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER
19.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK
PROVIDER

297
297
298
298
299
299
299
300
300
300
301
301
301
302
302
303
303
303
303
305
305
306
306
306
307
308
309
309
309
310
311
312
312
312
314
314
314
314
316
316
316
317
317
317
318
318
318
318
319

321

321

OpenShift Container Platform 4.10 Networking

8



19.1.1. OVN-Kubernetes features
19.1.2. Supported default CNI network provider feature matrix
19.1.3. OVN-Kubernetes limitations

19.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER
19.2.1. Migration to the OVN-Kubernetes network provider

19.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider
Namespace isolation
Egress IP addresses
Egress network policies
Egress router pods
Multicast
Network policies

19.2.1.2. How the migration process works
19.2.2. Migrating to the OVN-Kubernetes default CNI network provider
19.2.3. Additional resources

19.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
19.3.1. Rolling back the default CNI network provider to OpenShift SDN

19.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
19.4.1. Converting to a dual-stack cluster network

19.5. IPSEC ENCRYPTION CONFIGURATION
19.5.1. Types of network traffic flows encrypted by IPsec

19.5.1.1. Network connectivity requirements when IPsec is enabled
19.5.2. Encryption protocol and IPsec mode
19.5.3. Security certificate generation and rotation

19.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
19.6.1. How an egress firewall works in a project

19.6.1.1. Limitations of an egress firewall
19.6.1.2. Matching order for egress firewall policy rules
19.6.1.3. How Domain Name Server (DNS) resolution works

19.6.2. EgressFirewall custom resource (CR) object
19.6.2.1. EgressFirewall rules
19.6.2.2. Example EgressFirewall CR objects

19.6.3. Creating an egress firewall policy object
19.7. VIEWING AN EGRESS FIREWALL FOR A PROJECT

19.7.1. Viewing an EgressFirewall object
19.8. EDITING AN EGRESS FIREWALL FOR A PROJECT

19.8.1. Editing an EgressFirewall object
19.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT

19.9.1. Removing an EgressFirewall object
19.10. CONFIGURING AN EGRESS IP ADDRESS

19.10.1. Egress IP address architectural design and implementation
19.10.1.1. Platform support
19.10.1.2. Public cloud platform considerations

19.10.1.2.1. Amazon Web Services (AWS) IP address capacity limits
19.10.1.2.2. Google Cloud Platform (GCP) IP address capacity limits
19.10.1.2.3. Microsoft Azure IP address capacity limits

19.10.1.3. Assignment of egress IPs to pods
19.10.1.4. Assignment of egress IPs to nodes
19.10.1.5. Architectural diagram of an egress IP address configuration

19.10.2. EgressIP object
19.10.3. Labeling a node to host egress IP addresses
19.10.4. Next steps
19.10.5. Additional resources

321
321

322
323
323
324
324
324
325
325
325
325
325
327
332
333
333
337
337
339
339
340
340
340
341
341

342
343
343
343
344
344
345
346
346
347
347
347
348
348
348
349
349
350
350
350
351
351
351
353
355
355
355

Table of Contents

9



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19.11. ASSIGNING AN EGRESS IP ADDRESS
19.11.1. Assigning an egress IP address to a namespace
19.11.2. Additional resources

19.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
19.12.1. About an egress router pod

19.12.1.1. Egress router modes
19.12.1.2. Egress router pod implementation
19.12.1.3. Deployment considerations
19.12.1.4. Failover configuration

19.12.2. Additional resources
19.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

19.13.1. Egress router custom resource
19.13.2. Deploying an egress router in redirect mode

19.14. ENABLING MULTICAST FOR A PROJECT
19.14.1. About multicast
19.14.2. Enabling multicast between pods

19.15. DISABLING MULTICAST FOR A PROJECT
19.15.1. Disabling multicast between pods

19.16. TRACKING NETWORK FLOWS
19.16.1. Network object configuration for tracking network flows
19.16.2. Adding destinations for network flows collectors
19.16.3. Deleting all destinations for network flows collectors
19.16.4. Additional resources

19.17. CONFIGURING HYBRID NETWORKING
19.17.1. Configuring hybrid networking with OVN-Kubernetes
19.17.2. Additional resources

CHAPTER 20. CONFIGURING ROUTES
20.1. ROUTE CONFIGURATION

20.1.1. Creating an HTTP-based route
20.1.2. Configuring route timeouts
20.1.3. HTTP Strict Transport Security

20.1.3.1. Enabling HTTP Strict Transport Security per-route
20.1.3.2. Disabling HTTP Strict Transport Security per-route
20.1.3.3. Enforcing HTTP Strict Transport Security per-domain

20.1.4. Troubleshooting throughput issues
20.1.5. Using cookies to keep route statefulness

20.1.5.1. Annotating a route with a cookie
20.1.6. Path-based routes
20.1.7. Route-specific annotations
20.1.8. Configuring the route admission policy
20.1.9. Creating a route through an Ingress object
20.1.10. Creating a route using the default certificate through an Ingress object
20.1.11. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

20.2. SECURED ROUTES
20.2.1. Creating a re-encrypt route with a custom certificate
20.2.2. Creating an edge route with a custom certificate
20.2.3. Creating a passthrough route

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC
21.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

21.1.1. Comparision: Fault tolerant access to external IP addresses
21.2. CONFIGURING EXTERNALIPS FOR SERVICES

355
355
356
357
357
357
357
358
358
359
359
359
361

364
364
364
366
366
367
368
368
370
370
370
370
372

373
373
373
374
374
375
376
377
380
380
380
381
382
389
390
392
393
395
395
396
398

399
399
399
400

OpenShift Container Platform 4.10 Networking

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21.2.1. Prerequisites
21.2.2. About ExternalIP

21.2.2.1. Configuration for ExternalIP
21.2.2.2. Restrictions on the assignment of an external IP address
21.2.2.3. Example policy objects

21.2.3. ExternalIP address block configuration
Example external IP configurations

21.2.4. Configure external IP address blocks for your cluster
21.2.5. Next steps

21.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
21.3.1. Using Ingress Controllers and routes
21.3.2. Prerequisites
21.3.3. Creating a project and service
21.3.4. Exposing the service by creating a route
21.3.5. Configuring Ingress Controller sharding by using route labels
21.3.6. Configuring Ingress Controller sharding by using namespace labels
21.3.7. Additional resources

21.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
21.4.1. Using a load balancer to get traffic into the cluster
21.4.2. Prerequisites
21.4.3. Creating a project and service
21.4.4. Exposing the service by creating a route
21.4.5. Creating a load balancer service

21.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A NETWORK LOAD BALANCER
21.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
21.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
21.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
21.5.4. Additional resources

21.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
21.6.1. Prerequisites
21.6.2. Attaching an ExternalIP to a service
21.6.3. Additional resources

21.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
21.7.1. Using a NodePort to get traffic into the cluster
21.7.2. Prerequisites
21.7.3. Creating a project and service
21.7.4. Exposing the service by creating a route
21.7.5. Additional resources

CHAPTER 22. KUBERNETES NMSTATE
22.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

22.1.1. Installing the Kubernetes NMState Operator
22.1.1.1. Installing the Kubernetes NMState Operator using the web console
22.1.1.2. Installing the Kubernetes NMState Operator using the CLI

22.2. OBSERVING NODE NETWORK STATE
22.2.1. About nmstate
22.2.2. Viewing the network state of a node

22.3. UPDATING NODE NETWORK CONFIGURATION
22.3.1. About nmstate
22.3.2. Creating an interface on nodes

Additional resources
22.3.3. Confirming node network policy updates on nodes
22.3.4. Removing an interface from nodes

400
400
401
402
403
403
404
405
406
406
406
406
407
407
408
409
410
411
411
411
411

412
413
415
415
416
417
418
418
418
419

420
420
420
420
420
421
422

423
423
423
423
424
425
425
426
427
427
428
429
429
430

Table of Contents

11



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22.3.5. Example policy configurations for different interfaces
22.3.5.1. Example: Linux bridge interface node network configuration policy
22.3.5.2. Example: VLAN interface node network configuration policy
22.3.5.3. Example: Bond interface node network configuration policy
22.3.5.4. Example: Ethernet interface node network configuration policy
22.3.5.5. Example: Multiple interfaces in the same node network configuration policy

22.3.6. Examples: IP management
22.3.6.1. Static
22.3.6.2. No IP address
22.3.6.3. Dynamic host configuration
22.3.6.4. DNS
22.3.6.5. Static routing

22.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION
22.4.1. Troubleshooting an incorrect node network configuration policy configuration

CHAPTER 23. CONFIGURING THE CLUSTER-WIDE PROXY
23.1. PREREQUISITES
23.2. ENABLING THE CLUSTER-WIDE PROXY
23.3. REMOVING THE CLUSTER-WIDE PROXY

Additional resources

CHAPTER 24. CONFIGURING A CUSTOM PKI
24.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
24.2. ENABLING THE CLUSTER-WIDE PROXY
24.3. CERTIFICATE INJECTION USING OPERATORS

CHAPTER 25. LOAD BALANCING ON RHOSP
25.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
25.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA

25.2.1. Scaling clusters by using Octavia
25.2.2. Scaling clusters that use Kuryr by using Octavia

25.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
25.4. CONFIGURING AN EXTERNAL LOAD BALANCER

CHAPTER 26. LOAD BALANCING WITH METALLB
26.1. ABOUT METALLB AND THE METALLB OPERATOR

26.1.1. When to use MetalLB
26.1.2. MetalLB Operator custom resources
26.1.3. MetalLB software components
26.1.4. MetalLB concepts for layer 2 mode
26.1.5. MetalLB concepts for BGP mode
26.1.6. MetalLB and external traffic policy
26.1.7. Limitations and restrictions

26.1.7.1. Infrastructure considerations for MetalLB
26.1.7.2. Limitations for layer 2 mode

26.1.7.2.1. Single-node bottleneck
26.1.7.2.2. Slow failover performance

26.1.7.3. Limitations for BGP mode
26.1.7.3.1. Node failure can break all active connections
26.1.7.3.2. Communities are specified as 16-bit values
26.1.7.3.3. Support for a single ASN and a single router ID only

26.1.8. Additional resources
26.2. INSTALLING THE METALLB OPERATOR

26.2.1. Installing the MetalLB Operator from the OperatorHub using the web console

431
431

432
433
435
435
436
436
436
437
437
438
438
439

444
444
444
446
447

448
448
450
452

454
454
455
455
457
457
459

462
462
462
462
463
464
466
467
468
468
468
468
468
469
469
469
469
470
470
470

OpenShift Container Platform 4.10 Networking

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26.2.2. Installing from OperatorHub using the CLI
26.2.3. Starting MetalLB on your cluster

26.2.3.1. Limit speaker pods to specific nodes
26.2.4. Next steps

26.3. CONFIGURING METALLB ADDRESS POOLS
26.3.1. About the address pool custom resource
26.3.2. Configuring an address pool
26.3.3. Example address pool configurations

26.3.3.1. Example: IPv4 and CIDR ranges
26.3.3.2. Example: Reserve IP addresses
26.3.3.3. Example: IPv4 and IPv6 addresses
26.3.3.4. Example: Simple address pool with BGP mode
26.3.3.5. Example: BGP mode with custom advertisement

26.3.4. Next steps
26.4. CONFIGURING METALLB BGP PEERS

26.4.1. About the BGP peer custom resource
26.4.2. Configuring a BGP peer
26.4.3. Example BGP peer configurations

26.4.3.1. Example: Limit which nodes connect to a BGP peer
26.4.3.2. Example: Specify a BFD profile for a BGP peer
26.4.3.3. Example: Specify BGP peers for dual-stack networking

26.5. CONFIGURING METALLB BFD PROFILES
26.5.1. About the BFD profile custom resource
26.5.2. Configuring a BFD profile
26.5.3. Next steps

26.6. CONFIGURING SERVICES TO USE METALLB
26.6.1. Request a specific IP address
26.6.2. Request an IP address from a specific pool
26.6.3. Accept any IP address
26.6.4. Share a specific IP address
26.6.5. Configuring a service with MetalLB

26.7. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
26.7.1. Setting the MetalLB logging levels

26.7.1.1. FRRouting (FRR) log levels
26.7.2. Troubleshooting BGP issues
26.7.3. Troubleshooting BFD issues
26.7.4. MetalLB metrics for BGP and BFD
26.7.5. About collecting MetalLB data

CHAPTER 27. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
27.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING

27.1.1. Network Metrics Daemon
27.1.2. Metrics with network name

CHAPTER 28. NETWORK OBSERVABILITY
28.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

28.1.1. Network Observability Operator 1.3.0
28.1.1.1. Channel deprecation
28.1.1.2. New features and enhancements

28.1.1.2.1. Multi-tenancy in Network Observability
28.1.1.2.2. Flow-based metrics dashboard
28.1.1.2.3. Troubleshooting with the must-gather tool
28.1.1.2.4. Multiple architectures now supported

471
473
474
475
475
475
477
478
478
478
478
479
479
480
480
480
482
482
482
483
483
484
484
485
486
486
486
487
487
488
489
490
490
494
495
498
498
499

501
501
501

502

503
503
503
503
503
503
503
503
503

Table of Contents

13



28.1.1.3. Deprecated features
28.1.1.3.1. Deprecated configuration parameter setting

28.1.1.4. Bug fixes
28.1.1.5. Known issue

28.1.2. Network Observability Operator 1.2.0
28.1.2.1. Preparing for the next update
28.1.2.2. New features and enhancements

28.1.2.2.1. Histogram in Traffic Flows view
28.1.2.2.2. Conversation tracking
28.1.2.2.3. Network Observability health alerts

28.1.2.3. Bug fixes
28.1.2.4. Known issue
28.1.2.5. Notable technical changes

28.1.3. Network Observability Operator 1.1.0
28.1.3.1. Bug fix

28.2. ABOUT NETWORK OBSERVABILITY
28.2.1. Dependency of Network Observability Operator
28.2.2. Optional dependencies of the Network Observability Operator
28.2.3. Network Observability Operator
28.2.4. OpenShift Container Platform console integration

28.2.4.1. Network Observability metrics
28.2.4.2. Network Observability topology views
28.2.4.3. Traffic flow tables

28.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
28.3.1. Installing the Loki Operator

28.3.1.1. Create a LokiStack custom resource
28.3.1.1.1. Deployment Sizing

28.3.1.2. LokiStack ingestion limits and health alerts
28.3.2. Configure authorization and multi-tenancy
28.3.3. Enable multi-tenancy in Network Observability
28.3.4. Installing Kafka (optional)
28.3.5. Installing the Network Observability Operator
28.3.6. Uninstalling the Network Observability Operator

28.4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
28.4.1. Viewing statuses
28.4.2. Viewing Network Observability Operator status and configuration

28.5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
28.5.1. View the FlowCollector resource
28.5.2. Configuring the Flow Collector resource with Kafka
28.5.3. Export enriched network flow data
28.5.4. Updating the Flow Collector resource
28.5.5. Configuring quick filters
28.5.6. Resource management and performance considerations

28.5.6.1. Resource considerations
28.6. NETWORK POLICY

28.6.1. Creating a network policy for Network Observability
28.6.2. Example network policy

28.7. OBSERVING THE NETWORK TRAFFIC
28.7.1. Observing the network traffic from the Overview view

28.7.1.1. Working with the Overview view
28.7.1.2. Configuring advanced options for the Overview view

28.7.1.2.1. Managing panels
28.7.2. Observing the network traffic from the Traffic flows view

503
503
504
504
504
505
505
505
505
505
505
506
506
506
506
506
506
507
507
507
507
508
508
508
508
509
510
511
511
512
513
513
515
516
516
517
517
518

520
520
521
521

523
523
524
524
525
526
526
526
526
527
527

OpenShift Container Platform 4.10 Networking

14



28.7.2.1. Working with the Traffic flows view
28.7.2.2. Configuring advanced options for the Traffic flows view

28.7.2.2.1. Managing columns
28.7.2.2.2. Exporting the traffic flow data

28.7.2.3. Working with conversation tracking
28.7.2.3.1. Using the histogram

28.7.3. Observing the network traffic from the Topology view
28.7.3.1. Working with the Topology view
28.7.3.2. Configuring the advanced options for the Topology view

28.7.3.2.1. Exporting the topology view
28.7.4. Filtering the network traffic

28.8. MONITORING THE NETWORK OBSERVABILITY OPERATOR
28.8.1. Viewing health information

28.8.1.1. Disabling health alerts
28.9. FLOWCOLLECTOR CONFIGURATION PARAMETERS

28.9.1. FlowCollector API specifications
28.9.1.1. .metadata
28.9.1.2. .spec
28.9.1.3. .spec.agent
28.9.1.4. .spec.agent.ebpf
28.9.1.5. .spec.agent.ebpf.debug
28.9.1.6. .spec.agent.ebpf.resources
28.9.1.7. .spec.agent.ipfix
28.9.1.8. .spec.agent.ipfix.clusterNetworkOperator
28.9.1.9. .spec.agent.ipfix.ovnKubernetes
28.9.1.10. .spec.consolePlugin
28.9.1.11. .spec.consolePlugin.autoscaler
28.9.1.12. .spec.consolePlugin.portNaming
28.9.1.13. .spec.consolePlugin.quickFilters
28.9.1.14. .spec.consolePlugin.quickFilters[]
28.9.1.15. .spec.consolePlugin.resources
28.9.1.16. .spec.exporters
28.9.1.17. .spec.exporters[]
28.9.1.18. .spec.exporters[].ipfix
28.9.1.19. .spec.exporters[].kafka
28.9.1.20. .spec.exporters[].kafka.tls
28.9.1.21. .spec.exporters[].kafka.tls.caCert
28.9.1.22. .spec.exporters[].kafka.tls.userCert
28.9.1.23. .spec.kafka
28.9.1.24. .spec.kafka.tls
28.9.1.25. .spec.kafka.tls.caCert
28.9.1.26. .spec.kafka.tls.userCert
28.9.1.27. .spec.loki
28.9.1.28. .spec.loki.statusTls
28.9.1.29. .spec.loki.statusTls.caCert
28.9.1.30. .spec.loki.statusTls.userCert
28.9.1.31. .spec.loki.tls
28.9.1.32. .spec.loki.tls.caCert
28.9.1.33. .spec.loki.tls.userCert
28.9.1.34. .spec.processor
28.9.1.35. .spec.processor.debug
28.9.1.36. .spec.processor.kafkaConsumerAutoscaler
28.9.1.37. .spec.processor.metrics

527
527
527
527
528
529
529
529
529
530
530
531
531
531
532
532
533
533
535
535
538
538
539
540
540
541
542
542
543
543
544
544
544
545
545
546
547
547
548
549
549
550
551

553
553
554
555
555
556
557
560
560
560

Table of Contents

15



28.9.1.38. .spec.processor.metrics.server
28.9.1.39. .spec.processor.metrics.server.tls
28.9.1.40. .spec.processor.metrics.server.tls.provided
28.9.1.41. .spec.processor.resources

28.10. NETWORK FLOWS FORMAT REFERENCE
28.10.1. Network Flows format reference

28.10.1.1. Labels
28.10.1.2. Fields
28.10.1.3. Enumeration: FlowDirection

28.11. TROUBLESHOOTING NETWORK OBSERVABILITY
28.11.1. Using the must-gather tool
28.11.2. Configuring network traffic menu entry in the OpenShift Container Platform console
28.11.3. Flowlogs-Pipeline does not consume network flows after installing Kafka
28.11.4. Failing to see network flows from both br-int and br-ex interfaces
28.11.5. Network Observability controller manager pod runs out of memory

561
561
562
563
563
563
563
564
568
568
568
568
570
570
571

OpenShift Container Platform 4.10 Networking

16



Table of Contents

17



CHAPTER 1. UNDERSTANDING NETWORKING
Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

Service types, such as node ports or load balancers

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can network, but clients outside the cluster do not have networking access.
When you expose your application to external traffic, giving each pod its own IP address means that
pods can be treated like physical hosts or virtual machines in terms of port allocation, networking,
naming, service discovery, load balancing, application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the pod spec to true.

If you allow a pod host network access, you grant the pod privileged access to the
underlying network infrastructure.

1.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple pods,
environment variables are created for user names, service IPs, and more so the front-end pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the 
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define 
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

OpenShift Container Platform 4.10 Networking

18

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/


1.2.1. Comparing routes and Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster. The most common way to manage
Ingress traffic is with the Ingress Controller. You can scale and replicate this pod like any other regular
pod. This router service is based on HAProxy, which is an open source load balancer solution.

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

Ingress traffic accesses services in the cluster through a route. Routes and Ingress are the main
resources for handling Ingress traffic. Ingress provides features similar to a route, such as accepting
external requests and delegating them based on the route. However, with Ingress you can only allow
certain types of connections: HTTP/2, HTTPS and server name identification (SNI), and TLS with
certificate. In OpenShift Container Platform, routes are generated to meet the conditions specified by
the Ingress resource.

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM NETWORKING

This glossary defines common terms that are used in the networking content.

authentication

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure
user authentication and ensure only approved users access the cluster. To interact with an
OpenShift Container Platform cluster, you must authenticate to the OpenShift Container Platform
API. You can authenticate by providing an OAuth access token or an X.509 client certificate in your
requests to the OpenShift Container Platform API.

AWS Load Balancer Operator

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-
balancer-controller.

Cluster Network Operator

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plug-in selected for the cluster during installation.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

custom resource (CR)

A CR is extension of the Kubernetes API. You can create custom resources.

DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

DNS Operator

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods.
This enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

CHAPTER 1. UNDERSTANDING NETWORKING

19

http://www.haproxy.org/


domain

Domain is a DNS name serviced by the Ingress Controller.

egress

The process of data sharing externally through a network’s outbound traffic from a pod.

External DNS Operator

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

HTTP-based route

An HTTP-based route is an unsecured route that uses the basic HTTP routing protocol and exposes
a service on an unsecured application port.

Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster.

Ingress Controller

The Ingress Operator manages Ingress Controllers. Using an Ingress Controller is the most common
way to allow external access to an OpenShift Container Platform cluster.

installer-provisioned infrastructure

The installation program deploys and configures the infrastructure that the cluster runs on.

kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are running in a
pod.

Kubernetes NMState Operator

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState.

kube-proxy

Kube-proxy is a proxy service which runs on each node and helps in making services available to the
external host. It helps in forwarding the request to correct containers and is capable of performing
primitive load balancing.

load balancers

OpenShift Container Platform uses load balancers for communicating from outside the cluster with
services running in the cluster.

MetalLB Operator

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service
of type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the
service.

multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking

Network information of a OpenShift Container Platform cluster.

node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

OpenShift Container Platform 4.10 Networking

20



OpenShift Container Platform Ingress Operator

The Ingress Operator implements the IngressController API and is the component responsible for
enabling external access to OpenShift Container Platform services.

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

PTP Operator

The PTP Operator creates and manages the linuxptp services.

route

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

scaling

Increasing or decreasing the resource capacity.

service

Exposes a running application on a set of pods.

Single Root I/O Virtualization (SR-IOV) Network Operator

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network
devices and network attachments in your cluster.

software-defined networking (SDN)

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a
unified cluster network that enables communication between pods across the OpenShift Container
Platform cluster.

Stream Control Transmission Protocol (SCTP)

SCTP is a reliable message based protocol that runs on top of an IP network.

taint

Taints and tolerations ensure that pods are scheduled onto appropriate nodes. You can apply one or
more taints on a node.

toleration

You can apply tolerations to pods. Tolerations allow the scheduler to schedule pods with matching
taints.

web console

A user interface (UI) to manage OpenShift Container Platform.

CHAPTER 1. UNDERSTANDING NETWORKING

21



CHAPTER 2. ACCESSING HOSTS
Learn how to create a bastion host to access OpenShift Container Platform instances and access the
control plane nodes with secure shell (SSH) access.

2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. To be able to SSH to your OpenShift Container Platform hosts, you must
follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS (RHCOS), for example, you can provide keys via
Ignition, like the installer does.

4. After you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH key
that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes API is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The
hostname looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that control
plane host. Ensure that you use the same SSH key you specified during the installation:

$ ssh -i <ssh-key-path> core@<master-hostname>

OpenShift Container Platform 4.10 Networking

22



CHAPTER 3. NETWORKING OPERATORS OVERVIEW
OpenShift Container Platform supports multiple types of networking Operators. You can manage the
cluster networking using these networking Operators.

3.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plugin selected for the cluster during installation. For more information,
see Cluster Network Operator in OpenShift Container Platform .

3.2. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods. This
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform. For more
information, see DNS Operator in OpenShift Container Platform .

3.3. INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated IP addresses. The IP addresses are accessible to other pods and services running
nearby but are not accessible to external clients. The Ingress Operator implements the Ingress
Controller API and is responsible for enabling external access to OpenShift Container Platform cluster
services. For more information, see Ingress Operator in OpenShift Container Platform .

3.4. EXTERNAL DNS OPERATOR

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform. For more
information, see Understanding the External DNS Operator .

3.5. NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator is an optional Operator that allows cluster administrators to
observe the network traffic for OpenShift Container Platform clusters. The Network Observability
Operator uses the eBPF technology to create network flows. The network flows are then enriched with
OpenShift Container Platform information and stored in Loki. You can view and analyze the stored
network flows information in the OpenShift Container Platform console for further insight and
troubleshooting. For more information, see About Network Observability Operator.

CHAPTER 3. NETWORKING OPERATORS OVERVIEW

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#external-dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#dependency-network-observability


CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) default network
provider plugin selected for the cluster during installation.

4.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OpenShift SDN default Container Network Interface (CNI) network provider
plugin, or the default network provider plugin that you selected during cluster installation, by using a
daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

Example output

2. Run the following command to view the state of the Cluster Network Operator:

Example output

The following fields provide information about the status of the operator: AVAILABLE, 
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

Example output

$ oc get -n openshift-network-operator deployment/network-operator

NAME               READY   UP-TO-DATE   AVAILABLE   AGE
network-operator   1/1     1            1           56m

$ oc get clusteroperator/network

NAME      VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
network   4.5.4     True        False         False      50m

$ oc describe network.config/cluster

OpenShift Container Platform 4.10 Networking

24



1

2

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

Name:         cluster
Namespace:
Labels:       <none>
Annotations:  <none>
API Version:  config.openshift.io/v1
Kind:         Network
Metadata:
  Self Link:           /apis/config.openshift.io/v1/networks/cluster
Spec: 1
  Cluster Network:
    Cidr:         10.128.0.0/14
    Host Prefix:  23
  Network Type:   OpenShiftSDN
  Service Network:
    172.30.0.0/16
Status: 2
  Cluster Network:
    Cidr:               10.128.0.0/14
    Host Prefix:        23
  Cluster Network MTU:  8951
  Network Type:         OpenShiftSDN
  Service Network:
    172.30.0.0/16
Events:  <none>

$ oc describe clusteroperators/network

$ oc logs --namespace=openshift-network-operator deployment/network-operator

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

25



The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in
the Network.config.openshift.io API group and these fields cannot be changed:

clusterNetwork

IP address pools from which pod IP addresses are allocated.

serviceNetwork

IP address pool for services.

defaultNetwork.type

Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.

NOTE

After cluster installation, you cannot modify the fields listed in the previous section.

You can specify the cluster network provider configuration for your cluster by setting the fields for the 
defaultNetwork object in the CNO object named cluster.

4.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 4.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.clusterNet
work

array A list specifying the blocks of IP addresses from which pod IP
addresses are allocated and the subnet prefix length assigned to
each individual node in the cluster. For example:

This value is ready-only and inherited from the 
Network.config.openshift.io object named cluster during
cluster installation.

spec:
  clusterNetwork:
  - cidr: 10.128.0.0/19
    hostPrefix: 23
  - cidr: 10.128.32.0/19
    hostPrefix: 23

OpenShift Container Platform 4.10 Networking

26



spec.serviceNet
work

array A block of IP addresses for services. The OpenShift SDN and
OVN-Kubernetes Container Network Interface (CNI) network
providers support only a single IP address block for the service
network. For example:

This value is ready-only and inherited from the 
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet
work

object Configures the Container Network Interface (CNI) cluster
network provider for the cluster network.

spec.kubeProxy
Config

object The fields for this object specify the kube-proxy configuration. If
you are using the OVN-Kubernetes cluster network provider, the
kube-proxy configuration has no effect.

Field Type Description

defaultNetwork object configuration
The values for the defaultNetwork object are defined in the following table:

Table 4.2. defaultNetwork object

Field Type Description

type string Either OpenShiftSDN or OVNKubernetes. The
cluster network provider is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpenShift Container Platform uses
the OpenShift SDN Container
Network Interface (CNI) cluster
network provider by default.

openshiftSDNConfig object This object is only valid for the OpenShift SDN
cluster network provider.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
cluster network provider.

Configuration for the OpenShift SDN CNI cluster network provider

spec:
  serviceNetwork:
  - 172.30.0.0/14

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

27



The following table describes the configuration fields for the OpenShift SDN Container Network
Interface (CNI) cluster network provider.

Table 4.3. openshiftSDNConfig object

Field Type Description

mode string The network isolation mode for OpenShift SDN.

mtu integer The maximum transmission unit (MTU) for the VXLAN overlay
network. This value is normally configured automatically.

vxlanPort integer The port to use for all VXLAN packets. The default value is 4789.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation.

Example OpenShift SDN configuration

Configuration for the OVN-Kubernetes CNI cluster network provider
The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network
provider.

Table 4.4. ovnKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object If the field is present, IPsec is enabled for the cluster.

policyAuditConf
ig

object Specify a configuration object for customizing network policy
audit logging. If unset, the defaults audit log settings are used.

defaultNetwork:
  type: OpenShiftSDN
  openshiftSDNConfig:
    mode: NetworkPolicy
    mtu: 1450
    vxlanPort: 4789

OpenShift Container Platform 4.10 Networking

28



gatewayConfig object Optional: Specify a configuration object for customizing how
egress traffic is sent to the node gateway.

NOTE

While migrating egress traffic, you can 
expect some disruption to workloads and 
service traffic until the Cluster Network 
Operator (CNO) successfully rolls out the 
changes.

Field Type Description

Table 4.5. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is 
50000000 or 50 MB.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

Table 4.6. gatewayConfig object

Field Type Description

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

29



routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

Field Type Description

NOTE

You can only change the configuration for your cluster network provider during cluster
installation, except for the gatewayConfig field that can be changed at runtime as a
post-installation activity.

Example OVN-Kubernetes configuration with IPSec enabled

kubeProxyConfig object configuration
The values for the kubeProxyConfig object are defined in the following table:

Table 4.7. kubeProxyConfig object

Field Type Description

iptablesSyncPeriod string The refresh period for iptables rules. The default
value is 30s. Valid suffixes include s, m, and h and
are described in the Go time package
documentation.

NOTE

Because of performance
improvements introduced in
OpenShift Container Platform 4.3
and greater, adjusting the 
iptablesSyncPeriod parameter is
no longer necessary.

defaultNetwork:
  type: OVNKubernetes
  ovnKubernetesConfig:
    mtu: 1400
    genevePort: 6081
    ipsecConfig: {}

OpenShift Container Platform 4.10 Networking

30

https://golang.org/pkg/time/#ParseDuration


1 2 3

proxyArguments.iptables-
min-sync-period

array The minimum duration before refreshing iptables
rules. This field ensures that the refresh does not
happen too frequently. Valid suffixes include s, m,
and h and are described in the Go time package.
The default value is:

Field Type Description

4.5.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

Example Cluster Network Operator object

Configured only during cluster installation.

4.6. ADDITIONAL RESOURCES

Network API in the operator.openshift.io API group

kubeProxyConfig:
  proxyArguments:
    iptables-min-sync-period:
    - 0s

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  clusterNetwork: 1
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  serviceNetwork: 2
  - 172.30.0.0/16
  defaultNetwork: 3
    type: OpenShiftSDN
    openshiftSDNConfig:
      mode: NetworkPolicy
      mtu: 1450
      vxlanPort: 4789
  kubeProxyConfig:
    iptablesSyncPeriod: 30s
    proxyArguments:
      iptables-min-sync-period:
      - 0s

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

31

https://golang.org/pkg/time/#ParseDuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#network-operator-openshift-io-v1


CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift Container Platform.

5.1. DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet
to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

Example output

2. Use the oc get command to view the state of the DNS Operator:

Example output

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an 
Available status condition.

5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE

DNS manages the CoreDNS component to provide a name resolution service for pods and services in
the cluster. The managementState of the DNS Operator is set to Managed by default, which means
that the DNS Operator is actively managing its resources. You can change it to Unmanaged, which
means the DNS Operator is not managing its resources.

The following are use cases for changing the DNS Operator managementState:

You are a developer and want to test a configuration change to see if it fixes an issue in
CoreDNS. You can stop the DNS Operator from overwriting the fix by setting the 
managementState to Unmanaged.

You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME           READY     UP-TO-DATE   AVAILABLE   AGE
dns-operator   1/1       1            1           23h

$ oc get clusteroperator/dns

NAME      VERSION     AVAILABLE   PROGRESSING   DEGRADED   SINCE
dns       4.1.0-0.11  True        False         False      92m

OpenShift Container Platform 4.10 Networking

32



You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a
workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

Change managementState DNS Operator:

5.3. CONTROLLING DNS POD PLACEMENT

The DNS Operator has two daemon sets: one for CoreDNS and one for managing the /etc/hosts file.
The daemon set for /etc/hosts must run on every node host to add an entry for the cluster image
registry to support pulling images. Security policies can prohibit communication between pairs of nodes,
which prevents the daemon set for CoreDNS from running on every node.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

You installed the oc CLI.

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To prevent communication between certain nodes, configure the 
spec.nodePlacement.nodeSelector API field:

1. Modify the DNS Operator object named default:

2. Specify a node selector that includes only control plane nodes in the 
spec.nodePlacement.nodeSelector API field:

To allow the daemon set for CoreDNS to run on nodes, configure a taint and toleration:

1. Modify the DNS Operator object named default:

2. Specify a taint key and a toleration for the taint:

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

$ oc edit dns.operator/default

 spec:
   nodePlacement:
     nodeSelector:
       node-role.kubernetes.io/worker: ""

$ oc edit dns.operator/default

 spec:
   nodePlacement:

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

33



1

1

2

If the taint is dns-only, it can be tolerated indefinitely. You can omit 
tolerationSeconds.

5.4. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

Example output

The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR of your cluster, use the oc get command:

Example output

5.5. USING DNS FORWARDING

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file

     tolerations:
     - effect: NoExecute
       key: "dns-only"
       operators: Equal
       value: abc
       tolerationSeconds: 3600 1

$ oc describe dns.operator/default

Name:         default
Namespace:
Labels:       <none>
Annotations:  <none>
API Version:  operator.openshift.io/v1
Kind:         DNS
...
Status:
  Cluster Domain:  cluster.local 1
  Cluster IP:      172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

[172.30.0.0/16]

OpenShift Container Platform 4.10 Networking

34



You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

Specify name servers for every zone. If the forwarded zone is the Ingress domain managed by
OpenShift Container Platform, then the upstream name server must be authorized for the
domain.

Provide a list of upstream DNS servers.

Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

1. Modify the DNS Operator object named default:

This allows the Operator to create and update the ConfigMap named dns-default with
additional server configuration blocks based on Server. If none of the servers has a zone that
matches the query, then name resolution falls back to the upstream DNS servers.

Sample DNS

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
  name: default
spec:
  servers:
  - name: foo-server 1
    zones: 2
    - example.com
    forwardPlugin:
      policy: Random 3
      upstreams: 4
      - 1.1.1.1
      - 2.2.2.2:5353
  - name: bar-server
    zones:
    - bar.com
    - example.com
    forwardPlugin:
      policy: Random
      upstreams:
      - 3.3.3.3
      - 4.4.4.4:5454
  upstreamResolvers: 5
    policy: Random 6
    upstreams: 7

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

35



1

2

3

4

5

6

7

8

9

10

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in rfc1123. The cluster domain, 
cluster.local, is an invalid subdomain for zones.

Defines the policy to select upstream resolvers. Default value is Random. You can also use 
RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Determines the order in which upstream servers are selected for querying. You can specify
one of these values: Random, RoundRobin, or Sequential. The default value is 
Sequential.

Optional. You can use it to provide upstream resolvers.

You can specify two types of upstreams - SystemResolvConf and Network. 
SystemResolvConf configures the upstream to use `/etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. address must be a valid
IPv4 or IPv6 address.

If the specified type is Network, you can optionally provide a port. port must be between 1
and 65535.

NOTE

If servers is undefined or invalid, the ConfigMap only contains the default server.

2. View the ConfigMap:

Sample DNS ConfigMap based on previous sample DNS

    - type: SystemResolvConf 8
    - type: Network
      address: 1.2.3.4 9
      port: 53 10

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
  Corefile: |
    example.com:5353 {
        forward . 1.1.1.1 2.2.2.2:5353
    }
    bar.com:5353 example.com:5353 {
        forward . 3.3.3.3 4.4.4.4:5454 1

OpenShift Container Platform 4.10 Networking

36



1 Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

5.6. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

5.7. DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

5.8. SETTING THE COREDNS LOG LEVEL

You can configure the CoreDNS log level to determine the amount of detail in logged error messages.
The valid values for CoreDNS log level are Normal, Debug, and Trace. The default logLevel is Normal.

    }
    .:5353 {
        errors
        health
        kubernetes cluster.local in-addr.arpa ip6.arpa {
            pods insecure
            upstream
            fallthrough in-addr.arpa ip6.arpa
        }
        prometheus :9153
        forward . /etc/resolv.conf 1.2.3.4:53 {
            policy Random
        }
        cache 30
        reload
    }
kind: ConfigMap
metadata:
  labels:
    dns.operator.openshift.io/owning-dns: default
  name: dns-default
  namespace: openshift-dns

$ oc describe clusteroperators/dns

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

37

https://coredns.io/plugins/forward/


NOTE

The errors plugin is always enabled. The following logLevel settings report different error
responses:

logLevel: Normal enables the "errors" class: log . { class error }.

logLevel: Debug enables the "denial" class: log . { class denial error }.

logLevel: Trace enables the "all" class: log . { class all }.

Procedure

To set logLevel to Debug, enter the following command:

To set logLevel to Trace, enter the following command:

Verification

To ensure the desired log level was set, check the config map:

5.9. SETTING THE COREDNS OPERATOR LOG LEVEL

Cluster administrators can configure the Operator log level to more quickly track down OpenShift DNS
issues. The valid values for operatorLogLevel are Normal, Debug, and Trace. Trace has the most
detailed information. The default operatorlogLevel is Normal. There are seven logging levels for issues:
Trace, Debug, Info, Warning, Error, Fatal and Panic. After the logging level is set, log entries with that
severity or anything above it will be logged.

operatorLogLevel: "Normal" sets logrus.SetLogLevel("Info").

operatorLogLevel: "Debug" sets logrus.SetLogLevel("Debug").

operatorLogLevel: "Trace" sets logrus.SetLogLevel("Trace").

Procedure

To set operatorLogLevel to Debug, enter the following command:

To set operatorLogLevel to Trace, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Trace"}}' --type=merge

$ oc get configmap/dns-default -n openshift-dns -o yaml

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --
type=merge

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --
type=merge

OpenShift Container Platform 4.10 Networking

38



CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the 
IngressController API and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define 
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

6.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
  name: cluster
spec:
  domain: apps.openshiftdemos.com

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

39

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/


domain domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy, 
domain is used to configure DNS records. See 
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for 
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster 
.spec.domain.

replicas replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

Parameter Description

OpenShift Container Platform 4.10 Networking

40



endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress Controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

If not set, the default value is based on 
infrastructure.config.openshift.io/cluster .status.platform:

AWS: LoadBalancerService (with External scope)

Azure: LoadBalancerService (with External scope)

GCP: LoadBalancerService (with External scope)

Bare metal: NodePortService

Other: HostNetwork

NOTE

On Red Hat OpenStack Platform (RHOSP), the 
LoadBalancerService endpoint publishing strategy
is only supported if a cloud provider is configured to
create health monitors. For RHOSP 16.1 and 16.2, this
strategy is only possible if you use the Amphora
Octavia provider.

For more information, see the "Setting cloud provider
options" section of the RHOSP installation
documentation.

For most platforms, the endpointPublishingStrategy value can be
updated. On GCP, you can configure the following 
endpointPublishingStrategy fields:

loadBalancer.scope

loadbalancer.providerParameters.gcp.clientAccess

hostNetwork.protocol

nodePort.protocol

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

41



defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts, 
nodeSelector and tolerations. For example:

Parameter Description

nodePlacement:
 nodeSelector:
   matchLabels:
     kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
   operator: Exists

OpenShift Container Platform 4.10 Networking

42



tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the 
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of an Old or 
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields, 
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values: 
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate’s
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

43



routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating 
wildcardPolicy from WildcardsAllowed to 
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller. 
WildcardsDisallowed is the default setting.

Parameter Description

OpenShift Container Platform 4.10 Networking

44



IngressControllerLoggi
ng

logging defines parameters for what is logged where. If this field is empty,
operational logs are enabled but access logs are disabled.

access describes how client requests are logged. If this field is
empty, access logging is disabled.

destination describes a destination for log messages.

type is the type of destination for logs:

Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

syslog describes parameters for the Syslog logging
destination type:

address is the IP address of the syslog endpoint that
receives log messages.

port is the UDP port number of the syslog endpoint that
receives log messages.

maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail, 
daemon, auth, syslog, lpr, news, uucp, cron, auth2, 
ftp, ntp, audit, alert, cron2, local0, local1, local2, 
local3. local4, local5, local6, or local7.

httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy’s default
HTTP log format, see the HAProxy documentation.

Parameter Description

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

45

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3


httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the 
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

httpCompression httpCompression defines the policy for HTTP traffic compression.

mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html, 
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern, type/subtype; 
[;attribute=value]. The types are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController
image.

Parameter Description

OpenShift Container Platform 4.10 Networking

46

https://datatracker.ietf.org/doc/html/rfc1341#page-7


httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in
access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

name specifies the name of the cookie.

maxLength specifies tha maximum length of the cookie.

matchType specifies if the field name of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.
The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and the maxlength field must
specify the maximum length of the header. For example:

Parameter Description

  httpCaptureCookies:
  - matchType: Exact
    maxLength: 128
    name: MYCOOKIE

  httpCaptureHeaders:
    request:
    - maxLength: 256
      name: Connection
    - maxLength: 128
      name: User-Agent
    response:
    - maxLength: 256
      name: Content-Type
    - maxLength: 256
      name: Content-Length

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

47



tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

headerBufferBytes specifies how much memory is reserved, in
bytes, for Ingress Controller connection sessions. This value must be
at least 16384 if HTTP/2 is enabled for the Ingress Controller. If not
set, the default value is 32768 bytes. Setting this field not
recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than 
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and 
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

clientTimeout specifies how long a connection is held open while
waiting for a client response. If unset, the default timeout is 30s.

serverFinTimeout specifies how long a connection is held open
while waiting for the server response to the client that is closing the
connection. If unset, the default timeout is 1s.

serverTimeout specifies how long a connection is held open while
waiting for a server response. If unset, the default timeout is 30s.

clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection. If
unset, the default timeout is 1s.

tlsInspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
If unset, the default inspect delay is 5s.

tunnelTimeout specifies how long a tunnel connection, including
websockets, remains open while the tunnel is idle. If unset, the default
timeout is 1h.

Parameter Description

OpenShift Container Platform 4.10 Networking

48



logEmptyRequests logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and 
Ignore. The default value is Log.

The LoggingPolicy type accepts either one of two values:

Log: Setting this value to Log indicates that an event should be
logged.

Ignore: Setting this value to Ignore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsP
olicy

HTTPEmptyRequestsPolicy describes how HTTP connections are handled
if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value is Respond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

Ignore: Setting this option to Ignore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to Ignore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

Parameter Description

NOTE

All parameters are optional.

6.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

6.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

49



You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations .

You can specify one of the following TLS security profiles for each component:

Table 6.1. TLS security profiles

Profile Description

Old This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
It is the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

Custom This profile allows you to define the TLS version and ciphers to use.

WARNING

Use caution when using a Custom profile,
because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.



OpenShift Container Platform 4.10 Networking

50

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility


6.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the API server.

Sample IngressController CR that configures the Old TLS security profile

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the 
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

NOTE

The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

2. Add the spec.tlsSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
  tlsSecurityProfile:
    old: {}
    type: Old
 ...

$ oc edit IngressController default -n openshift-ingress-operator

apiVersion: operator.openshift.io/v1
kind: IngressController
 ...
spec:
  tlsSecurityProfile:
    type: Custom 1
    custom: 2
      ciphers: 3

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

51



1

2

3

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is 
Intermediate.

Specify the appropriate field for the selected type:

old: {}

intermediate: {}

custom:

For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

Verify that the profile is set in the IngressController CR:

Example output

6.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a 
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.

      - ECDHE-ECDSA-CHACHA20-POLY1305
      - ECDHE-RSA-CHACHA20-POLY1305
      - ECDHE-RSA-AES128-GCM-SHA256
      - ECDHE-ECDSA-AES128-GCM-SHA256
      minTLSVersion: VersionTLS11
 ...

$ oc describe IngressController default -n openshift-ingress-operator

Name:         default
Namespace:    openshift-ingress-operator
Labels:       <none>
Annotations:  <none>
API Version:  operator.openshift.io/v1
Kind:         IngressController
 ...
Spec:
 ...
  Tls Security Profile:
    Custom:
      Ciphers:
        ECDHE-ECDSA-CHACHA20-POLY1305
        ECDHE-RSA-CHACHA20-POLY1305
        ECDHE-RSA-AES128-GCM-SHA256
        ECDHE-ECDSA-AES128-GCM-SHA256
      Min TLS Version:  VersionTLS11
    Type:               Custom
 ...

OpenShift Container Platform 4.10 Networking

52



1

This configuration includes setting a clientCA value, which is a reference to a config map. The config
map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution 
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a PEM-encoded CA certificate bundle.

If your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Procedure

1. In the openshift-config namespace, create a config map from your CA bundle:

The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

 Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
         Subject: SOME SIGNED CERT            X509v3 CRL Distribution Points:
                Full Name:
                  URI:http://crl.example.com/example.crl

$ oc create configmap \
   router-ca-certs-default \
   --from-file=ca-bundle.pem=client-ca.crt \ 1
   -n openshift-config

$ oc edit IngressController default -n openshift-ingress-operator

  apiVersion: operator.openshift.io/v1
  kind: IngressController
  metadata:
    name: default
    namespace: openshift-ingress-operator
  spec:
    clientTLS:
      clientCertificatePolicy: Required
      clientCA:

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

53



6.4. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

6.5. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

6.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

6.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

6.8. CONFIGURING THE INGRESS CONTROLLER

        name: router-ca-certs-default
      allowedSubjectPatterns:
      - "^/CN=example.com/ST=NC/C=US/O=Security/OU=OpenShift$"

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c 
<container_name>

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

OpenShift Container Platform 4.10 Networking

54



6.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

Your certificate meets the following requirements:

The certificate is valid for the ingress domain.

The certificate uses the subjectAltName extension to specify a wildcard domain, such as 
*.apps.ocp4.example.com.

You must have an IngressController CR. You may use the default one:

Example output

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

2. Update the IngressController CR to reference the new certificate secret:

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME      AGE
default   10m

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

55



3. Verify the update was effective:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

TIP

You can alternatively apply the following YAML to set a custom default certificate:

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

6.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

You previously configured a custom default certificate for the Ingress Controller.

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
  --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ echo Q |\
  openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts 
2>/dev/null |\
  openssl x509 -noout -subject -issuer -enddate

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  defaultCertificate:
    name: custom-certs-default

OpenShift Container Platform 4.10 Networking

56



Procedure

To remove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

To confirm that the original cluster certificate is restored, enter the following command:

where:

<domain>

Specifies the base domain name for your cluster.

Example output

6.8.3. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

Example output

2. Scale the default IngressController to the desired number of replicas using the oc patch

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
  --type json -p $'- op: remove\n  path: /spec/defaultCertificate'

$ echo Q | \
  openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts 
2>/dev/null | \
  openssl x509 -noout -subject -issuer -enddate

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o 
jsonpath='{$.status.availableReplicas}'

2

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

57



1

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

Example output

3. Verify that the default IngressController scaled to the number of replicas that you specified:

Example output

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

If you need a different amount of replicas, change the replicas value.

6.8.4. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

Log in as a user with cluster-admin privileges.

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas": 
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o 
jsonpath='{$.status.availableReplicas}'

3

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  replicas: 3               1

OpenShift Container Platform 4.10 Networking

58



Procedure

Configure Ingress access logging to a sidecar.

To configure Ingress access logging, you must specify a destination using 
spec.logging.access.destination. To specify logging to a sidecar container, you must specify 
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

Example output

Configure Ingress access logging to a Syslog endpoint.

To configure Ingress access logging, you must specify a destination using 
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is 
Syslog, you must also specify a destination endpoint using 
spec.logging.access.destination.syslog.endpoint and you can specify a facility using 
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  replicas: 2
  logging:
    access:
      destination:
        type: Container

$ oc -n openshift-ingress logs deployment.apps/router-default -c logs

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public 
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080 
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  replicas: 2
  logging:
    access:
      destination:
        type: Syslog

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

59



NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

Disable Ingress access logging.

To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

6.8.5. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

The following assumes that you already created an Ingress Controller.

        syslog:
          address: 1.2.3.4
          port: 10514

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  replicas: 2
  logging:
    access:
      destination:
        type: Syslog
        syslog:
          address: 1.2.3.4
          port: 10514
      httpLogFormat: '%ci:%cp [%t] %ft %b/%s %B %bq %HM %HU %HV'

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  replicas: 2
  logging:
    access: null

OpenShift Container Platform 4.10 Networking

60



Procedure

Update the Ingress Controller to increase the number of threads:

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

6.8.6. Ingress Controller sharding

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller, or
router, can be significant. As a cluster administrator, you can shard the routes to:

Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.

Allocate certain routes to have different reliability guarantees than other routes.

Allow certain Ingress Controllers to have different policies defined.

Allow only specific routes to use additional features.

Expose different routes on different addresses so that internal and external users can see
different routes, for example.

Ingress Controller can use either route labels or namespace labels as a sharding method.

6.8.6.1. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

# cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
  kind: IngressController
  metadata:
    name: sharded
    namespace: openshift-ingress-operator
  spec:
    domain: <apps-sharded.basedomain.example.net> 1

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

61



1 Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

6.8.6.2. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

WARNING

If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress
Controller with value HostNetwork for the endpointPublishingStrategy
parameter. Doing so might cause issues. Use value NodePort instead of 
HostNetwork for endpointPublishingStrategy.

Procedure

1. Edit the router-internal.yaml file:

    nodePlacement:
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker: ""
    routeSelector:
      matchLabels:
        type: sharded
  status: {}
kind: List
metadata:
  resourceVersion: ""
  selfLink: ""

# oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net



# cat router-internal.yaml

OpenShift Container Platform 4.10 Networking

62



1

Example output

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

6.8.7. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
  kind: IngressController
  metadata:
    name: sharded
    namespace: openshift-ingress-operator
  spec:
    domain: <apps-sharded.basedomain.example.net> 1
    nodePlacement:
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker: ""
    namespaceSelector:
      matchLabels:
        type: sharded
  status: {}
kind: List
metadata:
  resourceVersion: ""
  selfLink: ""

# oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

63



WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the 
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 6.1. Diagram of LoadBalancer

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.



OpenShift Container Platform 4.10 Networking

64



1

2

3

1

You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

6.8.8. Configuring global access for an Ingress Controller on GCP

An Ingress Controller created on GCP with an internal load balancer generates an internal IP address for
the service. A cluster administrator can specify the global access option, which enables clients in any
region within the same VPC network and compute region as the load balancer, to reach the workloads
running on your cluster.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  namespace: openshift-ingress-operator
  name: <name> 1
spec:
  domain: <domain> 2
  endpointPublishingStrategy:
    type: LoadBalancerService
    loadBalancer:
      scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

65

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer


1

For more information, see the GCP documentation for global access.

Prerequisites

You deployed an OpenShift Container Platform cluster on GCP infrastructure.

You configured an Ingress Controller to use an internal load balancer.

You installed the OpenShift CLI (oc).

Procedure

1. Configure the Ingress Controller resource to allow global access.

NOTE

You can also create an Ingress Controller and specify the global access option.

a. Configure the Ingress Controller resource:

b. Edit the YAML file:

Sample clientAccess configuration to Global

Set gcp.clientAccess to Global.

c. Save the file to apply the changes.

2. Run the following command to verify that the service allows global access:

The output shows that global access is enabled for GCP with the annotation, 
networking.gke.io/internal-load-balancer-allow-global-access.

6.8.9. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

$ oc -n openshift-ingress-operator edit ingresscontroller/default

  spec:
    endpointPublishingStrategy:
      loadBalancer:
        providerParameters:
          gcp:
            clientAccess: Global 1
          type: GCP
        scope: Internal
      type: LoadBalancerService

$ oc -n openshift-ingress edit svc/router-default -o yaml

OpenShift Container Platform 4.10 Networking

66

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access


WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the 
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

6.8.10. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.



$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  namespace: openshift-ingress-operator
  name: default
spec:
  endpointPublishingStrategy:
    type: LoadBalancerService
    loadBalancer:
      scope: Internal
EOF

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

67



WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

TIP

You can alternatively apply the following YAML to configure the route admission policy:

6.8.11. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses 
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure



$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
  routeAdmission:
    namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  routeAdmission:
    namespaceOwnership: InterNamespaceAllowed

OpenShift Container Platform 4.10 Networking

68



Procedure
1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

6.8.12. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure

1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

Example use cases
As a cluster administrator, you can:

Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the 
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

$ oc edit IngressController

spec:
  routeAdmission:
    wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

$ oc edit IngressController

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  httpHeaders:
    forwardedHeaderPolicy: Append

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

69



As an application developer, you can:

Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation 
haproxy.router.openshift.io/set-forwarded-headers: if-none or 
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

6.8.13. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.

To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is
necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level
Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

WARNING

Using WebSockets with a re-encrypt route and with HTTP/2 enabled on an Ingress
Controller requires WebSocket support over HTTP/2. WebSockets over HTTP/2 is a
feature of HAProxy 2.4, which is unsupported in OpenShift Container Platform at
this time.

IMPORTANT



OpenShift Container Platform 4.10 Networking

70



IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

To enable HTTP/2 on an Ingress Controller, enter the oc annotate command:

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.

Enable HTTP/2 on the entire cluster.

To enable HTTP/2 for the entire cluster, enter the oc annotate command:

TIP

You can alternatively apply the following YAML to add the annotation:

6.8.14. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the 
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an IngressController specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name> 
ingress.operator.openshift.io/default-enable-http2=true

$ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
  name: cluster
  annotations:
    ingress.operator.openshift.io/default-enable-http2: "true"

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

71

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt


PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use TCP.

WARNING

The PROXY protocol is unsupported for the default Ingress Controller with
installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:

2. Set the PROXY configuration:

If your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the 
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

If your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

6.8.15. Specifying an alternative cluster domain using the appsDomain option



$ oc -n openshift-ingress-operator edit ingresscontroller/default

  spec:
    endpointPublishingStrategy:
      hostNetwork:
        protocol: PROXY
      type: HostNetwork

  spec:
    endpointPublishingStrategy:
      nodePort:
        protocol: PROXY
      type: NodePortService

OpenShift Container Platform 4.10 Networking

72



1

2

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites

You deployed an OpenShift Container Platform cluster.

You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:

b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

Specifies the default domain. You cannot modify the default domain after installation.

Optional: Domain for OpenShift Container Platform infrastructure to use for
application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

$ oc edit ingresses.config/cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
  name: cluster
spec:
  domain: apps.example.com            1
  appsDomain: <test.example.com>      2

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

73



Example output:

6.8.16. Converting HTTP header case

HAProxy 2.2 lowercases HTTP header names by default, for example, changing Host: xyz.com to host: 
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because OpenShift Container Platform 4.10 includes HAProxy 2.2, make sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

You have installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

2. Annotate the route of the application:

The Ingress Controller then adjusts the host request header as specified.

Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

$ oc get routes
NAME              HOST/PORT                                   PATH   SERVICES          PORT       
TERMINATION   WILDCARD
hello-openshift   hello_openshift-<my_project>.test.example.com
hello-openshift   8080-tcp                 None

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"]}}}'

$ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

OpenShift Container Platform 4.10 Networking

74



1

Example Ingress Controller YAML

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

Set haproxy.router.openshift.io/h1-adjust-case to true.

6.8.17. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFC1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and js, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

Procedure

1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  httpHeaders:
    headerNameCaseAdjustments:
    - Host

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  annotations:
    haproxy.router.openshift.io/h1-adjust-case: true 1
  name: my-application
  namespace: my-application
spec:
  to:
    kind: Service
    name: my-application

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

75

https://datatracker.ietf.org/doc/html/rfc1341#page-7


b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

6.8.18. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

You configured your firewall to access the default stats port, 1936.

Procedure

1. Get the router pod name by running the following command:

Example output

2. Get the router’s username and password, which the router pod stores in the 
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

b. Get the password by running the following command:

3. Get the router IP and metrics certificates by running the following command:

$ oc edit -n openshift-ingress-operator ingresscontrollers/default

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  httpCompression:
    mimeTypes:
    - "text/html"
    - "text/css; charset=utf-8"
    - "application/json"
   ...

$ oc get pods -n openshift-ingress

NAME                              READY   STATUS    RESTARTS   AGE
router-default-76bfffb66c-46qwp   1/1     Running   0          11h

$ oc rsh <router_pod_name> cat metrics-auth/statsUsername

$ oc rsh <router_pod_name> cat metrics-auth/statsPassword

OpenShift Container Platform 4.10 Networking

76



4. Get the raw statistics in Prometheus format by running the following command:

5. Access the metrics securely by running the following command:

6. Access the default stats port, 1936, by running the following command:

Example 6.1. Example output

…​ # HELP haproxy_backend_connections_total Total number of connections. # TYPE
haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route-alt"} 0
haproxy_backend_connections_total{backend="http",namespace="default",route="hello-
route01"} 0 …​ # HELP haproxy_exporter_server_threshold Number of servers tracked and
the current threshold value. # TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500 …​ # HELP
haproxy_frontend_bytes_in_total Current total of incoming bytes. # TYPE
haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} 0
haproxy_frontend_bytes_in_total{frontend="fe_sni"} 0
haproxy_frontend_bytes_in_total{frontend="public"} 119070 …​ # HELP
haproxy_server_bytes_in_total Current total of incoming bytes. # TYPE
haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_no_sni",service=""}
0 haproxy_server_bytes_in_total{namespace="",pod="",route="",server="fe_sni",service=""} 0
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000",service="docker-registry"} 0
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjqx",route="hello-
route",server="10.130.0.90:8080",service="hello-svc-1"} 0 …​

7. Launch the stats window by entering the following URL in a browser:

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

6.8.19. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or

$ oc describe pod <router_pod>

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

$ curl -u user:password https://<router_IP>:<stats_port>/metrics -k

$ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

http://<user>:<password>@<router_IP>:<stats_port>

http://<user>:<password>@<router_ip>:1936/metrics;csv

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

77



both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom
page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

The Ingress Operator copies the my-custom-error-code-pages config map from the 
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the 
openshift-ingress namespace.

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

OpenShift Container Platform 4.10 Networking

78

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http


1

3. Display the copy:

Example output

NAME                       DATA   AGE
default-errorpages         2      25s  1

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

For 503 custom HTTP custom error code response:

For 404 custom HTTP custom error code response:

Verification

Verify your custom error code HTTP response:

1. Create a test project and application:

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

4. Check if the errorfile attribute is properly in the haproxy.config file:

$ oc get cm default-errorpages -n openshift-ingress

$ oc -n openshift-ingress rsh <router_pod> cat 
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

$ oc -n openshift-ingress rsh <router_pod> cat 
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

 $ oc new-project test-ingress

$ oc new-app django-psql-example

$ curl -vk <route_hostname>

$ curl -vk <route_hostname>

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

79



6.9. ADDITIONAL RESOURCES

Configuring a custom PKI

$ oc -n openshift-ingress rsh <router> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

OpenShift Container Platform 4.10 Networking

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-a-custom-pki


CHAPTER 7. CONFIGURING THE INGRESS CONTROLLER
ENDPOINT PUBLISHING STRATEGY

7.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 7.1. Diagram of NodePortService

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

When the client connects to a node that is down, for example, by connecting the 10.0.128.4 IP

CHAPTER 7. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

81



address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the 
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.

HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress Controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

7.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External. Cluster administrators can change an 
External scoped Ingress Controller to Internal.

Prerequisites

You installed the oc CLI.

Procedure

To change an External scoped Ingress Controller to Internal, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"Internal"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

$ oc -n openshift-ingress delete services/router-default

OpenShift Container Platform 4.10 Networking

82

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport


If you delete the service, the Ingress Operator recreates it as Internal.

7.1.2. Configuring the Ingress Controller endpoint publishing scope to External

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External.

The Ingress Controller’s scope can be configured to be Internal during installation or after, and cluster
administrators can change an Internal Ingress Controller to External.

IMPORTANT

On some platforms, it is necessary to delete and recreate the service.

Changing the scope can cause disruption to Ingress traffic, potentially for several
minutes. This applies to platforms where it is necessary to delete and recreate the
service, because the procedure can cause OpenShift Container Platform to deprovision
the existing service load balancer, provision a new one, and update DNS.

Prerequisites

You installed the oc CLI.

Procedure

To change an Internal scoped Ingress Controller to External, enter the following command:

To check the status of the Ingress Controller, enter the following command:

The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

If you delete the service, the Ingress Operator recreates it as External.

7.2. ADDITIONAL RESOURCES

For more information, see Ingress Controller configuration parameters .

$ oc -n openshift-ingress-operator patch ingresscontrollers/private --type=merge --
patch='{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"External"}}}}'

$ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

$ oc -n openshift-ingress delete services/router-default

CHAPTER 7. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress


CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT
The Cluster Network Operator (CNO) runs a controller, the connectivity check controller, that performs
a connection health check between resources within your cluster. By reviewing the results of the health
checks, you can diagnose connection problems or eliminate network connectivity as the cause of an
issue that you are investigating.

8.1. CONNECTION HEALTH CHECKS PERFORMED

To verify that cluster resources are reachable, a TCP connection is made to each of the following cluster
API services:

Kubernetes API server service

Kubernetes API server endpoints

OpenShift API server service

OpenShift API server endpoints

Load balancers

To verify that services and service endpoints are reachable on every node in the cluster, a TCP
connection is made to each of the following targets:

Health check target service

Health check target endpoints

8.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS

The connectivity check controller orchestrates connection verification checks in your cluster. The results
for the connection tests are stored in PodNetworkConnectivity objects in the openshift-network-
diagnostics namespace. Connection tests are performed every minute in parallel.

The Cluster Network Operator (CNO) deploys several resources to the cluster to send and receive
connectivity health checks:

Health check source

This program deploys in a single pod replica set managed by a Deployment object. The program
consumes PodNetworkConnectivity objects and connects to the spec.targetEndpoint specified in
each object.

Health check target

A pod deployed as part of a daemon set on every node in the cluster. The pod listens for inbound
health checks. The presence of this pod on every node allows for the testing of connectivity to each
node.

8.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

The PodNetworkConnectivityCheck object fields are described in the following tables.

Table 8.1. PodNetworkConnectivityCheck object fields

OpenShift Container Platform 4.10 Networking

84



Field Type Description

metadata.name string The name of the object in the following format: 
<source>-to-<target>. The destination described
by <target> includes one of following strings:

load-balancer-api-external

load-balancer-api-internal

kubernetes-apiserver-endpoint

kubernetes-apiserver-service-cluster

network-check-target

openshift-apiserver-endpoint

openshift-apiserver-service-cluster

metadata.namespace string The namespace that the object is associated with.
This value is always openshift-network-
diagnostics.

spec.sourcePod string The name of the pod where the connection check
originates, such as network-check-source-
596b4c6566-rgh92.

spec.targetEndpoint string The target of the connection check, such as 
api.devcluster.example.com:6443.

spec.tlsClientCert object Configuration for the TLS certificate to use.

spec.tlsClientCert.name string The name of the TLS certificate used, if any. The
default value is an empty string.

status object An object representing the condition of the
connection test and logs of recent connection
successes and failures.

status.conditions array The latest status of the connection check and any
previous statuses.

status.failures array Connection test logs from unsuccessful attempts.

status.outages array Connect test logs covering the time periods of any
outages.

status.successes array Connection test logs from successful attempts.

The following table describes the fields for objects in the status.conditions array:

CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT

85



Table 8.2. status.conditions

Field Type Description

lastTransitionTime string The time that the condition of the connection
transitioned from one status to another.

message string The details about last transition in a human readable
format.

reason string The last status of the transition in a machine readable
format.

status string The status of the condition.

type string The type of the condition.

The following table describes the fields for objects in the status.conditions array:

Table 8.3. status.outages

Field Type Description

end string The timestamp from when the connection failure is
resolved.

endLogs array Connection log entries, including the log entry
related to the successful end of the outage.

message string A summary of outage details in a human readable
format.

start string The timestamp from when the connection failure is
first detected.

startLogs array Connection log entries, including the original failure.

Connection log fields
The fields for a connection log entry are described in the following table. The object is used in the
following fields:

status.failures[]

status.successes[]

status.outages[].startLogs[]

status.outages[].endLogs[]

Table 8.4. Connection log object

OpenShift Container Platform 4.10 Networking

86



Field Type Description

latency string Records the duration of the action.

message string Provides the status in a human readable format.

reason string Provides the reason for status in a machine readable
format. The value is one of TCPConnect, 
TCPConnectError, DNSResolve, DNSError.

success boolean Indicates if the log entry is a success or failure.

time string The start time of connection check.

8.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

As a cluster administrator, you can verify the connectivity of an endpoint, such as an API server, load
balancer, service, or pod.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. To list the current PodNetworkConnectivityCheck objects, enter the following command:

Example output

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

NAME                                                                                                                                AGE
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0   75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1   73m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2   75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster                               75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster                                 75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external                                         75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal                                         75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-0            75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-

CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT

87



2. View the connection test logs:

a. From the output of the previous command, identify the endpoint that you want to review
the connectivity logs for.

b. To view the object, enter the following command:

where <name> specifies the name of the PodNetworkConnectivityCheck object.

Example output

ln-x5sv9rb-f76d1-4rzrp-master-1            75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-master-2            75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh      74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf      74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
ln-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz      74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster                               75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0    75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-1    75m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-2    74m
network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster                                75m

$ oc get podnetworkconnectivitycheck <name> \
  -n openshift-network-diagnostics -o yaml

apiVersion: controlplane.operator.openshift.io/v1alpha1
kind: PodNetworkConnectivityCheck
metadata:
  name: network-check-source-ci-ln-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0
  namespace: openshift-network-diagnostics
  ...
spec:
  sourcePod: network-check-source-7c88f6d9f-hmg2f
  targetEndpoint: 10.0.0.4:6443
  tlsClientCert:
    name: ""
status:
  conditions:
  - lastTransitionTime: "2021-01-13T20:11:34Z"
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnectSuccess
    status: "True"
    type: Reachable
  failures:
  - latency: 2.241775ms

OpenShift Container Platform 4.10 Networking

88



    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
      to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
      connection refused'
    reason: TCPConnectError
    success: false
    time: "2021-01-13T20:10:34Z"
  - latency: 2.582129ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
      to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
      connection refused'
    reason: TCPConnectError
    success: false
    time: "2021-01-13T20:09:34Z"
  - latency: 3.483578ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: failed
      to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
      connection refused'
    reason: TCPConnectError
    success: false
    time: "2021-01-13T20:08:34Z"
  outages:
  - end: "2021-01-13T20:11:34Z"
    endLogs:
    - latency: 2.032018ms
      message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
        tcp connection to 10.0.0.4:6443 succeeded'
      reason: TCPConnect
      success: true
      time: "2021-01-13T20:11:34Z"
    - latency: 2.241775ms
      message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
        failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
        connect: connection refused'
      reason: TCPConnectError
      success: false
      time: "2021-01-13T20:10:34Z"
    - latency: 2.582129ms
      message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
        failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
        connect: connection refused'
      reason: TCPConnectError
      success: false
      time: "2021-01-13T20:09:34Z"
    - latency: 3.483578ms
      message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
        failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
        connect: connection refused'
      reason: TCPConnectError
      success: false
      time: "2021-01-13T20:08:34Z"
    message: Connectivity restored after 2m59.999789186s
    start: "2021-01-13T20:08:34Z"
    startLogs:
    - latency: 3.483578ms
      message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0:
        failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:

CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT

89



        connect: connection refused'
      reason: TCPConnectError
      success: false
      time: "2021-01-13T20:08:34Z"
  successes:
  - latency: 2.845865ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:14:34Z"
  - latency: 2.926345ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:13:34Z"
  - latency: 2.895796ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:12:34Z"
  - latency: 2.696844ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:11:34Z"
  - latency: 1.502064ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:10:34Z"
  - latency: 1.388857ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:09:34Z"
  - latency: 1.906383ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:08:34Z"
  - latency: 2.089073ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:07:34Z"
  - latency: 2.156994ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'

OpenShift Container Platform 4.10 Networking

90



    reason: TCPConnect
    success: true
    time: "2021-01-13T21:06:34Z"
  - latency: 1.777043ms
    message: 'kubernetes-apiserver-endpoint-ci-ln-x5sv9rb-f76d1-4rzrp-master-0: tcp
      connection to 10.0.0.4:6443 succeeded'
    reason: TCPConnect
    success: true
    time: "2021-01-13T21:05:34Z"

CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT

91



CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER
NETWORK

As a cluster administrator, you can change the MTU for the cluster network after cluster installation.
This change is disruptive as cluster nodes must be rebooted to finalize the MTU change. You can
change the MTU only for clusters using the OVN-Kubernetes or OpenShift SDN cluster network
providers.

9.1. ABOUT THE CLUSTER MTU

During installation the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You do not
normally need to override the detected MTU.

You might want to change the MTU of the cluster network for several reasons:

The MTU detected during cluster installation is not correct for your infrastructure

Your cluster infrastructure now requires a different MTU, such as from the addition of nodes
that need a different MTU for optimal performance

You can change the cluster MTU for only the OVN-Kubernetes and OpenShift SDN cluster network
providers.

9.1.1. Service interruption considerations

When you initiate an MTU change on your cluster the following effects might impact service availability:

At least two rolling reboots are required to complete the migration to a new MTU. During this
time, some nodes are not available as they restart.

Specific applications deployed to the cluster with shorter timeout intervals than the absolute
TCP timeout interval might experience disruption during the MTU change.

9.1.2. MTU value selection

When planning your MTU migration there are two related but distinct MTU values to consider.

Hardware MTU: This MTU value is set based on the specifics of your network infrastructure.

Cluster network MTU: This MTU value is always less than your hardware MTU to account for
the cluster network overlay overhead. The specific overhead is determined by your cluster
network provider:

OVN-Kubernetes: 100 bytes

OpenShift SDN: 50 bytes

If your cluster requires different MTU values for different nodes, you must subtract the overhead value
for your cluster network provider from the lowest MTU value that is used by any node in your cluster. For
example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must
set this value to 1400.

9.1.3. How the migration process works

The following table summarizes the migration process by segmenting between the user-initiated steps

OpenShift Container Platform 4.10 Networking

92



The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 9.1. Live migration of the cluster MTU

User-initiated steps OpenShift Container Platform activity

Set the following values in the Cluster Network
Operator configuration:

spec.migration.mtu.machine.to

spec.migration.mtu.network.from

spec.migration.mtu.network.to

Cluster Network Operator (CNO): Confirms that
each field is set to a valid value.

The mtu.machine.to must be set to either
the new hardware MTU or to the current
hardware MTU if the MTU for the hardware
is not changing. This value is transient and is
used as part of the migration process.
Separately, if you specify a hardware MTU
that is different from your existing hardware
MTU value, you must manually configure
the MTU to persist by other means, such as
with a machine config, DHCP setting, or a
Linux kernel command line.

The mtu.network.from field must equal
the 
network.status.clusterNetworkMTU
field, which is the current MTU of the cluster
network.

The mtu.network.to field must be set to
the target cluster network MTU and must
be lower than the hardware MTU to allow for
the overlay overhead of the cluster network
provider. For OVN-Kubernetes, the
overhead is 100 bytes and for OpenShift
SDN the overhead is 50 bytes.

If the values provided are valid, the CNO writes out a
new temporary configuration with the MTU for the
cluster network set to the value of the 
mtu.network.to field.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster.

Reconfigure the MTU of the primary network
interface for the nodes on the cluster. You can use a
variety of methods to accomplish this, including:

Deploying a new NetworkManager
connection profile with the MTU change

Changing the MTU through a DHCP server
setting

Changing the MTU through boot
parameters

N/A

CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER NETWORK

93



Set the mtu value in the CNO configuration for the
cluster network provider and set spec.migration to 
null.

Machine Config Operator (MCO): Performs a
rolling reboot of each node in the cluster with the
new MTU configuration.

User-initiated steps OpenShift Container Platform activity

9.2. CHANGING THE CLUSTER MTU

As a cluster administrator, you can change the maximum transmission unit (MTU) for your cluster. The
migration is disruptive and nodes in your cluster might be temporarily unavailable as the MTU update
rolls out.

The following procedure describes how to change the cluster MTU by using either machine configs,
DHCP, or an ISO. If you use the DHCP or ISO approach, you must refer to configuration artifacts that
you kept after installing your cluster to complete the procedure.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You identified the target MTU for your cluster. The correct MTU varies depending on the
cluster network provider that your cluster uses:

OVN-Kubernetes: The cluster MTU must be set to 100 less than the lowest hardware MTU
value in your cluster.

OpenShift SDN: The cluster MTU must be set to 50 less than the lowest hardware MTU
value in your cluster.

Procedure

To increase or decrease the MTU for the cluster network complete the following procedure.

1. To obtain the current MTU for the cluster network, enter the following command:

Example output

$ oc describe network.config cluster

...
Status:
  Cluster Network:
    Cidr:               10.217.0.0/22
    Host Prefix:        23
  Cluster Network MTU:  1400
  Network Type:         OpenShiftSDN
  Service Network:
    10.217.4.0/23
...

OpenShift Container Platform 4.10 Networking

94



2. Prepare your configuration for the hardware MTU:

If your hardware MTU is specified with DHCP, update your DHCP configuration such as with
the following dnsmasq configuration:

where:

<mtu>

Specifies the hardware MTU for the DHCP server to advertise.

If your hardware MTU is specified with a kernel command line with PXE, update that
configuration accordingly.

If your hardware MTU is specified in a NetworkManager connection configuration, complete
the following steps. This approach is the default for OpenShift Container Platform if you do
not explicitly specify your network configuration with DHCP, a kernel command line, or some
other method. Your cluster nodes must all use the same underlying network configuration
for the following procedure to work unmodified.

i. Find the primary network interface:

If you are using the OpenShift SDN cluster network provider, enter the following
command:

where:

<node_name>

Specifies the name of a node in your cluster.

If you are using the OVN-Kubernetes cluster network provider, enter the following
command:

where:

<node_name>

Specifies the name of a node in your cluster.

ii. Create the following NetworkManager configuration in the <interface>-mtu.conf file:

Example NetworkManager connection configuration

where:

dhcp-option-force=26,<mtu>

$ oc debug node/<node_name> -- chroot /host ip route list match 0.0.0.0/0 | awk 
'{print $5 }'

$ oc debug node/<node_name> -- chroot /host nmcli -g connection.interface-
name c show ovs-if-phys0

[connection-<interface>-mtu]
match-device=interface-name:<interface>
ethernet.mtu=<mtu>

CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER NETWORK

95



1

2

1

2

<mtu>

Specifies the new hardware MTU value.

<interface>

Specifies the primary network interface name.

iii. Create two MachineConfig objects, one for the control plane nodes and another for
the worker nodes in your cluster:

A. Create the following Butane config in the control-plane-interface.bu file:

Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

B. Create the following Butane config in the worker-interface.bu file:

Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

C. Create MachineConfig objects from the Butane configs by running the following
command:

variant: openshift
version: 4.10.0
metadata:
  name: 01-control-plane-interface
  labels:
    machineconfiguration.openshift.io/role: master
storage:
  files:
    - path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf 1
      contents:
        local: <interface>-mtu.conf 2
      mode: 0600

variant: openshift
version: 4.10.0
metadata:
  name: 01-worker-interface
  labels:
    machineconfiguration.openshift.io/role: worker
storage:
  files:
    - path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf 1
      contents:
        local: <interface>-mtu.conf 2
      mode: 0600

OpenShift Container Platform 4.10 Networking

96



3. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

where:

<overlay_from>

Specifies the current cluster network MTU value.

<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value for 
<machine_to> and for OVN-Kubernetes must be 100 less and for OpenShift SDN must be 
50 less.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

Example that increases the cluster MTU

4. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

5. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

$ for manifest in control-plane-interface worker-interface; do
    butane --files-dir . $manifest.bu > $manifest.yaml
  done

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to> } , 
"machine": { "to" : <machine_to> } } } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": { "mtu": { "network": { "from": 1400, "to": 9000 } , "machine": { "to" : 
9100} } } } }'

$ oc get mcp

$ oc describe node | egrep "hostname|machineconfig"

CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER NETWORK

97



Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the 
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

6. Update the underlying network interface MTU value:

If you are specifying the new MTU with a NetworkManager connection configuration, enter
the following command. The MachineConfig Operator automatically performs a rolling
reboot of the nodes in your cluster.

If you are specifying the new MTU with a DHCP server option or a kernel command line and
PXE, make the necessary changes for your infrastructure.

7. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

8. Confirm the status of the new machine configuration on the hosts:

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

ExecStart=/usr/local/bin/mtu-migration.sh

$ for manifest in control-plane-interface worker-interface; do
    oc create -f $manifest.yaml
  done

$ oc get mcp

OpenShift Container Platform 4.10 Networking

98



a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the 
machineconfiguration.openshift.io/currentConfig field.

If the machine config is successfully deployed, the previous output contains the 
/etc/NetworkManager/system-connections/<connection_name> file path.

The machine config must not contain the ExecStart=/usr/local/bin/mtu-migration.sh line.

9. To finalize the MTU migration, enter one of the following commands:

If you are using the OVN-Kubernetes cluster network provider:

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

If you are using the OpenShift SDN cluster network provider:

where:

<mtu>

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep path:

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu> 
}}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
  '{"spec": { "migration": null, "defaultNetwork":{ "openshiftSDNConfig": { "mtu": <mtu> }}}}'

CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER NETWORK

99



Specifies the new cluster network MTU that you specified with <overlay_to>.

Verification

You can verify that a node in your cluster uses an MTU that you specified in the previous procedure.

1. To get the current MTU for the cluster network, enter the following command:

2. Get the current MTU for the primary network interface of a node.

a. To list the nodes in your cluster, enter the following command:

b. To obtain the current MTU setting for the primary network interface on a node, enter the
following command:

where:

<node>

Specifies a node from the output from the previous step.

<interface>

Specifies the primary network interface name for the node.

Example output

9.3. ADDITIONAL RESOURCES

Using advanced networking options for PXE and ISO installations

Manually creating NetworkManager profiles in key file format

Configuring a dynamic Ethernet connection using nmcli

$ oc describe network.config cluster

$ oc get nodes

$ oc debug node/<node> -- chroot /host ip address show <interface>

ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8051

OpenShift Container Platform 4.10 Networking

100

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installation-user-infra-machines-advanced_network_installing-bare-metal
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/assembly_manually-creating-networkmanager-profiles-in-key-file-format_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#configuring-a-dynamic-ethernet-connection-using-nmcli_configuring-an-ethernet-connection


CHAPTER 10. CONFIGURING THE NODE PORT SERVICE
RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

10.1. PREREQUISITES

Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

10.2. EXPANDING THE NODE PORT RANGE

You can expand the node port range for the cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

TIP

You can alternatively apply the following YAML to update the node port range:

Example output

2. To confirm that the configuration is active, enter the following command. It can take several

$ oc patch network.config.openshift.io cluster --type=merge -p \
  '{
    "spec":
      { "serviceNodePortRange": "30000-<port>" }
  }'

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  serviceNodePortRange: "30000-<port>"

network.config.openshift.io/cluster patched

CHAPTER 10. CONFIGURING THE NODE PORT SERVICE RANGE

101



2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

Example output

10.3. ADDITIONAL RESOURCES

Configuring ingress cluster traffic using a NodePort

Network [config.openshift.io/v1]

Service [core/v1]

$ oc get configmaps -n openshift-kube-apiserver config \
  -o jsonpath="{.data['config\.yaml']}" | \
  grep -Eo '"service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

"service-node-port-range":["30000-33000"]

OpenShift Container Platform 4.10 Networking

102

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#service-v1


CHAPTER 11. CONFIGURING IP FAILOVER
This topic describes configuring IP failover for pods and services on your OpenShift Container Platform
cluster.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long a single node is available, the VIPs are served. There is
no way to explicitly distribute the VIPs over the nodes, so there can be nodes with no VIPs and other
nodes with many VIPs. If there is only one node, all VIPs are on it.

NOTE

The VIPs must be routable from outside the cluster.

IP failover monitors a port on each VIP to determine whether the port is reachable on the node. If the
port is not reachable, the VIP is not assigned to the node. If the port is set to 0, this check is suppressed.
The check script does the needed testing.

IP failover uses Keepalived to host a set of externally accessible VIP addresses on a set of hosts. Each
VIP is only serviced by a single host at a time. Keepalived uses the Virtual Router Redundancy Protocol
(VRRP) to determine which host, from the set of hosts, services which VIP. If a host becomes
unavailable, or if the service that Keepalived is watching does not respond, the VIP is switched to
another host from the set. This means a VIP is always serviced as long as a host is available.

When a node running Keepalived passes the check script, the VIP on that node can enter the master
state based on its priority and the priority of the current master and as determined by the preemption
strategy.

A cluster administrator can provide a script through the OPENSHIFT_HA_NOTIFY_SCRIPT variable,
and this script is called whenever the state of the VIP on the node changes. Keepalived uses the master
state when it is servicing the VIP, the backup state when another node is servicing the VIP, or in the 
fault state when the check script fails. The notify script is called with the new state whenever the state
changes.

You can create an IP failover deployment configuration on OpenShift Container Platform. The IP
failover deployment configuration specifies the set of VIP addresses, and the set of nodes on which to
service them. A cluster can have multiple IP failover deployment configurations, with each managing its
own set of unique VIP addresses. Each node in the IP failover configuration runs an IP failover pod, and
this pod runs Keepalived.

When using VIPs to access a pod with host networking, the application pod runs on all nodes that are
running the IP failover pods. This enables any of the IP failover nodes to become the master and service
the VIPs when needed. If application pods are not running on all nodes with IP failover, either some IP
failover nodes never service the VIPs or some application pods never receive any traffic. Use the same
selector and replication count, for both IP failover and the application pods, to avoid this mismatch.

While using VIPs to access a service, any of the nodes can be in the IP failover set of nodes, since the
service is reachable on all nodes, no matter where the application pod is running. Any of the IP failover
nodes can become master at any time. The service can either use external IPs and a service port or it can
use a NodePort.

When using external IPs in the service definition, the VIPs are set to the external IPs, and the IP failover
monitoring port is set to the service port. When using a node port, the port is open on every node in the
cluster, and the service load-balances traffic from whatever node currently services the VIP. In this case,
the IP failover monitoring port is set to the NodePort in the service definition.

CHAPTER 11. CONFIGURING IP FAILOVER

103

http://www.keepalived.org/


IMPORTANT

Setting up a NodePort is a privileged operation.

IMPORTANT

Even though a service VIP is highly available, performance can still be affected.
Keepalived makes sure that each of the VIPs is serviced by some node in the
configuration, and several VIPs can end up on the same node even when other nodes
have none. Strategies that externally load-balance across a set of VIPs can be thwarted
when IP failover puts multiple VIPs on the same node.

When you use ingressIP, you can set up IP failover to have the same VIP range as the ingressIP range.
You can also disable the monitoring port. In this case, all the VIPs appear on same node in the cluster.
Any user can set up a service with an ingressIP and have it highly available.

IMPORTANT

There are a maximum of 254 VIPs in the cluster.

11.1. IP FAILOVER ENVIRONMENT VARIABLES

The following table contains the variables used to configure IP failover.

Table 11.1. IP failover environment variables

Variable Name Default Description

OPENSHIFT_HA_MONITOR_POR
T

80 The IP failover pod tries to open a TCP connection
to this port on each Virtual IP (VIP). If connection is
established, the service is considered to be running.
If this port is set to 0, the test always passes.

OPENSHIFT_HA_NETWORK_INT
ERFACE

 The interface name that IP failover uses to send
Virtual Router Redundancy Protocol (VRRP) traffic.
The default value is eth0.

OPENSHIFT_HA_REPLICA_COU
NT

2 The number of replicas to create. This must match 
spec.replicas value in IP failover deployment
configuration.

OPENSHIFT_HA_VIRTUAL_IPS  The list of IP address ranges to replicate. This must
be provided. For example, 1.2.3.4-6,1.2.3.9.

OPENSHIFT_HA_VRRP_ID_OFFS
ET

0 The offset value used to set the virtual router IDs.
Using different offset values allows multiple IP
failover configurations to exist within the same
cluster. The default offset is 0, and the allowed range
is 0 through 255.

OpenShift Container Platform 4.10 Networking

104



OPENSHIFT_HA_VIP_GROUPS  The number of groups to create for VRRP. If not set,
a group is created for each virtual IP range specified
with the OPENSHIFT_HA_VIP_GROUPS
variable.

OPENSHIFT_HA_IPTABLES_CHA
IN

INPUT The name of the iptables chain, to automatically add
an iptables rule to allow the VRRP traffic on. If the
value is not set, an iptables rule is not added. If the
chain does not exist, it is not created.

OPENSHIFT_HA_CHECK_SCRIP
T

 The full path name in the pod file system of a script
that is periodically run to verify the application is
operating.

OPENSHIFT_HA_CHECK_INTER
VAL

2 The period, in seconds, that the check script is run.

OPENSHIFT_HA_NOTIFY_SCRIP
T

 The full path name in the pod file system of a script
that is run whenever the state changes.

OPENSHIFT_HA_PREEMPTION preempt
_nodelay 
300

The strategy for handling a new higher priority host.
The nopreempt strategy does not move master
from the lower priority host to the higher priority
host.

Variable Name Default Description

11.2. CONFIGURING IP FAILOVER

As a cluster administrator, you can configure IP failover on an entire cluster, or on a subset of nodes, as
defined by the label selector. You can also configure multiple IP failover deployment configurations in
your cluster, where each one is independent of the others.

The IP failover deployment configuration ensures that a failover pod runs on each of the nodes
matching the constraints or the label used.

This pod runs Keepalived, which can monitor an endpoint and use Virtual Router Redundancy Protocol
(VRRP) to fail over the virtual IP (VIP) from one node to another if the first node cannot reach the
service or endpoint.

For production use, set a selector that selects at least two nodes, and set replicas equal to the number
of selected nodes.

Prerequisites

You are logged in to the cluster with a user with cluster-admin privileges.

You created a pull secret.

Procedure

CHAPTER 11. CONFIGURING IP FAILOVER

105



Procedure

1. Create an IP failover service account:

2. Update security context constraints (SCC) for hostNetwork:

3. Create a deployment YAML file to configure IP failover:

Example deployment YAML for IP failover configuration

$ oc create sa ipfailover

$ oc adm policy add-scc-to-user privileged -z ipfailover
$ oc adm policy add-scc-to-user hostnetwork -z ipfailover

apiVersion: apps/v1
kind: Deployment
metadata:
  name: ipfailover-keepalived 1
  labels:
    ipfailover: hello-openshift
spec:
  strategy:
    type: Recreate
  replicas: 2
  selector:
    matchLabels:
      ipfailover: hello-openshift
  template:
    metadata:
      labels:
        ipfailover: hello-openshift
    spec:
      serviceAccountName: ipfailover
      privileged: true
      hostNetwork: true
      nodeSelector:
        node-role.kubernetes.io/worker: ""
      containers:
      - name: openshift-ipfailover
        image: quay.io/openshift/origin-keepalived-ipfailover
        ports:
        - containerPort: 63000
          hostPort: 63000
        imagePullPolicy: IfNotPresent
        securityContext:
          privileged: true
        volumeMounts:
        - name: lib-modules
          mountPath: /lib/modules
          readOnly: true
        - name: host-slash
          mountPath: /host
          readOnly: true
          mountPropagation: HostToContainer
        - name: etc-sysconfig

OpenShift Container Platform 4.10 Networking

106



          mountPath: /etc/sysconfig
          readOnly: true
        - name: config-volume
          mountPath: /etc/keepalive
        env:
        - name: OPENSHIFT_HA_CONFIG_NAME
          value: "ipfailover"
        - name: OPENSHIFT_HA_VIRTUAL_IPS 2
          value: "1.1.1.1-2"
        - name: OPENSHIFT_HA_VIP_GROUPS 3
          value: "10"
        - name: OPENSHIFT_HA_NETWORK_INTERFACE 4
          value: "ens3" #The host interface to assign the VIPs
        - name: OPENSHIFT_HA_MONITOR_PORT 5
          value: "30060"
        - name: OPENSHIFT_HA_VRRP_ID_OFFSET 6
          value: "0"
        - name: OPENSHIFT_HA_REPLICA_COUNT 7
          value: "2" #Must match the number of replicas in the deployment
        - name: OPENSHIFT_HA_USE_UNICAST
          value: "false"
        #- name: OPENSHIFT_HA_UNICAST_PEERS
          #value: "10.0.148.40,10.0.160.234,10.0.199.110"
        - name: OPENSHIFT_HA_IPTABLES_CHAIN 8
          value: "INPUT"
        #- name: OPENSHIFT_HA_NOTIFY_SCRIPT 9
        #  value: /etc/keepalive/mynotifyscript.sh
        - name: OPENSHIFT_HA_CHECK_SCRIPT 10
          value: "/etc/keepalive/mycheckscript.sh"
        - name: OPENSHIFT_HA_PREEMPTION 11
          value: "preempt_delay 300"
        - name: OPENSHIFT_HA_CHECK_INTERVAL 12
          value: "2"
        livenessProbe:
          initialDelaySeconds: 10
          exec:
            command:
            - pgrep
            - keepalived
      volumes:
      - name: lib-modules
        hostPath:
          path: /lib/modules
      - name: host-slash
        hostPath:
          path: /
      - name: etc-sysconfig
        hostPath:
          path: /etc/sysconfig
      # config-volume contains the check script
      # created with `oc create configmap keepalived-checkscript --from-file=mycheckscript.sh`
      - configMap:
          defaultMode: 0755
          name: keepalived-checkscript

CHAPTER 11. CONFIGURING IP FAILOVER

107



1

2

3

4

5

6

7

8

9

10

11

12

13

The name of the IP failover deployment.

The list of IP address ranges to replicate. This must be provided. For example, 1.2.3.4-
6,1.2.3.9.

The number of groups to create for VRRP. If not set, a group is created for each virtual IP
range specified with the OPENSHIFT_HA_VIP_GROUPS variable.

The interface name that IP failover uses to send VRRP traffic. By default, eth0 is used.

The IP failover pod tries to open a TCP connection to this port on each VIP. If connection is
established, the service is considered to be running. If this port is set to 0, the test always
passes. The default value is 80.

The offset value used to set the virtual router IDs. Using different offset values allows
multiple IP failover configurations to exist within the same cluster. The default offset is 0,
and the allowed range is 0 through 255.

The number of replicas to create. This must match spec.replicas value in IP failover
deployment configuration. The default value is 2.

The name of the iptables chain to automatically add an iptables rule to allow the VRRP
traffic on. If the value is not set, an iptables rule is not added. If the chain does not exist, it
is not created, and Keepalived operates in unicast mode. The default is INPUT.

The full path name in the pod file system of a script that is run whenever the state
changes.

The full path name in the pod file system of a script that is periodically run to verify the
application is operating.

The strategy for handling a new higher priority host. The default value is preempt_delay 
300, which causes a Keepalived instance to take over a VIP after 5 minutes if a lower-
priority master is holding the VIP.

The period, in seconds, that the check script is run. The default value is 2.

Create the pull secret before creating the deployment, otherwise you will get an error when
creating the deployment.

11.3. ABOUT VIRTUAL IP ADDRESSES

Keepalived manages a set of virtual IP addresses (VIP). The administrator must make sure that all of
these addresses:

Are accessible on the configured hosts from outside the cluster.

Are not used for any other purpose within the cluster.

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported

        name: config-volume
      imagePullSecrets:
        - name: openshift-pull-secret 13

OpenShift Container Platform 4.10 Networking

108



Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node serves the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

11.4. CONFIGURING CHECK AND NOTIFY SCRIPTS

Keepalived monitors the health of the application by periodically running an optional user supplied check
script. For example, the script can test a web server by issuing a request and verifying the response.

When a check script is not provided, a simple default script is run that tests the TCP connection. This
default test is suppressed when the monitor port is 0.

Each IP failover pod manages a Keepalived daemon that manages one or more virtual IPs (VIP) on the
node where the pod is running. The Keepalived daemon keeps the state of each VIP for that node. A
particular VIP on a particular node may be in master, backup, or fault state.

When the check script for that VIP on the node that is in master state fails, the VIP on that node enters
the fault state, which triggers a renegotiation. During renegotiation, all VIPs on a node that are not in the
fault state participate in deciding which node takes over the VIP. Ultimately, the VIP enters the master
state on some node, and the VIP stays in the backup state on the other nodes.

When a node with a VIP in backup state fails, the VIP on that node enters the fault state. When the
check script passes again for a VIP on a node in the fault state, the VIP on that node exits the fault
state and negotiates to enter the master state. The VIP on that node may then enter either the master
or the backup state.

As cluster administrator, you can provide an optional notify script, which is called whenever the state
changes. Keepalived passes the following three parameters to the script:

$1 - group or instance

$2 - Name of the group or instance

$3 - The new state: master, backup, or fault

The check and notify scripts run in the IP failover pod and use the pod file system, not the host file
system. However, the IP failover pod makes the host file system available under the /hosts mount path.
When configuring a check or notify script, you must provide the full path to the script. The
recommended approach for providing the scripts is to use a config map.

The full path names of the check and notify scripts are added to the Keepalived configuration file, 
_/etc/keepalived/keepalived.conf, which is loaded every time Keepalived starts. The scripts can be
added to the pod with a config map as follows.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

CHAPTER 11. CONFIGURING IP FAILOVER

109



1. Create the desired script and create a config map to hold it. The script has no input arguments
and must return 0 for OK and 1 for fail.
The check script, mycheckscript.sh:

2. Create the config map:

3. Add the script to the pod. The defaultMode for the mounted config map files must able to run
by using oc commands or by editing the deployment configuration. A value of 0755, 493
decimal, is typical:

NOTE

The oc set env command is whitespace sensitive. There must be no whitespace
on either side of the = sign.

TIP

#!/bin/bash
    # Whatever tests are needed
    # E.g., send request and verify response
exit 0

$ oc create configmap mycustomcheck --from-file=mycheckscript.sh

$ oc set env deploy/ipfailover-keepalived \
    OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh

$ oc set volume deploy/ipfailover-keepalived --add --overwrite \
    --name=config-volume \
    --mount-path=/etc/keepalive \
    --source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

OpenShift Container Platform 4.10 Networking

110



1

2
3
4

TIP

You can alternatively edit the ipfailover-keepalived deployment configuration:

In the spec.container.env field, add the OPENSHIFT_HA_CHECK_SCRIPT environment
variable to point to the mounted script file.
Add the spec.container.volumeMounts field to create the mount point.
Add a new spec.volumes field to mention the config map.
This sets run permission on the files. When read back, it is displayed in decimal, 493.

Save the changes and exit the editor. This restarts ipfailover-keepalived.

11.5. CONFIGURING VRRP PREEMPTION

When a Virtual IP (VIP) on a node leaves the fault state by passing the check script, the VIP on the node
enters the backup state if it has lower priority than the VIP on the node that is currently in the master
state. However, if the VIP on the node that is leaving fault state has a higher priority, the preemption
strategy determines its role in the cluster.

The nopreempt strategy does not move master from the lower priority VIP on the host to the higher
priority VIP on the host. With preempt_delay 300, the default, Keepalived waits the specified 300
seconds and moves master to the higher priority VIP on the host.

Prerequisites

You installed the OpenShift CLI (oc).

Procedure

To specify preemption enter oc edit deploy ipfailover-keepalived to edit the router
deployment configuration:

$ oc edit deploy ipfailover-keepalived

    spec:
      containers:
      - env:
        - name: OPENSHIFT_HA_CHECK_SCRIPT  1
          value: /etc/keepalive/mycheckscript.sh
...
        volumeMounts: 2
        - mountPath: /etc/keepalive
          name: config-volume
      dnsPolicy: ClusterFirst
...
      volumes: 3
      - configMap:
          defaultMode: 0755 4
          name: customrouter
        name: config-volume
...

$ oc edit deploy ipfailover-keepalived

CHAPTER 11. CONFIGURING IP FAILOVER

111



1 Set the OPENSHIFT_HA_PREEMPTION value:

preempt_delay 300: Keepalived waits the specified 300 seconds and moves master
to the higher priority VIP on the host. This is the default value.

nopreempt: does not move master from the lower priority VIP on the host to the
higher priority VIP on the host.

11.6. ABOUT VRRP ID OFFSET

Each IP failover pod managed by the IP failover deployment configuration, 1 pod per node or replica,
runs a Keepalived daemon. As more IP failover deployment configurations are configured, more pods are
created and more daemons join into the common Virtual Router Redundancy Protocol (VRRP)
negotiation. This negotiation is done by all the Keepalived daemons and it determines which nodes
service which virtual IPs (VIP).

Internally, Keepalived assigns a unique vrrp-id to each VIP. The negotiation uses this set of vrrp-ids,
when a decision is made, the VIP corresponding to the winning vrrp-id is serviced on the winning node.

Therefore, for every VIP defined in the IP failover deployment configuration, the IP failover pod must
assign a corresponding vrrp-id. This is done by starting at OPENSHIFT_HA_VRRP_ID_OFFSET and
sequentially assigning the vrrp-ids to the list of VIPs. The vrrp-ids can have values in the range 1..255.

When there are multiple IP failover deployment configurations, you must specify 
OPENSHIFT_HA_VRRP_ID_OFFSET so that there is room to increase the number of VIPs in the
deployment configuration and none of the vrrp-id ranges overlap.

11.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES

IP failover management is limited to 254 groups of Virtual IP (VIP) addresses. By default OpenShift
Container Platform assigns one IP address to each group. You can use the 
OPENSHIFT_HA_VIP_GROUPS variable to change this so multiple IP addresses are in each group and
define the number of VIP groups available for each Virtual Router Redundancy Protocol (VRRP)
instance when configuring IP failover.

Grouping VIPs creates a wider range of allocation of VIPs per VRRP in the case of VRRP failover events,
and is useful when all hosts in the cluster have access to a service locally. For example, when a service is
being exposed with an ExternalIP.

NOTE

As a rule for failover, do not limit services, such as the router, to one specific host. Instead,
services should be replicated to each host so that in the case of IP failover, the services
do not have to be recreated on the new host.

NOTE

...
    spec:
      containers:
      - env:
        - name: OPENSHIFT_HA_PREEMPTION  1
          value: preempt_delay 300
...

OpenShift Container Platform 4.10 Networking

112



1

NOTE

If you are using OpenShift Container Platform health checks, the nature of IP failover and
groups means that all instances in the group are not checked. For that reason, the
Kubernetes health checks must be used to ensure that services are live.

Prerequisites

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To change the number of IP addresses assigned to each group, change the value for the 
OPENSHIFT_HA_VIP_GROUPS variable, for example:

Example Deployment YAML for IP failover configuration

If OPENSHIFT_HA_VIP_GROUPS is set to 3 in an environment with seven VIPs, it creates
three groups, assigning three VIPs to the first group, and two VIPs to the two remaining
groups.

NOTE

If the number of groups set by OPENSHIFT_HA_VIP_GROUPS is fewer than the number
of IP addresses set to fail over, the group contains more than one IP address, and all of
the addresses move as a single unit.

11.8. HIGH AVAILABILITY FOR INGRESSIP

In non-cloud clusters, IP failover and ingressIP to a service can be combined. The result is high
availability services for users that create services using ingressIP.

The approach is to specify an ingressIPNetworkCIDR range and then use the same range in creating
the ipfailover configuration.

Because IP failover can support up to a maximum of 255 VIPs for the entire cluster, the 
ingressIPNetworkCIDR needs to be /24 or smaller.

11.9. REMOVING IP FAILOVER

When IP failover is initially configured, the worker nodes in the cluster are modified with an iptables rule
that explicitly allows multicast packets on 224.0.0.18 for Keepalived. Because of the change to the
nodes, removing IP failover requires running a job to remove the iptables rule and removing the virtual
IP addresses used by Keepalived.

...
    spec:
        env:
        - name: OPENSHIFT_HA_VIP_GROUPS 1
          value: "3"
...

CHAPTER 11. CONFIGURING IP FAILOVER

113

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/


Procedure

1. Optional: Identify and delete any check and notify scripts that are stored as config maps:

a. Identify whether any pods for IP failover use a config map as a volume:

Example output

Namespace: default
Pod:       keepalived-worker-59df45db9c-2x9mn
Volumes that use config maps:
  volume:    config-volume
  configMap: mycustomcheck

b. If the preceding step provided the names of config maps that are used as volumes, delete
the config maps:

2. Identify an existing deployment for IP failover:

Example output

3. Delete the deployment:

4. Remove the ipfailover service account:

5. Run a job that removes the IP tables rule that was added when IP failover was initially
configured:

a. Create a file such as remove-ipfailover-job.yaml with contents that are similar to the
following example:

$ oc get pod -l ipfailover \
  -o jsonpath="\
{range .items[?(@.spec.volumes[*].configMap)]}
{'Namespace: '}{.metadata.namespace}
{'Pod:       '}{.metadata.name}
{'Volumes that use config maps:'}
{range .spec.volumes[?(@.configMap)]}  {'volume:    '}{.name}
  {'configMap: '}{.configMap.name}{'\n'}{end}
{end}"

$ oc delete configmap <configmap_name>

$ oc get deployment -l ipfailover

NAMESPACE   NAME         READY   UP-TO-DATE   AVAILABLE   AGE
default     ipfailover   2/2     2            2           105d

$ oc delete deployment <ipfailover_deployment_name>

$ oc delete sa ipfailover

apiVersion: batch/v1

OpenShift Container Platform 4.10 Networking

114



<.> Run the job for each node in your cluster that was configured for IP failover and replace
the hostname each time.

b. Run the job:

Example output

job.batch/remove-ipfailover-2h8dm created

Verification

Confirm that the job removed the initial configuration for IP failover.

Example output

kind: Job
metadata:
  generateName: remove-ipfailover-
  labels:
    app: remove-ipfailover
spec:
  template:
    metadata:
      name: remove-ipfailover
    spec:
      containers:
      - name: remove-ipfailover
        image: quay.io/openshift/origin-keepalived-ipfailover:4.10
        command: ["/var/lib/ipfailover/keepalived/remove-failover.sh"]
      nodeSelector:
        kubernetes.io/hostname: <host_name>  <.>
      restartPolicy: Never

$ oc create -f remove-ipfailover-job.yaml

$ oc logs job/remove-ipfailover-2h8dm

remove-failover.sh: OpenShift IP Failover service terminating.
  - Removing ip_vs module ...
  - Cleaning up ...
  - Releasing VIPs  (interface eth0) ...

CHAPTER 11. CONFIGURING IP FAILOVER

115



CHAPTER 12. USING THE STREAM CONTROL TRANSMISSION
PROTOCOL (SCTP) ON A BARE METAL CLUSTER

As a cluster administrator, you can use the Stream Control Transmission Protocol (SCTP) on a cluster.

12.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) ON OPENSHIFT CONTAINER PLATFORM

As a cluster administrator, you can enable SCTP on the hosts in the cluster. On Red Hat Enterprise Linux
CoreOS (RHCOS), the SCTP module is disabled by default.

SCTP is a reliable message based protocol that runs on top of an IP network.

When enabled, you can use SCTP as a protocol with pods, services, and network policy. A Service object
must be defined with the type parameter set to either the ClusterIP or NodePort value.

12.1.1. Example configurations using SCTP protocol

You can configure a pod or service to use SCTP by setting the protocol parameter to the SCTP value in
the pod or service object.

In the following example, a pod is configured to use SCTP:

In the following example, a service is configured to use SCTP:

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port

apiVersion: v1
kind: Pod
metadata:
  namespace: project1
  name: example-pod
spec:
  containers:
    - name: example-pod
...
      ports:
        - containerPort: 30100
          name: sctpserver
          protocol: SCTP

apiVersion: v1
kind: Service
metadata:
  namespace: project1
  name: sctpserver
spec:
...
  ports:
    - name: sctpserver
      protocol: SCTP
      port: 30100
      targetPort: 30100
  type: ClusterIP

OpenShift Container Platform 4.10 Networking

116



In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port
80 from any pods with a specific label:

12.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP)

As a cluster administrator, you can load and enable the blacklisted SCTP kernel module on worker nodes
in your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file named load-sctp-module.yaml that contains the following YAML definition:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-sctp-on-http
spec:
  podSelector:
    matchLabels:
      role: web
  ingress:
  - ports:
    - protocol: SCTP
      port: 80

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  name: load-sctp-module
  labels:
    machineconfiguration.openshift.io/role: worker
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - path: /etc/modprobe.d/sctp-blacklist.conf
          mode: 0644
          overwrite: true
          contents:
            source: data:,
        - path: /etc/modules-load.d/sctp-load.conf
          mode: 0644
          overwrite: true
          contents:
            source: data:,sctp

CHAPTER 12. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

117



2. To create the MachineConfig object, enter the following command:

3. Optional: To watch the status of the nodes while the MachineConfig Operator applies the
configuration change, enter the following command. When the status of a node transitions to 
Ready, the configuration update is applied.

12.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) IS ENABLED

You can verify that SCTP is working on a cluster by creating a pod with an application that listens for
SCTP traffic, associating it with a service, and then connecting to the exposed service.

Prerequisites

Access to the internet from the cluster to install the nc package.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a pod starts an SCTP listener:

a. Create a file named sctp-server.yaml that defines a pod with the following YAML:

b. Create the pod by entering the following command:

2. Create a service for the SCTP listener pod.

$ oc create -f load-sctp-module.yaml

$ oc get nodes

apiVersion: v1
kind: Pod
metadata:
  name: sctpserver
  labels:
    app: sctpserver
spec:
  containers:
    - name: sctpserver
      image: registry.access.redhat.com/ubi8/ubi
      command: ["/bin/sh", "-c"]
      args:
        ["dnf install -y nc && sleep inf"]
      ports:
        - containerPort: 30102
          name: sctpserver
          protocol: SCTP

$ oc create -f sctp-server.yaml

OpenShift Container Platform 4.10 Networking

118



a. Create a file named sctp-service.yaml that defines a service with the following YAML:

b. To create the service, enter the following command:

3. Create a pod for the SCTP client.

a. Create a file named sctp-client.yaml with the following YAML:

b. To create the Pod object, enter the following command:

4. Run an SCTP listener on the server.

a. To connect to the server pod, enter the following command:

b. To start the SCTP listener, enter the following command:

apiVersion: v1
kind: Service
metadata:
  name: sctpservice
  labels:
    app: sctpserver
spec:
  type: NodePort
  selector:
    app: sctpserver
  ports:
    - name: sctpserver
      protocol: SCTP
      port: 30102
      targetPort: 30102

$ oc create -f sctp-service.yaml

apiVersion: v1
kind: Pod
metadata:
  name: sctpclient
  labels:
    app: sctpclient
spec:
  containers:
    - name: sctpclient
      image: registry.access.redhat.com/ubi8/ubi
      command: ["/bin/sh", "-c"]
      args:
        ["dnf install -y nc && sleep inf"]

$ oc apply -f sctp-client.yaml

$ oc rsh sctpserver

$ nc -l 30102 --sctp

CHAPTER 12. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

119



5. Connect to the SCTP listener on the server.

a. Open a new terminal window or tab in your terminal program.

b. Obtain the IP address of the sctpservice service. Enter the following command:

c. To connect to the client pod, enter the following command:

d. To start the SCTP client, enter the following command. Replace <cluster_IP> with the
cluster IP address of the sctpservice service.

$ oc get services sctpservice -o go-template='{{.spec.clusterIP}}{{"\n"}}'

$ oc rsh sctpclient

# nc <cluster_IP> 30102 --sctp

OpenShift Container Platform 4.10 Networking

120



CHAPTER 13. USING PTP HARDWARE

IMPORTANT

Precision Time Protocol (PTP) hardware with single NIC configured as boundary clock is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

13.1. ABOUT PTP HARDWARE

You can configure linuxptp services and use PTP-capable hardware in OpenShift Container Platform
cluster nodes.

NOTE

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-
metal infrastructure.

You can use the OpenShift Container Platform console or OpenShift CLI (oc) to install PTP by
deploying the PTP Operator. The PTP Operator creates and manages the linuxptp services and
provides the following features:

Discovery of the PTP-capable devices in the cluster.

Management of the configuration of linuxptp services.

Notification of PTP clock events that negatively affect the performance and reliability of your
application with the PTP Operator cloud-event-proxy sidecar.

13.2. ABOUT PTP

Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than Network
Time Protocol (NTP).

The linuxptp package includes the ptp4l and phc2sys programs for clock synchronization. ptp4l
implements the PTP boundary clock and ordinary clock. ptp4l synchronizes the PTP hardware clock to
the source clock with hardware time stamping and synchronizes the system clock to the source clock
with software time stamping. phc2sys is used for hardware time stamping to synchronize the system
clock to the PTP hardware clock on the network interface controller (NIC).

13.2.1. Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The clocks
synchronized by PTP are organized in a source-destination hierarchy. The hierarchy is created and
updated automatically by the best master clock (BMC) algorithm, which runs on every clock. Destination

CHAPTER 13. USING PTP HARDWARE

121

https://access.redhat.com/support/offerings/techpreview/


clocks are synchronized to source clocks, and destination clocks can themselves be the source for other
downstream clocks. The following types of clocks can be included in configurations:

Grandmaster clock

The grandmaster clock provides standard time information to other clocks across the network and
ensures accurate and stable synchronisation. It writes time stamps and responds to time requests
from other clocks. Grandmaster clocks can be synchronized to a Global Positioning System (GPS)
time source.

Ordinary clock

The ordinary clock has a single port connection that can play the role of source or destination clock,
depending on its position in the network. The ordinary clock can read and write time stamps.

Boundary clock

The boundary clock has ports in two or more communication paths and can be a source and a
destination to other destination clocks at the same time. The boundary clock works as a destination
clock upstream. The destination clock receives the timing message, adjusts for delay, and then
creates a new source time signal to pass down the network. The boundary clock produces a new
timing packet that is still correctly synced with the source clock and can reduce the number of
connected devices reporting directly to the source clock.

13.2.2. Advantages of PTP over NTP

One of the main advantages that PTP has over NTP is the hardware support present in various network
interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for
delays in message transfer and improves the accuracy of time synchronization. To achieve the best
possible accuracy, it is recommended that all networking components between PTP clocks are PTP
hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can time stamp the PTP packets at the
exact moment they are sent and received. Compare this to software-based PTP, which requires
additional processing of the PTP packets by the operating system.

IMPORTANT

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable
the chrony time service (chronyd) using a MachineConfig custom resource. For more
information, see Disabling chrony time service .

13.3. INSTALLING THE PTP OPERATOR USING THE CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the PTP Operator.

OpenShift Container Platform 4.10 Networking

122

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/post-installation_configuration/#cnf-disable-chronyd_post-install-machine-configuration-tasks


a. Save the following YAML in the ptp-namespace.yaml file:

b. Create the Namespace CR:

2. Create an Operator group for the PTP Operator.

a. Save the following YAML in the ptp-operatorgroup.yaml file:

b. Create the OperatorGroup CR:

3. Subscribe to the PTP Operator.

a. Save the following YAML in the ptp-sub.yaml file:

b. Create the Subscription CR:

4. To verify that the Operator is installed, enter the following command:

apiVersion: v1
kind: Namespace
metadata:
  name: openshift-ptp
  annotations:
    workload.openshift.io/allowed: management
  labels:
    name: openshift-ptp
    openshift.io/cluster-monitoring: "true"

$ oc create -f ptp-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: ptp-operators
  namespace: openshift-ptp
spec:
  targetNamespaces:
  - openshift-ptp

$ oc create -f ptp-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: ptp-operator-subscription
  namespace: openshift-ptp
spec:
  channel: "stable"
  name: ptp-operator
  source: redhat-operators
  sourceNamespace: openshift-marketplace

$ oc create -f ptp-sub.yaml

CHAPTER 13. USING PTP HARDWARE

123



Example output

13.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE

As a cluster administrator, you can install the PTP Operator using the web console.

NOTE

You have to create the namespace and Operator group as mentioned in the previous
section.

Procedure

1. Install the PTP Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Install Operator page, under A specific namespace on the cluster select
openshift-ptp. Then, click Install.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-ptp
project.

13.5. CONFIGURING PTP DEVICES

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform.

$ oc get csv -n openshift-ptp -o custom-
columns=Name:.metadata.name,Phase:.status.phase

Name                         Phase
4.10.0-202201261535          Succeeded

OpenShift Container Platform 4.10 Networking

124



1

2

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node.
It creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a
compatible PTP-capable network device.

13.5.1. Discovering PTP capable network devices in your cluster

To return a complete list of PTP capable network devices in your cluster, run the following
command:

Example output

The value for the name parameter is the same as the name of the parent node.

The devices collection includes a list of the PTP capable devices that the PTP Operator
discovers for the node.

13.5.2. Configuring linuxptp services as a grandmaster clock

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock by creating a 
PtpConfig custom resource (CR) that configures the host NIC.

The ts2phc utility allows you to synchronize the system clock with the PTP grandmaster clock so that
the node can stream precision clock signal to downstream PTP ordinary clocks and boundary clocks.

NOTE

$ oc get NodePtpDevice -n openshift-ptp -o yaml

apiVersion: v1
items:
- apiVersion: ptp.openshift.io/v1
  kind: NodePtpDevice
  metadata:
    creationTimestamp: "2022-01-27T15:16:28Z"
    generation: 1
    name: dev-worker-0 1
    namespace: openshift-ptp
    resourceVersion: "6538103"
    uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
  spec: {}
  status:
    devices: 2
    - name: eno1
    - name: eno2
    - name: eno3
    - name: eno4
    - name: enp5s0f0
    - name: enp5s0f1
...

CHAPTER 13. USING PTP HARDWARE

125



NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the grandmaster clock for your particular hardware and environment. This example CR
does not configure PTP fast events. To configure PTP fast events, set appropriate
values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used
only when events are enabled. See "Configuring the PTP fast event notifications
publisher" for more information.

Prerequisites

Install an Intel Westport Channel network interface in the bare-metal cluster host.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the PtpConfig resource. For example:

a. Save the following YAML in the grandmaster-clock-ptp-config.yaml file:

Example PTP grandmaster clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
  name: grandmaster-clock
  namespace: openshift-ptp
  annotations: {}
spec:
  profile:
    - name: grandmaster-clock
      # The interface name is hardware-specific
      interface: $interface
      ptp4lOpts: "-2"
      phc2sysOpts: "-a -r -r -n 24"
      ptpSchedulingPolicy: SCHED_FIFO
      ptpSchedulingPriority: 10
      ptpSettings:
        logReduce: "true"
      ptp4lConf: |
        [global]
        #
        # Default Data Set
        #
        twoStepFlag 1
        slaveOnly 0
        priority1 128
        priority2 128
        domainNumber 24
        #utc_offset 37
        clockClass 255

OpenShift Container Platform 4.10 Networking

126



        clockAccuracy 0xFE
        offsetScaledLogVariance 0xFFFF
        free_running 0
        freq_est_interval 1
        dscp_event 0
        dscp_general 0
        dataset_comparison G.8275.x
        G.8275.defaultDS.localPriority 128
        #
        # Port Data Set
        #
        logAnnounceInterval -3
        logSyncInterval -4
        logMinDelayReqInterval -4
        logMinPdelayReqInterval -4
        announceReceiptTimeout 3
        syncReceiptTimeout 0
        delayAsymmetry 0
        fault_reset_interval -4
        neighborPropDelayThresh 20000000
        masterOnly 0
        G.8275.portDS.localPriority 128
        #
        # Run time options
        #
        assume_two_step 0
        logging_level 6
        path_trace_enabled 0
        follow_up_info 0
        hybrid_e2e 0
        inhibit_multicast_service 0
        net_sync_monitor 0
        tc_spanning_tree 0
        tx_timestamp_timeout 50
        unicast_listen 0
        unicast_master_table 0
        unicast_req_duration 3600
        use_syslog 1
        verbose 0
        summary_interval 0
        kernel_leap 1
        check_fup_sync 0
        clock_class_threshold 7
        #
        # Servo Options
        #
        pi_proportional_const 0.0
        pi_integral_const 0.0
        pi_proportional_scale 0.0
        pi_proportional_exponent -0.3
        pi_proportional_norm_max 0.7
        pi_integral_scale 0.0
        pi_integral_exponent 0.4
        pi_integral_norm_max 0.3
        step_threshold 2.0
        first_step_threshold 0.00002

CHAPTER 13. USING PTP HARDWARE

127



b. Create the CR by running the following command:

Verification

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

Example output

        max_frequency 900000000
        clock_servo pi
        sanity_freq_limit 200000000
        ntpshm_segment 0
        #
        # Transport options
        #
        transportSpecific 0x0
        ptp_dst_mac 01:1B:19:00:00:00
        p2p_dst_mac 01:80:C2:00:00:0E
        udp_ttl 1
        udp6_scope 0x0E
        uds_address /var/run/ptp4l
        #
        # Default interface options
        #
        clock_type OC
        network_transport L2
        delay_mechanism E2E
        time_stamping hardware
        tsproc_mode filter
        delay_filter moving_median
        delay_filter_length 10
        egressLatency 0
        ingressLatency 0
        boundary_clock_jbod 0
        #
        # Clock description
        #
        productDescription ;;
        revisionData ;;
        manufacturerIdentity 00:00:00
        userDescription ;
        timeSource 0xA0
  recommend:
    - profile: grandmaster-clock
      priority: 4
      match:
        - nodeLabel: "node-role.kubernetes.io/$mcp"

$ oc create -f grandmaster-clock-ptp-config.yaml

$ oc get pods -n openshift-ptp -o wide

NAME                          READY   STATUS    RESTARTS   AGE     IP             NODE

OpenShift Container Platform 4.10 Networking

128



b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

13.5.3. Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom
resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
an ordinary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for 
ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is required only
when events are enabled. See "Configuring the PTP fast event notifications publisher"
for more information.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-
config.yaml file.

Example PTP ordinary clock configuration

linuxptp-daemon-74m2g         3/3     Running   3          4d15h   10.16.230.7    compute-
1.example.com
ptp-operator-5f4f48d7c-x7zkf  1/1     Running   1          4d15h   10.128.1.145   compute-
1.example.com

$ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container

ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns
ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr 
0 src 1676577330.901342528 diff -1
ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset         -1 s2 freq      -1
ts2phc[94980.441]: [ts2phc.0.config] nmea sentence: 
GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset       943 s2 freq  -
89604 delay    504
phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset      1000 s2 freq  -
89264 delay    474

CHAPTER 13. USING PTP HARDWARE

129



apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
  name: ordinary-clock
  namespace: openshift-ptp
  annotations: {}
spec:
  profile:
    - name: ordinary-clock
      # The interface name is hardware-specific
      interface: $interface
      ptp4lOpts: "-2 -s"
      phc2sysOpts: "-a -r -n 24"
      ptpSchedulingPolicy: SCHED_FIFO
      ptpSchedulingPriority: 10
      ptpSettings:
        logReduce: "true"
      ptp4lConf: |
        [global]
        #
        # Default Data Set
        #
        twoStepFlag 1
        slaveOnly 1
        priority1 128
        priority2 128
        domainNumber 24
        #utc_offset 37
        clockClass 255
        clockAccuracy 0xFE
        offsetScaledLogVariance 0xFFFF
        free_running 0
        freq_est_interval 1
        dscp_event 0
        dscp_general 0
        dataset_comparison G.8275.x
        G.8275.defaultDS.localPriority 128
        #
        # Port Data Set
        #
        logAnnounceInterval -3
        logSyncInterval -4
        logMinDelayReqInterval -4
        logMinPdelayReqInterval -4
        announceReceiptTimeout 3
        syncReceiptTimeout 0
        delayAsymmetry 0
        fault_reset_interval -4
        neighborPropDelayThresh 20000000
        masterOnly 0
        G.8275.portDS.localPriority 128
        #
        # Run time options
        #
        assume_two_step 0
        logging_level 6

OpenShift Container Platform 4.10 Networking

130



        path_trace_enabled 0
        follow_up_info 0
        hybrid_e2e 0
        inhibit_multicast_service 0
        net_sync_monitor 0
        tc_spanning_tree 0
        tx_timestamp_timeout 50
        unicast_listen 0
        unicast_master_table 0
        unicast_req_duration 3600
        use_syslog 1
        verbose 0
        summary_interval 0
        kernel_leap 1
        check_fup_sync 0
        clock_class_threshold 7
        #
        # Servo Options
        #
        pi_proportional_const 0.0
        pi_integral_const 0.0
        pi_proportional_scale 0.0
        pi_proportional_exponent -0.3
        pi_proportional_norm_max 0.7
        pi_integral_scale 0.0
        pi_integral_exponent 0.4
        pi_integral_norm_max 0.3
        step_threshold 2.0
        first_step_threshold 0.00002
        max_frequency 900000000
        clock_servo pi
        sanity_freq_limit 200000000
        ntpshm_segment 0
        #
        # Transport options
        #
        transportSpecific 0x0
        ptp_dst_mac 01:1B:19:00:00:00
        p2p_dst_mac 01:80:C2:00:00:0E
        udp_ttl 1
        udp6_scope 0x0E
        uds_address /var/run/ptp4l
        #
        # Default interface options
        #
        clock_type OC
        network_transport L2
        delay_mechanism E2E
        time_stamping hardware
        tsproc_mode filter
        delay_filter moving_median
        delay_filter_length 10
        egressLatency 0
        ingressLatency 0
        boundary_clock_jbod 0
        #

CHAPTER 13. USING PTP HARDWARE

131



Table 13.1. PTP ordinary clock CR configuration options

Custom resource
field

Description

name The name of the PtpConfig CR.

profile Specify an array of one or more profile objects. Each profile must be
uniquely named.

interface Specify the network interface to be used by the ptp4l service, for example 
ens787f1.

ptp4lOpts Specify system config options for the ptp4l service, for example -2 to
select the IEEE 802.3 network transport. The options should not include
the network interface name -i <interface> and service config file -f 
/etc/ptp4l.conf because the network interface name and the service
config file are automatically appended. Append --summary_interval -4
to use PTP fast events with this interface.

phc2sysOpts Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service. For Intel
Columbiaville 800 Series NICs, set phc2sysOpts options to -a -r -m -n 
24 -N 8 -R 16. -m prints messages to stdout. The linuxptp-daemon 
DaemonSet parses the logs and generates Prometheus metrics.

ptp4lConf Specify a string that contains the configuration to replace the default 
/etc/ptp4l.conf file. To use the default configuration, leave the field
empty.

tx_timestamp_time
out

For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 
50.

boundary_clock_jb
od

For Intel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.

ptpSchedulingPoli
cy

Scheduling policy for ptp4l and phc2sys processes. Default value is 
SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

        # Clock description
        #
        productDescription ;;
        revisionData ;;
        manufacturerIdentity 00:00:00
        userDescription ;
        timeSource 0xA0
  recommend:
    - profile: ordinary-clock
      priority: 4
      match:
        - nodeLabel: "node-role.kubernetes.io/$mcp"

OpenShift Container Platform 4.10 Networking

132



ptpSchedulingPrio
rity

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys
processes when ptpSchedulingPolicy is set to SCHED_FIFO. The 
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

ptpClockThreshold Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

recommend Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

.recommend.profil
e

Specify the .recommend.profile object name defined in the profile
section.

.recommend.priorit
y

Set .recommend.priority to 0 for ordinary clock.

.recommend.matc
h

Specify .recommend.match rules with nodeLabel or nodeName.

.recommend.matc
h.nodeLabel

Update nodeLabel with the key of node.Labels from the node object
by using the oc get nodes --show-labels command. For example: 
node-role.kubernetes.io/worker.

.recommend.matc
h.nodeLabel

Update nodeName with value of node.Name from the node object by
using the oc get nodes command. For example: compute-
0.example.com.

Custom resource
field

Description

2. Create the PtpConfig CR by running the following command:

Verification

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

$ oc create -f ordinary-clock-ptp-config.yaml

CHAPTER 13. USING PTP HARDWARE

133



Example output

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

Additional resources

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

For more information about configuring PTP fast events, see Configuring the PTP fast event
notifications publisher.

13.5.4. Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig
custom resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the boundary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for 
ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used only when
events are enabled. See "Configuring the PTP fast event notifications publisher" for
more information.

Prerequisites

$ oc get pods -n openshift-ptp -o wide

NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-
0.example.com
linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-
1.example.com
ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-
plane-1.example.com

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

OpenShift Container Platform 4.10 Networking

134

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#cnf-configuring-fifo-priority-scheduling-for-ptp_using-ptp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#cnf-configuring-the-ptp-fast-event-publisher_using-ptp


Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-
config.yaml file.

Example PTP boundary clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
  name: boundary-clock
  namespace: openshift-ptp
  annotations: {}
spec:
  profile:
    - name: boundary-clock
      ptp4lOpts: "-2"
      phc2sysOpts: "-a -r -n 24"
      ptpSchedulingPolicy: SCHED_FIFO
      ptpSchedulingPriority: 10
      ptpSettings:
        logReduce: "true"
      ptp4lConf: |
        # The interface name is hardware-specific
        [$iface_slave]
        masterOnly 0
        [$iface_master_1]
        masterOnly 1
        [$iface_master_2]
        masterOnly 1
        [$iface_master_3]
        masterOnly 1
        [global]
        #
        # Default Data Set
        #
        twoStepFlag 1
        slaveOnly 0
        priority1 128
        priority2 128
        domainNumber 24
        #utc_offset 37
        clockClass 248
        clockAccuracy 0xFE
        offsetScaledLogVariance 0xFFFF
        free_running 0
        freq_est_interval 1
        dscp_event 0
        dscp_general 0
        dataset_comparison G.8275.x

CHAPTER 13. USING PTP HARDWARE

135



        G.8275.defaultDS.localPriority 128
        #
        # Port Data Set
        #
        logAnnounceInterval -3
        logSyncInterval -4
        logMinDelayReqInterval -4
        logMinPdelayReqInterval -4
        announceReceiptTimeout 3
        syncReceiptTimeout 0
        delayAsymmetry 0
        fault_reset_interval -4
        neighborPropDelayThresh 20000000
        masterOnly 0
        G.8275.portDS.localPriority 128
        #
        # Run time options
        #
        assume_two_step 0
        logging_level 6
        path_trace_enabled 0
        follow_up_info 0
        hybrid_e2e 0
        inhibit_multicast_service 0
        net_sync_monitor 0
        tc_spanning_tree 0
        tx_timestamp_timeout 50
        unicast_listen 0
        unicast_master_table 0
        unicast_req_duration 3600
        use_syslog 1
        verbose 0
        summary_interval 0
        kernel_leap 1
        check_fup_sync 0
        clock_class_threshold 135
        #
        # Servo Options
        #
        pi_proportional_const 0.0
        pi_integral_const 0.0
        pi_proportional_scale 0.0
        pi_proportional_exponent -0.3
        pi_proportional_norm_max 0.7
        pi_integral_scale 0.0
        pi_integral_exponent 0.4
        pi_integral_norm_max 0.3
        step_threshold 2.0
        first_step_threshold 0.00002
        max_frequency 900000000
        clock_servo pi
        sanity_freq_limit 200000000
        ntpshm_segment 0
        #
        # Transport options
        #

OpenShift Container Platform 4.10 Networking

136



Table 13.2. PTP boundary clock CR configuration options

Custom resource
field

Description

name The name of the PtpConfig CR.

profile Specify an array of one or more profile objects.

name Specify the name of a profile object which uniquely identifies a profile
object.

ptp4lOpts Specify system config options for the ptp4l service. The options should
not include the network interface name -i <interface> and service config
file -f /etc/ptp4l.conf because the network interface name and the
service config file are automatically appended.

ptp4lConf Specify the required configuration to start ptp4l as boundary clock. For
example, ens1f0 synchronizes from a grandmaster clock and ens1f3
synchronizes connected devices.

        transportSpecific 0x0
        ptp_dst_mac 01:1B:19:00:00:00
        p2p_dst_mac 01:80:C2:00:00:0E
        udp_ttl 1
        udp6_scope 0x0E
        uds_address /var/run/ptp4l
        #
        # Default interface options
        #
        clock_type BC
        network_transport L2
        delay_mechanism E2E
        time_stamping hardware
        tsproc_mode filter
        delay_filter moving_median
        delay_filter_length 10
        egressLatency 0
        ingressLatency 0
        boundary_clock_jbod 0
        #
        # Clock description
        #
        productDescription ;;
        revisionData ;;
        manufacturerIdentity 00:00:00
        userDescription ;
        timeSource 0xA0
  recommend:
    - profile: boundary-clock
      priority: 4
      match:
        - nodeLabel: "node-role.kubernetes.io/$mcp"

CHAPTER 13. USING PTP HARDWARE

137



<interface_1> The interface that receives the synchronization clock.

<interface_2> The interface that sends the synchronization clock.

tx_timestamp_time
out

For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to 
50.

boundary_clock_jb
od

For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod
is set to 0. For Intel Fortville X710 Series NICs, ensure 
boundary_clock_jbod is set to 1.

phc2sysOpts Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service.

ptpSchedulingPoli
cy

Scheduling policy for ptp4l and phc2sys processes. Default value is 
SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

ptpSchedulingPrio
rity

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys
processes when ptpSchedulingPolicy is set to SCHED_FIFO. The 
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

ptpClockThreshold Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

recommend Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

.recommend.profil
e

Specify the .recommend.profile object name defined in the profile
section.

.recommend.priorit
y

Specify the priority with an integer value between 0 and 99. A larger
number gets lower priority, so a priority of 99 is lower than a priority of 10.
If a node can be matched with multiple profiles according to rules defined
in the match field, the profile with the higher priority is applied to that
node.

Custom resource
field

Description

OpenShift Container Platform 4.10 Networking

138



.recommend.matc
h

Specify .recommend.match rules with nodeLabel or nodeName.

.recommend.matc
h.nodeLabel

Update nodeLabel with the key of node.Labels from the node object
by using the oc get nodes --show-labels command. For example: 
node-role.kubernetes.io/worker.

.recommend.matc
h.nodeLabel

Update nodeName with value of node.Name from the node object by
using the oc get nodes command. For example: compute-
0.example.com.

Custom resource
field

Description

2. Create the CR by running the following command:

Verification

1. Check that the PtpConfig profile is applied to the node.

a. Get the list of pods in the openshift-ptp namespace by running the following command:

Example output

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

Example output

$ oc create -f boundary-clock-ptp-config.yaml

$ oc get pods -n openshift-ptp -o wide

NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-
0.example.com
linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-
1.example.com
ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-
plane-1.example.com

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface:

CHAPTER 13. USING PTP HARDWARE

139



Additional resources

For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

For more information about configuring PTP fast events, see Configuring the PTP fast event
notifications publisher.

13.5.5. Intel Columbiaville E800 series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration in
order to use Intel Columbiaville E800 series NICs as ordinary clocks. Make the changes in a PtpConfig
custom resource (CR) that you apply to the cluster.

Table 13.3. Recommended PTP settings for Intel Columbiaville NIC

PTP configuration Recommended setting

phc2sysOpts -a -r -m -n 24 -N 8 -R 16

tx_timestamp_timeout 50

boundary_clock_jbod 0

NOTE

For phc2sysOpts, -m prints messages to stdout. The linuxptp-daemon DaemonSet
parses the logs and generates Prometheus metrics.

Additional resources

For a complete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock .

13.5.6. Configuring FIFO priority scheduling for PTP hardware

In telco or other deployment configurations that require low latency performance, PTP daemon threads
run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP
threads run with the SCHED_OTHER policy. Under high load, these threads might not get the
scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp
services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR,
then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the 
ptpSchedulingPriority field of the PtpConfig CR.

NOTE

I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

OpenShift Container Platform 4.10 Networking

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#cnf-configuring-fifo-priority-scheduling-for-ptp_using-ptp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#cnf-configuring-the-ptp-fast-event-publisher_using-ptp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-linuxptp-services-as-ordinary-clock_using-ptp


1

2

NOTE

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing
latency errors.

Procedure

1. Edit the PtpConfig CR profile:

2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that
support FIFO scheduling.

Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and 
phc2sys processes.

3. Save and exit to apply the changes to the PtpConfig CR.

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

Example output

2. Check that the ptp4l process is running with the updated chrt FIFO priority:

$ oc edit PtpConfig -n openshift-ptp

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
  name: <ptp_config_name>
  namespace: openshift-ptp
...
spec:
  profile:
  - name: "profile1"
...
    ptpSchedulingPolicy: SCHED_FIFO 1
    ptpSchedulingPriority: 10 2

$ oc get pods -n openshift-ptp -o wide

NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-
0.example.com
linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-
1.example.com
ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-
1.example.com

CHAPTER 13. USING PTP HARDWARE

141



Example output

13.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

1. Check the Operator and operands are successfully deployed in the cluster for the configured
nodes.

Example output

NOTE

When the PTP fast event bus is enabled, the number of ready linuxptp-daemon
pods is 3/3. If the PTP fast event bus is not enabled, 2/2 is displayed.

2. Check that supported hardware is found in the cluster.

Example output

$ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt

I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f 
/var/run/ptp4l.0.config -2  --summary_interval -4 -m

$ oc get pods -n openshift-ptp -o wide

NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
linuxptp-daemon-lmvgn           3/3     Running   0          4d17h   10.1.196.24   compute-
0.example.com
linuxptp-daemon-qhfg7           3/3     Running   0          4d17h   10.1.196.25   compute-
1.example.com
ptp-operator-6b8dcbf7f4-zndk7   1/1     Running   0          5d7h    10.129.0.61   control-plane-
1.example.com

$ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

NAME                                  AGE
control-plane-0.example.com           10d
control-plane-1.example.com           10d

OpenShift Container Platform 4.10 Networking

142



3. Check the available PTP network interfaces for a node:

where:

<node_name>

Specifies the node you want to query, for example, compute-0.example.com.

Example output

4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the 
linuxptp-daemon pod for the corresponding node.

a. Get the name of the linuxptp-daemon pod and corresponding node you want to
troubleshoot by running the following command:

Example output

b. Remote shell into the required linuxptp-daemon container:

compute-0.example.com                 10d
compute-1.example.com                 10d
compute-2.example.com                 10d

$ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
  creationTimestamp: "2021-09-14T16:52:33Z"
  generation: 1
  name: compute-0.example.com
  namespace: openshift-ptp
  resourceVersion: "177400"
  uid: 30413db0-4d8d-46da-9bef-737bacd548fd
spec: {}
status:
  devices:
  - name: eno1
  - name: eno2
  - name: eno3
  - name: eno4
  - name: enp5s0f0
  - name: enp5s0f1

$ oc get pods -n openshift-ptp -o wide

NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
linuxptp-daemon-lmvgn           3/3     Running   0          4d17h   10.1.196.24   compute-
0.example.com
linuxptp-daemon-qhfg7           3/3     Running   0          4d17h   10.1.196.25   compute-
1.example.com
ptp-operator-6b8dcbf7f4-zndk7   1/1     Running   0          5d7h    10.129.0.61   control-
plane-1.example.com

CHAPTER 13. USING PTP HARDWARE

143



where:

<linux_daemon_container>

is the container you want to diagnose, for example linuxptp-daemon-lmvgn.

c. In the remote shell connection to the linuxptp-daemon container, use the PTP
Management Client (pmc) tool to diagnose the network interface. Run the following pmc
command to check the sync status of the PTP device, for example ptp4l.

Example output when the node is successfully synced to the primary clock

13.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK

IMPORTANT

PTP events with ordinary clock is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

13.7.1. About PTP and clock synchronization error events

Cloud native applications such as virtual RAN require access to notifications about hardware timing
events that are critical to the functioning of the overall network. Fast event notifications are early
warning signals about impending and real-time Precision Time Protocol (PTP) clock synchronization
events. PTP clock synchronization errors can negatively affect the performance and reliability of your
low latency application, for example, a vRAN application running in a distributed unit (DU).

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the
radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node
in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster
nodes to communicate PTP clock sync status to the vRAN application running in the DU.

$ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

# pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

sending: GET PORT_DATA_SET
    40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
        portIdentity            40a6b7.fffe.166ef0-1
        portState               SLAVE
        logMinDelayReqInterval  -4
        peerMeanPathDelay       0
        logAnnounceInterval     -3
        announceReceiptTimeout  3
        logSyncInterval         -4
        delayMechanism          1
        logMinPdelayReqInterval -4
        versionNumber           2

OpenShift Container Platform 4.10 Networking

144

https://access.redhat.com/support/offerings/techpreview/


Event notifications are available to RAN applications running on the same DU node. A publish/subscribe
REST API passes events notifications to the messaging bus. Publish/subscribe messaging, or pub/sub
messaging, is an asynchronous service to service communication architecture where any message
published to a topic is immediately received by all the subscribers to the topic.

Fast event notifications are generated by the PTP Operator in OpenShift Container Platform for every
PTP-capable network interface. The events are made available using a cloud-event-proxy sidecar
container over an Advanced Message Queuing Protocol (AMQP) message bus. The AMQP message bus
is provided by the AMQ Interconnect Operator.

NOTE

PTP fast event notifications are available for network interfaces configured to use PTP
ordinary clocks or PTP boundary clocks.

13.7.2. About the PTP fast event notifications framework

You can subscribe distributed unit (DU) applications to Precision Time Protocol (PTP) fast events
notifications that are generated by OpenShift Container Platform with the PTP Operator and cloud-
event-proxy sidecar container. You enable the cloud-event-proxy sidecar container by setting the 
enableEventPublisher field to true in the ptpOperatorConfig custom resource (CR) and specifying an
Advanced Message Queuing Protocol (AMQP) transportHost address. PTP fast events use an AMQP
event notification bus provided by the AMQ Interconnect Operator. AMQ Interconnect is a component
of Red Hat AMQ, a messaging router that provides flexible routing of messages between any AMQP-
enabled endpoints. An overview of the PTP fast events framework is below:

Figure 13.1. Overview of PTP fast events

The cloud-event-proxy sidecar container can access the same resources as the primary vRAN
application without using any of the resources of the primary application and with no significant latency.

The fast events notifications framework uses a REST API for communication and is based on the O-RAN
REST API specification. The framework consists of a publisher, subscriber, and an AMQ messaging bus
to handle communications between the publisher and subscriber applications. The cloud-event-proxy

CHAPTER 13. USING PTP HARDWARE

145



sidecar is a utility container that runs in a pod that is loosely coupled to the main DU application
container on the DU node. It provides an event publishing framework that allows you to subscribe DU
applications to published PTP events.

DU applications run the cloud-event-proxy container in a sidecar pattern to subscribe to PTP events.
The following workflow describes how a DU application uses PTP fast events:

1. DU application requests a subscription: The DU sends an API request to the cloud-event-
proxy sidecar to create a PTP events subscription. The cloud-event-proxy sidecar creates a
subscription resource.

2. cloud-event-proxy sidecar creates the subscription: The event resource is persisted by the 
cloud-event-proxy sidecar. The cloud-event-proxy sidecar container sends an
acknowledgment with an ID and URL location to access the stored subscription resource. The
sidecar creates an AMQ messaging listener protocol for the resource specified in the
subscription.

3. DU application receives the PTP event notification: The cloud-event-proxy sidecar container
listens to the address specified in the resource qualifier. The DU events consumer processes
the message and passes it to the return URL specified in the subscription.

4. cloud-event-proxy sidecar validates the PTP event and posts it to the DU application: The 
cloud-event-proxy sidecar receives the event, unwraps the cloud events object to retrieve the
data, and fetches the return URL to post the event back to the DU consumer application.

5. DU application uses the PTP event: The DU application events consumer receives and
processes the PTP event.

13.7.3. Installing the AMQ messaging bus

To pass PTP fast event notifications between publisher and subscriber on a node, you must install and
configure an AMQ messaging bus to run locally on the node. You do this by installing the AMQ
Interconnect Operator for use in the cluster.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

Install the AMQ Interconnect Operator to its own amq-interconnect namespace. See Adding
the Red Hat Integration - AMQ Interconnect Operator.

Verification

1. Check that the AMQ Interconnect Operator is available and the required pods are running:

Example output

$ oc get pods -n amq-interconnect

OpenShift Container Platform 4.10 Networking

146

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp


1

2

2. Check that the required linuxptp-daemon PTP event producer pods are running in the 
openshift-ptp namespace.

Example output

13.7.4. Configuring the PTP fast event notifications publisher

To start using PTP fast event notifications for a network interface in your cluster, you must enable the
fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure 
ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install the PTP Operator and AMQ Interconnect Operator.

Procedure

1. Modify the default PTP Operator config to enable PTP fast events.

a. Save the following YAML in the ptp-operatorconfig.yaml file:

Set enableEventPublisher to true to enable PTP fast event notifications.

Set transportHost to the AMQ router that you configured where <instance_name>
and <namespace> correspond to the AMQ Interconnect router instance name and
namespace, for example, amqp://amq-interconnect.amq-
interconnect.svc.cluster.local

NAME                                    READY   STATUS    RESTARTS   AGE
amq-interconnect-645db76c76-k8ghs       1/1     Running   0          23h
interconnect-operator-5cb5fc7cc-4v7qm   1/1     Running   0          23h

$ oc get pods -n openshift-ptp

NAME                     READY   STATUS    RESTARTS       AGE
linuxptp-daemon-2t78p    3/3     Running   0              12h
linuxptp-daemon-k8n88    3/3     Running   0              12h

apiVersion: ptp.openshift.io/v1
kind: PtpOperatorConfig
metadata:
  name: default
  namespace: openshift-ptp
spec:
  daemonNodeSelector:
    node-role.kubernetes.io/worker: ""
  ptpEventConfig:
    enableEventPublisher: true 1
    transportHost: amqp://<instance_name>.<namespace>.svc.cluster.local 2

CHAPTER 13. USING PTP HARDWARE

147



1

2

3

4

b. Update the PtpOperatorConfig CR:

2. Create a PtpConfig custom resource (CR) for the PTP enabled interface, and set the required
values for ptpClockThreshold and ptp4lOpts. The following YAML illustrates the required
values that you must set in the PtpConfig CR:

Append --summary_interval -4 to use PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon 
DaemonSet parses the logs and generates Prometheus metrics.

Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file.
To use the default configuration, leave the field empty.

Optional. If the ptpClockThreshold stanza is not present, default values are used for the 
ptpClockThreshold fields. The stanza shows default ptpClockThreshold values. The 
ptpClockThreshold values configure how long after the PTP master clock is disconnected
before PTP events are triggered. holdOverTimeout is the time value in seconds before
the PTP clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure
offset values in nanoseconds that compare against the values for CLOCK_REALTIME
(phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this
range, the PTP clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

Additional resources

For a complete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock .

13.7.5. Subscribing DU applications to PTP events REST API reference

Use the PTP event notifications REST API to subscribe a distributed unit (DU) application to the PTP
events that are generated on the parent node.

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp,
where <node_name> is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container

$ oc apply -f ptp-operatorconfig.yaml

spec:
  profile:
  - name: "profile1"
    interface: "enp5s0f0"
    ptp4lOpts: "-2 -s --summary_interval -4" 1
    phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2
    ptp4lConf: "" 3
  ptpClockThreshold: 4
    holdOverTimeout: 5
    maxOffsetThreshold: 100
    minOffsetThreshold: -100

OpenShift Container Platform 4.10 Networking

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-linuxptp-services-as-ordinary-clock_using-ptp


Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container
in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-
event-proxy container in the application pod.

Use the following API endpoints to subscribe the cloud-event-consumer DU application to PTP events
posted by the cloud-event-proxy container at http://localhost:8089/api/ocloudNotifications/v1/ in
the DU application pod:

/api/ocloudNotifications/v1/subscriptions

POST: Creates a new subscription

GET: Retrieves a list of subscriptions

/api/ocloudNotifications/v1/subscriptions/<subscription_id>

GET: Returns details for the specified subscription ID

api/ocloudNotifications/v1/subscriptions/status/<subscription_id>

PUT: Creates a new status ping request for the specified subscription ID

/api/ocloudNotifications/v1/health

GET: Returns the health status of ocloudNotifications API

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your DU application as required.

13.7.5.1. api/ocloudNotifications/v1/subscriptions

13.7.5.1.1. HTTP method

GET api/ocloudNotifications/v1/subscriptions

13.7.5.1.1.1. Description

Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

Example API response

13.7.5.1.2. HTTP method

[
 {
  "id": "75b1ad8f-c807-4c23-acf5-56f4b7ee3826",
  "endpointUri": "http://localhost:9089/event",
  "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions/75b1ad8f-c807-4c23-
acf5-56f4b7ee3826",
  "resource": "/cluster/node/compute-1.example.com/ptp"
 }
]

CHAPTER 13. USING PTP HARDWARE

149



POST api/ocloudNotifications/v1/subscriptions

13.7.5.1.2.1. Description

Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created
status code is returned.

Table 13.4. Query parameters

Parameter Type

subscription data

Example payload

13.7.5.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>

13.7.5.2.1. HTTP method

GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

13.7.5.2.1.1. Description

Returns details for the subscription with ID <subscription_id>

Table 13.5. Query parameters

Parameter Type

<subscription_id> string

Example API response

13.7.5.3. api/ocloudNotifications/v1/subscriptions/status/<subscription_id>

13.7.5.3.1. HTTP method

{
  "uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions",
  "resource": "/cluster/node/compute-1.example.com/ptp"
}

{
  "id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",
  "endpointUri": "http://localhost:9089/event",
  "uriLocation":"http://localhost:8089/api/ocloudNotifications/v1/subscriptions/48210fb3-45be-4ce0-
aa9b-41a0e58730ab",
  "resource":"/cluster/node/compute-1.example.com/ptp"
}

OpenShift Container Platform 4.10 Networking

150



PUT api/ocloudNotifications/v1/subscriptions/status/<subscription_id>

13.7.5.3.1.1. Description

Creates a new status ping request for subscription with ID <subscription_id>. If a subscription is
present, the status request is successful and a 202 Accepted status code is returned.

Table 13.6. Query parameters

Parameter Type

<subscription_id> string

Example API response

13.7.5.4. api/ocloudNotifications/v1/health/

13.7.5.4.1. HTTP method

GET api/ocloudNotifications/v1/health/

13.7.5.4.1.1. Description

Returns the health status for the ocloudNotifications REST API.

Example API response

13.7.6. Monitoring PTP fast event metrics using the CLI

You can monitor fast events bus metrics directly from cloud-event-proxy containers using the oc CLI.

NOTE

PTP fast event notification metrics are also available in the OpenShift Container
Platform web console.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Install and configure the PTP Operator.

Procedure

1. Get the list of active linuxptp-daemon pods.

{"status":"ping sent"}

OK

CHAPTER 13. USING PTP HARDWARE

151



Example output

2. Access the metrics for the required cloud-event-proxy container by running the following
command:

where:

<linuxptp-daemon>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

Example output

13.7.7. Monitoring PTP fast event metrics in the web console

You can monitor PTP fast event metrics in the OpenShift Container Platform web console by using the
pre-configured and self-updating Prometheus monitoring stack.

Prerequisites

Install the OpenShift Container Platform CLI oc.

Log in as a user with cluster-admin privileges.

Procedure

$ oc get pods -n openshift-ptp

NAME                    READY   STATUS    RESTARTS   AGE
linuxptp-daemon-2t78p   3/3     Running   0          8h
linuxptp-daemon-k8n88   3/3     Running   0          8h

$ oc exec -it <linuxptp-daemon> -n openshift-ptp -c cloud-event-proxy -- curl 
127.0.0.1:9091/metrics

# HELP cne_amqp_events_published Metric to get number of events published by the 
transport
# TYPE cne_amqp_events_published gauge
cne_amqp_events_published{address="/cluster/node/compute-
1.example.com/ptp/status",status="success"} 1041
# HELP cne_amqp_events_received Metric to get number of events received  by the 
transport
# TYPE cne_amqp_events_received gauge
cne_amqp_events_received{address="/cluster/node/compute-
1.example.com/ptp",status="success"} 1019
# HELP cne_amqp_receiver Metric to get number of receiver created
# TYPE cne_amqp_receiver gauge
cne_amqp_receiver{address="/cluster/node/mock",status="active"} 1
cne_amqp_receiver{address="/cluster/node/compute-1.example.com/ptp",status="active"} 
1
cne_amqp_receiver{address="/cluster/node/compute-
1.example.com/redfish/event",status="active"}
...

OpenShift Container Platform 4.10 Networking

152



1. Enter the following command to return the list of available PTP metrics from the cloud-event-
proxy sidecar container:

where:

<linuxptp_daemon_pod>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

2. Copy the name of the PTP metric you want to query from the list of returned metrics, for
example, cne_amqp_events_received.

3. In the OpenShift Container Platform web console, click Observe → Metrics.

4. Paste the PTP metric into the Expression field, and click Run queries.

Additional resources

Managing metrics

$ oc exec -it <linuxptp_daemon_pod> -n openshift-ptp -c cloud-event-proxy -- curl 
127.0.0.1:9091/metrics

CHAPTER 13. USING PTP HARDWARE

153

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#managing-metrics-1


CHAPTER 14. EXTERNAL DNS OPERATOR

14.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

14.1.1. External DNS Operator

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.
The External DNS Operator deploys the ExternalDNS using a deployment resource. The ExternalDNS
deployment watches the resources such as services and routes in the cluster and updates the external
DNS providers.

Procedure

You can deploy the ExternalDNS Operator on demand from the OperatorHub, this creates a 
Subscription object.

1. Check the name of an install plan:

Example output

2. Check the status of an install plan, the status of an install plan must be Complete:

Example output

3. Use the oc get command to view the Deployment status:

Example output

14.1.2. External DNS Operator logs

You can view External DNS Operator logs by using the oc logs command.

Procedure

$ oc -n external-dns-operator get sub external-dns-operator -o yaml | yq 
'.status.installplan.name'

install-zcvlr

$ oc -n external-dns-operator get ip <install_plan_name> -o yaml | yq .status.phase'

Complete

$ oc get -n external-dns-operator deployment/external-dns-operator

NAME                    READY     UP-TO-DATE   AVAILABLE   AGE
external-dns-operator   1/1       1            1           23h

OpenShift Container Platform 4.10 Networking

154



1. View the logs of the External DNS Operator:

14.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS

You can install External DNS Operator on cloud providers such as AWS, Azure and GCP.

14.2.1. Installing the External DNS Operator

You can install the External DNS Operator using the OpenShift Container Platform OperatorHub.

Procedure

1. Click Operators → OperatorHub in the OpenShift Container Platform Web Console.

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to
search for External DNS Operator from the list of Operators.

3. Select the external-dns-operator namespace.

4. On the External DNS Operator page, click Install.

5. On the Install Operator page, ensure that you selected the following options:

a. Update the channel as stable-v1.0.

b. Installation mode as A specific name on the cluster.

c. Installed namespace as external-dns-operator. If namespace external-dns-operator does
not exist, it gets created during the Operator installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

e. Click Install.

If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must
then manually approve that update request to have the Operator updated to the new version.

Verification

Verify that External DNS Operator shows the Status as Succeeded on the Installed Operators
dashboard.

14.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

The External DNS Operators includes the following configuration parameters:

14.3.1. External DNS Operator configuration parameters

The External DNS Operator includes the following configuration parameters:

$ oc logs -n external-dns-operator deployment/external-dns-operator -c external-dns-operator

CHAPTER 14. EXTERNAL DNS OPERATOR

155



1

2

1

1

2

3

4

5

Parameter Description

spec Enables the type of a cloud provider.

Defines available options such as AWS, GCP and Azure.

Defines a name of the secret which contains credentials for your cloud
provider.

zones Enables you to specify DNS zones by their domains. If you do not specify zones,
ExternalDNS discovers all the zones present in your cloud provider account.

Specifies the IDs of DNS zones.

domains Enables you to specify AWS zones by their domains. If you do not specify
domains, ExternalDNS discovers all the zones present in your cloud provider
account.

Instructs ExternalDNS to include the domain specified.

Instructs ExtrnalDNS that the domain matching has to be exact as
opposed to regular expression match.

Defines the exact domain name by which ExternalDNS filters.

Sets regex-domain-filter flag in ExternalDNS. You can limit possible
domains by using a Regex filter.

Defines the regex pattern to be used by ExternalDNS to filter the
domains of the target zones.

source Enables you to specify the source for the DNS records, Service or Route.

spec:
  provider:
    type: AWS 1
    aws:
      credentials:
        name: aws-access-key 2

zones:
- "myzoneid" 1

domains:
- filterType: Include 1
  matchType: Exact 2
  name: "myzonedomain1.com" 3
- filterType: Include
  matchType: Pattern 4
  pattern: ".*\\.otherzonedomain\\.com" 5

OpenShift Container Platform 4.10 Networking

156



1

2

3

4

5

6

1

2

Defines the settings for the source of DNS records.

The ExternalDNS uses Service type as source for creating dns records.

Sets service-type-filter flag in ExternalDNS. The serviceType
contains the following fields:

default: LoadBalancer

expected: ClusterIP

NodePort

LoadBalancer

ExternalName

Ensures that the controller considers only those resources which matches
with label filter.

The default value for hostnameAnnotation is Ignore which instructs 
ExternalDNS to generate DNS records using the templates specified in
the field fqdnTemplates. When the value is Allow the DNS records get
generated based on the value specified in the external-
dns.alpha.kubernetes.io/hostname annotation.

External DNS Operator uses a string to generate DNS names from
sources that don’t define a hostname, or to add a hostname suffix when
paired with the fake source.

ExternalDNS` uses type route as source for creating dns records.

If the source is OpenShiftRoute, then you can pass the Ingress
Controller name. The ExternalDNS uses canonical name of Ingress
Controller as the target for CNAME record.

Parameter Descriptionsource: 1
  type: Service 2
  service:
    serviceType: 3
      - LoadBalancer
      - ClusterIP
  labelFilter: 4
    matchLabels:
      external-dns.mydomain.org/publish: "yes"
  hostnameAnnotation: "Allow" 5
  fqdnTemplate:
  - "{{.Name}}.myzonedomain.com" 6

source:
  type: OpenShiftRoute 1
  openshiftRouteOptions:
    routerName: default 2
    labelFilter:
      matchLabels:
        external-dns.mydomain.org/publish: "yes"

CHAPTER 14. EXTERNAL DNS OPERATOR

157



14.4. CREATING DNS RECORDS ON AWS

You can create DNS records on AWS and AWS GovCloud by using External DNS Operator.

14.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat
External DNS Operator

You can create DNS records on a public hosted zone for AWS by using the Red Hat External DNS
Operator. You can use the same instructions to create DNS records on a hosted zone for AWS
GovCloud.

Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don’t have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

Example output

2. Fetch the values from aws-creds secret present in kube-system namespace.

3. Get the routes to check the domain:

Example output

4. Get the list of dns zones to find the one which corresponds to the previously found route’s
domain:

Example output

$ oc whoami

system:admin

$ export AWS_ACCESS_KEY_ID=$(oc get secrets aws-creds -n kube-system  --template=
{{.data.aws_access_key_id}} | base64 -d)
$ export AWS_SECRET_ACCESS_KEY=$(oc get secrets aws-creds -n kube-system  --
template={{.data.aws_secret_access_key}} | base64 -d)

$ oc get routes --all-namespaces | grep console

openshift-console          console             console-openshift-
console.apps.testextdnsoperator.apacshift.support                       console             https   
reencrypt/Redirect     None
openshift-console          downloads           downloads-openshift-
console.apps.testextdnsoperator.apacshift.support                     downloads           http    
edge/Redirect          None

$ aws route53 list-hosted-zones | grep testextdnsoperator.apacshift.support

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J6O 
testextdnsoperator.apacshift.support. 5

OpenShift Container Platform 4.10 Networking

158



1

2

3

4

5

6

7

8

5. Create ExternalDNS resource for route source:

Defines the name of external DNS resource.

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the AWS Route53 DNS provider.

Defines options for the source of DNS records.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

If the source is OpenShiftRoute, then you can pass the OpenShift Ingress Controller
name. External DNS Operator selects the canonical hostname of that router as the target
while creating CNAME record.

6. Check the records created for OCP routes using the following command:

14.5. CREATING DNS RECORDS ON AZURE

You can create DNS records on Azure using External DNS Operator.

14.5.1. Creating DNS records on an public DNS zone for Azure by using Red Hat
External DNS Operator

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/v1alpha1
kind: ExternalDNS
metadata:
  name: sample-aws 1
spec:
  domains:
  - filterType: Include   2
    matchType: Exact   3
    name: testextdnsoperator.apacshift.support 4
  provider:
    type: AWS 5
  source:  6
    type: OpenShiftRoute 7
    openshiftRouteOptions:
      routerName: default 8
EOF

$ aws route53 list-resource-record-sets --hosted-zone-id Z02355203TNN1XXXX1J6O --
query "ResourceRecordSets[?Type == 'CNAME']" | grep console

CHAPTER 14. EXTERNAL DNS OPERATOR

159



You can create DNS records on a public DNS zone for Azure by using Red Hat External DNS Operator.

Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don’t have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

Example output

2. Fetch the values from azure-credentials secret present in kube-system namespace.

3. Login to azure with base64 decoded values:

4. Get the routes to check the domain:

Example output

5. Get the list of dns zones to find the one which corresponds to the previously found route’s
domain:

6. Create ExternalDNS resource for route source:

$ oc whoami

system:admin

$ CLIENT_ID=$(oc get secrets azure-credentials  -n kube-system  --template=
{{.data.azure_client_id}} | base64 -d)
$ CLIENT_SECRET=$(oc get secrets azure-credentials  -n kube-system  --template=
{{.data.azure_client_secret}} | base64 -d)
$ RESOURCE_GROUP=$(oc get secrets azure-credentials  -n kube-system  --template=
{{.data.azure_resourcegroup}} | base64 -d)
$ SUBSCRIPTION_ID=$(oc get secrets azure-credentials  -n kube-system  --template=
{{.data.azure_subscription_id}} | base64 -d)
$ TENANT_ID=$(oc get secrets azure-credentials  -n kube-system  --template=
{{.data.azure_tenant_id}} | base64 -d)

$ az login --service-principal -u "${CLIENT_ID}" -p "${CLIENT_SECRET}" --tenant 
"${TENANT_ID}"

$ oc get routes --all-namespaces | grep console

openshift-console          console             console-openshift-
console.apps.test.azure.example.com                       console             https   reencrypt/Redirect     
None
openshift-console          downloads           downloads-openshift-
console.apps.test.azure.example.com                     downloads           http    edge/Redirect          
None

$ az network dns zone list --resource-group "${RESOURCE_GROUP}"

OpenShift Container Platform 4.10 Networking

160



1

2

3

4

5

6

Specifies the name of External DNS CR.

Define the zone ID.

Defines the Azure DNS provider.

You can define options for the source of DNS records.

If the source is OpenShiftRoute then you can pass the OpenShift Ingress Controller name.
External DNS selects the canonical hostname of that router as the target while creating
CNAME record.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

7. Check the records created for OCP routes using the following command:

NOTE

To create records on private hosted zones on private Azure dns, you need to
specify the private zone under zones which populates the provider type to 
azure-private-dns in the ExternalDNS container args.

14.6. CREATING DNS RECORDS ON GCP

You can create DNS records on GCP using External DNS Operator.

14.6.1. Creating DNS records on an public managed zone for GCP by using Red Hat
External DNS Operator

You can create DNS records on a public managed zone for GCP by using Red Hat External DNS
Operator.

Procedure

apiVersion: externaldns.olm.openshift.io/v1alpha1
kind: ExternalDNS
metadata:
  name: sample-azure 1
spec:
  zones:
  - "/subscriptions/1234567890/resourceGroups/test-azure-xxxxx-
rg/providers/Microsoft.Network/dnszones/test.azure.example.com" 2
  provider:
    type: Azure 3
  source:
    openshiftRouteOptions: 4
      routerName: default 5
    type: OpenShiftRoute 6
EOF

$ az network dns record-set list -g "${RESOURCE_GROUP}"  -z test.azure.example.com | 
grep console

CHAPTER 14. EXTERNAL DNS OPERATOR

161



Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don’t have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

Example output

2. Copy the value of service_account.json in gcp-credentials secret in a file encoded-gcloud.json
by running the following command:

3. Export Google credentials:

4. Activate your account by using the following command:

5. Set your project:

6. Get the routes to check the domain:

Example output

7. Get the list of managed zones to find the zone which corresponds to the previously found
route’s domain:

8. Create ExternalDNS resource for route source:

$ oc whoami

system:admin

$ oc get secret gcp-credentials -n kube-system --template='{{$v := index .data 
"service_account.json"}}{{$v}}' | base64 -d - > decoded-gcloud.json

$ export GOOGLE_CREDENTIALS=decoded-gcloud.json

$ gcloud auth activate-service-account  <client_email as per decoded-gcloud.json> --key-
file=decoded-gcloud.json

$ gcloud config set project <project_id as per decoded-gcloud.json>

$ oc get routes --all-namespaces | grep console

openshift-console          console             console-openshift-
console.apps.test.gcp.example.com                       console             https   reencrypt/Redirect     
None
openshift-console          downloads           downloads-openshift-
console.apps.test.gcp.example.com                     downloads           http    edge/Redirect          
None

$ gcloud dns managed-zones list | grep test.gcp.example.com
qe-cvs4g-private-zone test.gcp.example.com

OpenShift Container Platform 4.10 Networking

162



1

2

3

4

5

6

7

8

Specifies the name of External DNS CR.

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines Google Cloud DNS provider.

You can define options for the source of DNS records.

If the source is OpenShiftRoute then you can pass the OpenShift Ingress Controller name.
External DNS selects the canonical hostname of that router as the target while creating
CNAME record.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

9. Check the records created for OCP routes using the following command:

14.7. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL
DNS OPERATOR

You can configure the cluster-wide proxy in the External DNS Operator. After configuring the cluster-
wide proxy in the External DNS Operator, Operator Lifecycle Manager (OLM) automatically updates all
the deployments of the Operators with the environment variables such as HTTP_PROXY, 
HTTPS_PROXY, and NO_PROXY.

14.7.1. Configuring the External DNS Operator to trust the certificate authority of

apiVersion: externaldns.olm.openshift.io/v1alpha1
kind: ExternalDNS
metadata:
  name: sample-gcp 1
spec:
  domains:
    - filterType: Include 2
      matchType: Exact 3
      name: test.gcp.example.com 4
  provider:
    type: GCP 5
  source:
    openshiftRouteOptions: 6
      routerName: default 7
    type: OpenShiftRoute 8
EOF

$ gcloud dns record-sets list --zone=qe-cvs4g-private-zone | grep console

CHAPTER 14. EXTERNAL DNS OPERATOR

163



14.7.1. Configuring the External DNS Operator to trust the certificate authority of
the cluster-wide proxy

You can configure the External DNS Operator to trust the certificate authority of the cluster-wide
proxy.

Procedure

1. Create the config map to contain the CA bundle in the external-dns-operator namespace by
running the following command:

2. To inject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

3. Update the subscription of the External DNS Operator by running the following command:

Verification

After the deployment of the External DNS Operator is completed, verify that the trusted CA
environment variable is added to the external-dns-operator deployment by running the
following command:

Example output

$ oc -n external-dns-operator create configmap trusted-ca

$ oc -n external-dns-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

$ oc -n external-dns-operator patch subscription external-dns-operator --type='json' -
p='[{"op": "add", "path": "/spec/config", "value":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}]}}]'

$ oc -n external-dns-operator exec deploy/external-dns-operator -c external-dns-operator -- 
printenv TRUSTED_CA_CONFIGMAP_NAME

trusted-ca

OpenShift Container Platform 4.10 Networking

164



CHAPTER 15. NETWORK POLICY

15.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

15.1.1. About network policy

In a cluster using a Kubernetes Container Network Interface (CNI) plugin that supports Kubernetes
network policy, network isolation is controlled entirely by NetworkPolicy objects.

In OpenShift Container Platform 4.10, OpenShift SDN supports using network policy in its default
network isolation mode.

The OpenShift SDN cluster network provider now supports the egress network policy as specified by
the egress field.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost or from their resident nodes.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, and SCTP protocols. Other protocols are not affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:



kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default

CHAPTER 15. NETWORK POLICY

165



Only allow connections from the OpenShift Container Platform Ingress Controller:
To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

spec:
  podSelector: {}
  ingress: []

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-ingress
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          network.openshift.io/policy-group: ingress
  podSelector: {}
  policyTypes:
  - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector: {}
  ingress:
  - from:
    - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-http-and-https
spec:
  podSelector:
    matchLabels:
      role: frontend
  ingress:
  - ports:
    - protocol: TCP
      port: 80
    - protocol: TCP
      port: 443

OpenShift Container Platform 4.10 Networking

166



Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a 
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

15.1.2. Optimizations for network policy

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

NOTE

The guidelines for efficient use of network policy rules applies to only the OpenShift SDN
cluster network provider.

It is inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need
to be isolated.
NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-pod-and-namespace-both
spec:
  podSelector:
    matchLabels:
      name: test-pods
  ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            project: project_name
        podSelector:
          matchLabels:
            name: test-pods

CHAPTER 15. NETWORK POLICY

167



Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

15.1.3. Next steps

Creating a network policy

Optional: Defining a default network policy

15.1.4. Additional resources

Projects and namespaces

Configuring multitenant network policy

NetworkPolicy API

15.2. LOGGING NETWORK POLICY EVENTS

As a cluster administrator, you can configure network policy audit logging for your cluster and enable
logging for one or more namespaces.

NOTE

Audit logging of network policies is available for only the OVN-Kubernetes cluster
network provider.

15.2.1. Network policy audit logging

The OVN-Kubernetes cluster network provider uses Open Virtual Network (OVN) ACLs to manage
network policy. Audit logging exposes allow and deny ACL events.

You can configure the destination for network policy audit logs, such as a syslog server or a UNIX domain
socket. Regardless of any additional configuration, an audit log is always saved to /var/log/ovn/acl-
audit-log.log on each OVN-Kubernetes pod in the cluster.

Network policy audit logging is enabled per namespace by annotating the namespace with the 
k8s.ovn.org/acl-logging key as in the following example:

Example namespace annotation

kind: Namespace
apiVersion: v1
metadata:
  name: example1
  annotations:
    k8s.ovn.org/acl-logging: |-
      {
        "deny": "info",
        "allow": "info"
      }

OpenShift Container Platform 4.10 Networking

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#creating-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#multitenant-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#networkpolicy-networking-k8s-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-ovn-kubernetes


The logging format is compatible with syslog as defined by RFC5424. The syslog facility is configurable
and defaults to local0. An example log entry might resemble the following:

Example ACL deny log entry

The following table describes namespace annotation values:

Table 15.1. Network policy audit logging namespace annotation

Annotation Value

k8s.ovn.org/acl-logging You must specify at least one of allow, deny, or both to enable
network policy audit logging for a namespace.

deny
Optional: Specify alert, warning, notice, info, or debug.

allow
Optional: Specify alert, warning, notice, info, or debug.

15.2.2. Network policy audit configuration

The configuration for audit logging is specified as part of the OVN-Kubernetes cluster network provider
configuration. The following YAML illustrates default values for network policy audit logging feature.

Audit logging configuration

The following table describes the configuration fields for network policy audit logging.

Table 15.2. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-logging_deny-all", 
verdict=drop, severity=alert: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,nw_dst=
10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  defaultNetwork:
    ovnKubernetesConfig:
      policyAuditConfig:
        destination: "null"
        maxFileSize: 50
        rateLimit: 20
        syslogFacility: local0

CHAPTER 15. NETWORK POLICY

169



maxFileSize integer The maximum size for the audit log in bytes. The default value is 
50000000 or 50 MB.

destination string One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>
A Unix Domain Socket file specified by <file>.

null
Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is local0.

Field Type Description

15.2.3. Configuring network policy auditing for a cluster

As a cluster administrator, you can customize network policy audit logging for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To customize the network policy audit logging configuration, enter the following command:

TIP

$ oc edit network.operator.openshift.io/cluster

OpenShift Container Platform 4.10 Networking

170



TIP

You can alternatively customize and apply the following YAML to configure audit logging:

Verification

1. To create a namespace with network policies complete the following steps:

a. Create a namespace for verification:

Example output

b. Enable audit logging:

c. Create network policies for the namespace:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  defaultNetwork:
    ovnKubernetesConfig:
      policyAuditConfig:
        destination: "null"
        maxFileSize: 50
        rateLimit: 20
        syslogFacility: local0

$ cat <<EOF| oc create -f -
kind: Namespace
apiVersion: v1
metadata:
  name: verify-audit-logging
  annotations:
    k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert" }'
EOF

namespace/verify-audit-logging created

$ oc annotate namespace verify-audit-logging k8s.ovn.org/acl-logging='{ "deny": "alert", 
"allow": "alert" }'

namespace/verify-audit-logging annotated

$ cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: deny-all
spec:
  podSelector:
    matchLabels:

CHAPTER 15. NETWORK POLICY

171



Example output

2. Create a pod for source traffic in the default namespace:

3. Create two pods in the verify-audit-logging namespace:

  policyTypes:
  - Ingress
  - Egress
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-same-namespace
spec:
  podSelector: {}
  policyTypes:
   - Ingress
   - Egress
  ingress:
    - from:
        - podSelector: {}
  egress:
    - to:
       - namespaceSelector:
          matchLabels:
            namespace: verify-audit-logging
EOF

networkpolicy.networking.k8s.io/deny-all created
networkpolicy.networking.k8s.io/allow-from-same-namespace created

$ cat <<EOF| oc create -n default -f -
apiVersion: v1
kind: Pod
metadata:
  name: client
spec:
  containers:
    - name: client
      image: registry.access.redhat.com/rhel7/rhel-tools
      command: ["/bin/sh", "-c"]
      args:
        ["sleep inf"]
EOF

$ for name in client server; do
cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: v1
kind: Pod
metadata:
  name: ${name}
spec:
  containers:
    - name: ${name}

OpenShift Container Platform 4.10 Networking

172



Example output

4. To generate traffic and produce network policy audit log entries, complete the following steps:

a. Obtain the IP address for pod named server in the verify-audit-logging namespace:

b. Ping the IP address from the previous command from the pod named client in the default
namespace and confirm that all packets are dropped:

Example output

c. Ping the IP address saved in the POD_IP shell environment variable from the pod named 
client in the verify-audit-logging namespace and confirm that all packets are allowed:

Example output

5. Display the latest entries in the network policy audit log:

Example output

      image: registry.access.redhat.com/rhel7/rhel-tools
      command: ["/bin/sh", "-c"]
      args:
        ["sleep inf"]
EOF
done

pod/client created
pod/server created

$ POD_IP=$(oc get pods server -n verify-audit-logging -o jsonpath='{.status.podIP}')

$ oc exec -it client -n default -- /bin/ping -c 2 $POD_IP

PING 10.128.2.55 (10.128.2.55) 56(84) bytes of data.

--- 10.128.2.55 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 2041ms

$ oc exec -it client -n verify-audit-logging -- /bin/ping -c 2 $POD_IP

PING 10.128.0.86 (10.128.0.86) 56(84) bytes of data.
64 bytes from 10.128.0.86: icmp_seq=1 ttl=64 time=2.21 ms
64 bytes from 10.128.0.86: icmp_seq=2 ttl=64 time=0.440 ms

--- 10.128.0.86 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.440/1.329/2.219/0.890 ms

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
    oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
  done

CHAPTER 15. NETWORK POLICY

173



Example output

15.2.4. Enabling network policy audit logging for a namespace

As a cluster administrator, you can enable network policy audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To enable network policy audit logging for a namespace, enter the following command:

where:

<namespace>

Specifies the name of the namespace.

TIP

Defaulting container name to ovn-controller.
Use 'oc describe pod/ovnkube-node-hdb8v -n openshift-ovn-kubernetes' to see all of the 
containers in this pod.
2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:33:12.614Z|00006|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:10.037Z|00007|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:11.037Z|00008|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59,
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate namespace <namespace> \
  k8s.ovn.org/acl-logging='{ "deny": "alert", "allow": "notice" }'

OpenShift Container Platform 4.10 Networking

174



TIP

You can alternatively apply the following YAML to enable audit logging:

Example output

Verification

Display the latest entries in the network policy audit log:

Example output

15.2.5. Disabling network policy audit logging for a namespace

As a cluster administrator, you can disable network policy audit logging for a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

To disable network policy audit logging for a namespace, enter the following command:

where:

kind: Namespace
apiVersion: v1
metadata:
  name: <namespace>
  annotations:
    k8s.ovn.org/acl-logging: |-
      {
        "deny": "alert",
        "allow": "notice"
      }

namespace/verify-audit-logging annotated

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
    oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
  done

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert: 
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

$ oc annotate --overwrite namespace <namespace> k8s.ovn.org/acl-logging-

CHAPTER 15. NETWORK POLICY

175



<namespace>

Specifies the name of the namespace.

TIP

You can alternatively apply the following YAML to disable audit logging:

Example output

15.2.6. Additional resources

About network policy

15.3. CREATING A NETWORK POLICY

As a user with the admin role, you can create a network policy for a namespace.

15.3.1. Creating a network policy

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace that the network policy applies to.

Procedure

1. Create a policy rule:

kind: Namespace
apiVersion: v1
metadata:
  name: <namespace>
  annotations:
    k8s.ovn.org/acl-logging: null

namespace/verify-audit-logging annotated

OpenShift Container Platform 4.10 Networking

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-network-policy


a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

.Allow ingress from all pods in the same namespace

2. To create the network policy object, enter the following command:

where:

<policy_name>

Specifies the network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

$ touch <policy_name>.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: deny-by-default
spec:
  podSelector:
  ingress: []

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:
  podSelector:
  ingress:
  - from:
    - podSelector: {}

$ oc apply -f <policy_name>.yaml -n <namespace>

networkpolicy.networking.k8s.io/default-deny created

CHAPTER 15. NETWORK POLICY

177



1

2

3

4

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

15.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

15.3.3. Additional resources

Accessing the web console

15.4. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

15.4.1. Viewing network policies

You can examine the network policies in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app
    ports: 4
    - protocol: TCP
      port: 27017

OpenShift Container Platform 4.10 Networking

178

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/web_console/#web-console


Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

List network policies in a namespace:

To view network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific network policy, enter the following command:

where:

<policy_name>

Specifies the name of the network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

Output for oc describe command

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

$ oc get networkpolicy

$ oc describe networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy allow-same-namespace

Name:         allow-same-namespace
Namespace:    ns1
Created on:   2021-05-24 22:28:56 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      PodSelector: <none>
  Not affecting egress traffic
  Policy Types: Ingress

CHAPTER 15. NETWORK POLICY

179



1

2

3

4

15.4.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

15.5. EDITING A NETWORK POLICY

As a user with the admin role, you can edit an existing network policy for a namespace.

15.5.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app
    ports: 4
    - protocol: TCP
      port: 27017

OpenShift Container Platform 4.10 Networking

180



You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

If you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the network policy object directly, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

$ oc get networkpolicy

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit networkpolicy <policy_name> -n <namespace>

$ oc describe networkpolicy <policy_name> -n <namespace>

CHAPTER 15. NETWORK POLICY

181



1

2

3

4

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

15.5.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

A list of one or more destination ports on which to accept traffic.

15.5.3. Additional resources

Creating a network policy

15.6. DELETING A NETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

15.6.1. Deleting a network policy

You can delete a network policy in a namespace.

NOTE

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app
    ports: 4
    - protocol: TCP
      port: 27017

OpenShift Container Platform 4.10 Networking

182

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#creating-network-policy


NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

You are working in the namespace where the network policy exists.

Procedure

To delete a network policy object, enter the following command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

15.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS

As a cluster administrator, you can modify the new project template to automatically include network
policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

15.7.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

$ oc delete networkpolicy <policy_name> -n <namespace>

networkpolicy.networking.k8s.io/default-deny deleted

CHAPTER 15. NETWORK POLICY

183



To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

15.7.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
  ...
spec:
  projectRequestTemplate:
    name: <template_name>

OpenShift Container Platform 4.10 Networking

184



Prerequisites

Your cluster uses a default CNI network provider that supports NetworkPolicy objects, such as
the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default
for OpenShift SDN.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The 
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects.

$ oc edit template <project_template> -n openshift-config

objects:
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-same-namespace
  spec:
    podSelector: {}
    ingress:
    - from:
      - podSelector: {}
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-openshift-ingress
  spec:
    ingress:
    - from:
      - namespaceSelector:
          matchLabels:
            network.openshift.io/policy-group: ingress
    podSelector: {}
    policyTypes:
    - Ingress
- apiVersion: networking.k8s.io/v1
  kind: NetworkPolicy
  metadata:
    name: allow-from-kube-apiserver-operator
  spec:
    ingress:
    - from:

CHAPTER 15. NETWORK POLICY

185



1

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

15.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

If you are using the OpenShift SDN cluster network provider, configuring network policies
as described in this section provides network isolation similar to multitenant mode but
with network policy mode set.

15.8.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with admin privileges.

      - namespaceSelector:
          matchLabels:
            kubernetes.io/metadata.name: openshift-kube-apiserver-operator
        podSelector:
          matchLabels:
            app: kube-apiserver-operator
    policyTypes:
    - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy
NAME                           POD-SELECTOR   AGE
allow-from-openshift-ingress   <none>         7s
allow-from-same-namespace      <none>         7s

OpenShift Container Platform 4.10 Networking

186



Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the 
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

c. A policy named allow-same-namespace:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-ingress
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          policy-group.network.openshift.io/ingress: ""
  podSelector: {}
  policyTypes:
  - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-openshift-monitoring
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          network.openshift.io/policy-group: monitoring
  podSelector: {}
  policyTypes:
  - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-same-namespace
spec:

CHAPTER 15. NETWORK POLICY

187



d. A policy named allow-from-kube-apiserver-operator:

For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

Example output

  podSelector:
  ingress:
  - from:
    - podSelector: {}
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-from-kube-apiserver-operator
spec:
  ingress:
  - from:
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: openshift-kube-apiserver-operator
      podSelector:
        matchLabels:
          app: kube-apiserver-operator
  policyTypes:
  - Ingress
EOF

$ oc describe networkpolicy

Name:         allow-from-openshift-ingress
Namespace:    example1
Created on:   2020-06-09 00:28:17 -0400 EDT
Labels:       <none>
Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      NamespaceSelector: network.openshift.io/policy-group: ingress
  Not affecting egress traffic
  Policy Types: Ingress

Name:         allow-from-openshift-monitoring
Namespace:    example1
Created on:   2020-06-09 00:29:57 -0400 EDT
Labels:       <none>

OpenShift Container Platform 4.10 Networking

188

https://access.redhat.com/solutions/6964520


15.8.2. Next steps

Defining a default network policy

15.8.3. Additional resources

OpenShift SDN network isolation modes

Annotations:  <none>
Spec:
  PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
  Allowing ingress traffic:
    To Port: <any> (traffic allowed to all ports)
    From:
      NamespaceSelector: network.openshift.io/policy-group: monitoring
  Not affecting egress traffic
  Policy Types: Ingress

CHAPTER 15. NETWORK POLICY

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-openshift-sdn-modes_about-openshift-sdn


CHAPTER 16. MULTIPLE NETWORKS

16.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plugins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plugin to allow chaining of CNI plugins. During cluster
installation, you configure your default pod network. The default network handles all ordinary network
traffic for the cluster. You can define an additional network based on the available CNI plugins and attach
one or more of these networks to your pods. You can define more than one additional network for your
cluster, depending on your needs. This gives you flexibility when you configure pods that deliver network
functionality, such as switching or routing.

16.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance

You can send traffic on two different planes to manage how much traffic is along each plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network. You can
view the interfaces for a pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, …​, netN.

To attach additional network interfaces to a pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a NetworkAttachmentDefinition custom
resource (CR). A CNI configuration inside each of these CRs defines how that interface is created.

16.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plugins for creating additional networks in
your cluster:

bridge: Configure a bridge-based additional network  to allow pods on the same host to
communicate with each other and the host.

host-device: Configure a host-device additional network  to allow pods access to a physical
Ethernet network device on the host system.

ipvlan: Configure an ipvlan-based additional network  to allow pods on a host to communicate
with other hosts and pods on those hosts, similar to a macvlan-based additional network. Unlike
a macvlan-based additional network, each pod shares the same MAC address as the parent
physical network interface.

macvlan: Configure a macvlan-based additional network  to allow pods on a host to
communicate with other hosts and pods on those hosts by using a physical network interface.

OpenShift Container Platform 4.10 Networking

190

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network


Each pod that is attached to a macvlan-based additional network is provided a unique MAC
address.

SR-IOV: Configure an SR-IOV based additional network  to allow pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

16.2. CONFIGURING AN ADDITIONAL NETWORK

As a cluster administrator, you can configure an additional network for your cluster. The following
network types are supported:

Bridge

Host device

IPVLAN

MACVLAN

16.2.1. Approaches to managing an additional network

You can manage the life cycle of an additional network by two approaches. Each approach is mutually
exclusive and you can only use one approach for managing an additional network at a time. For either
approach, the additional network is managed by a Container Network Interface (CNI) plugin that you
configure.

For an additional network, IP addresses are provisioned through an IP Address Management (IPAM) CNI
plugin that you configure as part of the additional network. The IPAM plugin supports a variety of IP
address assignment approaches including DHCP and static assignment.

Modify the Cluster Network Operator (CNO) configuration: The CNO automatically creates and
manages the NetworkAttachmentDefinition object. In addition to managing the object
lifecycle the CNO ensures a DHCP is available for an additional network that uses a DHCP
assigned IP address.

Applying a YAML manifest: You can manage the additional network directly by creating an 
NetworkAttachmentDefinition object. This approach allows for the chaining of CNI plugins.

16.2.2. Configuration for an additional network attachment

An additional network is configured via the NetworkAttachmentDefinition API in the k8s.cni.cncf.io
API group.

IMPORTANT

Do not store any sensitive information or a secret in the NetworkAttachmentDefinition
object because this information is accessible by the project administration user.

The configuration for the API is described in the following table:

Table 16.1. NetworkAttachmentDefinition API fields

CHAPTER 16. MULTIPLE NETWORKS

191

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network


1

2

3

4

Field Type Description

metadata.name string The name for the additional network.

metadata.namespace string The namespace that the object is associated with.

spec.config string The CNI plugin configuration in JSON format.

16.2.2.1. Configuration of an additional network through the Cluster Network Operator

The configuration for an additional network attachment is specified as part of the Cluster Network
Operator (CNO) configuration.

The following YAML describes the configuration parameters for managing an additional network with
the CNO:

Cluster Network Operator configuration

An array of one or more additional network configurations.

The name for the additional network attachment that you are creating. The name must be unique
within the specified namespace.

The namespace to create the network attachment in. If you do not specify a value, then the default
namespace is used.

A CNI plugin configuration in JSON format.

16.2.2.2. Configuration of an additional network from a YAML manifest

The configuration for an additional network is specified from a YAML configuration file, such as in the
following example:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  # ...
  additionalNetworks: 1
  - name: <name> 2
    namespace: <namespace> 3
    rawCNIConfig: |- 4
      {
        ...
      }
    type: Raw

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

OpenShift Container Platform 4.10 Networking

192



1

2

The name for the additional network attachment that you are creating.

A CNI plugin configuration in JSON format.

16.2.3. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

16.2.3.1. Configuration for a bridge additional network

The following object describes the configuration parameters for the bridge CNI plugin:

Table 16.2. Bridge CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: bridge.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

bridge string Optional: Specify the name of the virtual bridge to use. If the
bridge interface does not exist on the host, it is created. The
default value is cni0.

ipMasq boolean Optional: Set to true to enable IP masquerading for traffic that
leaves the virtual network. The source IP address for all traffic is
rewritten to the bridge’s IP address. If the bridge does not have
an IP address, this setting has no effect. The default value is 
false.

isGateway boolean Optional: Set to true to assign an IP address to the bridge. The
default value is false.

isDefaultGatewa
y

boolean Optional: Set to true to configure the bridge as the default
gateway for the virtual network. The default value is false. If 
isDefaultGateway is set to true, then isGateway is also set
to true automatically.

  name: <name> 1
spec:
  config: |- 2
    {
      ...
    }

CHAPTER 16. MULTIPLE NETWORKS

193



forceAddress boolean Optional: Set to true to allow assignment of a previously
assigned IP address to the virtual bridge. When set to false, if an
IPv4 address or an IPv6 address from overlapping subsets is
assigned to the virtual bridge, an error occurs. The default value
is false.

hairpinMode boolean Optional: Set to true to allow the virtual bridge to send an
Ethernet frame back through the virtual port it was received on.
This mode is also known as reflective relay. The default value is 
false.

promiscMode boolean Optional: Set to true to enable promiscuous mode on the
bridge. The default value is false.

vlan string Optional: Specify a virtual LAN (VLAN) tag as an integer value.
By default, no VLAN tag is assigned.

preserveDefault
Vlan

string Optional: Indicates whether the default vlan must be preserved
on the veth end connected to the bridge. Defaults to true.

vlanTrunk list Optional: Assign a VLAN trunk tag. The default value is none.

mtu string Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

enabledad boolean Optional: Enables duplicate address detection for the container
side veth. The default value is false.

macspoofchk boolean Optional: Enables mac spoof check, limiting the traffic
originating from the container to the mac address of the
interface. The default value is false.

Field Type Description

NOTE

The VLAN parameter configures the VLAN tag on the host end of the veth and also
enables the vlan_filtering feature on the bridge interface.

NOTE

To configure uplink for a L2 network you need to allow the vlan on the uplink interface by
using the following command:

16.2.3.1.1. bridge configuration example

$  bridge vlan add vid VLAN_ID dev DEV

OpenShift Container Platform 4.10 Networking

194



The following example configures an additional network named bridge-net:

16.2.3.2. Configuration for a host device additional network

NOTE

Specify your network device by setting only one of the following parameters: 
device,hwaddr, kernelpath, or pciBusID.

The following object describes the configuration parameters for the host-device CNI plugin:

Table 16.3. Host device CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: host-device.

device string Optional: The name of the device, such as eth0.

hwaddr string Optional: The device hardware MAC address.

kernelpath string Optional: The Linux kernel device path, such as 
/sys/devices/pci0000:00/0000:00:1f.6.

pciBusID string Optional: The PCI address of the network device, such as 
0000:00:1f.6.

16.2.3.2.1. host-device configuration example

The following example configures an additional network named hostdev-net:

{
  "cniVersion": "0.3.1",
  "name": "bridge-net",
  "type": "bridge",
  "isGateway": true,
  "vlan": 2,
  "ipam": {
    "type": "dhcp"
    }
}

{
  "cniVersion": "0.3.1",
  "name": "hostdev-net",

CHAPTER 16. MULTIPLE NETWORKS

195



16.2.3.3. Configuration for an IPVLAN additional network

The following object describes the configuration parameters for the IPVLAN CNI plugin:

Table 16.4. IPVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: ipvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.
This is required unless the plugin is chained.

mode string Optional: The operating mode for the virtual network. The value
must be l2, l3, or l3s. The default value is l2.

master string Optional: The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

mtu integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

NOTE

The ipvlan object does not allow virtual interfaces to communicate with the 
master interface. Therefore the container will not be able to reach the host by
using the ipvlan interface. Be sure that the container joins a network that
provides connectivity to the host, such as a network supporting the Precision
Time Protocol (PTP).

A single master interface cannot simultaneously be configured to use both 
macvlan and ipvlan.

For IP allocation schemes that cannot be interface agnostic, the ipvlan plugin
can be chained with an earlier plugin that handles this logic. If the master is
omitted, then the previous result must contain a single interface name for the 
ipvlan plugin to enslave. If ipam is omitted, then the previous result is used to
configure the ipvlan interface.

16.2.3.3.1. ipvlan configuration example

  "type": "host-device",
  "device": "eth1"
}

OpenShift Container Platform 4.10 Networking

196



The following example configures an additional network named ipvlan-net:

16.2.3.4. Configuration for a MACVLAN additional network

The following object describes the configuration parameters for the macvlan CNI plugin:

Table 16.5. MACVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

name string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: macvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin
manages IP address assignment for the attachment definition.

mode string Optional: Configures traffic visibility on the virtual network.
Must be either bridge, passthru, private, or vepa. If a value is
not provided, the default value is bridge.

master string Optional: The host network interface to associate with the newly
created macvlan interface. If a value is not specified, then the
default route interface is used.

mtu string Optional: The maximum transmission unit (MTU) to the specified
value. The default value is automatically set by the kernel.

NOTE

{
  "cniVersion": "0.3.1",
  "name": "ipvlan-net",
  "type": "ipvlan",
  "master": "eth1",
  "mode": "l3",
  "ipam": {
    "type": "static",
    "addresses": [
       {
         "address": "192.168.10.10/24"
       }
    ]
  }
}

CHAPTER 16. MULTIPLE NETWORKS

197



NOTE

If you specify the master key for the plugin configuration, use a different physical
network interface than the one that is associated with your primary network plugin to
avoid possible conflicts.

16.2.3.4.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

16.2.4. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

16.2.4.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 16.6. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

{
  "cniVersion": "0.3.1",
  "name": "macvlan-net",
  "type": "macvlan",
  "master": "eth1",
  "mode": "bridge",
  "ipam": {
    "type": "dhcp"
    }
}

OpenShift Container Platform 4.10 Networking

198



Table 16.7. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is 
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 16.8. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 16.9. ipam.dns object

Field Type Description

nameservers array An array of one or more IP addresses for to send DNS queries to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for 
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

16.2.4.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

{
  "ipam": {
    "type": "static",
      "addresses": [
        {
          "address": "191.168.1.7/24"
        }
      ]
  }
}

CHAPTER 16. MULTIPLE NETWORKS

199



RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 16.10. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

16.2.4.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 16.11. ipam whereabouts configuration object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  additionalNetworks:
  - name: dhcp-shim
    namespace: default
    type: Raw
    rawCNIConfig: |-
      {
        "name": "dhcp-shim",
        "cniVersion": "0.3.1",
        "type": "bridge",
        "ipam": {
          "type": "dhcp"
        }
      }
  # ...

{
  "ipam": {
    "type": "dhcp"
  }
}

OpenShift Container Platform 4.10 Networking

200



Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

16.2.4.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each
pods gets a unique IP address from the specified IP address range. It also handles IP address releases
when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a 
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

{
  "ipam": {
    "type": "whereabouts",
    "range": "192.0.2.192/27",
    "exclude": [
       "192.0.2.192/30",
       "192.0.2.196/32"
    ]
  }
}

$ oc edit network.operator.openshift.io cluster

CHAPTER 16. MULTIPLE NETWORKS

201



2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

Example output

16.2.5. Creating an additional network attachment with the Cluster Network
Operator

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition object automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition objects that the Cluster Network
Operator manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  additionalNetworks:
  - name: whereabouts-shim
    namespace: default
    rawCNIConfig: |-
      {
       "name": "whereabouts-shim",
       "cniVersion": "0.3.1",
       "type": "bridge",
       "ipam": {
         "type": "whereabouts"
       }
      }
    type: Raw

$ oc get all -n openshift-multus | grep whereabouts-reconciler

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

OpenShift Container Platform 4.10 Networking

202



Log in as a user with cluster-admin privileges.

Procedure

1. Optional: Create the namespace for the additional networks:

2. To edit the CNO configuration, enter the following command:

3. Modify the CR that you are creating by adding the configuration for the additional network that
you are creating, as in the following example CR.

4. Save your changes and quit the text editor to commit your changes.

Verification

Confirm that the CNO created the NetworkAttachmentDefinition object by running the
following command. There might be a delay before the CNO creates the object.

where:

<namespace>

$ oc create namespace <namespace_name>

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  # ...
  additionalNetworks:
  - name: tertiary-net
    namespace: namespace2
    type: Raw
    rawCNIConfig: |-
      {
        "cniVersion": "0.3.1",
        "name": "tertiary-net",
        "type": "ipvlan",
        "master": "eth1",
        "mode": "l2",
        "ipam": {
          "type": "static",
          "addresses": [
            {
              "address": "192.168.1.23/24"
            }
          ]
        }
      }

$ oc get network-attachment-definitions -n <namespace>

CHAPTER 16. MULTIPLE NETWORKS

203



Specifies the namespace for the network attachment that you added to the CNO
configuration.

Example output

16.2.6. Creating an additional network attachment by applying a YAML manifest

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a YAML file with your additional network configuration, such as in the following example:

2. To create the additional network, enter the following command:

where:

<file>

Specifies the name of the file contained the YAML manifest.

16.3. ABOUT VIRTUAL ROUTING AND FORWARDING

16.3.1. About virtual routing and forwarding

Virtual routing and forwarding (VRF) devices combined with IP rules provide the ability to create virtual
routing and forwarding domains. VRF reduces the number of permissions needed by CNF, and provides
increased visibility of the network topology of secondary networks. VRF is used to provide multi-tenancy

NAME                 AGE
test-network-1       14m

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
  name: next-net
spec:
  config: |-
    {
      "cniVersion": "0.3.1",
      "name": "work-network",
      "type": "host-device",
      "device": "eth1",
      "ipam": {
        "type": "dhcp"
      }
    }

$ oc apply -f <file>.yaml

OpenShift Container Platform 4.10 Networking

204



functionality, for example, where each tenant has its own unique routing tables and requires different
default gateways.

Processes can bind a socket to the VRF device. Packets through the binded socket use the routing table
associated with the VRF device. An important feature of VRF is that it impacts only OSI model layer 3
traffic and above so L2 tools, such as LLDP, are not affected. This allows higher priority IP rules such as
policy based routing to take precedence over the VRF device rules directing specific traffic.

16.3.1.1. Benefits of secondary networks for pods for telecommunications operators

In telecommunications use cases, each CNF can potentially be connected to multiple different networks
sharing the same address space. These secondary networks can potentially conflict with the cluster’s
main network CIDR. Using the CNI VRF plugin, network functions can be connected to different
customers' infrastructure using the same IP address, keeping different customers isolated. IP addresses
are overlapped with OpenShift Container Platform IP space. The CNI VRF plugin also reduces the
number of permissions needed by CNF and increases the visibility of network topologies of secondary
networks.

16.4. CONFIGURING MULTI-NETWORK POLICY

As a cluster administrator, you can configure network policy for additional networks.

NOTE

You can specify multi-network policy for only macvlan additional networks. Other types
of additional networks, such as ipvlan, are not supported.

16.4.1. Differences between multi-network policy and network policy

Although the MultiNetworkPolicy API implements the NetworkPolicy API, there are several important
differences:

You must use the MultiNetworkPolicy API:

You must use the multi-networkpolicy resource name when using the CLI to interact with
multi-network policies. For example, you can view a multi-network policy object with the oc get 
multi-networkpolicy <name> command where <name> is the name of a multi-network policy.

You must specify an annotation with the name of the network attachment definition that
defines the macvlan additional network:

where:

<network_name>

Specifies the name of a network attachment definition.

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
  annotations:
    k8s.v1.cni.cncf.io/policy-for: <network_name>

CHAPTER 16. MULTIPLE NETWORKS

205



16.4.2. Enabling multi-network policy for the cluster

As a cluster administrator, you can enable multi-network policy support on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create the multinetwork-enable-patch.yaml file with the following YAML:

2. Configure the cluster to enable multi-network policy:

Example output

16.4.3. Working with multi-network policy

As a cluster administrator, you can create, edit, view, and delete multi-network policies.

16.4.3.1. Prerequisites

You have enabled multi-network policy support for your cluster.

16.4.3.2. Creating a multi-network policy

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a multi-network policy.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  useMultiNetworkPolicy: true

$ oc patch network.operator.openshift.io cluster --type=merge --patch-file=multinetwork-
enable-patch.yaml

network.operator.openshift.io/cluster patched

OpenShift Container Platform 4.10 Networking

206



You are working in the namespace that the multi-network policy applies to.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file:

where:

<policy_name>

Specifies the multi-network policy file name.

b. Define a multi-network policy in the file that you just created, such as in the following
examples:

Deny ingress from all pods in all namespaces

where

<network_name>

Specifies the name of a network attachment definition.

Allow ingress from all pods in the same namespace

where

<network_name>

Specifies the name of a network attachment definition.

$ touch <policy_name>.yaml

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
  name: deny-by-default
  annotations:
    k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
  podSelector:
  ingress: []

apiVersion: k8s.cni.cncf.io/v1beta1
kind: MultiNetworkPolicy
metadata:
  name: allow-same-namespace
  annotations:
    k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
  podSelector:
  ingress:
  - from:
    - podSelector: {}

CHAPTER 16. MULTIPLE NETWORKS

207



2. To create the multi-network policy object, enter the following command:

where:

<policy_name>

Specifies the multi-network policy file name.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

16.4.3.3. Editing a multi-network policy

You can edit a multi-network policy in a namespace.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

1. Optional: To list the multi-network policy objects in a namespace, enter the following command:

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the multi-network policy object.

If you saved the multi-network policy definition in a file, edit the file and make any necessary

$ oc apply -f <policy_name>.yaml -n <namespace>

multinetworkpolicy.k8s.cni.cncf.io/default-deny created

$ oc get multi-networkpolicy

OpenShift Container Platform 4.10 Networking

208



If you saved the multi-network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

where:

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

If you need to update the multi-network policy object directly, enter the following
command:

where:

<policy_name>

Specifies the name of the network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the multi-network policy object is updated.

where:

<policy_name>

Specifies the name of the multi-network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

16.4.3.4. Viewing multi-network policies

You can examine the multi-network policies in a namespace.

Prerequisites

You installed the OpenShift CLI (oc).

$ oc apply -n <namespace> -f <policy_file>.yaml

$ oc edit multi-networkpolicy <policy_name> -n <namespace>

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

CHAPTER 16. MULTIPLE NETWORKS

209



You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

List multi-network policies in a namespace:

To view multi-network policy objects defined in a namespace, enter the following command:

Optional: To examine a specific multi-network policy, enter the following command:

where:

<policy_name>

Specifies the name of the multi-network policy to inspect.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

16.4.3.5. Deleting a multi-network policy

You can delete a multi-network policy in a namespace.

Prerequisites

Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You are working in the namespace where the multi-network policy exists.

Procedure

To delete a multi-network policy object, enter the following command:

where:

$ oc get multi-networkpolicy

$ oc describe multi-networkpolicy <policy_name> -n <namespace>

$ oc delete multi-networkpolicy <policy_name> -n <namespace>

OpenShift Container Platform 4.10 Networking

210



<policy_name>

Specifies the name of the multi-network policy.

<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

16.4.4. Additional resources

About network policy

Understanding multiple networks

Configuring a macvlan network

16.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

As a cluster user you can attach a pod to an additional network.

16.5.1. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

multinetworkpolicy.k8s.cni.cncf.io/default-deny deleted

CHAPTER 16. MULTIPLE NETWORKS

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network


1

1

2

3

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a 
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: |-
      [
        {
          "name": "<network>", 1
          "namespace": "<namespace>", 2
          "default-route": ["<default-route>"] 3
        }
      ]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: macvlan-bridge
    k8s.v1.cni.cncf.io/networks-status: |- 1
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [

OpenShift Container Platform 4.10 Networking

212



1 The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

16.5.1.1. Specifying pod-specific addressing and routing options

When attaching a pod to an additional network, you may want to specify further properties about that
network in a particular pod. This allows you to change some aspects of routing, as well as specify static
IP addresses and MAC addresses. To accomplish this, you can use the JSON formatted annotations.

Prerequisites

The pod must be in the same namespace as the additional network.

Install the OpenShift CLI (oc).

You must log in to the cluster.

Procedure

To add a pod to an additional network while specifying addressing and/or routing options, complete the
following steps:

1. Edit the Pod resource definition. If you are editing an existing Pod resource, run the following
command to edit its definition in the default editor. Replace <name> with the name of the Pod
resource to edit.

2. In the Pod resource definition, add the k8s.v1.cni.cncf.io/networks parameter to the pod 
metadata mapping. The k8s.v1.cni.cncf.io/networks accepts a JSON string of a list of objects
that reference the name of NetworkAttachmentDefinition custom resource (CR) names in
addition to specifying additional properties.

              "10.128.2.14"
          ],
          "default": true,
          "dns": {}
      },{
          "name": "macvlan-bridge",
          "interface": "net1",
          "ips": [
              "20.2.2.100"
          ],
          "mac": "22:2f:60:a5:f8:00",
          "dns": {}
      }]
  name: example-pod
  namespace: default
spec:
  ...
status:
  ...

$ oc edit pod <name>

CHAPTER 16. MULTIPLE NETWORKS

213



1

1

2

Replace <network> with a JSON object as shown in the following examples. The single
quotes are required.

3. In the following example the annotation specifies which network attachment will have the
default route, using the default-route parameter.

The name key is the name of the additional network to associate with the pod.

The default-route key specifies a value of a gateway for traffic to be routed over if no
other routing entry is present in the routing table. If more than one default-route key is
specified, this will cause the pod to fail to become active.

The default route will cause any traffic that is not specified in other routes to be routed to the gateway.

IMPORTANT

Setting the default route to an interface other than the default network interface for
OpenShift Container Platform may cause traffic that is anticipated for pod-to-pod
traffic to be routed over another interface.

To verify the routing properties of a pod, the oc command may be used to execute the ip command
within a pod.

NOTE

metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: '[<network>[,<network>,...]]' 1

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
  annotations:
    k8s.v1.cni.cncf.io/networks: '
    {
      "name": "net1"
    },
    {
      "name": "net2", 1
      "default-route": ["192.0.2.1"] 2
    }'
spec:
  containers:
  - name: example-pod
    command: ["/bin/bash", "-c", "sleep 2000000000000"]
    image: centos/tools

$ oc exec -it <pod_name> -- ip route

OpenShift Container Platform 4.10 Networking

214



1

2

3

NOTE

You may also reference the pod’s k8s.v1.cni.cncf.io/networks-status to see which
additional network has been assigned the default route, by the presence of the default-
route key in the JSON-formatted list of objects.

To set a static IP address or MAC address for a pod you can use the JSON formatted annotations. This
requires you create networks that specifically allow for this functionality. This can be specified in a
rawCNIConfig for the CNO.

1. Edit the CNO CR by running the following command:

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the 
default namespace is used.

Specify the CNI plugin configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for utilizing static MAC address and IP
address using the macvlan CNI plugin:

macvlan CNI plugin JSON configuration object using static IP and MAC address

$ oc edit networks.operator.openshift.io cluster

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
  ...
}'
type: Raw

{
  "cniVersion": "0.3.1",
  "name": "<name>", 1
  "plugins": [{ 2
      "type": "macvlan",
      "capabilities": { "ips": true }, 3
      "master": "eth0", 4
      "mode": "bridge",
      "ipam": {
        "type": "static"
      }
    }, {
      "capabilities": { "mac": true }, 5

CHAPTER 16. MULTIPLE NETWORKS

215



1

2

3

4

5

1

2

3

Specifies the name for the additional network attachment to create. The name must be unique
within the specified namespace.

Specifies an array of CNI plugin configurations. The first object specifies a macvlan plugin
configuration and the second object specifies a tuning plugin configuration.

Specifies that a request is made to enable the static IP address functionality of the CNI plugin
runtime configuration capabilities.

Specifies the interface that the macvlan plugin uses.

Specifies that a request is made to enable the static MAC address functionality of a CNI plugin.

The above network attachment can be referenced in a JSON formatted annotation, along with keys to
specify which static IP and MAC address will be assigned to a given pod.

Edit the pod with:

macvlan CNI plugin JSON configuration object using static IP and MAC address

Use the <name> as provided when creating the rawCNIConfig above.

Provide an IP address including the subnet mask.

Provide the MAC address.

NOTE

Static IP addresses and MAC addresses do not have to be used at the same time, you
may use them individually, or together.

To verify the IP address and MAC properties of a pod with additional networks, use the oc command to
execute the ip command within a pod.

      "type": "tuning"
    }]
}

$ oc edit pod <name>

apiVersion: v1
kind: Pod
metadata:
  name: example-pod
  annotations:
    k8s.v1.cni.cncf.io/networks: '[
      {
        "name": "<name>", 1
        "ips": [ "192.0.2.205/24" ], 2
        "mac": "CA:FE:C0:FF:EE:00" 3
      }
    ]'

OpenShift Container Platform 4.10 Networking

216



16.6. REMOVING A POD FROM AN ADDITIONAL NETWORK

As a cluster user you can remove a pod from an additional network.

16.6.1. Removing a pod from an additional network

You can remove a pod from an additional network only by deleting the pod.

Prerequisites

An additional network is attached to the pod.

Install the OpenShift CLI (oc).

Log in to the cluster.

Procedure

To delete the pod, enter the following command:

<name> is the name of the pod.

<namespace> is the namespace that contains the pod.

16.7. EDITING AN ADDITIONAL NETWORK

As a cluster administrator you can modify the configuration for an existing additional network.

16.7.1. Modifying an additional network attachment definition

As a cluster administrator, you can make changes to an existing additional network. Any existing pods
attached to the additional network will not be updated.

Prerequisites

You have configured an additional network for your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To edit an additional network for your cluster, complete the following steps:

1. Run the following command to edit the Cluster Network Operator (CNO) CR in your default text
editor:

$ oc exec -it <pod_name> -- ip a

$ oc delete pod <name> -n <namespace>

$ oc edit networks.operator.openshift.io cluster

CHAPTER 16. MULTIPLE NETWORKS

217



2. In the additionalNetworks collection, update the additional network with your changes.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO updated the NetworkAttachmentDefinition object by running
the following command. Replace <network-name> with the name of the additional network to
display. There might be a delay before the CNO updates the NetworkAttachmentDefinition
object to reflect your changes.

For example, the following console output displays a NetworkAttachmentDefinition object that
is named net1:

16.8. REMOVING AN ADDITIONAL NETWORK

As a cluster administrator you can remove an additional network attachment.

16.8.1. Removing an additional network attachment definition

As a cluster administrator, you can remove an additional network from your OpenShift Container
Platform cluster. The additional network is not removed from any pods it is attached to.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To remove an additional network from your cluster, complete the following steps:

1. Edit the Cluster Network Operator (CNO) in your default text editor by running the following
command:

2. Modify the CR by removing the configuration from the additionalNetworks collection for the
network attachment definition you are removing.

$ oc get network-attachment-definitions <network-name> -o yaml

$ oc get network-attachment-definitions net1 -o go-template='{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan",
"master": "ens5",
"mode": "bridge",
"ipam":       {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal","search":["us-west-
2.compute.internal"]}} }

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:

OpenShift Container Platform 4.10 Networking

218



1 If you are removing the configuration mapping for the only additional network attachment
definition in the additionalNetworks collection, you must specify an empty collection.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the additional network CR was deleted by running the following
command:

16.9. ASSIGNING A SECONDARY NETWORK TO A VRF

16.9.1. Assigning a secondary network to a VRF

As a cluster administrator, you can configure an additional network for your VRF domain by using the
CNI VRF plugin. The virtual network created by this plugin is associated with a physical interface that
you specify.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use 
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

16.9.1.1. Creating an additional network attachment with the CNI VRF plugin

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition custom resource
(CR) automatically.

NOTE

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

To create an additional network attachment with the CNI VRF plugin, perform the following procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift cluster as a user with cluster-admin privileges.

Procedure

  name: cluster
spec:
  additionalNetworks: [] 1

$ oc get network-attachment-definition --all-namespaces

CHAPTER 16. MULTIPLE NETWORKS

219



1

2

3

4

1. Create the Network custom resource (CR) for the additional network attachment and insert the
rawCNIConfig configuration for the additional network, as in the following example CR. Save
the YAML as the file additional-network-attachment.yaml.

plugins must be a list. The first item in the list must be the secondary network
underpinning the VRF network. The second item in the list is the VRF plugin configuration.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

Optional. table is the routing table ID. By default, the tableid parameter is used. If it is not
specified, the CNI assigns a free routing table ID to the VRF.

NOTE

VRF functions correctly only when the resource is of type netdevice.

2. Create the Network resource:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
  spec:
  additionalNetworks:
  - name: test-network-1
    namespace: additional-network-1
    type: Raw
    rawCNIConfig: '{
      "cniVersion": "0.3.1",
      "name": "macvlan-vrf",
      "plugins": [  1
      {
        "type": "macvlan",  2
        "master": "eth1",
        "ipam": {
            "type": "static",
            "addresses": [
            {
                "address": "191.168.1.23/24"
            }
            ]
        }
      },
      {
        "type": "vrf",
        "vrfname": "example-vrf-name",  3
        "table": 1001   4
      }]
    }'

$ oc create -f additional-network-attachment.yaml

OpenShift Container Platform 4.10 Networking

220



3. Confirm that the CNO created the NetworkAttachmentDefinition CR by running the following
command. Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-network-1.

Example output

NOTE

There might be a delay before the CNO creates the CR.

Verifying that the additional VRF network attachment is successful

To verify that the VRF CNI is correctly configured and the additional network attachment is attached, do
the following:

1. Create a network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the VRF additional network. Remote
shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

$ oc get network-attachment-definitions -n <namespace>

NAME                       AGE
additional-network-1       14m

$ ip vrf show

Name              Table
-----------------------
red                 10

$ ip link

5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red 
state UP mode

CHAPTER 16. MULTIPLE NETWORKS

221



CHAPTER 17. HARDWARE NETWORKS

17.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE
NETWORKS

The Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCI device
assignment that can share a single device with multiple pods.

SR-IOV can segment a compliant network device, recognized on the host node as a physical function
(PF), into multiple virtual functions (VFs). The VF is used like any other network device. The SR-IOV
network device driver for the device determines how the VF is exposed in the container:

netdevice driver: A regular kernel network device in the netns of the container

vfio-pci driver: A character device mounted in the container

You can use SR-IOV network devices with additional networks on your OpenShift Container Platform
cluster installed on bare metal or Red Hat OpenStack Platform (RHOSP) infrastructure for applications
that require high bandwidth or low latency.

You can enable SR-IOV on a node by using the following command:

17.1.1. Components that manage SR-IOV network devices

The SR-IOV Network Operator creates and manages the components of the SR-IOV stack. It performs
the following functions:

Orchestrates discovery and management of SR-IOV network devices

Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container
Network Interface (CNI)

Creates and updates the configuration of the SR-IOV network device plugin

Creates node specific SriovNetworkNodeState custom resources

Updates the spec.interfaces field in each SriovNetworkNodeState custom resource

The Operator provisions the following components:

SR-IOV network configuration daemon

A daemon set that is deployed on worker nodes when the SR-IOV Network Operator starts. The
daemon is responsible for discovering and initializing SR-IOV network devices in the cluster.

SR-IOV Network Operator webhook

A dynamic admission controller webhook that validates the Operator custom resource and sets
appropriate default values for unset fields.

SR-IOV Network resources injector

A dynamic admission controller webhook that provides functionality for patching Kubernetes pod
specifications with requests and limits for custom network resources such as SR-IOV VFs. The SR-
IOV network resources injector adds the resource field to only the first container in a pod
automatically.

$ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

OpenShift Container Platform 4.10 Networking

222



SR-IOV network device plugin

A device plugin that discovers, advertises, and allocates SR-IOV network virtual function (VF)
resources. Device plugins are used in Kubernetes to enable the use of limited resources, typically in
physical devices. Device plugins give the Kubernetes scheduler awareness of resource availability, so
that the scheduler can schedule pods on nodes with sufficient resources.

SR-IOV CNI plugin

A CNI plugin that attaches VF interfaces allocated from the SR-IOV network device plugin directly
into a pod.

SR-IOV InfiniBand CNI plugin

A CNI plugin that attaches InfiniBand (IB) VF interfaces allocated from the SR-IOV network device
plugin directly into a pod.

NOTE

The SR-IOV Network resources injector and SR-IOV Network Operator webhook are
enabled by default and can be disabled by editing the default SriovOperatorConfig CR.
Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices.

17.1.1.1. Supported platforms

The SR-IOV Network Operator is supported on the following platforms:

Bare metal

Red Hat OpenStack Platform (RHOSP)

17.1.1.2. Supported devices

OpenShift Container Platform supports the following network interface controllers:

Table 17.1. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Broadcom BCM57414 14e4 16d7

Broadcom BCM57508 14e4 1750

Intel X710 8086 1572

Intel XL710 8086 1583

Intel XXV710 8086 158b

Intel E810-CQDA2 8086 1592

Intel E810-2CQDA2 8086 1592

CHAPTER 17. HARDWARE NETWORKS

223



Intel E810-XXVDA2 8086 159b

Intel E810-XXVDA4 8086 1593

Mellanox MT27700 Family [ConnectX‑4] 15b3 1013

Mellanox MT27710 Family [ConnectX‑4 Lx] 15b3 1015

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28880 Family [ConnectX‑5 Ex] 15b3 1019

Mellanox MT28908 Family [ConnectX‑6] 15b3 101b

Mellanox MT2894 Family [ConnectX‑6 Lx] 15b3 101f

Mellanox MT2892 Family [ConnectX‑6 Dx] 15b3 101d

Manufacturer Model Vendor ID Device ID

NOTE

For the most up-to-date list of supported cards and compatible OpenShift Container
Platform versions available, see Openshift Single Root I/O Virtualization (SR-IOV) and
PTP hardware networks Support Matrix.

17.1.1.3. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CR is assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

IMPORTANT

Do not modify a SriovNetworkNodeState object. The Operator creates and manages
these resources automatically.

17.1.1.3.1. Example SriovNetworkNodeState object

The following YAML is an example of a SriovNetworkNodeState object created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:

OpenShift Container Platform 4.10 Networking

224

https://access.redhat.com/articles/6954499


1

2

The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

  name: node-25 1
  namespace: openshift-sriov-network-operator
  ownerReferences:
  - apiVersion: sriovnetwork.openshift.io/v1
    blockOwnerDeletion: true
    controller: true
    kind: SriovNetworkNodePolicy
    name: default
spec:
  dpConfigVersion: "39824"
status:
  interfaces: 2
  - deviceID: "1017"
    driver: mlx5_core
    mtu: 1500
    name: ens785f0
    pciAddress: "0000:18:00.0"
    totalvfs: 8
    vendor: 15b3
  - deviceID: "1017"
    driver: mlx5_core
    mtu: 1500
    name: ens785f1
    pciAddress: "0000:18:00.1"
    totalvfs: 8
    vendor: 15b3
  - deviceID: 158b
    driver: i40e
    mtu: 1500
    name: ens817f0
    pciAddress: 0000:81:00.0
    totalvfs: 64
    vendor: "8086"
  - deviceID: 158b
    driver: i40e
    mtu: 1500
    name: ens817f1
    pciAddress: 0000:81:00.1
    totalvfs: 64
    vendor: "8086"
  - deviceID: 158b
    driver: i40e
    mtu: 1500
    name: ens803f0
    pciAddress: 0000:86:00.0
    totalvfs: 64
    vendor: "8086"
  syncStatus: Succeeded

CHAPTER 17. HARDWARE NETWORKS

225



17.1.1.4. Example use of a virtual function in a pod

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)
application in a pod with SR-IOV VF attached.

This example shows a pod using a virtual function (VF) in RDMA mode:

Pod spec that uses RDMA mode

The following example shows a pod with a VF in DPDK mode:

Pod spec that uses DPDK mode

apiVersion: v1
kind: Pod
metadata:
  name: rdma-app
  annotations:
    k8s.v1.cni.cncf.io/networks: sriov-rdma-mlnx
spec:
  containers:
  - name: testpmd
    image: <RDMA_image>
    imagePullPolicy: IfNotPresent
    securityContext:
      runAsUser: 0
      capabilities:
        add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
    command: ["sleep", "infinity"]

apiVersion: v1
kind: Pod
metadata:
  name: dpdk-app
  annotations:
    k8s.v1.cni.cncf.io/networks: sriov-dpdk-net
spec:
  containers:
  - name: testpmd
    image: <DPDK_image>
    securityContext:
      runAsUser: 0
      capabilities:
        add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"]
    volumeMounts:
    - mountPath: /dev/hugepages
      name: hugepage
    resources:
      limits:
        memory: "1Gi"
        cpu: "2"
        hugepages-1Gi: "4Gi"
      requests:
        memory: "1Gi"
        cpu: "2"

OpenShift Container Platform 4.10 Networking

226



17.1.1.5. DPDK library for use with container applications

An optional library, app-netutil, provides several API methods for gathering network information about a
pod from within a container running within that pod.

This library can assist with integrating SR-IOV virtual functions (VFs) in Data Plane Development Kit
(DPDK) mode into the container. The library provides both a Golang API and a C API.

Currently there are three API methods implemented:

GetCPUInfo()

This function determines which CPUs are available to the container and returns the list.

GetHugepages()

This function determines the amount of huge page memory requested in the Pod spec for each
container and returns the values.

GetInterfaces()

This function determines the set of interfaces in the container and returns the list. The return value
includes the interface type and type-specific data for each interface.

The repository for the library includes a sample Dockerfile to build a container image, dpdk-app-centos.
The container image can run one of the following DPDK sample applications, depending on an
environment variable in the pod specification: l2fwd, l3wd or testpmd. The container image provides an
example of integrating the app-netutil library into the container image itself. The library can also
integrate into an init container. The init container can collect the required data and pass the data to an
existing DPDK workload.

17.1.1.6. Huge pages resource injection for Downward API

When a pod specification includes a resource request or limit for huge pages, the Network Resources
Injector automatically adds Downward API fields to the pod specification to provide the huge pages
information to the container.

The Network Resources Injector adds a volume that is named podnetinfo and is mounted at 
/etc/podnetinfo for each container in the pod. The volume uses the Downward API and includes a file
for huge pages requests and limits. The file naming convention is as follows:

/etc/podnetinfo/hugepages_1G_request_<container-name>

/etc/podnetinfo/hugepages_1G_limit_<container-name>

/etc/podnetinfo/hugepages_2M_request_<container-name>

/etc/podnetinfo/hugepages_2M_limit_<container-name>

The paths specified in the previous list are compatible with the app-netutil library. By default, the library
is configured to search for resource information in the /etc/podnetinfo directory. If you choose to
specify the Downward API path items yourself manually, the app-netutil library searches for the

        hugepages-1Gi: "4Gi"
    command: ["sleep", "infinity"]
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages

CHAPTER 17. HARDWARE NETWORKS

227

https://github.com/openshift/app-netutil


following paths in addition to the paths in the previous list.

/etc/podnetinfo/hugepages_request

/etc/podnetinfo/hugepages_limit

/etc/podnetinfo/hugepages_1G_request

/etc/podnetinfo/hugepages_1G_limit

/etc/podnetinfo/hugepages_2M_request

/etc/podnetinfo/hugepages_2M_limit

As with the paths that the Network Resources Injector can create, the paths in the preceding list can
optionally end with a _<container-name> suffix.

17.1.2. Next steps

Installing the SR-IOV Network Operator

Optional: Configuring the SR-IOV Network Operator

Configuring an SR-IOV network device

If you use OpenShift Virtualization: Connecting a virtual machine to an SR-IOV network

Configuring an SR-IOV network attachment

Adding a pod to an SR-IOV additional network

17.2. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

17.2.1. Installing SR-IOV Network Operator

As a cluster administrator, you can install the SR-IOV Network Operator by using the OpenShift
Container Platform CLI or the web console.

17.2.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

OpenShift Container Platform 4.10 Networking

228

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/virtualization/#virt-attaching-vm-to-sriov-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#add-pod


1. To create the openshift-sriov-network-operator namespace, enter the following command:

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the SR-IOV Network Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.

b. To create a Subscription CR for the SR-IOV Network Operator, enter the following
command:

4. To verify that the Operator is installed, enter the following command:

Example output

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
  name: openshift-sriov-network-operator
  annotations:
    workload.openshift.io/allowed: management
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: sriov-network-operators
  namespace: openshift-sriov-network-operator
spec:
  targetNamespaces:
  - openshift-sriov-network-operator
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
    grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: sriov-network-operator-subscription
  namespace: openshift-sriov-network-operator
spec:
  channel: "${OC_VERSION}"
  name: sriov-network-operator
  source: redhat-operators
  sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-sriov-network-operator \
  -o custom-columns=Name:.metadata.name,Phase:.status.phase

CHAPTER 17. HARDWARE NETWORKS

229



17.2.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Install the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that SR-IOV Network Operator is listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

Name                                        Phase
sriov-network-operator.4.10.0-202110121402   Succeeded

OpenShift Container Platform 4.10 Networking

230



NOTE

For single-node OpenShift clusters, the annotation 
workload.openshift.io/allowed=management is required for the
namespace.

17.2.2. Next steps

Optional: Configuring the SR-IOV Network Operator

17.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

17.3.1. Configuring the SR-IOV Network Operator

IMPORTANT

Modifying the SR-IOV Network Operator configuration is not normally necessary. The
default configuration is recommended for most use cases. Complete the steps to modify
the relevant configuration only if the default behavior of the Operator is not compatible
with your use case.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition resource. The Operator automatically creates a SriovOperatorConfig
custom resource (CR) named default in the openshift-sriov-network-operator namespace.

NOTE

The default CR contains the SR-IOV Network Operator configuration for your cluster. To
change the Operator configuration, you must modify this CR.

17.3.1.1. SR-IOV Network Operator config custom resource

The fields for the sriovoperatorconfig custom resource are described in the following table:

Table 17.2. SR-IOV Network Operator config custom resource

Field Type Description

metadata.name string Specifies the name of the SR-IOV Network Operator instance.
The default value is default. Do not set a different value.

metadata.name
space

string Specifies the namespace of the SR-IOV Network Operator
instance. The default value is openshift-sriov-network-
operator. Do not set a different value.

$ oc annotate ns/openshift-sriov-network-operator 
workload.openshift.io/allowed=management

CHAPTER 17. HARDWARE NETWORKS

231

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-operator


spec.configDae
monNodeSelect
or

string Specifies the node selection to control scheduling the SR-IOV
Network Config Daemon on selected nodes. By default, this field
is not set and the Operator deploys the SR-IOV Network Config
daemon set on worker nodes.

spec.disableDra
in

boolean Specifies whether to disable the node draining process or enable
the node draining process when you apply a new policy to
configure the NIC on a node. Setting this field to true facilitates
software development and installing OpenShift Container
Platform on a single node. By default, this field is not set.

For single-node clusters, set this field to true after installing the
Operator. This field must remain set to true.

spec.enableInje
ctor

boolean Specifies whether to enable or disable the Network Resources
Injector daemon set. By default, this field is set to true.

spec.enableOpe
ratorWebhook

boolean Specifies whether to enable or disable the Operator Admission
Controller webhook daemon set. By default, this field is set to 
true.

spec.logLevel integer Specifies the log verbosity level of the Operator. Set to 0 to
show only the basic logs. Set to 2 to show all the available logs.
By default, this field is set to 2.

Field Type Description

17.3.1.2. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application. It provides
the following capabilities:

Mutation of resource requests and limits in a pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

Mutation of a pod specification with a Downward API volume to expose pod annotations, labels,
and huge pages requests and limits. Containers that run in the pod can access the exposed
information as files under the /etc/podnetinfo path.

By default, the Network Resources Injector is enabled by the SR-IOV Network Operator and runs as a
daemon set on all control plane nodes. The following is an example of Network Resources Injector pods
running in a cluster with three control plane nodes:

Example output

$ oc get pods -n openshift-sriov-network-operator

NAME                                      READY   STATUS    RESTARTS   AGE
network-resources-injector-5cz5p          1/1     Running   0          10m
network-resources-injector-dwqpx          1/1     Running   0          10m
network-resources-injector-lktz5          1/1     Running   0          10m

OpenShift Container Platform 4.10 Networking

232



17.3.1.3. About the SR-IOV Network Operator admission controller webhook

The SR-IOV Network Operator Admission Controller webhook is a Kubernetes Dynamic Admission
Controller application. It provides the following capabilities:

Validation of the SriovNetworkNodePolicy CR when it is created or updated.

Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and 
deviceType fields when the CR is created or updated.

By default the SR-IOV Network Operator Admission Controller webhook is enabled by the Operator and
runs as a daemon set on all control plane nodes.

NOTE

Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices. For information about
configuring unsupported devices, see Configuring the SR-IOV Network Operator to use
an unsupported NIC.

The following is an example of the Operator Admission Controller webhook pods running in a cluster
with three control plane nodes:

Example output

17.3.1.4. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

17.3.1.5. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, which is enabled by default, complete the following
procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

$ oc get pods -n openshift-sriov-network-operator

NAME                                      READY   STATUS    RESTARTS   AGE
operator-webhook-9jkw6                    1/1     Running   0          16m
operator-webhook-kbr5p                    1/1     Running   0          16m
operator-webhook-rpfrl                    1/1     Running   0          16m

CHAPTER 17. HARDWARE NETWORKS

233

https://access.redhat.com/articles/7010183


Procedure

Set the enableInjector field. Replace <value> with false to disable the feature or true to
enable the feature.

TIP

You can alternatively apply the following YAML to update the Operator:

17.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook

To disable or enable the admission controller webhook, which is enabled by default, complete the
following procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

Set the enableOperatorWebhook field. Replace <value> with false to disable the feature or 
true to enable it:

TIP

$ oc patch sriovoperatorconfig default \
  --type=merge -n openshift-sriov-network-operator \
  --patch '{ "spec": { "enableInjector": <value> } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
  name: default
  namespace: openshift-sriov-network-operator
spec:
  enableInjector: <value>

$ oc patch sriovoperatorconfig default --type=merge \
  -n openshift-sriov-network-operator \
  --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

OpenShift Container Platform 4.10 Networking

234



TIP

You can alternatively apply the following YAML to update the Operator:

17.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

To update the node selector for the operator, enter the following command:

Replace <node_label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": "".

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
  name: default
  namespace: openshift-sriov-network-operator
spec:
  enableOperatorWebhook: <value>

$ oc patch sriovoperatorconfig default --type=json \
  -n openshift-sriov-network-operator \
  --patch '[{
      "op": "replace",
      "path": "/spec/configDaemonNodeSelector",
      "value": {<node_label>}
    }]'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
  name: default
  namespace: openshift-sriov-network-operator
spec:
  configDaemonNodeSelector:
    <node_label>

CHAPTER 17. HARDWARE NETWORKS

235



17.3.1.8. Configuring the SR-IOV Network Operator for single node installations

By default, the SR-IOV Network Operator drains workloads from a node before every policy change.
The Operator performs this action to ensure that there no workloads using the virtual functions before
the reconfiguration.

For installations on a single node, there are no other nodes to receive the workloads. As a result, the
Operator must be configured not to drain the workloads from the single node.

IMPORTANT

After performing the following procedure to disable draining workloads, you must remove
any workload that uses an SR-IOV network interface before you change any SR-IOV
network node policy.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

Procedure

To set the disableDrain field to true, enter the following command:

TIP

You can alternatively apply the following YAML to update the Operator:

17.3.2. Next steps

Configuring an SR-IOV network device

17.4. CONFIGURING AN SR-IOV NETWORK DEVICE

You can configure a Single Root I/O Virtualization (SR-IOV) device in your cluster.

17.4.1. SR-IOV network node configuration object

You specify the SR-IOV network device configuration for a node by creating an SR-IOV network node

$ oc patch sriovoperatorconfig default --type=merge \
  -n openshift-sriov-network-operator \
  --patch '{ "spec": { "disableDrain": true } }'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
  name: default
  namespace: openshift-sriov-network-operator
spec:
  disableDrain: true

OpenShift Container Platform 4.10 Networking

236

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-device


1

2

3

4

You specify the SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. The API object for the policy is part of the sriovnetwork.openshift.io API group.

The following YAML describes an SR-IOV network node policy:

The name for the custom resource object.

The namespace where the SR-IOV Network Operator is installed.

The resource name of the SR-IOV network device plugin. You can create multiple SR-IOV network
node policies for a resource name.

When specifying a name, be sure to use the accepted syntax expression ̂ [a-zA-Z0-9_]+$ in the 
resourceName.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the selected
nodes are configured. The SR-IOV Container Network Interface (CNI) plugin and device plugin are
deployed on selected nodes only.

IMPORTANT

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true" 4
  priority: <priority> 5
  mtu: <mtu> 6
  needVhostNet: false 7
  numVfs: <num> 8
  nicSelector: 9
    vendor: "<vendor_code>" 10
    deviceID: "<device_id>" 11
    pfNames: ["<pf_name>", ...] 12
    rootDevices: ["<pci_bus_id>", ...] 13
    netFilter: "<filter_string>" 14
  deviceType: <device_type> 15
  isRdma: false 16
    linkType: <link_type> 17
  eSwitchMode: "switchdev" 18

CHAPTER 17. HARDWARE NETWORKS

237



5

6

7

8

9

10

11

12

13

14

IMPORTANT

The SR-IOV Network Operator applies node network configuration policies to nodes
in sequence. Before applying node network configuration policies, the SR-IOV
Network Operator checks if the machine config pool (MCP) for a node is in an
unhealthy state such as Degraded or Updating. If a node is in an unhealthy MCP,
the process of applying node network configuration policies to all targeted nodes in
the cluster pauses until the MCP returns to a healthy state.

To avoid a node in an unhealthy MCP from blocking the application of node network
configuration policies to other nodes, including nodes in other MCPs, you must
create a separate node network configuration policy for each MCP.

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher priority.
For example, a priority of 10 is a higher priority than 99. The default value is 99.

Optional: The maximum transmission unit (MTU) of the virtual function. The maximum MTU value
can vary for different network interface controller (NIC) models.

IMPORTANT

If you want to create virtual function on the default network interface, ensure that
the MTU is set to a value that matches the cluster MTU.

Optional: Set needVhostNet to true to mount the /dev/vhost-net device in the pod. Use the
mounted /dev/vhost-net device with Data Plane Development Kit (DPDK) to forward traffic to the
kernel network stack.

The number of the virtual functions (VF) to create for the SR-IOV physical network device. For an
Intel network interface controller (NIC), the number of VFs cannot be larger than the total VFs
supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to specify
values for all the parameters. It is recommended to identify the network device with enough
precision to avoid selecting a device unintentionally.

If you specify rootDevices, you must also specify a value for vendor, deviceID, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they refer to the same
device. If you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: The vendor hexadecimal code of the SR-IOV network device. The only allowed values are
8086 and 15b3.

Optional: The device hexadecimal code of the SR-IOV network device. For example, 101b is the
device ID for a Mellanox ConnectX-6 device.

Optional: An array of one or more physical function (PF) names for the device.

Optional: An array of one or more PCI bus addresses for the PF of the device. Provide the address
in the following format: 0000:02:00.1.

Optional: The platform-specific network filter. The only supported platform is Red Hat OpenStack
Platform (RHOSP). Acceptable values use the following format: openstack/NetworkID:xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx. Replace xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx with the value
from the /var/config/openstack/latest/network_data.json metadata file.

OpenShift Container Platform 4.10 Networking

238



15

16

17

18

Optional: The driver type for the virtual functions. The only allowed values are netdevice and vfio-
pci. The default value is netdevice.

For a Mellanox NIC to work in DPDK mode on bare metal nodes, use the netdevice driver type and
set isRdma to true.

Optional: Configures whether to enable remote direct memory access (RDMA) mode. The default
value is false.

If the isRdma parameter is set to true, you can continue to use the RDMA-enabled VF as a normal
network device. A device can be used in either mode.

Set isRdma to true and additionally set needVhostNet to true to configure a Mellanox NIC for
use with Fast Datapath DPDK applications.

Optional: The link type for the VFs. The default value is eth for Ethernet. Change this value to 'ib'
for InfiniBand.

When linkType is set to ib, isRdma is automatically set to true by the SR-IOV Network Operator
webhook. When linkType is set to ib, deviceType should not be set to vfio-pci.

Do not set linkType to 'eth' for SriovNetworkNodePolicy, because this can lead to an incorrect
number of available devices reported by the device plugin.

Optional: To enable hardware offloading, the 'eSwitchMode' field must be set to "switchdev".

17.4.1.1. SR-IOV network node configuration examples

The following example describes the configuration for an InfiniBand device:

Example configuration for an InfiniBand device

The following example describes the configuration for an SR-IOV network device in a RHOSP virtual
machine:

Example configuration for an SR-IOV device in a virtual machine

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: policy-ib-net-1
  namespace: openshift-sriov-network-operator
spec:
  resourceName: ibnic1
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  numVfs: 4
  nicSelector:
    vendor: "15b3"
    deviceID: "101b"
    rootDevices:
      - "0000:19:00.0"
  linkType: ib
  isRdma: true

CHAPTER 17. HARDWARE NETWORKS

239



1

2

The numVfs field is always set to 1 when configuring the node network policy for a virtual machine.

The netFilter field must refer to a network ID when the virtual machine is deployed on RHOSP.
Valid values for netFilter are available from an SriovNetworkNodeState object.

17.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

In some cases, you might want to split virtual functions (VFs) from the same physical function (PF) into
multiple resource pools. For example, you might want some of the VFs to load with the default driver
and the remaining VFs load with the vfio-pci driver. In such a deployment, the pfNames selector in your
SriovNetworkNodePolicy custom resource (CR) can be used to specify a range of VFs for a pool using
the following format: <pfname>#<first_vf>-<last_vf>.

For example, the following YAML shows the selector for an interface named netpf0 with VF 2 through 7:

netpf0 is the PF interface name.

2 is the first VF index (0-based) that is included in the range.

7 is the last VF index (0-based) that is included in the range.

You can select VFs from the same PF by using different policy CRs if the following requirements are
met:

The numVfs value must be identical for policies that select the same PF.

The VF index must be in the range of 0 to <numVfs>-1. For example, if you have a policy with 
numVfs set to 8, then the <first_vf> value must not be smaller than 0, and the <last_vf> must
not be larger than 7.

The VFs ranges in different policies must not overlap.

The <first_vf> must not be larger than the <last_vf>.

The following example illustrates NIC partitioning for an SR-IOV device.

The policy policy-net-1 defines a resource pool net-1 that contains the VF 0 of PF netpf0 with the

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: policy-sriov-net-openstack-1
  namespace: openshift-sriov-network-operator
spec:
  resourceName: sriovnic1
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  numVfs: 1 1
  nicSelector:
    vendor: "15b3"
    deviceID: "101b"
    netFilter: "openstack/NetworkID:ea24bd04-8674-4f69-b0ee-fa0b3bd20509" 2

pfNames: ["netpf0#2-7"]

OpenShift Container Platform 4.10 Networking

240



1

The policy policy-net-1 defines a resource pool net-1 that contains the VF 0 of PF netpf0 with the
default VF driver. The policy policy-net-1-dpdk defines a resource pool net-1-dpdk that contains the
VF 8 to 15 of PF netpf0 with the vfio VF driver.

Policy policy-net-1:

Policy policy-net-1-dpdk:

Verifying that the interface is successfully partitioned

Confirm that the interface partitioned to virtual functions (VFs) for the SR-IOV device by running the
following command.

Replace <interface> with the interface that you specified when partitioning to VFs for the SR-IOV
device, for example, ens3f1.

Example output

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: policy-net-1
  namespace: openshift-sriov-network-operator
spec:
  resourceName: net1
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  numVfs: 16
  nicSelector:
    pfNames: ["netpf0#0-0"]
  deviceType: netdevice

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: policy-net-1-dpdk
  namespace: openshift-sriov-network-operator
spec:
  resourceName: net1dpdk
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  numVfs: 16
  nicSelector:
    pfNames: ["netpf0#8-15"]
  deviceType: vfio-pci

$ ip link show <interface> 1

5: ens3f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode 
DEFAULT group default qlen 1000
link/ether 3c:fd:fe:d1:bc:01 brd ff:ff:ff:ff:ff:ff

vf 0     link/ether 5a:e7:88:25:ea:a0 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 1     link/ether 3e:1d:36:d7:3d:49 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off

CHAPTER 17. HARDWARE NETWORKS

241



17.4.2. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

2. Optional: Label the SR-IOV capable cluster nodes with 
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

3. Create the SriovNetworkNodePolicy object:

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

4. To verify that the SR-IOV network device is configured, enter the following command. Replace 
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

vf 2     link/ether ce:09:56:97:df:f9 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 3     link/ether 5e:91:cf:88:d1:38 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
vf 4     link/ether e6:06:a1:96:2f:de brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o 
jsonpath='{.status.syncStatus}'

OpenShift Container Platform 4.10 Networking

242



Additional resources

Understanding how to update labels on nodes .

17.4.3. Troubleshooting SR-IOV configuration

After following the procedure to configure an SR-IOV network device, the following sections address
some error conditions.

To display the state of nodes, run the following command:

where: <node_name> specifies the name of a node with an SR-IOV network device.

Error output: Cannot allocate memory

When a node indicates that it cannot allocate memory, check the following items:

Confirm that global SR-IOV settings are enabled in the BIOS for the node.

Confirm that VT-d is enabled in the BIOS for the node.

17.4.4. Assigning an SR-IOV network to a VRF

As a cluster administrator, you can assign an SR-IOV network interface to your VRF domain by using the
CNI VRF plugin.

To do this, add the VRF configuration to the optional metaPlugins parameter of the SriovNetwork
resource.

NOTE

Applications that use VRFs need to bind to a specific device. The common usage is to use
the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use 
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

17.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin

The SR-IOV Network Operator manages additional network definitions. When you specify an additional
SR-IOV network to create, the SR-IOV Network Operator creates the NetworkAttachmentDefinition
custom resource (CR) automatically.

NOTE

Do not edit NetworkAttachmentDefinition custom resources that the SR-IOV Network
Operator manages. Doing so might disrupt network traffic on your additional network.

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name>

"lastSyncError": "write /sys/bus/pci/devices/0000:3b:00.1/sriov_numvfs: cannot allocate memory"

CHAPTER 17. HARDWARE NETWORKS

243

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working


1

2

To create an additional SR-IOV network attachment with the CNI VRF plugin, perform the following
procedure.

Prerequisites

Install the OpenShift Container Platform CLI (oc).

Log in to the OpenShift Container Platform cluster as a user with cluster-admin privileges.

Procedure

1. Create the SriovNetwork custom resource (CR) for the additional SR-IOV network attachment
and insert the metaPlugins configuration, as in the following example CR. Save the YAML as
the file sriov-network-attachment.yaml.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, it is created.

2. Create the SriovNetwork resource:

Verifying that the NetworkAttachmentDefinition CR is successfully created

Confirm that the SR-IOV Network Operator created the NetworkAttachmentDefinition CR by
running the following command.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: example-network
  namespace: additional-sriov-network-1
spec:
  ipam: |
    {
      "type": "host-local",
      "subnet": "10.56.217.0/24",
      "rangeStart": "10.56.217.171",
      "rangeEnd": "10.56.217.181",
      "routes": [{
        "dst": "0.0.0.0/0"
      }],
      "gateway": "10.56.217.1"
    }
  vlan: 0
  resourceName: intelnics
  metaPlugins : |
    {
      "type": "vrf", 1
      "vrfname": "example-vrf-name" 2
    }

$ oc create -f sriov-network-attachment.yaml

OpenShift Container Platform 4.10 Networking

244



1 Replace <namespace> with the namespace that you specified when configuring the
network attachment, for example, additional-sriov-network-1.

Example output

NOTE

There might be a delay before the SR-IOV Network Operator creates the CR.

Verifying that the additional SR-IOV network attachment is successful

To verify that the VRF CNI is correctly configured and the additional SR-IOV network attachment is
attached, do the following:

1. Create an SR-IOV network that uses the VRF CNI.

2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the SR-IOV additional network.
Remote shell into the pod and run the following command:

Example output

4. Confirm the VRF interface is master of the secondary interface:

Example output

17.4.5. Next steps

Configuring an SR-IOV network attachment

17.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT

$ oc get network-attachment-definitions -n <namespace> 1

NAME                            AGE
additional-sriov-network-1      14m

$ ip vrf show

Name              Table
-----------------------
red                 10

$ ip link

...
5: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red 
state UP mode
...

CHAPTER 17. HARDWARE NETWORKS

245

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-net-attach


1

2

3

4

5

6

7

8

You can configure an Ethernet network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

17.5.1. Ethernet device configuration object

You can configure an Ethernet network device by defining an SriovNetwork object.

The following YAML describes an SriovNetwork object:

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Network Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovNetwork object. Only pods in the target namespace can
attach to the additional network.

Optional: A Virtual LAN (VLAN) ID for the additional network. The integer value must be from 0 to 
4095. The default value is 0.

Optional: The spoof check mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the object is rejected by the
SR-IOV Network Operator.

A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin manages IP
address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed value are enable, disable and auto.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  networkNamespace: <target_namespace> 4
  vlan: <vlan> 5
  spoofChk: "<spoof_check>" 6
  ipam: |- 7
    {}
  linkState: <link_state> 8
  maxTxRate: <max_tx_rate> 9
  minTxRate: <min_tx_rate> 10
  vlanQoS: <vlan_qos> 11
  trust: "<trust_vf>" 12
  capabilities: <capabilities> 13

OpenShift Container Platform 4.10 Networking

246



9

10

11

12

13

Optional: A maximum transmission rate, in Mbps, for the VF.

Optional: A minimum transmission rate, in Mbps, for the VF. This value must be less than or equal to
the maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: An IEEE 802.1p priority level for the VF. The default value is 0.

Optional: The trust mode of the VF. The allowed values are the strings "on" and "off".

IMPORTANT

You must enclose the value that you specify in quotes, or the SR-IOV Network
Operator rejects the object.

Optional: The capabilities to configure for this additional network. You can specify "{ "ips": true }"
to enable IP address support or "{ "mac": true }" to enable MAC address support.

17.5.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

17.5.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 17.3. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

CHAPTER 17. HARDWARE NETWORKS

247

https://bugzilla.redhat.com/show_bug.cgi?id=1772847


dns array Optional: An array of objects specifying the DNS configuration.

Field Type Description

The addresses array requires objects with the following fields:

Table 17.4. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is 
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 17.5. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 17.6. ipam.dns object

Field Type Description

nameservers array An array of one or more IP addresses for to send DNS queries to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for 
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

{
  "ipam": {
    "type": "static",
      "addresses": [
        {
          "address": "191.168.1.7/24"
        }

OpenShift Container Platform 4.10 Networking

248



17.5.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

The SR-IOV Network Operator does not create a DHCP server deployment; The Cluster
Network Operator is responsible for creating the minimal DHCP server deployment.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 17.7. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

      ]
  }
}

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  additionalNetworks:
  - name: dhcp-shim
    namespace: default
    type: Raw
    rawCNIConfig: |-
      {
        "name": "dhcp-shim",
        "cniVersion": "0.3.1",
        "type": "bridge",
        "ipam": {
          "type": "dhcp"
        }
      }
  # ...

{
  "ipam": {

CHAPTER 17. HARDWARE NETWORKS

249



17.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 17.8. ipam whereabouts configuration object

Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

17.5.1.1.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each
pods gets a unique IP address from the specified IP address range. It also handles IP address releases
when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

    "type": "dhcp"
  }
}

{
  "ipam": {
    "type": "whereabouts",
    "range": "192.0.2.192/27",
    "exclude": [
       "192.0.2.192/30",
       "192.0.2.196/32"
    ]
  }
}

OpenShift Container Platform 4.10 Networking

250



To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a 
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

Example output

17.5.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  additionalNetworks:
  - name: whereabouts-shim
    namespace: default
    rawCNIConfig: |-
      {
       "name": "whereabouts-shim",
       "cniVersion": "0.3.1",
       "type": "bridge",
       "ipam": {
         "type": "whereabouts"
       }
      }
    type: Raw

$ oc get all -n openshift-multus | grep whereabouts-reconciler

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

CHAPTER 17. HARDWARE NETWORKS

251



You can configure an additional network that uses SR-IOV hardware by creating an SriovNetwork
object. When you create an SriovNetwork object, the SR-IOV Network Operator automatically creates
a NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovNetwork object if it is attached to any pods in a running
state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovNetwork object, and then save the YAML in the <name>.yaml file, where 
<name> is a name for this additional network. The object specification might resemble the
following example:

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the 
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the networkNamespace you specified in the SriovNetwork object.

17.5.3. Next steps

Adding a pod to an SR-IOV additional network

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: attach1
  namespace: openshift-sriov-network-operator
spec:
  resourceName: net1
  networkNamespace: project2
  ipam: |-
    {
      "type": "host-local",
      "subnet": "10.56.217.0/24",
      "rangeStart": "10.56.217.171",
      "rangeEnd": "10.56.217.181",
      "gateway": "10.56.217.1"
    }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

OpenShift Container Platform 4.10 Networking

252

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#add-pod


1

2

3

4

5

6

7

17.5.4. Additional resources

Configuring an SR-IOV network device

17.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT

You can configure an InfiniBand (IB) network attachment for an Single Root I/O Virtualization (SR-IOV)
device in the cluster.

17.6.1. InfiniBand device configuration object

You can configure an InfiniBand (IB) network device by defining an SriovIBNetwork object.

The following YAML describes an SriovIBNetwork object:

A name for the object. The SR-IOV Network Operator creates a NetworkAttachmentDefinition
object with same name.

The namespace where the SR-IOV Operator is installed.

The value for the spec.resourceName parameter from the SriovNetworkNodePolicy object that
defines the SR-IOV hardware for this additional network.

The target namespace for the SriovIBNetwork object. Only pods in the target namespace can
attach to the network device.

Optional: A configuration object for the IPAM CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

Optional: The link state of virtual function (VF). Allowed values are enable, disable and auto.

Optional: The capabilities to configure for this network. You can specify "{ "ips": true }" to enable
IP address support or "{ "infinibandGUID": true }" to enable IB Global Unique Identifier (GUID)
support.

17.6.1.1. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
  name: <name> 1
  namespace: openshift-sriov-network-operator 2
spec:
  resourceName: <sriov_resource_name> 3
  networkNamespace: <target_namespace> 4
  ipam: |- 5
    {}
  linkState: <link_state> 6
  capabilities: <capabilities> 7

CHAPTER 17. HARDWARE NETWORKS

253

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-device


You can use the following IP address assignment types:

Static assignment.

Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

Dynamic assignment through the Whereabouts IPAM CNI plugin.

17.6.1.1.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 17.9. ipam static configuration object

Field Type Description

type string The IPAM address type. The value static is required.

addresses array An array of objects specifying IP addresses to assign to the
virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

Table 17.10. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is 
255.255.255.0.

gateway string The default gateway to route egress network traffic to.

Table 17.11. ipam.routes[] array

Field Type Description

dst string The IP address range in CIDR format, such as 192.168.17.0/24
or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 17.12. ipam.dns object

OpenShift Container Platform 4.10 Networking

254



Field Type Description

nameservers array An array of one or more IP addresses for to send DNS queries to.

domain array The default domain to append to a hostname. For example, if
the domain is set to example.com, a DNS lookup query for 
example-host is rewritten as example-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

17.6.1.1.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

{
  "ipam": {
    "type": "static",
      "addresses": [
        {
          "address": "191.168.1.7/24"
        }
      ]
  }
}

CHAPTER 17. HARDWARE NETWORKS

255



RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

Table 17.13. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhcp is required.

Dynamic IP address (DHCP) assignment configuration example

17.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 17.14. ipam whereabouts configuration object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  additionalNetworks:
  - name: dhcp-shim
    namespace: default
    type: Raw
    rawCNIConfig: |-
      {
        "name": "dhcp-shim",
        "cniVersion": "0.3.1",
        "type": "bridge",
        "ipam": {
          "type": "dhcp"
        }
      }
  # ...

{
  "ipam": {
    "type": "dhcp"
  }
}

OpenShift Container Platform 4.10 Networking

256



Field Type Description

type string The IPAM address type. The value whereabouts is required.

range string An IP address and range in CIDR notation. IP addresses are
assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

17.6.1.1.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each
pods gets a unique IP address from the specified IP address range. It also handles IP address releases
when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a 
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

{
  "ipam": {
    "type": "whereabouts",
    "range": "192.0.2.192/27",
    "exclude": [
       "192.0.2.192/30",
       "192.0.2.196/32"
    ]
  }
}

$ oc edit network.operator.openshift.io cluster

CHAPTER 17. HARDWARE NETWORKS

257



2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

Example output

17.6.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating an SriovIBNetwork
object. When you create an SriovIBNetwork object, the SR-IOV Network Operator automatically
creates a NetworkAttachmentDefinition object.

NOTE

Do not modify or delete an SriovIBNetwork object if it is attached to any pods in a 
running state.

Prerequisites

Install the OpenShift CLI (oc).

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  additionalNetworks:
  - name: whereabouts-shim
    namespace: default
    rawCNIConfig: |-
      {
       "name": "whereabouts-shim",
       "cniVersion": "0.3.1",
       "type": "bridge",
       "ipam": {
         "type": "whereabouts"
       }
      }
    type: Raw

$ oc get all -n openshift-multus | grep whereabouts-reconciler

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

OpenShift Container Platform 4.10 Networking

258



Log in as a user with cluster-admin privileges.

Procedure

1. Create a SriovIBNetwork object, and then save the YAML in the <name>.yaml file, where 
<name> is a name for this additional network. The object specification might resemble the
following example:

2. To create the object, enter the following command:

where <name> specifies the name of the additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object that is associated with the 
SriovIBNetwork object that you created in the previous step exists, enter the following
command. Replace <namespace> with the networkNamespace you specified in the 
SriovIBNetwork object.

17.6.3. Next steps

Adding a pod to an SR-IOV additional network

17.6.4. Additional resources

Configuring an SR-IOV network device

17.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK

You can add a pod to an existing Single Root I/O Virtualization (SR-IOV) network.

17.7.1. Runtime configuration for a network attachment

When attaching a pod to an additional network, you can specify a runtime configuration to make specific

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovIBNetwork
metadata:
  name: attach1
  namespace: openshift-sriov-network-operator
spec:
  resourceName: net1
  networkNamespace: project2
  ipam: |-
    {
      "type": "host-local",
      "subnet": "10.56.217.0/24",
      "rangeStart": "10.56.217.171",
      "rangeEnd": "10.56.217.181",
      "gateway": "10.56.217.1"
    }

$ oc create -f <name>.yaml

$ oc get net-attach-def -n <namespace>

CHAPTER 17. HARDWARE NETWORKS

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#add-pod
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-device


1

2

3

When attaching a pod to an additional network, you can specify a runtime configuration to make specific
customizations for the pod. For example, you can request a specific MAC hardware address.

You specify the runtime configuration by setting an annotation in the pod specification. The annotation
key is k8s.v1.cni.cncf.io/networks, and it accepts a JSON object that describes the runtime
configuration.

17.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment

The following JSON describes the runtime configuration options for an Ethernet-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

Optional: The MAC address for the SR-IOV device that is allocated from the resource type defined
in the SR-IOV network attachment definition CR. To use this feature, you also must specify { 
"mac": true } in the SriovNetwork object.

Optional: IP addresses for the SR-IOV device that is allocated from the resource type defined in
the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To
use this feature, you also must specify { "ips": true } in the SriovNetwork object.

Example runtime configuration

17.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

[
  {
    "name": "<name>", 1
    "mac": "<mac_address>", 2
    "ips": ["<cidr_range>"] 3
  }
]

apiVersion: v1
kind: Pod
metadata:
  name: sample-pod
  annotations:
    k8s.v1.cni.cncf.io/networks: |-
      [
        {
          "name": "net1",
          "mac": "20:04:0f:f1:88:01",
          "ips": ["192.168.10.1/24", "2001::1/64"]
        }
      ]
spec:
  containers:
  - name: sample-container
    image: <image>
    imagePullPolicy: IfNotPresent
    command: ["sleep", "infinity"]

OpenShift Container Platform 4.10 Networking

260



1

2

3

The following JSON describes the runtime configuration options for an InfiniBand-based SR-IOV
network attachment.

The name of the SR-IOV network attachment definition CR.

The InfiniBand GUID for the SR-IOV device. To use this feature, you also must specify { 
"infinibandGUID": true } in the SriovIBNetwork object.

The IP addresses for the SR-IOV device that is allocated from the resource type defined in the
SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses are supported. To use
this feature, you also must specify { "ips": true } in the SriovIBNetwork object.

Example runtime configuration

17.7.2. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

NOTE

[
  {
    "name": "<network_attachment>", 1
    "infiniband-guid": "<guid>", 2
    "ips": ["<cidr_range>"] 3
  }
]

apiVersion: v1
kind: Pod
metadata:
  name: sample-pod
  annotations:
    k8s.v1.cni.cncf.io/networks: |-
      [
        {
          "name": "ib1",
          "infiniband-guid": "c2:11:22:33:44:55:66:77",
          "ips": ["192.168.10.1/24", "2001::1/64"]
        }
      ]
spec:
  containers:
  - name: sample-container
    image: <image>
    imagePullPolicy: IfNotPresent
    command: ["sleep", "infinity"]

CHAPTER 17. HARDWARE NETWORKS

261



1

NOTE

The SR-IOV Network Resource Injector adds the resource field to the first container in a
pod automatically.

If you are using an Intel network interface controller (NIC) in Data Plane Development Kit
(DPDK) mode, only the first container in your pod is configured to access the NIC. Your
SR-IOV additional network is configured for DPDK mode if the deviceType is set to vfio-
pci in the SriovNetworkNodePolicy object.

You can work around this issue by either ensuring that the container that needs access to
the NIC is the first container defined in the Pod object or by disabling the Network
Resource Injector. For more information, see BZ#1990953.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster.

Install the SR-IOV Operator.

Create either an SriovNetwork object or an SriovIBNetwork object to attach the pod to.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: |-
      [
        {
          "name": "<network>", 1
          "namespace": "<namespace>", 2
          "default-route": ["<default-route>"] 3
        }
      ]

OpenShift Container Platform 4.10 Networking

262

https://bugzilla.redhat.com/show_bug.cgi?id=1990953


1

2

3

1

Specify the name of the additional network defined by a 
NetworkAttachmentDefinition object.

Specify the namespace where the NetworkAttachmentDefinition object is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <name> with the name of the pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the pod.

In the following example, the example-pod pod is attached to the net1 additional network:

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    k8s.v1.cni.cncf.io/networks: macvlan-bridge
    k8s.v1.cni.cncf.io/networks-status: |- 1
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.128.2.14"
          ],
          "default": true,
          "dns": {}
      },{
          "name": "macvlan-bridge",
          "interface": "net1",
          "ips": [
              "20.2.2.100"
          ],
          "mac": "22:2f:60:a5:f8:00",
          "dns": {}
      }]
  name: example-pod
  namespace: default
spec:
  ...
status:
  ...

CHAPTER 17. HARDWARE NETWORKS

263



1

2

3

4

17.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

You can create a NUMA aligned SR-IOV pod by restricting SR-IOV and the CPU resources allocated
from the same NUMA node with restricted or single-numa-node Topology Manager polices.

Prerequisites

You have installed the OpenShift CLI (oc).

You have configured the CPU Manager policy to static. For more information on CPU Manager,
see the "Additional resources" section.

You have configured the Topology Manager policy to single-numa-node.

NOTE

When single-numa-node is unable to satisfy the request, you can configure the
Topology Manager policy to restricted.

Procedure

1. Create the following SR-IOV pod spec, and then save the YAML in the <name>-sriov-
pod.yaml file. Replace <name> with a name for this pod.
The following example shows an SR-IOV pod spec:

Replace <name> with the name of the SR-IOV network attachment definition CR.

Replace <image> with the name of the sample-pod image.

To create the SR-IOV pod with guaranteed QoS, set memory limits equal to memory 
requests.

To create the SR-IOV pod with guaranteed QoS, set cpu limits equals to cpu requests.

2. Create the sample SR-IOV pod by running the following command:

apiVersion: v1
kind: Pod
metadata:
  name: sample-pod
  annotations:
    k8s.v1.cni.cncf.io/networks: <name> 1
spec:
  containers:
  - name: sample-container
    image: <image> 2
    command: ["sleep", "infinity"]
    resources:
      limits:
        memory: "1Gi" 3
        cpu: "2" 4
      requests:
        memory: "1Gi"
        cpu: "2"

OpenShift Container Platform 4.10 Networking

264



1 Replace <filename> with the name of the file you created in the previous step.

3. Confirm that the sample-pod is configured with guaranteed QoS.

4. Confirm that the sample-pod is allocated with exclusive CPUs.

5. Confirm that the SR-IOV device and CPUs that are allocated for the sample-pod are on the
same NUMA node.

17.7.4. Additional resources

Configuring an SR-IOV Ethernet network attachment

Configuring an SR-IOV InfiniBand network attachment

Using CPU Manager

17.8. USING HIGH PERFORMANCE MULTICAST

You can use multicast on your Single Root I/O Virtualization (SR-IOV) hardware network.

17.8.1. High performance multicast

The OpenShift SDN default Container Network Interface (CNI) network provider supports multicast
between pods on the default network. This is best used for low-bandwidth coordination or service
discovery, and not high-bandwidth applications. For applications such as streaming media, like Internet
Protocol television (IPTV) and multipoint videoconferencing, you can utilize Single Root I/O
Virtualization (SR-IOV) hardware to provide near-native performance.

When using additional SR-IOV interfaces for multicast:

Multicast packages must be sent or received by a pod through the additional SR-IOV interface.

The physical network which connects the SR-IOV interfaces decides the multicast routing and
topology, which is not controlled by OpenShift Container Platform.

17.8.2. Configuring an SR-IOV interface for multicast

The follow procedure creates an example SR-IOV interface for multicast.

Prerequisites

Install the OpenShift CLI (oc).

$ oc create -f <filename> 1

$ oc describe pod sample-pod

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

CHAPTER 17. HARDWARE NETWORKS

265

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-ib-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/scalability_and_performance/#using-cpu-manager


1 2

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Create a SriovNetworkNodePolicy object:

2. Create a SriovNetwork object:

If you choose to configure DHCP as IPAM, ensure that you provision the following default
routes through your DHCP server: 224.0.0.0/5 and 232.0.0.0/5. This is to override the
static multicast route set by the default network provider.

3. Create a pod with multicast application:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: policy-example
  namespace: openshift-sriov-network-operator
spec:
  resourceName: example
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  numVfs: 4
  nicSelector:
    vendor: "8086"
    pfNames: ['ens803f0']
    rootDevices: ['0000:86:00.0']

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: net-example
  namespace: openshift-sriov-network-operator
spec:
  networkNamespace: default
  ipam: | 1
    {
      "type": "host-local", 2
      "subnet": "10.56.217.0/24",
      "rangeStart": "10.56.217.171",
      "rangeEnd": "10.56.217.181",
      "routes": [
        {"dst": "224.0.0.0/5"},
        {"dst": "232.0.0.0/5"}
      ],
      "gateway": "10.56.217.1"
    }
  resourceName: example

apiVersion: v1
kind: Pod
metadata:
  name: testpmd

OpenShift Container Platform 4.10 Networking

266



1 The NET_ADMIN capability is required only if your application needs to assign the
multicast IP address to the SR-IOV interface. Otherwise, it can be omitted.

17.9. USING DPDK AND RDMA

The containerized Data Plane Development Kit (DPDK) application is supported on OpenShift Container
Platform. You can use Single Root I/O Virtualization (SR-IOV) network hardware with the Data Plane
Development Kit (DPDK) and with remote direct memory access (RDMA).

For information on supported devices, refer to Supported devices.

17.9.1. Using a virtual function in DPDK mode with an Intel NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the intel-
dpdk-node-policy.yaml file.

  namespace: default
  annotations:
    k8s.v1.cni.cncf.io/networks: nic1
spec:
  containers:
  - name: example
    image: rhel7:latest
    securityContext:
      capabilities:
        add: ["NET_ADMIN"] 1
    command: [ "sleep", "infinity"]

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: intel-dpdk-node-policy
  namespace: openshift-sriov-network-operator
spec:
  resourceName: intelnics
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  priority: <priority>
  numVfs: <num>
  nicSelector:
    vendor: "8086"
    deviceID: "158b"

CHAPTER 17. HARDWARE NETWORKS

267

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#supported-devices_about-sriov


1

1

Specify the driver type for the virtual functions to vfio-pci.

NOTE

See the Configuring SR-IOV network devices section for a detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the intel-dpdk-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetwork object by running the following command:

    pfNames: ["<pf_name>", ...]
    rootDevices: ["<pci_bus_id>", "..."]
  deviceType: vfio-pci 1

$ oc create -f intel-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: intel-dpdk-network
  namespace: openshift-sriov-network-operator
spec:
  networkNamespace: <target_namespace>
  ipam: |-
# ... 1
  vlan: <vlan>
  resourceName: intelnics

OpenShift Container Platform 4.10 Networking

268



1

2

3

4

5

5. Create the following Pod spec, and then save the YAML in the intel-dpdk-pod.yaml file.

Specify the same target_namespace where the SriovNetwork object intel-dpdk-network
is created. If you would like to create the pod in a different namespace, change 
target_namespace in both the Pod spec and the SriovNetowrk object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount a hugepage volume to the DPDK pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by the SR-IOV
network resource injector. The SR-IOV network resource injector is an admission controller

$ oc create -f intel-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
  name: dpdk-app
  namespace: <target_namespace> 1
  annotations:
    k8s.v1.cni.cncf.io/networks: intel-dpdk-network
spec:
  containers:
  - name: testpmd
    image: <DPDK_image> 2
    securityContext:
      runAsUser: 0
      capabilities:
        add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
    volumeMounts:
    - mountPath: /dev/hugepages 4
      name: hugepage
    resources:
      limits:
        openshift.io/intelnics: "1" 5
        memory: "1Gi"
        cpu: "4" 6
        hugepages-1Gi: "4Gi" 7
      requests:
        openshift.io/intelnics: "1"
        memory: "1Gi"
        cpu: "4"
        hugepages-1Gi: "4Gi"
    command: ["sleep", "infinity"]
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages

CHAPTER 17. HARDWARE NETWORKS

269



6

7

1

component managed by the SR-IOV Operator. It is enabled by default and can be disabled
by setting enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs to be
allocated from the kubelet. This is achieved by setting CPU Manager policy to static and
creating a pod with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes. For example,
adding kernel arguments default_hugepagesz=1GB, hugepagesz=1G and 
hugepages=16 will result in 16*1Gi hugepages be allocated during system boot.

6. Create the DPDK pod by running the following command:

17.9.2. Using a virtual function in DPDK mode with a Mellanox NIC

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
dpdk-node-policy.yaml file.

Specify the device hex code of the SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

$ oc create -f intel-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: mlx-dpdk-node-policy
  namespace: openshift-sriov-network-operator
spec:
  resourceName: mlxnics
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  priority: <priority>
  numVfs: <num>
  nicSelector:
    vendor: "15b3"
    deviceID: "1015" 1
    pfNames: ["<pf_name>", ...]
    rootDevices: ["<pci_bus_id>", "..."]
  deviceType: netdevice 2
  isRdma: true 3

OpenShift Container Platform 4.10 Networking

270



2

3

1

Specify the driver type for the virtual functions to netdevice. Mellanox SR-IOV VF can
work in DPDK mode without using the vfio-pci device type. VF device appears as a kernel

Enable RDMA mode. This is required by Mellanox cards to work in DPDK mode.

NOTE

See the Configuring SR-IOV network devices section for detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-dpdk-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetworkNodePolicy object by running the following command:

$ oc create -f mlx-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: mlx-dpdk-network
  namespace: openshift-sriov-network-operator
spec:
  networkNamespace: <target_namespace>
  ipam: |- 1
# ...
  vlan: <vlan>
  resourceName: mlxnics

$ oc create -f mlx-dpdk-network.yaml

CHAPTER 17. HARDWARE NETWORKS

271



1

2

3

4

5

5. Create the following Pod spec, and then save the YAML in the mlx-dpdk-pod.yaml file.

Specify the same target_namespace where SriovNetwork object mlx-dpdk-network is
created. If you would like to create the pod in a different namespace, change 
target_namespace in both Pod spec and SriovNetowrk object.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to the DPDK pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to the DPDK pod. This resource
request and limit, if not explicitly specified, will be automatically added by SR-IOV network
resource injector. The SR-IOV network resource injector is an admission controller
component managed by SR-IOV Operator. It is enabled by default and can be disabled by
setting the enableInjector option to false in the default SriovOperatorConfig CR.

apiVersion: v1
kind: Pod
metadata:
  name: dpdk-app
  namespace: <target_namespace> 1
  annotations:
    k8s.v1.cni.cncf.io/networks: mlx-dpdk-network
spec:
  containers:
  - name: testpmd
    image: <DPDK_image> 2
    securityContext:
      runAsUser: 0
      capabilities:
        add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
    volumeMounts:
    - mountPath: /dev/hugepages 4
      name: hugepage
    resources:
      limits:
        openshift.io/mlxnics: "1" 5
        memory: "1Gi"
        cpu: "4" 6
        hugepages-1Gi: "4Gi" 7
      requests:
        openshift.io/mlxnics: "1"
        memory: "1Gi"
        cpu: "4"
        hugepages-1Gi: "4Gi"
    command: ["sleep", "infinity"]
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages

OpenShift Container Platform 4.10 Networking

272



6

7

Specify the number of CPUs. The DPDK pod usually requires exclusive CPUs be allocated
from kubelet. This is achieved by setting CPU Manager policy to static and creating a pod

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to DPDK pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the DPDK pod by running the following command:

17.9.3. Using a virtual function in RDMA mode with a Mellanox NIC

IMPORTANT

RDMA over Converged Ethernet (RoCE) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

RDMA over Converged Ethernet (RoCE) is the only supported mode when using RDMA on OpenShift
Container Platform.

Prerequisites

Install the OpenShift CLI (oc).

Install the SR-IOV Network Operator.

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetworkNodePolicy object, and then save the YAML in the mlx-
rdma-node-policy.yaml file.

$ oc create -f mlx-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: mlx-rdma-node-policy
  namespace: openshift-sriov-network-operator
spec:
  resourceName: mlxnics
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  priority: <priority>
  numVfs: <num>
  nicSelector:

CHAPTER 17. HARDWARE NETWORKS

273

https://access.redhat.com/support/offerings/techpreview/


1

2

3

1

Specify the device hex code of SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

Specify the driver type for the virtual functions to netdevice.

Enable RDMA mode.

NOTE

See the Configuring SR-IOV network devices section for a detailed explanation
on each option in SriovNetworkNodePolicy.

When applying the configuration specified in a SriovNetworkNodePolicy object,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

After the configuration update is applied, all the pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy object by running the following command:

3. Create the following SriovNetwork object, and then save the YAML in the mlx-rdma-
network.yaml file.

Specify a configuration object for the ipam CNI plugin as a YAML block scalar. The plugin
manages IP address assignment for the attachment definition.

NOTE

    vendor: "15b3"
    deviceID: "1015" 1
    pfNames: ["<pf_name>", ...]
    rootDevices: ["<pci_bus_id>", "..."]
  deviceType: netdevice 2
  isRdma: true 3

$ oc create -f mlx-rdma-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: mlx-rdma-network
  namespace: openshift-sriov-network-operator
spec:
  networkNamespace: <target_namespace>
  ipam: |- 1
# ...
  vlan: <vlan>
  resourceName: mlxnics

OpenShift Container Platform 4.10 Networking

274



1

2

NOTE

See the "Configuring SR-IOV additional network" section for a detailed
explanation on each option in SriovNetwork.

An optional library, app-netutil, provides several API methods for gathering network information
about a container’s parent pod.

4. Create the SriovNetworkNodePolicy object by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-rdma-pod.yaml file.

Specify the same target_namespace where SriovNetwork object mlx-rdma-network is
created. If you would like to create the pod in a different namespace, change 
target_namespace in both Pod spec and SriovNetowrk object.

Specify the RDMA image which includes your application and RDMA library used by
application.

$ oc create -f mlx-rdma-network.yaml

apiVersion: v1
kind: Pod
metadata:
  name: rdma-app
  namespace: <target_namespace> 1
  annotations:
    k8s.v1.cni.cncf.io/networks: mlx-rdma-network
spec:
  containers:
  - name: testpmd
    image: <RDMA_image> 2
    securityContext:
      runAsUser: 0
      capabilities:
        add: ["IPC_LOCK","SYS_RESOURCE","NET_RAW"] 3
    volumeMounts:
    - mountPath: /dev/hugepages 4
      name: hugepage
    resources:
      limits:
        memory: "1Gi"
        cpu: "4" 5
        hugepages-1Gi: "4Gi" 6
      requests:
        memory: "1Gi"
        cpu: "4"
        hugepages-1Gi: "4Gi"
    command: ["sleep", "infinity"]
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages

CHAPTER 17. HARDWARE NETWORKS

275



3

4

5

6

Specify additional capabilities required by the application inside the container for
hugepage allocation, system resource allocation, and network interface access.

Mount the hugepage volume to RDMA pod under /dev/hugepages. The hugepage volume
is backed by the emptyDir volume type with the medium being Hugepages.

Specify number of CPUs. The RDMA pod usually requires exclusive CPUs be allocated
from the kubelet. This is achieved by setting CPU Manager policy to static and create pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the RDMA pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the RDMA pod by running the following command:

17.9.4. Additional resources

Configuring an SR-IOV Ethernet network attachment .

The app-netutil library, provides several API methods for gathering network information about a
container’s parent pod.

17.10. USING POD-LEVEL BONDING

Bonding at the pod level is vital to enable workloads inside pods that require high availability and more
throughput. With pod-level bonding, you can create a bond interface from multiple single root I/O
virtualization (SR-IOV) virtual function interfaces in a kernel mode interface. The SR-IOV virtual
functions are passed into the pod and attached to a kernel driver.

One scenario where pod level bonding is required is creating a bond interface from multiple SR-IOV
virtual functions on different physical functions. Creating a bond interface from two different physical
functions on the host can be used to achieve high availability and throughput at pod level.

For guidance on tasks such as creating a SR-IOV network, network policies, network attachment
definitions and pods, see Configuring an SR-IOV network device .

17.10.1. Configuring a bond interface from two SR-IOV interfaces

Bonding enables multiple network interfaces to be aggregated into a single logical "bonded" interface.
Bond Container Network Interface (Bond-CNI) brings bond capability into containers.

Bond-CNI can be created using Single Root I/O Virtualization (SR-IOV) virtual functions and placing
them in the container network namespace.

OpenShift Container Platform only supports Bond-CNI using SR-IOV virtual functions. The SR-IOV
Network Operator provides the SR-IOV CNI plugin needed to manage the virtual functions. Other CNIs
or types of interfaces are not supported.

Prerequisites

The SR-IOV Network Operator must be installed and configured to obtain virtual functions in a

$ oc create -f mlx-rdma-pod.yaml

OpenShift Container Platform 4.10 Networking

276

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-sriov-app-netutil_about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-sriov-device


1

2

The SR-IOV Network Operator must be installed and configured to obtain virtual functions in a
container.

To configure SR-IOV interfaces, an SR-IOV network and policy must be created for each
interface.

The SR-IOV Network Operator creates a network attachment definition for each SR-IOV
interface, based on the SR-IOV network and policy defined.

The linkState is set to the default value auto for the SR-IOV virtual function.

17.10.1.1. Creating a bond network attachment definition

Now that the SR-IOV virtual functions are available, you can create a bond network attachment
definition.

The cni-type is always set to bond.

The mode attribute specifies the bonding mode.

NOTE

apiVersion: "k8s.cni.cncf.io/v1"
    kind: NetworkAttachmentDefinition
    metadata:
      name: bond-net1
      namespace: demo
    spec:
      config: '{
      "type": "bond", 1
      "cniVersion": "0.3.1",
      "name": "bond-net1",
      "mode": "active-backup", 2
      "failOverMac": 1, 3
      "linksInContainer": true, 4
      "miimon": "100",
      "mtu": 1500,
      "links": [ 5
            {"name": "net1"},
            {"name": "net2"}
        ],
      "ipam": {
            "type": "host-local",
            "subnet": "10.56.217.0/24",
            "routes": [{
            "dst": "0.0.0.0/0"
            }],
            "gateway": "10.56.217.1"
        }
      }'

CHAPTER 17. HARDWARE NETWORKS

277



3

4

5

1

NOTE

The bonding modes supported are:

balance-rr - 0

active-backup - 1

balance-xor - 2

For balance-rr or balance-xor modes, you must set the trust mode to on for the
SR-IOV virtual function.

The failover attribute is mandatory for active-backup mode and must be set to 1.

The linksInContainer=true flag informs the Bond CNI that the required interfaces are to be found
inside the container. By default, Bond CNI looks for these interfaces on the host which does not
work for integration with SRIOV and Multus.

The links section defines which interfaces will be used to create the bond. By default, Multus
names the attached interfaces as: "net", plus a consecutive number, starting with one.

17.10.1.2. Creating a pod using a bond interface

1. Test the setup by creating a pod with a YAML file named for example podbonding.yaml with
content similar to the following:

Note the network annotation: it contains two SR-IOV network attachments, and one bond
network attachment. The bond attachment uses the two SR-IOV interfaces as bonded
port interfaces.

2. Apply the yaml by running the following command:

3. Inspect the pod interfaces with the following command:

apiVersion: v1
    kind: Pod
    metadata:
      name: bondpod1
      namespace: demo
      annotations:
        k8s.v1.cni.cncf.io/networks: demo/sriovnet1, demo/sriovnet2, demo/bond-net1 1
    spec:
      containers:
      - name: podexample
        image: quay.io/openshift/origin-network-interface-bond-cni:4.11.0
        command: ["/bin/bash", "-c", "sleep INF"]

$ oc apply -f podbonding.yaml

$ oc rsh -n demo bondpod1
sh-4.4#
sh-4.4# ip a

OpenShift Container Platform 4.10 Networking

278



1

2

3

The bond interface is automatically named net3. To set a specific interface name add 
@name suffix to the pod’s k8s.v1.cni.cncf.io/networks annotation.

The net1 interface is based on an SR-IOV virtual function.

The net2 interface is based on an SR-IOV virtual function.

NOTE

If no interface names are configured in the pod annotation, interface names are
assigned automatically as net<n>, with <n> starting at 1.

4. Optional: If you want to set a specific interface name for example bond0, edit the 
k8s.v1.cni.cncf.io/networks annotation and set bond0 as the interface name as follows:

17.11. CONFIGURING HARDWARE OFFLOADING

As a cluster administrator, you can configure hardware offloading on compatible nodes to increase data
processing performance and reduce load on host CPUs.

17.11.1. About hardware offloading

Open vSwitch hardware offloading is a method of processing network tasks by diverting them away from
the CPU and offloading them to a dedicated processor on a network interface controller. As a result,
clusters can benefit from faster data transfer speeds, reduced CPU workloads, and lower computing
costs.

The key element for this feature is a modern class of network interface controllers known as SmartNICs.
A SmartNIC is a network interface controller that is able to handle computationally-heavy network

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
3: eth0@if150: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc 
noqueue state UP
link/ether 62:b1:b5:c8:fb:7a brd ff:ff:ff:ff:ff:ff
inet 10.244.1.122/24 brd 10.244.1.255 scope global eth0
valid_lft forever preferred_lft forever
4: net3: <BROADCAST,MULTICAST,UP,LOWER_UP400> mtu 1500 qdisc noqueue state 
UP qlen 1000
link/ether 9e:23:69:42:fb:8a brd ff:ff:ff:ff:ff:ff 1
inet 10.56.217.66/24 scope global bond0
valid_lft forever preferred_lft forever
43: net1: <BROADCAST,MULTICAST,UP,LOWER_UP800> mtu 1500 qdisc mq master 
bond0 state UP qlen 1000
link/ether 9e:23:69:42:fb:8a brd ff:ff:ff:ff:ff:ff 2
44: net2: <BROADCAST,MULTICAST,UP,LOWER_UP800> mtu 1500 qdisc mq master 
bond0 state UP qlen 1000
link/ether 9e:23:69:42:fb:8a brd ff:ff:ff:ff:ff:ff 3

annotations:
        k8s.v1.cni.cncf.io/networks: demo/sriovnet1, demo/sriovnet2, demo/bond-net1@bond0

CHAPTER 17. HARDWARE NETWORKS

279



processing tasks. In the same way that a dedicated graphics card can improve graphics performance, a
SmartNIC can improve network performance. In each case, a dedicated processor improves
performance for a specific type of processing task.

In OpenShift Container Platform, you can configure hardware offloading for bare metal nodes that have
a compatible SmartNIC. Hardware offloading is configured and enabled by the SR-IOV Network
Operator.

Hardware offloading is not compatible with all workloads or application types. Only the following two
communication types are supported:

pod-to-pod

pod-to-service, where the service is a ClusterIP service backed by a regular pod

In all cases, hardware offloading takes place only when those pods and services are assigned to nodes
that have a compatible SmartNIC. Suppose, for example, that a pod on a node with hardware offloading
tries to communicate with a service on a regular node. On the regular node, all the processing takes
place in the kernel, so the overall performance of the pod-to-service communication is limited to the
maximum performance of that regular node. Hardware offloading is not compatible with DPDK
applications.

Enabling hardware offloading on a node, but not configuring pods to use, it can result in decreased
throughput performance for pod traffic. You cannot configure hardware offloading for pods that are
managed by OpenShift Container Platform.

17.11.2. Supported devices

Hardware offloading is supported on the following network interface controllers:

Table 17.15. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Mellanox MT27800 Family [ConnectX‑5] 15b3 1017

Mellanox MT28880 Family [ConnectX‑5 Ex] 15b3 1019

17.11.3. Prerequisites

Your cluster has at least one bare metal machine with a network interface controller that is
supported for hardware offloading.

You installed the SR-IOV Network Operator .

Your cluster uses the OVN-Kubernetes CNI.

In your OVN-Kubernetes CNI configuration , the gatewayConfig.routingViaHost field is set to 
false.

17.11.4. Configuring a machine config pool for hardware offloading

To enable hardware offloading, you must first create a dedicated machine config pool and configure it
to work with the SR-IOV Network Operator.

OpenShift Container Platform 4.10 Networking

280

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#installing-sr-iov-operator_installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-ovn-kubernetes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#gatewayConfig-object_cluster-network-operator


1 2

3

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a machine config pool for machines you want to use hardware offloading on.

a. Create a file, such as mcp-offloading.yaml, with content like the following example:

The name of your machine config pool for hardware offloading.

This node role label is used to add nodes to the machine config pool.

b. Apply the configuration for the machine config pool:

2. Add nodes to the machine config pool. Label each node with the node role label of your pool:

3. Optional: To verify that the new pool is created, run the following command:

Example output

4. Add this machine config pool to the SriovNetworkPoolConfig custom resource:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  name: mcp-offloading 1
spec:
  machineConfigSelector:
    matchExpressions:
      - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,mcp-
offloading]} 2
  nodeSelector:
    matchLabels:
      node-role.kubernetes.io/mcp-offloading: "" 3

$ oc create -f mcp-offloading.yaml

$ oc label node worker-2 node-role.kubernetes.io/mcp-offloading=""

$ oc get nodes

NAME       STATUS   ROLES                   AGE   VERSION
master-0   Ready    master                  2d    v1.23.3+d99c04f
master-1   Ready    master                  2d    v1.23.3+d99c04f
master-2   Ready    master                  2d    v1.23.3+d99c04f
worker-0   Ready    worker                  2d    v1.23.3+d99c04f
worker-1   Ready    worker                  2d    v1.23.3+d99c04f
worker-2   Ready    mcp-offloading,worker   47h   v1.23.3+d99c04f
worker-3   Ready    mcp-offloading,worker   47h   v1.23.3+d99c04f

CHAPTER 17. HARDWARE NETWORKS

281



1

a. Create a file, such as sriov-pool-config.yaml, with content like the following example:

The name of your machine config pool for hardware offloading.

b. Apply the configuration:

NOTE

When you apply the configuration specified in a SriovNetworkPoolConfig
object, the SR-IOV Operator drains and restarts the nodes in the machine
config pool.

It might take several minutes for a configuration changes to apply.

17.11.5. Configuring the SR-IOV network node policy

You can create an SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. To enable hardware offloading, you must define the .spec.eSwitchMode field with the value 
"switchdev".

The following procedure creates an SR-IOV interface for a network interface controller with hardware
offloading.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file, such as sriov-node-policy.yaml, with content like the following example:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkPoolConfig
metadata:
  name: sriovnetworkpoolconfig-offload
  namespace: openshift-sriov-network-operator
spec:
  ovsHardwareOffloadConfig:
    name: mcp-offloading 1

$ oc create -f <SriovNetworkPoolConfig_name>.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: sriov-node-policy <.>
  namespace: openshift-sriov-network-operator
spec:
  deviceType: netdevice <.>
  eSwitchMode: "switchdev" <.>
  nicSelector:

OpenShift Container Platform 4.10 Networking

282



<.> The name for the custom resource object. <.> Required. Hardware offloading is not
supported with vfio-pci. <.> Required.

2. Apply the configuration for the policy:

NOTE

When you apply the configuration specified in a SriovNetworkPoolConfig
object, the SR-IOV Operator drains and restarts the nodes in the machine config
pool.

It might take several minutes for a configuration change to apply.

17.11.6. Creating a network attachment definition

After you define the machine config pool and the SR-IOV network node policy, you can create a network
attachment definition for the network interface card you specified.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file, such as net-attach-def.yaml, with content like the following example:

<.> The name for your network attachment definition. <.> The namespace for your network

    deviceID: "1019"
    rootDevices:
    - 0000:d8:00.0
    vendor: "15b3"
    pfNames:
    - ens8f0
  nodeSelector:
    feature.node.kubernetes.io/network-sriov.capable: "true"
  numVfs: 6
  priority: 5
  resourceName: mlxnics

$ oc create -f sriov-node-policy.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
  name: net-attach-def <.>
  namespace: net-attach-def <.>
  annotations:
    k8s.v1.cni.cncf.io/resourceName: openshift.io/mlxnics <.>
spec:
  config: '{"cniVersion":"0.3.1","name":"ovn-kubernetes","type":"ovn-k8s-cni-overlay","ipam":
{},"dns":{}}'

CHAPTER 17. HARDWARE NETWORKS

283



<.> The name for your network attachment definition. <.> The namespace for your network
attachment definition. <.> This is the value of the spec.resourceName field you specified in the 
SriovNetworkNodePolicy object.

2. Apply the configuration for the network attachment definition:

Verification

Run the following command to see whether the new definition is present:

Example output

17.11.7. Adding the network attachment definition to your pods

After you create the machine config pool, the SriovNetworkPoolConfig and SriovNetworkNodePolicy
custom resources, and the network attachment definition, you can apply these configurations to your
pods by adding the network attachment definition to your pod specifications.

Procedure

In the pod specification, add the .metadata.annotations.k8s.v1.cni.cncf.io/networks field and
specify the network attachment definition you created for hardware offloading:

<.> The value must be the name and namespace of the network attachment definition you
created for hardware offloading.

17.12. UNINSTALLING THE SR-IOV NETWORK OPERATOR

To uninstall the SR-IOV Network Operator, you must delete any running SR-IOV workloads, uninstall the
Operator, and delete the webhooks that the Operator used.

17.12.1. Uninstalling the SR-IOV Network Operator

As a cluster administrator, you can uninstall the SR-IOV Network Operator.

Prerequisites

You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

You have the SR-IOV Network Operator installed.

$ oc create -f net-attach-def.yaml

$ oc get net-attach-def -A

NAMESPACE         NAME             AGE
net-attach-def    net-attach-def   43h

....
metadata:
  annotations:
    v1.multus-cni.io/default-network: net-attach-def/net-attach-def <.>

OpenShift Container Platform 4.10 Networking

284



Procedure

1. Delete all SR-IOV custom resources (CRs):

2. Follow the instructions in the "Deleting Operators from a cluster" section to remove the SR-IOV
Network Operator from your cluster.

3. Delete the SR-IOV custom resource definitions that remain in the cluster after the SR-IOV
Network Operator is uninstalled:

4. Delete the SR-IOV webhooks:

5. Delete the SR-IOV Network Operator namespace:

Additional resources

Deleting Operators from a cluster

$ oc delete sriovnetwork -n openshift-sriov-network-operator --all

$ oc delete sriovnetworknodepolicy -n openshift-sriov-network-operator --all

$ oc delete sriovibnetwork -n openshift-sriov-network-operator --all

$ oc delete crd sriovibnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodepolicies.sriovnetwork.openshift.io

$ oc delete crd sriovnetworknodestates.sriovnetwork.openshift.io

$ oc delete crd sriovnetworkpoolconfigs.sriovnetwork.openshift.io

$ oc delete crd sriovnetworks.sriovnetwork.openshift.io

$ oc delete crd sriovoperatorconfigs.sriovnetwork.openshift.io

$ oc delete mutatingwebhookconfigurations network-resources-injector-config

$ oc delete MutatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete ValidatingWebhookConfiguration sriov-operator-webhook-config

$ oc delete namespace openshift-sriov-network-operator

CHAPTER 17. HARDWARE NETWORKS

285

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/operators/#olm-deleting-operators-from-a-cluster


CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK
PROVIDER

18.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified
cluster network that enables communication between pods across the OpenShift Container Platform
cluster. This pod network is established and maintained by the OpenShift SDN, which configures an
overlay network using Open vSwitch (OVS).

18.1.1. OpenShift SDN network isolation modes

OpenShift SDN provides three SDN modes for configuring the pod network:

Network policy mode allows project administrators to configure their own isolation policies using
NetworkPolicy objects. Network policy is the default mode in OpenShift Container Platform
4.10.

Multitenant mode provides project-level isolation for pods and services. Pods from different
projects cannot send packets to or receive packets from pods and services of a different
project. You can disable isolation for a project, allowing it to send network traffic to all pods and
services in the entire cluster and receive network traffic from those pods and services.

Subnet mode provides a flat pod network where every pod can communicate with every other
pod and service. The network policy mode provides the same functionality as subnet mode.

18.1.2. Supported default CNI network provider feature matrix

OpenShift Container Platform offers two supported choices, OpenShift SDN and OVN-Kubernetes, for
the default Container Network Interface (CNI) network provider. The following table summarizes the
current feature support for both network providers:

Table 18.1. Default CNI network provider feature comparison

Feature OpenShift SDN OVN-Kubernetes

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported Supported [2]

IPsec encryption Not supported Supported

IPv6 Not supported Supported [3] [4]

Kubernetes network policy Supported Supported

Kubernetes network policy logs Not supported Supported

OpenShift Container Platform 4.10 Networking

286



Multicast Supported Supported

Hardware offloading Not supported Supported

Feature OpenShift SDN OVN-Kubernetes

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

2. Egress router for OVN-Kubernetes supports only redirect mode.

3. IPv6 is supported only on bare metal clusters.

4. IPv6 single stack does not support Kubernetes NMState .

18.2. CONFIGURING EGRESS IPS FOR A PROJECT

As a cluster administrator, you can configure the OpenShift SDN Container Network Interface (CNI)
cluster network provider to assign one or more egress IP addresses to a project.

18.2.1. Egress IP address architectural design and implementation

The OpenShift Container Platform egress IP address functionality allows you to ensure that the traffic
from one or more pods in one or more namespaces has a consistent source IP address for services
outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address assigned to a namespace is different from an egress router, which is used to send
traffic to specific destinations.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

An egress IP address is implemented as an additional IP address on the primary network interface of a
node and must be in the same subnet as the primary IP address of the node. The additional IP address
must not be assigned to any other node in the cluster.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

18.2.1.1. Platform support

Support for the egress IP address functionality on various platforms is summarized in the following
table:

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

287

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator


Platform Supported

Bare metal Yes

VMware vSphere Yes

Red Hat OpenStack Platform (RHOSP) No

Amazon Web Services (AWS) Yes

Google Cloud Platform (GCP) Yes

Microsoft Azure Yes

IMPORTANT

The assignment of egress IP addresses to control plane nodes with the EgressIP feature
is not supported on a cluster provisioned on Amazon Web Services (AWS).
(BZ#2039656)

18.2.1.2. Public cloud platform considerations

For clusters provisioned on public cloud infrastructure, there is a constraint on the absolute number of
assignable IP addresses per node. The maximum number of assignable IP addresses per node, or the IP
capacity, can be described in the following formula:

While the Egress IPs capability manages the IP address capacity per node, it is important to plan for this
constraint in your deployments. For example, for a cluster installed on bare-metal infrastructure with 8
nodes you can configure 150 egress IP addresses. However, if a public cloud provider limits IP address
capacity to 10 IP addresses per node, the total number of assignable IP addresses is only 80. To achieve
the same IP address capacity in this example cloud provider, you would need to allocate 7 additional
nodes.

To confirm the IP capacity and subnets for any node in your public cloud environment, you can enter the
oc get node <node_name> -o yaml command. The cloud.network.openshift.io/egress-ipconfig
annotation includes capacity and subnet information for the node.

The annotation value is an array with a single object with fields that provide the following information for
the primary network interface:

interface: Specifies the interface ID on AWS and Azure and the interface name on GCP.

ifaddr: Specifies the subnet mask for one or both IP address families.

capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is
provided per IP address family. On Azure and GCP, the IP address capacity includes both IPv4
and IPv6 addresses.

The following examples illustrate the annotation from nodes on several public cloud providers. The
annotations are indented for readability.

IP capacity = public cloud default capacity - sum(current IP assignments)

OpenShift Container Platform 4.10 Networking

288

https://bugzilla.redhat.com/show_bug.cgi?id=2039656


Example cloud.network.openshift.io/egress-ipconfig annotation on AWS

Example cloud.network.openshift.io/egress-ipconfig annotation on GCP

The following sections describe the IP address capacity for supported public cloud environments for use
in your capacity calculation.

18.2.1.2.1. Amazon Web Services (AWS) IP address capacity limits

On AWS, constraints on IP address assignments depend on the instance type configured. For more
information, see IP addresses per network interface per instance type

18.2.1.2.2. Google Cloud Platform (GCP) IP address capacity limits

On GCP, the networking model implements additional node IP addresses through IP address aliasing,
rather than IP address assignments. However, IP address capacity maps directly to IP aliasing capacity.

The following capacity limits exist for IP aliasing assignment:

Per node, the maximum number of IP aliases, both IPv4 and IPv6, is 10.

Per VPC, the maximum number of IP aliases is unspecified, but OpenShift Container Platform
scalability testing reveals the maximum to be approximately 15,000.

For more information, see Per instance quotas and Alias IP ranges overview .

18.2.1.2.3. Microsoft Azure IP address capacity limits

On Azure, the following capacity limits exist for IP address assignment:

Per NIC, the maximum number of assignable IP addresses, for both IPv4 and IPv6, is 256.

Per virtual network, the maximum number of assigned IP addresses cannot exceed 65,536.

For more information, see Networking limits .

18.2.1.3. Limitations

The following limitations apply when using egress IP addresses with the OpenShift SDN cluster network

cloud.network.openshift.io/egress-ipconfig: [
  {
    "interface":"eni-078d267045138e436",
    "ifaddr":{"ipv4":"10.0.128.0/18"},
    "capacity":{"ipv4":14,"ipv6":15}
  }
]

cloud.network.openshift.io/egress-ipconfig: [
  {
    "interface":"nic0",
    "ifaddr":{"ipv4":"10.0.128.0/18"},
    "capacity":{"ip":14}
  }
]

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

289

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://cloud.google.com/vpc/docs/quota#per_instance
https://cloud.google.com/vpc/docs/alias-ip
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits?toc=/azure/virtual-network/toc.json#networking-limits


The following limitations apply when using egress IP addresses with the OpenShift SDN cluster network
provider:

You cannot use manually assigned and automatically assigned egress IP addresses on the same
nodes.

If you manually assign egress IP addresses from an IP address range, you must not make that
range available for automatic IP assignment.

You cannot share egress IP addresses across multiple namespaces using the OpenShift SDN
egress IP address implementation.

If you need to share IP addresses across namespaces, the OVN-Kubernetes cluster network provider
egress IP address implementation allows you to span IP addresses across multiple namespaces.

NOTE

If you use OpenShift SDN in multitenant mode, you cannot use egress IP addresses with
any namespace that is joined to another namespace by the projects that are associated
with them. For example, if project1 and project2 are joined by running the oc adm pod-
network join-projects --to=project1 project2 command, neither project can use an
egress IP address. For more information, see BZ#1645577.

18.2.1.4. IP address assignment approaches

You can assign egress IP addresses to namespaces by setting the egressIPs parameter of the 
NetNamespace object. After an egress IP address is associated with a project, OpenShift SDN allows
you to assign egress IP addresses to hosts in two ways:

In the automatically assigned approach, an egress IP address range is assigned to a node.

In the manually assigned approach, a list of one or more egress IP address is assigned to a node.

Namespaces that request an egress IP address are matched with nodes that can host those egress IP
addresses, and then the egress IP addresses are assigned to those nodes. If the egressIPs parameter is
set on a NetNamespace object, but no node hosts that egress IP address, then egress traffic from the
namespace will be dropped.

High availability of nodes is automatic. If a node that hosts an egress IP address is unreachable and
there are nodes that are able to host that egress IP address, then the egress IP address will move to a
new node. When the unreachable node comes back online, the egress IP address automatically moves
to balance egress IP addresses across nodes.

18.2.1.4.1. Considerations when using automatically assigned egress IP addresses

When using the automatic assignment approach for egress IP addresses the following considerations
apply:

You set the egressCIDRs parameter of each node’s HostSubnet resource to indicate the
range of egress IP addresses that can be hosted by a node. OpenShift Container Platform sets
the egressIPs parameter of the HostSubnet resource based on the IP address range you
specify.

If the node hosting the namespace’s egress IP address is unreachable, OpenShift Container Platform
will reassign the egress IP address to another node with a compatible egress IP address range. The
automatic assignment approach works best for clusters installed in environments with flexibility in

OpenShift Container Platform 4.10 Networking

290

https://bugzilla.redhat.com/show_bug.cgi?id=1645577


associating additional IP addresses with nodes.

18.2.1.4.2. Considerations when using manually assigned egress IP addresses

This approach allows you to control which nodes can host an egress IP address.

NOTE

If your cluster is installed on public cloud infrastructure, you must ensure that each node
that you assign egress IP addresses to has sufficient spare capacity to host the IP
addresses. For more information, see "Platform considerations" in a previous section.

When using the manual assignment approach for egress IP addresses the following considerations apply:

You set the egressIPs parameter of each node’s HostSubnet resource to indicate the IP
addresses that can be hosted by a node.

Multiple egress IP addresses per namespace are supported.

If a namespace has multiple egress IP addresses and those addresses are hosted on multiple nodes, the
following additional considerations apply:

If a pod is on a node that is hosting an egress IP address, that pod always uses the egress IP
address on the node.

If a pod is not on a node that is hosting an egress IP address, that pod uses an egress IP address
at random.

18.2.2. Configuring automatically assigned egress IP addresses for a namespace

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a
specific namespace across one or more nodes.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object with the egress IP address using the following JSON:

where:

<project_name>

Specifies the name of the project.

 $ oc patch netnamespace <project_name> --type=merge -p \
  '{
    "egressIPs": [
      "<ip_address>"
    ]
  }'

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

291



<ip_address>

Specifies one or more egress IP addresses for the egressIPs array.

For example, to assign project1 to an IP address of 192.168.1.100 and project2 to an IP address
of 192.168.1.101:

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for
each host using the following JSON:

where:

<node_name>

Specifies a node name.

<ip_address_range>

Specifies an IP address range in CIDR format. You can specify more than one address range
for the egressCIDRs array.

For example, to set node1 and node2 to host egress IP addresses in the range 192.168.1.0 to
192.168.1.255:

OpenShift Container Platform automatically assigns specific egress IP addresses to available
nodes in a balanced way. In this case, it assigns the egress IP address 192.168.1.100 to node1 and
the egress IP address 192.168.1.101 to node2 or vice versa.

18.2.3. Configuring manually assigned egress IP addresses for a namespace

In OpenShift Container Platform you can associate one or more egress IP addresses with a namespace.

Prerequisites

$ oc patch netnamespace project1 --type=merge -p \
  '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
  '{"egressIPs": ["192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \
  '{
    "egressCIDRs": [
      "<ip_address_range>", "<ip_address_range>"
    ]
  }'

$ oc patch hostsubnet node1 --type=merge -p \
  '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
  '{"egressCIDRs": ["192.168.1.0/24"]}'

OpenShift Container Platform 4.10 Networking

292



You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Update the NetNamespace object by specifying the following JSON object with the desired IP
addresses:

where:

<project_name>

Specifies the name of the project.

<ip_address>

Specifies one or more egress IP addresses for the egressIPs array.

For example, to assign the project1 project to the IP addresses 192.168.1.100 and 
192.168.1.101:

To provide high availability, set the egressIPs value to two or more IP addresses on different
nodes. If multiple egress IP addresses are set, then pods use all egress IP addresses roughly
equally.

NOTE

Because OpenShift SDN manages the NetNamespace object, you can make
changes only by modifying the existing NetNamespace object. Do not create a
new NetNamespace object.

2. Manually assign the egress IP address to the node hosts.
If your cluster is installed on public cloud infrastructure, you must confirm that the node has
available IP address capacity.

Set the egressIPs parameter on the HostSubnet object on the node host. Using the following
JSON, include as many IP addresses as you want to assign to that node host:

 $ oc patch netnamespace <project_name> --type=merge -p \
  '{
    "egressIPs": [
      "<ip_address>"
    ]
  }'

$ oc patch netnamespace project1 --type=merge \
  -p '{"egressIPs": ["192.168.1.100","192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \
  '{
    "egressIPs": [
      "<ip_address>",
      "<ip_address>"
      ]
  }'

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

293



where:

<node_name>

Specifies a node name.

<ip_address>

Specifies an IP address. You can specify more than one IP address for the egressIPs array.

For example, to specify that node1 should have the egress IPs 192.168.1.100, 192.168.1.101,
and 192.168.1.102:

In the previous example, all egress traffic for project1 will be routed to the node hosting the
specified egress IP, and then connected through Network Address Translation (NAT) to that IP
address.

18.2.4. Additional resources

If you are configuring manual egress IP address assignment, see Platform considerations for
information about IP capacity planning.

18.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

18.3.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

NOTE

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

You configure an egress firewall policy by creating an EgressNetworkPolicy custom resource (CR)
object. The egress firewall matches network traffic that meets any of the following criteria:

$ oc patch hostsubnet node1 --type=merge -p \
  '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

OpenShift Container Platform 4.10 Networking

294

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-egress-ips-public-cloud-platform-considerations_egress-ips


1
2
3

An IP address range in CIDR format

A DNS name that resolves to an IP address

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. To ensure that pods can access the
OpenShift Container Platform API servers, you must include the built-in join network 
100.64.0.0/16 of Open Virtual Network (OVN) to allow access when using node ports
together with an EgressFirewall. You must also include the IP address range that the API
servers listen on in your egress firewall rules, as in the following example:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

IMPORTANT

You must have OpenShift SDN configured to use either the network policy or multitenant
mode to configure an egress firewall.

If you use network policy mode, an egress firewall is compatible with only one policy per
namespace and will not work with projects that share a network, such as global projects.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
  name: default
  namespace: <namespace> 1
spec:
  egress:
  - to:
      cidrSelector: <api_server_address_range> 2
    type: Allow
# ...
  - to:
      cidrSelector: 0.0.0.0/0 3
    type: Deny



CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

295

https://bugzilla.redhat.com/show_bug.cgi?id=1988324


18.3.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressNetworkPolicy object.

A maximum of one EgressNetworkPolicy object with a maximum of 1,000 rules can be defined
per project.

The default project cannot use an egress firewall.

When using the OpenShift SDN default Container Network Interface (CNI) network provider in
multitenant mode, the following limitations apply:

Global projects cannot use an egress firewall. You can make a project global by using the oc 
adm pod-network make-projects-global command.

Projects merged by using the oc adm pod-network join-projects command cannot use an
egress firewall in any of the joined projects.

Violating any of these restrictions results in a broken egress firewall for the project, and might cause all
external network traffic to be dropped.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system, 
openshift and openshift- projects.

18.3.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

18.3.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 seconds. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL that is less than 30 seconds, the controller sets the
duration to the returned value. If the TTL in the response is greater than 30 minutes, the
controller sets the duration to 30 minutes. If the TTL is between 30 seconds and 30 minutes,
the controller ignores the value and sets the duration to 30 seconds.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressNetworkPolicy
objects is only recommended for domains with infrequent IP address changes.

NOTE

OpenShift Container Platform 4.10 Networking

296



1

2

1

2

3

4

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

18.3.2. EgressNetworkPolicy custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressNetworkPolicy CR object:

EgressNetworkPolicy object

A name for your egress firewall policy.

A collection of one or more egress network policy rules as described in the following section.

18.3.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress stanza expects an array of one
or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule. A value for either the cidrSelector field or the 
dnsName field for the rule. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A domain name.

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
  name: <name> 1
spec:
  egress: 2
    ...

egress:
- type: <type> 1
  to: 2
    cidrSelector: <cidr> 3
    dnsName: <dns_name> 4

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

297



1

18.3.2.2. Example EgressNetworkPolicy CR objects

The following example defines several egress firewall policy rules:

A collection of egress firewall policy rule objects.

18.3.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressNetworkPolicy object defined, you must edit the
existing policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OpenShift SDN default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressNetworkPolicy object is created in a project named 

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
  name: default
spec:
  egress: 1
  - type: Allow
    to:
      cidrSelector: 1.2.3.0/24
  - type: Allow
    to:
      dnsName: www.example.com
  - type: Deny
    to:
      cidrSelector: 0.0.0.0/0

$ oc create -f <policy_name>.yaml -n <project>

OpenShift Container Platform 4.10 Networking

298



In the following example, a new EgressNetworkPolicy object is created in a project named 
project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

18.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

18.4.1. Viewing an EgressNetworkPolicy object

You can view an EgressNetworkPolicy object in your cluster.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressNetworkPolicy objects defined in your cluster, enter
the following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

18.5. EDITING AN EGRESS FIREWALL FOR A PROJECT

$ oc create -f default.yaml -n project1

egressnetworkpolicy.network.openshift.io/v1 created

$ oc get egressnetworkpolicy --all-namespaces

$ oc describe egressnetworkpolicy <policy_name>

Name:  default
Namespace: project1
Created: 20 minutes ago
Labels:  <none>
Annotations: <none>
Rule:  Allow to 1.2.3.0/24
Rule:  Allow to www.example.com
Rule:  Deny to 0.0.0.0/0

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

299



As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

18.5.1. Editing an EgressNetworkPolicy object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Optional: If you did not save a copy of the EgressNetworkPolicy object when you created the
egress network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressNetworkPolicy object. Replace <filename> with the name of the file containing the
updated EgressNetworkPolicy object.

18.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

18.6.1. Removing an EgressNetworkPolicy object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OpenShift SDN default Container Network Interface (CNI) network provider
plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

$ oc get -n <project> egressnetworkpolicy

$ oc get -n <project> egressnetworkpolicy <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

OpenShift Container Platform 4.10 Networking

300



Procedure

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Enter the following command to delete the EgressNetworkPolicy object. Replace <project>
with the name of the project and <name> with the name of the object.

18.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

18.7.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

18.7.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be configured to access the service for the egress router rather than connecting directly
to the destination IP. You can access the destination service and port from the application pod by using
the curl command. For example:

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

In DNS proxy mode , an egress router pod runs as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses. To make use of the reserved, source IP address, client
pods must be modified to connect to the egress router pod rather than connecting directly to the

$ oc get -n <project> egressnetworkpolicy

$ oc delete -n <project> egressnetworkpolicy <name>

$ curl <router_service_IP> <port>

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

301



destination IP address. This modification ensures that external destinations treat traffic as though it
were coming from a known source.

Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services, use
HTTP proxy mode. For TCP-based services with IP addresses or domain names, use DNS proxy mode.

18.7.1.2. Egress router pod implementation

The egress router pod setup is performed by an initialization container. That container runs in a
privileged context so that it can configure the macvlan interface and set up iptables rules. After the
initialization container finishes setting up the iptables rules, it exits. Next the egress router pod
executes the container to handle the egress router traffic. The image used varies depending on the
egress router mode.

The environment variables determine which addresses the egress-router image uses. The image
configures the macvlan interface to use EGRESS_SOURCE as its IP address, with 
EGRESS_GATEWAY as the IP address for the gateway.

Network Address Translation (NAT) rules are set up so that connections to the cluster IP address of the
pod on any TCP or UDP port are redirected to the same port on IP address specified by the 
EGRESS_DESTINATION variable.

If only some of the nodes in your cluster are capable of claiming the specified source IP address and
using the specified gateway, you can specify a nodeName or nodeSelector to identify which nodes are
acceptable.

18.7.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

$ openstack port set --allowed-address \
  ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

OpenShift Container Platform 4.10 Networking

302

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html


1

2

Promiscuous Mode Operation

18.7.1.4. Failover configuration

To avoid downtime, you can deploy an egress router pod with a Deployment resource, as in the
following example. To create a new Service object for the example deployment, use the oc expose 
deployment/egress-demo-controller command.

Ensure that replicas is set to 1, because only one pod can use a given egress source IP address at
any time. This means that only a single copy of the router runs on a node.

Specify the Pod object template for the egress router pod.

18.7.2. Additional resources

Deploying an egress router in redirection mode

Deploying an egress router in HTTP proxy mode

Deploying an egress router in DNS proxy mode

18.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod that is configured to redirect traffic to
specified destination IP addresses.

18.8.1. Egress router pod specification for redirect mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in redirect mode:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: egress-demo-controller
spec:
  replicas: 1 1
  selector:
    matchLabels:
      name: egress-router
  template:
    metadata:
      name: egress-router
      labels:
        name: egress-router
      annotations:
        pod.network.openshift.io/assign-macvlan: "true"
    spec: 2
      initContainers:
        ...
      containers:
        ...

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

303

https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#deploying-egress-router-http-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#deploying-egress-router-dns-redirection


1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

External server to direct traffic to. Using this example, connections to the pod are redirected to 
203.0.113.25, with a source IP address of 192.168.12.99.

Example egress router pod specification

apiVersion: v1
kind: Pod
metadata:
  name: egress-1
  labels:
    name: egress-1
  annotations:
    pod.network.openshift.io/assign-macvlan: "true" 1
spec:
  initContainers:
  - name: egress-router
    image: registry.redhat.io/openshift4/ose-egress-router
    securityContext:
      privileged: true
    env:
    - name: EGRESS_SOURCE 2
      value: <egress_router>
    - name: EGRESS_GATEWAY 3
      value: <egress_gateway>
    - name: EGRESS_DESTINATION 4
      value: <egress_destination>
    - name: EGRESS_ROUTER_MODE
      value: init
  containers:
  - name: egress-router-wait
    image: registry.redhat.io/openshift4/ose-pod

apiVersion: v1
kind: Pod
metadata:
  name: egress-multi
  labels:
    name: egress-multi
  annotations:
    pod.network.openshift.io/assign-macvlan: "true"
spec:

OpenShift Container Platform 4.10 Networking

304



18.8.2. Egress destination configuration format

When an egress router pod is deployed in redirect mode, you can specify redirection rules by using one
or more of the following formats:

<port> <protocol> <ip_address> - Incoming connections to the given <port> should be
redirected to the same port on the given <ip_address>. <protocol> is either tcp or udp.

<port> <protocol> <ip_address> <remote_port> - As above, except that the connection is
redirected to a different <remote_port> on <ip_address>.

<ip_address> - If the last line is a single IP address, then any connections on any other port will
be redirected to the corresponding port on that IP address. If there is no fallback IP address
then connections on other ports are rejected.

In the example that follows several rules are defined:

The first line redirects traffic from local port 80 to port 80 on 203.0.113.25.

The second and third lines redirect local ports 8080 and 8443 to remote ports 80 and 443 on 
203.0.113.26.

The last line matches traffic for any ports not specified in the previous rules.

Example configuration

18.8.3. Deploying an egress router pod in redirect mode

In redirect mode , an egress router pod sets up iptables rules to redirect traffic from its own IP address to

  initContainers:
  - name: egress-router
    image: registry.redhat.io/openshift4/ose-egress-router
    securityContext:
      privileged: true
    env:
    - name: EGRESS_SOURCE
      value: 192.168.12.99/24
    - name: EGRESS_GATEWAY
      value: 192.168.12.1
    - name: EGRESS_DESTINATION
      value: |
        80   tcp 203.0.113.25
        8080 tcp 203.0.113.26 80
        8443 tcp 203.0.113.26 443
        203.0.113.27
    - name: EGRESS_ROUTER_MODE
      value: init
  containers:
  - name: egress-router-wait
    image: registry.redhat.io/openshift4/ose-pod

80   tcp 203.0.113.25
8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443
203.0.113.27

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

305



In redirect mode , an egress router pod sets up iptables rules to redirect traffic from its own IP address to
one or more destination IP addresses. Client pods that need to use the reserved source IP address
must be configured to access the service for the egress router rather than connecting directly to the
destination IP. You can access the destination service and port from the application pod by using the 
curl command. For example:

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Your pods can now connect to this service. Their connections are redirected to the
corresponding ports on the external server, using the reserved egress IP address.

18.8.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

18.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
HTTP and HTTPS-based services.

18.9.1. Egress router pod specification for HTTP mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in HTTP mode:

$ curl <router_service_IP> <port>

apiVersion: v1
kind: Service
metadata:
  name: egress-1
spec:
  ports:
  - name: http
    port: 80
  - name: https
    port: 443
  type: ClusterIP
  selector:
    name: egress-1

apiVersion: v1

OpenShift Container Platform 4.10 Networking

306

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-router-configmap


1

2

3

4

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

A string or YAML multi-line string specifying how to configure the proxy. Note that this is specified
as an environment variable in the HTTP proxy container, not with the other environment variables
in the init container.

18.9.2. Egress destination configuration format

When an egress router pod is deployed in HTTP proxy mode, you can specify redirection rules by using
one or more of the following formats. Each line in the configuration specifies one group of connections
to allow or deny:

An IP address allows connections to that IP address, such as 192.168.1.1.

A CIDR range allows connections to that CIDR range, such as 192.168.1.0/24.

kind: Pod
metadata:
  name: egress-1
  labels:
    name: egress-1
  annotations:
    pod.network.openshift.io/assign-macvlan: "true" 1
spec:
  initContainers:
  - name: egress-router
    image: registry.redhat.io/openshift4/ose-egress-router
    securityContext:
      privileged: true
    env:
    - name: EGRESS_SOURCE 2
      value: <egress-router>
    - name: EGRESS_GATEWAY 3
      value: <egress-gateway>
    - name: EGRESS_ROUTER_MODE
      value: http-proxy
  containers:
  - name: egress-router-pod
    image: registry.redhat.io/openshift4/ose-egress-http-proxy
    env:
    - name: EGRESS_HTTP_PROXY_DESTINATION 4
      value: |-
        ...
    ...

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

307



1

A hostname allows proxying to that host, such as www.example.com.

A domain name preceded by *. allows proxying to that domain and all of its subdomains, such as 
*.example.com.

A ! followed by any of the previous match expressions denies the connection instead.

If the last line is *, then anything that is not explicitly denied is allowed. Otherwise, anything that
is not allowed is denied.

You can also use * to allow connections to all remote destinations.

Example configuration

18.9.3. Deploying an egress router pod in HTTP proxy mode

In HTTP proxy mode , an egress router pod runs as an HTTP proxy on port 8080. This mode only works for
clients that are connecting to HTTP-based or HTTPS-based services, but usually requires fewer
changes to the client pods to get them to work. Many programs can be told to use an HTTP proxy by
setting an environment variable.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. To ensure that other pods can find the IP address of the egress router pod, create a service to
point to the egress router pod, as in the following example:

Ensure the http port is set to 8080.

3. To configure the client pod (not the egress proxy pod) to use the HTTP proxy, set the 

!*.example.com
!192.168.1.0/24
192.168.2.1
*

apiVersion: v1
kind: Service
metadata:
  name: egress-1
spec:
  ports:
  - name: http-proxy
    port: 8080 1
  type: ClusterIP
  selector:
    name: egress-1

OpenShift Container Platform 4.10 Networking

308



1

3. To configure the client pod (not the egress proxy pod) to use the HTTP proxy, set the 
http_proxy or https_proxy variables:

The service created in the previous step.

NOTE

Using the http_proxy and https_proxy environment variables is not necessary
for all setups. If the above does not create a working setup, then consult the
documentation for the tool or software you are running in the pod.

18.9.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

18.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE

As a cluster administrator, you can deploy an egress router pod configured to proxy traffic to specified
DNS names and IP addresses.

18.10.1. Egress router pod specification for DNS mode

Define the configuration for an egress router pod in the Pod object. The following YAML describes the
fields for the configuration of an egress router pod in DNS mode:

apiVersion: v1
kind: Pod
metadata:
  name: app-1
  labels:
    name: app-1
spec:
  containers:
    env:
    - name: http_proxy
      value: http://egress-1:8080/ 1
    - name: https_proxy
      value: http://egress-1:8080/
    ...

apiVersion: v1
kind: Pod
metadata:
  name: egress-1
  labels:
    name: egress-1
  annotations:
    pod.network.openshift.io/assign-macvlan: "true" 1
spec:
  initContainers:
  - name: egress-router
    image: registry.redhat.io/openshift4/ose-egress-router
    securityContext:

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

309

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-router-configmap


1

2

3

4

5

The annotation tells OpenShift Container Platform to create a macvlan network interface on the
primary network interface controller (NIC) and move that macvlan interface into the pod’s network
namespace. You must include the quotation marks around the "true" value. To have OpenShift
Container Platform create the macvlan interface on a different NIC interface, set the annotation
value to the name of that interface. For example, eth1.

IP address from the physical network that the node is on that is reserved for use by the egress
router pod. Optional: You can include the subnet length, the /24 suffix, so that a proper route to the
local subnet is set. If you do not specify a subnet length, then the egress router can access only the
host specified with the EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node.

Specify a list of one or more proxy destinations.

Optional: Specify to output the DNS proxy log output to stdout.

18.10.2. Egress destination configuration format

When the router is deployed in DNS proxy mode, you specify a list of port and destination mappings. A
destination may be either an IP address or a DNS name.

An egress router pod supports the following formats for specifying port and destination mappings:

Port and remote address

You can specify a source port and a destination host by using the two field format: <port> 
<remote_address>.

The host can be an IP address or a DNS name. If a DNS name is provided, DNS resolution occurs at
runtime. For a given host, the proxy connects to the specified source port on the destination host when
connecting to the destination host IP address.

Port and remote address pair example

      privileged: true
    env:
    - name: EGRESS_SOURCE 2
      value: <egress-router>
    - name: EGRESS_GATEWAY 3
      value: <egress-gateway>
    - name: EGRESS_ROUTER_MODE
      value: dns-proxy
  containers:
  - name: egress-router-pod
    image: registry.redhat.io/openshift4/ose-egress-dns-proxy
    securityContext:
      privileged: true
    env:
    - name: EGRESS_DNS_PROXY_DESTINATION 4
      value: |-
        ...
    - name: EGRESS_DNS_PROXY_DEBUG 5
      value: "1"
    ...

OpenShift Container Platform 4.10 Networking

310



Port, remote address, and remote port

You can specify a source port, a destination host, and a destination port by using the three field
format: <port> <remote_address> <remote_port>.

The three field format behaves identically to the two field version, with the exception that the
destination port can be different than the source port.

Port, remote address, and remote port example

18.10.3. Deploying an egress router pod in DNS proxy mode

In DNS proxy mode , an egress router pod acts as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router pod.

2. Create a service for the egress router pod:

a. Create a file named egress-router-service.yaml that contains the following YAML. Set 
spec.ports to the list of ports that you defined previously for the 
EGRESS_DNS_PROXY_DESTINATION environment variable.

For example:

80 172.16.12.11
100 example.com

8080 192.168.60.252 80
8443 web.example.com 443

apiVersion: v1
kind: Service
metadata:
  name: egress-dns-svc
spec:
  ports:
    ...
  type: ClusterIP
  selector:
    name: egress-dns-proxy

apiVersion: v1
kind: Service
metadata:
  name: egress-dns-svc
spec:

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

311



b. To create the service, enter the following command:

Pods can now connect to this service. The connections are proxied to the corresponding
ports on the external server, using the reserved egress IP address.

18.10.4. Additional resources

Configuring an egress router destination mappings with a ConfigMap

18.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST
FROM A CONFIG MAP

As a cluster administrator, you can define a ConfigMap object that specifies destination mappings for
an egress router pod. The specific format of the configuration depends on the type of egress router
pod. For details on the format, refer to the documentation for the specific egress router pod.

18.11.1. Configuring an egress router destination mappings with a config map

For a large or frequently-changing set of destination mappings, you can use a config map to externally
maintain the list. An advantage of this approach is that permission to edit the config map can be
delegated to users without cluster-admin privileges. Because the egress router pod requires a
privileged container, it is not possible for users without cluster-admin privileges to edit the pod
definition directly.

NOTE

The egress router pod does not automatically update when the config map changes. You
must restart the egress router pod to get updates.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file containing the mapping data for the egress router pod, as in the following example:

  ports:
  - name: con1
    protocol: TCP
    port: 80
    targetPort: 80
  - name: con2
    protocol: TCP
    port: 100
    targetPort: 100
  type: ClusterIP
  selector:
    name: egress-dns-proxy

$ oc create -f egress-router-service.yaml

OpenShift Container Platform 4.10 Networking

312

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-router-configmap


# Egress routes for Project "Test", version 3

80   tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

# Fallback
203.0.113.27

You can put blank lines and comments into this file.

2. Create a ConfigMap object from the file:

In the previous command, the egress-routes value is the name of the ConfigMap object to
create and my-egress-destination.txt is the name of the file that the data is read from.

TIP

You can alternatively apply the following YAML to create the config map:

3. Create an egress router pod definition and specify the configMapKeyRef stanza for the 
EGRESS_DESTINATION field in the environment stanza:

$ oc delete configmap egress-routes --ignore-not-found

$ oc create configmap egress-routes \
  --from-file=destination=my-egress-destination.txt

apiVersion: v1
kind: ConfigMap
metadata:
  name: egress-routes
data:
  destination: |
    # Egress routes for Project "Test", version 3

    80   tcp 203.0.113.25

    8080 tcp 203.0.113.26 80
    8443 tcp 203.0.113.26 443

    # Fallback
    203.0.113.27

...
env:
- name: EGRESS_DESTINATION
  valueFrom:
    configMapKeyRef:
      name: egress-routes
      key: destination
...

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

313



18.11.2. Additional resources

Redirect mode

HTTP proxy mode

DNS proxy mode

18.12. ENABLING MULTICAST FOR A PROJECT

18.12.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OpenShift SDN default Container Network Interface (CNI) network provider, you can enable multicast
on a per-project basis.

When using the OpenShift SDN network plugin in networkpolicy isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of 
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a pod in one project will never be delivered to pods in any other
project, even if there are NetworkPolicy objects that allow communication between the
projects.

When using the OpenShift SDN network plugin in multitenant isolation mode:

Multicast packets sent by a pod will be delivered to all other pods in the project.

Multicast packets sent by a pod in one project will be delivered to pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

18.12.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

OpenShift Container Platform 4.10 Networking

314

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-layer3-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-http-redirection
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-egress-router-dest-var_deploying-egress-router-dns-redirection


Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

$ oc annotate netnamespace <namespace> \
    netnamespace.network.openshift.io/multicast-enabled=true

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
  name: mlistener
  labels:
    app: multicast-verify
spec:
  containers:
    - name: mlistener
      image: registry.access.redhat.com/ubi8
      command: ["/bin/sh", "-c"]
      args:
        ["dnf -y install socat hostname && sleep inf"]
      ports:
        - containerPort: 30102
          name: mlistener
          protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
  name: msender
  labels:
    app: multicast-verify
spec:
  containers:
    - name: msender
      image: registry.access.redhat.com/ubi8
      command: ["/bin/sh", "-c"]
      args:
        ["dnf -y install socat && sleep inf"]
EOF

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

315



1

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

18.13. DISABLING MULTICAST FOR A PROJECT

18.13.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

18.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN

When your cluster is configured to use the multitenant isolation mode for the OpenShift SDN CNI
plugin, each project is isolated by default. Network traffic is not allowed between pods or services in
different projects in multitenant isolation mode.

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
    socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork 
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
    -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
    /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

$ oc annotate netnamespace <namespace> \ 1
    netnamespace.network.openshift.io/multicast-enabled-

OpenShift Container Platform 4.10 Networking

316



You can change the behavior of multitenant isolation for a project in two ways:

You can join one or more projects, allowing network traffic between pods and services in
different projects.

You can disable network isolation for a project. It will be globally accessible, accepting network
traffic from pods and services in all other projects. A globally accessible project can access pods
and services in all other projects.

18.14.1. Prerequisites

You must have a cluster configured to use the OpenShift SDN Container Network Interface
(CNI) plugin in multitenant isolation mode.

18.14.2. Joining projects

You can join two or more projects to allow network traffic between pods and services in different
projects.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Use the following command to join projects to an existing project network:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

2. Optional: Run the following command to view the pod networks that you have joined together:

Projects in the same pod-network have the same network ID in the NETID column.

18.14.3. Isolating a project

You can isolate a project so that pods and services in other projects cannot access its pods and
services.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

To isolate the projects in the cluster, run the following command:

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc get netnamespaces

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

317



Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

18.14.4. Disabling network isolation for a project

You can disable network isolation for a project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command for the project:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

18.15. CONFIGURING KUBE-PROXY

The Kubernetes network proxy (kube-proxy) runs on each node and is managed by the Cluster Network
Operator (CNO). kube-proxy maintains network rules for forwarding connections for endpoints
associated with services.

18.15.1. About iptables rules synchronization

The synchronization period determines how frequently the Kubernetes network proxy (kube-proxy)
syncs the iptables rules on a node.

A sync begins when either of the following events occurs:

An event occurs, such as service or endpoint is added to or removed from the cluster.

The time since the last sync exceeds the sync period defined for kube-proxy.

18.15.2. kube-proxy configuration parameters

You can modify the following kubeProxyConfig parameters.

NOTE

Because of performance improvements introduced in OpenShift Container Platform 4.3
and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.

Table 18.2. Parameters

$ oc adm pod-network isolate-projects <project1> <project2>

$ oc adm pod-network make-projects-global <project1> <project2>

OpenShift Container Platform 4.10 Networking

318



Parameter Description Values Defaul
t

iptablesSyncPeriod The refresh period for 
iptables rules.

A time interval, such as 30s or
2m. Valid suffixes include s, 
m, and h and are described in
the Go time package
documentation.

30s

proxyArguments.iptables-
min-sync-period

The minimum duration before
refreshing iptables rules. This
parameter ensures that the
refresh does not happen too
frequently. By default, a
refresh starts as soon as a
change that affects iptables
rules occurs.

A time interval, such as 30s or
2m. Valid suffixes include s, 
m, and h and are described in
the Go time package

0s

18.15.3. Modifying the kube-proxy configuration

You can modify the Kubernetes network proxy configuration for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to a running cluster with the cluster-admin role.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

2. Modify the kubeProxyConfig parameter in the CR with your changes to the kube-proxy
configuration, such as in the following example CR:

3. Save the file and exit the text editor.
The syntax is validated by the oc command when you save the file and exit the editor. If your
modifications contain a syntax error, the editor opens the file and displays an error message.

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  kubeProxyConfig:
    iptablesSyncPeriod: 30s
    proxyArguments:
      iptables-min-sync-period: ["30s"]

CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

319

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration


4. Enter the following command to confirm the configuration update:

Example output

5. Optional: Enter the following command to confirm that the Cluster Network Operator accepted
the configuration change:

Example output

The AVAILABLE field is True when the configuration update is applied successfully.

$ oc get networks.operator.openshift.io -o yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
  kind: Network
  metadata:
    name: cluster
  spec:
    clusterNetwork:
    - cidr: 10.128.0.0/14
      hostPrefix: 23
    defaultNetwork:
      type: OpenShiftSDN
    kubeProxyConfig:
      iptablesSyncPeriod: 30s
      proxyArguments:
        iptables-min-sync-period:
        - 30s
    serviceNetwork:
    - 172.30.0.0/16
  status: {}
kind: List

$ oc get clusteroperator network

NAME      VERSION     AVAILABLE   PROGRESSING   DEGRADED   SINCE
network   4.1.0-0.9   True        False         False      1m

OpenShift Container Platform 4.10 Networking

320



CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK
PROVIDER

19.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER
NETWORK INTERFACE (CNI) NETWORK PROVIDER

The OpenShift Container Platform cluster uses a virtualized network for pod and service networks. The
OVN-Kubernetes Container Network Interface (CNI) plugin is a network provider for the default cluster
network. OVN-Kubernetes is based on Open Virtual Network (OVN) and provides an overlay-based
networking implementation. A cluster that uses the OVN-Kubernetes network provider also runs Open
vSwitch (OVS) on each node. OVN configures OVS on each node to implement the declared network
configuration.

19.1.1. OVN-Kubernetes features

The OVN-Kubernetes Container Network Interface (CNI) cluster network provider implements the
following features:

Uses OVN (Open Virtual Network) to manage network traffic flows. OVN is a community
developed, vendor-agnostic network virtualization solution.

Implements Kubernetes network policy support, including ingress and egress rules.

Uses the Geneve (Generic Network Virtualization Encapsulation) protocol rather than VXLAN
to create an overlay network between nodes.

19.1.2. Supported default CNI network provider feature matrix

OpenShift Container Platform offers two supported choices, OpenShift SDN and OVN-Kubernetes, for
the default Container Network Interface (CNI) network provider. The following table summarizes the
current feature support for both network providers:

Table 19.1. Default CNI network provider feature comparison

Feature OVN-Kubernetes OpenShift SDN

Egress IPs Supported Supported

Egress firewall [1] Supported Supported

Egress router Supported [2] Supported

IPsec encryption Supported Not supported

IPv6 Supported [3] [4] Not supported

Kubernetes network policy Supported Supported

Kubernetes network policy logs Supported Not supported

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

321



Hardware offloading Supported Not supported

Multicast Supported Supported

Feature OVN-Kubernetes OpenShift SDN

1. Egress firewall is also known as egress network policy in OpenShift SDN. This is not the same as
network policy egress.

2. Egress router for OVN-Kubernetes supports only redirect mode.

3. IPv6 is supported only on bare metal clusters.

4. IPv6 single stack does not support Kubernetes NMState .

19.1.3. OVN-Kubernetes limitations

The OVN-Kubernetes Container Network Interface (CNI) cluster network provider has the following
limitations:

OVN-Kubernetes does not support setting the internal traffic policy for a Kubernetes service to 
local. This limitation can affect network communication to your application when you add a
service of type ClusterIP, LoadBalancer, NodePort, or add a service with an external IP.

The sessionAffinityConfig.clientIP.timeoutSeconds service has no effect in an OpenShift
OVN environment, but does in an OpenShift SDN environment. This incompatibility can make it
difficult for users to migrate from OpenShift SDN to OVN.

For clusters configured for dual-stack networking, both IPv4 and IPv6 traffic must use the
same network interface as the default gateway. If this requirement is not met, pods on the host
in the ovnkube-node daemon set enter the CrashLoopBackOff state. If you display a pod with
a command such as oc get pod -n openshift-ovn-kubernetes -l app=ovnkube-node -o yaml,
the status field contains more than one message about the default gateway, as shown in the
following output:

The only resolution is to reconfigure the host networking so that both IP families use the same
network interface for the default gateway.

For clusters configured for dual-stack networking, both the IPv4 and IPv6 routing tables must
contain the default gateway. If this requirement is not met, pods on the host in the ovnkube-
node daemon set enter the CrashLoopBackOff state. If you display a pod with a command
such as oc get pod -n openshift-ovn-kubernetes -l app=ovnkube-node -o yaml, the status
field contains more than one message about the default gateway, as shown in the following
output:

I1006 16:09:50.985852   60651 helper_linux.go:73] Found default gateway interface br-ex 
192.168.127.1
I1006 16:09:50.985923   60651 helper_linux.go:73] Found default gateway interface ens4 
fe80::5054:ff:febe:bcd4
F1006 16:09:50.985939   60651 ovnkube.go:130] multiple gateway interfaces detected: br-ex 
ens4

OpenShift Container Platform 4.10 Networking

322

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#k8s-nmstate-about-the-k8s-nmstate-operator


The only resolution is to reconfigure the host networking so that both IP families contain the
default gateway.

Additional resources

Configuring an egress firewall for a project

About network policy

Logging network policy events

Enabling multicast for a project

IPsec encryption configuration

Network [operator.openshift.io/v1]

19.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK
PROVIDER

As a cluster administrator, you can migrate to the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider from the OpenShift SDN CNI cluster network provider.

To learn more about OVN-Kubernetes, read About the OVN-Kubernetes network provider .

19.2.1. Migration to the OVN-Kubernetes network provider

Migrating to the OVN-Kubernetes Container Network Interface (CNI) cluster network provider is a
manual process that includes some downtime during which your cluster is unreachable. Although a
rollback procedure is provided, the migration is intended to be a one-way process.

A migration to the OVN-Kubernetes cluster network provider is supported on the following platforms:

Bare metal hardware

Amazon Web Services (AWS)

Google Cloud Platform (GCP)

Microsoft Azure

Red Hat OpenStack Platform (RHOSP)

Red Hat Virtualization (RHV)

VMware vSphere

IMPORTANT

I0512 19:07:17.589083  108432 helper_linux.go:74] Found default gateway interface br-ex 
192.168.123.1
F0512 19:07:17.589141  108432 ovnkube.go:133] failed to get default gateway interface

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

323

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#logging-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-ipsec-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#network-operator-openshift-io-v1


IMPORTANT

Migrating to or from the OVN-Kubernetes network plugin is not supported for managed
OpenShift cloud services such as Red Hat OpenShift Dedicated, Azure Red Hat
OpenShift(ARO), and Red Hat OpenShift Service on AWS (ROSA).

19.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider

If you have more than 150 nodes in your OpenShift Container Platform cluster, then open a support case
for consultation on your migration to the OVN-Kubernetes network plugin.

The subnets assigned to nodes and the IP addresses assigned to individual pods are not preserved
during the migration.

While the OVN-Kubernetes network provider implements many of the capabilities present in the
OpenShift SDN network provider, the configuration is not the same.

If your cluster uses any of the following OpenShift SDN capabilities, you must manually
configure the same capability in OVN-Kubernetes:

Namespace isolation

Egress IP addresses

Egress network policies

Egress router pods

Multicast

If your cluster uses any part of the 100.64.0.0/16 IP address range, you cannot migrate to OVN-
Kubernetes because it uses this IP address range internally.

The following sections highlight the differences in configuration between the aforementioned
capabilities in OVN-Kubernetes and OpenShift SDN.

Namespace isolation
OVN-Kubernetes supports only the network policy isolation mode.

IMPORTANT

If your cluster uses OpenShift SDN configured in either the multitenant or subnet
isolation modes, you cannot migrate to the OVN-Kubernetes network provider.

Egress IP addresses
The differences in configuring an egress IP address between OVN-Kubernetes and OpenShift SDN is
described in the following table:

Table 19.2. Differences in egress IP address configuration

OpenShift Container Platform 4.10 Networking

324



OVN-Kubernetes OpenShift SDN

Create an EgressIPs object

Add an annotation on a Node object

Patch a NetNamespace object

Patch a HostSubnet object

For more information on using egress IP addresses in OVN-Kubernetes, see "Configuring an egress IP
address".

Egress network policies
The difference in configuring an egress network policy, also known as an egress firewall, between OVN-
Kubernetes and OpenShift SDN is described in the following table:

Table 19.3. Differences in egress network policy configuration

OVN-Kubernetes OpenShift SDN

Create an EgressFirewall object in a
namespace

Create an EgressNetworkPolicy object
in a namespace

For more information on using an egress firewall in OVN-Kubernetes, see "Configuring an egress firewall
for a project".

Egress router pods
OVN-Kubernetes supports egress router pods in redirect mode. OVN-Kubernetes does not support
egress router pods in HTTP proxy mode or DNS proxy mode.

When you deploy an egress router with the Cluster Network Operator, you cannot specify a node
selector to control which node is used to host the egress router pod.

Multicast
The difference between enabling multicast traffic on OVN-Kubernetes and OpenShift SDN is described
in the following table:

Table 19.4. Differences in multicast configuration

OVN-Kubernetes OpenShift SDN

Add an annotation on a Namespace
object

Add an annotation on a NetNamespace
object

For more information on using multicast in OVN-Kubernetes, see "Enabling multicast for a project".

Network policies
OVN-Kubernetes fully supports the Kubernetes NetworkPolicy API in the networking.k8s.io/v1 API
group. No changes are necessary in your network policies when migrating from OpenShift SDN.

19.2.1.2. How the migration process works

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

325



The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 19.5. Migrating to OVN-Kubernetes from OpenShift SDN

User-initiated steps Migration activity

Set the migration field of the 
Network.operator.openshift.io custom resource
(CR) named cluster to OVNKubernetes. Make
sure the migration field is null before setting it to a
value.

Cluster Network Operator (CNO)
Updates the status of the 
Network.config.openshift.io CR named 
cluster accordingly.

Machine Config Operator (MCO)
Rolls out an update to the systemd configuration
necessary for OVN-Kubernetes; The MCO
updates a single machine per pool at a time by
default, causing the total time the migration takes
to increase with the size of the cluster.

Update the networkType field of the 
Network.config.openshift.io CR. CNO

Performs the following actions:

Destroys the OpenShift SDN control
plane pods.

Deploys the OVN-Kubernetes control
plane pods.

Updates the Multus objects to reflect
the new cluster network provider.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OVN-Kubernetes cluster network.

If a rollback to OpenShift SDN is required, the following table describes the process.

Table 19.6. Performing a rollback to OpenShift SDN

User-initiated steps Migration activity

Suspend the MCO to ensure that it does not
interrupt the migration.

The MCO stops.

Set the migration field of the 
Network.operator.openshift.io custom resource
(CR) named cluster to OpenShiftSDN. Make sure
the migration field is null before setting it to a
value.

CNO
Updates the status of the 
Network.config.openshift.io CR named 
cluster accordingly.

OpenShift Container Platform 4.10 Networking

326



Update the networkType field.
CNO

Performs the following actions:

Destroys the OVN-Kubernetes control
plane pods.

Deploys the OpenShift SDN control
plane pods.

Updates the Multus objects to reflect
the new cluster network provider.

Reboot each node in the cluster.
Cluster

As nodes reboot, the cluster assigns IP addresses
to pods on the OpenShift-SDN network.

Enable the MCO after all nodes in the cluster reboot.
MCO

Rolls out an update to the systemd configuration
necessary for OpenShift SDN; The MCO updates
a single machine per pool at a time by default, so
the total time the migration takes increases with
the size of the cluster.

User-initiated steps Migration activity

19.2.2. Migrating to the OVN-Kubernetes default CNI network provider

As a cluster administrator, you can change the default Container Network Interface (CNI) network
provider for your cluster to OVN-Kubernetes. During the migration, you must reboot every node in your
cluster.

IMPORTANT

While performing the migration, your cluster is unavailable and workloads might be
interrupted. Perform the migration only when an interruption in service is acceptable.

Prerequisites

A cluster configured with the OpenShift SDN CNI cluster network provider in the network policy
isolation mode.

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A recent backup of the etcd database is available.

A reboot can be triggered manually for each node.

The cluster is in a known good state, without any errors.

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

327



On all cloud platforms after updating software, a security group rule must be in place to allow
UDP packets on port 6081 for all nodes.

Procedure

1. To backup the configuration for the cluster network, enter the following command:

2. To prepare all the nodes for the migration, set the migration field on the Cluster Network
Operator configuration object by entering the following command:

NOTE

This step does not deploy OVN-Kubernetes immediately. Instead, specifying the 
migration field triggers the Machine Config Operator (MCO) to apply new
machine configs to all the nodes in the cluster in preparation for the OVN-
Kubernetes deployment.

3. Optional: You can customize the following settings for OVN-Kubernetes to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

Geneve (Generic Network Virtualization Encapsulation) overlay network port

To customize either of the previously noted settings, enter and customize the following
command. If you do not need to change the default value, omit the key from the patch.

mtu

The MTU for the Geneve overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 100 less than the smallest node MTU value.

port

The UDP port for the Geneve overlay network. If a value is not specified, the default is 6081.
The port cannot be the same as the VXLAN port that is used by OpenShift SDN. The default
value for the VXLAN port is 4789.

Example patch command to update mtu field

$ oc get Network.config.openshift.io cluster -o yaml > cluster-openshift-sdn.yaml

$ oc patch Network.operator.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "migration": {"networkType": "OVNKubernetes" } } }'

$ oc patch Network.operator.openshift.io cluster --type=merge \
  --patch '{
    "spec":{
      "defaultNetwork":{
        "ovnKubernetesConfig":{
          "mtu":<mtu>,
          "genevePort":<port>
    }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \

OpenShift Container Platform 4.10 Networking

328



4. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

A successfully updated node has the following status: UPDATED=true, UPDATING=false, 
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

5. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

where <config_name> is the name of the machine config from the 
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:

  --patch '{
    "spec":{
      "defaultNetwork":{
        "ovnKubernetesConfig":{
          "mtu":1200
    }}}}'

$ oc get mcp

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

$ oc get machineconfig <config_name> -o yaml | grep ExecStart

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

329



c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. Display the pod log for the first machine config daemon pod shown in the previous
output by enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

6. To start the migration, configure the OVN-Kubernetes cluster network provider by using one of
the following commands:

To specify the network provider without changing the cluster network IP address block,
enter the following command:

To specify a different cluster network IP address block, enter the following command:

ExecStart=/usr/local/bin/configure-ovs.sh OVNKubernetes

$ oc get pod -n openshift-machine-config-operator

NAME                                         READY   STATUS    RESTARTS   AGE
machine-config-controller-75f756f89d-sjp8b   1/1     Running   0          37m
machine-config-daemon-5cf4b                  2/2     Running   0          43h
machine-config-daemon-7wzcd                  2/2     Running   0          43h
machine-config-daemon-fc946                  2/2     Running   0          43h
machine-config-daemon-g2v28                  2/2     Running   0          43h
machine-config-daemon-gcl4f                  2/2     Running   0          43h
machine-config-daemon-l5tnv                  2/2     Running   0          43h
machine-config-operator-79d9c55d5-hth92      1/1     Running   0          37m
machine-config-server-bsc8h                  1/1     Running   0          43h
machine-config-server-hklrm                  1/1     Running   0          43h
machine-config-server-k9rtx                  1/1     Running   0          43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc patch Network.config.openshift.io cluster \
  --type='merge' --patch '{ "spec": { "networkType": "OVNKubernetes" } }'

$ oc patch Network.config.openshift.io cluster \
  --type='merge' --patch '{
    "spec": {
      "clusterNetwork": [
        {
          "cidr": "<cidr>",
          "hostPrefix": <prefix>

OpenShift Container Platform 4.10 Networking

330



where cidr is a CIDR block and prefix is the slice of the CIDR block apportioned to each
node in your cluster. You cannot use any CIDR block that overlaps with the 100.64.0.0/16
CIDR block because the OVN-Kubernetes network provider uses this block internally.

IMPORTANT

You cannot change the service network address block during the migration.

7. Verify that the Multus daemon set rollout is complete before continuing with subsequent steps:

The name of the Multus pods is in the form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

8. To complete the migration, reboot each node in your cluster. For example, you can use a bash
script similar to the following example. The script assumes that you can connect to each host by
using ssh and that you have configured sudo to not prompt for a password.

If ssh access is not available, you might be able to reboot each node through the management
portal for your infrastructure provider.

9. Confirm that the migration succeeded:

a. To confirm that the CNI cluster network provider is OVN-Kubernetes, enter the following
command. The value of status.networkType must be OVNKubernetes.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

        }
      ],
      "networkType": "OVNKubernetes"
    }
  }'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

#!/bin/bash

for ip in $(oc get nodes  -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
   echo "reboot node $ip"
   ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

331



c. To confirm that your pods are not in an error state, enter the following command:

If pods on a node are in an error state, reboot that node.

d. To confirm that all of the cluster Operators are not in an abnormal state, enter the following
command:

The status of every cluster Operator must be the following: AVAILABLE="True", 
PROGRESSING="False", DEGRADED="False". If a cluster Operator is not available or
degraded, check the logs for the cluster Operator for more information.

10. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the CNO configuration object, enter the
following command:

b. To remove custom configuration for the OpenShift SDN network provider, enter the
following command:

c. To remove the OpenShift SDN network provider namespace, enter the following command:

19.2.3. Additional resources

Configuration parameters for the OVN-Kubernetes default CNI network provider

Backing up etcd

About network policy

OVN-Kubernetes capabilities

Configuring an egress IP address

Configuring an egress firewall for a project

Enabling multicast for a project

OpenShift SDN capabilities

Configuring egress IPs for a project

Configuring an egress firewall for a project

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

$ oc get co

$ oc patch Network.operator.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "defaultNetwork": { "openshiftSDNConfig": null } } }'

$ oc delete namespace openshift-sdn

OpenShift Container Platform 4.10 Networking

332

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/backup_and_restore/#backup-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-ips-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-firewall-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ovn-kubernetes-enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#assigning-egress-ips
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-firewall


Enabling multicast for a project

Network [operator.openshift.io/v1]

19.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER

As a cluster administrator, you can rollback to the OpenShift SDN Container Network Interface (CNI)
cluster network provider from the OVN-Kubernetes CNI cluster network provider if the migration to
OVN-Kubernetes is unsuccessful.

19.3.1. Rolling back the default CNI network provider to OpenShift SDN

As a cluster administrator, you can rollback your cluster to the OpenShift SDN Container Network
Interface (CNI) cluster network provider. During the rollback, you must reboot every node in your
cluster.

IMPORTANT

Only rollback to OpenShift SDN if the migration to OVN-Kubernetes fails.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes CNI cluster network
provider.

Procedure

1. Stop all of the machine configuration pools managed by the Machine Config Operator (MCO):

Stop the master configuration pool:

Stop the worker machine configuration pool:

2. To start the migration, set the cluster network provider back to OpenShift SDN by entering the
following commands:

3. Optional: You can customize the following settings for OpenShift SDN to meet your network
infrastructure requirements:

Maximum transmission unit (MTU)

$ oc patch MachineConfigPool master --type='merge' --patch \
  '{ "spec": { "paused": true } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
  '{ "spec":{ "paused" :true } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "migration": { "networkType": "OpenShiftSDN" } } }'

$ oc patch Network.config.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "networkType": "OpenShiftSDN" } }'

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

333

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#enabling-multicast
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#network-operator-openshift-io-v1


Maximum transmission unit (MTU)

VXLAN port

To customize either or both of the previously noted settings, customize and enter the following
command. If you do not need to change the default value, omit the key from the patch.

mtu

The MTU for the VXLAN overlay network. This value is normally configured automatically,
but if the nodes in your cluster do not all use the same MTU, then you must set this explicitly
to 50 less than the smallest node MTU value.

port

The UDP port for the VXLAN overlay network. If a value is not specified, the default is 4789.
The port cannot be the same as the Geneve port that is used by OVN-Kubernetes. The
default value for the Geneve port is 6081.

Example patch command

4. Wait until the Multus daemon set rollout completes.

The name of the Multus pods is in form of multus-<xxxxx> where <xxxxx> is a random
sequence of letters. It might take several moments for the pods to restart.

Example output

5. To complete the rollback, reboot each node in your cluster. For example, you could use a bash
script similar to the following. The script assumes that you can connect to each host by using 
ssh and that you have configured sudo to not prompt for a password.

$ oc patch Network.operator.openshift.io cluster --type=merge \
  --patch '{
    "spec":{
      "defaultNetwork":{
        "openshiftSDNConfig":{
          "mtu":<mtu>,
          "vxlanPort":<port>
    }}}}'

$ oc patch Network.operator.openshift.io cluster --type=merge \
  --patch '{
    "spec":{
      "defaultNetwork":{
        "openshiftSDNConfig":{
          "mtu":1200
    }}}}'

$ oc -n openshift-multus rollout status daemonset/multus

Waiting for daemon set "multus" rollout to finish: 1 out of 6 new pods have been updated...
...
Waiting for daemon set "multus" rollout to finish: 5 of 6 updated pods are available...
daemon set "multus" successfully rolled out

OpenShift Container Platform 4.10 Networking

334



If ssh access is not available, you might be able to reboot each node through the management
portal for your infrastructure provider.

6. After the nodes in your cluster have rebooted, start all of the machine configuration pools:

Start the master configuration pool:

Start the worker configuration pool:

As the MCO updates machines in each config pool, it reboots each node.

By default the MCO updates a single machine per pool at a time, so the time that the migration
requires to complete grows with the size of the cluster.

7. Confirm the status of the new machine configuration on the hosts:

a. To list the machine configuration state and the name of the applied machine configuration,
enter the following command:

Example output

Verify that the following statements are true:

The value of machineconfiguration.openshift.io/state field is Done.

The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:

#!/bin/bash

for ip in $(oc get nodes  -o jsonpath='{.items[*].status.addresses[?
(@.type=="InternalIP")].address}')
do
   echo "reboot node $ip"
   ssh -o StrictHostKeyChecking=no core@$ip sudo shutdown -r -t 3
done

$ oc patch MachineConfigPool master --type='merge' --patch \
  '{ "spec": { "paused": false } }'

$ oc patch MachineConfigPool worker --type='merge' --patch \
  '{ "spec": { "paused": false } }'

$ oc describe node | egrep "hostname|machineconfig"

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

335



where <config_name> is the name of the machine config from the 
machineconfiguration.openshift.io/currentConfig field.

8. Confirm that the migration succeeded:

a. To confirm that the default CNI network provider is OpenShift SDN, enter the following
command. The value of status.networkType must be OpenShiftSDN.

b. To confirm that the cluster nodes are in the Ready state, enter the following command:

c. If a node is stuck in the NotReady state, investigate the machine config daemon pod logs
and resolve any errors.

i. To list the pods, enter the following command:

Example output

The names for the config daemon pods are in the following format: machine-config-
daemon-<seq>. The <seq> value is a random five character alphanumeric sequence.

ii. To display the pod log for each machine config daemon pod shown in the previous
output, enter the following command:

where pod is the name of a machine config daemon pod.

iii. Resolve any errors in the logs shown by the output from the previous command.

d. To confirm that your pods are not in an error state, enter the following command:

$ oc get machineconfig <config_name> -o yaml

$ oc get network.config/cluster -o jsonpath='{.status.networkType}{"\n"}'

$ oc get nodes

$ oc get pod -n openshift-machine-config-operator

NAME                                         READY   STATUS    RESTARTS   AGE
machine-config-controller-75f756f89d-sjp8b   1/1     Running   0          37m
machine-config-daemon-5cf4b                  2/2     Running   0          43h
machine-config-daemon-7wzcd                  2/2     Running   0          43h
machine-config-daemon-fc946                  2/2     Running   0          43h
machine-config-daemon-g2v28                  2/2     Running   0          43h
machine-config-daemon-gcl4f                  2/2     Running   0          43h
machine-config-daemon-l5tnv                  2/2     Running   0          43h
machine-config-operator-79d9c55d5-hth92      1/1     Running   0          37m
machine-config-server-bsc8h                  1/1     Running   0          43h
machine-config-server-hklrm                  1/1     Running   0          43h
machine-config-server-k9rtx                  1/1     Running   0          43h

$ oc logs <pod> -n openshift-machine-config-operator

$ oc get pods --all-namespaces -o wide --sort-by='{.spec.nodeName}'

OpenShift Container Platform 4.10 Networking

336



If pods on a node are in an error state, reboot that node.

9. Complete the following steps only if the migration succeeds and your cluster is in a good state:

a. To remove the migration configuration from the Cluster Network Operator configuration
object, enter the following command:

b. To remove the OVN-Kubernetes configuration, enter the following command:

c. To remove the OVN-Kubernetes network provider namespace, enter the following
command:

19.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING

As a cluster administrator, you can convert your IPv4 single-stack cluster to a dual-network cluster
network that supports IPv4 and IPv6 address families. After converting to dual-stack, all newly created
pods are dual-stack enabled.

NOTE

A dual-stack network is supported on clusters provisioned on bare metal, IBM Power
infrastructure, and single node OpenShift clusters.

NOTE

While using dual-stack networking, you cannot use IPv4-mapped IPv6 addresses, such as 
::FFFF:198.51.100.1, where IPv6 is required.

19.4.1. Converting to a dual-stack cluster network

As a cluster administrator, you can convert your single-stack cluster network to a dual-stack cluster
network.

NOTE

After converting to dual-stack networking only newly created pods are assigned IPv6
addresses. Any pods created before the conversion must be recreated to receive an IPv6
address.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

$ oc patch Network.operator.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "migration": null } }'

$ oc patch Network.operator.openshift.io cluster --type='merge' \
  --patch '{ "spec": { "defaultNetwork": { "ovnKubernetesConfig":null } } }'

$ oc delete namespace openshift-ovn-kubernetes

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

337



1

2

Your cluster uses the OVN-Kubernetes cluster network provider.

The cluster nodes have IPv6 addresses.

Procedure

1. To specify IPv6 address blocks for the cluster and service networks, create a file containing the
following YAML:

Specify an object with the cidr and hostPrefix fields. The host prefix must be 64 or
greater. The IPv6 CIDR prefix must be large enough to accommodate the specified host
prefix.

Specify an IPv6 CIDR with a prefix of 112. Kubernetes uses only the lowest 16 bits. For a
prefix of 112, IP addresses are assigned from 112 to 128 bits.

2. To patch the cluster network configuration, enter the following command:

where:

file

Specifies the name of the file you created in the previous step.

Example output

Verification

Complete the following step to verify that the cluster network recognizes the IPv6 address blocks that
you specified in the previous procedure.

1. Display the network configuration:

Example output

- op: add
  path: /spec/clusterNetwork/-
  value: 1
    cidr: fd01::/48
    hostPrefix: 64
- op: add
  path: /spec/serviceNetwork/-
  value: fd02::/112 2

$ oc patch network.config.openshift.io cluster \
  --type='json' --patch-file <file>.yaml

network.config.openshift.io/cluster patched

$ oc describe network

Status:
  Cluster Network:
    Cidr:               10.128.0.0/14

OpenShift Container Platform 4.10 Networking

338



19.5. IPSEC ENCRYPTION CONFIGURATION

With IPsec enabled, all network traffic between nodes on the OVN-Kubernetes Container Network
Interface (CNI) cluster network travels through an encrypted tunnel.

IPsec is disabled by default.

NOTE

IPsec encryption can be enabled only during cluster installation and cannot be disabled
after it is enabled. For installation documentation, refer to Selecting a cluster installation
method and preparing it for users.

19.5.1. Types of network traffic flows encrypted by IPsec

With IPsec enabled, only the following network traffic flows between pods are encrypted:

Traffic between pods on different nodes on the cluster network

Traffic from a pod on the host network to a pod on the cluster network

The following traffic flows are not encrypted:

Traffic between pods on the same node on the cluster network

Traffic between pods on the host network

Traffic from a pod on the cluster network to a pod on the host network

The encrypted and unencrypted flows are illustrated in the following diagram:

    Host Prefix:        23
    Cidr:               fd01::/48
    Host Prefix:        64
  Cluster Network MTU:  1400
  Network Type:         OVNKubernetes
  Service Network:
    172.30.0.0/16
    fd02::/112

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

339

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-preparing


19.5.1.1. Network connectivity requirements when IPsec is enabled

You must configure the network connectivity between machines to allow OpenShift Container Platform
cluster components to communicate. Each machine must be able to resolve the hostnames of all other
machines in the cluster.

Table 19.7. Ports used for all-machine to all-machine communications

Protocol Port Description

UDP 500 IPsec IKE packets

4500 IPsec NAT-T packets

ESP N/A IPsec Encapsulating Security Payload (ESP)

19.5.2. Encryption protocol and IPsec mode

The encrypt cipher used is AES-GCM-16-256. The integrity check value (ICV) is 16 bytes. The key length
is 256 bits.

The IPsec mode used is Transport mode, a mode that encrypts end-to-end communication by adding an
Encapsulated Security Payload (ESP) header to the IP header of the original packet and encrypts the
packet data. OpenShift Container Platform does not currently use or support IPsec Tunnel mode  for
pod-to-pod communication.

19.5.3. Security certificate generation and rotation

OpenShift Container Platform 4.10 Networking

340



The Cluster Network Operator (CNO) generates a self-signed X.509 certificate authority (CA) that is
used by IPsec for encryption. Certificate signing requests (CSRs) from each node are automatically
fulfilled by the CNO.

The CA is valid for 10 years. The individual node certificates are valid for 5 years and are automatically
rotated after 4 1/2 years elapse.

19.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can create an egress firewall for a project that restricts egress traffic
leaving your OpenShift Container Platform cluster.

19.6.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all pods
can access from within the cluster. An egress firewall supports the following scenarios:

A pod can only connect to internal hosts and cannot initiate connections to the public internet.

A pod can only connect to the public internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A pod can connect to only specific external hosts.

For example, you can allow one project access to a specified IP range but deny the same access to a
different project. Or you can restrict application developers from updating from Python pip mirrors, and
force updates to come only from approved sources.

NOTE

Egress firewall does not apply to the host network namespace. Pods with host networking
enabled are unaffected by egress firewall rules.

You configure an egress firewall policy by creating an EgressFirewall custom resource (CR) object. The
egress firewall matches network traffic that meets any of the following criteria:

An IP address range in CIDR format

A DNS name that resolves to an IP address

A port number

A protocol that is one of the following protocols: TCP, UDP, and SCTP

IMPORTANT

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

341



1
2
3

IMPORTANT

If your egress firewall includes a deny rule for 0.0.0.0/0, access to your OpenShift
Container Platform API servers is blocked. To ensure that pods can access the
OpenShift Container Platform API servers, you must include the built-in join network 
100.64.0.0/16 of Open Virtual Network (OVN) to allow access when using node ports
together with an EgressFirewall. You must also include the IP address range that the API
servers listen on in your egress firewall rules, as in the following example:

The namespace for the egress firewall.
The IP address range that includes your OpenShift Container Platform API servers.
A global deny rule prevents access to the OpenShift Container Platform API servers.

To find the IP address for your API servers, run oc get ep kubernetes -n default.

For more information, see BZ#1988324.

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress firewall policy rules by
creating a route that points to a forbidden destination.

19.6.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressFirewall object.

A maximum of one EgressFirewall object with a maximum of 8,000 rules can be defined per
project.

If you are using the OVN-Kubernetes network plugin with shared gateway mode in Red Hat
OpenShift Networking, return ingress replies are affected by egress firewall rules. If the egress
firewall rules drop the ingress reply destination IP, the traffic is dropped.

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
  namespace: <namespace> 1
spec:
  egress:
  - to:
      cidrSelector: <api_server_address_range> 2
    type: Allow
# ...
  - to:
      cidrSelector: 0.0.0.0/0 3
    type: Deny



OpenShift Container Platform 4.10 Networking

342

https://bugzilla.redhat.com/show_bug.cgi?id=1988324


Violating any of these restrictions results in a broken egress firewall for the project, and might cause all
external network traffic to be dropped.

An Egress Firewall resource can be created in the kube-node-lease, kube-public, kube-system, 
openshift and openshift- projects.

19.6.1.2. Matching order for egress firewall policy rules

The egress firewall policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a pod applies. Any subsequent rules are ignored for
that connection.

19.6.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on a time-to-live (TTL) duration. By default, the
duration is 30 minutes. When the egress firewall controller queries the local name servers for a
domain name, if the response includes a TTL and the TTL is less than 30 minutes, the controller
sets the duration for that DNS name to the returned value. Each DNS name is queried after the
TTL for the DNS record expires.

The pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the pod can be
different. If the IP addresses for a hostname differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and pods asynchronously poll the same local name server,
the pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressFirewall objects is
only recommended for domains with infrequent IP address changes.

NOTE

The egress firewall always allows pods access to the external interface of the node that
the pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
pods.

19.6.2. EgressFirewall custom resource (CR) object

You can define one or more rules for an egress firewall. A rule is either an Allow rule or a Deny rule, with
a specification for the traffic that the rule applies to.

The following YAML describes an EgressFirewall CR object:

EgressFirewall object

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

343



1

2

1

2

3

4

5

1

2

The name for the object must be default.

A collection of one or more egress network policy rules as described in the following section.

19.6.2.1. EgressFirewall rules

The following YAML describes an egress firewall rule object. The egress stanza expects an array of one
or more objects.

Egress policy rule stanza

The type of rule. The value must be either Allow or Deny.

A stanza describing an egress traffic match rule that specifies the cidrSelector field or the 
dnsName field. You cannot use both fields in the same rule.

An IP address range in CIDR format.

A DNS domain name.

Optional: A stanza describing a collection of network ports and protocols for the rule.

Ports stanza

A network port, such as 80 or 443. If you specify a value for this field, you must also specify a value
for protocol.

A network protocol. The value must be either TCP, UDP, or SCTP.

19.6.2.2. Example EgressFirewall CR objects

The following example defines several egress firewall policy rules:

  name: <name> 1
spec:
  egress: 2
    ...

egress:
- type: <type> 1
  to: 2
    cidrSelector: <cidr> 3
    dnsName: <dns_name> 4
  ports: 5
      ...

ports:
- port: <port> 1
  protocol: <protocol> 2

OpenShift Container Platform 4.10 Networking

344



1 A collection of egress firewall policy rule objects.

The following example defines a policy rule that denies traffic to the host at the 172.16.1.1 IP address, if
the traffic is using either the TCP protocol and destination port 80 or any protocol and destination port 
443.

19.6.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressFirewall object defined, you must edit the existing
policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
spec:
  egress: 1
  - type: Allow
    to:
      cidrSelector: 1.2.3.0/24
  - type: Deny
    to:
      cidrSelector: 0.0.0.0/0

apiVersion: k8s.ovn.org/v1
kind: EgressFirewall
metadata:
  name: default
spec:
  egress:
  - type: Deny
    to:
      cidrSelector: 172.16.1.1
    ports:
    - port: 80
      protocol: TCP
    - port: 443

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

345



1. Create a policy rule:

a. Create a <policy_name>.yaml file where <policy_name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object. Replace <policy_name> with the
name of the policy and <project> with the project that the rule applies to.

In the following example, a new EgressFirewall object is created in a project named project1:

Example output

3. Optional: Save the <policy_name>.yaml file so that you can make changes later.

19.7. VIEWING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can list the names of any existing egress firewalls and view the traffic
rules for a specific egress firewall.

19.7.1. Viewing an EgressFirewall object

You can view an EgressFirewall object in your cluster.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Optional: To view the names of the EgressFirewall objects defined in your cluster, enter the
following command:

2. To inspect a policy, enter the following command. Replace <policy_name> with the name of
the policy to inspect.

Example output

$ oc create -f <policy_name>.yaml -n <project>

$ oc create -f default.yaml -n project1

egressfirewall.k8s.ovn.org/v1 created

$ oc get egressfirewall --all-namespaces

$ oc describe egressfirewall <policy_name>

OpenShift Container Platform 4.10 Networking

346



19.8. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

19.8.1. Editing an EgressFirewall object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Optional: If you did not save a copy of the EgressFirewall object when you created the egress
network firewall, enter the following command to create a copy.

Replace <project> with the name of the project. Replace <name> with the name of the object.
Replace <filename> with the name of the file to save the YAML to.

3. After making changes to the policy rules, enter the following command to replace the
EgressFirewall object. Replace <filename> with the name of the file containing the updated
EgressFirewall object.

19.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

Name:  default
Namespace: project1
Created: 20 minutes ago
Labels:  <none>
Annotations: <none>
Rule:  Allow to 1.2.3.0/24
Rule:  Allow to www.example.com
Rule:  Deny to 0.0.0.0/0

$ oc get -n <project> egressfirewall

$ oc get -n <project> egressfirewall <name> -o yaml > <filename>.yaml

$ oc replace -f <filename>.yaml

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

347



19.9.1. Removing an EgressFirewall object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OVN-Kubernetes default Container Network Interface (CNI) network
provider plugin.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Find the name of the EgressFirewall object for the project. Replace <project> with the name of
the project.

2. Enter the following command to delete the EgressFirewall object. Replace <project> with the
name of the project and <name> with the name of the object.

19.10. CONFIGURING AN EGRESS IP ADDRESS

As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider to assign one or more egress IP addresses to a namespace, or to specific pods
in a namespace.

19.10.1. Egress IP address architectural design and implementation

The OpenShift Container Platform egress IP address functionality allows you to ensure that the traffic
from one or more pods in one or more namespaces has a consistent source IP address for services
outside the cluster network.

For example, you might have a pod that periodically queries a database that is hosted on a server
outside of your cluster. To enforce access requirements for the server, a packet filtering device is
configured to allow traffic only from specific IP addresses. To ensure that you can reliably allow access
to the server from only that specific pod, you can configure a specific egress IP address for the pod that
makes the requests to the server.

An egress IP address assigned to a namespace is different from an egress router, which is used to send
traffic to specific destinations.

In some cluster configurations, application pods and ingress router pods run on the same node. If you
configure an egress IP address for an application project in this scenario, the IP address is not used when
you send a request to a route from the application project.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

$ oc get -n <project> egressfirewall

$ oc delete -n <project> egressfirewall <name>

OpenShift Container Platform 4.10 Networking

348



19.10.1.1. Platform support

Support for the egress IP address functionality on various platforms is summarized in the following
table:

Platform Supported

Bare metal Yes

VMware vSphere Yes

Red Hat OpenStack Platform (RHOSP) No

Amazon Web Services (AWS) Yes

Google Cloud Platform (GCP) Yes

Microsoft Azure Yes

IMPORTANT

The assignment of egress IP addresses to control plane nodes with the EgressIP feature
is not supported on a cluster provisioned on Amazon Web Services (AWS).
(BZ#2039656)

19.10.1.2. Public cloud platform considerations

For clusters provisioned on public cloud infrastructure, there is a constraint on the absolute number of
assignable IP addresses per node. The maximum number of assignable IP addresses per node, or the IP
capacity, can be described in the following formula:

While the Egress IPs capability manages the IP address capacity per node, it is important to plan for this
constraint in your deployments. For example, for a cluster installed on bare-metal infrastructure with 8
nodes you can configure 150 egress IP addresses. However, if a public cloud provider limits IP address
capacity to 10 IP addresses per node, the total number of assignable IP addresses is only 80. To achieve
the same IP address capacity in this example cloud provider, you would need to allocate 7 additional
nodes.

To confirm the IP capacity and subnets for any node in your public cloud environment, you can enter the
oc get node <node_name> -o yaml command. The cloud.network.openshift.io/egress-ipconfig
annotation includes capacity and subnet information for the node.

The annotation value is an array with a single object with fields that provide the following information for
the primary network interface:

interface: Specifies the interface ID on AWS and Azure and the interface name on GCP.

ifaddr: Specifies the subnet mask for one or both IP address families.

capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is

IP capacity = public cloud default capacity - sum(current IP assignments)

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

349

https://bugzilla.redhat.com/show_bug.cgi?id=2039656


capacity: Specifies the IP address capacity for the node. On AWS, the IP address capacity is
provided per IP address family. On Azure and GCP, the IP address capacity includes both IPv4
and IPv6 addresses.

The following examples illustrate the annotation from nodes on several public cloud providers. The
annotations are indented for readability.

Example cloud.network.openshift.io/egress-ipconfig annotation on AWS

Example cloud.network.openshift.io/egress-ipconfig annotation on GCP

The following sections describe the IP address capacity for supported public cloud environments for use
in your capacity calculation.

19.10.1.2.1. Amazon Web Services (AWS) IP address capacity limits

On AWS, constraints on IP address assignments depend on the instance type configured. For more
information, see IP addresses per network interface per instance type

19.10.1.2.2. Google Cloud Platform (GCP) IP address capacity limits

On GCP, the networking model implements additional node IP addresses through IP address aliasing,
rather than IP address assignments. However, IP address capacity maps directly to IP aliasing capacity.

The following capacity limits exist for IP aliasing assignment:

Per node, the maximum number of IP aliases, both IPv4 and IPv6, is 10.

Per VPC, the maximum number of IP aliases is unspecified, but OpenShift Container Platform
scalability testing reveals the maximum to be approximately 15,000.

For more information, see Per instance quotas and Alias IP ranges overview .

19.10.1.2.3. Microsoft Azure IP address capacity limits

On Azure, the following capacity limits exist for IP address assignment:

Per NIC, the maximum number of assignable IP addresses, for both IPv4 and IPv6, is 256.

cloud.network.openshift.io/egress-ipconfig: [
  {
    "interface":"eni-078d267045138e436",
    "ifaddr":{"ipv4":"10.0.128.0/18"},
    "capacity":{"ipv4":14,"ipv6":15}
  }
]

cloud.network.openshift.io/egress-ipconfig: [
  {
    "interface":"nic0",
    "ifaddr":{"ipv4":"10.0.128.0/18"},
    "capacity":{"ip":14}
  }
]

OpenShift Container Platform 4.10 Networking

350

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html#AvailableIpPerENI
https://cloud.google.com/vpc/docs/quota#per_instance
https://cloud.google.com/vpc/docs/alias-ip


Per virtual network, the maximum number of assigned IP addresses cannot exceed 65,536.

For more information, see Networking limits .

19.10.1.3. Assignment of egress IPs to pods

To assign one or more egress IPs to a namespace or specific pods in a namespace, the following
conditions must be satisfied:

At least one node in your cluster must have the k8s.ovn.org/egress-assignable: "" label.

An EgressIP object exists that defines one or more egress IP addresses to use as the source IP
address for traffic leaving the cluster from pods in a namespace.

IMPORTANT

If you create EgressIP objects prior to labeling any nodes in your cluster for egress IP
assignment, OpenShift Container Platform might assign every egress IP address to the
first node with the k8s.ovn.org/egress-assignable: "" label.

To ensure that egress IP addresses are widely distributed across nodes in the cluster,
always apply the label to the nodes you intent to host the egress IP addresses before
creating any EgressIP objects.

19.10.1.4. Assignment of egress IPs to nodes

When creating an EgressIP object, the following conditions apply to nodes that are labeled with the 
k8s.ovn.org/egress-assignable: "" label:

An egress IP address is never assigned to more than one node at a time.

An egress IP address is equally balanced between available nodes that can host the egress IP
address.

If the spec.EgressIPs array in an EgressIP object specifies more than one IP address, the
following conditions apply:

No node will ever host more than one of the specified IP addresses.

Traffic is balanced roughly equally between the specified IP addresses for a given
namespace.

If a node becomes unavailable, any egress IP addresses assigned to it are automatically
reassigned, subject to the previously described conditions.

When a pod matches the selector for multiple EgressIP objects, there is no guarantee which of the
egress IP addresses that are specified in the EgressIP objects is assigned as the egress IP address for
the pod.

Additionally, if an EgressIP object specifies multiple egress IP addresses, there is no guarantee which of
the egress IP addresses might be used. For example, if a pod matches a selector for an EgressIP object
with two egress IP addresses, 10.10.20.1 and 10.10.20.2, either might be used for each TCP connection
or UDP conversation.

19.10.1.5. Architectural diagram of an egress IP address configuration

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

351

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/azure-subscription-service-limits?toc=/azure/virtual-network/toc.json#networking-limits


The following diagram depicts an egress IP address configuration. The diagram describes four pods in
two different namespaces running on three nodes in a cluster. The nodes are assigned IP addresses
from the 192.168.126.0/18 CIDR block on the host network.

Node 1

meta:
name: node1
labels:
k8s.ovn.org/egress-assignable: ""

Both Node 1 and Node 3 are labeled with k8s.ovn.org/egress-assignable: "" and thus available for the
assignment of egress IP addresses.

The dashed lines in the diagram depict the traffic flow from pod1, pod2, and pod3 traveling through the
pod network to egress the cluster from Node 1 and Node 3. When an external service receives traffic
from any of the pods selected by the example EgressIP object, the source IP address is either 
192.168.126.10 or 192.168.126.102. The traffic is balanced roughly equally between these two nodes.

The following resources from the diagram are illustrated in detail:

Namespace objects

The namespaces are defined in the following manifest:

Namespace objects

EgressIP object

The following EgressIP object describes a configuration that selects all pods in any namespace with
the env label set to prod. The egress IP addresses for the selected pods are 192.168.126.10 and 
192.168.126.102.

EgressIP object

apiVersion: v1
kind: Namespace
metadata:
  name: namespace1
  labels:
    env: prod
---
apiVersion: v1
kind: Namespace
metadata:
  name: namespace2
  labels:
    env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:

OpenShift Container Platform 4.10 Networking

352



1

2

3

4

For the configuration in the previous example, OpenShift Container Platform assigns both egress IP
addresses to the available nodes. The status field reflects whether and where the egress IP
addresses are assigned.

19.10.2. EgressIP object

The following YAML describes the API for the EgressIP object. The scope of the object is cluster-wide;
it is not created in a namespace.

The name for the EgressIPs object.

An array of one or more IP addresses.

One or more selectors for the namespaces to associate the egress IP addresses with.

Optional: One or more selectors for pods in the specified namespaces to associate egress IP
addresses with. Applying these selectors allows for the selection of a subset of pods within a
namespace.

The following YAML describes the stanza for the namespace selector:

Namespace selector stanza

  name: egressips-prod
spec:
  egressIPs:
  - 192.168.126.10
  - 192.168.126.102
  namespaceSelector:
    matchLabels:
      env: prod
status:
  items:
  - node: node1
    egressIP: 192.168.126.10
  - node: node3
    egressIP: 192.168.126.102

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
  name: <name> 1
spec:
  egressIPs: 2
  - <ip_address>
  namespaceSelector: 3
    ...
  podSelector: 4
    ...

namespaceSelector: 1
  matchLabels:
    <label_name>: <label_value>

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

353



1

1

One or more matching rules for namespaces. If more than one match rule is provided, all matching
namespaces are selected.

The following YAML describes the optional stanza for the pod selector:

Pod selector stanza

Optional: One or more matching rules for pods in the namespaces that match the specified 
namespaceSelector rules. If specified, only pods that match are selected. Others pods in the
namespace are not selected.

In the following example, the EgressIP object associates the 192.168.126.11 and 192.168.126.102
egress IP addresses with pods that have the app label set to web and are in the namespaces that have
the env label set to prod:

Example EgressIP object

In the following example, the EgressIP object associates the 192.168.127.30 and 192.168.127.40
egress IP addresses with any pods that do not have the environment label set to development:

Example EgressIP object

podSelector: 1
  matchLabels:
    <label_name>: <label_value>

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
  name: egress-group1
spec:
  egressIPs:
  - 192.168.126.11
  - 192.168.126.102
  podSelector:
    matchLabels:
      app: web
  namespaceSelector:
    matchLabels:
      env: prod

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
  name: egress-group2
spec:
  egressIPs:
  - 192.168.127.30
  - 192.168.127.40
  namespaceSelector:
    matchExpressions:
    - key: environment

OpenShift Container Platform 4.10 Networking

354



1

19.10.3. Labeling a node to host egress IP addresses

You can apply the k8s.ovn.org/egress-assignable="" label to a node in your cluster so that OpenShift
Container Platform can assign one or more egress IP addresses to the node.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Procedure

To label a node so that it can host one or more egress IP addresses, enter the following
command:

The name of the node to label.

TIP

You can alternatively apply the following YAML to add the label to a node:

19.10.4. Next steps

Assigning egress IPs

19.10.5. Additional resources

LabelSelector meta/v1

LabelSelectorRequirement meta/v1

19.11. ASSIGNING AN EGRESS IP ADDRESS

As a cluster administrator, you can assign an egress IP address for traffic leaving the cluster from a
namespace or from specific pods in a namespace.

19.11.1. Assigning an egress IP address to a namespace

      operator: NotIn
      values:
      - development

$ oc label nodes <node_name> k8s.ovn.org/egress-assignable="" 1

apiVersion: v1
kind: Node
metadata:
  labels:
    k8s.ovn.org/egress-assignable: ""
  name: <node_name>

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

355

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#assigning-egress-ips-ovn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#labelselector-meta-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#labelselectorrequirement-meta-v1


1

1

You can assign one or more egress IP addresses to a namespace or to specific pods in a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in to the cluster as a cluster administrator.

Configure at least one node to host an egress IP address.

Procedure

1. Create an EgressIP object:

a. Create a <egressips_name>.yaml file where <egressips_name> is the name of the
object.

b. In the file that you created, define an EgressIP object, as in the following example:

2. To create the object, enter the following command.

Replace <egressips_name> with the name of the object.

Example output

3. Optional: Save the <egressips_name>.yaml file so that you can make changes later.

4. Add labels to the namespace that requires egress IP addresses. To add a label to the
namespace of an EgressIP object defined in step 1, run the following command:

Replace <namespace> with the namespace that requires egress IP addresses.

19.11.2. Additional resources

apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
  name: egress-project1
spec:
  egressIPs:
  - 192.168.127.10
  - 192.168.127.11
  namespaceSelector:
    matchLabels:
      env: qa

$ oc apply -f <egressips_name>.yaml 1

egressips.k8s.ovn.org/<egressips_name> created

$ oc label ns <namespace> env=qa 1

OpenShift Container Platform 4.10 Networking

356



Configuring egress IP addresses

19.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD

19.12.1. About an egress router pod

The OpenShift Container Platform egress router pod redirects traffic to a specified remote server from
a private source IP address that is not used for any other purpose. An egress router pod can send
network traffic to servers that are set up to allow access only from specific IP addresses.

NOTE

The egress router pod is not intended for every outgoing connection. Creating large
numbers of egress router pods can exceed the limits of your network hardware. For
example, creating an egress router pod for every project or application could exceed the
number of local MAC addresses that the network interface can handle before reverting to
filtering MAC addresses in software.

IMPORTANT

The egress router image is not compatible with Amazon AWS, Azure Cloud, or any other
cloud platform that does not support layer 2 manipulations due to their incompatibility
with macvlan traffic.

19.12.1.1. Egress router modes

In redirect mode , an egress router pod configures iptables rules to redirect traffic from its own IP
address to one or more destination IP addresses. Client pods that need to use the reserved source IP
address must be configured to access the service for the egress router rather than connecting directly
to the destination IP. You can access the destination service and port from the application pod by using
the curl command. For example:

NOTE

The egress router CNI plugin supports redirect mode only. This is a difference with the
egress router implementation that you can deploy with OpenShift SDN. Unlike the egress
router for OpenShift SDN, the egress router CNI plugin does not support HTTP proxy
mode or DNS proxy mode.

19.12.1.2. Egress router pod implementation

The egress router implementation uses the egress router Container Network Interface (CNI) plugin. The
plugin adds a secondary network interface to a pod.

An egress router is a pod that has two network interfaces. For example, the pod can have eth0 and net1
network interfaces. The eth0 interface is on the cluster network and the pod continues to use the
interface for ordinary cluster-related network traffic. The net1 interface is on a secondary network and
has an IP address and gateway for that network. Other pods in the OpenShift Container Platform
cluster can access the egress router service and the service enables the pods to access external
services. The egress router acts as a bridge between pods and an external system.

Traffic that leaves the egress router exits through a node, but the packets have the MAC address of the

$ curl <router_service_IP> <port>

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

357

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-egress-ips-ovn


Traffic that leaves the egress router exits through a node, but the packets have the MAC address of the
net1 interface from the egress router pod.

When you add an egress router custom resource, the Cluster Network Operator creates the following
objects:

The network attachment definition for the net1 secondary network interface of the pod.

A deployment for the egress router.

If you delete an egress router custom resource, the Operator deletes the two objects in the preceding
list that are associated with the egress router.

19.12.1.3. Deployment considerations

An egress router pod adds an additional IP address and MAC address to the primary network interface
of the node. As a result, you might need to configure your hypervisor or cloud provider to allow the
additional address.

Red Hat OpenStack Platform (RHOSP)

If you deploy OpenShift Container Platform on RHOSP, you must allow traffic from the IP and MAC
addresses of the egress router pod on your OpenStack environment. If you do not allow the traffic,
then communication will fail :

Red Hat Virtualization (RHV)

If you are using RHV, you must select No Network Filter for the Virtual network interface controller
(vNIC).

VMware vSphere

If you are using VMware vSphere, see the VMware documentation for securing vSphere standard
switches. View and change VMware vSphere default settings by selecting the host virtual switch from
the vSphere Web Client.

Specifically, ensure that the following are enabled:

MAC Address Changes

Forged Transits

Promiscuous Mode Operation

19.12.1.4. Failover configuration

To avoid downtime, the Cluster Network Operator deploys the egress router pod as a deployment
resource. The deployment name is egress-router-cni-deployment. The pod that corresponds to the
deployment has a label of app=egress-router-cni.

To create a new service for the deployment, use the oc expose deployment/egress-router-cni-
deployment --port <port_number> command or create a file like the following example:

$ openstack port set --allowed-address \
  ip_address=<ip_address>,mac_address=<mac_address> <neutron_port_uuid>

apiVersion: v1
kind: Service

OpenShift Container Platform 4.10 Networking

358

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-logical_networks#Explanation_of_Settings_in_the_VM_Interface_Profile_Window
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html


19.12.2. Additional resources

Deploying an egress router in redirection mode

19.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE

As a cluster administrator, you can deploy an egress router pod to redirect traffic to specified
destination IP addresses from a reserved source IP address.

The egress router implementation uses the egress router Container Network Interface (CNI) plugin.

19.13.1. Egress router custom resource

Define the configuration for an egress router pod in an egress router custom resource. The following
YAML describes the fields for the configuration of an egress router in redirect mode:

metadata:
  name: app-egress
spec:
  ports:
  - name: tcp-8080
    protocol: TCP
    port: 8080
  - name: tcp-8443
    protocol: TCP
    port: 8443
  - name: udp-80
    protocol: UDP
    port: 80
  type: ClusterIP
  selector:
    app: egress-router-cni

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
  name: <egress_router_name>
  namespace: <namespace>  <.>
spec:
  addresses: [  <.>
    {
      ip: "<egress_router>",  <.>
      gateway: "<egress_gateway>"  <.>
    }
  ]
  mode: Redirect
  redirect: {
    redirectRules: [  <.>
      {
        destinationIP: "<egress_destination>",
        port: <egress_router_port>,
        targetPort: <target_port>,  <.>
        protocol: <network_protocol>  <.>
      },

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

359

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#deploying-egress-router-ovn-redirection


<.> Optional: The namespace field specifies the namespace to create the egress router in. If you do not
specify a value in the file or on the command line, the default namespace is used.

<.> The addresses field specifies the IP addresses to configure on the secondary network interface.

<.> The ip field specifies the reserved source IP address and netmask from the physical network that the
node is on to use with egress router pod. Use CIDR notation to specify the IP address and netmask.

<.> The gateway field specifies the IP address of the network gateway.

<.> Optional: The redirectRules field specifies a combination of egress destination IP address, egress
router port, and protocol. Incoming connections to the egress router on the specified port and protocol
are routed to the destination IP address.

<.> Optional: The targetPort field specifies the network port on the destination IP address. If this field is
not specified, traffic is routed to the same network port that it arrived on.

<.> The protocol field supports TCP, UDP, or SCTP.

<.> Optional: The fallbackIP field specifies a destination IP address. If you do not specify any redirect
rules, the egress router sends all traffic to this fallback IP address. If you specify redirect rules, any
connections to network ports that are not defined in the rules are sent by the egress router to this
fallback IP address. If you do not specify this field, the egress router rejects connections to network ports
that are not defined in the rules.

Example egress router specification

      ...
    ],
    fallbackIP: "<egress_destination>" <.>
  }

apiVersion: network.operator.openshift.io/v1
kind: EgressRouter
metadata:
  name: egress-router-redirect
spec:
  networkInterface: {
    macvlan: {
      mode: "Bridge"
    }
  }
  addresses: [
    {
      ip: "192.168.12.99/24",
      gateway: "192.168.12.1"
    }
  ]
  mode: Redirect
  redirect: {
    redirectRules: [
      {
        destinationIP: "10.0.0.99",
        port: 80,
        protocol: UDP
      },

OpenShift Container Platform 4.10 Networking

360



19.13.2. Deploying an egress router in redirect mode

You can deploy an egress router to redirect traffic from its own reserved source IP address to one or
more destination IP addresses.

After you add an egress router, the client pods that need to use the reserved source IP address must be
modified to connect to the egress router rather than connecting directly to the destination IP.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an egress router definition.

2. To ensure that other pods can find the IP address of the egress router pod, create a service that
uses the egress router, as in the following example:

<.> Specify the label for the egress router. The value shown is added by the Cluster Network
Operator and is not configurable.

After you create the service, your pods can connect to the service. The egress router pod
redirects traffic to the corresponding port on the destination IP address. The connections
originate from the reserved source IP address.

      {
        destinationIP: "203.0.113.26",
        port: 8080,
        targetPort: 80,
        protocol: TCP
      },
      {
        destinationIP: "203.0.113.27",
        port: 8443,
        targetPort: 443,
        protocol: TCP
      }
    ]
  }

apiVersion: v1
kind: Service
metadata:
  name: egress-1
spec:
  ports:
  - name: web-app
    protocol: TCP
    port: 8080
  type: ClusterIP
  selector:
    app: egress-router-cni <.>

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

361



Verification

To verify that the Cluster Network Operator started the egress router, complete the following
procedure:

1. View the network attachment definition that the Operator created for the egress router:

The name of the network attachment definition is not configurable.

Example output

2. View the deployment for the egress router pod:

The name of the deployment is not configurable.

Example output

3. View the status of the egress router pod:

Example output

4. View the logs and the routing table for the egress router pod.

a. Get the node name for the egress router pod:

b. Enter into a debug session on the target node. This step instantiates a debug pod called 
<node_name>-debug:

c. Set /host as the root directory within the debug shell. The debug pod mounts the root file
system of the host in /host within the pod. By changing the root directory to /host, you can run
binaries from the executable paths of the host:

$ oc get network-attachment-definition egress-router-cni-nad

NAME                    AGE
egress-router-cni-nad   18m

$ oc get deployment egress-router-cni-deployment

NAME                           READY   UP-TO-DATE   AVAILABLE   AGE
egress-router-cni-deployment   1/1     1            1           18m

$ oc get pods -l app=egress-router-cni

NAME                                            READY   STATUS    RESTARTS   AGE
egress-router-cni-deployment-575465c75c-qkq6m   1/1     Running   0          18m

$ POD_NODENAME=$(oc get pod -l app=egress-router-cni -o jsonpath="
{.items[0].spec.nodeName}")

$ oc debug node/$POD_NODENAME

# chroot /host

OpenShift Container Platform 4.10 Networking

362



d. From within the chroot environment console, display the egress router logs:

Example output

The logging file location and logging level are not configurable when you start the egress router
by creating an EgressRouter object as described in this procedure.

e. From within the chroot environment console, get the container ID:

Example output

f. Determine the process ID of the container. In this example, the container ID is bac9fae69ddb6:

Example output

g. Enter the network namespace of the container:

h. Display the routing table:

# cat /tmp/egress-router-log

2021-04-26T12:27:20Z [debug] Called CNI ADD
2021-04-26T12:27:20Z [debug] Gateway: 192.168.12.1
2021-04-26T12:27:20Z [debug] IP Source Addresses: [192.168.12.99/24]
2021-04-26T12:27:20Z [debug] IP Destinations: [80 UDP 10.0.0.99/30 8080 TCP 
203.0.113.26/30 80 8443 TCP 203.0.113.27/30 443]
2021-04-26T12:27:20Z [debug] Created macvlan interface
2021-04-26T12:27:20Z [debug] Renamed macvlan to "net1"
2021-04-26T12:27:20Z [debug] Adding route to gateway 192.168.12.1 on macvlan interface
2021-04-26T12:27:20Z [debug] deleted default route {Ifindex: 3 Dst: <nil> Src: <nil> Gw: 
10.128.10.1 Flags: [] Table: 254}
2021-04-26T12:27:20Z [debug] Added new default route with gateway 192.168.12.1
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p 
UDP --dport 80 -j DNAT --to-destination 10.0.0.99
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p 
TCP --dport 8080 -j DNAT --to-destination 203.0.113.26:80
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat PREROUTING -i eth0 -p 
TCP --dport 8443 -j DNAT --to-destination 203.0.113.27:443
2021-04-26T12:27:20Z [debug] Added iptables rule: iptables -t nat -o net1 -j SNAT --to-
source 192.168.12.99

# crictl ps --name egress-router-cni-pod | awk '{print $1}'

CONTAINER
bac9fae69ddb6

# crictl inspect -o yaml bac9fae69ddb6 | grep 'pid:' | awk '{print $2}'

68857

# nsenter -n -t 68857

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

363



In the following example output, the net1 network interface is the default route. Traffic for the
cluster network uses the eth0 network interface. Traffic for the 192.168.12.0/24 network uses
the net1 network interface and originates from the reserved source IP address 192.168.12.99.
The pod routes all other traffic to the gateway at IP address 192.168.12.1. Routing for the
service network is not shown.

Example output

19.14. ENABLING MULTICAST FOR A PROJECT

19.14.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
OVN-Kubernetes default Container Network Interface (CNI) network provider, you can enable multicast
on a per-project basis.

19.14.2. Enabling multicast between pods

You can enable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project. Replace <namespace> with the
namespace for the project you want to enable multicast for.

TIP

# ip route

default via 192.168.12.1 dev net1
10.128.10.0/23 dev eth0 proto kernel scope link src 10.128.10.18
192.168.12.0/24 dev net1 proto kernel scope link src 192.168.12.99
192.168.12.1 dev net1

$ oc annotate namespace <namespace> \
    k8s.ovn.org/multicast-enabled=true

OpenShift Container Platform 4.10 Networking

364



TIP

You can alternatively apply the following YAML to add the annotation:

Verification

To verify that multicast is enabled for a project, complete the following procedure:

1. Change your current project to the project that you enabled multicast for. Replace <project>
with the project name.

2. Create a pod to act as a multicast receiver:

3. Create a pod to act as a multicast sender:

apiVersion: v1
kind: Namespace
metadata:
  name: <namespace>
  annotations:
    k8s.ovn.org/multicast-enabled: "true"

$ oc project <project>

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
  name: mlistener
  labels:
    app: multicast-verify
spec:
  containers:
    - name: mlistener
      image: registry.access.redhat.com/ubi8
      command: ["/bin/sh", "-c"]
      args:
        ["dnf -y install socat hostname && sleep inf"]
      ports:
        - containerPort: 30102
          name: mlistener
          protocol: UDP
EOF

$ cat <<EOF| oc create -f -
apiVersion: v1
kind: Pod
metadata:
  name: msender
  labels:
    app: multicast-verify
spec:
  containers:
    - name: msender
      image: registry.access.redhat.com/ubi8

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

365



4. In a new terminal window or tab, start the multicast listener.

a. Get the IP address for the Pod:

b. Start the multicast listener by entering the following command:

5. Start the multicast transmitter.

a. Get the pod network IP address range:

b. To send a multicast message, enter the following command:

If multicast is working, the previous command returns the following output:

19.15. DISABLING MULTICAST FOR A PROJECT

19.15.1. Disabling multicast between pods

You can disable multicast between pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

      command: ["/bin/sh", "-c"]
      args:
        ["dnf -y install socat && sleep inf"]
EOF

$ POD_IP=$(oc get pods mlistener -o jsonpath='{.status.podIP}')

$ oc exec mlistener -i -t -- \
    socat UDP4-RECVFROM:30102,ip-add-membership=224.1.0.1:$POD_IP,fork 
EXEC:hostname

$ CIDR=$(oc get Network.config.openshift.io cluster \
    -o jsonpath='{.status.clusterNetwork[0].cidr}')

$ oc exec msender -i -t -- \
    /bin/bash -c "echo | socat STDIO UDP4-
DATAGRAM:224.1.0.1:30102,range=$CIDR,ip-multicast-ttl=64"

mlistener

$ oc annotate namespace <namespace> \ 1
    k8s.ovn.org/multicast-enabled-

OpenShift Container Platform 4.10 Networking

366



1 The namespace for the project you want to disable multicast for.

TIP

You can alternatively apply the following YAML to delete the annotation:

19.16. TRACKING NETWORK FLOWS

As a cluster administrator, you can collect information about pod network flows from your cluster to
assist with the following areas:

Monitor ingress and egress traffic on the pod network.

Troubleshoot performance issues.

Gather data for capacity planning and security audits.

When you enable the collection of the network flows, only the metadata about the traffic is collected.
For example, packet data is not collected, but the protocol, source address, destination address, port
numbers, number of bytes, and other packet-level information is collected.

The data is collected in one or more of the following record formats:

NetFlow

sFlow

IPFIX

When you configure the Cluster Network Operator (CNO) with one or more collector IP addresses and
port numbers, the Operator configures Open vSwitch (OVS) on each node to send the network flows
records to each collector.

You can configure the Operator to send records to more than one type of network flow collector. For
example, you can send records to NetFlow collectors and also send records to sFlow collectors.

When OVS sends data to the collectors, each type of collector receives identical records. For example, if
you configure two NetFlow collectors, OVS on a node sends identical records to the two collectors. If
you also configure two sFlow collectors, the two sFlow collectors receive identical records. However,
each collector type has a unique record format.

Collecting the network flows data and sending the records to collectors affects performance. Nodes
process packets at a slower rate. If the performance impact is too great, you can delete the destinations
for collectors to disable collecting network flows data and restore performance.

NOTE

apiVersion: v1
kind: Namespace
metadata:
  name: <namespace>
  annotations:
    k8s.ovn.org/multicast-enabled: null

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

367



NOTE

Enabling network flow collectors might have an impact on the overall performance of the
cluster network.

19.16.1. Network object configuration for tracking network flows

The fields for configuring network flows collectors in the Cluster Network Operator (CNO) are shown in
the following table:

Table 19.8. Network flows configuration

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.

spec.exportNet
workFlows

object One or more of netFlow, sFlow, or ipfix.

spec.exportNet
workFlows.netF
low.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.sFlo
w.collectors

array A list of IP address and network port pairs for up to 10 collectors.

spec.exportNet
workFlows.ipfix.
collectors

array A list of IP address and network port pairs for up to 10 collectors.

After applying the following manifest to the CNO, the Operator configures Open vSwitch (OVS) on
each node in the cluster to send network flows records to the NetFlow collector that is listening at 
192.168.1.99:2056.

Example configuration for tracking network flows

19.16.2. Adding destinations for network flows collectors

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to send network
flows metadata about the pod network to a network flows collector.

Prerequisites

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  exportNetworkFlows:
    netFlow:
      collectors:
        - 192.168.1.99:2056

OpenShift Container Platform 4.10 Networking

368



Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

You have a network flows collector and know the IP address and port that it listens on.

Procedure

1. Create a patch file that specifies the network flows collector type and the IP address and port
information of the collectors:

2. Configure the CNO with the network flows collectors:

Example output

Verification

Verification is not typically necessary. You can run the following command to confirm that Open vSwitch
(OVS) on each node is configured to send network flows records to one or more collectors.

1. View the Operator configuration to confirm that the exportNetworkFlows field is configured:

Example output

2. View the network flows configuration in OVS from each node:

Example output

spec:
  exportNetworkFlows:
    netFlow:
      collectors:
        - 192.168.1.99:2056

$ oc patch network.operator cluster --type merge -p "$(cat <file_name>.yaml)"

network.operator.openshift.io/cluster patched

$ oc get network.operator cluster -o jsonpath="{.spec.exportNetworkFlows}"

{"netFlow":{"collectors":["192.168.1.99:2056"]}}

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -l app=ovnkube-node -o 
jsonpath='{range@.items[*]}{.metadata.name}{"\n"}{end}');
  do ;
    echo;
    echo $pod;
    oc -n openshift-ovn-kubernetes exec -c ovnkube-node $pod \
      -- bash -c 'for type in ipfix sflow netflow ; do ovs-vsctl find $type ; done';
done

ovnkube-node-xrn4p

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

369



19.16.3. Deleting all destinations for network flows collectors

As a cluster administrator, you can configure the Cluster Network Operator (CNO) to stop sending
network flows metadata to a network flows collector.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Remove all network flows collectors:

Example output

19.16.4. Additional resources

Network [operator.openshift.io/v1]

19.17. CONFIGURING HYBRID NETWORKING

As a cluster administrator, you can configure the OVN-Kubernetes Container Network Interface (CNI)
cluster network provider to allow Linux and Windows nodes to host Linux and Windows workloads,
respectively.

19.17.1. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid

_uuid               : a4d2aaca-5023-4f3d-9400-7275f92611f9
active_timeout      : 60
add_id_to_interface : false
engine_id           : []
engine_type         : []
external_ids        : {}
targets             : ["192.168.1.99:2056"]

ovnkube-node-z4vq9
_uuid               : 61d02fdb-9228-4993-8ff5-b27f01a29bd6
active_timeout      : 60
add_id_to_interface : false
engine_id           : []
engine_type         : []
external_ids        : {}
targets             : ["192.168.1.99:2056"]-

...

$ oc patch network.operator cluster --type='json' \
    -p='[{"op":"remove", "path":"/spec/exportNetworkFlows"}]'

network.operator.openshift.io/cluster patched

OpenShift Container Platform 4.10 Networking

370

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/api_reference/#network-operator-openshift-io-v1


You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid
cluster that supports different node networking configurations. For example, this is necessary to run
both Linux and Windows nodes in a cluster.

IMPORTANT

You must configure hybrid networking with OVN-Kubernetes during the installation of
your cluster. You cannot switch to hybrid networking after the installation process.

Prerequisites

You defined OVNKubernetes for the networking.networkType parameter in the install-
config.yaml file. See the installation documentation for configuring OpenShift Container
Platform network customizations on your chosen cloud provider for more information.

Procedure

1. Change to the directory that contains the installation program and create the manifests:

where:

<installation_directory>

Specifies the name of the directory that contains the install-config.yaml file for your
cluster.

2. Create a stub manifest file for the advanced network configuration that is named cluster-
network-03-config.yml in the <installation_directory>/manifests/ directory:

where:

<installation_directory>

Specifies the directory name that contains the manifests/ directory for your cluster.

3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with
hybrid networking, such as in the following example:

Specify a hybrid networking configuration

$ ./openshift-install create manifests --dir <installation_directory>

$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
EOF

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  defaultNetwork:

CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

371



1

2

Specify the CIDR configuration used for nodes on the additional overlay network. The 
hybridClusterNetwork CIDR cannot overlap with the clusterNetwork CIDR.

Specify a custom VXLAN port for the additional overlay network. This is required for
running Windows nodes in a cluster installed on vSphere, and must not be configured for
any other cloud provider. The custom port can be any open port excluding the default 4789
port. For more information on this requirement, see the Microsoft documentation on Pod-
to-pod connectivity between hosts is broken.

NOTE

Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is
not supported on clusters with a custom hybridOverlayVXLANPort value
because this Windows server version does not support selecting a custom VXLAN
port.

4. Save the cluster-network-03-config.yml file and quit the text editor.

5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program
deletes the manifests/ directory when creating the cluster.

Complete any further installation configurations, and then create your cluster. Hybrid networking is
enabled when the installation process is finished.

19.17.2. Additional resources

Installing a cluster on AWS with network customizations

Installing a cluster on Azure with network customizations

    ovnKubernetesConfig:
      hybridOverlayConfig:
        hybridClusterNetwork: 1
        - cidr: 10.132.0.0/14
          hostPrefix: 23
        hybridOverlayVXLANPort: 9898 2

OpenShift Container Platform 4.10 Networking

372

https://docs.microsoft.com/en-us/virtualization/windowscontainers/kubernetes/common-problems#pod-to-pod-connectivity-between-hosts-is-broken-on-my-kubernetes-cluster-running-on-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-azure-network-customizations


CHAPTER 20. CONFIGURING ROUTES

20.1. ROUTE CONFIGURATION

20.1.1. Creating an HTTP-based route

A route allows you to host your application at a public URL. It can either be secure or unsecured,
depending on the network security configuration of your application. An HTTP-based route is an
unsecured route that uses the basic HTTP routing protocol and exposes a service on an unsecured
application port.

The following procedure describes how to create a simple HTTP-based route to a web application, using
the hello-openshift application as an example.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in as an administrator.

You have a web application that exposes a port and a TCP endpoint listening for traffic on the
port.

Procedure

1. Create a project called hello-openshift by running the following command:

2. Create a pod in the project by running the following command:

3. Create a service called hello-openshift by running the following command:

4. Create an unsecured route to the hello-openshift application by running the following
command:

If you examine the resulting Route resource, it should look similar to the following:

YAML definition of the created unsecured route:

$ oc new-project hello-openshift

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

$ oc expose pod/hello-openshift

$ oc expose svc hello-openshift

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: hello-openshift
spec:

CHAPTER 20. CONFIGURING ROUTES

373



1

2

1

<Ingress_Domain> is the default ingress domain name. The ingresses.config/cluster
object is created during the installation and cannot be changed. If you want to specify a
different domain, you can specify an alternative cluster domain using the appsDomain
option.

targetPort is the target port on pods that is selected by the service that this route points
to.

NOTE

To display your default ingress domain, run the following command:

20.1.2. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

20.1.3. HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which signals to the browser
client that only HTTPS traffic is allowed on the route host. HSTS also optimizes web traffic by signaling
HTTPS transport is required, without using HTTP redirects. HSTS is useful for speeding up interactions
with websites.

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS

  host: hello-openshift-hello-openshift.<Ingress_Domain> 1
  port:
    targetPort: 8080 2
  to:
    kind: Service
    name: hello-openshift

$ oc get ingresses.config/cluster -o jsonpath={.spec.domain}

$ oc annotate route <route_name> \
    --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

OpenShift Container Platform 4.10 Networking

374



1

When HSTS policy is enforced, HSTS adds a Strict Transport Security header to HTTP and HTTPS
responses from the site. You can use the insecureEdgeTerminationPolicy value in a route to redirect
HTTP to HTTPS. When HSTS is enforced, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect.

Cluster administrators can configure HSTS to do the following:

Enable HSTS per-route

Disable HSTS per-route

Enforce HSTS per-domain, for a set of domains, or use namespace labels in combination with
domains

IMPORTANT

HSTS works only with secure routes, either edge-terminated or re-encrypt. The
configuration is ineffective on HTTP or passthrough routes.

20.1.3.1. Enabling HTTP Strict Transport Security per-route

HTTP strict transport security (HSTS) is implemented in the HAProxy template and applied to edge and
re-encrypt routes that have the haproxy.router.openshift.io/hsts_header annotation.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge-terminated or re-encrypt route. You can use the oc annotate tool to do this by running
the following command:

In this example, the maximum age is set to 31536000 ms, which is approximately eight and
a half hours.

NOTE

In this example, the equal sign (=) is in quotes. This is required to properly
execute the annotate command.

Example route configured with an annotation

$ oc annotate route <route_name> -n <namespace> --overwrite=true 
"haproxy.router.openshift.io/hsts_header"="max-age=31536000;\ 1
includeSubDomains;preload"

apiVersion: route.openshift.io/v1
kind: Route
metadata:

CHAPTER 20. CONFIGURING ROUTES

375



1

2

3

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. If set to 0, it negates the policy.

Optional. When included, includeSubDomains tells the client that all subdomains of the
host must have the same HSTS policy as the host.

Optional. When max-age is greater than 0, you can add preload in 
haproxy.router.openshift.io/hsts_header to allow external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, even before they have interacted with the site. Without 
preload set, browsers must have interacted with the site over HTTPS, at least once, to get
the header.

20.1.3.2. Disabling HTTP Strict Transport Security per-route

To disable HTTP strict transport security (HSTS) per-route, you can set the max-age value in the route
annotation to 0.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

To disable HSTS, set the max-age value in the route annotation to 0, by entering the following
command:

TIP

You can alternatively apply the following YAML to create the config map:

Example of disabling HSTS per-route

  annotations:
    haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload 
1  2  3

...
spec:
  host: def.abc.com
  tls:
    termination: "reencrypt"
    ...
  wildcardPolicy: "Subdomain"

$ oc annotate route <route_name> -n <namespace> --overwrite=true 
"haproxy.router.openshift.io/hsts_header"="max-age=0"

metadata:
  annotations:
    haproxy.router.openshift.io/hsts_header: max-age=0

OpenShift Container Platform 4.10 Networking

376



To disable HSTS for every route in a namespace, enter the followinf command:

Verification

1. To query the annotation for all routes, enter the following command:

Example output

20.1.3.3. Enforcing HTTP Strict Transport Security per-domain

To enforce HTTP Strict Transport Security (HSTS) per-domain for secure routes, add a 
requiredHSTSPolicies record to the Ingress spec to capture the configuration of the HSTS policy.

If you configure a requiredHSTSPolicy to enforce HSTS, then any newly created route must be
configured with a compliant HSTS policy annotation.

NOTE

To handle upgraded clusters with non-compliant HSTS routes, you can update the
manifests at the source and apply the updates.

NOTE

You cannot use oc expose route or oc create route commands to add a route in a
domain that enforces HSTS, because the API for these commands does not accept
annotations.

IMPORTANT

HSTS cannot be applied to insecure, or non-TLS routes, even if HSTS is requested for all
routes globally.

Prerequisites

You are logged in to the cluster with a user with administrator privileges for the project.

You installed the oc CLI.

Procedure

1. Edit the Ingress config file:

$ oc annotate <route> --all -n <namespace> --overwrite=true 
"haproxy.router.openshift.io/hsts_header"="max-age=0"

$ oc get route  --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n := 
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: routename HSTS: max-age=0

CHAPTER 20. CONFIGURING ROUTES

377



1

2 7

3

4

5

Example HSTS policy

Required. requiredHSTSPolicies are validated in order, and the first matching 
domainPatterns applies.

Required. You must specify at least one domainPatterns hostname. Any number of
domains can be listed. You can include multiple sections of enforcing options for different 
domainPatterns.

Optional. If you include namespaceSelector, it must match the labels of the project where
the routes reside, to enforce the set HSTS policy on the routes. Routes that only match the
namespaceSelector and not the domainPatterns are not validated.

Required. max-age measures the length of time, in seconds, that the HSTS policy is in
effect. This policy setting allows for a smallest and largest max-age to be enforced.

The largestMaxAge value must be between 0 and 2147483647. It can be left
unspecified, which means no upper limit is enforced.

The smallestMaxAge value must be between 0 and 2147483647. Enter 0 to disable
HSTS for troubleshooting, otherwise enter 1 if you never want HSTS to be disabled. It
can be left unspecified, which means no lower limit is enforced.

Optional. Including preload in haproxy.router.openshift.io/hsts_header allows external
services to include this site in their HSTS preload lists. Browsers can then use these lists to
determine which sites they can communicate with over HTTPS, before they have

$ oc edit ingresses.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
  name: cluster
spec:
  domain: 'hello-openshift-default.apps.username.devcluster.openshift.com'
  requiredHSTSPolicies: 1
  - domainPatterns: 2
    - '*hello-openshift-default.apps.username.devcluster.openshift.com'
    - '*hello-openshift-default2.apps.username.devcluster.openshift.com'
    namespaceSelector: 3
      matchLabels:
        myPolicy: strict
    maxAge: 4
      smallestMaxAge: 1
      largestMaxAge: 31536000
    preloadPolicy: RequirePreload 5
    includeSubDomainsPolicy: RequireIncludeSubDomains 6
  - domainPatterns: 7
    - 'abc.example.com'
    - '*xyz.example.com'
    namespaceSelector:
      matchLabels: {}
    maxAge: {}
    preloadPolicy: NoOpinion
    includeSubDomainsPolicy: RequireNoIncludeSubDomains

OpenShift Container Platform 4.10 Networking

378



6

determine which sites they can communicate with over HTTPS, before they have
interacted with the site. Without preload set, browsers need to interact at least once with
the site to get the header. preload can be set with one of the following:

RequirePreload: preload is required by the RequiredHSTSPolicy.

RequireNoPreload: preload is forbidden by the RequiredHSTSPolicy.

NoOpinion: preload does not matter to the RequiredHSTSPolicy.

Optional. includeSubDomainsPolicy can be set with one of the following:

RequireIncludeSubDomains: includeSubDomains is required by the 
RequiredHSTSPolicy.

RequireNoIncludeSubDomains: includeSubDomains is forbidden by the 
RequiredHSTSPolicy.

NoOpinion: includeSubDomains does not matter to the RequiredHSTSPolicy.

2. You can apply HSTS to all routes in the cluster or in a particular namespace by entering the oc 
annotate command.

To apply HSTS to all routes in the cluster, enter the oc annotate command. For example:

To apply HSTS to all routes in a particular namespace, enter the oc annotate command.
For example:

Verification

You can review the HSTS policy you configured. For example:

To review the maxAge set for required HSTS policies, enter the following command:

To review the HSTS annotations on all routes, enter the following command:

Example output

$ oc annotate route --all --all-namespaces --overwrite=true 
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc annotate route --all -n my-namespace --overwrite=true 
"haproxy.router.openshift.io/hsts_header"="max-age=31536000"

$ oc get clusteroperator/ingress -n openshift-ingress-operator -o jsonpath='{range 
.spec.requiredHSTSPolicies[*]}{.spec.requiredHSTSPolicies.maxAgePolicy.largestMaxAge}
{"\n"}{end}'

$ oc get route  --all-namespaces -o go-template='{{range .items}}{{if .metadata.annotations}}
{{$a := index .metadata.annotations "haproxy.router.openshift.io/hsts_header"}}{{$n := 
.metadata.name}}{{with $a}}Name: {{$n}} HSTS: {{$a}}{{"\n"}}{{else}}{{""}}{{end}}{{end}}
{{end}}'

Name: <_routename_> HSTS: max-age=31536000;preload;includeSubDomains

CHAPTER 20. CONFIGURING ROUTES

379



1

20.1.4. Troubleshooting throughput issues

Sometimes applications deployed through OpenShift Container Platform can cause network throughput
issues such as unusually high latency between specific services.

Use the following methods to analyze performance issues if pod logs do not reveal any cause of the
problem:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

podip is the IP address for the pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a pod.

tcpdump generates a file at /tmp/dump.pcap containing all traffic between these two pods.
Ideally, run the analyzer shortly before the issue is reproduced and stop the analyzer shortly
after the issue is finished reproducing to minimize the size of the file. You can also run a packet
analyzer between the nodes (eliminating the SDN from the equation) with:

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Run the tool from the pods first, then from the nodes, to locate any bottlenecks.

For information on installing and using iperf, see this Red Hat Solution .

20.1.5. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The Ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the Ingress Controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same pod.

NOTE

Cookies cannot be set on passthrough routes, because the HTTP traffic cannot be seen.
Instead, a number is calculated based on the source IP address, which determines the
backend.

If backends change, the traffic can be directed to the wrong server, making it less sticky.
If you are using a load balancer, which hides source IP, the same number is set for all
connections and traffic is sent to the same pod.

20.1.5.1. Annotating a route with a cookie

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

OpenShift Container Platform 4.10 Networking

380

http://www.tcpdump.org/
https://access.redhat.com/solutions/33103


You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the specified cookie name:

where:

<route_name>

Specifies the name of the route.

<cookie_name>

Specifies the name for the cookie.

For example, to annotate the route my_route with the cookie name my_cookie:

2. Capture the route hostname in a variable:

where:

<route_name>

Specifies the name of the route.

3. Save the cookie, and then access the route:

Use the cookie saved by the previous command when connecting to the route:

20.1.6. Path-based routes

Path-based routes specify a path component that can be compared against a URL, which requires that
the traffic for the route be HTTP based. Thus, multiple routes can be served using the same hostname,
each with a different path. Routers should match routes based on the most specific path to the least.
However, this depends on the router implementation.

The following table shows example routes and their accessibility:

Table 20.1. Route availability

$ oc annotate route <route_name> router.openshift.io/cookie_name="<cookie_name>"

$ oc annotate route my_route router.openshift.io/cookie_name="my_cookie"

$ ROUTE_NAME=$(oc get route <route_name> -o jsonpath='{.spec.host}')

$ curl $ROUTE_NAME -k -c /tmp/cookie_jar

$ curl $ROUTE_NAME -k -b /tmp/cookie_jar

CHAPTER 20. CONFIGURING ROUTES

381



1

Route When Compared to Accessible

www.example.com/test www.example.com/test Yes

www.example.com No

www.example.com/test and
www.example.com

www.example.com/test Yes

www.example.com Yes

www.example.com www.example.com/text Yes (Matched by the host, not the
route)

www.example.com Yes

An unsecured route with a path

The path is the only added attribute for a path-based route.

NOTE

Path-based routing is not available when using passthrough TLS, as the router does not
terminate TLS in that case and cannot read the contents of the request.

20.1.7. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations. Red Hat does not
support adding a route annotation to an operator-managed route.

IMPORTANT

To create a whitelist with multiple source IPs or subnets, use a space-delimited list. Any
other delimiter type causes the list to be ignored without a warning or error message.

Table 20.2. Route annotations

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: route-unsecured
spec:
  host: www.example.com
  path: "/test" 1
  to:
    kind: Service
    name: service-name

OpenShift Container Platform 4.10 Networking

382



Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are 
random, source, roundrobin,
and leastconn. The default value
is random.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use 
ROUTER_LOAD_BALANCE_
ALGORITHM.

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
'true' or 'TRUE', the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

 

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

 

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router.
Note: If there are multiple pods,
each can have this many
connections. If you have multiple
routers, there is no coordination
among them, each may connect
this many times. If not set, or set
to 0, there is no limit.

 

haproxy.router.openshift.io/r
ate-limit-connections

Setting 'true' or 'TRUE' enables
rate limiting functionality which is
implemented through stick-tables
on the specific backend per route.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

 

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections made through
the same source IP address. It
accepts a numeric value.
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

 

CHAPTER 20. CONFIGURING ROUTES

383



haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which a client
with the same source IP address
can make HTTP requests. It
accepts a numeric value. 
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

 

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which a client
with the same source IP address
can make TCP connections. It
accepts a numeric value. 
Note: Using this annotation
provides basic protection against
distributed denial-of-service
(DDoS) attacks.

 

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

haproxy.router.openshift.io/ti
meout-tunnel

This timeout applies to a tunnel
connection, for example,
WebSocket over cleartext, edge,
reencrypt, or passthrough routes.
With cleartext, edge, or reencrypt
route types, this annotation is
applied as a timeout tunnel with
the existing timeout value. For the
passthrough route types, the
annotation takes precedence over
any existing timeout value set.

ROUTER_DEFAULT_TUNNE
L_TIMEOUT

ingresses.config/cluster 
ingress.operator.openshift.io
/hard-stop-after

You can set either an
IngressController or the ingress
config . This annotation redeploys
the router and configures the HA
proxy to emit the haproxy hard-
stop-after global option, which
defines the maximum time
allowed to perform a clean soft-
stop.

ROUTER_HARD_STOP_AFT
ER

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

Variable Description Environment variable used as
default

OpenShift Container Platform 4.10 Networking

384



haproxy.router.openshift.io/i
p_whitelist

Sets a whitelist for the route. The
whitelist is a space-separated list
of IP addresses and CIDR ranges
for the approved source
addresses. Requests from IP
addresses that are not in the
whitelist are dropped.

The maximum number of IP
addresses and CIDR ranges
allowed in a whitelist is 61.

 

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

 

haproxy.router.openshift.io/l
og-send-hostname

Sets the hostname field in the
Syslog header. Uses the
hostname of the system. log-
send-hostname is enabled by
default if any Ingress API logging
method, such as sidecar or Syslog
facility, is enabled for the router.

 

haproxy.router.openshift.io/r
ewrite-target

Sets the rewrite path of the
request on the backend.

 

router.openshift.io/cookie-
same-site

Sets a value to restrict cookies.
The values are:

Lax: cookies are transferred
between the visited site and third-
party sites.

Strict: cookies are restricted to
the visited site.

None: cookies are restricted to
the visited site.

This value is applicable to re-
encrypt and edge routes only. For
more information, see the
SameSite cookies documentation.

 

Variable Description Environment variable used as
default

CHAPTER 20. CONFIGURING ROUTES

385

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite


haproxy.router.openshift.io/s
et-forwarded-headers

Sets the policy for handling the 
Forwarded and X-Forwarded-
For HTTP headers per route. The
values are:

append: appends the header,
preserving any existing header.
This is the default value.

replace: sets the header,
removing any existing header.

never: never sets the header, but
preserves any existing header.

if-none: sets the header if it is not
already set.

ROUTER_SET_FORWARDE
D_HEADERS

Variable Description Environment variable used as
default

NOTE

Environment variables cannot be edited.

Router timeout variables

TimeUnits are represented by a number followed by the unit: us *(microseconds), ms (milliseconds,
default), s (seconds), m (minutes), h *(hours), d (days).

The regular expression is: [1-9][0-9]*(us\|ms\|s\|m\|h\|d).

Variable Default Description

ROUTER_BACKEND_CHECK_INTE
RVAL

5000ms Length of time between subsequent
liveness checks on back ends.

ROUTER_CLIENT_FIN_TIMEOUT 1s Controls the TCP FIN timeout period for
the client connecting to the route. If the
FIN sent to close the connection does not
answer within the given time, HAProxy
closes the connection. This is harmless if
set to a low value and uses fewer
resources on the router.

ROUTER_DEFAULT_CLIENT_TIME
OUT

30s Length of time that a client has to
acknowledge or send data.

ROUTER_DEFAULT_CONNECT_TI
MEOUT

5s The maximum connection time.

OpenShift Container Platform 4.10 Networking

386



1

ROUTER_DEFAULT_SERVER_FIN_
TIMEOUT

1s Controls the TCP FIN timeout from the
router to the pod backing the route.

ROUTER_DEFAULT_SERVER_TIME
OUT

30s Length of time that a server has to
acknowledge or send data.

ROUTER_DEFAULT_TUNNEL_TIME
OUT

1h Length of time for TCP or WebSocket
connections to remain open. This timeout
period resets whenever HAProxy reloads.

ROUTER_SLOWLORIS_HTTP_KEE
PALIVE

300s Set the maximum time to wait for a new
HTTP request to appear. If this is set too
low, it can cause problems with browsers
and applications not expecting a small 
keepalive value.

Some effective timeout values can be the
sum of certain variables, rather than the
specific expected timeout. For example, 
ROUTER_SLOWLORIS_HTTP_KEE
PALIVE adjusts timeout http-keep-
alive. It is set to 300s by default, but
HAProxy also waits on tcp-request 
inspect-delay, which is set to 5s. In this
case, the overall timeout would be 300s
plus 5s.

ROUTER_SLOWLORIS_TIMEOUT 10s Length of time the transmission of an
HTTP request can take.

RELOAD_INTERVAL 5s Allows the minimum frequency for the
router to reload and accept new changes.

ROUTER_METRICS_HAPROXY_TIM
EOUT

5s Timeout for the gathering of HAProxy
metrics.

Variable Default Description

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  annotations:
    haproxy.router.openshift.io/timeout: 5500ms 1
...

CHAPTER 20. CONFIGURING ROUTES

387



1

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

A route that allows only one specific IP address

A route that allows several IP addresses

A route that allows an IP address CIDR network

A route that allows both IP an address and IP address CIDR networks

A route specifying a rewrite target

Sets / as rewrite path of the request on the backend.

Setting the haproxy.router.openshift.io/rewrite-target annotation on a route specifies that the Ingress
Controller should rewrite paths in HTTP requests using this route before forwarding the requests to the
backend application. The part of the request path that matches the path specified in spec.path is
replaced with the rewrite target specified in the annotation.

The following table provides examples of the path rewriting behavior for various combinations of 
spec.path, request path, and rewrite target.

Table 20.3. rewrite-target examples:

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 192.168.1.10

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 192.168.1.10 192.168.1.11 192.168.1.12

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 192.168.1.0/24

metadata:
  annotations:
    haproxy.router.openshift.io/ip_whitelist: 180.5.61.153 192.168.1.0/24 10.0.0.0/8

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  annotations:
    haproxy.router.openshift.io/rewrite-target: / 1
...

OpenShift Container Platform 4.10 Networking

388



Route.spec.path Request path Rewrite target Forwarded request
path

/foo /foo / /

/foo /foo/ / /

/foo /foo/bar / /bar

/foo /foo/bar/ / /bar/

/foo /foo /bar /bar

/foo /foo/ /bar /bar/

/foo /foo/bar /baz /baz/bar

/foo /foo/bar/ /baz /baz/bar/

/foo/ /foo / N/A (request path does
not match route path)

/foo/ /foo/ / /

/foo/ /foo/bar / /bar

20.1.8. Configuring the route admission policy

Administrators and application developers can run applications in multiple namespaces with the same
domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

WARNING

Allowing claims across namespaces should only be enabled for clusters with trust
between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

Cluster administrator privileges.

Procedure

Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the



CHAPTER 20. CONFIGURING ROUTES

389



Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

Sample Ingress Controller configuration

TIP

You can alternatively apply the following YAML to configure the route admission policy:

20.1.9. Creating a route through an Ingress object

Some ecosystem components have an integration with Ingress resources but not with Route resources.
To cover this case, OpenShift Container Platform automatically creates managed route objects when an
Ingress object is created. These route objects are deleted when the corresponding Ingress objects are
deleted.

Procedure

1. Define an Ingress object in the OpenShift Container Platform console or by entering the oc 
create command:

YAML Definition of an Ingress

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

spec:
  routeAdmission:
    namespaceOwnership: InterNamespaceAllowed
...

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: default
  namespace: openshift-ingress-operator
spec:
  routeAdmission:
    namespaceOwnership: InterNamespaceAllowed

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: frontend
  annotations:
    route.openshift.io/termination: "reencrypt" 1
spec:
  rules:
  - host: www.example.com 2
    http:
      paths:
      - backend:
          service:

OpenShift Container Platform 4.10 Networking

390



1

2

The route.openshift.io/termination annotation can be used to configure the 
spec.tls.termination field of the Route as Ingress has no field for this. The accepted
values are edge, passthrough and reencrypt. All other values are silently ignored. When
the annotation value is unset, edge is the default route. The TLS certificate details must
be defined in the template file to implement the default edge route and to prevent
producing an insecure route.

When working with an Ingress object, you must specify an explicit host name, unlike when
working with routes. You can use the <host_name>.<cluster_ingress_domain> syntax,
for example apps.openshiftdemos.com, to take advantage of the *.
<cluster_ingress_domain> wildcard DNS record and serving certificate for the cluster.
Otherwise, you must ensure that there is a DNS record for the chosen hostname.

a. If you specify the passthrough value in the route.openshift.io/termination
annotation, set path to '' and pathType to ImplementationSpecific in the spec:

2. List your routes:

The result includes an autogenerated route whose name starts with frontend-:

If you inspect this route, it looks this:

            name: frontend
            port:
              number: 443
        path: /
        pathType: Prefix
  tls:
  - hosts:
    - www.example.com
    secretName: example-com-tls-certificate

  spec:
    rules:
    - host: www.example.com
      http:
        paths:
        - path: ''
          pathType: ImplementationSpecific
          backend:
            service:
              name: frontend
              port:
                number: 443

$ oc apply -f ingress.yaml

$ oc get routes

NAME             HOST/PORT         PATH    SERVICES    PORT    TERMINATION          
WILDCARD
frontend-gnztq   www.example.com           frontend    443     reencrypt/Redirect   None

CHAPTER 20. CONFIGURING ROUTES

391



YAML Definition of an autogenerated route

20.1.10. Creating a route using the default certificate through an Ingress object

If you create an Ingress object without specifying any TLS configuration, OpenShift Container Platform
generates an insecure route. To create an Ingress object that generates a secure, edge-terminated
route using the default ingress certificate, you can specify an empty TLS configuration as follows.

Prerequisites

You have a service that you want to expose.

You have access to the OpenShift CLI (oc).

Procedure

1. Create a YAML file for the Ingress object. In this example, the file is called example-
ingress.yaml:

YAML definition of an Ingress object

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: frontend-gnztq
  ownerReferences:
  - apiVersion: networking.k8s.io/v1
    controller: true
    kind: Ingress
    name: frontend
    uid: 4e6c59cc-704d-4f44-b390-617d879033b6
spec:
  host: www.example.com
  path: /
  port:
    targetPort: https
  tls:
    certificate: |
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----
    insecureEdgeTerminationPolicy: Redirect
    key: |
      -----BEGIN RSA PRIVATE KEY-----
      [...]
      -----END RSA PRIVATE KEY-----
    termination: reencrypt
  to:
    kind: Service
    name: frontend

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

OpenShift Container Platform 4.10 Networking

392



1

1

2

3

Use this exact syntax to specify TLS without specifying a custom certificate.

2. Create the Ingress object by running the following command:

Verification

Verify that OpenShift Container Platform has created the expected route for the Ingress object
by running the following command:

Example output

The name of the route includes the name of the Ingress object followed by a random suffix.

In order to use the default certificate, the route should not specify spec.certificate.

The route should specify the edge termination policy.

20.1.11. Configuring the OpenShift Container Platform Ingress Controller for dual-
stack networking

If your OpenShift Container Platform cluster is configured for IPv4 and IPv6 dual-stack networking,
your cluster is externally reachable by OpenShift Container Platform routes.

The Ingress Controller automatically serves services that have both IPv4 and IPv6 endpoints, but you
can configure the Ingress Controller for single-stack or dual-stack services.

  name: frontend
  ...
spec:
  rules:
    ...
  tls:
  - {} 1

$ oc create -f example-ingress.yaml

$ oc get routes -o yaml

apiVersion: v1
items:
- apiVersion: route.openshift.io/v1
  kind: Route
  metadata:
    name: frontend-j9sdd 1
    ...
  spec:
  ...
    tls: 2
      insecureEdgeTerminationPolicy: Redirect
      termination: edge 3
  ...

CHAPTER 20. CONFIGURING ROUTES

393



1

2

3

Prerequisites

You deployed an OpenShift Container Platform cluster on bare metal.

You installed the OpenShift CLI (oc).

Procedure

1. To have the Ingress Controller serve traffic over IPv4/IPv6 to a workload, you can create a
service YAML file or modify an existing service YAML file by setting the ipFamilies and 
ipFamilyPolicy fields. For example:

Sample service YAML file

In a dual-stack instance, there are two different clusterIPs provided.

For a single-stack instance, enter IPv4 or IPv6. For a dual-stack instance, enter both IPv4
and IPv6.

For a single-stack instance, enter SingleStack. For a dual-stack instance, enter 
RequireDualStack.

apiVersion: v1
kind: Service
metadata:
  creationTimestamp: yyyy-mm-ddT00:00:00Z
  labels:
    name: <service_name>
    manager: kubectl-create
    operation: Update
    time: yyyy-mm-ddT00:00:00Z
  name: <service_name>
  namespace: <namespace_name>
  resourceVersion: "<resource_version_number>"
  selfLink: "/api/v1/namespaces/<namespace_name>/services/<service_name>"
  uid: <uid_number>
spec:
  clusterIP: 172.30.0.0/16
  clusterIPs: 1
  - 172.30.0.0/16
  - <second_IP_address>
  ipFamilies: 2
  - IPv4
  - IPv6
  ipFamilyPolicy: RequireDualStack 3
  ports:
  - port: 8080
    protocol: TCP
    targetport: 8080
  selector:
    name: <namespace_name>
  sessionAffinity: None
  type: ClusterIP
status:
  loadbalancer: {}

OpenShift Container Platform 4.10 Networking

394



These resources generate corresponding endpoints. The Ingress Controller now watches 
endpointslices.

2. To view endpoints, enter the following command:

3. To view endpointslices, enter the following command:

Additional resources

Specifying an alternative cluster domain using the appsDomain option

20.2. SECURED ROUTES

Secure routes provide the ability to use several types of TLS termination to serve certificates to the
client. The following sections describe how to create re-encrypt, edge, and passthrough routes with
custom certificates.

IMPORTANT

If you create routes in Microsoft Azure through public endpoints, the resource names are
subject to restriction. You cannot create resources that use certain terms. For a list of
terms that Azure restricts, see Resolve reserved resource name errors  in the Azure
documentation.

20.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the 
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

$ oc get endpoints

$ oc get endpointslices

$ openssl rsa -in password_protected_tls.key -out tls.key

CHAPTER 20. CONFIGURING ROUTES

395

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name


Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate
hostname for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

See oc create route reencrypt --help for more options.

20.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc 
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: frontend
spec:
  host: www.example.com
  to:
    kind: Service
    name: frontend
  tls:
    termination: reencrypt
    key: |-
      -----BEGIN PRIVATE KEY-----
      [...]
      -----END PRIVATE KEY-----
    certificate: |-
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----
    caCertificate: |-
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----
    destinationCACertificate: |-
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----

OpenShift Container Platform 4.10 Networking

396



Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a service that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the service that
you want to expose for frontend. Substitute the appropriate hostname for www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: frontend
spec:
  host: www.example.com
  to:
    kind: Service
    name: frontend
  tls:
    termination: edge
    key: |-
      -----BEGIN PRIVATE KEY-----
      [...]
      -----END PRIVATE KEY-----
    certificate: |-
      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----
    caCertificate: |-

CHAPTER 20. CONFIGURING ROUTES

397



1

2

3

See oc create route edge --help for more options.

20.2.3. Creating a passthrough route

You can configure a secure route using passthrough termination by using the oc create route
command. With passthrough termination, encrypted traffic is sent straight to the destination without
the router providing TLS termination. Therefore no key or certificate is required on the route.

Prerequisites

You must have a service that you want to expose.

Procedure

Create a Route resource:

If you examine the resulting Route resource, it should look similar to the following:

A Secured Route Using Passthrough Termination

The name of the object, which is limited to 63 characters.

The termination field is set to passthrough. This is the only required tls field.

Optional insecureEdgeTerminationPolicy. The only valid values are None, Redirect, or
empty for disabled.

The destination pod is responsible for serving certificates for the traffic at the endpoint. This is
currently the only method that can support requiring client certificates, also known as two-way
authentication.

      -----BEGIN CERTIFICATE-----
      [...]
      -----END CERTIFICATE-----

$ oc create route passthrough route-passthrough-secured --service=frontend --port=8080

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: route-passthrough-secured 1
spec:
  host: www.example.com
  port:
    targetPort: 8080
  tls:
    termination: passthrough 2
    insecureEdgeTerminationPolicy: None 3
  to:
    kind: Service
    name: frontend

OpenShift Container Platform 4.10 Networking

398



CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

21.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool. Most cloud platforms
offer a method to start a service with a load-balancer
IP address.

About MetalLB and the MetalLB Operator Allows traffic to a specific IP address or address from
a pool on the machine network. For bare-metal
installations or platforms that are like bare metal,
MetalLB provides a way to start a service with a
load-balancer IP address.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

21.1.1. Comparision: Fault tolerant access to external IP addresses

For the communication methods that provide access to an external IP address, fault tolerant access to
the IP address is another consideration. The following features provide fault tolerant access to an
external IP address.

IP failover

IP failover manages a pool of virtual IP address for a set of nodes. It is implemented with Keepalived
and Virtual Router Redundancy Protocol (VRRP). IP failover is a layer 2 mechanism only and relies on
multicast. Multicast can have disadvantages for some networks.

MetalLB

MetalLB has a layer 2 mode, but it does not use multicast. Layer 2 mode has a disadvantage that it
transfers all traffic for an external IP address through one node.

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

399

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#about-metallb
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress-cluster-traffic-nodeport


Manually assigning external IP addresses

You can configure your cluster with an IP address block that is used to assign external IP addresses
to services. By default, this feature is disabled. This feature is flexible, but places the largest burden
on the cluster or network administrator. The cluster is prepared to receive traffic that is destined for
the external IP, but each customer has to decide how they want to route traffic to nodes.

21.2. CONFIGURING EXTERNALIPS FOR SERVICES

As a cluster administrator, you can designate an IP address block that is external to the cluster that can
send traffic to services in the cluster.

This functionality is generally most useful for clusters installed on bare-metal hardware.

21.2.1. Prerequisites

Your network infrastructure must route traffic for the external IP addresses to your cluster.

21.2.2. About ExternalIP

For non-cloud environments, OpenShift Container Platform supports the assignment of external IP
addresses to a Service object spec.externalIPs[] field through the ExternalIP facility. By setting this
field, OpenShift Container Platform assigns an additional virtual IP address to the service. The IP
address can be outside the service network defined for the cluster. A service configured with an
ExternalIP functions similarly to a service with type=NodePort, allowing you to direct traffic to a local
node for load balancing.

You must configure your networking infrastructure to ensure that the external IP address blocks that
you define are routed to the cluster.

OpenShift Container Platform extends the ExternalIP functionality in Kubernetes by adding the
following capabilities:

Restrictions on the use of external IP addresses by users through a configurable policy

Allocation of an external IP address automatically to a service upon request

WARNING

Disabled by default, use of ExternalIP functionality can be a security risk, because
in-cluster traffic to an external IP address is directed to that service. This could
allow cluster users to intercept sensitive traffic destined for external resources.

IMPORTANT

This feature is supported only in non-cloud deployments. For cloud deployments, use the
load balancer services for automatic deployment of a cloud load balancer to target the
endpoints of a service.

You can assign an external IP address in the following ways:



OpenShift Container Platform 4.10 Networking

400



Automatic assignment of an external IP

OpenShift Container Platform automatically assigns an IP address from the autoAssignCIDRs CIDR
block to the spec.externalIPs[] array when you create a Service object with 
spec.type=LoadBalancer set. In this case, OpenShift Container Platform implements a non-cloud
version of the load balancer service type and assigns IP addresses to the services. Automatic
assignment is disabled by default and must be configured by a cluster administrator as described in
the following section.

Manual assignment of an external IP

OpenShift Container Platform uses the IP addresses assigned to the spec.externalIPs[] array when
you create a Service object. You cannot specify an IP address that is already in use by another
service.

21.2.2.1. Configuration for ExternalIP

Use of an external IP address in OpenShift Container Platform is governed by the following fields in the 
Network.config.openshift.io CR named cluster:

spec.externalIP.autoAssignCIDRs defines an IP address block used by the load balancer when
choosing an external IP address for the service. OpenShift Container Platform supports only a
single IP address block for automatic assignment. This can be simpler than having to manage
the port space of a limited number of shared IP addresses when manually assigning ExternalIPs
to services. If automatic assignment is enabled, a Service object with 
spec.type=LoadBalancer is allocated an external IP address.

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an
IP address. OpenShift Container Platform does not apply policy rules to IP address blocks
defined by spec.externalIP.autoAssignCIDRs.

If routed correctly, external traffic from the configured external IP address block can reach service
endpoints through any TCP or UDP port that the service exposes.

IMPORTANT

As a cluster administrator, you must configure routing to externalIPs on both
OpenShiftSDN and OVN-Kubernetes network types. You must also ensure that the IP
address block you assign terminates at one or more nodes in your cluster. For more
information, see Kubernetes External IPs.

OpenShift Container Platform supports both the automatic and manual assignment of IP addresses,
and each address is guaranteed to be assigned to a maximum of one service. This ensures that each
service can expose its chosen ports regardless of the ports exposed by other services.

NOTE

To use IP address blocks defined by autoAssignCIDRs in OpenShift Container Platform,
you must configure the necessary IP address assignment and routing for your host
network.

The following YAML describes a service with an external IP address configured:

Example Service object with spec.externalIPs[] set

apiVersion: v1

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

401

https://kubernetes.io/docs/concepts/services-networking/service/#external-ips


21.2.2.2. Restrictions on the assignment of an external IP address

As a cluster administrator, you can specify IP address blocks to allow and to reject.

Restrictions apply only to users without cluster-admin privileges. A cluster administrator can always set
the service spec.externalIPs[] field to any IP address.

You configure IP address policy with a policy object defined by specifying the spec.ExternalIP.policy
field. The policy object has the following shape:

When configuring policy restrictions, the following rules apply:

If policy={} is set, then creating a Service object with spec.ExternalIPs[] set will fail. This is the
default for OpenShift Container Platform. The behavior when policy=null is set is identical.

If policy is set and either policy.allowedCIDRs[] or policy.rejectedCIDRs[] is set, the following
rules apply:

If allowedCIDRs[] and rejectedCIDRs[] are both set, then rejectedCIDRs[] has
precedence over allowedCIDRs[].

If allowedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are allowed.

If rejectedCIDRs[] is set, creating a Service object with spec.ExternalIPs[] will succeed
only if the specified IP addresses are not rejected.

kind: Service
metadata:
  name: http-service
spec:
  clusterIP: 172.30.163.110
  externalIPs:
  - 192.168.132.253
  externalTrafficPolicy: Cluster
  ports:
  - name: highport
    nodePort: 31903
    port: 30102
    protocol: TCP
    targetPort: 30102
  selector:
    app: web
  sessionAffinity: None
  type: LoadBalancer
status:
  loadBalancer:
    ingress:
    - ip: 192.168.132.253

{
  "policy": {
    "allowedCIDRs": [],
    "rejectedCIDRs": []
  }
}

OpenShift Container Platform 4.10 Networking

402



21.2.2.3. Example policy objects

The examples that follow demonstrate several different policy configurations.

In the following example, the policy prevents OpenShift Container Platform from creating any
service with an external IP address specified:

Example policy to reject any value specified for Service object spec.externalIPs[]

In the following example, both the allowedCIDRs and rejectedCIDRs fields are set.

Example policy that includes both allowed and rejected CIDR blocks

In the following example, policy is set to null. If set to null, when inspecting the configuration
object by entering oc get networks.config.openshift.io -o yaml, the policy field will not
appear in the output.

Example policy to allow any value specified for Service object spec.externalIPs[]

21.2.3. ExternalIP address block configuration

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named 
cluster. The Network CR is part of the config.openshift.io API group.

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  externalIP:
    policy: {}
  ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  externalIP:
    policy:
      allowedCIDRs:
      - 172.16.66.10/23
      rejectedCIDRs:
      - 172.16.66.10/24
  ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  externalIP:
    policy: null
  ...

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

403



1

2

1

2

IMPORTANT

During cluster installation, the Cluster Version Operator (CVO) automatically creates a
Network CR named cluster. Creating any other CR objects of this type is not supported.

The following YAML describes the ExternalIP configuration:

Network.config.openshift.io CR named cluster

Defines the IP address block in CIDR format that is available for automatic assignment of external
IP addresses to a service. Only a single IP address range is allowed.

Defines restrictions on manual assignment of an IP address to a service. If no restrictions are
defined, specifying the spec.externalIP field in a Service object is not allowed. By default, no
restrictions are defined.

The following YAML describes the fields for the policy stanza:

Network.config.openshift.io policy stanza

A list of allowed IP address ranges in CIDR format.

A list of rejected IP address ranges in CIDR format.

Example external IP configurations
Several possible configurations for external IP address pools are displayed in the following examples:

The following YAML describes a configuration that enables automatically assigned external IP
addresses:

Example configuration with spec.externalIP.autoAssignCIDRs set

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  externalIP:
    autoAssignCIDRs: [] 1
    policy: 2
      ...

policy:
  allowedCIDRs: [] 1
  rejectedCIDRs: [] 2

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  ...

OpenShift Container Platform 4.10 Networking

404



The following YAML configures policy rules for the allowed and rejected CIDR ranges:

Example configuration with spec.externalIP.policy set

21.2.4. Configure external IP address blocks for your cluster

As a cluster administrator, you can configure the following ExternalIP settings:

An ExternalIP address block used by OpenShift Container Platform to automatically populate
the spec.clusterIP field for a Service object.

A policy object to restrict what IP addresses may be manually assigned to the spec.clusterIP
array of a Service object.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To display the current external IP configuration, enter the following command:

2. To edit the configuration, enter the following command:

3. Modify the ExternalIP configuration, as in the following example:

  externalIP:
    autoAssignCIDRs:
    - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster
spec:
  ...
  externalIP:
    policy:
      allowedCIDRs:
      - 192.168.132.0/29
      - 192.168.132.8/29
      rejectedCIDRs:
      - 192.168.132.7/32

$ oc describe networks.config cluster

$ oc edit networks.config cluster

apiVersion: config.openshift.io/v1
kind: Network
metadata:
  name: cluster

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

405



1 Specify the configuration for the externalIP stanza.

4. To confirm the updated ExternalIP configuration, enter the following command:

21.2.5. Next steps

Configuring ingress cluster traffic for a service external IP

21.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

21.3.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

By default, every Ingress Controller in the cluster can admit any route created in any project in the
cluster.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

21.3.2. Prerequisites

spec:
  ...
  externalIP: 1
  ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

OpenShift Container Platform 4.10 Networking

406

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip


Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

21.3.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

21.3.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME        TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
nodejs-ex   ClusterIP   172.30.197.157   <none>        8080/TCP   70s

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

407



1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

b. Use cURL to check that the host responds to a GET request:

Example output

21.3.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME        HOST/PORT                        PATH   SERVICES    PORT       TERMINATION   
WILDCARD
nodejs-ex   nodejs-ex-myproject.example.com         nodejs-ex   8080-tcp                 None

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

# cat router-internal.yaml
apiVersion: v1
items:

OpenShift Container Platform 4.10 Networking

408



1 Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

21.3.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

WARNING

If you deploy the Keepalived Ingress VIP, do not deploy a non-default Ingress
Controller with value HostNetwork for the endpointPublishingStrategy
parameter. Doing so might cause issues. Use value NodePort instead of 
HostNetwork for endpointPublishingStrategy.

- apiVersion: operator.openshift.io/v1
  kind: IngressController
  metadata:
    name: sharded
    namespace: openshift-ingress-operator
  spec:
    domain: <apps-sharded.basedomain.example.net> 1
    nodePlacement:
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker: ""
    routeSelector:
      matchLabels:
        type: sharded
  status: {}
kind: List
metadata:
  resourceVersion: ""
  selfLink: ""

# oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net



CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

409



1

Procedure

1. Edit the router-internal.yaml file:

Example output

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yaml:

21.3.7. Additional resources

The Ingress Operator manages wildcard DNS. For more information, see Ingress Operator in
OpenShift Container Platform, Installing a cluster on bare metal , and Installing a cluster on
vSphere.

21.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD

# cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
  kind: IngressController
  metadata:
    name: sharded
    namespace: openshift-ingress-operator
  spec:
    domain: <apps-sharded.basedomain.example.net> 1
    nodePlacement:
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker: ""
    namespaceSelector:
      matchLabels:
        type: sharded
  status: {}
kind: List
metadata:
  resourceVersion: ""
  selfLink: ""

# oc apply -f router-internal.yaml

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

OpenShift Container Platform 4.10 Networking

410

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-vsphere


21.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

21.4.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

21.4.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

21.4.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

411



2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

21.4.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the oc expose service command to expose the route:

Example output

4. To verify that the service is exposed, you can use a tool, such as cURL, to make sure the service
is accessible from outside the cluster.

a. Use the oc get route command to find the route’s host name:

Example output

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME        TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
nodejs-ex   ClusterIP   172.30.197.157   <none>        8080/TCP   70s

$ oc project myproject

$ oc expose service nodejs-ex

route.route.openshift.io/nodejs-ex exposed

$ oc get route

NAME        HOST/PORT                        PATH   SERVICES    PORT       TERMINATION   
WILDCARD
nodejs-ex   nodejs-ex-myproject.example.com         nodejs-ex   8080-tcp                 None

OpenShift Container Platform 4.10 Networking

412



1

2

b. Use cURL to check that the host responds to a GET request:

Example output

21.4.5. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Your cloud provider supports load balancers.

Procedure

To create a load balancer service:

1. Log in to OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

3. Open a text file on the control plane node and paste the following text, editing the file as
needed:

Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
  name: egress-2 1
spec:
  ports:
  - name: db
    port: 3306 2
  loadBalancerIP:
  loadBalancerSourceRanges: 3
  - 10.0.0.0/8
  - 192.168.0.0/16
  type: LoadBalancer 4
  selector:
    name: mysql 5

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

Enter a list of specific IP addresses to restrict traffic through the load balancer. This field is

$ curl --head nodejs-ex-myproject.example.com

HTTP/1.1 200 OK
...

$ oc project project1

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

413



3

4

5

Enter a list of specific IP addresses to restrict traffic through the load balancer. This field is
ignored if the cloud-provider does not support the feature.

Enter Loadbalancer as the type.

Enter the name of the service.

NOTE

To restrict traffic through the load balancer to specific IP addresses, it is
recommended to use the service.beta.kubernetes.io/load-balancer-source-
ranges annotation rather than setting the loadBalancerSourceRanges field.
With the annotation, you can more easily migrate to the OpenShift API, which will
be implemented in a future release.

4. Save and exit the file.

5. Run the following command to create the service:

For example:

6. Execute the following command to view the new service:

Example output

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

$ oc create -f <file-name>

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME       TYPE           CLUSTER-IP      EXTERNAL-IP                             PORT(S)          
AGE
egress-2   LoadBalancer   172.30.22.226   ad42f5d8b303045-487804948.example.com   
3306:30357/TCP   15m

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

OpenShift Container Platform 4.10 Networking

414



If you have a MySQL client, log in with the standard CLI command:

Example output

21.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A
NETWORK LOAD BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a Network Load Balancer (NLB), which forwards the
client’s IP address to the node. You can configure an NLB on a new or existing AWS cluster.

21.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load
Balancer

You can replace an Ingress Controller that is using a Classic Load Balancer (CLB) with one that uses a
Network Load Balancer (NLB) on AWS.

WARNING

This procedure causes an expected outage that can last several minutes due to new
DNS records propagation, new load balancers provisioning, and other factors. IP
addresses and canonical names of the Ingress Controller load balancer might
change after applying this procedure.

Procedure

1. Create a file with a new default Ingress Controller. The following example assumes that your
default Ingress Controller has an External scope and no other customizations:

Example ingresscontroller.yml file

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor.  Commands end with ; or \g.

MySQL [(none)]>



apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  creationTimestamp: null
  name: default
  namespace: openshift-ingress-operator
spec:
  endpointPublishingStrategy:
    loadBalancer:
      scope: External

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

415



If your default Ingress Controller has other customizations, ensure that you modify the file
accordingly.

2. Force replace the Ingress Controller YAML file:

Wait until the Ingress Controller is replaced. Expect serveral of minutes of outages.

21.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on an existing
cluster.

Prerequisites

You must have an installed AWS cluster.

PlatformStatus of the infrastructure resource must be AWS.

To verify that the PlatformStatus is AWS, run:

Procedure

Create an Ingress Controller backed by an AWS NLB on an existing cluster.

1. Create the Ingress Controller manifest:

Example output

      providerParameters:
        type: AWS
        aws:
          type: NLB
    type: LoadBalancerService

$ oc replace --force --wait -f ingresscontroller.yml

$ oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.type}'
AWS

 $ cat ingresscontroller-aws-nlb.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: $my_ingress_controller 1
  namespace: openshift-ingress-operator
spec:
  domain: $my_unique_ingress_domain 2
  endpointPublishingStrategy:
    type: LoadBalancerService
    loadBalancer:
      scope: External 3
      providerParameters:

OpenShift Container Platform 4.10 Networking

416



1

2

3

1

1

Replace $my_ingress_controller with a unique name for the Ingress Controller.

Replace $my_unique_ingress_domain with a domain name that is unique among all
Ingress Controllers in the cluster. This variable must be a subdomain of the DNS name 
<clustername>.<domain>.

You can replace External with Internal to use an internal NLB.

2. Create the resource in the cluster:

IMPORTANT

Before you can configure an Ingress Controller NLB on a new AWS cluster, you must
complete the Creating the installation configuration file  procedure.

21.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS
cluster

You can create an Ingress Controller backed by an AWS Network Load Balancer (NLB) on a new cluster.

Prerequisites

Create the install-config.yaml file and complete any modifications to it.

Procedure

Create an Ingress Controller backed by an AWS NLB on a new cluster.

1. Change to the directory that contains the installation program and create the manifests:

For <installation_directory>, specify the name of the directory that contains the install-
config.yaml file for your cluster.

2. Create a file that is named cluster-ingress-default-ingresscontroller.yaml in the 
<installation_directory>/manifests/ directory:

For <installation_directory>, specify the directory name that contains the manifests/
directory for your cluster.

After creating the file, several network configuration files are in the manifests/ directory, as
shown:

        type: AWS
        aws:
          type: NLB

$ oc create -f ingresscontroller-aws-nlb.yaml

$ ./openshift-install create manifests --dir <installation_directory> 1

$ touch <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml 1

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

417

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installation-initializing_installing-aws-network-customizations


Example output

3. Open the cluster-ingress-default-ingresscontroller.yaml file in an editor and enter a custom
resource (CR) that describes the Operator configuration you want:

4. Save the cluster-ingress-default-ingresscontroller.yaml file and quit the text editor.

5. Optional: Back up the manifests/cluster-ingress-default-ingresscontroller.yaml file. The
installation program deletes the manifests/ directory when creating the cluster.

21.5.4. Additional resources

Installing a cluster on AWS with network customizations .

For more information, see Network Load Balancer support on AWS .

21.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE
EXTERNAL IP

You can attach an external IP address to a service so that it is available to traffic outside the cluster. This
is generally useful only for a cluster installed on bare metal hardware. The external network
infrastructure must be configured correctly to route traffic to the service.

21.6.1. Prerequisites

Your cluster is configured with ExternalIPs enabled. For more information, read Configuring
ExternalIPs for services.

NOTE

Do not use the same ExternalIP for the egress IP.

$ ls <installation_directory>/manifests/cluster-ingress-default-ingresscontroller.yaml

cluster-ingress-default-ingresscontroller.yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  creationTimestamp: null
  name: default
  namespace: openshift-ingress-operator
spec:
  endpointPublishingStrategy:
    loadBalancer:
      scope: External
      providerParameters:
        type: AWS
        aws:
          type: NLB
    type: LoadBalancerService

OpenShift Container Platform 4.10 Networking

418

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#installing-aws-network-customizations
https://kubernetes.io/docs/concepts/services-networking/service/#aws-nlb-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-externalip


21.6.2. Attaching an ExternalIP to a service

You can attach an ExternalIP to a service. If your cluster is configured to allocate an ExternalIP
automatically, you might not need to manually attach an ExternalIP to the service.

Procedure

1. Optional: To confirm what IP address ranges are configured for use with ExternalIP, enter the
following command:

If autoAssignCIDRs is set, OpenShift Container Platform automatically assigns an ExternalIP
to a new Service object if the spec.externalIPs field is not specified.

2. Attach an ExternalIP to the service.

a. If you are creating a new service, specify the spec.externalIPs field and provide an array of
one or more valid IP addresses. For example:

b. If you are attaching an ExternalIP to an existing service, enter the following command.
Replace <name> with the service name. Replace <ip_address> with a valid ExternalIP
address. You can provide multiple IP addresses separated by commas.

For example:

Example output

3. To confirm that an ExternalIP address is attached to the service, enter the following command.
If you specified an ExternalIP for a new service, you must create the service first.

Example output

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

apiVersion: v1
kind: Service
metadata:
  name: svc-with-externalip
spec:
  ...
  externalIPs:
  - 192.174.120.10

$ oc patch svc <name> -p \
  '{
    "spec": {
      "externalIPs": [ "<ip_address>" ]
    }
  }'

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

$ oc get svc

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

419



21.6.3. Additional resources

Configuring ExternalIPs for services

21.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

21.7.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

Using a node port requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

21.7.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

21.7.3. Creating a project and service

NAME               CLUSTER-IP      EXTERNAL-IP     PORT(S)    AGE
mysql-55-rhel7     172.30.131.89   192.174.120.10  3306/TCP   13m

OpenShift Container Platform 4.10 Networking

420

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-externalip


If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service by running the oc new-project command:

2. Use the oc new-app command to create your service:

3. To verify that the service was created, run the following command:

Example output

By default, the new service does not have an external IP address.

21.7.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. To expose a node port for the application, enter the following command. OpenShift Container
Platform automatically selects an available port in the 30000-32767 range.

Example output

$ oc new-project myproject

$ oc new-app nodejs:12~https://github.com/sclorg/nodejs-ex.git

$ oc get svc -n myproject

NAME        TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
nodejs-ex   ClusterIP   172.30.197.157   <none>        8080/TCP   70s

$ oc project myproject

$ oc expose service nodejs-ex  --type=NodePort --name=nodejs-ex-nodeport --
generator="service/v2"

service/nodejs-ex-nodeport exposed

CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC

421



4. Optional: To confirm the service is available with a node port exposed, enter the following
command:

Example output

5. Optional: To remove the service created automatically by the oc new-app command, enter the
following command:

21.7.5. Additional resources

Configuring the node port service range

$ oc get svc -n myproject

NAME                TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)          AGE
nodejs-ex           ClusterIP   172.30.217.127   <none>        3306/TCP         9m44s
nodejs-ex-ingress   NodePort    172.30.107.72    <none>        3306:31345/TCP   39s

$ oc delete svc nodejs-ex

OpenShift Container Platform 4.10 Networking

422

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#configuring-node-port-service-range


CHAPTER 22. KUBERNETES NMSTATE

22.1. ABOUT THE KUBERNETES NMSTATE OPERATOR

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState. The Kubernetes
NMState Operator provides users with functionality to configure various network interface types, DNS,
and routing on cluster nodes. Additionally, the daemons on the cluster nodes periodically report on the
state of each node’s network interfaces to the API server.

IMPORTANT

Red Hat supports the Kubernetes NMState Operator in production environments on
bare-metal, IBM Power, IBM Z, and LinuxONE installations.

WARNING

When using OVN-Kubernetes, changing the default gateway interface is not
supported.

Before you can use NMState with OpenShift Container Platform, you must install the Kubernetes
NMState Operator.

22.1.1. Installing the Kubernetes NMState Operator

You can install the Kubernetes NMState Operator by using the web console or the CLI.

22.1.1.1. Installing the Kubernetes NMState Operator using the web console

You can install the Kubernetes NMState Operator by using the web console. After it is installed, the
Operator can deploy the NMState State Controller as a daemon set across all of the cluster nodes.

Prerequisites

You are logged in as a user with cluster-admin privileges.

Procedure

1. Select Operators → OperatorHub.

2. In the search field below All Items, enter nmstate and click Enter to search for the Kubernetes
NMState Operator.

3. Click on the Kubernetes NMState Operator search result.

4. Click on Install to open the Install Operator window.

5. Click Install to install the Operator.



CHAPTER 22. KUBERNETES NMSTATE

423



6. After the Operator finishes installing, click View Operator.

7. Under Provided APIs, click Create Instance to open the dialog box for creating an instance of 
kubernetes-nmstate.

8. In the Name field of the dialog box, ensure the name of the instance is nmstate.

NOTE

The name restriction is a known issue. The instance is a singleton for the entire
cluster.

9. Accept the default settings and click Create to create the instance.

Summary

Once complete, the Operator has deployed the NMState State Controller as a daemon set across all of
the cluster nodes.

22.1.1.2. Installing the Kubernetes NMState Operator using the CLI

You can install the Kubernetes NMState Operator by using the OpenShift CLI (oc). After it is installed,
the Operator can deploy the NMState State Controller as a daemon set across all of the cluster nodes.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

Procedure

1. Create the nmstate Operator namespace:

2. Create the OperatorGroup:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
  labels:
    kubernetes.io/metadata.name: openshift-nmstate
    name: openshift-nmstate
  name: openshift-nmstate
spec:
  finalizers:
  - kubernetes
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  annotations:
    olm.providedAPIs: NMState.v1.nmstate.io

OpenShift Container Platform 4.10 Networking

424



3. Subscribe to the nmstate Operator:

4. Create instance of the nmstate operator:

Verification

Confirm that the deployment for the nmstate operator is running:

Example output

22.2. OBSERVING NODE NETWORK STATE

Node network state is the network configuration for all nodes in the cluster.

22.2.1. About nmstate

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.

  name: openshift-nmstate
  namespace: openshift-nmstate
spec:
  targetNamespaces:
  - openshift-nmstate
EOF

$ cat << EOF| oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  labels:
    operators.coreos.com/kubernetes-nmstate-operator.openshift-nmstate: ""
  name: kubernetes-nmstate-operator
  namespace: openshift-nmstate
spec:
  channel: stable
  installPlanApproval: Automatic
  name: kubernetes-nmstate-operator
  source: redhat-operators
  sourceNamespace: openshift-marketplace
EOF

$ cat << EOF | oc apply -f -
apiVersion: nmstate.io/v1
kind: NMState
metadata:
  name: nmstate
EOF

oc get clusterserviceversion -n openshift-nmstate \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name                                             Phase
kubernetes-nmstate-operator.4.10.0-202203120157   Succeeded

CHAPTER 22. KUBERNETES NMSTATE

425



OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify network policy configuration, such as by creating a Linux bridge on all
nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a 
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

OpenShift Container Platform supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

22.2.2. Viewing the network state of a node

A NodeNetworkState object exists on every node in the cluster. This object is periodically updated and
captures the state of the network for that node.

Procedure

1. List all the NodeNetworkState objects in the cluster:

2. Inspect a NodeNetworkState object to view the network on that node. The output in this
example has been redacted for clarity:

Example output

$ oc get nns

$ oc get nns node01 -o yaml

apiVersion: nmstate.io/v1
kind: NodeNetworkState

OpenShift Container Platform 4.10 Networking

426

https://nmstate.github.io/


1

2

3

The name of the NodeNetworkState object is taken from the node.

The currentState contains the complete network configuration for the node, including
DNS, interfaces, and routes.

Timestamp of the last successful update. This is updated periodically as long as the node is
reachable and can be used to evalute the freshness of the report.

22.3. UPDATING NODE NETWORK CONFIGURATION

You can update the node network configuration, such as adding or removing interfaces from nodes, by
applying NodeNetworkConfigurationPolicy manifests to the cluster.

WARNING

When using OVN-Kubernetes, changing the default gateway interface is not
supported.

22.3.1. About nmstate

OpenShift Container Platform uses nmstate to report on and configure the state of the node network.
This makes it possible to modify network policy configuration, such as by creating a Linux bridge on all
nodes, by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a 
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

metadata:
  name: node01 1
status:
  currentState: 2
    dns-resolver:
...
    interfaces:
...
    route-rules:
...
    routes:
...
  lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3



CHAPTER 22. KUBERNETES NMSTATE

427

https://nmstate.github.io/


Reports the network policies enacted upon each node.

OpenShift Container Platform supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

22.3.2. Creating an interface on nodes

Create an interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy manifest
to the cluster. The manifest details the requested configuration for the interface.

By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add
the spec: nodeSelector parameter and the appropriate <key>:<value> for your node selector.

You can configure multiple nmstate-enabled nodes concurrently. The configuration applies to 50% of
the nodes in parallel. This strategy prevents the entire cluster from being unavailable if the network
connection fails. To apply the policy configuration in parallel to a specific portion of the cluster, use the 
maxUnavailable field.

Procedure

1. Create the NodeNetworkConfigurationPolicy manifest. The following example configures a
Linux bridge on all worker nodes and configures the DNS resolver:

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: br1-eth1-policy 1
spec:
  nodeSelector: 2
    node-role.kubernetes.io/worker: "" 3
  maxUnavailable: 3 4
  desiredState:
    interfaces:
      - name: br1
        description: Linux bridge with eth1 as a port 5
        type: linux-bridge
        state: up
        ipv4:
          dhcp: true
          enabled: true

OpenShift Container Platform 4.10 Networking

428



1

2

3

4

5

6

1

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Optional: Specifies the maximum number of nmstate-enabled nodes that the policy
configuration can be applied to concurrently. This parameter can be set to either a
percentage value (string), for example, "10%", or an absolute value (number), such as 3.

Optional: Human-readable description for the interface.

Optional: Specifies the search and server settings for the DNS server.

2. Create the node network policy:

File name of the node network configuration policy manifest.

Additional resources

Example for creating multiple interfaces in the same policy

Examples of different IP management methods in policies

22.3.3. Confirming node network policy updates on nodes

A NodeNetworkConfigurationPolicy manifest describes your requested network configuration for
nodes in the cluster. The node network policy includes your requested network configuration and the
status of execution of the policy on the cluster as a whole.

When you apply a node network policy, a NodeNetworkConfigurationEnactment object is created for
every node in the cluster. The node network configuration enactment is a read-only object that
represents the status of execution of the policy on that node. If the policy fails to be applied on the
node, the enactment for that node includes a traceback for troubleshooting.

          auto-dns: false
        bridge:
          options:
            stp:
              enabled: false
          port:
            - name: eth1
    dns-resolver: 6
      config:
        search:
        - example.com
        - example.org
        server:
        - 8.8.8.8

$ oc apply -f br1-eth1-policy.yaml 1

CHAPTER 22. KUBERNETES NMSTATE

429



Procedure

1. To confirm that a policy has been applied to the cluster, list the policies and their status:

2. Optional: If a policy is taking longer than expected to successfully configure, you can inspect the
requested state and status conditions of a particular policy:

3. Optional: If a policy is taking longer than expected to successfully configure on all nodes, you
can list the status of the enactments on the cluster:

4. Optional: To view the configuration of a particular enactment, including any error reporting for a
failed configuration:

22.3.4. Removing an interface from nodes

You can remove an interface from one or more nodes in the cluster by editing the 
NodeNetworkConfigurationPolicy object and setting the state of the interface to absent.

Removing an interface from a node does not automatically restore the node network configuration to a
previous state. If you want to restore the previous state, you will need to define that node network
configuration in the policy.

If you remove a bridge or bonding interface, any node NICs in the cluster that were previously attached
or subordinate to that bridge or bonding interface are placed in a down state and become unreachable.
To avoid losing connectivity, configure the node NIC in the same policy so that it has a status of up and
either DHCP or a static IP address.

NOTE

Deleting the node network policy that added an interface does not change the
configuration of the policy on the node. Although a NodeNetworkConfigurationPolicy is
an object in the cluster, it only represents the requested configuration.
Similarly, removing an interface does not delete the policy.

Procedure

1. Update the NodeNetworkConfigurationPolicy manifest used to create the interface. The
following example removes a Linux bridge and configures the eth1 NIC with DHCP to avoid
losing connectivity:

$ oc get nncp

$ oc get nncp <policy> -o yaml

$ oc get nnce

$ oc get nnce <node>.<policy> -o yaml

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: <br1-eth1-policy> 1
spec:

OpenShift Container Platform 4.10 Networking

430



1

2

3

4

5

6

7

8

9

1

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Changing the state to absent removes the interface.

The name of the interface that is to be unattached from the bridge interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface
without an IP address.

Enables ipv4 in this example.

2. Update the policy on the node and remove the interface:

File name of the policy manifest.

22.3.5. Example policy configurations for different interfaces

22.3.5.1. Example: Linux bridge interface node network configuration policy

Create a Linux bridge interface on nodes in the cluster by applying a 
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for a Linux bridge interface. It includes samples
values that you must replace with your own information.

  nodeSelector: 2
    node-role.kubernetes.io/worker: "" 3
  desiredState:
    interfaces:
    - name: br1
      type: linux-bridge
      state: absent 4
    - name: eth1 5
      type: ethernet 6
      state: up 7
      ipv4:
        dhcp: true 8
        enabled: true 9

$ oc apply -f <br1-eth1-policy.yaml> 1

apiVersion: nmstate.io/v1

CHAPTER 22. KUBERNETES NMSTATE

431



1

2

3

4

5

6

7

8

9

10

11

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

Disables stp in this example.

The node NIC to which the bridge attaches.

22.3.5.2. Example: VLAN interface node network configuration policy

Create a VLAN interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

The following YAML file is an example of a manifest for a VLAN interface. It includes samples values that
you must replace with your own information.

kind: NodeNetworkConfigurationPolicy
metadata:
  name: br1-eth1-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
      - name: br1 4
        description: Linux bridge with eth1 as a port 5
        type: linux-bridge 6
        state: up 7
        ipv4:
          dhcp: true 8
          enabled: true 9
        bridge:
          options:
            stp:
              enabled: false 10
          port:
            - name: eth1 11

OpenShift Container Platform 4.10 Networking

432



1

2

3

4

5

6

7

8

9

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a VLAN.

The requested state for the interface after creation.

The node NIC to which the VLAN is attached.

The VLAN tag.

22.3.5.3. Example: Bond interface node network configuration policy

Create a bond interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

NOTE

OpenShift Container Platform only supports the following bond modes:

mode=1 active-backup

mode=2 balance-xor

mode=4 802.3ad

mode=5 balance-tlb

mode=6 balance-alb

The following YAML file is an example of a manifest for a bond interface. It includes samples values that

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: vlan-eth1-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
    - name: eth1.102 4
      description: VLAN using eth1 5
      type: vlan 6
      state: up 7
      vlan:
        base-iface: eth1 8
        id: 102 9

CHAPTER 22. KUBERNETES NMSTATE

433



1

2

3

4

5

6

7

8

9

10

11

12

13

The following YAML file is an example of a manifest for a bond interface. It includes samples values that
you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bond.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

The driver mode for the bond. This example uses an active backup mode.

Optional: This example uses miimon to inspect the bond link every 140ms.

The subordinate node NICs in the bond.

Optional: The maximum transmission unit (MTU) for the bond. If not specified, this value is set to 
1500 by default.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: bond0-eth1-eth2-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
    - name: bond0 4
      description: Bond with ports eth1 and eth2 5
      type: bond 6
      state: up 7
      ipv4:
        dhcp: true 8
        enabled: true 9
      link-aggregation:
        mode: active-backup 10
        options:
          miimon: '140' 11
        port: 12
        - eth1
        - eth2
      mtu: 1450 13

OpenShift Container Platform 4.10 Networking

434



1

2

3

4

5

6

7

8

9

1500 by default.

22.3.5.4. Example: Ethernet interface node network configuration policy

Configure an Ethernet interface on nodes in the cluster by applying a 
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for an Ethernet interface. It includes sample values
that you must replace with your own information.

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

22.3.5.5. Example: Multiple interfaces in the same node network configuration policy

You can create multiple interfaces in the same node network configuration policy. These interfaces can
reference each other, allowing you to build and deploy a network configuration by using a single policy
manifest.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: eth1-policy 1
spec:
  nodeSelector: 2
    kubernetes.io/hostname: <node01> 3
  desiredState:
    interfaces:
    - name: eth1 4
      description: Configuring eth1 on node01 5
      type: ethernet 6
      state: up 7
      ipv4:
        dhcp: true 8
        enabled: true 9

CHAPTER 22. KUBERNETES NMSTATE

435



1

The following example snippet creates a bond that is named bond10 across two NICs and a Linux bridge
that is named br1 that connects to the bond.

22.3.6. Examples: IP management

The following example configuration snippets demonstrate different methods of IP management.

These examples use the ethernet interface type to simplify the example while showing the related
context in the policy configuration. These IP management examples can be used with the other
interface types.

22.3.6.1. Static

The following snippet statically configures an IP address on the Ethernet interface:

Replace this value with the static IP address for the interface.

22.3.6.2. No IP address

The following snippet ensures that the interface has no IP address:

#...
    interfaces:
    - name: bond10
      description: Bonding eth2 and eth3 for Linux bridge
      type: bond
      state: up
      link-aggregation:
        port:
        - eth2
        - eth3
    - name: br1
      description: Linux bridge on bond
      type: linux-bridge
      state: up
      bridge:
        port:
        - name: bond10
#...

...
    interfaces:
    - name: eth1
      description: static IP on eth1
      type: ethernet
      state: up
      ipv4:
        dhcp: false
        address:
        - ip: 192.168.122.250 1
          prefix-length: 24
        enabled: true
...

OpenShift Container Platform 4.10 Networking

436



22.3.6.3. Dynamic host configuration

The following snippet configures an Ethernet interface that uses a dynamic IP address, gateway
address, and DNS:

The following snippet configures an Ethernet interface that uses a dynamic IP address but does not use
a dynamic gateway address or DNS:

22.3.6.4. DNS

Setting the DNS configuration is analagous to modifying the /etc/resolv.conf file. The following snippet
sets the DNS configuration on the host.

...
    interfaces:
    - name: eth1
      description: No IP on eth1
      type: ethernet
      state: up
      ipv4:
        enabled: false
...

...
    interfaces:
    - name: eth1
      description: DHCP on eth1
      type: ethernet
      state: up
      ipv4:
        dhcp: true
        enabled: true
...

...
    interfaces:
    - name: eth1
      description: DHCP without gateway or DNS on eth1
      type: ethernet
      state: up
      ipv4:
        dhcp: true
        auto-gateway: false
        auto-dns: false
        enabled: true
...

...
    interfaces: 1
       ...
       ipv4:
         ...
         auto-dns: false

CHAPTER 22. KUBERNETES NMSTATE

437



1

1

2

You must configure an interface with auto-dns: false or you must use static IP configuration on an
interface in order for Kubernetes NMState to store custom DNS settings.

IMPORTANT

You cannot use br-ex, an OVNKubernetes-managed Open vSwitch bridge, as the
interface when configuring DNS resolvers.

22.3.6.5. Static routing

The following snippet configures a static route and a static IP on interface eth1.

The static IP address for the Ethernet interface.

Next hop address for the node traffic. This must be in the same subnet as the IP address set for
the Ethernet interface.

22.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION

If the node network configuration encounters an issue, the policy is automatically rolled back and the
enactments report failure. This includes issues such as:

         ...
    dns-resolver:
      config:
        search:
        - example.com
        - example.org
        server:
        - 8.8.8.8
...

...
    interfaces:
    - name: eth1
      description: Static routing on eth1
      type: ethernet
      state: up
      ipv4:
        dhcp: false
        address:
        - ip: 192.0.2.251 1
          prefix-length: 24
        enabled: true
    routes:
      config:
      - destination: 198.51.100.0/24
        metric: 150
        next-hop-address: 192.0.2.1 2
        next-hop-interface: eth1
        table-id: 254
...

OpenShift Container Platform 4.10 Networking

438



The configuration fails to be applied on the host.

The host loses connection to the default gateway.

The host loses connection to the API server.

22.4.1. Troubleshooting an incorrect node network configuration policy
configuration

You can apply changes to the node network configuration across your entire cluster by applying a node
network configuration policy. If you apply an incorrect configuration, you can use the following example
to troubleshoot and correct the failed node network policy.

In this example, a Linux bridge policy is applied to an example cluster that has three control plane nodes
(master) and three compute (worker) nodes. The policy fails to be applied because it references an
incorrect interface. To find the error, investigate the available NMState resources. You can then update
the policy with the correct configuration.

Procedure

1. Create a policy and apply it to your cluster. The following example creates a simple bridge on the
ens01 interface:

Example output

2. Verify the status of the policy by running the following command:

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
  name: ens01-bridge-testfail
spec:
  desiredState:
    interfaces:
      - name: br1
        description: Linux bridge with the wrong port
        type: linux-bridge
        state: up
        ipv4:
          dhcp: true
          enabled: true
        bridge:
          options:
            stp:
              enabled: false
          port:
            - name: ens01

$ oc apply -f ens01-bridge-testfail.yaml

nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

$ oc get nncp

CHAPTER 22. KUBERNETES NMSTATE

439



The output shows that the policy failed:

Example output

However, the policy status alone does not indicate if it failed on all nodes or a subset of nodes.

3. List the node network configuration enactments to see if the policy was successful on any of the
nodes. If the policy failed for only a subset of nodes, it suggests that the problem is with a
specific node configuration. If the policy failed on all nodes, it suggests that the problem is with
the policy.

The output shows that the policy failed on all nodes:

Example output

4. View one of the failed enactments and look at the traceback. The following command uses the
output tool jsonpath to filter the output:

This command returns a large traceback that has been edited for brevity:

Example output

NAME                    STATUS
ens01-bridge-testfail   FailedToConfigure

$ oc get nnce

NAME                                   STATUS
control-plane-1.ens01-bridge-testfail        FailedToConfigure
control-plane-2.ens01-bridge-testfail        FailedToConfigure
control-plane-3.ens01-bridge-testfail        FailedToConfigure
compute-1.ens01-bridge-testfail              FailedToConfigure
compute-2.ens01-bridge-testfail              FailedToConfigure
compute-3.ens01-bridge-testfail              FailedToConfigure

$ oc get nnce compute-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?
(@.type=="Failing")].message}'

error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute 
nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
...
libnmstate.error.NmstateVerificationError:
desired
=======
---
name: br1
type: linux-bridge
state: up
bridge:
  options:
    group-forward-mask: 0
    mac-ageing-time: 300
    multicast-snooping: true
    stp:

OpenShift Container Platform 4.10 Networking

440



      enabled: false
      forward-delay: 15
      hello-time: 2
      max-age: 20
      priority: 32768
  port:
  - name: ens01
description: Linux bridge with the wrong port
ipv4:
  address: []
  auto-dns: true
  auto-gateway: true
  auto-routes: true
  dhcp: true
  enabled: true
ipv6:
  enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

current
=======
---
name: br1
type: linux-bridge
state: up
bridge:
  options:
    group-forward-mask: 0
    mac-ageing-time: 300
    multicast-snooping: true
    stp:
      enabled: false
      forward-delay: 15
      hello-time: 2
      max-age: 20
      priority: 32768
  port: []
description: Linux bridge with the wrong port
ipv4:
  address: []
  auto-dns: true
  auto-gateway: true
  auto-routes: true
  dhcp: true
  enabled: true
ipv6:
  enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

difference
==========
--- desired
+++ current
@@ -13,8 +13,7 @@

CHAPTER 22. KUBERNETES NMSTATE

441



The NmstateVerificationError lists the desired policy configuration, the current configuration
of the policy on the node, and the difference highlighting the parameters that do not match. In
this example, the port is included in the difference, which suggests that the problem is the port
configuration in the policy.

5. To ensure that the policy is configured properly, view the network configuration for one or all of
the nodes by requesting the NodeNetworkState object. The following command returns the
network configuration for the control-plane-1 node:

$ oc get nns control-plane-1 -o yaml

The output shows that the interface name on the nodes is ens1 but the failed policy incorrectly
uses ens01:

Example output

6. Correct the error by editing the existing policy:

Save the policy to apply the correction.

7. Check the status of the policy to ensure it updated successfully:

Example output

       hello-time: 2
       max-age: 20
       priority: 32768
-  port:
-  - name: ens01
+  port: []
 description: Linux bridge with the wrong port
 ipv4:
   address: []
  line 651, in _assert_interfaces_equal\n    
current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

   - ipv4:
 ...
      name: ens1
      state: up
      type: ethernet

$ oc edit nncp ens01-bridge-testfail

...
          port:
            - name: ens1

$ oc get nncp

NAME                    STATUS
ens01-bridge-testfail   SuccessfullyConfigured

OpenShift Container Platform 4.10 Networking

442



The updated policy is successfully configured on all nodes in the cluster.

CHAPTER 22. KUBERNETES NMSTATE

443



CHAPTER 23. CONFIGURING THE CLUSTER-WIDE PROXY
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure OpenShift Container Platform to use a proxy by modifying the Proxy
object for existing clusters or by configuring the proxy settings in the install-config.yaml file for new
clusters.

23.1. PREREQUISITES

Review the sites that your cluster requires access to  and determine whether any of them must
bypass the proxy. By default, all cluster system egress traffic is proxied, including calls to the
cloud provider API for the cloud that hosts your cluster. System-wide proxy affects system
components only, not user workloads. Add sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

The Proxy object status.noProxy field is populated with the values of the 
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and 
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object 
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

23.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this 
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  trustedCA:
    name: ""
status:

OpenShift Container Platform 4.10 Networking

444

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/installing/#configuring-firewall


1

2

3

4

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
  ca-bundle.crt: | 1
    <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
  name: user-ca-bundle 3
  namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  httpProxy: http://<username>:<pswd>@<ip>:<port> 1
  httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
  noProxy: example.com 3
  readinessEndpoints:

CHAPTER 23. CONFIGURING THE CLUSTER-WIDE PROXY

445



1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.
For example, most proxies will report an error if they are configured to use https but they
only support http. This failure message may not propagate to the logs and can appear to
be a network connection failure instead. If using a proxy that listens for https connections
from the cluster, you may need to configure the cluster to accept the CAs and certificates
that the proxy uses.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

23.3. REMOVING THE CLUSTER-WIDE PROXY

The cluster Proxy object cannot be deleted. To remove the proxy from a cluster, remove all spec fields
from the Proxy object.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Use the oc edit command to modify the proxy:

2. Remove all spec fields from the Proxy object. For example:

  - http://www.google.com 4
  - https://www.google.com
  trustedCA:
    name: user-ca-bundle 5

$ oc edit proxy/cluster

OpenShift Container Platform 4.10 Networking

446



3. Save the file to apply the changes.

Additional resources

Replacing the CA Bundle certificate

Proxy certificate customization

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec: {}

CHAPTER 23. CONFIGURING THE CLUSTER-WIDE PROXY

447

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/security_and_compliance/#ca-bundle-understanding_updating-ca-bundle
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/security_and_compliance/#customization


CHAPTER 24. CONFIGURING A CUSTOM PKI
Some platform components, such as the web console, use Routes for communication and must trust
other components' certificates to interact with them. If you are using a custom public key infrastructure
(PKI), you must configure it so its privately signed CA certificates are recognized across the cluster.

You can leverage the Proxy API to add cluster-wide trusted CA certificates. You must do this either
during installation or at runtime.

During installation, configure the cluster-wide proxy. You must define your privately signed CA
certificates in the install-config.yaml file’s additionalTrustBundle setting.
The installation program generates a ConfigMap that is named user-ca-bundle that contains
the additional CA certificates you defined. The Cluster Network Operator then creates a 
trusted-ca-bundle ConfigMap that merges these CA certificates with the Red Hat Enterprise
Linux CoreOS (RHCOS) trust bundle; this ConfigMap is referenced in the Proxy object’s 
trustedCA field.

At runtime, modify the default Proxy object to include your privately signed CA certificates
(part of cluster’s proxy enablement workflow). This involves creating a ConfigMap that contains
the privately signed CA certificates that should be trusted by the cluster, and then modifying
the proxy resource with the trustedCA referencing the privately signed certificates' ConfigMap.

NOTE

The installer configuration’s additionalTrustBundle field and the proxy resource’s 
trustedCA field are used to manage the cluster-wide trust bundle; 
additionalTrustBundle is used at install time and the proxy’s trustedCA is used at
runtime.

The trustedCA field is a reference to a ConfigMap containing the custom certificate and
key pair used by the cluster component.

24.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING
INSTALLATION

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

You have an existing install-config.yaml file.

You reviewed the sites that your cluster requires access to and determined whether any of
them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to
hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to
bypass the proxy if necessary.

NOTE

OpenShift Container Platform 4.10 Networking

448



1

2

3

4

NOTE

The Proxy object status.noProxy field is populated with the values of the 
networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and 
networking.serviceNetwork[] fields from your installation configuration.

For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object 
status.noProxy field is also populated with the instance metadata endpoint
(169.254.169.254).

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster.

A comma-separated list of destination domain names, IP addresses, or other network
CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For
example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all
destinations.

If provided, the installation program generates a config map that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle config map that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the 
trustedCA field of the Proxy object. The additionalTrustBundle field is required unless
the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.

NOTE

The installation program does not support the proxy readinessEndpoints field.

NOTE

apiVersion: v1
baseDomain: my.domain.com
proxy:
  httpProxy: http://<username>:<pswd>@<ip>:<port> 1
  httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
  noProxy: example.com 3
additionalTrustBundle: | 4
    -----BEGIN CERTIFICATE-----
    <MY_TRUSTED_CA_CERT>
    -----END CERTIFICATE-----
...

CHAPTER 24. CONFIGURING A CUSTOM PKI

449



NOTE

If the installer times out, restart and then complete the deployment by using the 
wait-for command of the installer. For example:

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

24.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this 
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a config map that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

$ ./openshift-install wait-for install-complete --log-level debug

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  trustedCA:
    name: ""
status:

OpenShift Container Platform 4.10 Networking

450



1

2

3

4

1

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The config map name that will be referenced from the Proxy object.

The config map must be in the openshift-config namespace.

b. Create the config map from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

apiVersion: v1
data:
  ca-bundle.crt: | 1
    <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
  name: user-ca-bundle 3
  namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
  name: cluster
spec:
  httpProxy: http://<username>:<pswd>@<ip>:<port> 1
  httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
  noProxy: example.com 3
  readinessEndpoints:
  - http://www.google.com 4
  - https://www.google.com
  trustedCA:
    name: user-ca-bundle 5

CHAPTER 24. CONFIGURING A CUSTOM PKI

451



2

3

4

5

A proxy URL to use for creating HTTPS connections outside the cluster. The URL scheme
must be either http or https. Specify a URL for the proxy that supports the URL scheme.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying.

Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com,
but not y.com. Use * to bypass proxy for all destinations. If you scale up workers that are
not included in the network defined by the networking.machineNetwork[].cidr field from
the installation configuration, you must add them to this list to prevent connection issues.

This field is ignored if neither the httpProxy or httpsProxy fields are set.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the config map in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the config map must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

24.3. CERTIFICATE INJECTION USING OPERATORS

Once your custom CA certificate is added to the cluster via ConfigMap, the Cluster Network Operator
merges the user-provided and system CA certificates into a single bundle and injects the merged
bundle into the Operator requesting the trust bundle injection.

IMPORTANT

After adding a config.openshift.io/inject-trusted-cabundle="true" label to the config
map, existing data in it is deleted. The Cluster Network Operator takes ownership of a
config map and only accepts ca-bundle as data. You must use a separate config map to
store service-ca.crt by using the service.beta.openshift.io/inject-cabundle=true
annotation or a similar configuration. Adding a config.openshift.io/inject-trusted-
cabundle="true" label and service.beta.openshift.io/inject-cabundle=true annotation
on the same config map can cause issues.

Operators request this injection by creating an empty ConfigMap with the following label:

An example of the empty ConfigMap:

config.openshift.io/inject-trusted-cabundle="true"

apiVersion: v1
data: {}
kind: ConfigMap
metadata:
  labels:
    config.openshift.io/inject-trusted-cabundle: "true"
  name: ca-inject 1
  namespace: apache

OpenShift Container Platform 4.10 Networking

452



1

1

2

Specifies the empty ConfigMap name.

The Operator mounts this ConfigMap into the container’s local trust store.

NOTE

Adding a trusted CA certificate is only needed if the certificate is not included in the Red
Hat Enterprise Linux CoreOS (RHCOS) trust bundle.

Certificate injection is not limited to Operators. The Cluster Network Operator injects certificates across
any namespace when an empty ConfigMap is created with the config.openshift.io/inject-trusted-
cabundle=true label.

The ConfigMap can reside in any namespace, but the ConfigMap must be mounted as a volume to each
container within a pod that requires a custom CA. For example:

ca-bundle.crt is required as the ConfigMap key.

tls-ca-bundle.pem is required as the ConfigMap path.

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-example-custom-ca-deployment
  namespace: my-example-custom-ca-ns
spec:
  ...
    spec:
      ...
      containers:
        - name: my-container-that-needs-custom-ca
          volumeMounts:
          - name: trusted-ca
            mountPath: /etc/pki/ca-trust/extracted/pem
            readOnly: true
      volumes:
      - name: trusted-ca
        configMap:
          name: trusted-ca
          items:
            - key: ca-bundle.crt 1
              path: tls-ca-bundle.pem 2

CHAPTER 24. CONFIGURING A CUSTOM PKI

453



1

CHAPTER 25. LOAD BALANCING ON RHOSP

25.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER
WITH KURYR SDN

If your OpenShift Container Platform cluster uses Kuryr and was installed on a Red Hat OpenStack
Platform (RHOSP) 13 cloud that was later upgraded to RHOSP 16, you can configure it to use the
Octavia OVN provider driver.

IMPORTANT

Kuryr replaces existing load balancers after you change provider drivers. This process
results in some downtime.

Prerequisites

Install the RHOSP CLI, openstack.

Install the OpenShift Container Platform CLI, oc.

Verify that the Octavia OVN driver on RHOSP is enabled.

TIP

To view a list of available Octavia drivers, on a command line, enter openstack loadbalancer 
provider list.

The ovn driver is displayed in the command’s output.

Procedure

To change from the Octavia Amphora provider driver to Octavia OVN:

1. Open the kuryr-config ConfigMap. On a command line, enter:

2. In the ConfigMap, delete the line that contains kuryr-octavia-provider: default. For example:

Delete this line. The cluster will regenerate it with ovn as the value.

Wait for the Cluster Network Operator to detect the modification and to redeploy the kuryr-
controller and kuryr-cni pods. This process might take several minutes.

3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
  annotations:
    networkoperator.openshift.io/kuryr-octavia-provider: default 1
...

OpenShift Container Platform 4.10 Networking

454



3. Verify that the kuryr-config ConfigMap annotation is present with ovn as its value. On a
command line, enter:

The ovn provider value is displayed in the output:

4. Verify that RHOSP recreated its load balancers.

a. On a command line, enter:

A single Amphora load balancer is displayed. For example:

b. Search for ovn load balancers by entering:

The remaining load balancers of the ovn type are displayed. For example:

25.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING
OCTAVIA

OpenShift Container Platform clusters that run on Red Hat OpenStack Platform (RHOSP) can use the
Octavia load balancing service to distribute traffic across multiple virtual machines (VMs) or floating IP
addresses. This feature mitigates the bottleneck that single machines or addresses create.

If your cluster uses Kuryr, the Cluster Network Operator created an internal Octavia load balancer at
deployment. You can use this load balancer for application network scaling.

If your cluster does not use Kuryr, you must create your own Octavia load balancer to use it for
application network scaling.

25.2.1. Scaling clusters by using Octavia

If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia

$ oc -n openshift-kuryr edit cm kuryr-config

...
kind: ConfigMap
metadata:
  annotations:
    networkoperator.openshift.io/kuryr-octavia-provider: ovn
...

$ openstack loadbalancer list | grep amphora

a4db683b-2b7b-4988-a582-c39daaad7981 | ostest-7mbj6-kuryr-api-loadbalancer  | 
84c99c906edd475ba19478a9a6690efd | 172.30.0.1     | ACTIVE              | amphora

$ openstack loadbalancer list | grep ovn

2dffe783-98ae-4048-98d0-32aa684664cc | openshift-apiserver-operator/metrics | 
84c99c906edd475ba19478a9a6690efd | 172.30.167.119 | ACTIVE              | ovn
0b1b2193-251f-4243-af39-2f99b29d18c5 | openshift-etcd/etcd                  | 
84c99c906edd475ba19478a9a6690efd | 172.30.143.226 | ACTIVE              | ovn
f05b07fc-01b7-4673-bd4d-adaa4391458e | openshift-dns-operator/metrics       | 
84c99c906edd475ba19478a9a6690efd | 172.30.152.27  | ACTIVE              | ovn

CHAPTER 25. LOAD BALANCING ON RHOSP

455



If you want to use multiple API load balancers, or if your cluster does not use Kuryr, create an Octavia
load balancer and then configure your cluster to use it.

Prerequisites

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. From a command line, create an Octavia load balancer that uses the Amphora driver:

You can use a name of your choice instead of API_OCP_CLUSTER.

2. After the load balancer becomes active, create listeners:

NOTE

To view the status of the load balancer, enter openstack loadbalancer list.

3. Create a pool that uses the round robin algorithm and has session persistence enabled:

4. To ensure that control plane machines are available, create a health monitor:

5. Add the control plane machines as members of the load balancer pool:

6. Optional: To reuse the cluster API floating IP address, unset it:

7. Add either the unset API_FIP or a new address to the created load balancer VIP:

$ openstack loadbalancer create --name API_OCP_CLUSTER --vip-subnet-id 
<id_of_worker_vms_subnet>

$ openstack loadbalancer listener create --name API_OCP_CLUSTER_6443 --protocol 
HTTPS--protocol-port 6443 API_OCP_CLUSTER

$ openstack loadbalancer pool create --name API_OCP_CLUSTER_pool_6443 --lb-
algorithm ROUND_ROBIN --session-persistence type=<source_IP_address> --listener 
API_OCP_CLUSTER_6443 --protocol HTTPS

$ openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --timeout 10 --type 
TCP API_OCP_CLUSTER_pool_6443

$ for SERVER in $(MASTER-0-IP MASTER-1-IP MASTER-2-IP)
do
  openstack loadbalancer member create --address $SERVER  --protocol-port 6443 
API_OCP_CLUSTER_pool_6443
done

$ openstack floating ip unset $API_FIP

$ openstack floating ip set  --port $(openstack loadbalancer show -c <vip_port_id> -f value 
API_OCP_CLUSTER) $API_FIP

OpenShift Container Platform 4.10 Networking

456



Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

25.2.2. Scaling clusters that use Kuryr by using Octavia

If your cluster uses Kuryr, associate the API floating IP address of your cluster with the pre-existing
Octavia load balancer.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your Red Hat OpenStack Platform (RHOSP) deployment.

Procedure

1. Optional: From a command line, to reuse the cluster API floating IP address, unset it:

2. Add either the unset API_FIP or a new address to the created load balancer VIP:

Your cluster now uses Octavia for load balancing.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

25.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA

You can use Octavia load balancers to scale Ingress controllers on clusters that use Kuryr.

Prerequisites

Your OpenShift Container Platform cluster uses Kuryr.

Octavia is available on your RHOSP deployment.

Procedure

$ openstack floating ip unset $API_FIP

$ openstack floating ip set --port $(openstack loadbalancer show -c <vip_port_id> -f value 
${OCP_CLUSTER}-kuryr-api-loadbalancer) $API_FIP

CHAPTER 25. LOAD BALANCING ON RHOSP

457



1

2

1. To copy the current internal router service, on a command line, enter:

2. In the file external_router.yaml, change the values of metadata.name and spec.type to 
LoadBalancer.

Example router file

Ensure that this value is descriptive, like router-external-default.

Ensure that this value is LoadBalancer.

NOTE

You can delete timestamps and other information that is irrelevant to load balancing.

1. From a command line, create a service from the external_router.yaml file:

2. Verify that the external IP address of the service is the same as the one that is associated with
the load balancer:

a. On a command line, retrieve the external IP address of the service:

$ oc -n openshift-ingress get svc router-internal-default -o yaml > external_router.yaml

apiVersion: v1
kind: Service
metadata:
  labels:
    ingresscontroller.operator.openshift.io/owning-ingresscontroller: default
  name: router-external-default 1
  namespace: openshift-ingress
spec:
  ports:
  - name: http
    port: 80
    protocol: TCP
    targetPort: http
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  - name: metrics
    port: 1936
    protocol: TCP
    targetPort: 1936
  selector:
    ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
  sessionAffinity: None
  type: LoadBalancer 2

$ oc apply -f external_router.yaml

$ oc -n openshift-ingress get svc

OpenShift Container Platform 4.10 Networking

458



Example output

b. Retrieve the IP address of the load balancer:

Example output

c. Verify that the addresses you retrieved in the previous steps are associated with each other
in the floating IP list:

Example output

You can now use the value of EXTERNAL-IP as the new Ingress address.

NOTE

If Kuryr uses the Octavia Amphora driver, all traffic is routed through a single Amphora
virtual machine (VM).

You can repeat this procedure to create additional load balancers, which can alleviate the
bottleneck.

25.4. CONFIGURING AN EXTERNAL LOAD BALANCER

You can configure an OpenShift Container Platform cluster on Red Hat OpenStack Platform (RHOSP)
to use an external load balancer in place of the default load balancer.

Prerequisites

On your load balancer, TCP over ports 6443, 443, and 80 must be available to any users of your
system.

Load balance the API port, 6443, between each of the control plane nodes.

Load balance the application ports, 443 and 80, between all of the compute nodes.

NAME                      TYPE           CLUSTER-IP       EXTERNAL-IP    PORT(S)                                     
AGE
router-external-default   LoadBalancer   172.30.235.33    10.46.22.161   
80:30112/TCP,443:32359/TCP,1936:30317/TCP   3m38s
router-internal-default   ClusterIP      172.30.115.123   <none>         
80/TCP,443/TCP,1936/TCP                     22h

$ openstack loadbalancer list | grep router-external

| 21bf6afe-b498-4a16-a958-3229e83c002c | openshift-ingress/router-external-default | 
66f3816acf1b431691b8d132cc9d793c | 172.30.235.33  | ACTIVE | octavia |

$ openstack floating ip list | grep 172.30.235.33

| e2f80e97-8266-4b69-8636-e58bacf1879e | 10.46.22.161 | 172.30.235.33 | 655e7122-
806a-4e0a-a104-220c6e17bda6 | a565e55a-99e7-4d15-b4df-f9d7ee8c9deb | 
66f3816acf1b431691b8d132cc9d793c |

CHAPTER 25. LOAD BALANCING ON RHOSP

459



On your load balancer, port 22623, which is used to serve ignition startup configurations to
nodes, is not exposed outside of the cluster.

Your load balancer must be able to access every machine in your cluster. Methods to allow this
access include:

Attaching the load balancer to the cluster’s machine subnet.

Attaching floating IP addresses to machines that use the load balancer.

Procedure

1. Enable access to the cluster from your load balancer on ports 6443, 443, and 80.
As an example, note this HAProxy configuration:

A section of a sample HAProxy configuration

2. Add records to your DNS server for the cluster API and apps over the load balancer. For
example:

3. From a command line, use curl to verify that the external load balancer and DNS configuration
are operational.

a. Verify that the cluster API is accessible:

If the configuration is correct, you receive a JSON object in response:

...
listen my-cluster-api-6443
    bind 0.0.0.0:6443
    mode tcp
    balance roundrobin
    server my-cluster-master-2 192.0.2.2:6443 check
    server my-cluster-master-0 192.0.2.3:6443 check
    server my-cluster-master-1 192.0.2.1:6443 check
listen my-cluster-apps-443
        bind 0.0.0.0:443
        mode tcp
        balance roundrobin
        server my-cluster-worker-0 192.0.2.6:443 check
        server my-cluster-worker-1 192.0.2.5:443 check
        server my-cluster-worker-2 192.0.2.4:443 check
listen my-cluster-apps-80
        bind 0.0.0.0:80
        mode tcp
        balance roundrobin
        server my-cluster-worker-0 192.0.2.7:80 check
        server my-cluster-worker-1 192.0.2.9:80 check
        server my-cluster-worker-2 192.0.2.8:80 check

<load_balancer_ip_address> api.<cluster_name>.<base_domain>
<load_balancer_ip_address> apps.<cluster_name>.<base_domain>

$ curl https://<loadbalancer_ip_address>:6443/version --insecure

OpenShift Container Platform 4.10 Networking

460



b. Verify that cluster applications are accessible:

NOTE

You can also verify application accessibility by opening the OpenShift
Container Platform console in a web browser.

If the configuration is correct, you receive an HTTP response:

{
  "major": "1",
  "minor": "11+",
  "gitVersion": "v1.11.0+ad103ed",
  "gitCommit": "ad103ed",
  "gitTreeState": "clean",
  "buildDate": "2019-01-09T06:44:10Z",
  "goVersion": "go1.10.3",
  "compiler": "gc",
  "platform": "linux/amd64"
}

$ curl http://console-openshift-console.apps.<cluster_name>.<base_domain> -I -L --
insecure

HTTP/1.1 302 Found
content-length: 0
location: https://console-openshift-console.apps.<cluster-name>.<base domain>/
cache-control: no-cacheHTTP/1.1 200 OK
referrer-policy: strict-origin-when-cross-origin
set-cookie: csrf-
token=39HoZgztDnzjJkq/JuLJMeoKNXlfiVv2YgZc09c3TBOBU4NI6kDXaJH1LdicNhN1UsQ
Wzon4Dor9GWGfopaTEQ==; Path=/; Secure
x-content-type-options: nosniff
x-dns-prefetch-control: off
x-frame-options: DENY
x-xss-protection: 1; mode=block
date: Tue, 17 Nov 2020 08:42:10 GMT
content-type: text/html; charset=utf-8
set-cookie: 
1e2670d92730b515ce3a1bb65da45062=9b714eb87e93cf34853e87a92d6894be; path=/; 
HttpOnly; Secure; SameSite=None
cache-control: private

CHAPTER 25. LOAD BALANCING ON RHOSP

461



CHAPTER 26. LOAD BALANCING WITH METALLB

26.1. ABOUT METALLB AND THE METALLB OPERATOR

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service of
type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the service. The
external IP address is added to the host network for your cluster.

You can configure MetalLB so that the IP address is advertised with layer 2 protocols. With layer 2,
MetalLB provides a fault-tolerant external IP address.

You can configure MetalLB so that the IP address is advertised with the BGP protocol. With BGP,
MetalLB provides fault-tolerance for the external IP address and load balancing.

MetalLB supports providing layer 2 for some IP addresses and BGP for other IP addresses.

26.1.1. When to use MetalLB

Using MetalLB is valuable when you have a bare-metal cluster, or an infrastructure that is like bare
metal, and you want fault-tolerant access to an application through an external IP address.

You must configure your networking infrastructure to ensure that network traffic for the external IP
address is routed from clients to the host network for the cluster.

After deploying MetalLB with the MetalLB Operator, when you add a service of type LoadBalancer,
MetalLB provides a platform-native load balancer.

MetalLB operating in layer2 mode provides support for failover by utilizing a mechanism similar to IP
failover. However, instead of relying on the virtual router redundancy protocol (VRRP) and keepalived,
MetalLB leverages a gossip-based protocol to identify instances of node failure. When a failover is
detected, another node assumes the role of the leader node, and a gratuitous ARP message is
dispatched to broadcast this change.

MetalLB operating in layer3 or border gateway protocol (BGP) mode delegates failure detection to the
network. The BGP router or routers that the OpenShift Container Platform nodes have established a
connection with will identify any node failure and terminate the routes to that node.

Using MetalLB instead of IP failover is preferable for ensuring high availability of pods and services.

26.1.2. MetalLB Operator custom resources

The MetalLB Operator monitors its own namespace for the following custom resources:

MetalLB

When you add a MetalLB custom resource to the cluster, the MetalLB Operator deploys MetalLB on
the cluster. The Operator only supports a single instance of the custom resource. If the instance is
deleted, the Operator removes MetalLB from the cluster.

AddressPool

MetalLB requires one or more pools of IP addresses that it can assign to a service when you add a
service of type LoadBalancer. When you add an AddressPool custom resource to the cluster, the
MetalLB Operator configures MetalLB so that it can assign IP addresses from the pool. An address
pool includes a list of IP addresses. The list can be a single IP address that is set using a range, such
as 1.1.1.1-1.1.1.1, a range specified in CIDR notation, a range specified as a starting and ending address
separated by a hyphen, or a combination of the three. An address pool requires a name. The

OpenShift Container Platform 4.10 Networking

462



documentation uses names like doc-example, doc-example-reserved, and doc-example-ipv6. An
address pool specifies whether MetalLB can automatically assign IP addresses from the pool or
whether the IP addresses are reserved for services that explicitly specify the pool by name. An
address pool specifies whether MetalLB uses layer 2 protocols to advertise the IP addresses, or
whether the BGP protocol is used.

BGPPeer

The BGP peer custom resource identifies the BGP router for MetalLB to communicate with, the AS
number of the router, the AS number for MetalLB, and customizations for route advertisement.
MetalLB advertises the routes for service load-balancer IP addresses to one or more BGP peers. The
service load-balancer IP addresses are specified with AddressPool custom resources that set the 
protocol field to bgp.

BFDProfile

The BFD profile custom resource configures Bidirectional Forwarding Detection (BFD) for a BGP
peer. BFD provides faster path failure detection than BGP alone provides.

After you add the MetalLB custom resource to the cluster and the Operator deploys MetalLB, the
MetalLB software components, controller and speaker, begin running.

The Operator includes validating webhooks for the AddressPool and BGPPeer custom resources. The
webhook for the address pool custom resource performs the following checks:

Address pool names must be unique.

IP address ranges do not overlap with an existing address pool.

If the address pool includes a bgpAdvertisement field, the protocol field must be set to bgp.

The webhook for the BGP peer custom resource performs the following checks:

If the BGP peer name matches an existing peer, the IP address for the peer must be unique.

If the keepaliveTime field is specified, the holdTime field must be specified and the keep-alive
duration must be less than the hold time.

The myASN field must be the same for all BGP peers.

26.1.3. MetalLB software components

When you install the MetalLB Operator, the metallb-operator-controller-manager deployment starts a
pod. The pod is the implementation of the Operator. The pod monitors for changes to the MetalLB
custom resource and AddressPool custom resources.

When the Operator starts an instance of MetalLB, it starts a controller deployment and a speaker
daemon set.

controller

The Operator starts the deployment and a single pod. When you add a service of type 
LoadBalancer, Kubernetes uses the controller to allocate an IP address from an address pool. In
case of a service failure, verify you have the following entry in your controller pod logs:

Example output

"event":"ipAllocated","ip":"172.22.0.201","msg":"IP address assigned by controller

CHAPTER 26. LOAD BALANCING WITH METALLB

463



speaker

The Operator starts a daemon set for speaker pods. By default, a pod is started on each node in
your cluster. You can limit the pods to specific nodes by specifying a node selector in the MetalLB
custom resource when you start MetalLB. If the controller allocated the IP address to the service
and service is still unavailable, read the speaker pod logs. If the speaker pod is unavailable, run the 
oc describe pod -n command.
For layer 2 mode, after the controller allocates an IP address for the service, the speaker pods use
an algorithm to determine which speaker pod on which node will announce the load balancer IP
address. The algorithm involves hashing the node name and the load balancer IP address. For more
information, see "MetalLB and external traffic policy". The speaker uses Address Resolution
Protocol (ARP) to announce IPv4 addresses and Neighbor Discovery Protocol (NDP) to announce
IPv6 addresses.

For BGP mode, after the controller allocates an IP address for the service, each speaker pod
advertises the load balancer IP address with its BGP peers. You can configure which nodes start BGP
sessions with BGP peers.

Requests for the load balancer IP address are routed to the node with the speaker that announces the
IP address. After the node receives the packets, the service proxy routes the packets to an endpoint for
the service. The endpoint can be on the same node in the optimal case, or it can be on another node.
The service proxy chooses an endpoint each time a connection is established.

26.1.4. MetalLB concepts for layer 2 mode

In layer 2 mode, the speaker pod on one node announces the external IP address for a service to the
host network. From a network perspective, the node appears to have multiple IP addresses assigned to
a network interface.

NOTE

In layer 2 mode, MetalLB relies on ARP and NDP. These protocols implement local
address resolution within a specific subnet. In this context, the client must be able to reach
the VIP assigned by MetalLB that exists on the same subnet as the nodes announcing the
service in order for MetalLB to work.

The speaker pod responds to ARP requests for IPv4 services and NDP requests for IPv6.

In layer 2 mode, all traffic for a service IP address is routed through one node. After traffic enters the
node, the service proxy for the CNI network provider distributes the traffic to all the pods for the
service.

Because all traffic for a service enters through a single node in layer 2 mode, in a strict sense, MetalLB
does not implement a load balancer for layer 2. Rather, MetalLB implements a failover mechanism for
layer 2 so that when a speaker pod becomes unavailable, a speaker pod on a different node can
announce the service IP address.

When a node becomes unavailable, failover is automatic. The speaker pods on the other nodes detect
that a node is unavailable and a new speaker pod and node take ownership of the service IP address
from the failed node.

OpenShift Container Platform 4.10 Networking

464



The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has a cluster IP on the 172.130.0.0/16 subnet.
That IP address is accessible from inside the cluster. The service also has an external IP address
that MetalLB assigned to the service, 192.168.100.200.

Nodes 1 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

The speaker pod on node 1 uses ARP to announce the external IP address for the service, 
192.168.100.200. The speaker pod that announces the external IP address must be on the
same node as an endpoint for the service and the endpoint must be in the Ready condition.

Client traffic is routed to the host network and connects to the 192.168.100.200 IP address.
After traffic enters the node, the service proxy sends the traffic to the application pod on the
same node or another node according to the external traffic policy that you set for the service.

If the external traffic policy for the service is set to cluster, the node that advertises the 
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running. Only that node can receive traffic for the service.

If the external traffic policy for the service is set to local, the node that announces the 
192.168.100.200 load balancer IP address is selected from the nodes where a speaker pod
is running and at least an endpoint of the service. Only that node can receive traffic for the
service. In the preceding graphic, either node 1 or 3 would advertise 192.168.100.200.

If node 1 becomes unavailable, the external IP address fails over to another node. On another

CHAPTER 26. LOAD BALANCING WITH METALLB

465



node that has an instance of the application pod and service endpoint, the speaker pod begins
to announce the external IP address, 192.168.100.200 and the new node receives the client
traffic. In the diagram, the only candidate is node 3.

26.1.5. MetalLB concepts for BGP mode

In BGP mode, each speaker pod advertises the load balancer IP address for a service to each BGP
peer. BGP peers are commonly network routers that are configured to use the BGP protocol. When a
router receives traffic for the load balancer IP address, the router picks one of the nodes with a speaker
pod that advertised the IP address. The router sends the traffic to that node. After traffic enters the
node, the service proxy for the CNI network provider distributes the traffic to all the pods for the
service.

The directly-connected router on the same layer 2 network segment as the cluster nodes can be
configured as a BGP peer. If the directly-connected router is not configured as a BGP peer, you need to
configure your network so that packets for load balancer IP addresses are routed between the BGP
peers and the cluster nodes that run the speaker pods.

Each time a router receives new traffic for the load balancer IP address, it creates a new connection to a
node. Each router manufacturer has an implementation-specific algorithm for choosing which node to
initiate the connection with. However, the algorithms commonly are designed to distribute traffic across
the available nodes for the purpose of balancing the network load.

If a node becomes unavailable, the router initiates a new connection with another node that has a 
speaker pod that advertises the load balancer IP address.

Figure 26.1. MetalLB topology diagram for BGP mode

OpenShift Container Platform 4.10 Networking

466



The preceding graphic shows the following concepts related to MetalLB:

An application is available through a service that has an IPv4 cluster IP on the 172.130.0.0/16
subnet. That IP address is accessible from inside the cluster. The service also has an external IP
address that MetalLB assigned to the service, 203.0.113.200.

Nodes 2 and 3 have a pod for the application.

The speaker daemon set runs a pod on each node. The MetalLB Operator starts these pods.
You can configure MetalLB to specify which nodes run the speaker pods.

Each speaker pod is a host-networked pod. The IP address for the pod is identical to the IP
address for the node on the host network.

Each speaker pod starts a BGP session with all BGP peers and advertises the load balancer IP
addresses or aggregated routes to the BGP peers. The speaker pods advertise that they are
part of Autonomous System 65010. The diagram shows a router, R1, as a BGP peer within the
same Autonomous System. However, you can configure MetalLB to start BGP sessions with
peers that belong to other Autonomous Systems.

All the nodes with a speaker pod that advertises the load balancer IP address can receive
traffic for the service.

If the external traffic policy for the service is set to cluster, all the nodes where a speaker
pod is running advertise the 203.0.113.200 load balancer IP address and all the nodes with a
speaker pod can receive traffic for the service. The host prefix is advertised to the router
peer only if the external traffic policy is set to cluster.

If the external traffic policy for the service is set to local, then all the nodes where a 
speaker pod is running and at least an endpoint of the service is running can advertise the 
203.0.113.200 load balancer IP address. Only those nodes can receive traffic for the
service. In the preceding graphic, nodes 2 and 3 would advertise 203.0.113.200.

You can configure MetalLB to control which speaker pods start BGP sessions with specific
BGP peers by specifying a node selector when you add a BGP peer custom resource.

Any routers, such as R1, that are configured to use BGP can be set as BGP peers.

Client traffic is routed to one of the nodes on the host network. After traffic enters the node,
the service proxy sends the traffic to the application pod on the same node or another node
according to the external traffic policy that you set for the service.

If a node becomes unavailable, the router detects the failure and initiates a new connection with
another node. You can configure MetalLB to use a Bidirectional Forwarding Detection (BFD)
profile for BGP peers. BFD provides faster link failure detection so that routers can initiate new
connections earlier than without BFD.

26.1.6. MetalLB and external traffic policy

With layer 2 mode, one node in your cluster receives all the traffic for the service IP address. With BGP
mode, a router on the host network opens a connection to one of the nodes in the cluster for a new
client connection. How your cluster handles the traffic after it enters the node is affected by the
external traffic policy.

cluster

This is the default value for spec.externalTrafficPolicy.

With the cluster traffic policy, after the node receives the traffic, the service proxy distributes the

CHAPTER 26. LOAD BALANCING WITH METALLB

467



With the cluster traffic policy, after the node receives the traffic, the service proxy distributes the
traffic to all the pods in your service. This policy provides uniform traffic distribution across the pods,
but it obscures the client IP address and it can appear to the application in your pods that the traffic
originates from the node rather than the client.

local

With the local traffic policy, after the node receives the traffic, the service proxy only sends traffic
to the pods on the same node. For example, if the speaker pod on node A announces the external
service IP, then all traffic is sent to node A. After the traffic enters node A, the service proxy only
sends traffic to pods for the service that are also on node A. Pods for the service that are on
additional nodes do not receive any traffic from node A. Pods for the service on additional nodes act
as replicas in case failover is needed.
This policy does not affect the client IP address. Application pods can determine the client IP address
from the incoming connections.

26.1.7. Limitations and restrictions

26.1.7.1. Infrastructure considerations for MetalLB

MetalLB is primarily useful for on-premise, bare metal installations because these installations do not
include a native load-balancer capability. In addition to bare metal installations, installations of
OpenShift Container Platform on some infrastructures might not include a native load-balancer
capability. For example, the following infrastructures can benefit from adding the MetalLB Operator:

Bare metal

VMware vSphere

MetalLB Operator and MetalLB are supported with the OpenShift SDN and OVN-Kubernetes network
providers.

26.1.7.2. Limitations for layer 2 mode

26.1.7.2.1. Single-node bottleneck

MetalLB routes all traffic for a service through a single node, the node can become a bottleneck and
limit performance.

Layer 2 mode limits the ingress bandwidth for your service to the bandwidth of a single node. This is a
fundamental limitation of using ARP and NDP to direct traffic.

26.1.7.2.2. Slow failover performance

Failover between nodes depends on cooperation from the clients. When a failover occurs, MetalLB
sends gratuitous ARP packets to notify clients that the MAC address associated with the service IP has
changed.

Most client operating systems handle gratuitous ARP packets correctly and update their neighbor
caches promptly. When clients update their caches quickly, failover completes within a few seconds.
Clients typically fail over to a new node within 10 seconds. However, some client operating systems either
do not handle gratuitous ARP packets at all or have outdated implementations that delay the cache
update.

Recent versions of common operating systems such as Windows, macOS, and Linux implement layer 2

OpenShift Container Platform 4.10 Networking

468



Recent versions of common operating systems such as Windows, macOS, and Linux implement layer 2
failover correctly. Issues with slow failover are not expected except for older and less common client
operating systems.

To minimize the impact from a planned failover on outdated clients, keep the old node running for a few
minutes after flipping leadership. The old node can continue to forward traffic for outdated clients until
their caches refresh.

During an unplanned failover, the service IPs are unreachable until the outdated clients refresh their
cache entries.

26.1.7.3. Limitations for BGP mode

26.1.7.3.1. Node failure can break all active connections

MetalLB shares a limitation that is common to BGP-based load balancing. When a BGP session
terminates, such as when a node fails or when a speaker pod restarts, the session termination might
result in resetting all active connections. End users can experience a Connection reset by peer
message.

The consequence of a terminated BGP session is implementation-specific for each router
manufacturer. However, you can anticipate that a change in the number of speaker pods affects the
number of BGP sessions and that active connections with BGP peers will break.

To avoid or reduce the likelihood of a service interruption, you can specify a node selector when you add
a BGP peer. By limiting the number of nodes that start BGP sessions, a fault on a node that does not
have a BGP session has no affect on connections to the service.

26.1.7.3.2. Communities are specified as 16-bit values

Communities are specified as part of an address pool custom resource and are specified as 16-bit values
separated by a colon. For example, to specify that load balancer IP addresses are advertised with the
well-known NO_ADVERTISE community attribute, use notation like the following:

The limitation that communities are only specified as 16-bit values is a difference with the community-
supported implementation of MetalLB that supports a bgp-communities field and readable names for
BGP communities.

26.1.7.3.3. Support for a single ASN and a single router ID only

When you add a BGP peer custom resource, you specify the spec.myASN field to identify the
Autonomous System Number (ASN) that MetalLB belongs to. OpenShift Container Platform uses an

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
  name: doc-example-no-advertise
  namespace: metallb-system
spec:
  protocol: bgp
  addresses:
    - 192.168.1.100-192.168.1.255
  bgpAdvertisements:
  - communities:
    - 65535:65282

CHAPTER 26. LOAD BALANCING WITH METALLB

469



implementation of BGP with MetalLB that requires MetalLB to belong to a single ASN. If you attempt to
add a BGP peer and specify a different value for spec.myASN than an existing BGP peer custom
resource, you receive an error.

Similarly, when you add a BGP peer custom resource, the spec.routerID field is optional. If you specify a
value for this field, you must specify the same value for all other BGP peer custom resources that you
add.

The limitation to support a single ASN and single router ID is a difference with the community-supported
implementation of MetalLB.

26.1.8. Additional resources

Comparison: Fault tolerant access to external IP addresses

Removing IP failover

26.2. INSTALLING THE METALLB OPERATOR

As a cluster administrator, you can add the MetallB Operator so that the Operator can manage the
lifecycle for an instance of MetalLB on your cluster.

The installation procedures use the metallb-system namespace. You can install the Operator and
configure custom resources in a different namespace. The Operator starts MetalLB in the same
namespace that the Operator is installed in.

MetalLB and IP failover are incompatible. If you configured IP failover for your cluster, perform the steps
to remove IP failover before you install the Operator.

26.2.1. Installing the MetalLB Operator from the OperatorHub using the web console

As a cluster administrator, you can install the MetalLB Operator by using the OpenShift Container
Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Optional: Create the required namespace for the MetalLB Operator:

NOTE

You can choose to create the namespace at this stage or you can create it when
you start the MetalLB Operator install. From the Installed Namespace list you
can create the project.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter metallb-system in the Name field, and click Create.

3. Install the MetalLB Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Type metallb into the Filter by keyword field to find the MetalLB Operator, and then click

OpenShift Container Platform 4.10 Networking

470

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#overview-traffic-comparision_overview-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ipfailover-remove_configuring-ipfailover
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-ipfailover-remove_configuring-ipfailover


b. Type metallb into the Filter by keyword field to find the MetalLB Operator, and then click
Install.
You can also filter options by Infrastructure Features. For example, select Disconnected if
you want to see Operators that work in disconnected environments, also known as
restricted network environments.

c. On the Install Operator page, select a specific namespace on the cluster. Select the
namespace created in the earlier section or choose to create the metallb-system project,
and then click Install.

Verification

To verify that the MetalLB Operator installed successfully:

1. Navigate to the Operators → Installed Operators page.

2. Ensure that MetalLB Operator is listed in the metallb-system project with a Status of
Succeeded.

NOTE

During installation, an Operator might display a Failed status. If the installation
later succeeds with an Succeeded message, you can ignore the Failed message.

3. If the Operator installation does not succeed, you can troubleshoot further:

a. Navigate to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

b. Navigate to the Workloads → Pods page and check the logs for pods in the metallb-
system project.

26.2.2. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Confirm that the MetalLB Operator is available:

Example output

2. Create the metallb-system namespace:

$ oc get packagemanifests -n openshift-marketplace metallb-operator

NAME               CATALOG                AGE
metallb-operator   Red Hat Operators      9h

CHAPTER 26. LOAD BALANCING WITH METALLB

471



3. Optional: To ensure BGP and BFD metrics appear in Prometheus, you can label the namespace
as in the following command:

4. Create an Operator group custom resource in the namespace:

5. Confirm the Operator group is installed in the namespace:

Example output

6. Subscribe to the MetalLB Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. You use the values to set the channel value in the next step.

b. To create a subscription custom resource for the Operator, enter the following command:

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Namespace
metadata:
  name: metallb-system
EOF

$ oc label ns metallb-system "openshift.io/cluster-monitoring=true"

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: metallb-operator
  namespace: metallb-system
spec:
  targetNamespaces:
  - metallb-system
EOF

$ oc get operatorgroup -n metallb-system

NAME               AGE
metallb-operator   14m

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
    grep -o '[0-9]*[.][0-9]*' | head -1)

$ cat << EOF| oc apply -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: metallb-operator-sub
  namespace: metallb-system
spec:
  channel: "${OC_VERSION}"
  name: metallb-operator

OpenShift Container Platform 4.10 Networking

472



7. Confirm the install plan is in the namespace:

Example output

8. To verify that the Operator is installed, enter the following command:

Example output

26.2.3. Starting MetalLB on your cluster

After you install the Operator, you need to configure a single instance of a MetalLB custom resource.
After you configure the custom resource, the Operator starts MetalLB on your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Install the MetalLB Operator.

Procedure

1. Create a single instance of a MetalLB custom resource:

Verification

Confirm that the deployment for the MetalLB controller and the daemon set for the MetalLB speaker
are running.

  source: redhat-operators
  sourceNamespace: openshift-marketplace
EOF

$ oc get installplan -n metallb-system

NAME            CSV                                                 APPROVAL    APPROVED
install-wzg94   metallb-operator.4.10.0-nnnnnnnnnnnn   Automatic   true

$ oc get clusterserviceversion -n metallb-system \
  -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name                                                Phase
metallb-operator.4.10.0-nnnnnnnnnnnn   Succeeded

$ cat << EOF | oc apply -f -
apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
  name: metallb
  namespace: metallb-system
EOF

CHAPTER 26. LOAD BALANCING WITH METALLB

473



1. Check that the deployment for the controller is running:

Example output

2. Check that the daemon set for the speaker is running:

Example output

The example output indicates 6 speaker pods. The number of speaker pods in your cluster
might differ from the example output. Make sure the output indicates one pod for each node in
your cluster.

26.2.3.1. Limit speaker pods to specific nodes

By default, when you start MetalLB with the MetalLB Operator, the Operator starts an instance of a 
speaker pod on each node in the cluster. Only the nodes with a speaker pod can advertise a load
balancer IP address. You can configure the MetalLB custom resource with a node selector to specify
which nodes run the speaker pods.

The most common reason to limit the speaker pods to specific nodes is to ensure that only nodes with
network interfaces on specific networks advertise load balancer IP addresses. Only the nodes with a
running speaker pod are advertised as destinations of the load balancer IP address.

If you limit the speaker pods to specific nodes and specify local for the external traffic policy of a
service, then you must ensure that the application pods for the service are deployed to the same nodes.

Example configuration to limit speaker pods to worker nodes

<.> The example configuration specifies to assign the speaker pods to worker nodes, but you can specify

$ oc get deployment -n metallb-system controller

NAME         READY   UP-TO-DATE   AVAILABLE   AGE
controller   1/1     1            1           11m

$ oc get daemonset -n metallb-system speaker

NAME      DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE 
SELECTOR            AGE
speaker   6         6         6       6            6           kubernetes.io/os=linux   18m

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
  name: metallb
  namespace: metallb-system
spec:
  nodeSelector:  <.>
    node-role.kubernetes.io/worker: ""
  speakerTolerations:   <.>
  - key: "Example"
    operator: "Exists"
    effect: "NoExecute"

OpenShift Container Platform 4.10 Networking

474



labels that you assigned to nodes or any valid node selector. <.> In this example configuration, the pod
that this toleration is attached to tolerates any taint that matches the key value and effect value using
the operator.

After you apply a manifest with the spec.nodeSelector field, you can check the number of pods that the
Operator deployed with the oc get daemonset -n metallb-system speaker command. Similarly, you
can display the nodes that match your labels with a command like oc get nodes -l node-
role.kubernetes.io/worker=.

You can optionally allow the node to control which speaker pods should, or should not, be scheduled on
them by using affinity rules. You can also limit these pods by applying a list of tolerations. For more
information about affinity rules, taints, and tolerations, see the additional resources.

Additional resources

For more information about node selectors, see Placing pods on specific nodes using node
selectors.

For more information about taints and tolerations, see Understanding taints and tolerations .

26.2.4. Next steps

Configuring MetalLB address pools

26.3. CONFIGURING METALLB ADDRESS POOLS

As a cluster administrator, you can add, modify, and delete address pools. The MetalLB Operator uses
the address pool custom resources to set the IP addresses that MetalLB can assign to services.

26.3.1. About the address pool custom resource

The fields for the address pool custom resource are described in the following table.

Table 26.1. MetalLB address pool custom resource

Field Type Description

metadata.name string Specifies the name for the address pool. When you add a
service, you can specify this pool name in the 
metallb.universe.tf/address-pool annotation to select an IP
address from a specific pool. The names doc-example, silver,
and gold are used throughout the documentation.

metadata.name
space

string Specifies the namespace for the address pool. Specify the same
namespace that the MetalLB Operator uses.

spec.protocol string Specifies the protocol for announcing the load balancer IP
address to peer nodes. Specify layer2 or bgp.

CHAPTER 26. LOAD BALANCING WITH METALLB

475

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/nodes/#nodes-scheduler-taints-tolerations-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#metallb-configure-address-pools


spec.autoAssig
n

boolean Optional: Specifies whether MetalLB automatically assigns IP
addresses from this pool. Specify false if you want explicitly
request an IP address from this pool with the 
metallb.universe.tf/address-pool annotation. The default
value is true.

spec.addresses array Specifies a list of IP addresses for MetalLB to assign to services.
You can specify multiple ranges in a single pool. Specify each
range in CIDR notation or as starting and ending IP addresses
separated with a hyphen.

spec.bgpAdvert
isements

object Optional: By default, BGP mode advertises each allocated load-
balancer IP address to the configured peers with no additional
BGP attributes. The peer routers receive one /32 route for each
service IP address, with the BGP local preference set to zero
and no BGP communities. Use this field to create custom
advertisements.

Field Type Description

The fields for the bgpAdvertisements object are defined in the following table:

Table 26.2. BGP advertisements configuration

Field Type Description

aggregationLen
gth

integer Optional: Specifies the number of bits to include in a 32-bit
CIDR mask. To aggregate the routes that the speaker advertises
to BGP peers, the mask is applied to the routes for several
service IP addresses and the speaker advertises the aggregated
route. For example, with an aggregation length of 24, the
speaker can aggregate several 10.0.1.x/32 service IP addresses
and advertise a single 10.0.1.0/24 route.

aggregationLen
gthV6

integer Optional: Specifies the number of bits to include in a 128-bit
CIDR mask. For example, with an aggregation length of 124, the
speaker can aggregate several fc00:f853:0ccd:e799::x/128
service IP addresses and advertise a single 
fc00:f853:0ccd:e799::0/124 route.

community array Optional: Specifies one or more BGP communities. Each
community is specified as two 16-bit values separated by the
colon character. Well-known communities must be specified as
16-bit values:

NO_EXPORT: 65535:65281

NO_ADVERTISE: 65535:65282

NO_EXPORT_SUBCONFED: 65535:65283

OpenShift Container Platform 4.10 Networking

476



localPref integer Optional: Specifies the local preference for this advertisement.
This BGP attribute applies to BGP sessions within the
Autonomous System.

Field Type Description

26.3.2. Configuring an address pool

As a cluster administrator, you can add address pools to your cluster to control the IP addresses that
MetalLB can assign to load-balancer services.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as addresspool.yaml, with content like the following example:

2. Apply the configuration for the address pool:

Verification

View the address pool:

Example output

apiVersion: metallb.io/v1alpha1
kind: AddressPool
metadata:
  namespace: metallb-system
  name: doc-example
spec:
  protocol: layer2
  addresses:
  - 203.0.113.1-203.0.113.10
  - 203.0.113.65-203.0.113.75

$ oc apply -f addresspool.yaml

$ oc describe -n metallb-system addresspool doc-example

Name:         doc-example
Namespace:    metallb-system
Labels:       <none>
Annotations:  <none>
API Version:  metallb.io/v1alpha1
Kind:         AddressPool
Metadata:
  ...

CHAPTER 26. LOAD BALANCING WITH METALLB

477



Confirm that the address pool name, such as doc-example, and the IP address ranges appear in the
output.

26.3.3. Example address pool configurations

26.3.3.1. Example: IPv4 and CIDR ranges

You can specify a range of IP addresses in CIDR notation. You can combine CIDR notation with the
notation that uses a hyphen to separate lower and upper bounds.

26.3.3.2. Example: Reserve IP addresses

You can set the autoAssign field to false to prevent MetalLB from automatically assigning the IP
addresses from the pool. When you add a service, you can request a specific IP address from the pool or
you can specify the pool name in an annotation to request any IP address from the pool.

26.3.3.3. Example: IPv4 and IPv6 addresses

You can add address pools that use IPv4 and IPv6. You can specify multiple ranges in the addresses
list, just like several IPv4 examples.

Whether the service is assigned a single IPv4 address, a single IPv6 address, or both is determined by

Spec:
  Addresses:
    203.0.113.1-203.0.113.10
    203.0.113.65-203.0.113.75
  Auto Assign:  true
  Protocol:     layer2
Events:         <none>

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
  name: doc-example-cidr
  namespace: metallb-system
spec:
  protocol: layer2
  addresses:
  - 192.168.100.0/24
  - 192.168.200.0/24
  - 192.168.255.1-192.168.255.5

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
  name: doc-example-reserved
  namespace: metallb-system
spec:
  protocol: layer2
  addresses:
  - 10.0.100.0/28
  autoAssign: false

OpenShift Container Platform 4.10 Networking

478



Whether the service is assigned a single IPv4 address, a single IPv6 address, or both is determined by
how you add the service. The spec.ipFamilies and spec.ipFamilyPolicy fields control how IP
addresses are assigned to the service.

26.3.3.4. Example: Simple address pool with BGP mode

For BGP mode, you must set the protocol field set to bgp. Other address pool custom resource fields,
such as autoAssign, also apply to BGP mode.

In the following example, the peer BGP routers receive one 203.0.113.200/32 route and one 
fc00:f853:ccd:e799::1/128 route for each load-balancer IP address that MetalLB assigns to a service.
Because the localPref and communities fields are not specified, the routes are advertised with 
localPref set to zero and no BGP communities.

26.3.3.5. Example: BGP mode with custom advertisement

You can specify sophisticated custom advertisements.

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
  name: doc-example-combined
  namespace: metallb-system
spec:
  protocol: layer2
  addresses:
  - 10.0.100.0/28
  - 2002:2:2::1-2002:2:2::100

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
  name: doc-example-bgp
  namespace: metallb-system
spec:
  protocol: bgp
  addresses:
    - 203.0.113.200/30
    - fc00:f853:ccd:e799::/124

apiVersion: metallb.io/v1beta1
kind: AddressPool
metadata:
  name: doc-example-bgp-adv
  namespace: metallb-system
spec:
  protocol: bgp
  addresses:
    - 203.0.113.200/30
    - fc00:f853:ccd:e799::/124
  bgpAdvertisements:
  - communities:
    - 65535:65282
    aggregationLength: 32

CHAPTER 26. LOAD BALANCING WITH METALLB

479



In the preceding example, MetalLB assigns IP addresses to load-balancer services in the ranges
between 203.0.113.200 and 203.0.113.203 and between fc00:f853:ccd:e799::0 and 
fc00:f853:ccd:e799::f.

To explain the two BGP advertisements, consider an instance when MetalLB assigns the IP address of 
203.0.113.200 to a service. With that IP address as an example, the speaker advertises two routes to
BGP peers:

203.0.113.200/32, with localPref set to 100 and the community set to the numeric value of the
well-known NO_ADVERTISE community. This specification indicates to the peer routers that
they can use this route but they should not propagate information about this route to BGP
peers.

203.0.113.200/30, aggregates the load-balancer IP addresses assigned by MetalLB into a single
route. MetalLB advertises the aggregated route to BGP peers with the community attribute set
to 8000:800. BGP peers propagate the 203.0.113.200/30 route to other BGP peers. When
traffic is routed to a node with a speaker, the 203.0.113.200/32 route is used to forward the
traffic into the cluster and to a pod that is associated with the service.

As you add more services and MetalLB assigns more load-balancer IP addresses from the pool, peer
routers receive one local route, 203.0.113.20x/32, for each service, as well as the 203.0.113.200/30
aggregate route. Each service that you add generates the /30 route, but MetalLB deduplicates the
routes to one BGP advertisement before communicating with peer routers.

26.3.4. Next steps

For BGP mode, see Configuring MetalLB BGP peers.

Configuring services to use MetalLB .

26.4. CONFIGURING METALLB BGP PEERS

As a cluster administrator, you can add, modify, and delete Border Gateway Protocol (BGP) peers. The
MetalLB Operator uses the BGP peer custom resources to identify which peers that MetalLB speaker
pods contact to start BGP sessions. The peers receive the route advertisements for the load-balancer
IP addresses that MetalLB assigns to services.

26.4.1. About the BGP peer custom resource

The fields for the BGP peer custom resource are described in the following table.

Table 26.3. MetalLB BGP peer custom resource

Field Type Description

metadata.name string Specifies the name for the BGP peer custom resource.

    localPref: 100
  - communities:
    - 8000:800
    aggregationLength: 30
    aggregationLengthV6: 124

OpenShift Container Platform 4.10 Networking

480

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#metallb-configure-bgp-peers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#metallb-configure-services


metadata.name
space

string Specifies the namespace for the BGP peer custom resource.

spec.myASN integer Specifies the Autonomous System number for the local end of
the BGP session. Specify the same value in all BGP peer custom
resources that you add. The range is 0 to 65535.

spec.peerASN integer Specifies the Autonomous System number for the remote end
of the BGP session. The range is 0 to 65535.

spec.peerAddre
ss

string Specifies the IP address of the peer to contact for establishing
the BGP session.

spec.sourceAd
dress

string Optional: Specifies the IP address to use when establishing the
BGP session. The value must be an IPv4 address.

spec.peerPort integer Optional: Specifies the network port of the peer to contact for
establishing the BGP session. The range is 0 to 16384.

spec.holdTime string Optional: Specifies the duration for the hold time to propose to
the BGP peer. The minimum value is 3 seconds (3s). The
common units are seconds and minutes, such as 3s, 1m, and 
5m30s. To detect path failures more quickly, also configure
BFD.

spec.keepaliveT
ime

string Optional: Specifies the maximum interval between sending
keep-alive messages to the BGP peer. If you specify this field,
you must also specify a value for the holdTime field. The
specified value must be less than the value for the holdTime
field.

spec.routerID string Optional: Specifies the router ID to advertise to the BGP peer. If
you specify this field, you must specify the same value in every
BGP peer custom resource that you add.

spec.password string Optional: Specifies the MD5 password to send to the peer for
routers that enforce TCP MD5 authenticated BGP sessions.

spec.bfdProfile string Optional: Specifies the name of a BFD profile.

spec.nodeSelec
tors

object[] Optional: Specifies a selector, using match expressions and
match labels, to control which nodes can connect to the BGP
peer.

Field Type Description

CHAPTER 26. LOAD BALANCING WITH METALLB

481



spec.ebgpMulti
Hop

boolean Optional: Specifies that the BGP peer is multiple network hops
away. If the BGP peer is not directly connected to the same
network, the speaker cannot establish a BGP session unless this
field is set to true. This field applies to external BGP. External
BGP is the term that is used to describe when a BGP peer
belongs to a different Autonomous System.

Field Type Description

26.4.2. Configuring a BGP peer

As a cluster administrator, you can add a BGP peer custom resource to exchange routing information
with network routers and advertise the IP addresses for services.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Configure a MetalLB address pool that specifies bgp for the spec.protocol field.

Procedure

1. Create a file, such as bgppeer.yaml, with content like the following example:

2. Apply the configuration for the BGP peer:

Additional resources

Example: Simple address pool with BGP mode

Configure a MetalLB address pool that specifies bgp for the spec.protocol field.

26.4.3. Example BGP peer configurations

26.4.3.1. Example: Limit which nodes connect to a BGP peer

You can specify the node selectors field to control which nodes can connect to a BGP peer.

apiVersion: metallb.io/v1beta1
kind: BGPPeer
metadata:
  namespace: metallb-system
  name: doc-example-peer
spec:
  peerAddress: 10.0.0.1
  peerASN: 64501
  myASN: 64500
  routerID: 10.10.10.10

$ oc apply -f bgppeer.yaml

OpenShift Container Platform 4.10 Networking

482

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#example-simple-address-pool-with-bgp-mode


26.4.3.2. Example: Specify a BFD profile for a BGP peer

You can specify a BFD profile to associate with BGP peers. BFD compliments BGP by providing more
rapid detection of communication failures between peers than BGP alone.

NOTE

Deleting the bidirectional forwarding detection (BFD) profile and removing the 
bfdProfile added to the border gateway protocol (BGP) peer resource does not disable
the BFD. Instead, the BGP peer starts using the default BFD profile. To disable BFD from
a BGP peer resource, delete the BGP peer configuration and recreate it without a BFD
profile. For more information, see BZ#2050824.

26.4.3.3. Example: Specify BGP peers for dual-stack networking

To support dual-stack networking, add one BGP peer custom resource for IPv4 and one BGP peer
custom resource for IPv6.

apiVersion: metallb.io/v1beta1
kind: BGPPeer
metadata:
  name: doc-example-nodesel
  namespace: metallb-system
spec:
  peerAddress: 10.0.20.1
  peerASN: 64501
  myASN: 64500
  nodeSelectors:
  - matchExpressions:
    - key: kubernetes.io/hostname
      operator: In
      values: [compute-1.example.com, compute-2.example.com]

apiVersion: metallb.io/v1beta1
kind: BGPPeer
metadata:
  name: doc-example-peer-bfd
  namespace: metallb-system
spec:
  peerAddress: 10.0.20.1
  peerASN: 64501
  myASN: 64500
  holdTime: "10s"
  bfdProfile: doc-example-bfd-profile-full

apiVersion: metallb.io/v1beta1
kind: BGPPeer
metadata:
  name: doc-example-dual-stack-ipv4
  namespace: metallb-system
spec:
  peerAddress: 10.0.20.1
  peerASN: 64500
  myASN: 64500

CHAPTER 26. LOAD BALANCING WITH METALLB

483

https://bugzilla.redhat.com/show_bug.cgi?id=2050824


Additional resources

Configuring services to use MetalLB

26.5. CONFIGURING METALLB BFD PROFILES

As a cluster administrator, you can add, modify, and delete Bidirectional Forwarding Detection (BFD)
profiles. The MetalLB Operator uses the BFD profile custom resources to identify which BGP sessions
use BFD to provide faster path failure detection than BGP alone provides.

26.5.1. About the BFD profile custom resource

The fields for the BFD profile custom resource are described in the following table.

Table 26.4. BFD profile custom resource

Field Type Description

metadata.name string Specifies the name for the BFD profile custom resource.

metadata.name
space

string Specifies the namespace for the BFD profile custom resource.

spec.detectMult
iplier

integer Specifies the detection multiplier to determine packet loss. The
remote transmission interval is multiplied by this value to
determine the connection loss detection timer.

For example, when the local system has the detect multiplier set
to 3 and the remote system has the transmission interval set to 
300, the local system detects failures only after 900 ms without
receiving packets.

The range is 2 to 255. The default value is 3.

---
apiVersion: metallb.io/v1beta1
kind: BGPPeer
metadata:
  name: doc-example-dual-stack-ipv6
  namespace: metallb-system
spec:
  peerAddress: 2620:52:0:88::104
  peerASN: 64500
  myASN: 64500

OpenShift Container Platform 4.10 Networking

484

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#metallb-configure-services


spec.echoMode boolean Specifies the echo transmission mode. If you are not using
distributed BFD, echo transmission mode works only when the
peer is also FRR. The default value is false and echo
transmission mode is disabled.

When echo transmission mode is enabled, consider increasing
the transmission interval of control packets to reduce bandwidth
usage. For example, consider increasing the transmit interval to 
2000 ms.

spec.echoInterv
al

integer Specifies the minimum transmission interval, less jitter, that this
system uses to send and receive echo packets. The range is 10
to 60000. The default value is 50 ms.

spec.minimumT
tl

integer Specifies the minimum expected TTL for an incoming control
packet. This field applies to multi-hop sessions only.

The purpose of setting a minimum TTL is to make the packet
validation requirements more stringent and avoid receiving
control packets from other sessions.

The default value is 254 and indicates that the system expects
only one hop between this system and the peer.

spec.passiveMo
de

boolean Specifies whether a session is marked as active or passive. A
passive session does not attempt to start the connection.
Instead, a passive session waits for control packets from a peer
before it begins to reply.

Marking a session as passive is useful when you have a router
that acts as the central node of a star network and you want to
avoid sending control packets that you do not need the system
to send.

The default value is false and marks the session as active.

spec.receiveInte
rval

integer Specifies the minimum interval that this system is capable of
receiving control packets. The range is 10 to 60000. The default
value is 300 ms.

spec.transmitInt
erval

integer Specifies the minimum transmission interval, less jitter, that this
system uses to send control packets. The range is 10 to 60000.
The default value is 300 ms.

Field Type Description

26.5.2. Configuring a BFD profile

As a cluster administrator, you can add a BFD profile and configure a BGP peer to use the profile. BFD
provides faster path failure detection than BGP alone.

Prerequisites

CHAPTER 26. LOAD BALANCING WITH METALLB

485



Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a file, such as bfdprofile.yaml, with content like the following example:

2. Apply the configuration for the BFD profile:

26.5.3. Next steps

Configure a BGP peer  to use the BFD profile.

26.6. CONFIGURING SERVICES TO USE METALLB

As a cluster administrator, when you add a service of type LoadBalancer, you can control how MetalLB
assigns an IP address.

26.6.1. Request a specific IP address

Like some other load-balancer implementations, MetalLB accepts the spec.loadBalancerIP field in the
service specification.

If the requested IP address is within a range from any address pool, MetalLB assigns the requested IP
address. If the requested IP address is not within any range, MetalLB reports a warning.

Example service YAML for a specific IP address

apiVersion: metallb.io/v1beta1
kind: BFDProfile
metadata:
  name: doc-example-bfd-profile-full
  namespace: metallb-system
spec:
  receiveInterval: 300
  transmitInterval: 300
  detectMultiplier: 3
  echoMode: false
  passiveMode: true
  minimumTtl: 254

$ oc apply -f bfdprofile.yaml

apiVersion: v1
kind: Service
metadata:
  name: <service_name>
  annotations:
    metallb.universe.tf/address-pool: <address_pool_name>
spec:
  selector:
    <label_key>: <label_value>
  ports:

OpenShift Container Platform 4.10 Networking

486

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#metallb-configure-bgp-peers


If MetalLB cannot assign the requested IP address, the EXTERNAL-IP for the service reports 
<pending> and running oc describe service <service_name> includes an event like the following
example.

Example event when MetalLB cannot assign a requested IP address

26.6.2. Request an IP address from a specific pool

To assign an IP address from a specific range, but you are not concerned with the specific IP address,
then you can use the metallb.universe.tf/address-pool annotation to request an IP address from the
specified address pool.

Example service YAML for an IP address from a specific pool

If the address pool that you specify for <address_pool_name> does not exist, MetalLB attempts to
assign an IP address from any pool that permits automatic assignment.

26.6.3. Accept any IP address

By default, address pools are configured to permit automatic assignment. MetalLB assigns an IP address
from these address pools.

To accept any IP address from any pool that is configured for automatic assignment, no special
annotation or configuration is required.

Example service YAML for accepting any IP address

    - port: 8080
      targetPort: 8080
      protocol: TCP
  type: LoadBalancer
  loadBalancerIP: <ip_address>

  ...
Events:
  Type     Reason            Age    From                Message
  ----     ------            ----   ----                -------
  Warning  AllocationFailed  3m16s  metallb-controller  Failed to allocate IP for "default/invalid-
request": "4.3.2.1" is not allowed in config

apiVersion: v1
kind: Service
metadata:
  name: <service_name>
  annotations:
    metallb.universe.tf/address-pool: <address_pool_name>
spec:
  selector:
    <label_key>: <label_value>
  ports:
    - port: 8080
      targetPort: 8080
      protocol: TCP
  type: LoadBalancer

CHAPTER 26. LOAD BALANCING WITH METALLB

487



26.6.4. Share a specific IP address

By default, services do not share IP addresses. However, if you need to colocate services on a single IP
address, you can enable selective IP sharing by adding the metallb.universe.tf/allow-shared-ip
annotation to the services.

apiVersion: v1
kind: Service
metadata:
  name: <service_name>
spec:
  selector:
    <label_key>: <label_value>
  ports:
    - port: 8080
      targetPort: 8080
      protocol: TCP
  type: LoadBalancer

apiVersion: v1
kind: Service
metadata:
  name: service-http
  annotations:
    metallb.universe.tf/address-pool: doc-example
    metallb.universe.tf/allow-shared-ip: "web-server-svc"  1
spec:
  ports:
    - name: http
      port: 80  2
      protocol: TCP
      targetPort: 8080
  selector:
    <label_key>: <label_value>  3
  type: LoadBalancer
  loadBalancerIP: 172.31.249.7  4
---
apiVersion: v1
kind: Service
metadata:
  name: service-https
  annotations:
    metallb.universe.tf/address-pool: doc-example
    metallb.universe.tf/allow-shared-ip: "web-server-svc"  5
spec:
  ports:
    - name: https
      port: 443  6
      protocol: TCP
      targetPort: 8080
  selector:
    <label_key>: <label_value>  7
  type: LoadBalancer
  loadBalancerIP: 172.31.249.7  8

OpenShift Container Platform 4.10 Networking

488



1 5

2 6

3 7

4 8

Specify the same value for the metallb.universe.tf/allow-shared-ip annotation. This value is
referred to as the sharing key .

Specify different port numbers for the services.

Specify identical pod selectors if you must specify externalTrafficPolicy: local so the services
send traffic to the same set of pods. If you use the cluster external traffic policy, then the pod
selectors do not need to be identical.

Optional: If you specify the three preceding items, MetalLB might colocate the services on the
same IP address. To ensure that services share an IP address, specify the IP address to share.

By default, Kubernetes does not allow multiprotocol load balancer services. This limitation would
normally make it impossible to run a service like DNS that needs to listen on both TCP and UDP. To
work around this limitation of Kubernetes with MetalLB, create two services:

For one service, specify TCP and for the second service, specify UDP.

In both services, specify the same pod selector.

Specify the same sharing key and spec.loadBalancerIP value to colocate the TCP and UDP
services on the same IP address.

26.6.5. Configuring a service with MetalLB

You can configure a load-balancing service to use an external IP address from an address pool.

Prerequisites

Install the OpenShift CLI (oc).

Install the MetalLB Operator and start MetalLB.

Configure at least one address pool.

Configure your network to route traffic from the clients to the host network for the cluster.

Procedure

1. Create a <service_name>.yaml file. In the file, ensure that the spec.type field is set to 
LoadBalancer.
Refer to the examples for information about how to request the external IP address that
MetalLB assigns to the service.

2. Create the service:

Example output

Verification

$ oc apply -f <service_name>.yaml

service/<service_name> created

CHAPTER 26. LOAD BALANCING WITH METALLB

489



Describe the service:

Example output

Name:                     <service_name>
Namespace:                default
Labels:                   <none>
Annotations:              metallb.universe.tf/address-pool: doc-example  <.>
Selector:                 app=service_name
Type:                     LoadBalancer  <.>
IP Family Policy:         SingleStack
IP Families:              IPv4
IP:                       10.105.237.254
IPs:                      10.105.237.254
LoadBalancer Ingress:     192.168.100.5  <.>
Port:                     <unset>  80/TCP
TargetPort:               8080/TCP
NodePort:                 <unset>  30550/TCP
Endpoints:                10.244.0.50:8080
Session Affinity:         None
External Traffic Policy:  Cluster
Events:  <.>
  Type    Reason        Age                From             Message
  ----    ------        ----               ----             -------
  Normal  nodeAssigned  32m (x2 over 32m)  metallb-speaker  announcing from node "
<node_name>"

<.> The annotation is present if you request an IP address from a specific pool. <.> The service
type must indicate LoadBalancer. <.> The load-balancer ingress field indicates the external IP
address if the service is assigned correctly. <.> The events field indicates the node name that is
assigned to announce the external IP address. If you experience an error, the events field
indicates the reason for the error.

26.7. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT

If you need to troubleshoot MetalLB configuration, see the following sections for commonly used
commands.

26.7.1. Setting the MetalLB logging levels

MetalLB uses FRRouting (FRR) in a container with the default setting of info generates a lot of logging.
You can control the verbosity of the logs generated by setting the logLevel as illustrated in this
example.

Gain a deeper insight into MetalLB by setting the logLevel to debug as follows:

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

$ oc describe service <service_name>

OpenShift Container Platform 4.10 Networking

490



Procedure

1. Create a file, such as setdebugloglevel.yaml, with content like the following example:

2. Apply the configuration:

NOTE

Use oc replace as the understanding is the metallb CR is already created and
here you are changing the log level.

3. Display the names of the speaker pods:

Example output

NOTE

Speaker and controller pods are recreated to ensure the updated logging level is
applied. The logging level is modified for all the components of MetalLB.

4. View the speaker logs:

Example output

{"branch":"main","caller":"main.go:92","commit":"3d052535","goversion":"gc / go1.17.1 / 
amd64","level":"info","msg":"MetalLB speaker starting (commit 3d052535, branch 
main)","ts":"2022-05-17T09:55:05Z","version":""}
{"caller":"announcer.go:110","event":"createARPResponder","interface":"ens4","level":"info","m
sg":"created ARP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:119","event":"createNDPResponder","interface":"ens4","level":"info","m
sg":"created NDP responder for interface","ts":"2022-05-17T09:55:05Z"}

apiVersion: metallb.io/v1beta1
kind: MetalLB
metadata:
  name: metallb
  namespace: metallb-system
spec:
  logLevel: debug
  nodeSelector:
    node-role.kubernetes.io/worker: ""

$ oc replace -f setdebugloglevel.yaml

$ oc get -n metallb-system pods -l component=speaker

NAME                    READY   STATUS    RESTARTS   AGE
speaker-2m9pm           4/4     Running   0          9m19s
speaker-7m4qw           3/4     Running   0          19s
speaker-szlmx           4/4     Running   0          9m19s

$ oc logs -n metallb-system speaker-7m4qw -c speaker

CHAPTER 26. LOAD BALANCING WITH METALLB

491



{"caller":"announcer.go:110","event":"createARPResponder","interface":"tun0","level":"info","ms
g":"created ARP responder for interface","ts":"2022-05-17T09:55:05Z"}
{"caller":"announcer.go:119","event":"createNDPResponder","interface":"tun0","level":"info","m
sg":"created NDP responder for interface","ts":"2022-05-17T09:55:05Z"}
I0517 09:55:06.515686      95 request.go:665] Waited for 1.026500832s due to client-side 
throttling, not priority and fairness, request: 
GET:https://172.30.0.1:443/apis/operators.coreos.com/v1alpha1?timeout=32s
{"Starting Manager":"(MISSING)","caller":"k8s.go:389","level":"info","ts":"2022-05-
17T09:55:08Z"}
{"caller":"speakerlist.go:310","level":"info","msg":"node event - forcing sync","node 
addr":"10.0.128.4","node event":"NodeJoin","node name":"ci-ln-qb8t3mb-72292-7s7rh-
worker-a-vvznj","ts":"2022-05-17T09:55:08Z"}
{"caller":"service_controller.go:113","controller":"ServiceReconciler","enqueueing":"openshift-
kube-controller-manager-operator/metrics","epslice":"{\"metadata\":{\"name\":\"metrics-
xtsxr\",\"generateName\":\"metrics-\",\"namespace\":\"openshift-kube-controller-manager-
operator\",\"uid\":\"ac6766d7-8504-492c-9d1e-
4ae8897990ad\",\"resourceVersion\":\"9041\",\"generation\":4,\"creationTimestamp\":\"2022-
05-17T07:16:53Z\",\"labels\":{\"app\":\"kube-controller-manager-
operator\",\"endpointslice.kubernetes.io/managed-by\":\"endpointslice-
controller.k8s.io\",\"kubernetes.io/service-name\":\"metrics\"},\"annotations\":
{\"endpoints.kubernetes.io/last-change-trigger-time\":\"2022-05-
17T07:21:34Z\"},\"ownerReferences\":
[{\"apiVersion\":\"v1\",\"kind\":\"Service\",\"name\":\"metrics\",\"uid\":\"0518eed3-6152-42be-
b566-0bd00a60faf8\",\"controller\":true,\"blockOwnerDeletion\":true}],\"managedFields\":
[{\"manager\":\"kube-controller-
manager\",\"operation\":\"Update\",\"apiVersion\":\"discovery.k8s.io/v1\",\"time\":\"2022-05-
17T07:20:02Z\",\"fieldsType\":\"FieldsV1\",\"fieldsV1\":{\"f:addressType\":{},\"f:endpoints\":
{},\"f:metadata\":{\"f:annotations\":{\".\":{},\"f:endpoints.kubernetes.io/last-change-trigger-
time\":{}},\"f:generateName\":{},\"f:labels\":{\".\":{},\"f:app\":
{},\"f:endpointslice.kubernetes.io/managed-by\":{},\"f:kubernetes.io/service-name\":
{}},\"f:ownerReferences\":{\".\":{},\"k:{\\\"uid\\\":\\\"0518eed3-6152-42be-b566-
0bd00a60faf8\\\"}\":{}}},\"f:ports\":{}}}]},\"addressType\":\"IPv4\",\"endpoints\":[{\"addresses\":
[\"10.129.0.7\"],\"conditions\":{\"ready\":true,\"serving\":true,\"terminating\":false},\"targetRef\":
{\"kind\":\"Pod\",\"namespace\":\"openshift-kube-controller-manager-
operator\",\"name\":\"kube-controller-manager-operator-6b98b89ddd-
8d4nf\",\"uid\":\"dd5139b8-e41c-4946-a31b-
1a629314e844\",\"resourceVersion\":\"9038\"},\"nodeName\":\"ci-ln-qb8t3mb-72292-7s7rh-
master-0\",\"zone\":\"us-central1-a\"}],\"ports\":
[{\"name\":\"https\",\"protocol\":\"TCP\",\"port\":8443}]}","level":"debug","ts":"2022-05-
17T09:55:08Z"}

5. View the FRR logs:

Example output

Started watchfrr
2022/05/17 09:55:05 ZEBRA: client 16 says hello and bids fair to announce only bgp routes 
vrf=0
2022/05/17 09:55:05 ZEBRA: client 31 says hello and bids fair to announce only vnc routes 
vrf=0
2022/05/17 09:55:05 ZEBRA: client 38 says hello and bids fair to announce only static routes 
vrf=0
2022/05/17 09:55:05 ZEBRA: client 43 says hello and bids fair to announce only bfd routes 

$ oc logs -n metallb-system speaker-7m4qw -c frr

OpenShift Container Platform 4.10 Networking

492



vrf=0
2022/05/17 09:57:25.089 BGP: Creating Default VRF, AS 64500
2022/05/17 09:57:25.090 BGP: dup addr detect enable max_moves 5 time 180 freeze 
disable freeze_time 0
2022/05/17 09:57:25.090 BGP: bgp_get: Registering BGP instance (null) to zebra
2022/05/17 09:57:25.090 BGP: Registering VRF 0
2022/05/17 09:57:25.091 BGP: Rx Router Id update VRF 0 Id 10.131.0.1/32
2022/05/17 09:57:25.091 BGP: RID change : vrf VRF default(0), RTR ID 10.131.0.1
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF br0
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF ens4
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF ens4 addr 10.0.128.4/32
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF ens4 addr 
fe80::c9d:84da:4d86:5618/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF lo
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF ovs-system
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF tun0
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF tun0 addr 10.131.0.1/23
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF tun0 addr 
fe80::40f1:d1ff:feb6:5322/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth2da49fed
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth2da49fed addr 
fe80::24bd:d1ff:fec1:d88/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth2fa08c8c
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth2fa08c8c addr 
fe80::6870:ff:fe96:efc8/64
2022/05/17 09:57:25.091 BGP: Rx Intf add VRF 0 IF veth41e356b7
2022/05/17 09:57:25.091 BGP: Rx Intf address add VRF 0 IF veth41e356b7 addr 
fe80::48ff:37ff:fede:eb4b/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth1295c6e2
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth1295c6e2 addr 
fe80::b827:a2ff:feed:637/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth9733c6dc
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth9733c6dc addr 
fe80::3cf4:15ff:fe11:e541/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF veth336680ea
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF veth336680ea addr 
fe80::94b1:8bff:fe7e:488c/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vetha0a907b7
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vetha0a907b7 addr 
fe80::3855:a6ff:fe73:46c3/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vethf35a4398
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vethf35a4398 addr 
fe80::40ef:2fff:fe57:4c4d/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vethf831b7f4
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vethf831b7f4 addr 
fe80::f0d9:89ff:fe7c:1d32/64
2022/05/17 09:57:25.092 BGP: Rx Intf add VRF 0 IF vxlan_sys_4789
2022/05/17 09:57:25.092 BGP: Rx Intf address add VRF 0 IF vxlan_sys_4789 addr 
fe80::80c1:82ff:fe4b:f078/64
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] Timer (start timer expire).
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] BGP_Start (Idle->Connect), fd -1
2022/05/17 09:57:26.094 BGP: Allocated bnc 10.0.0.1/32(0)(VRF default) peer 
0x7f807f7631a0
2022/05/17 09:57:26.094 BGP: sendmsg_zebra_rnh: sending cmd 
ZEBRA_NEXTHOP_REGISTER for 10.0.0.1/32 (vrf VRF default)
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] Waiting for NHT

CHAPTER 26. LOAD BALANCING WITH METALLB

493



2022/05/17 09:57:26.094 BGP: bgp_fsm_change_status : vrf default(0), Status: Connect 
established_peers 0
2022/05/17 09:57:26.094 BGP: 10.0.0.1 went from Idle to Connect
2022/05/17 09:57:26.094 BGP: 10.0.0.1 [FSM] TCP_connection_open_failed (Connect-
>Active), fd -1
2022/05/17 09:57:26.094 BGP: bgp_fsm_change_status : vrf default(0), Status: Active 
established_peers 0
2022/05/17 09:57:26.094 BGP: 10.0.0.1 went from Connect to Active
2022/05/17 09:57:26.094 ZEBRA: rnh_register msg from client bgp: hdr->length=8, 
type=nexthop vrf=0
2022/05/17 09:57:26.094 ZEBRA: 0: Add RNH 10.0.0.1/32 type Nexthop
2022/05/17 09:57:26.094 ZEBRA: 0:10.0.0.1/32: Evaluate RNH, type Nexthop (force)
2022/05/17 09:57:26.094 ZEBRA: 0:10.0.0.1/32: NH has become unresolved
2022/05/17 09:57:26.094 ZEBRA: 0: Client bgp registers for RNH 10.0.0.1/32 type Nexthop
2022/05/17 09:57:26.094 BGP: VRF default(0): Rcvd NH update 10.0.0.1/32(0) - metric 0/0 
#nhops 0/0 flags 0x6
2022/05/17 09:57:26.094 BGP: NH update for 10.0.0.1/32(0)(VRF default) - flags 0x6 
chgflags 0x0 - evaluate paths
2022/05/17 09:57:26.094 BGP: evaluate_paths: Updating peer (10.0.0.1(VRF default)) status 
with NHT
2022/05/17 09:57:30.081 ZEBRA: Event driven route-map update triggered
2022/05/17 09:57:30.081 ZEBRA: Event handler for route-map: 10.0.0.1-out
2022/05/17 09:57:30.081 ZEBRA: Event handler for route-map: 10.0.0.1-in
2022/05/17 09:57:31.104 ZEBRA: netlink_parse_info: netlink-listen (NS 0) type 
RTM_NEWNEIGH(28), len=76, seq=0, pid=0
2022/05/17 09:57:31.104 ZEBRA:  Neighbor Entry received is not on a VLAN or a BRIDGE, 
ignoring
2022/05/17 09:57:31.105 ZEBRA: netlink_parse_info: netlink-listen (NS 0) type 
RTM_NEWNEIGH(28), len=76, seq=0, pid=0
2022/05/17 09:57:31.105 ZEBRA:  Neighbor Entry received is not on a VLAN or a BRIDGE, 
ignoring

26.7.1.1. FRRouting (FRR) log levels

The following table describes the FRR logging levels.

Table 26.5. Log levels

Log level Description

all Supplies all logging information for all logging levels.

debug Information that is diagnostically helpful to people. Set to debug to give
detailed troubleshooting information.

info Provides information that always should be logged but under normal
circumstances does not require user intervention. This is the default logging
level.

warn Anything that can potentially cause inconsistent MetalLB behaviour.
Usually MetalLB automatically recovers from this type of error.

OpenShift Container Platform 4.10 Networking

494



error Any error that is fatal to the functioning of MetalLB. These errors usually
require administrator intervention to fix.

none Turn off all logging.

Log level Description

26.7.2. Troubleshooting BGP issues

The BGP implementation that Red Hat supports uses FRRouting (FRR) in a container in the speaker
pods. As a cluster administrator, if you need to troubleshoot BGP configuration issues, you need to run
commands in the FRR container.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Display the names of the speaker pods:

Example output

2. Display the running configuration for FRR:

Example output

Building configuration...

Current configuration:
!
frr version 7.5.1_git
frr defaults traditional
hostname some-hostname
log file /etc/frr/frr.log informational
log timestamp precision 3
service integrated-vtysh-config
!
router bgp 64500  1
 bgp router-id 10.0.1.2

$ oc get -n metallb-system pods -l app.kubernetes.io/component=speaker

NAME            READY   STATUS    RESTARTS   AGE
speaker-66bth   4/4     Running   0          56m
speaker-gvfnf   4/4     Running   0          56m
...

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show running-config"

CHAPTER 26. LOAD BALANCING WITH METALLB

495



 no bgp ebgp-requires-policy
 no bgp default ipv4-unicast
 no bgp network import-check
 neighbor 10.0.2.3 remote-as 64500  2
 neighbor 10.0.2.3 bfd profile doc-example-bfd-profile-full  3
 neighbor 10.0.2.3 timers 5 15
 neighbor 10.0.2.4 remote-as 64500  4
 neighbor 10.0.2.4 bfd profile doc-example-bfd-profile-full  5
 neighbor 10.0.2.4 timers 5 15
 !
 address-family ipv4 unicast
  network 203.0.113.200/30   6
  neighbor 10.0.2.3 activate
  neighbor 10.0.2.3 route-map 10.0.2.3-in in
  neighbor 10.0.2.4 activate
  neighbor 10.0.2.4 route-map 10.0.2.4-in in
 exit-address-family
 !
 address-family ipv6 unicast
  network fc00:f853:ccd:e799::/124  7
  neighbor 10.0.2.3 activate
  neighbor 10.0.2.3 route-map 10.0.2.3-in in
  neighbor 10.0.2.4 activate
  neighbor 10.0.2.4 route-map 10.0.2.4-in in
 exit-address-family
!
route-map 10.0.2.3-in deny 20
!
route-map 10.0.2.4-in deny 20
!
ip nht resolve-via-default
!
ipv6 nht resolve-via-default
!
line vty
!
bfd
 profile doc-example-bfd-profile-full  8
  transmit-interval 35
  receive-interval 35
  passive-mode
  echo-mode
  echo-interval 35
  minimum-ttl 10
 !
!
end

<.> The router bgp section indicates the ASN for MetalLB. <.> Confirm that a neighbor <ip-
address> remote-as <peer-ASN> line exists for each BGP peer custom resource that you
added. <.> If you configured BFD, confirm that the BFD profile is associated with the correct
BGP peer and that the BFD profile appears in the command output. <.> Confirm that the 
network <ip-address-range> lines match the IP address ranges that you specified in address
pool custom resources that you added.

OpenShift Container Platform 4.10 Networking

496



1 1 3

2 4 2 4

3. Display the BGP summary:

Example output

IPv4 Unicast Summary:
BGP router identifier 10.0.1.2, local AS number 64500 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 29 KiB of memory

Neighbor        V         AS   MsgRcvd   MsgSent   TblVer  InQ OutQ  Up/Down State/PfxRcd   
PfxSnt
10.0.2.3        4      64500       387       389        0    0    0 00:32:02            0        1  1
10.0.2.4        4      64500         0         0        0    0    0    never       Active        0  2

Total number of neighbors 2

IPv6 Unicast Summary:
BGP router identifier 10.0.1.2, local AS number 64500 vrf-id 0
BGP table version 1
RIB entries 1, using 192 bytes of memory
Peers 2, using 29 KiB of memory

Neighbor        V         AS   MsgRcvd   MsgSent   TblVer  InQ OutQ  Up/Down State/PfxRcd   
PfxSnt
10.0.2.3        4      64500       387       389        0    0    0 00:32:02 NoNeg  3
10.0.2.4        4      64500         0         0        0    0    0    never       Active        0  4

Total number of neighbors 2

Confirm that the output includes a line for each BGP peer custom resource that you
added.

Output that shows 0 messages received and messages sent indicates a BGP peer
that does not have a BGP session. Check network connectivity and the BGP

configuration of the BGP peer.

4. Display the BGP peers that received an address pool:

Replace ipv4 with ipv6 to display the BGP peers that received an IPv6 address pool. Replace 
203.0.113.200/30 with an IPv4 or IPv6 IP address range from an address pool.

Example output

BGP routing table entry for 203.0.113.200/30
Paths: (1 available, best #1, table default)
  Advertised to non peer-group peers:
  10.0.2.3  <.>

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bgp summary"

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bgp ipv4 unicast 
203.0.113.200/30"

CHAPTER 26. LOAD BALANCING WITH METALLB

497



  Local
    0.0.0.0 from 0.0.0.0 (10.0.1.2)
      Origin IGP, metric 0, weight 32768, valid, sourced, local, best (First path received)
      Last update: Mon Jan 10 19:49:07 2022

<.> Confirm that the output includes an IP address for a BGP peer.

26.7.3. Troubleshooting BFD issues

The Bidirectional Forwarding Detection (BFD) implementation that Red Hat supports uses FRRouting
(FRR) in a container in the speaker pods. The BFD implementation relies on BFD peers also being
configured as BGP peers with an established BGP session. As a cluster administrator, if you need to
troubleshoot BFD configuration issues, you need to run commands in the FRR container.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have installed the OpenShift CLI (oc).

Procedure

1. Display the names of the speaker pods:

Example output

2. Display the BFD peers:

Example output

Session count: 2
SessionId  LocalAddress              PeerAddress              Status
=========  ============              ===========              ======
3909139637 10.0.1.2                  10.0.2.3                 up  <.>

<.> Confirm that the PeerAddress column includes each BFD peer. If the output does not list a
BFD peer IP address that you expected the output to include, troubleshoot BGP connectivity
with the peer. If the status field indicates down, check for connectivity on the links and
equipment between the node and the peer. You can determine the node name for the speaker
pod with a command like oc get pods -n metallb-system speaker-66bth -o 
jsonpath='{.spec.nodeName}'.

26.7.4. MetalLB metrics for BGP and BFD

$ oc get -n metallb-system pods -l app.kubernetes.io/component=speaker

NAME            READY   STATUS    RESTARTS   AGE
speaker-66bth   4/4     Running   0          26m
speaker-gvfnf   4/4     Running   0          26m
...

$ oc exec -n metallb-system speaker-66bth -c frr -- vtysh -c "show bfd peers brief"

OpenShift Container Platform 4.10 Networking

498



OpenShift Container Platform captures the following metrics that are related to MetalLB and BGP
peers and BFD profiles:

metallb_bfd_control_packet_input counts the number of BFD control packets received from
each BFD peer.

metallb_bfd_control_packet_output counts the number of BFD control packets sent to each
BFD peer.

metallb_bfd_echo_packet_input counts the number of BFD echo packets received from each
BFD peer.

metallb_bfd_echo_packet_output counts the number of BFD echo packets sent to each BFD
peer.

metallb_bfd_session_down_events counts the number of times the BFD session with a peer
entered the down state.

metallb_bfd_session_up indicates the connection state with a BFD peer. 1 indicates the
session is up and 0 indicates the session is down.

metallb_bfd_session_up_events counts the number of times the BFD session with a peer
entered the up state.

metallb_bfd_zebra_notifications counts the number of BFD Zebra notifications for each BFD
peer.

metallb_bgp_announced_prefixes_total counts the number of load balancer IP address
prefixes that are advertised to BGP peers. The terms prefix and aggregated route have the
same meaning.

metallb_bgp_session_up indicates the connection state with a BGP peer. 1 indicates the
session is up and 0 indicates the session is down.

metallb_bgp_updates_total counts the number of BGP update messages that were sent to a
BGP peer.

Additional resources

See Querying metrics for information about using the monitoring dashboard.

26.7.5. About collecting MetalLB data

You can use the oc adm must-gather CLI command to collect information about your cluster, your
MetalLB configuration, and the MetalLB Operator. The following features and objects are associated
with MetalLB and the MetalLB Operator:

The namespace and child objects that the MetalLB Operator is deployed in

All MetalLB Operator custom resource definitions (CRDs)

The oc adm must-gather CLI command collects the following information from FRRouting (FRR) that
Red Hat uses to implement BGP and BFD:

/etc/frr/frr.conf

/etc/frr/frr.log

CHAPTER 26. LOAD BALANCING WITH METALLB

499

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/monitoring/#querying-metrics_managing-metrics


/etc/frr/daemons configuration file

/etc/frr/vtysh.conf

The log and configuration files in the preceding list are collected from the frr container in each speaker
pod.

In addition to the log and configuration files, the oc adm must-gather CLI command collects the
output from the following vtysh commands:

show running-config

show bgp ipv4

show bgp ipv6

show bgp neighbor

show bfd peer

No additional configuration is required when you run the oc adm must-gather CLI command.

Additional resources

Gathering data about your cluster

OpenShift Container Platform 4.10 Networking

500

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/support/#gathering-cluster-data


CHAPTER 27. ASSOCIATING SECONDARY INTERFACES
METRICS TO NETWORK ATTACHMENTS

27.1. EXTENDING SECONDARY NETWORK METRICS FOR
MONITORING

Secondary devices, or interfaces, are used for different purposes. It is important to have a way to classify
them to be able to aggregate the metrics for secondary devices with the same classification.

Exposed metrics contain the interface but do not specify where the interface originates. This is workable
when there are no additional interfaces. However, if secondary interfaces are added, it can be difficult to
use the metrics since it is hard to identify interfaces using only interface names.

When adding secondary interfaces, their names depend on the order in which they are added, and
different secondary interfaces might belong to different networks and can be used for different
purposes.

With pod_network_name_info it is possible to extend the current metrics with additional information
that identifies the interface type. In this way, it is possible to aggregate the metrics and to add specific
alarms to specific interface types.

The network type is generated using the name of the related NetworkAttachmentDefinition, that in
turn is used to differentiate different classes of secondary networks. For example, different interfaces
belonging to different networks or using different CNIs use different network attachment definition
names.

27.1.1. Network Metrics Daemon

The Network Metrics Daemon is a daemon component that collects and publishes network related
metrics.

The kubelet is already publishing network related metrics you can observe. These metrics are:

container_network_receive_bytes_total

container_network_receive_errors_total

container_network_receive_packets_total

container_network_receive_packets_dropped_total

container_network_transmit_bytes_total

container_network_transmit_errors_total

container_network_transmit_packets_total

container_network_transmit_packets_dropped_total

The labels in these metrics contain, among others:

Pod name

Pod namespace

CHAPTER 27. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS

501



Interface name (such as eth0)

These metrics work well until new interfaces are added to the pod, for example via Multus, as it is not
clear what the interface names refer to.

The interface label refers to the interface name, but it is not clear what that interface is meant for. In
case of many different interfaces, it would be impossible to understand what network the metrics you are
monitoring refer to.

This is addressed by introducing the new pod_network_name_info described in the following section.

27.1.2. Metrics with network name

This daemonset publishes a pod_network_name_info gauge metric, with a fixed value of 0:

The network name label is produced using the annotation added by Multus. It is the concatenation of the
namespace the network attachment definition belongs to, plus the name of the network attachment
definition.

The new metric alone does not provide much value, but combined with the network related 
container_network_* metrics, it offers better support for monitoring secondary networks.

Using a promql query like the following ones, it is possible to get a new metric containing the value and
the network name retrieved from the k8s.v1.cni.cncf.io/networks-status annotation:

pod_network_name_info{interface="net0",namespace="namespacename",network_name="nadname
space/firstNAD",pod="podname"} 0

(container_network_receive_bytes_total) + on(namespace,pod,interface) group_left(network_name) ( 
pod_network_name_info )
(container_network_receive_errors_total) + on(namespace,pod,interface) group_left(network_name) ( 
pod_network_name_info )
(container_network_receive_packets_total) + on(namespace,pod,interface) 
group_left(network_name) ( pod_network_name_info )
(container_network_receive_packets_dropped_total) + on(namespace,pod,interface) 
group_left(network_name) ( pod_network_name_info )
(container_network_transmit_bytes_total) + on(namespace,pod,interface) group_left(network_name) 
( pod_network_name_info )
(container_network_transmit_errors_total) + on(namespace,pod,interface) group_left(network_name) 
( pod_network_name_info )
(container_network_transmit_packets_total) + on(namespace,pod,interface) 
group_left(network_name) ( pod_network_name_info )
(container_network_transmit_packets_dropped_total) + on(namespace,pod,interface) 
group_left(network_name)

OpenShift Container Platform 4.10 Networking

502

https://github.com/intel/multus-cni


CHAPTER 28. NETWORK OBSERVABILITY

28.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES

The Network Observability Operator enables administrators to observe and analyze network traffic flows
for OpenShift Container Platform clusters.

These release notes track the development of the Network Observability Operator in the OpenShift
Container Platform.

For an overview of the Network Observability Operator, see About Network Observability Operator.

28.1.1. Network Observability Operator 1.3.0

The following advisory is available for the Network Observability Operator 1.3.0:

RHSA-2023:3905 Network Observability Operator 1.3.0

28.1.1.1. Channel deprecation

You must switch your channel from v1.0.x to stable to receive future Operator updates. The v1.0.x
channel is deprecated and planned for removal in the next release.

28.1.1.2. New features and enhancements

28.1.1.2.1. Multi-tenancy in Network Observability

System administrators can allow and restrict individual user access, or group access, to the
flows stored in Loki. For more information, see Multi-tenancy in Network Observability .

28.1.1.2.2. Flow-based metrics dashboard

This release adds a new dashboard, which provides an overview of the network flows in your
OpenShift Container Platform cluster. For more information, see Network Observability metrics.

28.1.1.2.3. Troubleshooting with the must-gather tool

Information about the Network Observability Operator can now be included in the must-gather
data for troubleshooting. For more information, see Network Observability must-gather.

28.1.1.2.4. Multiple architectures now supported

Network Observability Operator can now run on an amd64, ppc64le, or arm64 architecture.
Previously, it only ran on amd64.

28.1.1.3. Deprecated features

28.1.1.3.1. Deprecated configuration parameter setting

The release of Network Observability Operator 1.3 deprecates the spec.Loki.authToken HOST setting.
When using the Loki Operator, you must now only use the FORWARD setting.

CHAPTER 28. NETWORK OBSERVABILITY

503

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#dependency-network-observability
https://access.redhat.com/errata/RHSA-2023:3905
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-multi-tenancynetwork_observability
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-dashboards
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-must-gather_network-observability-troubleshooting


28.1.1.4. Bug fixes

Previously, when the Operator was installed from the CLI, the Role and RoleBinding that are
necessary for the Cluster Monitoring Operator to read the metrics were not installed as
expected. The issue did not occur when the operator was installed from the web console. Now,
either way of installing the Operator installs the required Role and RoleBinding.
(NETOBSERV-1003)

Since version 1.2, the Network Observability Operator can raise alerts when a problem occurs
with the flows collection. Previously, due to a bug, the related configuration to disable alerts, 
spec.processor.metrics.disableAlerts was not working as expected and sometimes
ineffectual. Now, this configuration is fixed so that it is possible to disable the alerts.
(NETOBSERV-976)

Previously, when Network Observability was configured with spec.loki.authToken set to 
DISABLED, only a kubeadmin cluster administrator was able to view network flows. Other
types of cluster administrators received authorization failure. Now, any cluster administrator is
able to view network flows. (NETOBSERV-972)

Previously, a bug prevented users from setting spec.consolePlugin.portNaming.enable to 
false. Now, this setting can be set to false to disable port-to-service name translation.
(NETOBSERV-971)

Previously, the metrics exposed by the console plugin were not collected by the Cluster
Monitoring Operator (Prometheus), due to an incorrect configuration. Now the configuration
has been fixed so that the console plugin metrics are correctly collected and accessible from
the OpenShift Container Platform web console. (NETOBSERV-765)

Previously, when processor.metrics.tls was set to AUTO in the FlowCollector, the flowlogs-
pipeline servicemonitor did not adapt the appropriate TLS scheme, and metrics were not
visible in the web console. Now the issue is fixed for AUTO mode. (NETOBSERV-1070)

Previously, certificate configuration, such as used for Kafka and Loki, did not allow specifying a
namespace field, implying that the certificates had to be in the same namespace where Network
Observability is deployed. Moreover, when using Kafka with TLS/mTLS, the user had to
manually copy the certificate(s) to the privileged namespace where the eBPF agent pods are
deployed and manually manage certificate updates, such as in the case of certificate rotation.
Now, Network Observability setup is simplified by adding a namespace field for certificates in
the FlowCollector resource. As a result, users can now install Loki or Kafka in different
namespaces without needing to manually copy their certificates in the Network Observability
namespace. The original certificates are watched so that the copies are automatically updated
when needed. (NETOBSERV-773)

Previously, the SCTP, ICMPv4 and ICMPv6 protocols were not covered by the Network
Observability agents, resulting in a less comprehensive network flows coverage. These protocols
are now recognized to improve the flows coverage. (NETOBSERV-934)

28.1.1.5. Known issue

When processor.metrics.tls is set to PROVIDED in the FlowCollector, the flowlogs-pipeline 
servicemonitor is not adapted to the TLS scheme. ( NETOBSERV-1087)

28.1.2. Network Observability Operator 1.2.0

The following advisory is available for the Network Observability Operator 1.2.0:

OpenShift Container Platform 4.10 Networking

504

https://issues.redhat.com/browse/NETOBSERV-1003
https://issues.redhat.com/browse/NETOBSERV-976
https://issues.redhat.com/browse/NETOBSERV-972
https://issues.redhat.com/browse/NETOBSERV-971
https://issues.redhat.com/browse/NETOBSERV-765
https://issues.redhat.com/browse/NETOBSERV-1070
https://issues.redhat.com/browse/NETOBSERV-773
https://issues.redhat.com/browse/NETOBSERV-934
https://issues.redhat.com/browse/NETOBSERV-1087


RHSA-2023:1817 Network Observability Operator 1.2.0

28.1.2.1. Preparing for the next update

The subscription of an installed Operator specifies an update channel that tracks and receives updates
for the Operator. Until the 1.2 release of the Network Observability Operator, the only channel available
was v1.0.x. The 1.2 release of the Network Observability Operator introduces the stable update channel
for tracking and receiving updates. You must switch your channel from v1.0.x to stable to receive future
Operator updates. The v1.0.x channel is deprecated and planned for removal in a following release.

28.1.2.2. New features and enhancements

28.1.2.2.1. Histogram in Traffic Flows view

You can now choose to show a histogram bar chart of flows over time. The histogram enables
you to visualize the history of flows without hitting the Loki query limit. For more information,
see Using the histogram.

28.1.2.2.2. Conversation tracking

You can now query flows by Log Type, which enables grouping network flows that are part of
the same conversation. For more information, see Working with conversations.

28.1.2.2.3. Network Observability health alerts

The Network Observability Operator now creates automatic alerts if the flowlogs-pipeline is
dropping flows because of errors at the write stage or if the Loki ingestion rate limit has been
reached. For more information, see Viewing health information.

28.1.2.3. Bug fixes

Previously, after changing the namespace value in the FlowCollector spec, eBPF Agent pods
running in the previous namespace were not appropriately deleted. Now, the pods running in the
previous namespace are appropriately deleted. (NETOBSERV-774)

Previously, after changing the caCert.name value in the FlowCollector spec (such as in Loki
section), FlowLogs-Pipeline pods and Console plug-in pods were not restarted, therefore they
were unaware of the configuration change. Now, the pods are restarted, so they get the
configuration change. (NETOBSERV-772)

Previously, network flows between pods running on different nodes were sometimes not
correctly identified as being duplicates because they are captured by different network
interfaces. This resulted in over-estimated metrics displayed in the console plug-in. Now, flows
are correctly identified as duplicates, and the console plug-in displays accurate metrics.
(NETOBSERV-755)

The "reporter" option in the console plug-in is used to filter flows based on the observation
point of either source node or destination node. Previously, this option mixed the flows
regardless of the node observation point. This was due to network flows being incorrectly
reported as Ingress or Egress at the node level. Now, the network flow direction reporting is
correct. The "reporter" option filters for source observation point, or destination observation
point, as expected. (NETOBSERV-696)

Previously, for agents configured to send flows directly to the processor as gRPC+protobuf
requests, the submitted payload could be too large and is rejected by the processors' GRPC

CHAPTER 28. NETWORK OBSERVABILITY

505

https://access.redhat.com/errata/RHSA-2023:1817
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-histogram-trafficflow_nw-observe-network-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-working-with-conversations_nw-observe-network-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-alert-dashboard_network_observability
https://issues.redhat.com/browse/NETOBSERV-774
https://issues.redhat.com/browse/NETOBSERV-772
https://issues.redhat.com/browse/NETOBSERV-755
https://issues.redhat.com/browse/NETOBSERV-696


server. This occurred under very-high-load scenarios and with only some configurations of the
agent. The agent logged an error message, such as: grpc: received message larger than max . As
a consequence, there was information loss about those flows. Now, the gRPC payload is split
into several messages when the size exceeds a threshold. As a result, the server maintains
connectivity. (NETOBSERV-617)

28.1.2.4. Known issue

In the 1.2.0 release of the Network Observability Operator, using Loki Operator 5.6, a Loki
certificate transition periodically affects the flowlogs-pipeline pods and results in dropped
flows rather than flows written to Loki. The problem self-corrects after some time, but it still
causes temporary flow data loss during the Loki certificate transition. (NETOBSERV-980)

28.1.2.5. Notable technical changes

Previously, you could install the Network Observability Operator using a custom namespace.
This release introduces the conversion webhook which changes the ClusterServiceVersion.
Because of this change, all the available namespaces are no longer listed. Additionally, to enable
Operator metrics collection, namespaces that are shared with other Operators, like the 
openshift-operators namespace, cannot be used. Now, the Operator must be installed in the 
openshift-netobserv-operator namespace. You cannot automatically upgrade to the new
Operator version if you previously installed the Network Observability Operator using a custom
namespace. If you previously installed the Operator using a custom namespace, you must delete
the instance of the Operator that was installed and re-install your operator in the openshift-
netobserv-operator namespace. It is important to note that custom namespaces, such as the
commonly used netobserv namespace, are still possible for the FlowCollector, Loki, Kafka, and
other plug-ins. (NETOBSERV-907)(NETOBSERV-956)

28.1.3. Network Observability Operator 1.1.0

The following advisory is available for the Network Observability Operator 1.1.0:

RHSA-2023:0786 Network Observability Operator Security Advisory Update

The Network Observability Operator is now stable and the release channel is upgraded to v1.1.0.

28.1.3.1. Bug fix

Previously, unless the Loki authToken configuration was set to FORWARD mode,
authentication was no longer enforced, allowing any user who could connect to the OpenShift
Container Platform console in an OpenShift Container Platform cluster to retrieve flows
without authentication. Now, regardless of the Loki authToken mode, only cluster
administrators can retrieve flows. (BZ#2169468)

28.2. ABOUT NETWORK OBSERVABILITY

Red Hat offers cluster administrators the Network Observability Operator to observe the network traffic
for OpenShift Container Platform clusters. The Network Observability Operator uses the eBPF
technology to create network flows. The network flows are then enriched with OpenShift Container
Platform information and stored in Loki. You can view and analyze the stored network flows information
in the OpenShift Container Platform console for further insight and troubleshooting.

28.2.1. Dependency of Network Observability Operator

OpenShift Container Platform 4.10 Networking

506

https://issues.redhat.com/browse/NETOBSERV-617
https://issues.redhat.com/browse/NETOBSERV-980
https://issues.redhat.com/browse/NETOBSERV-907
https://https//issues.redhat.com/browse/NETOBSERV-956
https://access.redhat.com/errata/RHSA-2023:0786
https://bugzilla.redhat.com/show_bug.cgi?id=2169468


The Network Observability Operator requires the following Operators:

Loki: You must install Loki. Loki is the backend that is used to store all collected flows. It is
recommended to install Loki by installing the Red Hat Loki Operator for the installation of
Network Observability Operator.

28.2.2. Optional dependencies of the Network Observability Operator

Grafana: You can install Grafana for using custom dashboards and querying capabilities, by
using the Grafana Operator. Red Hat does not support Grafana Operator.

Kafka: It provides scalability, resiliency and high availability in the OpenShift Container Platform
cluster. It is recommended to install Kafka using the AMQ Streams operator for large scale
deployments.

28.2.3. Network Observability Operator

The Network Observability Operator provides the Flow Collector API custom resource definition. A Flow
Collector instance is created during installation and enables configuration of network flow collection.
The Flow Collector instance deploys pods and services that form a monitoring pipeline where network
flows are then collected and enriched with the Kubernetes metadata before storing in Loki. The eBPF
agent, which is deployed as a daemonset object, creates the network flows.

28.2.4. OpenShift Container Platform console integration

OpenShift Container Platform console integration offers overview, topology view and traffic flow tables.

28.2.4.1. Network Observability metrics

The OpenShift Container Platform console offers the Overview tab which displays the overall
aggregated metrics of the network traffic flow on the cluster. The information can be displayed by node,
namespace, owner, pod, and service. Filters and display options can further refine the metrics.

In Observe → Dashboards, the Netobserv dashboard provides a quick overview of the network flows in
your OpenShift Container Platform cluster. You can view distillations of the network traffic metrics in
the following categories:

Top flow rates per source and destination namespaces (1-min rates)

Top byte rates emitted per source and destination nodes (1-min rates)

Top byte rates received per source and destination nodes (1-min rates)

Top byte rates emitted per source and destination workloads (1-min rates)

Top byte rates received per source and destination workloads (1-min rates)

Top packet rates emitted per source and destination workloads (1-min rates)

Top packet rates received per source and destination workloads (1-min rates)

You can configure the FlowCollector spec.processor.metrics to add or remove metrics by changing
the ignoreTags list. For more information about available tags, see the Flow Collector API Reference

Also in Observe → Dashboards, the Netobserv/Health dashboard provides metrics about the health of
the Operator.

CHAPTER 28. NETWORK OBSERVABILITY

507

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-flowcollector-api-specifications_network_observability


28.2.4.2. Network Observability topology views

The OpenShift Container Platform console offers the Topology tab which displays a graphical
representation of the network flows and the amount of traffic. The topology view represents traffic
between the OpenShift Container Platform components as a network graph. You can refine the graph
by using the filters and display options. You can access the information for node, namespace, owner,
pod, and service.

28.2.4.3. Traffic flow tables

The traffic flow table view provides a view for raw flows, non aggregated filtering options, and
configurable columns. The OpenShift Container Platform console offers the Traffic flows tab which
displays the data of the network flows and the amount of traffic.

28.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR

Installing Loki is a prerequisite for using the Network Observability Operator. It is recommended to install
Loki using the Loki Operator; therefore, these steps are documented below prior to the Network
Observability Operator installation.

The Loki Operator integrates a gateway that implements multi-tenancy & authentication with Loki for
data flow storage. The LokiStack resource manages Loki, which is a scalable, highly-available, multi-
tenant log aggregation system, and a web proxy with OpenShift Container Platform authentication. The
LokiStack proxy uses OpenShift Container Platform authentication to enforce multi-tenancy and
facilitate the saving and indexing of data in Loki log stores.

NOTE

The Loki Operator can also be used for Logging with the LokiStack . The Network
Observability Operator requires a dedicated LokiStack separate from Logging.

28.3.1. Installing the Loki Operator

It is recommended to install Loki Operator version 5.7, This version provides the ability to create a
LokiStack instance using the openshift-network tenant configuration mode. It also provides fully
automatic, in-cluster authentication and authorization support for Network Observability.

Prerequisites

Supported Log Store (AWS S3, Google Cloud Storage, Azure, Swift, Minio, OpenShift Data
Foundation)

OpenShift Container Platform 4.10+.

Linux Kernel 4.18+.

There are several ways you can install Loki. One way you can install the Loki Operator is by using the
OpenShift Container Platform web console Operator Hub.

Procedure

1. Install the Loki Operator Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

OpenShift Container Platform 4.10 Networking

508

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/logging/#cluster-logging-loki
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39


b. Choose Loki Operator from the list of available Operators, and click Install.

c. Under Installation Mode, select All namespaces on the cluster.

d. Verify that you installed the Loki Operator. Visit the Operators → Installed Operators page
and look for Loki Operator.

e. Verify that Loki Operator is listed with Status as Succeeded in all the projects.

2. Create a Secret YAML file. You can create this secret in the web console or CLI.

a. Using the web console, navigate to the Project → All Projects dropdown and select Create
Project. Name the project netobserv and click Create.

b. Navigate to the Import icon ,+, in the top right corner. Drop your YAML file into the editor. It
is important to create this YAML file in the netobserv namespace that uses the 
access_key_id and access_key_secret to specify your credentials.

c. Once you create the secret, you should see it listed under Workloads → Secrets in the web
console.
The following shows an example secret YAML file:

apiVersion: v1
kind: Secret
metadata:
  name: loki-s3
  namespace: netobserv
stringData:
  access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
  access_key_secret: 
d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
  bucketnames: s3-bucket-name
  endpoint: https://s3.eu-central-1.amazonaws.com
  region: eu-central-1

IMPORTANT

To uninstall Loki, refer to the uninstallation process that corresponds with the method
you used to install Loki. You might have remaining ClusterRoles and 
ClusterRoleBindings, data stored in object store, and persistent volume that must be
removed.

28.3.1.1. Create a LokiStack custom resource

It is recommended to deploy the LokiStack in the same namespace referenced by the FlowCollector
specification, spec.namespace. You can use the web console or CLI to create a namespace, or new
project.

Procedure

1. Navigate to Operators → Installed Operators, viewing All projects from the Project
dropdown.

2. Look for Loki Operator. In the details, under Provided APIs, select LokiStack.

CHAPTER 28. NETWORK OBSERVABILITY

509



1

3. Click Create LokiStack.

4. Ensure the following fields are specified in either Form View or YAML view:

Use a storage class name that is available on the cluster for ReadWriteOnce access mode.
You can use oc get storageclasses to see what is available on your cluster.

IMPORTANT

You must not reuse the same LokiStack that is used for cluster logging.

5. Click Create.

28.3.1.1.1. Deployment Sizing

Sizing for Loki follows the format of N<x>.<size> where the value <N> is the number of instances and 
<size> specifies performance capabilities.

NOTE

1x.extra-small is for demo purposes only, and is not supported.

Table 28.1. Loki Sizing

 1x.extra-small 1x.small 1x.medium

Data transfer Demo use only. 500GB/day 2TB/day

Queries per second
(QPS)

Demo use only. 25-50 QPS at 200ms 25-75 QPS at 200ms

Replication factor None 2 3

  apiVersion: loki.grafana.com/v1
  kind: LokiStack
  metadata:
    name: loki
    namespace: netobserv
  spec:
    size: 1x.small
    storage:
      schemas:
      - version: v12
        effectiveDate: '2022-06-01'
      secret:
        name: loki-s3
        type: s3
    storageClassName: gp3  1
    tenants:
      mode: openshift-network

OpenShift Container Platform 4.10 Networking

510



Total CPU requests 5 vCPUs 36 vCPUs 54 vCPUs

Total Memory requests 7.5Gi 63Gi 139Gi

Total Disk requests 150Gi 300Gi 450Gi

 1x.extra-small 1x.small 1x.medium

28.3.1.2. LokiStack ingestion limits and health alerts

The LokiStack instance comes with default settings according to the configured size. It is possible to
override some of these settings, such as the ingestion and query limits. You might want to update them
if you get Loki errors showing up in the Console plugin, or in flowlogs-pipeline logs. An automatic alert
in the web console notifies you when these limits are reached.

Here is an example of configured limits:

For more information about these settings, see the LokiStack API reference.

28.3.2. Configure authorization and multi-tenancy

Define ClusterRole and ClusterRoleBinding. The netobserv-reader ClusterRole enables multi-
tenancy and allows individual user access, or group access, to the flows stored in Loki. You can create a
YAML file to define these roles.

Procedure

1. Using the web console, click the Import icon, +.

2. Drop your YAML file into the editor and click Create:

Example ClusterRole reader yaml

spec:
  limits:
    global:
      ingestion:
        ingestionBurstSize: 40
        ingestionRate: 20
        maxGlobalStreamsPerTenant: 25000
      queries:
        maxChunksPerQuery: 2000000
        maxEntriesLimitPerQuery: 10000
        maxQuerySeries: 3000

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: netobserv-reader    1
rules:
- apiGroups:
  - 'loki.grafana.com'

CHAPTER 28. NETWORK OBSERVABILITY

511

https://loki-operator.dev/docs/api.md/#loki-grafana-com-v1-IngestionLimitSpec


1

1

This role can be used for multi-tenancy.

Example ClusterRole writer yaml

Example ClusterRoleBinding yaml

The flowlogs-pipeline writes to Loki. If you are using Kafka, this value is flowlogs-pipeline-
transformer.

28.3.3. Enable multi-tenancy in Network Observability

Multi-tenancy in the Network Observability Operator allows and restricts individual user access, or
group access, to the flows stored in Loki. Access is enabled for project admins. Project admins who have
limited access to some namespaces can access flows for only those namespaces.

  resources:
  - network
  resourceNames:
  - logs
  verbs:
  - 'get'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: netobserv-writer
rules:
- apiGroups:
  - 'loki.grafana.com'
  resources:
  - network
  resourceNames:
  - logs
  verbs:
  - 'create'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: netobserv-writer-flp
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: netobserv-writer
subjects:
- kind: ServiceAccount
  name: flowlogs-pipeline    1
  namespace: netobserv
- kind: ServiceAccount
  name: flowlogs-pipeline-transformer
  namespace: netobserv

OpenShift Container Platform 4.10 Networking

512



Prerequisite

You have installed Loki Operator version 5.7

The FlowCollector spec.loki.authToken configuration must be set to FORWARD.

You must be logged in as a project administrator

Procedure

1. Authorize reading permission to user1 by running the following command:

Now, the data is restricted to only allowed user namespaces. For example, a user that has
access to a single namespace can see all the flows internal to this namespace, as well as flows
going from and to this namespace. Project admins have access to the Administrator perspective
in the OpenShift Container Platform console to access the Network Flows Traffic page.

28.3.4. Installing Kafka (optional)

The Kafka Operator is supported for large scale environments. You can install the Kafka Operator as Red
Hat AMQ Streams from the Operator Hub, just as the Loki Operator and Network Observability
Operator were installed.

NOTE

To uninstall Kafka, refer to the uninstallation process that corresponds with the method
you used to install.

28.3.5. Installing the Network Observability Operator

You can install the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub. When you install the Operator, it provides the FlowCollector custom resource
definition (CRD). You can set specifications in the web console when you create the FlowCollector.

Prerequisites

Installed Loki. It is recommended to install Loki using the Loki Operator version 5.7.

One of the following supported architectures is required: amd64, ppc64le, arm64, or s390x.

Any CPU supported by Red Hat Enterprise Linux (RHEL) 9

NOTE

This documentation assumes that your LokiStack instance name is loki. Using a different
name requires additional configuration.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose Network Observability Operator from the list of available Operators in the

$ oc adm policy add-cluster-role-to-user netobserv-reader user1

CHAPTER 28. NETWORK OBSERVABILITY

513

https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2
https://catalog.redhat.com/software/containers/openshift-logging/loki-rhel8-operator/622b46bcae289285d6fcda39


2. Choose Network Observability Operator from the list of available Operators in the
OperatorHub, and click Install.

3. Select the checkbox Enable Operator recommended cluster monitoring on this Namespace.

4. Navigate to Operators → Installed Operators. Under Provided APIs for Network Observability,
select the Flow Collector link.

a. Navigate to the Flow Collector tab, and click Create FlowCollector. Make the following
selections in the form view:

spec.agent.ebpf.Sampling : Specify a sampling size for flows. Lower sampling sizes will
have higher impact on resource utilization. For more information, see the 
FlowCollector API reference, under spec.agent.ebpf.

spec.deploymentModel: If you are using Kafka, verify Kafka is selected.

spec.exporters: If you are using Kafka, you can optionally send network flows to Kafka,
so that they can be consumed by any processor or storage that supports Kafka input,
such as Splunk, Elasticsearch, or Fluentd. To do this, set the following specifications:

Set the type to KAFKA.

Set the address as kafka-cluster-kafka-bootstrap.netobserv.

Set the topic as netobserv-flows-export. The Operator exports all flows to the
configured Kafka topic.

Set the following tls specifications:

certFile: service-ca.crt, name: kafka-gateway-ca-bundle, and type: 
configmap.
You can also configure this option at a later time by directly editing the YAML.
For more information, see Export enriched network flow data .

loki.url: Since authentication is specified separately, this URL needs to be updated to 
https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network. The first part of
the URL, "loki", should match the name of your LokiStack.

loki.statusUrl: Set this to https://loki-query-frontend-http.netobserv.svc:3100/. The
first part of the URL, "loki", should match the name of your LokiStack.

loki.authToken: Select the FORWARD value.

tls.enable: Verify that the box is checked so it is enabled.

statusTls: The enable value is false by default.
For the first part of the certificate reference names: loki-gateway-ca-bundle, loki-ca-
bundle, and loki-query-frontend-http,loki, should match the name of your LokiStack.

b. Click Create.

Verification

To confirm this was successful, when you navigate to Observe you should see Network Traffic listed in
the options.

In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters

OpenShift Container Platform 4.10 Networking

514

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network
https://loki-query-frontend-http.netobserv.svc:3100/


In the absence of Application Traffic within the OpenShift Container Platform cluster, default filters
might show that there are "No results", which results in no visual flow. Beside the filter selections, select
Clear all filters to see the flow.

IMPORTANT

If you installed Loki using the Loki Operator, it is advised not to use querierUrl, as it can
break the console access to Loki. If you installed Loki using another type of Loki
installation, this does not apply.

Additional resources

For more information about Flow Collector specifications, see the Flow Collector API Reference
and the Flow Collector sample resource.

For more information about exporting flow data to Kafka for third party processing
consumption, see Export enriched network flow data .

28.3.6. Uninstalling the Network Observability Operator

You can uninstall the Network Observability Operator using the OpenShift Container Platform web
console Operator Hub, working in the Operators → Installed Operators area.

Procedure

1. Remove the FlowCollector custom resource.

a. Click Flow Collector, which is next to the Network Observability Operator in the Provided
APIs column.

b. Click the options menu  for the cluster and select Delete FlowCollector.

2. Uninstall the Network Observability Operator.

a. Navigate back to the Operators → Installed Operators area.

b. Click the options menu  next to the Network Observability Operator and select
Uninstall Operator.

c. Home → Projects and select openshift-netobserv-operator

d. Navigate to Actions and select Delete Project

3. Remove the FlowCollector custom resource definition (CRD).

a. Navigate to Administration → CustomResourceDefinitions.

b. Look for FlowCollector and click the options menu  .

c. Select Delete CustomResourceDefinition.

IMPORTANT

CHAPTER 28. NETWORK OBSERVABILITY

515

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-flowcollector-api-specifications_network_observability
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-flowcollector-view_network_observability
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-enriched-flows-kafka_network_observability


IMPORTANT

The Loki Operator and Kafka remain if they were installed and must be
removed separately. Additionally, you might have remaining data stored in an
object store, and a persistent volume that must be removed.

28.4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

Network Observability is an OpenShift operator that deploys a monitoring pipeline to collect and enrich
network traffic flows that are produced by the Network Observability eBPF agent.

28.4.1. Viewing statuses

The Network Observability Operator provides the Flow Collector API. When a Flow Collector resource is
created, it deploys pods and services to create and store network flows in the Loki log store, as well as to
display dashboards, metrics, and flows in the OpenShift Container Platform web console.

Procedure

1. Run the following command to view the state of FlowCollector:

Example output

NAME      AGENT   SAMPLING (EBPF)   DEPLOYMENT MODEL   STATUS
cluster   EBPF    50                DIRECT             Ready

2. Check the status of pods running in the netobserv namespace by entering the following
command:

Example output

NAME                              READY   STATUS    RESTARTS   AGE
flowlogs-pipeline-56hbp           1/1     Running   0          147m
flowlogs-pipeline-9plvv           1/1     Running   0          147m
flowlogs-pipeline-h5gkb           1/1     Running   0          147m
flowlogs-pipeline-hh6kf           1/1     Running   0          147m
flowlogs-pipeline-w7vv5           1/1     Running   0          147m
netobserv-plugin-cdd7dc6c-j8ggp   1/1     Running   0          147m

flowlogs-pipeline pods collect flows, enriches the collected flows, then send flows to the Loki storage. 
netobserv-plugin pods create a visualization plugin for the OpenShift Container Platform Console.

1. Check the status of pods running in the namespace netobserv-privileged by entering the
following command:

$ oc get flowcollector/cluster

$ oc get pods -n netobserv

$ oc get pods -n netobserv-privileged

OpenShift Container Platform 4.10 Networking

516



Example output

NAME                         READY   STATUS    RESTARTS   AGE
netobserv-ebpf-agent-4lpp6   1/1     Running   0          151m
netobserv-ebpf-agent-6gbrk   1/1     Running   0          151m
netobserv-ebpf-agent-klpl9   1/1     Running   0          151m
netobserv-ebpf-agent-vrcnf   1/1     Running   0          151m
netobserv-ebpf-agent-xf5jh   1/1     Running   0          151m

netobserv-ebpf-agent pods monitor network interfaces of the nodes to get flows and send them to 
flowlogs-pipeline pods.

1. If you are using a Loki Operator, check the status of pods running in the openshift-operators-
redhat namespace by entering the following command:

Example output

NAME                                                READY   STATUS    RESTARTS   AGE
loki-operator-controller-manager-5f6cff4f9d-jq25h   2/2     Running   0          18h
lokistack-compactor-0                               1/1     Running   0          18h
lokistack-distributor-654f87c5bc-qhkhv              1/1     Running   0          18h
lokistack-distributor-654f87c5bc-skxgm              1/1     Running   0          18h
lokistack-gateway-796dc6ff7-c54gz                   2/2     Running   0          18h
lokistack-index-gateway-0                           1/1     Running   0          18h
lokistack-index-gateway-1                           1/1     Running   0          18h
lokistack-ingester-0                                1/1     Running   0          18h
lokistack-ingester-1                                1/1     Running   0          18h
lokistack-ingester-2                                1/1     Running   0          18h
lokistack-querier-66747dc666-6vh5x                  1/1     Running   0          18h
lokistack-querier-66747dc666-cjr45                  1/1     Running   0          18h
lokistack-querier-66747dc666-xh8rq                  1/1     Running   0          18h
lokistack-query-frontend-85c6db4fbd-b2xfb           1/1     Running   0          18h
lokistack-query-frontend-85c6db4fbd-jm94f           1/1     Running   0          18h

28.4.2. Viewing Network Observability Operator status and configuration

You can inspect the status and view the details of the FlowCollector using the oc describe command.

Procedure

1. Run the following command to view the status and configuration of the Network Observability
Operator:

28.5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR

You can update the Flow Collector API resource to configure the Network Observability Operator and
its managed components. The Flow Collector is explicitly created during installation. Since this resource
operates cluster-wide, only a single FlowCollector is allowed, and it has to be named cluster.

$ oc get pods -n openshift-operators-redhat

$ oc describe flowcollector/cluster

CHAPTER 28. NETWORK OBSERVABILITY

517



28.5.1. View the FlowCollector resource

You can view and edit YAML directly in the OpenShift Container Platform web console.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab. There, you can modify the FlowCollector resource to
configure the Network Observability operator.

The following example shows a sample FlowCollector resource for OpenShift Container Platform
Network Observability operator:

Sample FlowCollector resource

apiVersion: flows.netobserv.io/v1beta1
kind: FlowCollector
metadata:
  name: cluster
spec:
  namespace: netobserv
  deploymentModel: DIRECT
  agent:
    type: EBPF                                1
    ebpf:
      sampling: 50                            2
      logLevel: info
      privileged: false
      resources:
        requests:
          memory: 50Mi
          cpu: 100m
        limits:
          memory: 800Mi
  processor:
    logLevel: info
    resources:
      requests:
        memory: 100Mi
        cpu: 100m
      limits:
        memory: 800Mi
    conversationEndTimeout: 10s
    logTypes: FLOWS                            3
    conversationHeartbeatInterval: 30s
  loki:                                       4
    url: 'https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network'
    statusUrl: 'https://loki-query-frontend-http.netobserv.svc:3100/'
    authToken: FORWARD
    tls:
      enable: true
      caCert:

OpenShift Container Platform 4.10 Networking

518



1

2

3

4

5

The Agent specification, spec.agent.type, must be EBPF. eBPF is the only OpenShift Container
Platform supported option.

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Lower
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. The lower the value, the increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of
50, so 1 flow every 50 is sampled. Note that more sampled flows also means more storage needed.
It is recommend to start with default values and refine empirically, to determine which setting your
cluster can manage.

The optional specifications spec.processor.logTypes, 
spec.processor.conversationHeartbeatInterval, and spec.processor.conversationEndTimeout
can be set to enable conversation tracking. When enabled, conversation events are queryable in
the web console. The values for spec.processor.logTypes are as follows: FLOWS 
CONVERSATIONS, ENDED_CONVERSATIONS, or ALL. Storage requirements are highest for 
ALL and lowest for ENDED_CONVERSATIONS.

The Loki specification, spec.loki, specifies the Loki client. The default values match the Loki install
paths mentioned in the Installing the Loki Operator section. If you used another installation method
for Loki, specify the appropriate client information for your install.

The spec.quickFilters specification defines filters that show up in the web console. The 
Application filter keys,src_namespace and dst_namespace, are negated (!), so the Application
filter shows all traffic that does not originate from, or have a destination to, any openshift- or 
netobserv namespaces. For more information, see Configuring quick filters below.

        type: configmap
        name: loki-gateway-ca-bundle
        certFile: service-ca.crt
  consolePlugin:
    register: true
    logLevel: info
    portNaming:
      enable: true
      portNames:
        "3100": loki
    quickFilters:                             5
    - name: Applications
      filter:
        src_namespace!: 'openshift-,netobserv'
        dst_namespace!: 'openshift-,netobserv'
      default: true
    - name: Infrastructure
      filter:
        src_namespace: 'openshift-,netobserv'
        dst_namespace: 'openshift-,netobserv'
    - name: Pods network
      filter:
        src_kind: 'Pod'
        dst_kind: 'Pod'
      default: true
    - name: Services network
      filter:
        dst_kind: 'Service'

CHAPTER 28. NETWORK OBSERVABILITY

519



1

2

3

4

Additional resources

For more information about conversation tracking, see Working with conversations.

28.5.2. Configuring the Flow Collector resource with Kafka

You can configure the FlowCollector resource to use Kafka. A Kafka instance needs to be running, and
a Kafka topic dedicated to OpenShift Container Platform Network Observability must be created in that
instance. For more information, refer to your Kafka documentation, such as Kafka documentation with
AMQ Streams.

The following example shows how to modify the FlowCollector resource for OpenShift Container
Platform Network Observability operator to use Kafka:

Sample Kafka configuration in FlowCollector resource

Set spec.deploymentModel to KAFKA instead of DIRECT to enable the Kafka deployment
model.

spec.kafka.address refers to the Kafka bootstrap server address. You can specify a port if needed,
for instance kafka-cluster-kafka-bootstrap.netobserv:9093 for using TLS on port 9093.

spec.kafka.topic should match the name of a topic created in Kafka.

spec.kafka.tls can be used to encrypt all communications to and from Kafka with TLS or mTLS.
When enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default: netobserv)
and where the eBPF agents are deployed (default: netobserv-privileged). It must be referenced
with spec.kafka.tls.caCert. When using mTLS, client secrets must be available in these
namespaces as well (they can be generated for instance using the AMQ Streams User Operator)
and referenced with spec.kafka.tls.userCert.

28.5.3. Export enriched network flow data

You can send network flows to Kafka, so that they can be consumed by any processor or storage that
supports Kafka input, such as Splunk, Elasticsearch, or Fluentd.

Prerequisites

Installed Kafka

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

  deploymentModel: KAFKA                                    1
  kafka:
    address: "kafka-cluster-kafka-bootstrap.netobserv"      2
    topic: network-flows                                    3
    tls:
      enable: false                                         4

OpenShift Container Platform 4.10 Networking

520

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-working-with-conversations_nw-observe-network-traffic
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/using-the-topic-operator-str


1

2

3. Select cluster and then select the YAML tab.

4. Edit the FlowCollector to configure spec.exporters as follows:

The Network Observability Operator exports all flows to the configured Kafka topic.

You can encrypt all communications to and from Kafka with SSL/TLS or mTLS. When
enabled, the Kafka CA certificate must be available as a ConfigMap or a Secret, both in the
namespace where the flowlogs-pipeline processor component is deployed (default:
netobserv). It must be referenced with spec.exporters.tls.caCert. When using mTLS,
client secrets must be available in these namespaces as well (they can be generated for
instance using the AMQ Streams User Operator) and referenced with 
spec.exporters.tls.userCert.

5. After configuration, network flows data can be sent to an available output in a JSON format. For
more information, see Network flows format reference

Additional resources

For more information about specifying flow format, see Network flows format reference .

28.5.4. Updating the Flow Collector resource

As an alternative to editing YAML in the OpenShift Container Platform web console, you can configure
specifications, such as eBPF sampling, by patching the flowcollector custom resource (CR):

Procedure

1. Run the following command to patch the flowcollector CR and update the 
spec.agent.ebpf.sampling value:

28.5.5. Configuring quick filters

You can modify the filters in the FlowCollector resource. Exact matches are possible using double-
quotes around values. Otherwise, partial matches are used for textual values. The bang (!) character,
placed at the end of a key, means negation. See the sample FlowCollector resource for more context
about modifying the YAML.

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
  name: cluster
spec:
  exporters:
  - type: KAFKA
      kafka:
        address: "kafka-cluster-kafka-bootstrap.netobserv"
        topic: netobserv-flows-export   1
        tls:
          enable: false                 2

$ oc patch flowcollector cluster --type=json -p "[{"op": "replace", "path": 
"/spec/agent/ebpf/sampling", "value": <new value>}] -n netobserv"

CHAPTER 28. NETWORK OBSERVABILITY

521

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-flows-format_json_reference


NOTE

The filter matching types "all of" or "any of" is a UI setting that the users can modify from
the query options. It is not part of this resource configuration.

Here is a list of all available filter keys:

Table 28.2. Filter keys

Unive
rsal*

Sourc
e

Destin
ation

Description

names
pace

src_n
ames
pace

dst_n
ames
pace

Filter traffic related to a specific namespace.

name src_n
ame

dst_n
ame

Filter traffic related to a given leaf resource name, such as a specific pod,
service, or node (for host-network traffic).

kind src_k
ind

dst_k
ind

Filter traffic related to a given resource kind. The resource kinds include the leaf
resource (Pod, Service or Node), or the owner resource (Deployment and
StatefulSet).

owner
_name

src_o
wner
_nam
e

dst_o
wner
_nam
e

Filter traffic related to a given resource owner; that is, a workload or a set of
pods. For example, it can be a Deployment name, a StatefulSet name, etc.

resour
ce

src_r
esou
rce

dst_r
esou
rce

Filter traffic related to a specific resource that is denoted by its canonical
name, that identifies it uniquely. The canonical notation is 
kind.namespace.name for namespaced kinds, or node.name for nodes.
For example, Deployment.my-namespace.my-web-server.

addre
ss

src_a
ddre
ss

dst_a
ddre
ss

Filter traffic related to an IP address. IPv4 and IPv6 are supported. CIDR
ranges are also supported.

mac src_
mac

dst_
mac

Filter traffic related to a MAC address.

port src_p
ort

dst_p
ort

Filter traffic related to a specific port.

host_a
ddres
s

src_h
ost_a
ddre
ss

dst_h
ost_a
ddre
ss

Filter traffic related to the host IP address where the pods are running.

proto
col

N/A N/A Filter traffic related to a protocol, such as TCP or UDP.

OpenShift Container Platform 4.10 Networking

522



Universal keys filter for any of source or destination. For example, filtering name: 'my-pod'
means all traffic from my-pod and all traffic to my-pod, regardless of the matching type used,
whether Match all or Match any.

28.5.6. Resource management and performance considerations

The amount of resources required by Network Observability depends on the size of your cluster and
your requirements for the cluster to ingest and store observability data. To manage resources and set
performance criteria for your cluster, consider configuring the following settings. Configuring these
settings might meet your optimal setup and observability needs.

The following settings can help you manage resources and performance from the outset:

eBPF Sampling

You can set the Sampling specification, spec.agent.ebpf.sampling, to manage resources. Smaller
sampling values might consume a large amount of computational, memory and storage resources.
You can mitigate this by specifying a sampling ratio value. A value of 100 means 1 flow every 100 is
sampled. A value of 0 or 1 means all flows are captured. Smaller values result in an increase in
returned flows and the accuracy of derived metrics. By default, eBPF sampling is set to a value of 50,
so 1 flow every 50 is sampled. Note that more sampled flows also means more storage needed.
Consider starting with the default values and refine empirically, in order to determine which setting
your cluster can manage.

Restricting or excluding interfaces

Reduce the overall observed traffic by setting the values for spec.agent.ebpf.interfaces and 
spec.agent.ebpf.excludeInterfaces. By default, the agent fetches all the interfaces in the system,
except the ones listed in excludeInterfaces and lo (local interface). Note that the interface names
might vary according to the Container Network Interface (CNI) used.

The following settings can be used to fine-tune performance after the Network Observability has been
running for a while:

Resource requirements and limits

Adapt the resource requirements and limits to the load and memory usage you expect on your
cluster by using the spec.agent.ebpf.resources and spec.processor.resources specifications. The
default limits of 800MB might be sufficient for most medium-sized clusters.

Cache max flows timeout

Control how often flows are reported by the agents by using the eBPF agent’s 
spec.agent.ebpf.cacheMaxFlows and spec.agent.ebpf.cacheActiveTimeout specifications. A
larger value results in less traffic being generated by the agents, which correlates with a lower CPU
load. However, a larger value leads to a slightly higher memory consumption, and might generate
more latency in the flow collection.

28.5.6.1. Resource considerations

The following table outlines examples of resource considerations for clusters with certain workload
sizes.

IMPORTANT

The examples outlined in the table demonstrate scenarios that are tailored to specific
workloads. Consider each example only as a baseline from which adjustments can be
made to accommodate your workload needs.

CHAPTER 28. NETWORK OBSERVABILITY

523



Table 28.3. Resource recommendations

 Extra small (10
nodes)

Small (25 nodes) Medium (65
nodes) [2]

Large (120 nodes)
[2]

Worker Node
vCPU and
memory

4 vCPUs| 16GiB

mem [1]

16 vCPUs| 64GiB

mem [1]

16 vCPUs| 64GiB

mem [1]

16 vCPUs| 64GiB

Mem [1]

LokiStack size 1x.extra-small 1x.small 1x.small 1x.medium

Network
Observability
controller
memory limit

400Mi (default) 400Mi (default) 400Mi (default) 800Mi

eBPF sampling
rate

50 (default) 50 (default) 50 (default) 50 (default)

eBPF memory
limit

800Mi (default) 800Mi (default) 2000Mi 800Mi (default)

FLP memory limit 800Mi (default) 800Mi (default) 800Mi (default) 800Mi (default)

FLP Kafka
partitions

N/A 48 48 48

Kafka consumer
replicas

N/A 24 24 24

Kafka brokers N/A 3 (default) 3 (default) 3 (default)

1. Tested with AWS M6i instances.

2. In addition to this worker and its controller, 3 infra nodes (size M6i.12xlarge) and 1 workload
node (size M6i.8xlarge) were tested.

28.6. NETWORK POLICY

As a user with the admin role, you can create a network policy for the netobserv namespace.

28.6.1. Creating a network policy for Network Observability

You might need to create a network policy to secure ingress traffic to the netobserv namespace. In the
web console, you can create a network policy using the form view.

Procedure

1. Navigate to Networking → NetworkPolicies.

2. Select the netobserv project from the Project dropdown menu.

OpenShift Container Platform 4.10 Networking

524



3. Name the policy. For this example, the policy name is allow-ingress.

4. Click Add ingress rule three times to create three ingress rules.

5. Specify the following in the form:

a. Make the following specifications for the first Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from the same
namespace.

b. Make the following specifications for the second Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click + Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-console.

c. Make the following specifications for the third Ingress rule:

i. From the Add allowed source dropdown menu, select Allow pods from inside the
cluster.

ii. Click + Add namespace selector.

iii. Add the label, kubernetes.io/metadata.name, and the selector, openshift-monitoring.

Verification

1. Navigate to Observe → Network Traffic.

2. View the Traffic Flows tab, or any tab, to verify that the data is displayed.

3. Navigate to Observe → Dashboards. In the NetObserv/Health selection, verify that the flows
are being ingested and sent to Loki, which is represented in the first graph.

28.6.2. Example network policy

The following annotates an example NetworkPolicy object for the netobserv namespace:

Sample network policy

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-ingress
  namespace: netobserv
spec:
  podSelector: {}            1
  ingress:
    - from:
        - podSelector: {}    2
          namespaceSelector: 3
            matchLabels:

CHAPTER 28. NETWORK OBSERVABILITY

525



1

2

3

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object. In this documentation, it would be the
project in which the Network Observability Operator is installed, which is the netobserv project.

A selector that matches the pods from which the policy object allows ingress traffic. The default is
that the selector matches pods in the same namespace as the NetworkPolicy.

When the namespaceSelector is specified, the selector matches pods in the specified namespace.

Additional resources

Creating a network policy using the CLI

28.7. OBSERVING THE NETWORK TRAFFIC

As an administrator, you can observe the network traffic in the OpenShift Container Platform console
for detailed troubleshooting and analysis. This feature helps you get insights from different graphical
representations of traffic flow. There are several available views to observe the network traffic.

28.7.1. Observing the network traffic from the Overview view

The Overview view displays the overall aggregated metrics of the network traffic flow on the cluster. As
an administrator, you can monitor the statistics with the available display options.

28.7.1.1. Working with the Overview view

As an administrator, you can navigate to the Overview view to see the graphical representation of the
flow rate statistics.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Overview tab.

You can configure the scope of each flow rate data by clicking the menu icon.

28.7.1.2. Configuring advanced options for the Overview view

You can customize the graphical view by using advanced options. To access the advanced options, click
Show advanced options.You can configure the details in the graph by using the Display options drop-
down menu. The options available are:

Metric type: The metrics to be shown in Bytes or Packets. The default value is Bytes.

Scope: To select the detail of components between which the network traffic flows. You can set

              kubernetes.io/metadata.name: openshift-console
        - podSelector: {}
          namespaceSelector:
            matchLabels:
              kubernetes.io/metadata.name: openshift-monitoring
  policyTypes:
    - Ingress
status: {}

OpenShift Container Platform 4.10 Networking

526

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#nw-networkpolicy-object_creating-network-policy


Scope: To select the detail of components between which the network traffic flows. You can set
the scope to Node, Namespace, Owner, or Resource. Owner is an aggregation of resources.
Resource can be a pod, service, node, in case of host-network traffic, or an unknown IP address.
The default value is Namespace.

Truncate labels: Select the required width of the label from the drop-down list. The default
value is M.

28.7.1.2.1. Managing panels

You can select the required statistics to be displayed, and reorder them. To manage columns, click
Manage panels.

28.7.2. Observing the network traffic from the Traffic flows view

The Traffic flows view displays the data of the network flows and the amount of traffic in a table. As an
administrator, you can monitor the amount of traffic across the application by using the traffic flow
table.

28.7.2.1. Working with the Traffic flows view

As an administrator, you can navigate to Traffic flows table to see network flow information.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Traffic flows tab.

You can click on each row to get the corresponding flow information.

28.7.2.2. Configuring advanced options for the Traffic flows view

You can customize and export the view by using Show advanced options. You can set the row size by
using the Display options drop-down menu. The default value is Normal.

28.7.2.2.1. Managing columns

You can select the required columns to be displayed, and reorder them. To manage columns, click
Manage columns.

28.7.2.2.2. Exporting the traffic flow data

You can export data from the Traffic flows view.

Procedure

1. Click Export data.

2. In the pop-up window, you can select the Export all data checkbox to export all the data, and
clear the checkbox to select the required fields to be exported.

3. Click Export.

CHAPTER 28. NETWORK OBSERVABILITY

527



1

2

3

28.7.2.3. Working with conversation tracking

As an administrator, you can you can group network flows that are part of the same conversation. A
conversation is defined as a grouping of peers that are identified by their IP addresses, ports, and
protocols, resulting in an unique Conversation Id. You can query conversation events in the web
console. These events are represented in the web console as follows:

Conversation start: This event happens when a connection is starting or TCP flag intercepted

Conversation tick: This event happens at each specified interval defined in the FlowCollector 
spec.processor.conversationHeartbeatInterval parameter while the connection is active.

Conversation end: This event happens when the FlowCollector 
spec.processor.conversationEndTimeout parameter is reached or the TCP flag is
intercepted.

Flow: This is the network traffic flow that occurs within the specified interval.

Procedure

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

4. Configure the FlowCollector custom resource so that spec.processor.logTypes, 
conversationEndTimeout, and conversationHeartbeatInterval parameters are set according
to your observation needs. A sample configuration is as follows:

Configure FlowCollector for conversation tracking

The Conversation end event represents the point when the conversationEndTimeout is
reached or the TCP flag is intercepted.

When logTypes is set to FLOWS, only the Flow event is exported. If you set the value to 
ALL, both conversation and flow events are exported and visible in the Network Traffic
page. To focus only on conversation events, you can specify CONVERSATIONS which
exports the Conversation start, Conversation tick and Conversation end events; or 
ENDED_CONVERSATIONS exports only the Conversation end events. Storage
requirements are highest for ALL and lowest for ENDED_CONVERSATIONS.

The Conversation tick event represents each specified interval defined in the 
FlowCollector conversationHeartbeatInterval parameter while the network connection is
active.

NOTE

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
  name: cluster
spec:
 processor:
  conversationEndTimeout: 10s                  1
  logTypes: FLOWS                              2
  conversationHeartbeatInterval: 30s           3

OpenShift Container Platform 4.10 Networking

528



NOTE

If you update the logType option, the flows from the previous selection do not
clear from the console plugin. For example, if you initially set logType to 
CONVERSATIONS for a span of time until 10 AM and then move to 
ENDED_CONVERSATIONS, the console plugin shows all conversation events
before 10 AM and only ended conversations after 10 AM.

5. Refresh the Network Traffic page on the Traffic flows tab. Notice there are two new columns,
Event/Type and Conversation Id. All the Event/Type fields are Flow when Flow is the
selected query option.

6. Select Query Options and choose the Log Type, Conversation. Now the Event/Type shows
all of the desired conversation events.

7. Next you can filter on a specific conversation ID or switch between the Conversation and Flow
log type options from the side panel.

28.7.2.3.1. Using the histogram

You can click Show histogram to display a toolbar view for visualizing the history of flows as a bar chart.
The histogram shows the number of logs over time. You can select a part of the histogram to filter the
network flow data in the table that follows the toolbar.

28.7.3. Observing the network traffic from the Topology view

The Topology view provides a graphical representation of the network flows and the amount of traffic.
As an administrator, you can monitor the traffic data across the application by using the Topology view.

28.7.3.1. Working with the Topology view

As an administrator, you can navigate to the Topology view to see the details and metrics of the
component.

Procedure

1. Navigate to Observe → Network Traffic.

2. In the Network Traffic page, click the Topology tab.

You can click each component in the Topology to view the details and metrics of the component.

28.7.3.2. Configuring the advanced options for the Topology view

You can customize and export the view by using Show advanced options. The advanced options view
has the following features:

Find in view: To search the required components in the view.

Display options: To configure the following options:

Layout: To select the layout of the graphical representation. The default value is
ColaNoForce.

Scope: To select the scope of components between which the network traffic flows. The

CHAPTER 28. NETWORK OBSERVABILITY

529



Scope: To select the scope of components between which the network traffic flows. The
default value is Namespace.

Groups: To enchance the understanding of ownership by grouping the components. The
default value is None.

Collapse groups: To expand or collapse the groups. The groups are expanded by default.
This option is disabled if Groups has value None.

Show: To select the details that need to be displayed. All the options are checked by
default. The options available are: Edges, Edges label, and Badges.

Truncate labels: To select the required width of the label from the drop-down list. The
default value is M.

28.7.3.2.1. Exporting the topology view

To export the view, click Export topology view. The view is downloaded in PNG format.

28.7.4. Filtering the network traffic

By default, the Network Traffic page displays the traffic flow data in the cluster based on the default
filters configured in the FlowCollector instance. You can use the filter options to observe the required
data by changing the preset filter.

Query Options

You can use Query Options to optimize the search results, as listed below:

Log Type: The available options Conversation and Flows provide the ability to query flows
by log type, such as flow log, new conversation, completed conversation, and a heartbeat,
which is a periodic record with updates for long conversations. A conversation is an
aggregation of flows between the same peers.

Reporter Node: Every flow can be reported from both source and destination nodes. For
cluster ingress, the flow is reported from the destination node and for cluster egress, the
flow is reported from the source node. You can select either Source or Destination. The
option Both is disabled for the Overview and Topology view. The default selected value is
Destination.

Match filters: You can determine the relation between different filter parameters selected in
the advanced filter. The available options are Match all and Match any. Match all provides
results that match all the values, and Match any provides results that match any of the
values entered. The default value is Match all.

Limit: The data limit for internal backend queries. Depending upon the matching and the
filter settings, the number of traffic flow data is displayed within the specified limit.

Quick filters

The default values in Quick filters drop-down menu are defined in the FlowCollector configuration.
You can modify the options from console.

Advanced filters

You can set the advanced filters by providing the parameter to be filtered and its corresponding text
value. The section Common in the parameter drop-down list filters the results that match either
Source or Destination. To enable or disable the applied filter, you can click on the applied filter
listed below the filter options.

OpenShift Container Platform 4.10 Networking

530



NOTE

To understand the rules of specifying the text value, click Learn More.

You can click Reset default filter to remove the existing filters, and apply the filter defined in 
FlowCollector configuration.

Alternatively, you can access the traffic flow data in the Network Traffic tab of the Namespaces,
Services, Routes, Nodes, and Workloads pages which provide the filtered data of the corresponding
aggregations.

Additional resources

For more information about configuring quick filters in the FlowCollector, see Configuring Quick Filters
and the Flow Collector sample resource.

28.8. MONITORING THE NETWORK OBSERVABILITY OPERATOR

You can use the web console to monitor alerts related to the health of the Network Observability
Operator.

28.8.1. Viewing health information

You can access metrics about health and resource usage of the Network Observability Operator from
the Dashboards page in the web console. A health alert banner that directs you to the dashboard can
appear on the Network Traffic and Home pages in the event that an alert is triggered. Alerts are
generated in the following cases:

The NetObservLokiError alert occurs if the flowlogs-pipeline workload is dropping flows
because of Loki errors, such as if the Loki ingestion rate limit has been reached.

The NetObservNoFlows alert occurs if no flows are ingested for a certain amount of
time..Prerequisites

You have the Network Observability Operator installed.

You have access to the cluster as a user with the cluster-admin role or with view permissions
for all projects.

Procedure

1. From the Administrator perspective in the web console, navigate to Observe → Dashboards.

2. From the Dashboards dropdown, select Netobserv/Health. Metrics about the health of the
Operator are displayed on the page.

28.8.1.1. Disabling health alerts

You can opt out of health alerting by editing the FlowCollector resource:

1. In the web console, navigate to Operators → Installed Operators.

2. Under the Provided APIs heading for the NetObserv Operator, select Flow Collector.

3. Select cluster then select the YAML tab.

CHAPTER 28. NETWORK OBSERVABILITY

531

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-config-quick-filters_network_observability
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html-single/networking/#network-observability-flowcollector-view_network_observability


1

4. Add spec.processor.metrics.disableAlerts to disable health alerts, as in the following YAML
sample:

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
  name: cluster
spec:
  processor:
    metrics:
      disableAlerts: [NetObservLokiError, NetObservNoFlows] 1

You can specify one or a list with both types of alerts to disable.

28.9. FLOWCOLLECTOR CONFIGURATION PARAMETERS

FlowCollector is the Schema for the network flows collection API, which pilots and configures the
underlying deployments.

28.9.1. FlowCollector API specifications

Description

FlowCollector is the schema for the network flows collection API, which pilots and configures the
underlying deployments.

Type

object

Property Type Description

apiVersion string APIVersion defines the versioned
schema of this representation of
an object. Servers should convert
recognized schemas to the latest
internal value, and might reject
unrecognized values. More info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#resources

kind string Kind is a string value representing
the REST resource this object
represents. Servers might infer
this from the endpoint the client
submits requests to. Cannot be
updated. In CamelCase. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#types-kinds

OpenShift Container Platform 4.10 Networking

532

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#resources
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#types-kinds


metadata object Standard object’s metadata. More
info:
https://git.k8s.io/community/con
tributors/devel/sig-
architecture/api-
conventions.md#metadata

spec object FlowCollectorSpec defines the
desired state of the FlowCollector
resource. 

*: the mention of "unsupported",
or "deprecated" for a feature
throughout this document means
that this feature is not officially
supported by Red Hat. It might
have been, for instance,
contributed by the community
and accepted without a formal
agreement for maintenance. The
product maintainers might
provide some support for these
features as a best effort only.

Property Type Description

28.9.1.1. .metadata

Description

Standard object’s metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

Type

object

28.9.1.2. .spec

Description

FlowCollectorSpec defines the desired state of the FlowCollector resource. 

*: the mention of "unsupported", or "deprecated" for a feature throughout this document means that
this feature is not officially supported by Red Hat. It might have been, for instance, contributed by
the community and accepted without a formal agreement for maintenance. The product maintainers
might provide some support for these features as a best effort only.

Type

object

Required

agent

deploymentModel

CHAPTER 28. NETWORK OBSERVABILITY

533

https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata


Property Type Description

agent object Agent configuration for flows
extraction.

consolePlugin object consolePlugin defines the
settings related to the OpenShift
Container Platform Console
plugin, when available.

deploymentModel string deploymentModel defines the
desired type of deployment for
flow processing. Possible values
are:
- DIRECT (default) to make the
flow processor listening directly
from the agents.
- KAFKA to make flows sent to a
Kafka pipeline before
consumption by the processor.
Kafka can provide better
scalability, resiliency, and high
availability (for more details, see
https://www.redhat.com/en/topic
s/integration/what-is-apache-
kafka).

exporters array exporters define additional
optional exporters for custom
consumption or storage.

kafka object Kafka configuration, allowing to
use Kafka as a broker as part of
the flow collection pipeline.
Available when the 
spec.deploymentModel is 
KAFKA.

loki object Loki, the flow store, client
settings.

namespace string Namespace where NetObserv
pods are deployed. If empty, the
namespace of the operator is
going to be used.

OpenShift Container Platform 4.10 Networking

534

https://www.redhat.com/en/topics/integration/what-is-apache-kafka


processor object processor defines the settings
of the component that receives
the flows from the agent, enriches
them, generates metrics, and
forwards them to the Loki
persistence layer and/or any
available exporter.

Property Type Description

28.9.1.3. .spec.agent

Description

Agent configuration for flows extraction.

Type

object

Required

type

Property Type Description

ebpf object ebpf describes the settings
related to the eBPF-based flow
reporter when spec.agent.type
is set to EBPF.

ipfix object ipfix - deprecated (*) - describes
the settings related to the IPFIX-
based flow reporter when 
spec.agent.type is set to IPFIX.

type string type selects the flows tracing
agent. Possible values are:
- EBPF (default) to use
NetObserv eBPF agent.
- IPFIX - deprecated (*) - to use
the legacy IPFIX collector.
EBPF is recommended as it
offers better performances and
should work regardless of the CNI
installed on the cluster. IPFIX
works with OVN-Kubernetes CNI
(other CNIs could work if they
support exporting IPFIX, but they
would require manual
configuration).

28.9.1.4. .spec.agent.ebpf

CHAPTER 28. NETWORK OBSERVABILITY

535



Description

ebpf describes the settings related to the eBPF-based flow reporter when spec.agent.type is set to 
EBPF.

Type

object

Property Type Description

cacheActiveTimeout string cacheActiveTimeout is the
max period during which the
reporter will aggregate flows
before sending. Increasing 
cacheMaxFlows and 
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

cacheMaxFlows integer cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows. Increasing 
cacheMaxFlows and 
cacheActiveTimeout can
decrease the network traffic
overhead and the CPU load,
however you can expect higher
memory consumption and an
increased latency in the flow
collection.

debug object debug allows setting some
aspects of the internal
configuration of the eBPF agent.
This section is aimed exclusively
for debugging and fine-grained
performance optimizations, such
as GOGC and GOMAXPROCS
env vars. Users setting its values
do it at their own risk.

excludeInterfaces array (string) excludeInterfaces contains the
interface names that will be
excluded from flow tracing. An
entry is enclosed by slashes, such
as /br-/, is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

OpenShift Container Platform 4.10 Networking

536



imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

interfaces array (string) interfaces contains the interface
names from where flows will be
collected. If empty, the agent will
fetch all the interfaces in the
system, excepting the ones listed
in ExcludeInterfaces. An entry is
enclosed by slashes, such as /br-/,
is matched as a regular
expression. Otherwise it is
matched as a case-sensitive
string.

kafkaBatchSize integer kafkaBatchSize limits the
maximum size of a request in
bytes before being sent to a
partition. Ignored when not using
Kafka. Default: 10MB.

logLevel string logLevel defines the log level for
the NetObserv eBPF Agent

privileged boolean Privileged mode for the eBPF
Agent container. In general this
setting can be ignored or set to
false: in that case, the operator
will set granular capabilities (BPF,
PERFMON, NET_ADMIN,
SYS_RESOURCE) to the
container, to enable its correct
operation. If for some reason
these capabilities cannot be set,
such as if an old kernel version not
knowing CAP_BPF is in use, then
you can turn on this mode for
more global privileges.

resources object resources are the compute
resources required by this
container. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

CHAPTER 28. NETWORK OBSERVABILITY

537

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


sampling integer Sampling rate of the flow
reporter. 100 means one flow on
100 is sent. 0 or 1 means all flows
are sampled.

Property Type Description

28.9.1.5. .spec.agent.ebpf.debug

Description

debug allows setting some aspects of the internal configuration of the eBPF agent. This section is
aimed exclusively for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS env vars. Users setting its values do it at their own risk.

Type

object

Property Type Description

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

28.9.1.6. .spec.agent.ebpf.resources

Description

resources are the compute resources required by this container. More info:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

OpenShift Container Platform 4.10 Networking

538

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

28.9.1.7. .spec.agent.ipfix

Description

ipfix - deprecated (*)  - describes the settings related to the IPFIX-based flow reporter when 
spec.agent.type is set to IPFIX.

Type

object

Property Type Description

cacheActiveTimeout string cacheActiveTimeout is the
max period during which the
reporter will aggregate flows
before sending

cacheMaxFlows integer cacheMaxFlows is the max
number of flows in an aggregate;
when reached, the reporter sends
the flows

clusterNetworkOperator object clusterNetworkOperator
defines the settings related to the
OpenShift Container Platform
Cluster Network Operator, when
available.

CHAPTER 28. NETWORK OBSERVABILITY

539

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


forceSampleAll boolean forceSampleAll allows disabling
sampling in the IPFIX-based flow
reporter. It is not recommended
to sample all the traffic with
IPFIX, as it might generate cluster
instability. If you REALLY want to
do that, set this flag to true. Use
at your own risk. When it is set to
true, the value of sampling is
ignored.

ovnKubernetes object ovnKubernetes defines the
settings of the OVN-Kubernetes
CNI, when available. This
configuration is used when using
OVN’s IPFIX exports, without
OpenShift Container Platform.
When using OpenShift Container
Platform, refer to the 
clusterNetworkOperator
property instead.

sampling integer sampling is the sampling rate on
the reporter. 100 means one flow
on 100 is sent. To ensure cluster
stability, it is not possible to set a
value below 2. If you really want
to sample every packet, which
might impact the cluster stability,
refer to forceSampleAll.
Alternatively, you can use the
eBPF Agent instead of IPFIX.

Property Type Description

28.9.1.8. .spec.agent.ipfix.clusterNetworkOperator

Description

clusterNetworkOperator defines the settings related to the OpenShift Container Platform Cluster
Network Operator, when available.

Type

object

Property Type Description

namespace string Namespace where the config map
is going to be deployed.

28.9.1.9. .spec.agent.ipfix.ovnKubernetes

OpenShift Container Platform 4.10 Networking

540



Description

ovnKubernetes defines the settings of the OVN-Kubernetes CNI, when available. This configuration
is used when using OVN’s IPFIX exports, without OpenShift Container Platform. When using
OpenShift Container Platform, refer to the clusterNetworkOperator property instead.

Type

object

Property Type Description

containerName string containerName defines the
name of the container to
configure for IPFIX.

daemonSetName string daemonSetName defines the
name of the DaemonSet
controlling the OVN-Kubernetes
pods.

namespace string Namespace where OVN-
Kubernetes pods are deployed.

28.9.1.10. .spec.consolePlugin

Description

consolePlugin defines the settings related to the OpenShift Container Platform Console plugin,
when available.

Type

object

Property Type Description

autoscaler object autoscaler spec of a horizontal
pod autoscaler to set up for the
plugin Deployment. Refer to
HorizontalPodAutoscaler
documentation (autoscaling/v2).

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

logLevel string logLevel for the console plugin
backend

port integer port is the plugin service port. Do
not use 9002, which is reserved
for metrics.

CHAPTER 28. NETWORK OBSERVABILITY

541



portNaming object portNaming defines the
configuration of the port-to-
service name translation

quickFilters array quickFilters configures quick
filter presets for the Console
plugin

register boolean register allows, when set to true,
to automatically register the
provided console plugin with the
OpenShift Container Platform
Console operator. When set to
false, you can still register it
manually by editing
console.operator.openshift.io/clus
ter with the following command: 
oc patch 
console.operator.openshift.i
o cluster --type='json' -p 
'[{"op": "add", "path": 
"/spec/plugins/-", "value": 
"netobserv-plugin"}]'

replicas integer replicas defines the number of
replicas (pods) to start.

resources object resources, in terms of compute
resources, required by this
container. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

28.9.1.11. .spec.consolePlugin.autoscaler

Description

autoscaler spec of a horizontal pod autoscaler to set up for the plugin Deployment. Refer to
HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

28.9.1.12. .spec.consolePlugin.portNaming

Description

portNaming defines the configuration of the port-to-service name translation

Type

OpenShift Container Platform 4.10 Networking

542

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


object

Property Type Description

enable boolean Enable the console plugin port-
to-service name translation

portNames object (string) portNames defines additional
port names to use in the console,
for example, portNames: 
{"3100": "loki"}.

28.9.1.13. .spec.consolePlugin.quickFilters

Description

quickFilters configures quick filter presets for the Console plugin

Type

array

28.9.1.14. .spec.consolePlugin.quickFilters[]

Description

QuickFilter defines preset configuration for Console’s quick filters

Type

object

Required

filter

name

Property Type Description

default boolean default defines whether this filter
should be active by default or not

filter object (string) filter is a set of keys and values to
be set when this filter is selected.
Each key can relate to a list of
values using a coma-separated
string, for example, filter: 
{"src_namespace": 
"namespace1,namespace2"}.

name string Name of the filter, that will be
displayed in Console

CHAPTER 28. NETWORK OBSERVABILITY

543



28.9.1.15. .spec.consolePlugin.resources

Description

resources, in terms of compute resources, required by this container. More info:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

28.9.1.16. .spec.exporters

Description

exporters define additional optional exporters for custom consumption or storage.

Type

array

28.9.1.17. .spec.exporters[]

Description

FlowCollectorExporter defines an additional exporter to send enriched flows to.

Type

object

Required

type

Property Type Description

OpenShift Container Platform 4.10 Networking

544

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


ipfix object IPFIX configuration, such as the IP
address and port to send enriched
IPFIX flows to. Unsupported (*).

kafka object Kafka configuration, such as the
address and topic, to send
enriched flows to.

type string type selects the type of
exporters. The available options
are KAFKA and IPFIX. IPFIX is
unsupported (*).

Property Type Description

28.9.1.18. .spec.exporters[].ipfix

Description

IPFIX configuration, such as the IP address and port to send enriched IPFIX flows to. Unsupported
(*).

Type

object

Required

targetHost

targetPort

Property Type Description

targetHost string Address of the IPFIX external
receiver

targetPort integer Port for the IPFIX external
receiver

transport string Transport protocol (TCP or 
UDP) to be used for the IPFIX
connection, defaults to TCP.

28.9.1.19. .spec.exporters[].kafka

Description

Kafka configuration, such as the address and topic, to send enriched flows to.

Type

CHAPTER 28. NETWORK OBSERVABILITY

545



object

Required

address

topic

Property Type Description

address string Address of the Kafka server

tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093. Note that,
when eBPF agents are used, the
Kafka certificate needs to be
copied in the agent namespace
(by default it is netobserv-
privileged).

topic string Kafka topic to use. It must exist,
NetObserv will not create it.

28.9.1.20. .spec.exporters[].kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093. Note that, when eBPF agents are used, the Kafka certificate needs to be copied
in the agent namespace (by default it is netobserv-privileged).

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

OpenShift Container Platform 4.10 Networking

546



userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

Property Type Description

28.9.1.21. .spec.exporters[].kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

28.9.1.22. .spec.exporters[].kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

CHAPTER 28. NETWORK OBSERVABILITY

547



Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

28.9.1.23. .spec.kafka

Description

Kafka configuration, allowing to use Kafka as a broker as part of the flow collection pipeline. Available
when the spec.deploymentModel is KAFKA.

Type

object

Required

address

topic

Property Type Description

address string Address of the Kafka server

OpenShift Container Platform 4.10 Networking

548



tls object TLS client configuration. When
using TLS, verify that the address
matches the Kafka port used for
TLS, generally 9093. Note that,
when eBPF agents are used, the
Kafka certificate needs to be
copied in the agent namespace
(by default it is netobserv-
privileged).

topic string Kafka topic to use. It must exist,
NetObserv will not create it.

Property Type Description

28.9.1.24. .spec.kafka.tls

Description

TLS client configuration. When using TLS, verify that the address matches the Kafka port used for
TLS, generally 9093. Note that, when eBPF agents are used, the Kafka certificate needs to be copied
in the agent namespace (by default it is netobserv-privileged).

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

28.9.1.25. .spec.kafka.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

object

CHAPTER 28. NETWORK OBSERVABILITY

549



Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

28.9.1.26. .spec.kafka.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

OpenShift Container Platform 4.10 Networking

550



namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

28.9.1.27. .spec.loki

Description

Loki, the flow store, client settings.

Type

object

Property Type Description

authToken string authToken describes the way to
get a token to authenticate to
Loki.
- DISABLED will not send any
token with the request.
- FORWARD will forward the
user token for authorization.
- HOST - deprecated (*) - will
use the local pod service account
to authenticate to Loki.
When using the Loki Operator,
this must be set to FORWARD.

batchSize integer batchSize is the maximum batch
size (in bytes) of logs to
accumulate before sending.

batchWait string batchWait is the maximum time
to wait before sending a batch.

maxBackoff string maxBackoff is the maximum
backoff time for client connection
between retries.

CHAPTER 28. NETWORK OBSERVABILITY

551



maxRetries integer maxRetries is the maximum
number of retries for client
connections.

minBackoff string minBackoff is the initial backoff
time for client connection
between retries.

querierUrl string querierURL specifies the
address of the Loki querier
service, in case it is different from
the Loki ingester URL. If empty,
the URL value will be used
(assuming that the Loki ingester
and querier are in the same
server). When using the Loki
Operator, do not set it, since
ingestion and queries use the Loki
gateway.

staticLabels object (string) staticLabels is a map of
common labels to set on each
flow.

statusTls object TLS client configuration for Loki
status URL.

statusUrl string statusURL specifies the address
of the Loki /ready, /metrics and 
/config endpoints, in case it is
different from the Loki querier
URL. If empty, the querierURL
value will be used. This is useful to
show error messages and some
context in the frontend. When
using the Loki Operator, set it to
the Loki HTTP query frontend
service, for example https://loki-
query-frontend-
http.netobserv.svc:3100/. 
statusTLS configuration will be
used when statusUrl is set.

tenantID string tenantID is the Loki X-Scope-
OrgID that identifies the tenant
for each request. When using the
Loki Operator, set it to network,
which corresponds to a special
tenant mode.

Property Type Description

OpenShift Container Platform 4.10 Networking

552

https://loki-query-frontend-http.netobserv.svc:3100/


timeout string timeout is the maximum time
connection / request limit. A
timeout of zero means no
timeout.

tls object TLS client configuration for Loki
URL.

url string url is the address of an existing
Loki service to push the flows to.
When using the Loki Operator, set
it to the Loki gateway service with
the network tenant set in path,
for example https://loki-gateway-
http.netobserv.svc:8080/api/logs
/v1/network.

Property Type Description

28.9.1.28. .spec.loki.statusTls

Description

TLS client configuration for Loki status URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

28.9.1.29. .spec.loki.statusTls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

CHAPTER 28. NETWORK OBSERVABILITY

553

https://loki-gateway-http.netobserv.svc:8080/api/logs/v1/network


object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

28.9.1.30. .spec.loki.statusTls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

OpenShift Container Platform 4.10 Networking

554



name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

28.9.1.31. .spec.loki.tls

Description

TLS client configuration for Loki URL.

Type

object

Property Type Description

caCert object caCert defines the reference of
the certificate for the Certificate
Authority

enable boolean Enable TLS

insecureSkipVerify boolean insecureSkipVerify allows
skipping client-side verification of
the server certificate. If set to
true, the caCert field is ignored.

userCert object userCert defines the user
certificate reference and is used
for mTLS (you can ignore it when
using one-way TLS)

28.9.1.32. .spec.loki.tls.caCert

Description

caCert defines the reference of the certificate for the Certificate Authority

Type

CHAPTER 28. NETWORK OBSERVABILITY

555



object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

28.9.1.33. .spec.loki.tls.userCert

Description

userCert defines the user certificate reference and is used for mTLS (you can ignore it when using
one-way TLS)

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

OpenShift Container Platform 4.10 Networking

556



name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

Property Type Description

28.9.1.34. .spec.processor

Description

processor defines the settings of the component that receives the flows from the agent, enriches
them, generates metrics, and forwards them to the Loki persistence layer and/or any available
exporter.

Type

object

Property Type Description

conversationEndTimeout string conversationEndTimeout is
the time to wait after a network
flow is received, to consider the
conversation ended. This delay is
ignored when a FIN packet is
collected for TCP flows (see 
conversationTerminatingTim
eout instead).

conversationHeartbeatInterv
al

string conversationHeartbeatInterv
al is the time to wait between
"tick" events of a conversation

conversationTerminatingTim
eout

string conversationTerminatingTim
eout is the time to wait from
detected FIN flag to end a
conversation. Only relevant for
TCP flows.

CHAPTER 28. NETWORK OBSERVABILITY

557



debug object debug allows setting some
aspects of the internal
configuration of the flow
processor. This section is aimed
exclusively for debugging and
fine-grained performance
optimizations, such as GOGC and
GOMAXPROCS env vars. Users
setting its values do it at their own
risk.

dropUnusedFields boolean dropUnusedFields allows,
when set to true, to drop fields
that are known to be unused by
OVS, to save storage space.

enableKubeProbes boolean enableKubeProbes is a flag to
enable or disable Kubernetes
liveness and readiness probes

healthPort integer healthPort is a collector HTTP
port in the Pod that exposes the
health check API

imagePullPolicy string imagePullPolicy is the
Kubernetes pull policy for the
image defined above

kafkaConsumerAutoscaler object kafkaConsumerAutoscaler is
the spec of a horizontal pod
autoscaler to set up for 
flowlogs-pipeline-
transformer, which consumes
Kafka messages. This setting is
ignored when Kafka is disabled.
Refer to HorizontalPodAutoscaler
documentation (autoscaling/v2).

kafkaConsumerBatchSize integer kafkaConsumerBatchSize
indicates to the broker the
maximum batch size, in bytes, that
the consumer will accept. Ignored
when not using Kafka. Default:
10MB.

Property Type Description

OpenShift Container Platform 4.10 Networking

558



kafkaConsumerQueueCapaci
ty

integer kafkaConsumerQueueCapac
ity defines the capacity of the
internal message queue used in
the Kafka consumer client.
Ignored when not using Kafka.

kafkaConsumerReplicas integer kafkaConsumerReplicas
defines the number of replicas
(pods) to start for flowlogs-
pipeline-transformer, which
consumes Kafka messages. This
setting is ignored when Kafka is
disabled.

logLevel string logLevel of the processor
runtime

logTypes string logTypes defines the desired
record types to generate.
Possible values are:
- FLOWS (default) to export
regular network flows
- CONVERSATIONS to
generate events for started
conversations, ended
conversations as well as periodic
"tick" updates
- ENDED_CONVERSATIONS
to generate only ended
conversations events
- ALL to generate both network
flows and all conversations events

metrics object Metrics define the processor
configuration regarding metrics

port integer Port of the flow collector (host
port). By convention, some values
are forbidden. It must be greater
than 1024 and different from
4500, 4789 and 6081.

profilePort integer profilePort allows setting up a
Go pprof profiler listening to this
port

Property Type Description

CHAPTER 28. NETWORK OBSERVABILITY

559



resources object resources are the compute
resources required by this
container. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

Property Type Description

28.9.1.35. .spec.processor.debug

Description

debug allows setting some aspects of the internal configuration of the flow processor. This section is
aimed exclusively for debugging and fine-grained performance optimizations, such as GOGC and
GOMAXPROCS env vars. Users setting its values do it at their own risk.

Type

object

Property Type Description

env object (string) env allows passing custom
environment variables to
underlying components. Useful
for passing some very concrete
performance-tuning options, such
as GOGC and GOMAXPROCS,
that should not be publicly
exposed as part of the
FlowCollector descriptor, as they
are only useful in edge debug or
support scenarios.

28.9.1.36. .spec.processor.kafkaConsumerAutoscaler

Description

kafkaConsumerAutoscaler is the spec of a horizontal pod autoscaler to set up for flowlogs-
pipeline-transformer, which consumes Kafka messages. This setting is ignored when Kafka is
disabled. Refer to HorizontalPodAutoscaler documentation (autoscaling/v2).

Type

object

28.9.1.37. .spec.processor.metrics

Description

Metrics define the processor configuration regarding metrics

Type

object

OpenShift Container Platform 4.10 Networking

560

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


Property Type Description

disableAlerts array (string) disableAlerts is a list of alerts
that should be disabled. Possible
values are:
NetObservNoFlows, which is
triggered when no flows are being
observed for a certain period.
NetObservLokiError, which is
triggered when flows are being
dropped due to Loki errors.

ignoreTags array (string) ignoreTags is a list of tags to
specify which metrics to ignore.
Each metric is associated with a
list of tags. More details in
https://github.com/netobserv/ne
twork-observability-
operator/tree/main/controllers/fl
owlogspipeline/metrics_definition
s . Available tags are: egress, 
ingress, flows, bytes, packets,
namespaces, nodes, 
workloads.

server object Metrics server endpoint
configuration for Prometheus
scraper

28.9.1.38. .spec.processor.metrics.server

Description

Metrics server endpoint configuration for Prometheus scraper

Type

object

Property Type Description

port integer The prometheus HTTP port

tls object TLS configuration.

28.9.1.39. .spec.processor.metrics.server.tls

Description

TLS configuration.

Type

object

CHAPTER 28. NETWORK OBSERVABILITY

561

https://github.com/netobserv/network-observability-operator/tree/main/controllers/flowlogspipeline/metrics_definitions


Property Type Description

provided object TLS configuration when type is
set to PROVIDED.

type string Select the type of TLS
configuration:
- DISABLED (default) to not
configure TLS for the endpoint. - 
PROVIDED to manually provide
cert file and a key file. - AUTO to
use OpenShift Container
Platform auto generated
certificate using annotations.

28.9.1.40. .spec.processor.metrics.server.tls.provided

Description

TLS configuration when type is set to PROVIDED.

Type

object

Property Type Description

certFile string certFile defines the path to the
certificate file name within the
config map or secret

certKey string certKey defines the path to the
certificate private key file name
within the config map or secret.
Omit when the key is not
necessary.

name string Name of the config map or secret
containing certificates

namespace string Namespace of the config map or
secret containing certificates. If
omitted, assumes the same
namespace as where NetObserv
is deployed. If the namespace is
different, the config map or the
secret will be copied so that it can
be mounted as required.

type string Type for the certificate reference:
configmap or secret

OpenShift Container Platform 4.10 Networking

562



28.9.1.41. .spec.processor.resources

Description

resources are the compute resources required by this container. More info:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Type

object

Property Type Description

limits integer-or-string Limits describes the maximum
amount of compute resources
allowed. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

requests integer-or-string Requests describes the minimum
amount of compute resources
required. If Requests is omitted
for a container, it defaults to
Limits if that is explicitly specified,
otherwise to an implementation-
defined value. More info:
https://kubernetes.io/docs/conc
epts/configuration/manage-
resources-containers/

28.10. NETWORK FLOWS FORMAT REFERENCE

These are the specifications for network flows format, used both internally and when exporting flows to
Kafka.

28.10.1. Network Flows format reference

The document is organized in two main categories: Labels and regular Fields. This distinction only
matters when querying Loki. This is because Labels, unlike Fields, must be used in stream selectors.

If you are reading this specification as a reference for the Kafka export feature, you must treat all Labels
and Fields as regualr fields and ignore any distinctions between them that are specific to Loki.

28.10.1.1. Labels

SrcK8S_Namespace

Optional SrcK8S_Namespace: string

Source namespace

DstK8S_Namespace

CHAPTER 28. NETWORK OBSERVABILITY

563

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://grafana.com/docs/loki/latest/logql/log_queries/#log-stream-selector


Optional DstK8S_Namespace: string

Destination namespace

SrcK8S_OwnerName

Optional SrcK8S_OwnerName: string

Source owner, such as Deployment, StatefulSet, etc.

DstK8S_OwnerName

Optional DstK8S_OwnerName: string

Destination owner, such as Deployment, StatefulSet, etc.

FlowDirection

FlowDirection: see the following section, Enumeration: FlowDirection for more details.

Flow direction from the node observation point

_RecordType

Optional _RecordType: RecordType

Type of record: 'flowLog' for regular flow logs, or 'allConnections', 'newConnection', 'heartbeat',
'endConnection' for conversation tracking

28.10.1.2. Fields

SrcAddr

SrcAddr: string

Source IP address (ipv4 or ipv6)

DstAddr

DstAddr: string

Destination IP address (ipv4 or ipv6)

SrcMac

SrcMac: string

Source MAC address

DstMac

OpenShift Container Platform 4.10 Networking

564



DstMac: string

Destination MAC address

SrcK8S_Name

Optional SrcK8S_Name: string

Name of the source matched Kubernetes object, such as Pod name, Service name, etc.

DstK8S_Name

Optional DstK8S_Name: string

Name of the destination matched Kubernetes object, such as Pod name, Service name, etc.

SrcK8S_Type

Optional SrcK8S_Type: string

Kind of the source matched Kubernetes object, such as Pod, Service, etc.

DstK8S_Type

Optional DstK8S_Type: string

Kind of the destination matched Kubernetes object, such as Pod name, Service name, etc.

SrcPort

SrcPort: number

Source port

DstPort

DstPort: number

Destination port

SrcK8S_OwnerType

Optional SrcK8S_OwnerType: string

Kind of the source Kubernetes owner, such as Deployment, StatefulSet, etc.

DstK8S_OwnerType

Optional DstK8S_OwnerType: string

Kind of the destination Kubernetes owner, such as Deployment, StatefulSet, etc.

CHAPTER 28. NETWORK OBSERVABILITY

565



SrcK8S_HostIP

Optional SrcK8S_HostIP: string

Source node IP

DstK8S_HostIP

Optional DstK8S_HostIP: string

Destination node IP

SrcK8S_HostName

Optional SrcK8S_HostName: string

Source node name

DstK8S_HostName

Optional DstK8S_HostName: string

Destination node name

Proto

Proto: number

L4 protocol

Interface

Optional Interface: string

Network interface

Packets

Packets: number

Number of packets in this flow

Packets_AB

Optional Packets_AB: number

In conversation tracking, A to B packets counter per conversation

Packets_BA

Optional Packets_BA: number

OpenShift Container Platform 4.10 Networking

566



In conversation tracking, B to A packets counter per conversation

Bytes

Bytes: number

Number of bytes in this flow

Bytes_AB

Optional Bytes_AB: number

In conversation tracking, A to B bytes counter per conversation

Bytes_BA

Optional Bytes_BA: number

In conversation tracking, B to A bytes counter per conversation

TimeFlowStartMs

TimeFlowStartMs: number

Start timestamp of this flow, in milliseconds

TimeFlowEndMs

TimeFlowEndMs: number

End timestamp of this flow, in milliseconds

TimeReceived

TimeReceived: number

Timestamp when this flow was received and processed by the flow collector, in seconds

_HashId

Optional _HashId: string

In conversation tracking, the conversation identifier

_IsFirst

Optional _IsFirst: string

In conversation tracking, a flag identifying the first flow

numFlowLogs

CHAPTER 28. NETWORK OBSERVABILITY

567



Optional numFlowLogs: number

In conversation tracking, a counter of flow logs per conversation

28.10.1.3. Enumeration: FlowDirection

Ingress

Ingress = "0"

Incoming traffic, from node observation point

Egress

Egress = "1"

Outgoing traffic, from node observation point

28.11. TROUBLESHOOTING NETWORK OBSERVABILITY

To assist in troubleshooting Network Observability issues, you can perform some troubleshooting
actions.

28.11.1. Using the must-gather tool

You can use the must-gather tool to collect information about the Network Observability Operator
resources and cluster-wide resources, such as pod logs, FlowCollector, and webhook configurations.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the following command to collect cluster-wide must-gather resources:

28.11.2. Configuring network traffic menu entry in the OpenShift Container Platform
console

Manually configure the network traffic menu entry in the OpenShift Container Platform console when
the network traffic menu entry is not listed in Observe menu in the OpenShift Container Platform
console.

Prerequisites

You have installed OpenShift Container Platform version 4.10 or newer.

Procedure

1. Check if the spec.consolePlugin.register field is set to true by running the following

$ oc adm must-gather
 --image-stream=openshift/must-gather \
 --image=quay.io/netobserv/must-gather

OpenShift Container Platform 4.10 Networking

568



1. Check if the spec.consolePlugin.register field is set to true by running the following
command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
  name: cluster
spec:
  consolePlugin:
    register: false

2. Optional: Add the netobserv-plugin plugin by manually editing the Console Operator config:

Example output

...
spec:
  plugins:
  - netobserv-plugin
...

3. Optional: Set the spec.consolePlugin.register field to true by running the following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1
kind: FlowCollector
metadata:
  name: cluster
spec:
  consolePlugin:
    register: true

4. Ensure the status of console pods is running by running the following command:

5. Restart the console pods by running the following command:

6. Clear your browser cache and history.

7. Check the status of Network Observability plugin pods by running the following command:

$ oc -n netobserv get flowcollector cluster -o yaml

$ oc edit console.operator.openshift.io cluster

$ oc -n netobserv edit flowcollector cluster -o yaml

$ oc get pods -n openshift-console -l app=console

$ oc delete pods -n openshift-console -l app=console

CHAPTER 28. NETWORK OBSERVABILITY

569



Example output

NAME                                READY   STATUS    RESTARTS   AGE
netobserv-plugin-68c7bbb9bb-b69q6   1/1     Running   0          21s

8. Check the logs of the Network Observability plugin pods by running the following command:

Example output

28.11.3. Flowlogs-Pipeline does not consume network flows after installing Kafka

If you deployed the flow collector first with deploymentModel: KAFKA and then deployed Kafka, the
flow collector might not connect correctly to Kafka. Manually restart the flow-pipeline pods where
Flowlogs-pipeline does not consume network flows from Kafka.

Procedure

1. Delete the flow-pipeline pods to restart them by running the following command:

28.11.4. Failing to see network flows from both br-int and br-ex interfaces

br-ex` and br-int are virtual bridge devices operated at OSI layer 2. The eBPF agent works at the IP and
TCP levels, layers 3 and 4 respectively. You can expect that the eBPF agent captures the network
traffic passing through br-ex and br-int, when the network traffic is processed by other interfaces such
as physical host or virtual pod interfaces. If you restrict the eBPF agent network interfaces to attach
only to br-ex and br-int, you do not see any network flow.

Manually remove the part in the interfaces or excludeInterfaces that restricts the network interfaces
to br-int and br-ex.

Procedure

1. Remove the interfaces: [ 'br-int', 'br-ex' ] field. This allows the agent to fetch information from
all the interfaces. Alternatively, you can specify the Layer-3 interface for example, eth0. Run the
following command:

Example output

apiVersion: flows.netobserv.io/v1alpha1

$ oc get pods -n netobserv -l app=netobserv-plugin

$ oc logs -n netobserv -l app=netobserv-plugin

time="2022-12-13T12:06:49Z" level=info msg="Starting netobserv-console-plugin [build 
version: , build date: 2022-10-21 15:15] at log level info" module=main
time="2022-12-13T12:06:49Z" level=info msg="listening on https://:9001" module=server

$ oc delete pods -n netobserv -l app=flowlogs-pipeline-transformer

$ oc edit -n netobserv flowcollector.yaml -o yaml

OpenShift Container Platform 4.10 Networking

570



1

kind: FlowCollector
metadata:
  name: cluster
spec:
  agent:
    type: EBPF
    ebpf:
      interfaces: [ 'br-int', 'br-ex' ] 1

Specifies the network interfaces.

28.11.5. Network Observability controller manager pod runs out of memory

You can increase memory limits for the Network Observability operator by patching the Cluster Service
Version (CSV), where Network Observability controller manager pod runs out of memory.

Procedure

1. Run the following command to patch the CSV:

Example output

clusterserviceversion.operators.coreos.com/network-observability-operator.v1.0.0 patched

2. Run the following command to view the updated CSV:

$ oc -n netobserv patch csv network-observability-operator.v1.0.0 --type='json' -p='[{"op": 
"replace", 
"path":"/spec/install/spec/deployments/0/spec/template/spec/containers/0/resources/limits/memo
ry", value: "1Gi"}]'

$ oc -n netobserv get csv network-observability-operator.v1.0.0 -o 
jsonpath='{.spec.install.spec.deployments[0].spec.template.spec.containers[0].resources.limits.m
emory}'
1Gi

CHAPTER 28. NETWORK OBSERVABILITY

571


	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORKING
	1.1. OPENSHIFT CONTAINER PLATFORM DNS
	1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	1.2.1. Comparing routes and Ingress

	1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING

	CHAPTER 2. ACCESSING HOSTS
	2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

	CHAPTER 3. NETWORKING OPERATORS OVERVIEW
	3.1. CLUSTER NETWORK OPERATOR
	3.2. DNS OPERATOR
	3.3. INGRESS OPERATOR
	3.4. EXTERNAL DNS OPERATOR
	3.5. NETWORK OBSERVABILITY OPERATOR

	CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. CLUSTER NETWORK OPERATOR
	4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
	4.5. CLUSTER NETWORK OPERATOR CONFIGURATION
	4.5.1. Cluster Network Operator configuration object
	defaultNetwork object configuration
	kubeProxyConfig object configuration

	4.5.2. Cluster Network Operator example configuration

	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. DNS OPERATOR
	5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE
	5.3. CONTROLLING DNS POD PLACEMENT
	5.4. VIEW THE DEFAULT DNS
	5.5. USING DNS FORWARDING
	5.6. DNS OPERATOR STATUS
	5.7. DNS OPERATOR LOGS
	5.8. SETTING THE COREDNS LOG LEVEL
	5.9. SETTING THE COREDNS OPERATOR LOG LEVEL

	CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR
	6.2. THE INGRESS CONFIGURATION ASSET
	6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	6.3.1. Ingress Controller TLS security profiles
	6.3.1.1. Understanding TLS security profiles
	6.3.1.2. Configuring the TLS security profile for the Ingress Controller
	6.3.1.3. Configuring mutual TLS authentication


	6.4. VIEW THE DEFAULT INGRESS CONTROLLER
	6.5. VIEW INGRESS OPERATOR STATUS
	6.6. VIEW INGRESS CONTROLLER LOGS
	6.7. VIEW INGRESS CONTROLLER STATUS
	6.8. CONFIGURING THE INGRESS CONTROLLER
	6.8.1. Setting a custom default certificate
	6.8.2. Removing a custom default certificate
	6.8.3. Scaling an Ingress Controller
	6.8.4. Configuring Ingress access logging
	6.8.5. Setting Ingress Controller thread count
	6.8.6. Ingress Controller sharding
	6.8.6.1. Configuring Ingress Controller sharding by using route labels
	6.8.6.2. Configuring Ingress Controller sharding by using namespace labels

	6.8.7. Configuring an Ingress Controller to use an internal load balancer
	6.8.8. Configuring global access for an Ingress Controller on GCP
	6.8.9. Configuring the default Ingress Controller for your cluster to be internal
	6.8.10. Configuring the route admission policy
	6.8.11. Using wildcard routes
	6.8.12. Using X-Forwarded headers
	Example use cases

	6.8.13. Enabling HTTP/2 Ingress connectivity
	6.8.14. Configuring the PROXY protocol for an Ingress Controller
	6.8.15. Specifying an alternative cluster domain using the appsDomain option
	6.8.16. Converting HTTP header case
	6.8.17. Using router compression
	6.8.18. Exposing router metrics
	6.8.19. Customizing HAProxy error code response pages

	6.9. ADDITIONAL RESOURCES

	CHAPTER 7. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
	7.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
	7.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal
	7.1.2. Configuring the Ingress Controller endpoint publishing scope to External

	7.2. ADDITIONAL RESOURCES

	CHAPTER 8. VERIFYING CONNECTIVITY TO AN ENDPOINT
	8.1. CONNECTION HEALTH CHECKS PERFORMED
	8.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS
	8.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS
	Connection log fields

	8.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

	CHAPTER 9. CHANGING THE MTU FOR THE CLUSTER NETWORK
	9.1. ABOUT THE CLUSTER MTU
	9.1.1. Service interruption considerations
	9.1.2. MTU value selection
	9.1.3. How the migration process works

	9.2. CHANGING THE CLUSTER MTU
	9.3. ADDITIONAL RESOURCES

	CHAPTER 10. CONFIGURING THE NODE PORT SERVICE RANGE
	10.1. PREREQUISITES
	10.2. EXPANDING THE NODE PORT RANGE
	10.3. ADDITIONAL RESOURCES

	CHAPTER 11. CONFIGURING IP FAILOVER
	11.1. IP FAILOVER ENVIRONMENT VARIABLES
	11.2. CONFIGURING IP FAILOVER
	11.3. ABOUT VIRTUAL IP ADDRESSES
	11.4. CONFIGURING CHECK AND NOTIFY SCRIPTS
	11.5. CONFIGURING VRRP PREEMPTION
	11.6. ABOUT VRRP ID OFFSET
	11.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES
	11.8. HIGH AVAILABILITY FOR INGRESSIP
	11.9. REMOVING IP FAILOVER

	CHAPTER 12. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER
	12.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER PLATFORM
	12.1.1. Example configurations using SCTP protocol

	12.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP)
	12.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED

	CHAPTER 13. USING PTP HARDWARE
	13.1. ABOUT PTP HARDWARE
	13.2. ABOUT PTP
	13.2.1. Elements of a PTP domain
	13.2.2. Advantages of PTP over NTP

	13.3. INSTALLING THE PTP OPERATOR USING THE CLI
	13.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE
	13.5. CONFIGURING PTP DEVICES
	13.5.1. Discovering PTP capable network devices in your cluster
	13.5.2. Configuring linuxptp services as a grandmaster clock
	13.5.3. Configuring linuxptp services as an ordinary clock
	13.5.4. Configuring linuxptp services as a boundary clock
	13.5.5. Intel Columbiaville E800 series NIC as PTP ordinary clock reference
	13.5.6. Configuring FIFO priority scheduling for PTP hardware

	13.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES
	13.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK
	13.7.1. About PTP and clock synchronization error events
	13.7.2. About the PTP fast event notifications framework
	13.7.3. Installing the AMQ messaging bus
	13.7.4. Configuring the PTP fast event notifications publisher
	13.7.5. Subscribing DU applications to PTP events REST API reference
	13.7.5.1. api/ocloudNotifications/v1/subscriptions
	13.7.5.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>
	13.7.5.3. api/ocloudNotifications/v1/subscriptions/status/<subscription_id>
	13.7.5.4. api/ocloudNotifications/v1/health/

	13.7.6. Monitoring PTP fast event metrics using the CLI
	13.7.7. Monitoring PTP fast event metrics in the web console


	CHAPTER 14. EXTERNAL DNS OPERATOR
	14.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	14.1.1. External DNS Operator
	14.1.2. External DNS Operator logs

	14.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS
	14.2.1. Installing the External DNS Operator

	14.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
	14.3.1. External DNS Operator configuration parameters

	14.4. CREATING DNS RECORDS ON AWS
	14.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator

	14.5. CREATING DNS RECORDS ON AZURE
	14.5.1. Creating DNS records on an public DNS zone for Azure by using Red Hat External DNS Operator

	14.6. CREATING DNS RECORDS ON GCP
	14.6.1. Creating DNS records on an public managed zone for GCP by using Red Hat External DNS Operator

	14.7. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
	14.7.1. Configuring the External DNS Operator to trust the certificate authority of the cluster-wide proxy


	CHAPTER 15. NETWORK POLICY
	15.1. ABOUT NETWORK POLICY
	15.1.1. About network policy
	15.1.2. Optimizations for network policy
	15.1.3. Next steps
	15.1.4. Additional resources

	15.2. LOGGING NETWORK POLICY EVENTS
	15.2.1. Network policy audit logging
	15.2.2. Network policy audit configuration
	15.2.3. Configuring network policy auditing for a cluster
	15.2.4. Enabling network policy audit logging for a namespace
	15.2.5. Disabling network policy audit logging for a namespace
	15.2.6. Additional resources

	15.3. CREATING A NETWORK POLICY
	15.3.1. Creating a network policy
	15.3.2. Example NetworkPolicy object
	15.3.3. Additional resources

	15.4. VIEWING A NETWORK POLICY
	15.4.1. Viewing network policies
	15.4.2. Example NetworkPolicy object

	15.5. EDITING A NETWORK POLICY
	15.5.1. Editing a network policy
	15.5.2. Example NetworkPolicy object
	15.5.3. Additional resources

	15.6. DELETING A NETWORK POLICY
	15.6.1. Deleting a network policy

	15.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
	15.7.1. Modifying the template for new projects
	15.7.2. Adding network policies to the new project template

	15.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY
	15.8.1. Configuring multitenant isolation by using network policy
	15.8.2. Next steps
	15.8.3. Additional resources


	CHAPTER 16. MULTIPLE NETWORKS
	16.1. UNDERSTANDING MULTIPLE NETWORKS
	16.1.1. Usage scenarios for an additional network
	16.1.2. Additional networks in OpenShift Container Platform

	16.2. CONFIGURING AN ADDITIONAL NETWORK
	16.2.1. Approaches to managing an additional network
	16.2.2. Configuration for an additional network attachment
	16.2.2.1. Configuration of an additional network through the Cluster Network Operator
	16.2.2.2. Configuration of an additional network from a YAML manifest

	16.2.3. Configurations for additional network types
	16.2.3.1. Configuration for a bridge additional network
	16.2.3.2. Configuration for a host device additional network
	16.2.3.3. Configuration for an IPVLAN additional network
	16.2.3.4. Configuration for a MACVLAN additional network

	16.2.4. Configuration of IP address assignment for an additional network
	16.2.4.1. Static IP address assignment configuration
	16.2.4.2. Dynamic IP address (DHCP) assignment configuration
	16.2.4.3. Dynamic IP address assignment configuration with Whereabouts
	16.2.4.4. Creating a Whereabouts reconciler daemon set

	16.2.5. Creating an additional network attachment with the Cluster Network Operator
	16.2.6. Creating an additional network attachment by applying a YAML manifest

	16.3. ABOUT VIRTUAL ROUTING AND FORWARDING
	16.3.1. About virtual routing and forwarding
	16.3.1.1. Benefits of secondary networks for pods for telecommunications operators


	16.4. CONFIGURING MULTI-NETWORK POLICY
	16.4.1. Differences between multi-network policy and network policy
	16.4.2. Enabling multi-network policy for the cluster
	16.4.3. Working with multi-network policy
	16.4.3.1. Prerequisites
	16.4.3.2. Creating a multi-network policy
	16.4.3.3. Editing a multi-network policy
	16.4.3.4. Viewing multi-network policies
	16.4.3.5. Deleting a multi-network policy

	16.4.4. Additional resources

	16.5. ATTACHING A POD TO AN ADDITIONAL NETWORK
	16.5.1. Adding a pod to an additional network
	16.5.1.1. Specifying pod-specific addressing and routing options


	16.6. REMOVING A POD FROM AN ADDITIONAL NETWORK
	16.6.1. Removing a pod from an additional network

	16.7. EDITING AN ADDITIONAL NETWORK
	16.7.1. Modifying an additional network attachment definition

	16.8. REMOVING AN ADDITIONAL NETWORK
	16.8.1. Removing an additional network attachment definition

	16.9. ASSIGNING A SECONDARY NETWORK TO A VRF
	16.9.1. Assigning a secondary network to a VRF
	16.9.1.1. Creating an additional network attachment with the CNI VRF plugin



	CHAPTER 17. HARDWARE NETWORKS
	17.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
	17.1.1. Components that manage SR-IOV network devices
	17.1.1.1. Supported platforms
	17.1.1.2. Supported devices
	17.1.1.3. Automated discovery of SR-IOV network devices
	17.1.1.4. Example use of a virtual function in a pod
	17.1.1.5. DPDK library for use with container applications
	17.1.1.6. Huge pages resource injection for Downward API

	17.1.2. Next steps

	17.2. INSTALLING THE SR-IOV NETWORK OPERATOR
	17.2.1. Installing SR-IOV Network Operator
	17.2.1.1. CLI: Installing the SR-IOV Network Operator
	17.2.1.2. Web console: Installing the SR-IOV Network Operator

	17.2.2. Next steps

	17.3. CONFIGURING THE SR-IOV NETWORK OPERATOR
	17.3.1. Configuring the SR-IOV Network Operator
	17.3.1.1. SR-IOV Network Operator config custom resource
	17.3.1.2. About the Network Resources Injector
	17.3.1.3. About the SR-IOV Network Operator admission controller webhook
	17.3.1.4. About custom node selectors
	17.3.1.5. Disabling or enabling the Network Resources Injector
	17.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook
	17.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon
	17.3.1.8. Configuring the SR-IOV Network Operator for single node installations

	17.3.2. Next steps

	17.4. CONFIGURING AN SR-IOV NETWORK DEVICE
	17.4.1. SR-IOV network node configuration object
	17.4.1.1. SR-IOV network node configuration examples
	17.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

	17.4.2. Configuring SR-IOV network devices
	17.4.3. Troubleshooting SR-IOV configuration
	17.4.4. Assigning an SR-IOV network to a VRF
	17.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin

	17.4.5. Next steps

	17.5. CONFIGURING AN SR-IOV ETHERNET NETWORK ATTACHMENT
	17.5.1. Ethernet device configuration object
	17.5.1.1. Configuration of IP address assignment for an additional network

	17.5.2. Configuring SR-IOV additional network
	17.5.3. Next steps
	17.5.4. Additional resources

	17.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT
	17.6.1. InfiniBand device configuration object
	17.6.1.1. Configuration of IP address assignment for an additional network

	17.6.2. Configuring SR-IOV additional network
	17.6.3. Next steps
	17.6.4. Additional resources

	17.7. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
	17.7.1. Runtime configuration for a network attachment
	17.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment
	17.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment

	17.7.2. Adding a pod to an additional network
	17.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod
	17.7.4. Additional resources

	17.8. USING HIGH PERFORMANCE MULTICAST
	17.8.1. High performance multicast
	17.8.2. Configuring an SR-IOV interface for multicast

	17.9. USING DPDK AND RDMA
	17.9.1. Using a virtual function in DPDK mode with an Intel NIC
	17.9.2. Using a virtual function in DPDK mode with a Mellanox NIC
	17.9.3. Using a virtual function in RDMA mode with a Mellanox NIC
	17.9.4. Additional resources

	17.10. USING POD-LEVEL BONDING
	17.10.1. Configuring a bond interface from two SR-IOV interfaces
	17.10.1.1. Creating a bond network attachment definition
	17.10.1.2. Creating a pod using a bond interface


	17.11. CONFIGURING HARDWARE OFFLOADING
	17.11.1. About hardware offloading
	17.11.2. Supported devices
	17.11.3. Prerequisites
	17.11.4. Configuring a machine config pool for hardware offloading
	17.11.5. Configuring the SR-IOV network node policy
	17.11.6. Creating a network attachment definition
	17.11.7. Adding the network attachment definition to your pods

	17.12. UNINSTALLING THE SR-IOV NETWORK OPERATOR
	17.12.1. Uninstalling the SR-IOV Network Operator


	CHAPTER 18. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	18.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	18.1.1. OpenShift SDN network isolation modes
	18.1.2. Supported default CNI network provider feature matrix

	18.2. CONFIGURING EGRESS IPS FOR A PROJECT
	18.2.1. Egress IP address architectural design and implementation
	18.2.1.1. Platform support
	18.2.1.2. Public cloud platform considerations
	18.2.1.3. Limitations
	18.2.1.4. IP address assignment approaches

	18.2.2. Configuring automatically assigned egress IP addresses for a namespace
	18.2.3. Configuring manually assigned egress IP addresses for a namespace
	18.2.4. Additional resources

	18.3. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	18.3.1. How an egress firewall works in a project
	18.3.1.1. Limitations of an egress firewall
	18.3.1.2. Matching order for egress firewall policy rules
	18.3.1.3. How Domain Name Server (DNS) resolution works

	18.3.2. EgressNetworkPolicy custom resource (CR) object
	18.3.2.1. EgressNetworkPolicy rules
	18.3.2.2. Example EgressNetworkPolicy CR objects

	18.3.3. Creating an egress firewall policy object

	18.4. EDITING AN EGRESS FIREWALL FOR A PROJECT
	18.4.1. Viewing an EgressNetworkPolicy object

	18.5. EDITING AN EGRESS FIREWALL FOR A PROJECT
	18.5.1. Editing an EgressNetworkPolicy object

	18.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	18.6.1. Removing an EgressNetworkPolicy object

	18.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	18.7.1. About an egress router pod
	18.7.1.1. Egress router modes
	18.7.1.2. Egress router pod implementation
	18.7.1.3. Deployment considerations
	18.7.1.4. Failover configuration

	18.7.2. Additional resources

	18.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	18.8.1. Egress router pod specification for redirect mode
	18.8.2. Egress destination configuration format
	18.8.3. Deploying an egress router pod in redirect mode
	18.8.4. Additional resources

	18.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE
	18.9.1. Egress router pod specification for HTTP mode
	18.9.2. Egress destination configuration format
	18.9.3. Deploying an egress router pod in HTTP proxy mode
	18.9.4. Additional resources

	18.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE
	18.10.1. Egress router pod specification for DNS mode
	18.10.2. Egress destination configuration format
	18.10.3. Deploying an egress router pod in DNS proxy mode
	18.10.4. Additional resources

	18.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP
	18.11.1. Configuring an egress router destination mappings with a config map
	18.11.2. Additional resources

	18.12. ENABLING MULTICAST FOR A PROJECT
	18.12.1. About multicast
	18.12.2. Enabling multicast between pods

	18.13. DISABLING MULTICAST FOR A PROJECT
	18.13.1. Disabling multicast between pods

	18.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
	18.14.1. Prerequisites
	18.14.2. Joining projects
	18.14.3. Isolating a project
	18.14.4. Disabling network isolation for a project

	18.15. CONFIGURING KUBE-PROXY
	18.15.1. About iptables rules synchronization
	18.15.2. kube-proxy configuration parameters
	18.15.3. Modifying the kube-proxy configuration


	CHAPTER 19. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER
	19.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK PROVIDER
	19.1.1. OVN-Kubernetes features
	19.1.2. Supported default CNI network provider feature matrix
	19.1.3. OVN-Kubernetes limitations

	19.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER
	19.2.1. Migration to the OVN-Kubernetes network provider
	19.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider
	19.2.1.2. How the migration process works

	19.2.2. Migrating to the OVN-Kubernetes default CNI network provider
	19.2.3. Additional resources

	19.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
	19.3.1. Rolling back the default CNI network provider to OpenShift SDN

	19.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
	19.4.1. Converting to a dual-stack cluster network

	19.5. IPSEC ENCRYPTION CONFIGURATION
	19.5.1. Types of network traffic flows encrypted by IPsec
	19.5.1.1. Network connectivity requirements when IPsec is enabled

	19.5.2. Encryption protocol and IPsec mode
	19.5.3. Security certificate generation and rotation

	19.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
	19.6.1. How an egress firewall works in a project
	19.6.1.1. Limitations of an egress firewall
	19.6.1.2. Matching order for egress firewall policy rules
	19.6.1.3. How Domain Name Server (DNS) resolution works

	19.6.2. EgressFirewall custom resource (CR) object
	19.6.2.1. EgressFirewall rules
	19.6.2.2. Example EgressFirewall CR objects

	19.6.3. Creating an egress firewall policy object

	19.7. VIEWING AN EGRESS FIREWALL FOR A PROJECT
	19.7.1. Viewing an EgressFirewall object

	19.8. EDITING AN EGRESS FIREWALL FOR A PROJECT
	19.8.1. Editing an EgressFirewall object

	19.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	19.9.1. Removing an EgressFirewall object

	19.10. CONFIGURING AN EGRESS IP ADDRESS
	19.10.1. Egress IP address architectural design and implementation
	19.10.1.1. Platform support
	19.10.1.2. Public cloud platform considerations
	19.10.1.3. Assignment of egress IPs to pods
	19.10.1.4. Assignment of egress IPs to nodes
	19.10.1.5. Architectural diagram of an egress IP address configuration

	19.10.2. EgressIP object
	19.10.3. Labeling a node to host egress IP addresses
	19.10.4. Next steps
	19.10.5. Additional resources

	19.11. ASSIGNING AN EGRESS IP ADDRESS
	19.11.1. Assigning an egress IP address to a namespace
	19.11.2. Additional resources

	19.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD
	19.12.1. About an egress router pod
	19.12.1.1. Egress router modes
	19.12.1.2. Egress router pod implementation
	19.12.1.3. Deployment considerations
	19.12.1.4. Failover configuration

	19.12.2. Additional resources

	19.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE
	19.13.1. Egress router custom resource
	19.13.2. Deploying an egress router in redirect mode

	19.14. ENABLING MULTICAST FOR A PROJECT
	19.14.1. About multicast
	19.14.2. Enabling multicast between pods

	19.15. DISABLING MULTICAST FOR A PROJECT
	19.15.1. Disabling multicast between pods

	19.16. TRACKING NETWORK FLOWS
	19.16.1. Network object configuration for tracking network flows
	19.16.2. Adding destinations for network flows collectors
	19.16.3. Deleting all destinations for network flows collectors
	19.16.4. Additional resources

	19.17. CONFIGURING HYBRID NETWORKING
	19.17.1. Configuring hybrid networking with OVN-Kubernetes
	19.17.2. Additional resources


	CHAPTER 20. CONFIGURING ROUTES
	20.1. ROUTE CONFIGURATION
	20.1.1. Creating an HTTP-based route
	20.1.2. Configuring route timeouts
	20.1.3. HTTP Strict Transport Security
	20.1.3.1. Enabling HTTP Strict Transport Security per-route
	20.1.3.2. Disabling HTTP Strict Transport Security per-route
	20.1.3.3. Enforcing HTTP Strict Transport Security per-domain

	20.1.4. Troubleshooting throughput issues
	20.1.5. Using cookies to keep route statefulness
	20.1.5.1. Annotating a route with a cookie

	20.1.6. Path-based routes
	20.1.7. Route-specific annotations
	20.1.8. Configuring the route admission policy
	20.1.9. Creating a route through an Ingress object
	20.1.10. Creating a route using the default certificate through an Ingress object
	20.1.11. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

	20.2. SECURED ROUTES
	20.2.1. Creating a re-encrypt route with a custom certificate
	20.2.2. Creating an edge route with a custom certificate
	20.2.3. Creating a passthrough route


	CHAPTER 21. CONFIGURING INGRESS CLUSTER TRAFFIC
	21.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	21.1.1. Comparision: Fault tolerant access to external IP addresses

	21.2. CONFIGURING EXTERNALIPS FOR SERVICES
	21.2.1. Prerequisites
	21.2.2. About ExternalIP
	21.2.2.1. Configuration for ExternalIP
	21.2.2.2. Restrictions on the assignment of an external IP address
	21.2.2.3. Example policy objects

	21.2.3. ExternalIP address block configuration
	Example external IP configurations

	21.2.4. Configure external IP address blocks for your cluster
	21.2.5. Next steps

	21.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	21.3.1. Using Ingress Controllers and routes
	21.3.2. Prerequisites
	21.3.3. Creating a project and service
	21.3.4. Exposing the service by creating a route
	21.3.5. Configuring Ingress Controller sharding by using route labels
	21.3.6. Configuring Ingress Controller sharding by using namespace labels
	21.3.7. Additional resources

	21.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	21.4.1. Using a load balancer to get traffic into the cluster
	21.4.2. Prerequisites
	21.4.3. Creating a project and service
	21.4.4. Exposing the service by creating a route
	21.4.5. Creating a load balancer service

	21.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS USING A NETWORK LOAD BALANCER
	21.5.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
	21.5.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
	21.5.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster
	21.5.4. Additional resources

	21.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
	21.6.1. Prerequisites
	21.6.2. Attaching an ExternalIP to a service
	21.6.3. Additional resources

	21.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
	21.7.1. Using a NodePort to get traffic into the cluster
	21.7.2. Prerequisites
	21.7.3. Creating a project and service
	21.7.4. Exposing the service by creating a route
	21.7.5. Additional resources


	CHAPTER 22. KUBERNETES NMSTATE
	22.1. ABOUT THE KUBERNETES NMSTATE OPERATOR
	22.1.1. Installing the Kubernetes NMState Operator
	22.1.1.1. Installing the Kubernetes NMState Operator using the web console
	22.1.1.2. Installing the Kubernetes NMState Operator using the CLI


	22.2. OBSERVING NODE NETWORK STATE
	22.2.1. About nmstate
	22.2.2. Viewing the network state of a node

	22.3. UPDATING NODE NETWORK CONFIGURATION
	22.3.1. About nmstate
	22.3.2. Creating an interface on nodes
	Additional resources

	22.3.3. Confirming node network policy updates on nodes
	22.3.4. Removing an interface from nodes
	22.3.5. Example policy configurations for different interfaces
	22.3.5.1. Example: Linux bridge interface node network configuration policy
	22.3.5.2. Example: VLAN interface node network configuration policy
	22.3.5.3. Example: Bond interface node network configuration policy
	22.3.5.4. Example: Ethernet interface node network configuration policy
	22.3.5.5. Example: Multiple interfaces in the same node network configuration policy

	22.3.6. Examples: IP management
	22.3.6.1. Static
	22.3.6.2. No IP address
	22.3.6.3. Dynamic host configuration
	22.3.6.4. DNS
	22.3.6.5. Static routing


	22.4. TROUBLESHOOTING NODE NETWORK CONFIGURATION
	22.4.1. Troubleshooting an incorrect node network configuration policy configuration


	CHAPTER 23. CONFIGURING THE CLUSTER-WIDE PROXY
	23.1. PREREQUISITES
	23.2. ENABLING THE CLUSTER-WIDE PROXY
	23.3. REMOVING THE CLUSTER-WIDE PROXY
	Additional resources


	CHAPTER 24. CONFIGURING A CUSTOM PKI
	24.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
	24.2. ENABLING THE CLUSTER-WIDE PROXY
	24.3. CERTIFICATE INJECTION USING OPERATORS

	CHAPTER 25. LOAD BALANCING ON RHOSP
	25.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
	25.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
	25.2.1. Scaling clusters by using Octavia
	25.2.2. Scaling clusters that use Kuryr by using Octavia

	25.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
	25.4. CONFIGURING AN EXTERNAL LOAD BALANCER

	CHAPTER 26. LOAD BALANCING WITH METALLB
	26.1. ABOUT METALLB AND THE METALLB OPERATOR
	26.1.1. When to use MetalLB
	26.1.2. MetalLB Operator custom resources
	26.1.3. MetalLB software components
	26.1.4. MetalLB concepts for layer 2 mode
	26.1.5. MetalLB concepts for BGP mode
	26.1.6. MetalLB and external traffic policy
	26.1.7. Limitations and restrictions
	26.1.7.1. Infrastructure considerations for MetalLB
	26.1.7.2. Limitations for layer 2 mode
	26.1.7.3. Limitations for BGP mode

	26.1.8. Additional resources

	26.2. INSTALLING THE METALLB OPERATOR
	26.2.1. Installing the MetalLB Operator from the OperatorHub using the web console
	26.2.2. Installing from OperatorHub using the CLI
	26.2.3. Starting MetalLB on your cluster
	26.2.3.1. Limit speaker pods to specific nodes

	26.2.4. Next steps

	26.3. CONFIGURING METALLB ADDRESS POOLS
	26.3.1. About the address pool custom resource
	26.3.2. Configuring an address pool
	26.3.3. Example address pool configurations
	26.3.3.1. Example: IPv4 and CIDR ranges
	26.3.3.2. Example: Reserve IP addresses
	26.3.3.3. Example: IPv4 and IPv6 addresses
	26.3.3.4. Example: Simple address pool with BGP mode
	26.3.3.5. Example: BGP mode with custom advertisement

	26.3.4. Next steps

	26.4. CONFIGURING METALLB BGP PEERS
	26.4.1. About the BGP peer custom resource
	26.4.2. Configuring a BGP peer
	26.4.3. Example BGP peer configurations
	26.4.3.1. Example: Limit which nodes connect to a BGP peer
	26.4.3.2. Example: Specify a BFD profile for a BGP peer
	26.4.3.3. Example: Specify BGP peers for dual-stack networking


	26.5. CONFIGURING METALLB BFD PROFILES
	26.5.1. About the BFD profile custom resource
	26.5.2. Configuring a BFD profile
	26.5.3. Next steps

	26.6. CONFIGURING SERVICES TO USE METALLB
	26.6.1. Request a specific IP address
	26.6.2. Request an IP address from a specific pool
	26.6.3. Accept any IP address
	26.6.4. Share a specific IP address
	26.6.5. Configuring a service with MetalLB

	26.7. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT
	26.7.1. Setting the MetalLB logging levels
	26.7.1.1. FRRouting (FRR) log levels

	26.7.2. Troubleshooting BGP issues
	26.7.3. Troubleshooting BFD issues
	26.7.4. MetalLB metrics for BGP and BFD
	26.7.5. About collecting MetalLB data


	CHAPTER 27. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS
	27.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING
	27.1.1. Network Metrics Daemon
	27.1.2. Metrics with network name


	CHAPTER 28. NETWORK OBSERVABILITY
	28.1. NETWORK OBSERVABILITY OPERATOR RELEASE NOTES
	28.1.1. Network Observability Operator 1.3.0
	28.1.1.1. Channel deprecation
	28.1.1.2. New features and enhancements
	28.1.1.3. Deprecated features
	28.1.1.4. Bug fixes
	28.1.1.5. Known issue

	28.1.2. Network Observability Operator 1.2.0
	28.1.2.1. Preparing for the next update
	28.1.2.2. New features and enhancements
	28.1.2.3. Bug fixes
	28.1.2.4. Known issue
	28.1.2.5. Notable technical changes

	28.1.3. Network Observability Operator 1.1.0
	28.1.3.1. Bug fix


	28.2. ABOUT NETWORK OBSERVABILITY
	28.2.1. Dependency of Network Observability Operator
	28.2.2. Optional dependencies of the Network Observability Operator
	28.2.3. Network Observability Operator
	28.2.4. OpenShift Container Platform console integration
	28.2.4.1. Network Observability metrics
	28.2.4.2. Network Observability topology views
	28.2.4.3. Traffic flow tables


	28.3. INSTALLING THE NETWORK OBSERVABILITY OPERATOR
	28.3.1. Installing the Loki Operator
	28.3.1.1. Create a LokiStack custom resource
	28.3.1.2. LokiStack ingestion limits and health alerts

	28.3.2. Configure authorization and multi-tenancy
	28.3.3. Enable multi-tenancy in Network Observability
	28.3.4. Installing Kafka (optional)
	28.3.5. Installing the Network Observability Operator
	28.3.6. Uninstalling the Network Observability Operator

	28.4. NETWORK OBSERVABILITY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	28.4.1. Viewing statuses
	28.4.2. Viewing Network Observability Operator status and configuration

	28.5. CONFIGURING THE NETWORK OBSERVABILITY OPERATOR
	28.5.1. View the FlowCollector resource
	28.5.2. Configuring the Flow Collector resource with Kafka
	28.5.3. Export enriched network flow data
	28.5.4. Updating the Flow Collector resource
	28.5.5. Configuring quick filters
	28.5.6. Resource management and performance considerations
	28.5.6.1. Resource considerations


	28.6. NETWORK POLICY
	28.6.1. Creating a network policy for Network Observability
	28.6.2. Example network policy

	28.7. OBSERVING THE NETWORK TRAFFIC
	28.7.1. Observing the network traffic from the Overview view
	28.7.1.1. Working with the Overview view
	28.7.1.2. Configuring advanced options for the Overview view

	28.7.2. Observing the network traffic from the Traffic flows view
	28.7.2.1. Working with the Traffic flows view
	28.7.2.2. Configuring advanced options for the Traffic flows view
	28.7.2.3. Working with conversation tracking

	28.7.3. Observing the network traffic from the Topology view
	28.7.3.1. Working with the Topology view
	28.7.3.2. Configuring the advanced options for the Topology view

	28.7.4. Filtering the network traffic

	28.8. MONITORING THE NETWORK OBSERVABILITY OPERATOR
	28.8.1. Viewing health information
	28.8.1.1. Disabling health alerts


	28.9. FLOWCOLLECTOR CONFIGURATION PARAMETERS
	28.9.1. FlowCollector API specifications
	28.9.1.1. .metadata
	28.9.1.2. .spec
	28.9.1.3. .spec.agent
	28.9.1.4. .spec.agent.ebpf
	28.9.1.5. .spec.agent.ebpf.debug
	28.9.1.6. .spec.agent.ebpf.resources
	28.9.1.7. .spec.agent.ipfix
	28.9.1.8. .spec.agent.ipfix.clusterNetworkOperator
	28.9.1.9. .spec.agent.ipfix.ovnKubernetes
	28.9.1.10. .spec.consolePlugin
	28.9.1.11. .spec.consolePlugin.autoscaler
	28.9.1.12. .spec.consolePlugin.portNaming
	28.9.1.13. .spec.consolePlugin.quickFilters
	28.9.1.14. .spec.consolePlugin.quickFilters[]
	28.9.1.15. .spec.consolePlugin.resources
	28.9.1.16. .spec.exporters
	28.9.1.17. .spec.exporters[]
	28.9.1.18. .spec.exporters[].ipfix
	28.9.1.19. .spec.exporters[].kafka
	28.9.1.20. .spec.exporters[].kafka.tls
	28.9.1.21. .spec.exporters[].kafka.tls.caCert
	28.9.1.22. .spec.exporters[].kafka.tls.userCert
	28.9.1.23. .spec.kafka
	28.9.1.24. .spec.kafka.tls
	28.9.1.25. .spec.kafka.tls.caCert
	28.9.1.26. .spec.kafka.tls.userCert
	28.9.1.27. .spec.loki
	28.9.1.28. .spec.loki.statusTls
	28.9.1.29. .spec.loki.statusTls.caCert
	28.9.1.30. .spec.loki.statusTls.userCert
	28.9.1.31. .spec.loki.tls
	28.9.1.32. .spec.loki.tls.caCert
	28.9.1.33. .spec.loki.tls.userCert
	28.9.1.34. .spec.processor
	28.9.1.35. .spec.processor.debug
	28.9.1.36. .spec.processor.kafkaConsumerAutoscaler
	28.9.1.37. .spec.processor.metrics
	28.9.1.38. .spec.processor.metrics.server
	28.9.1.39. .spec.processor.metrics.server.tls
	28.9.1.40. .spec.processor.metrics.server.tls.provided
	28.9.1.41. .spec.processor.resources


	28.10. NETWORK FLOWS FORMAT REFERENCE
	28.10.1. Network Flows format reference
	28.10.1.1. Labels
	28.10.1.2. Fields
	28.10.1.3. Enumeration: FlowDirection


	28.11. TROUBLESHOOTING NETWORK OBSERVABILITY
	28.11.1. Using the must-gather tool
	28.11.2. Configuring network traffic menu entry in the OpenShift Container Platform console
	28.11.3. Flowlogs-Pipeline does not consume network flows after installing Kafka
	28.11.4. Failing to see network flows from both br-int and br-ex interfaces
	28.11.5. Network Observability controller manager pod runs out of memory



