
OpenShift Container Platform 3.5

Developer Guide

OpenShift Container Platform 3.5 Developer Reference

Last Updated: 2019-04-18

OpenShift Container Platform 3.5 Developer Guide

OpenShift Container Platform 3.5 Developer Reference

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

These topics help developers set up and configure a workstation to develop and deploy applications
in an OpenShift Container Platform cloud environment with a command-line interface (CLI). This
guide provide s detailed instructions and examples to help developers: Monitor and browse projects
with the web console Configure and utilize the CLI Generate configurations using templates Manage
builds and webhooks Define and trigger deployments Integrate external services (databases, SaaS
endpoints)

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT
2.1. PLANNING YOUR DEVELOPMENT PROCESS

2.1.1. Overview
2.1.2. Using OpenShift Container Platform as Your Development Environment
2.1.3. Bringing an Application to Deploy on OpenShift Container Platform

2.2. CREATING NEW APPLICATIONS
2.2.1. Overview
2.2.2. Creating an Application Using the CLI

2.2.2.1. Creating an Application From Source Code
2.2.2.2. Creating an Application From an Image
2.2.2.3. Creating an Application From a Template
2.2.2.4. Further Modifying Application Creation

2.2.2.4.1. Specifying Environment Variables
2.2.2.4.2. Specifying Build Environment Variables
2.2.2.4.3. Specifying Labels
2.2.2.4.4. Viewing the Output Without Creation
2.2.2.4.5. Creating Objects With Different Names
2.2.2.4.6. Creating Objects in a Different Project
2.2.2.4.7. Creating Multiple Objects
2.2.2.4.8. Grouping Images and Source in a Single Pod
2.2.2.4.9. Searching for Images, Templates, and Other Inputs

2.2.3. Creating an Application Using the Web Console
2.3. PROMOTING APPLICATIONS ACROSS ENVIRONMENTS

2.3.1. Overview
2.3.2. Application Components

2.3.2.1. API Objects
2.3.2.2. Images
2.3.2.3. Summary

2.3.3. Deployment Environments
2.3.3.1. Considerations
2.3.3.2. Summary

2.3.4. Methods and Tools
2.3.4.1. Managing API Objects

2.3.4.1.1. Exporting API Object State
2.3.4.1.2. Importing API Object State

2.3.4.1.2.1. Initial Creation
2.3.4.1.2.2. Iterative Modification

2.3.4.2. Managing Images and Image Streams
2.3.4.2.1. Moving Images

2.3.4.2.1.1. When Staging Environments Share a Registry
2.3.4.2.1.2. When Staging Environments Use Different Registries

2.3.4.2.2. Deploying
2.3.4.2.3. Automating Promotion Flows with Jenkins
2.3.4.2.4. Promotion Caveats

2.3.4.2.4.1. API Object References
2.3.4.2.4.2. Image Registry References

2.3.4.3. Summary
2.3.5. Scenarios and Examples

2.3.5.1. Setting up for Promotion

13

14
14
14
14
15
16
16
16
16
18
18
19
20
20
21
21
21
21
21
22
22
22
26
26
26
26
28
28
29
29
29
29
30
30
31
31
31
31
31
32
32
32
32
33
33
33
34
34
34

Table of Contents

1

. .

. .

. .

. .

2.3.5.2. Repeatable Promotion Process
2.3.5.3. Repeatable Promotion Process Using Jenkins

CHAPTER 3. AUTHENTICATION
3.1. WEB CONSOLE AUTHENTICATION
3.2. CLI AUTHENTICATION

CHAPTER 4. AUTHORIZATION
4.1. OVERVIEW
4.2. CHECKING IF USERS CAN CREATE PODS
4.3. DETERMINING WHAT YOU CAN DO AS AN AUTHENTICATED USER

CHAPTER 5. PROJECTS
5.1. OVERVIEW
5.2. CREATING A PROJECT
5.3. VIEWING PROJECTS
5.4. CHECKING PROJECT STATUS
5.5. FILTERING BY LABELS
5.6. BOOKMARKING PAGE STATES
5.7. DELETING A PROJECT

CHAPTER 6. MIGRATING APPLICATIONS
6.1. OVERVIEW
6.2. MIGRATING DATABASE APPLICATIONS

6.2.1. Overview
6.2.2. Supported Databases
6.2.3. MySQL
6.2.4. PostgreSQL
6.2.5. MongoDB

6.3. MIGRATING WEB FRAMEWORK APPLICATIONS
6.3.1. Overview
6.3.2. Python
6.3.3. Ruby
6.3.4. PHP
6.3.5. Perl
6.3.6. Node.js
6.3.7. JBoss EAP
6.3.8. JBoss WS (Tomcat)
6.3.9. JBoss AS (Wildfly 10)
6.3.10. Supported JBoss/XPaas Versions

6.4. QUICKSTART EXAMPLES
6.4.1. Overview
6.4.2. Workflow

6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)
6.5.1. Overview
6.5.2. Jenkins

6.6. WEBHOOKS AND ACTION HOOKS
6.6.1. Overview
6.6.2. Webhooks
6.6.3. Action Hooks

6.7. S2I TOOL
6.7.1. Overview
6.7.2. Creating a Container Image

6.8. SUPPORT GUIDE

35
37

39
39
39

41
41
41
41

43
43
43
43
44
44
45
45

47
47
47
48
48
48
50
52
54
54
54
55
56
56
57
58
59
59
60
61
61
61
62
62
62
63
63
63
63
64
64
64
65

OpenShift Container Platform 3.5 Developer Guide

2

. .

. .

6.8.1. Overview
6.8.2. Supported Databases
6.8.3. Supported Languages
6.8.4. Supported Frameworks
6.8.5. Supported Markers
6.8.6. Supported Environment Variables

CHAPTER 7. APPLICATION TUTORIALS
7.1. OVERVIEW
7.2. QUICKSTART TEMPLATES

7.2.1. Overview
7.2.2. Web Framework Quickstart Templates

7.3. RUBY ON RAILS
7.3.1. Overview
7.3.2. Local Workstation Setup

7.3.2.1. Setting Up the Database
7.3.3. Writing Your Application

7.3.3.1. Creating a Welcome Page
7.3.3.2. Configuring the Application for OpenShift Container Platform
7.3.3.3. Storing Your Application in Git

7.3.4. Deploying Your Application to OpenShift Container Platform
7.3.4.1. Creating the Database Service
7.3.4.2. Creating the Frontend Service
7.3.4.3. Creating a Route for Your Application

7.4. SETTING UP A NEXUS MIRROR FOR MAVEN
7.4.1. Introduction
7.4.2. Setting up Nexus

7.4.2.1. Using Probes to Check for Success
7.4.2.2. Adding Persistence to Nexus

7.4.3. Connecting to Nexus
7.4.4. Confirming Success
7.4.5. Additional Resources

CHAPTER 8. BUILDS
8.1. HOW BUILDS WORK

8.1.1. What Is a Build?
8.1.2. What Is a BuildConfig?

8.2. BASIC BUILD OPERATIONS
8.2.1. Starting a Build
8.2.2. Canceling a Build
8.2.3. Deleting a BuildConfig
8.2.4. Viewing Build Details
8.2.5. Accessing Build Logs

8.3. BUILD INPUTS
8.3.1. How Build Inputs Work
8.3.2. Dockerfile Source
8.3.3. Image Source
8.3.4. Git Source

8.3.4.1. Using a Proxy
8.3.4.2. Source Clone Secrets

8.3.4.2.1. Automatically Adding a Source Clone Secret to a Build Configuration
8.3.4.2.2. Manually Adding Source Clone Secrets
8.3.4.2.3. .Gitconfig File

65
65
65
65
66
67

69
69
69
69
69
70
70
70
70
71
72
72
73
74
74
75
76
76
76
77
77
78
78
79
79

80
80
80
80
82
82
83
83
83
84
85
85
86
86
87
88
88
89
90
91

Table of Contents

3

8.3.4.2.4. .gitconfig File for Secured Git
8.3.4.2.5. Basic Authentication
8.3.4.2.6. SSH Key Authentication
8.3.4.2.7. Trusted Certificate Authorities
8.3.4.2.8. Combinations

8.3.5. Binary (Local) Source
8.3.6. Input Secrets

8.3.6.1. Adding Input Secrets
8.3.6.2. Source-to-Image Strategy
8.3.6.3. Docker Strategy
8.3.6.4. Custom Strategy

8.3.7. Using External Artifacts
8.3.8. Using Docker Credentials for Private Registries

8.4. BUILD OUTPUT
8.4.1. Build Output Overview
8.4.2. Output Image Environment Variables
8.4.3. Output Image Labels
8.4.4. Output Image Digest
8.4.5. Using Docker Credentials for Private Registries

8.5. BUILD STRATEGY OPTIONS
8.5.1. Source-to-Image Strategy Options

8.5.1.1. Force Pull
8.5.1.2. Incremental Builds
8.5.1.3. Extended Builds

8.5.1.3.1. Testing your Application
8.5.1.4. Overriding Builder Image Scripts
8.5.1.5. Environment Variables

8.5.1.5.1. Environment Files
8.5.1.5.2. BuildConfig Environment

8.5.1.6. Adding Secrets via Web Console
8.5.1.6.1. Enabling Pulling and Pushing

8.5.1.7. Ignoring Source Files
8.5.2. Docker Strategy Options

8.5.2.1. FROM Image
8.5.2.2. Dockerfile Path
8.5.2.3. No Cache
8.5.2.4. Force Pull
8.5.2.5. Environment Variables
8.5.2.6. Adding Secrets via Web Console

8.5.2.6.1. Enabling Pulling and Pushing
8.5.3. Custom Strategy Options

8.5.3.1. FROM Image
8.5.3.2. Exposing the Docker Socket
8.5.3.3. Secrets

8.5.3.3.1. Adding Secrets via Web Console
8.5.3.3.2. Enabling Pulling and Pushing

8.5.3.4. Force Pull
8.5.3.5. Environment Variables

8.5.4. Pipeline Strategy Options
8.5.4.1. Providing the Jenkinsfile

8.6. TRIGGERING BUILDS
8.6.1. Build Triggers Overview
8.6.2. Webhook Triggers

91
92
92
93
94
94
95
96
96
97
97
98
99

100
100
101
101
102
102
102
102
102
103
103
104
104
105
105
105
106
106
106
106
106
107
107
107
107
108
108
108
108
108
109
109
109
109
110
110
110
111
111
111

OpenShift Container Platform 3.5 Developer Guide

4

. .

8.6.2.1. GitHub Webhooks
8.6.2.2. Generic Webhooks
8.6.2.3. Displaying Webhook URLs

8.6.3. Image Change Triggers
8.6.4. Configuration Change Triggers

8.7. BUILD HOOKS
8.7.1. Build Hooks Overview
8.7.2. Configuring Post Commit Build Hooks

8.7.2.1. Using the CLI
8.8. BUILD RUN POLICY

8.8.1. Build Run Policy Overview
8.8.2. Serial Run Policy
8.8.3. SerialLatestOnly Run Policy
8.8.4. Parallel Run Policy

8.9. ADVANCED BUILD OPERATIONS
8.9.1. Setting Build Resources
8.9.2. Setting Maximum Duration
8.9.3. Assigning Builds to Specific Nodes
8.9.4. Chaining Builds

8.10. BUILD TROUBLESHOOTING
8.10.1. Requested Access to Resources Denied

CHAPTER 9. DEPLOYMENTS
9.1. HOW DEPLOYMENTS WORK

9.1.1. What Is a Deployment?
9.1.2. Creating a Deployment Configuration

9.2. BASIC DEPLOYMENT OPERATIONS
9.2.1. Starting a Deployment
9.2.2. Viewing a Deployment
9.2.3. Rolling Back a Deployment
9.2.4. Executing Commands Inside a Container
9.2.5. Viewing Deployment Logs
9.2.6. Setting Deployment Triggers

9.2.6.1. Configuration Change Trigger
9.2.6.2. ImageChange Trigger

9.2.6.2.1. Using the Command Line
9.2.7. Setting Deployment Resources
9.2.8. Manual Scaling
9.2.9. Assigning Pods to Specific Nodes
9.2.10. Running a Pod with a Different Service Account
9.2.11. Adding Secrets to Deployment Configurations from the Web Console

9.3. DEPLOYMENT STRATEGIES
9.3.1. What Are Deployment Strategies?
9.3.2. Rolling Strategy

9.3.2.1. Canary Deployments
9.3.2.2. When to Use a Rolling Deployment
9.3.2.3. Rolling Example

9.3.3. Recreate Strategy
9.3.3.1. When to Use a Recreate Deployment

9.3.4. Custom Strategy
9.3.5. Lifecycle Hooks

9.3.5.1. Pod-based Lifecycle Hook
9.3.5.2. Using the Command Line

111
112
114
114
115
115
115
116
117
117
117
118
118
119
119
119
120
120
121
123
123

124
124
124
124
126
126
126
126
127
127
128
128
128
129
129
130
131
131
132
132
132
132
132
132
134
135
135
135
137
137
138

Table of Contents

5

. .

. .

. .

9.4. ADVANCED DEPLOYMENT STRATEGIES
9.4.1. Blue-Green Deployment

9.4.1.1. When to Use a Blue-Green Deployment
9.4.1.2. Blue-Green Deployment Example

9.4.1.2.1. Using a Route and Two Services
9.4.2. A/B Deployment

9.4.2.1. When to Use an A/B Deployment
9.4.2.2. A/B Deployment Example

9.4.2.2.1. One Service, Multiple Deployment Configurations
9.4.3. Proxy Shard / Traffic Splitter
9.4.4. N-1 Compatibility
9.4.5. Graceful Termination

9.5. KUBERNETES DEPLOYMENTS SUPPORT
9.5.1. New Object Type: Deployments
9.5.2. Kubernetes Deployments vs Deployment Configurations

9.5.2.1. Deployment Configuration-Specific Features
9.5.2.1.1. Automatic Rollbacks
9.5.2.1.2. Triggers
9.5.2.1.3. Lifecycle Hooks
9.5.2.1.4. Custom Strategies
9.5.2.1.5. Canary Deployments
9.5.2.1.6. Test Deployments

9.5.2.2. Kubernetes Deployment-Specific Features
9.5.2.2.1. Rollover
9.5.2.2.2. Proportional Scaling
9.5.2.2.3. Pausing Mid-rollout

CHAPTER 10. TEMPLATES
10.1. OVERVIEW
10.2. UPLOADING A TEMPLATE
10.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE
10.4. CREATING FROM TEMPLATES USING THE CLI

10.4.1. Labels
10.4.2. Parameters
10.4.3. Generating a List of Objects

10.5. MODIFYING AN UPLOADED TEMPLATE
10.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES
10.7. WRITING TEMPLATES

10.7.1. Description
10.7.2. Labels
10.7.3. Parameters
10.7.4. Object List
10.7.5. Other Recommendations
10.7.6. Creating a Template from Existing Objects

CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS
11.1. OVERVIEW
11.2. START A SECURE SHELL SESSION
11.3. SECURE SHELL SESSION HELP

CHAPTER 12. SERVICE ACCOUNTS
12.1. OVERVIEW
12.2. USER NAMES AND GROUPS
12.3. DEFAULT SERVICE ACCOUNTS AND ROLES

139
139
139
139
139
140
140
140
140
142
142
142
143
143
144
144
144
144
144
144
144
145
145
145
145
145

146
146
146
146
148
149
149
150
151
151
152
152
153
154
156
157
157

159
159
159
159

160
160
160
161

OpenShift Container Platform 3.5 Developer Guide

6

. .

. .

. .

12.4. MANAGING SERVICE ACCOUNTS
12.5. ENABLING SERVICE ACCOUNT AUTHENTICATION
12.6. MANAGED SERVICE ACCOUNTS
12.7. INFRASTRUCTURE SERVICE ACCOUNTS
12.8. SERVICE ACCOUNTS AND SECRETS
12.9. MANAGING ALLOWED SECRETS
12.10. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A CONTAINER
12.11. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

CHAPTER 13. MANAGING IMAGES
13.1. OVERVIEW
13.2. TAGGING IMAGES

13.2.1. Adding Tags to Image Streams
13.2.2. Recommended Tagging Conventions
13.2.3. Removing Tags from Image Streams
13.2.4. Referencing Images in Image Streams

13.3. IMAGE PULL POLICY
13.4. ACCESSING THE INTERNAL REGISTRY
13.5. USING IMAGE PULL SECRETS

13.5.1. Allowing Pods to Reference Images Across Projects
13.5.2. Allowing Pods to Reference Images from Other Secured Registries

13.6. IMPORTING TAG AND IMAGE METADATA
13.6.1. Importing Images from Insecure Registries

13.6.1.1. ImageStream Tag Policies
13.6.1.1.1. Insecure Tag Import Policy
13.6.1.1.2. Reference Policy

13.6.2. Importing Images from Private Registries
13.6.3. Adding Trusted Certificates for External Registries
13.6.4. Importing Images Across Projects
13.6.5. Creating an Image Stream by Manually Pushing an Image

13.7. WRITING IMAGE STREAM DEFINITIONS

CHAPTER 14. IMAGE SIGNATURES
14.1. OVERVIEW
14.2. SIGNING IMAGES USING ATOMIC CLI
14.3. ACCESSING IMAGE SIGNATURES USING REGISTRY API

14.3.1. Writing Image Signatures
14.3.2. Reading Image Signatures

14.4. VERIFYING IMAGE SIGNATURES USING OPENSHIFT CLI

CHAPTER 15. QUOTAS AND LIMIT RANGES
15.1. OVERVIEW
15.2. QUOTAS

15.2.1. Viewing Quotas
15.2.2. Resources Managed by Quota
15.2.3. Quota Scopes
15.2.4. Quota Enforcement
15.2.5. Requests vs Limits

15.3. LIMIT RANGES
15.3.1. Viewing Limit Ranges
15.3.2. Container Limits
15.3.3. Pod Limits

15.4. COMPUTE RESOURCES
15.4.1. CPU Requests

161
162
162
163
163
164
165
165

167
167
167
167
168
169
169
172
172
173
173
173
174
176
177
177
177
178
178
178
179
180

182
182
182
182
183
183
184

185
185
185
185
188
190
191
191
191
192
193
194
195
196

Table of Contents

7

. .

. .

. .

15.4.2. Viewing Compute Resources
15.4.3. CPU Limits
15.4.4. Memory Requests
15.4.5. Memory Limits
15.4.6. Quality of Service Tiers
15.4.7. Specifying Compute Resources via CLI
15.4.8. Opaque Integer Resources

15.5. PROJECT RESOURCE LIMITS

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER
16.1. GETTING TRAFFIC INTO A CLUSTER
16.2. USING A ROUTER TO GET TRAFFIC INTO THE CLUSTER

16.2.1. Overview
16.2.2. Administrator Prerequisites

16.2.2.1. Defining the Public IP Range
16.2.3. Create a Project and Service
16.2.4. Expose the Service to Create a Route
16.2.5. Configure the Router
16.2.6. Configure IP Failover using VIPs

16.3. USING A LOAD BALANCER TO GET TRAFFIC INTO THE CLUSTER
16.3.1. Overview
16.3.2. Administrator Prerequisites

16.3.2.1. Defining the Public IP Range
16.3.3. Create a Project and Service
16.3.4. Expose the Service to Create a Route
16.3.5. Create the Load Balancer Service
16.3.6. Configuring Networking
16.3.7. Configure IP Failover using VIPs

16.4. USING A SERVICE EXTERNAL IP TO GET TRAFFIC INTO THE CLUSTER
16.4.1. Overview
16.4.2. Administrator Prerequisites

16.4.2.1. Defining the Public IP Range
16.4.3. Create a Project and Service
16.4.4. Expose the Service to Create a Route
16.4.5. Assigning an IP Address to the Service
16.4.6. Configuring Networking
16.4.7. Configure IP Failover using VIPs

16.5. USING A NODEPORT TO GET TRAFFIC INTO THE CLUSTER
16.5.1. Overview
16.5.2. Administrator Prerequisites
16.5.3. Configuring the Service

CHAPTER 17. ROUTES
17.1. OVERVIEW
17.2. CREATING ROUTES
17.3. LOAD BALANCING FOR A/B TESTING

CHAPTER 18. INTEGRATING EXTERNAL SERVICES
18.1. OVERVIEW
18.2. DEFINING A SERVICE FOR AN EXTERNAL DATABASE

18.2.1. Step 1: Define a Service
18.2.1.1. Using an IP address
18.2.1.2. Using an External Domain Name

18.2.2. Step 2: Consume a Service

196
196
197
197
197
198
198
199

200
200
200
200
201
201
202
202
203
204
204
204
205
205
206
206
207
209
210
211
211
211
212
212
213
214
215
218
218
218
219
219

221
221
221
223

225
225
225
225
225
226
227

OpenShift Container Platform 3.5 Developer Guide

8

. .

. .

. .

. .

. .

18.3. EXTERNAL SAAS PROVIDER
18.3.1. Using an IP address and Endpoints
18.3.2. Using an External Domain Name

CHAPTER 19. SECRETS
19.1. USING SECRETS

19.1.1. Properties of Secrets
19.1.2. Creating Secrets
19.1.3. Types of Secrets
19.1.4. Updating Secrets

19.2. SECRETS IN VOLUMES AND ENVIRONMENT VARIABLES
19.3. IMAGE PULL SECRETS
19.4. SOURCE CLONE SECRETS
19.5. SERVICE SERVING CERTIFICATE SECRETS
19.6. RESTRICTIONS

19.6.1. Secret Data Keys
19.7. EXAMPLES
19.8. TROUBLESHOOTING

CHAPTER 20. CONFIGMAPS
20.1. OVERVIEW
20.2. CREATING CONFIGMAPS

20.2.1. Creating from Directories
20.2.2. Creating from Files
20.2.3. Creating from Literal Values

20.3. USE CASES: CONSUMING CONFIGMAPS IN PODS
20.3.1. Consuming in Environment Variables
20.3.2. Setting Command-line Arguments
20.3.3. Consuming in Volumes

20.4. EXAMPLE: CONFIGURING REDIS
20.5. RESTRICTIONS

CHAPTER 21. USING DAEMONSETS
21.1. OVERVIEW
21.2. CREATING DAEMONSETS

CHAPTER 22. POD AUTOSCALING
22.1. OVERVIEW
22.2. REQUIREMENTS FOR USING HORIZONTAL POD AUTOSCALERS
22.3. SUPPORTED METRICS
22.4. AUTOSCALING
22.5. CREATING A HORIZONTAL POD AUTOSCALER
22.6. VIEWING A HORIZONTAL POD AUTOSCALER

CHAPTER 23. MANAGING VOLUMES
23.1. OVERVIEW
23.2. GENERAL CLI USAGE
23.3. ADDING VOLUMES

Examples
23.4. UPDATING VOLUMES

Examples
23.5. REMOVING VOLUMES

Examples
23.6. LISTING VOLUMES

228
229
231

232
232
233
233
234
234
235
235
235
235
235
236
236
237

239
239
239
240
241
242
243
243
244
245
246
248

249
249
249

252
252
252
252
252
253
253

255
255
255
256
257
257
258
258
258
259

Table of Contents

9

. .

. .

. .

. .

. .

. .

. .

. .

. .

Examples
23.7. SPECIFYING A SUB-PATH

CHAPTER 24. USING PERSISTENT VOLUMES
24.1. OVERVIEW
24.2. REQUESTING STORAGE
24.3. VOLUME AND CLAIM BINDING
24.4. CLAIMS AS VOLUMES IN PODS
24.5. VOLUME AND CLAIM PRE-BINDING

CHAPTER 25. EXECUTING REMOTE COMMANDS
25.1. OVERVIEW
25.2. BASIC USAGE
25.3. PROTOCOL

CHAPTER 26. COPYING FILES TO OR FROM A CONTAINER
26.1. OVERVIEW
26.2. BASIC USAGE
26.3. BACKING UP AND RESTORING DATABASES
26.4. REQUIREMENTS
26.5. SPECIFYING THE COPY SOURCE
26.6. SPECIFYING THE COPY DESTINATION
26.7. DELETING FILES AT THE DESTINATION
26.8. CONTINUOUS SYNCING ON FILE CHANGE
26.9. ADVANCED RSYNC FEATURES

CHAPTER 27. PORT FORWARDING
27.1. OVERVIEW
27.2. BASIC USAGE
27.3. PROTOCOL

CHAPTER 28. SHARED MEMORY
28.1. OVERVIEW
28.2. POSIX SHARED MEMORY

CHAPTER 29. APPLICATION HEALTH
29.1. OVERVIEW
29.2. CONTAINER HEALTH CHECKS USING PROBES

CHAPTER 30. EVENTS
30.1. OVERVIEW
30.2. VIEWING EVENTS WITH THE CLI
30.3. VIEWING EVENTS IN THE CONSOLE
30.4. COMPREHENSIVE LIST OF EVENTS

CHAPTER 31. DOWNWARD API
31.1. OVERVIEW
31.2. SELECTING FIELDS
31.3. CONSUMING THE CONTAINER VALUES USING THE DOWNWARD API

31.3.1. Using Environment Variables
31.3.2. Using the Volume Plug-in

31.4. CONSUMING CONTAINER RESOURCES USING THE DOWNWARD API
31.4.1. Using Environment Variables
31.4.2. Using the Volume Plug-in

CHAPTER 32. MANAGING ENVIRONMENT VARIABLES

259
259

261
261
261
261
262
262

265
265
265
265

267
267
267
267
268
268
269
269
269
269

270
270
270
270

272
272
272

274
274
274

277
277
277
277
277

287
287
287
287
287
288
290
290
291

293

OpenShift Container Platform 3.5 Developer Guide

10

. .

. .

. .

. .

32.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES
32.2. LIST ENVIRONMENT VARIABLES
32.3. SET ENVIRONMENT VARIABLES

32.3.1. Automatically Added Environment Variables
32.4. UNSET ENVIRONMENT VARIABLES

CHAPTER 33. JOBS
33.1. OVERVIEW
33.2. CREATING A JOB

33.2.1. Known Limitations
33.3. SCALING A JOB
33.4. SETTING MAXIMUM DURATION

CHAPTER 34. CRON JOBS
34.1. OVERVIEW
34.2. CREATING A CRON JOB
34.3. CLEANING UP AFTER A CRON JOB

CHAPTER 35. CREATE FROM URL
35.1. OVERVIEW
35.2. USING AN IMAGE STREAM AND IMAGE TAG

35.2.1. Query String Parameters
35.2.1.1. Example

35.3. USING A TEMPLATE
35.3.1. Query String Parameters

35.3.1.1. Example

CHAPTER 36. REVISION HISTORY: DEVELOPER GUIDE
36.1. FRI FEB 23 2018
36.2. FRI FEB 16 2018
36.3. TUE FEB 06 2018
36.4. THU JAN 25 2018
36.5. MON JAN 08 2018
36.6. FRI DEC 22 2017
36.7. MON DEC 11 2017
36.8. TUE NOV 21 2017
36.9. FRI NOV 10 2017
36.10. FRI NOV 03 2017
36.11. MON OCT 16 2017
36.12. MON SEP 18 2017
36.13. WED SEP 06 2017
36.14. FRI AUG 25 2017
36.15. TUE JUL 18 2017
36.16. WED JUL 12 2017
36.17. WED JUL 05 2017
36.18. TUE JUN 27 2017
36.19. MON JUN 19 2017
36.20. TUE JUN 13 2017
36.21. MON MAY 15 2017
36.22. WED APR 12 2017

293
293
293
294
294

295
295
295
296
296
296

297
297
297
298

300
300
300
300
301
301
301
302

303
303
303
303
303
304
304
304
305
305
305
305
305
306
306
306
306
307
307
307
307
307
307

Table of Contents

11

OpenShift Container Platform 3.5 Developer Guide

12

CHAPTER 1. OVERVIEW
This guide is intended for application developers, and provides instructions for setting up and configuring
a workstation to develop and deploy applications in an OpenShift Container Platform cloud environment.
This includes detailed instructions and examples to help developers:

1. Create new applications

2. Monitor and configure projects

3. Generate configurations using templates

4. Manage builds, including build strategy options and webhooks

5. Define deployments, including deployment strategies

6. Create and manage routes

7. Create and configure secrets

8. Integrate external services, such as databases and SaaS endpoints

9. Check application health using probes

CHAPTER 1. OVERVIEW

13

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

2.1. PLANNING YOUR DEVELOPMENT PROCESS

2.1.1. Overview

OpenShift Container Platform is designed for building and deploying applications. Depending on how
much you want to involve OpenShift Container Platform in your development process, you can choose
to:

focus your development within an OpenShift Container Platform project, using it to build an
application from scratch then continuously develop and manage its lifecycle, or

bring an application (e.g., binary, container image, source code) you have already developed in
a separate environment and deploy it onto OpenShift Container Platform.

2.1.2. Using OpenShift Container Platform as Your Development Environment

You can begin your application’s development from scratch using OpenShift Container Platform directly.
Consider the following steps when planning this type of development process:

Initial Planning

What does your application do?

What programming language will it be developed in?

Access to OpenShift Container Platform

OpenShift Container Platform should be installed by this point, either by yourself or an
administrator within your organization.

Develop

Using your editor or IDE of choice, create a basic skeleton of an application. It should be
developed enough to tell OpenShift Container Platform what kind of application it is.

Push the code to your Git repository.

Generate

Create a basic application using the oc new-app command. OpenShift Container Platform
generates build and deployment configurations.

Manage

Start developing your application code.

Ensure your application builds successfully.

OpenShift Container Platform 3.5 Developer Guide

14

Continue to locally develop and polish your code.

Push your code to a Git repository.

Is any extra configuration needed? Explore the Developer Guide for more options.

Verify

You can verify your application in a number of ways. You can push your changes to your
application’s Git repository, and use OpenShift Container Platform to rebuild and redeploy your
application. Alternatively, you can hot deploy using rsync to synchronize your code changes
into a running pod.

2.1.3. Bringing an Application to Deploy on OpenShift Container Platform

Another possible application development strategy is to develop locally, then use OpenShift Container
Platform to deploy your fully developed application. Use the following process if you plan to have
application code already, then want to build and deploy onto an OpenShift Container Platform installation
when completed:

Initial Planning

What does your application do?

What programming language will it be developed in?

Develop

Develop your application code using your editor or IDE of choice.

Build and test your application code locally.

Push your code to a Git repository.

Access to OpenShift Container Platform

OpenShift Container Platform should be installed by this point, either by yourself or an
administrator within your organization.

Generate

Create a basic application using the oc new-app command. OpenShift Container Platform
generates build and deployment configurations.

Verify

Ensure that the application that you have built and deployed in the above Generate step is
successfully running on OpenShift Container Platform.

Manage

Continue to develop your application code until you are happy with the results.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

15

Rebuild your application in OpenShift Container Platform to accept any newly pushed code.

Is any extra configuration needed? Explore the Developer Guide for more options.

2.2. CREATING NEW APPLICATIONS

2.2.1. Overview

You can create a new OpenShift Container Platform application from components including source or
binary code, images and/or templates by using either the OpenShift CLI or web console.

2.2.2. Creating an Application Using the CLI

2.2.2.1. Creating an Application From Source Code

The new-app command allows you to create applications from source code in a local or remote Git
repository.

To create an application using a Git repository in a local directory:

$ oc new-app /path/to/source/code

NOTE

If using a local Git repository, the repository should have a remote named origin that
points to a URL accessible by the OpenShift Container Platform cluster. If there is no
recognised remote, new-app will create a binary build.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To
create an application using a remote Git repository and a context subdirectory:

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_name> to the end of the URL:

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

The new-app command creates a build configuration, which itself creates a new application image from
your source code. The new-app command typically also creates a deployment configuration to deploy
the new image, and a service to provide load-balanced access to the deployment running your image.

OpenShift Container Platform automatically detects whether the Docker, Pipeline or Sourcebuild
strategy should be used, and in the case of Source builds, detects an appropriate language builder
image.

Build Strategy Detection

If a Jenkinsfile exists in the root or specified context directory of the source repository when creating a
new application, OpenShift Container Platform generates a Pipeline build strategy. Otherwise, if a
Dockerfile is found, OpenShift Container Platform generates a Docker build strategy. Otherwise, it

OpenShift Container Platform 3.5 Developer Guide

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pipeline-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build

generates a Source build strategy.

You can override the build strategy by setting the --strategy flag to either docker, pipeline or
source.

$ oc new-app /home/user/code/myapp --strategy=docker

NOTE

The oc command requires that files containing build sources are available in a remote Git
repository. For all source builds, you must use git remote -v.

Language Detection

If using the Source build strategy, new-app attempts to determine the language builder to use by the
presence of certain files in the root or specified context directory of the repository:

Table 2.1. Languages Detected by new-app

Language Files

dotnet project.json, *.csproj

jee pom.xml

nodejs app.json, package.json

perl cpanfile, index.pl

php composer.json, index.php

python requirements.txt, setup.py

ruby Gemfile, Rakefile, config.ru

scala build.sbt

golang Godeps, main.go

After a language is detected, new-app searches the OpenShift Container Platform server for image
stream tags that have a supports annotation matching the detected language, or an image stream that
matches the name of the detected language. If a match is not found, new-app searches the Docker Hub
registry for an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image
(either an image stream or container specification) and the repository, with a ~ as a separator. Note that
if this is done, build strategy detection and language detection are not carried out.

For example, to use the myproject/my-ruby image stream with the source in a remote repository:

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://registry.hub.docker.com

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-
world.git

To use the openshift/ruby-20-centos7:latest container image stream with the source in a local
repository:

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

2.2.2.2. Creating an Application From an Image

You can deploy an application from an existing image. Images can come from image streams in the
OpenShift Container Platform server, images in a specific registry or Docker Hub registry, or images in
the local Docker server.

The new-app command attempts to determine the type of image specified in the arguments passed to it.
However, you can explicitly tell new-app whether the image is a Docker image (using the --docker-
image argument) or an image stream (using the -i|--image argument).

NOTE

If you specify an image from your local Docker repository, you must ensure that the same
image is available to the OpenShift Container Platform cluster nodes.

For example, to create an application from the DockerHub MySQL image:

$ oc new-app mysql

To create an application using an image in a private registry, specify the full Docker image specification:

$ oc new-app myregistry:5000/example/myimage

NOTE

If the registry containing the image is not secured with SSL, cluster administrators must
ensure that the Docker daemon on the OpenShift Container Platform node hosts is run
with the --insecure-registry flag pointing to that registry. You must also tell new-
app that the image comes from an insecure registry with the --insecure-registry
flag.

You can create an application from an existing image stream and optional image stream tag:

$ oc new-app my-stream:v1

2.2.2.3. Creating an Application From a Template

You can create an application from a previously stored template or from a template file, by specifying the
name of the template as an argument. For example, you can store a sample application template and
use it to create an application.

To create an application from a stored template:

OpenShift Container Platform 3.5 Developer Guide

18

https://registry.hub.docker.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#securing-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag
https://github.com/openshift/origin/tree/master/examples/sample-app

$ oc create -f examples/sample-app/application-template-stibuild.json
$ oc new-app ruby-helloworld-sample

To directly use a template in your local file system, without first storing it in OpenShift Container
Platform, use the -f|--file argument:

$ oc new-app -f examples/sample-app/application-template-stibuild.json

Template Parameters

When creating an application based on a template, use the -p|--param argument to set parameter
values defined by the template:

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

You can store your parameters in a file, then use that file with --param-file when instantiating a
template. If you want to read the parameters from standard input, use --param-file=-:

$ cat helloworld.params
ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword
$ oc new-app ruby-helloworld-sample --param-file=helloworld.params
$ cat helloworld.params | oc new-app ruby-helloworld-sample --param-file=-

2.2.2.4. Further Modifying Application Creation

The new-app command generates OpenShift Container Platform objects that will build, deploy, and run
the application being created. Normally, these objects are created in the current project using names
derived from the input source repositories or the input images. However, new-app allows you to modify
this behavior.

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.

Table 2.2. new-app Output Objects

Object Description

BuildConfig A BuildConfig is created for each source repository specified in the command line.
The BuildConfig specifies the strategy to use, the source location, and the build
output location.

ImageStreams For BuildConfig, two ImageStreams are usually created. One represents the
input image. With Source builds, this is the builder image. With Docker builds, this
is the FROM image. The second one represents the output image. If a container image
was specified as input to new-app, then an image stream is created for that image as
well.

DeploymentCo
nfig

A DeploymentConfig is created either to deploy the output of a build, or a specified
image. The new-app command creates emptyDir volumes for all Docker volumes that
are specified in containers included in the resulting DeploymentConfig.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

19

Service The new-app command attempts to detect exposed ports in input images. It uses the
lowest numeric exposed port to generate a service that exposes that port. In order to
expose a different port, after new-app has completed, simply use the oc expose
command to generate additional services.

Other Other objects may be generated when instantiating templates, according to the
template.

Object Description

2.2.2.4.1. Specifying Environment Variables

When generating applications from a template, source, or an image, you can use the -e|--env
argument to pass environment variables to the application container at run time:

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

The variables can also be read from file using the --env-file argument:

$ cat postgresql.env
POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password
$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

Additionally, environment variables can be given on standard input by using --env-file=-:

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-
file=-

See Managing Environment Variables for more information.

NOTE

Any BuildConfig objects created as part of new-app processing will not be updated
with environment variables passed via the -e|--env or --env-file argument.

2.2.2.4.2. Specifying Build Environment Variables

When generating applications from a template, source, or an image, you can use the --build-env
argument to pass environment variables to the build container at run time:

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

The variables can also be read from a file using the --build-env-file argument:

OpenShift Container Platform 3.5 Developer Guide

20

$ cat ruby.env
HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem
$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

Additionally, environment variables can be given on standard input by using --build-env-file=-:

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

2.2.2.4.3. Specifying Labels

When generating applications from source, images, or templates, you can use the -l|--label
argument to add labels to the created objects. Labels make it easy to collectively select, configure, and
delete objects associated with the application.

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-
world

2.2.2.4.4. Viewing the Output Without Creation

To see a dry-run of what new-app will create, you can use the -o|--output argument with a yaml or
json value. You can then use the output to preview the objects that will be created, or redirect it to a file
that you can edit. Once you are satisfied, you can use oc create to create the OpenShift Container
Platform objects.

To output new-app artifacts to a file, edit them, then create them:

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml
$ vi myapp.yaml
$ oc create -f myapp.yaml

2.2.2.4.5. Creating Objects With Different Names

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

2.2.2.4.6. Creating Objects in a Different Project

Normally, new-app creates objects in the current project. However, you can create objects in a different
project that you have access to using the -n|--namespace argument:

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

2.2.2.4.7. Creating Multiple Objects

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

21

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is not
the intent, specify the required builder image for the source using the ~ separator.

2.2.2.4.8. Grouping Images and Source in a Single Pod

The new-app command allows deploying multiple images together in a single pod. In order to specify
which images to group together, use the + separator. The --group command line argument can also be
used to specify the images that should be grouped together. To group the image built from a source
repository with other images, specify its builder image in the group:

$ oc new-app ruby+mysql

To deploy an image built from source and an external image together:

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

2.2.2.4.9. Searching for Images, Templates, and Other Inputs

To search for images, templates, and other inputs for the oc new-app command, add the --search
and --list flags. For example, to find all of the images or templates that include PHP:

$ oc new-app --search php

2.2.3. Creating an Application Using the Web Console

1. While in the desired project, click Add to Project:

2. Select either a builder image from the list of images in your project, or from the global library:

OpenShift Container Platform 3.5 Developer Guide

22

1

NOTE

Only image stream tags that have the builder tag listed in their annotations
appear in this list, as demonstrated here:

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby"
 creationTimestamp: null
spec:
 dockerImageRepository:
"registry.access.redhat.com/openshift3/ruby-20-rhel7"
 tags:
 -
 name: "2.0"
 annotations:
 description: "Build and run Ruby 2.0 applications"
 iconClass: "icon-ruby"

 tags: "builder,ruby" 1
 supports: "ruby:2.0,ruby"
 version: "2.0"

Including builder here ensures this ImageStreamTag appears in the web console as a
builder.

3. Modify the settings in the new application screen to configure the objects to support your
application:

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams

OpenShift Container Platform 3.5 Developer Guide

24

The builder image name and description.

The application name used for the generated OpenShift Container Platform objects.

The Git repository URL, reference, and context directory for your source code.

Routing configuration section for making this application publicly accessible.

Build configuration section for customizing build triggers.

Deployment configuration section for customizing deployment triggers and image
environment variables.

Replica scaling section for configuring the number of running instances of the application.

The labels to assign to all items generated for the application. You can add and edit labels
for all objects here.

NOTE

To see all of the configuration options, click the "Show advanced build and
deployment options" link.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels

2.3. PROMOTING APPLICATIONS ACROSS ENVIRONMENTS

2.3.1. Overview

Application promotion means moving an application through various runtime environments, typically with
an increasing level of maturity. For example, an application might start out in a development
environment, then be promoted to a stage environment for further testing, before finally being promoted
into a production environment. As changes are introduced in the application, again the changes will start
in development and be promoted through stage and production.

The "application" today is more than just the source code written in Java, Perl, Python, etc. It is more
now than the static web content, the integration scripts, or the associated configuration for the language
specific runtimes for the application. It is more than the application specific archives consumed by those
language specific runtimes.

In the context of OpenShift Container Platform and its combined foundation of Kubernetes and Docker,
additional application artifacts include:

Docker container images with their rich set of metadata and associated tooling.

Environment variables that are injected into containers for application use.

API objects (also known as resource definitions; see Core Concepts) of OpenShift Container
Platform, which:

are injected into containers for application use.

dictate how OpenShift Container Platform manages containers and pods.

In examining how to promote applications in OpenShift Container Platform, this topic will:

Elaborate on these new artifacts introduced to the application definition.

Describe how you can demarcate the different environments for your application promotion
pipeline.

Discuss methodologies and tools for managing these new artifacts.

Provide examples that apply the various concepts, constructs, methodologies, and tools to
application promotion.

2.3.2. Application Components

2.3.2.1. API Objects

With regard to OpenShift Container Platform and Kubernetes resource definitions (the items newly
introduced to the application inventory), there are a couple of key design points for these API objects that
are relevant to revisit when considering the topic of application promotion.

First, as highlighted throughout OpenShift Container Platform documentation, every API object can be
expressed via either JSON or YAML, making it easy to manage these resource definitions via traditional
source control and scripting.

Also, the API objects are designed such that there are portions of the object which specify the desired
state of the system, and other portions which reflect the status or current state of the system. This can be
thought of as inputs and outputs. The input portions, when expressed in JSON or YAML, in particular are

OpenShift Container Platform 3.5 Developer Guide

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-index

items that fit naturally as source control managed (SCM) artifacts.

NOTE

Remember, the input or specification portions of the API objects can be totally static or
dynamic in the sense that variable substitution via template processing is possible on
instantiation.

The result of these points with respect to API objects is that with their expression as JSON or YAML
files, you can treat the configuration of the application as code.

Conceivably, almost any of the API objects may be considered an application artifact by your
organization. Listed below are the objects most commonly associated with deploying and managing an
application:

BuildConfigs

This is a special case resource in the context of application promotion. While a BuildConfig is
certainly a part of the application, especially from a developer’s perspective, typically the
BuildConfig is not promoted through the pipeline. It produces the Image that is promoted (along
with other items) through the pipeline.

Templates

In terms of application promotion, Templates can serve as the starting point for setting up resources
in a given staging environment, especially with the parameterization capabilities. Additional post-
instantiation modifications are very conceivable though when applications move through a promotion
pipeline. See Scenarios and Examples for more on this.

Routes

These are the most typical resources that differ stage to stage in the application promotion pipeline,
as tests against different stages of an application access that application via its Route. Also,
remember that you have options with regard to manual specification or auto-generation of host
names, as well as the HTTP-level security of the Route.

Services

If reasons exist to avoid Routers and Routes at given application promotion stages (perhaps for
simplicity’s sake for individual developers at early stages), an application can be accessed via the
Cluster IP address and port. If used, some management of the address and port between stages
could be warranted.

Endpoints

Certain application-level services (e.g., database instances in many enterprises) may not be
managed by OpenShift Container Platform. If so, then creating those Endpoints yourself, along
with the necessary modifications to the associated Service (omitting the selector field on the
Service) are activities that are either duplicated or shared between stages (based on how you
delineate your environment).

Secrets

The sensitive information encapsulated by Secrets are shared between staging environments when
the corresponding entity (either a Service managed by OpenShift Container Platform or an external
service managed outside of OpenShift Container Platform) the information pertains to is shared. If
there are different versions of the said entity in different stages of your application promotion pipeline,
it may be necessary to maintain a distinct Secret in each stage of the pipeline or to make
modifications to it as it traverses through the pipeline. Also, take care that if you are storing the
Secret as JSON or YAML in an SCM, some form of encryption to protect the sensitive information
may be warranted.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

27

DeploymentConfigs

This object is the primary resource for defining and scoping the environment for a given application
promotion pipeline stage; it controls how your application starts up. While there are aspects of it that
will be common across all the different stage, undoubtedly there will be modifications to this object as
it progresses through your application promotion pipeline to reflect differences in the environments for
each stage, or changes in behavior of the system to facilitate testing of the different scenarios your
application must support.

ImageStreams, ImageStreamTags, and ImageStreamImage

Detailed in the Images and Image Streams sections, these objects are central to the OpenShift
Container Platform additions around managing container images.

ServiceAccounts and RoleBindings

Management of permissions to other API objects within OpenShift Container Platform, as well as the
external services, are intrinsic to managing your application. Similar to Secrets, the
ServiceAccounts and RoleBindingscan objects vary in how they are shared between the
different stages of your application promotion pipeline based on your needs to share or isolate those
different environments.

PersistentVolumeClaims

Relevant to stateful services like databases, how much these are shared between your different
application promotion stages directly correlates to how your organization shares or isolates the copies
of your application data.

ConfigMaps

A useful decoupling of Pod configuration from the Pod itself (think of an environment variable style
configuration), these can either be shared by the various staging environments when consistent Pod
behavior is desired. They can also be modified between stages to alter Pod behavior (usually as
different aspects of the application are vetted at different stages).

2.3.2.2. Images

As noted earlier, container images are now artifacts of your application. In fact, of the new applications
artifacts, images and the management of images are the key pieces with respect to application
promotion. In some cases, an image might encapsulate the entirety of your application, and the
application promotion flow consists solely of managing the image.

Images are not typically managed in a SCM system, just as application binaries were not in previous
systems. However, just as with binaries, installable artifacts and corresponding repositories (that is,
RPMs, RPM repositories, Nexus, etc.) arose with similar semantics to SCMs, similar constructs and
terminology around image management that are similar to SCMs have arisen:

Image registry == SCM server

Image repository == SCM repository

As images reside in registries, application promotion is concerned with ensuring the appropriate image
exists in a registry that can be accessed from the environment that needs to run the application
represented by that image.

Rather than reference images directly, application definitions typically abstract the reference into an
image stream. This means the image stream will be another API object that makes up the application
components. For more details on image streams, see Core Concepts.

2.3.2.3. Summary

OpenShift Container Platform 3.5 Developer Guide

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams

Now that the application artifacts of note, images and API objects, have been detailed in the context of
application promotion within OpenShift Container Platform, the notion of where you run your application
in the various stages of your promotion pipeline is next the point of discussion.

2.3.3. Deployment Environments

A deployment environment, in this context, describes a distinct space for an application to run during a
particular stage of a CI/CD pipeline. Typical environments include development, test, stage, and
production, for example. The boundaries of an environment can be defined in different ways, such as:

Via labels and unique naming within a single project.

Via distinct projects within a cluster.

Via distinct clusters.

And it is conceivable that your organization leverages all three.

2.3.3.1. Considerations

Typically, you will consider the following heuristics in how you structure the deployment environments:

How much resource sharing the various stages of your promotion flow allow

How much isolation the various stages of your promotion flow require

How centrally located (or geographically dispersed) the various stages of your promotion flow are

Also, some important reminders on how OpenShift Container Platform clusters and projects relate to
image registries:

Multiple project in the same cluster can access the same image streams.

Multiple clusters can access the same external registries.

Clusters can only share a registry if the OpenShift Container Platform internal image registry is
exposed via a route.

2.3.3.2. Summary

After deployment environments are defined, promotion flows with delineation of stages within a pipeline
can be implemented. The methods and tools for constructing those promotion flow implementations are
the next point of discussion.

2.3.4. Methods and Tools

Fundamentally, application promotion is a process of moving the aforementioned application
components from one environment to another. The following subsections outline tools that can be used
to move the various components by hand, before advancing to discuss holistic solutions for automating
application promotion.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

29

NOTE

There are a number of insertion points available during both the build and deployment
processes. They are defined within BuildConfig and DeploymentConfig API objects.
These hooks allow for the invocation of custom scripts which can interact with deployed
components such as databases, and with the OpenShift Container Platform cluster itself.

Therefore, it is possible to use these hooks to perform component management
operations that effectively move applications between environments, for example by
performing an image tag operation from within a hook. However, the various hook points
are best suited to managing an application’s lifecycle within a given environment (for
example, using them to perform database schema migrations when a new version of the
application is deployed), rather than to move application components between
environments.

2.3.4.1. Managing API Objects

Resources, as defined in one environment, will be exported as JSON or YAML file content in preparation
for importing it into a new environment. Therefore, the expression of API objects as JSON or YAML
serves as the unit of work as you promote API objects through your application pipeline. The oc CLI is
used to export and import this content.

TIP

While not required for promotion flows with OpenShift Container Platform, with the JSON or YAML
stored in files, you can consider storing and retrieving the content from a SCM system. This allows you
to leverage the versioning related capabilities of the SCM, including the creation of branches, and the
assignment of and query on various labels or tags associated to versions.

2.3.4.1.1. Exporting API Object State

API object specifications should be captured with oc export. This operation removes environment
specific data from the object definitions (e.g., current namespace or assigned IP addresses), allowing
them to be recreated in different environments (unlike oc get operations, which output an unfiltered
state of the object).

Use of oc label, which allows for adding, modifying, or removing labels on API objects, can prove
useful as you organize the set of object collected for promotion flows, because labels allow for selection
and management of groups of pods in a single operation. This makes it easier to export the correct set
of objects and, because the labels will carry forward when the objects are created in a new environment,
they also make for easier management of the application components in each environment.

NOTE

API objects often contain references such as a DeploymentConfig that references a
Secret. When moving an API object from one environment to another, you must ensure
that such references are also moved to the new environment.

Similarly, API objects such as a DeploymentConfig often contain references to
ImageStreams that reference an external registry. When moving an API object from one
environment to another, you must ensure such references are resolvable within the new
environment, meaning that the reference must be resolvable and the ImageStream must
reference an accessible registry in the new environment. See Moving Images and
Promotion Caveats for more detail.

OpenShift Container Platform 3.5 Developer Guide

30

2.3.4.1.2. Importing API Object State

2.3.4.1.2.1. Initial Creation

The first time an application is being introduced into a new environment, it is sufficient to take the JSON
or YAML expressing the specifications of your API objects and run oc create to create them in the
appropriate environment. When using oc create, keep the --save-config option in mind. Saving
configuration elements on the object in its annotation list facilitates the later use of oc apply to modify
the object.

2.3.4.1.2.2. Iterative Modification

After the various staging environments are initially established, as promotion cycles commence and the
application moves from stage to stage, the updates to your application can include modification of the
API objects that are part of the application. Changes in these API objects are conceivable since they
represent the configuration for the OpenShift Container Platform system. Motivations for such changes
include:

Accounting for environmental differences between staging environments.

Verifying various scenarios your application supports.

Transfer of the API objects to the next stage’s environment is accomplished via use of the oc CLI. While
a rich set of oc commands which modify API objects exist, this topic focuses on oc apply, which
computes and applies differences between objects.

Specifically, you can view oc apply as a three-way merge that takes in files or stdin as the input along
with an existing object definition. It performs a three-way merge between:

1. the input into the command,

2. the current version of the object, and

3. the most recent user specified object definition stored as an annotation in the current object.

The existing object is then updated with the result.

If further customization of the API objects is necessary, as in the case when the objects are not expected
to be identical between the source and target environments, oc commands such as oc set can be used
to modify the object after applying the latest object definitions from the upstream environment.

Some specific usages are cited in Scenarios and Examples.

2.3.4.2. Managing Images and Image Streams

Images in OpenShift Container Platform are managed via a series of API objects as well. However,
managing images are so central to application promotion that discussion of the tools and API objects
most directly tied to images warrant separate discussion. Both manual and automated forms exist to
assist you in managing image promotion (the propagation of images through your pipeline).

2.3.4.2.1. Moving Images

NOTE

For all the detailed caveats around managing images, refer to the Managing Images topic.

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

31

2.3.4.2.1.1. When Staging Environments Share a Registry

When your staging environments share the same OpenShift Container Platform registry, for example if
they are all on the same OpenShift Container Platform cluster, there are two operations that are the
basic means of moving your images between the stages of your application promotion pipeline:

1. First, analogous to docker tag and git tag, the oc tag command allows you to update an
OpenShift Container Platform image stream with a reference to a specific image. It also allows
you to copy references to specific versions of an image from one image stream to another, even
across different projects in a cluster.

2. Second, the oc import-image serves as a bridge between external registries and image
streams. It imports the metadata for a given image from the registry and stores it into the image
stream as an image stream tag. Various BuildConfigs and DeploymentConfigs in your
project can reference those specific images.

2.3.4.2.1.2. When Staging Environments Use Different Registries

More advanced usage occurs when your staging environments leverage different OpenShift Container
Platform registries. Accessing the Internal Registry spells out the steps in detail, but in summary you can:

1. Use the docker command in conjunction which obtaining the OpenShift Container Platform
access token to supply into your docker login command.

2. After being logged into the OpenShift Container Platform registry, use docker pull, docker
tag and docker push to transfer the image.

3. After the image is available in the registry of the next environment of your pipeline, use oc tag
as needed to populate any image streams.

2.3.4.2.2. Deploying

Whether changing the underlying application image or the API objects that configure the application, a
deployment is typically necessary to pick up the promoted changes. If the images for your application
change (for example, due to an oc tag operation or a docker push as part of promoting an image
from an upstream environment), ImageChangeTriggers on your DeploymentConfig can trigger the
new deployment. Similarly, if the DeploymentConfig API object itself is being changed, a
ConfigChangeTrigger can initiate a deployment when the API object is updated by the promotion
step (for example, oc apply).

Otherwise, the oc commands that facilitate manual deployment include:

oc rollout: The new approach to manage deployments, including pause and resume
semantics and richer features around managing history.

oc rollback: Allows for reversion to a previous deployment; in the promotion scenario, if
testing of a new version encounters issues, confirming it still works with the previous version
could be warranted.

2.3.4.2.3. Automating Promotion Flows with Jenkins

After you understand the components of your application that need to be moved between environments
when promoting it and the steps required to move the components, you can start to orchestrate and
automate the workflow. OpenShift Container Platform provides a Jenkins image and plug-ins to help with
this process.

OpenShift Container Platform 3.5 Developer Guide

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag

The OpenShift Container Platform Jenkins image is detailed in Using Images, including the set of
OpenShift Container Platform-centric plug-ins that facilitate the integration of Jenkins, and Jenkins
Pipelines. Also, the Pipeline build strategy facilitates the integration between Jenkins Pipelines and
OpenShift Container Platform. All of these focus on enabling various aspects of CI/CD, including
application promotion.

When moving beyond manual execution of application promotion steps, the Jenkins-related features
provided by OpenShift Container Platform should be kept in mind:

OpenShift Container Platform provides a Jenkins image that is heavily customized to greatly
ease deployment in an OpenShift Container Platform cluster.

The Jenkins image contains the OpenShift Pipeline plug-in, which provides building blocks for
implementing promotion workflows. These building blocks include the triggering of Jenkins jobs
as image streams change, as well as the triggering of builds and deployments within those jobs.

BuildConfigs employing the OpenShift Container Platform Jenkins Pipeline build strategy
enable execution of Jenkinsfile-based Jenkins Pipeline jobs. Pipeline jobs are the strategic
direction within Jenkins for complex promotion flows and can leverage the steps provided by the
OpenShift Pipeline Plug-in.

2.3.4.2.4. Promotion Caveats

2.3.4.2.4.1. API Object References

API objects can reference other objects. A common use for this is to have a DeploymentConfig that
references an image stream, but other reference relationships may also exist.

When copying an API object from one environment to another, it is critical that all references can still be
resolved in the target environment. There are a few reference scenarios to consider:

The reference is "local" to the project. In this case, the referenced object resides in the same
project as the object that references it. Typically the correct thing to do is to ensure that you copy
the referenced object into the target environment in the same project as the object referencing it.

The reference is to an object in another project. This is typical when an image stream in a
shared project is used by multiple application projects (see Managing Images). In this case,
when copying the referencing object to the new environment, you must update the reference as
needed so it can be resolved in the target environment. That may mean:

Changing the project the reference points to, if the shared project has a different name in the
target environment.

Moving the referenced object from the shared project into the local project in the target
environment and updating the reference to point to the local project when moving the primary
object into the target environment.

Some other combination of copying the referenced object into the target environment and
updating references to it.

In general, the guidance is to consider objects referenced by the objects being copied to a new
environment and ensure the references are resolvable in the target environment. If not, take appropriate
action to fix the references and make the referenced objects available in the target environment.

2.3.4.2.4.2. Image Registry References

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-other-images-jenkins

Image streams point to image repositories to indicate the source of the image they represent. When an
image stream is moved from one environment to another, it is important to consider whether the registry
and repository reference should also change:

If different image registries are used to assert isolation between a test environment and a
production environment.

If different image repositories are used to separate test and production-ready images.

If either of these are the case, the image stream must be modified when it is copied from the source
environment to the target environment so that it resolves to the correct image. This is in addition to
performing the steps described in Scenarios and Examples to copy the image from one registry and
repository to another.

2.3.4.3. Summary

At this point, the following have been defined:

New application artifacts that make up a deployed application.

Correlation of application promotion activities to tools and concepts provided by OpenShift
Container Platform.

Integration between OpenShift Container Platform and the CI/CD pipeline engine Jenkins.

Putting together examples of application promotion flows within OpenShift Container Platform is the final
step for this topic.

2.3.5. Scenarios and Examples

Having defined the new application artifact components introduced by the Docker, Kubernetes, and
OpenShift Container Platform ecosystems, this section covers how to promote those components
between environments using the mechanisms and tools provided by OpenShift Container Platform.

Of the components making up an application, the image is the primary artifact of note. Taking that
premise and extending it to application promotion, the core, fundamental application promotion pattern is
image promotion, where the unit of work is the image. The vast majority of application promotion
scenarios entails management and propagation of the image through the promotion pipeline.

Simpler scenarios solely deal with managing and propagating the image through the pipeline. As the
promotion scenarios broaden in scope, the other application artifacts, most notably the API objects, are
included in the inventory of items managed and propagated through the pipeline.

This topic lays out some specific examples around promoting images as well as API objects, using both
manual and automated approaches. But first, note the following on setting up the environment(s) for your
application promotion pipeline.

2.3.5.1. Setting up for Promotion

After you have completed development of the initial revision of your application, the next logical step is to
package up the contents of the application so that you can transfer to the subsequent staging
environments of your promotion pipeline.

1. First, group all the API objects you view as transferable and apply a common label to them:

OpenShift Container Platform 3.5 Developer Guide

34

1

labels:
 promotion-group: <application_name>

As previously described, the oc label command facilitates the management of labels with your
various API objects.

TIP

If you initially define your API objects in a OpenShift Container Platform template, you can easily
ensure all related objects have the common label you will use to query on when exporting in
preparation for a promotion.

2. You can leverage that label on subsequent queries. For example, consider the following set of
oc command invocations that would then achieve the transfer of your application’s API objects:

$ oc login <source_environment>
$ oc project <source_project>
$ oc export dc,is,svc,route,secret,sa -l promotion-group=
<application_name> -o yaml > export.yaml
$ oc login <target_environment>

$ oc new-project <target_project> 1
$ oc create -f export.yaml

Alternatively, oc project <target_project> if it already exists.

NOTE

On the oc export command, whether or not you include the is type for image
streams depends on how you choose to manage images, image streams, and
registries across the different environments in your pipeline. The caveats around
this are discussed below. See also the Managing Images topic.

3. You must also get any tokens necessary to operate against each registry used in the different
staging environments in your promotion pipeline. For each environment:

a. Log in to the environment:

$ oc login <each_environment_with_a_unique_registry>

b. Get the access token with:

$ oc whoami -t

c. Copy and paste the token value for later use.

2.3.5.2. Repeatable Promotion Process

After the initial setup of the different staging environments for your pipeline, a set of repeatable steps to
validate each iteration of your application through the promotion pipeline can commence. These basic
steps are taken each time the image or API objects in the source environment are changed:

Move updated images → Move updated API objects → Apply environment specific customizations

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

35

1. Typically, the first step is promoting any updates to the image(s) associated with your
application to the next stage in the pipeline. As noted above, the key differentiator in promoting
images is whether the OpenShift Container Platform registry is shared or not between staging
environments.

a. If the registry is shared, simply leverage oc tag:

$ oc tag <project_for_stage_N>/<imagestream_name_for_stage_N>:
<tag_for_stage_N>
<project_for_stage_N+1>/<imagestream_name_for_stage_N+1>:
<tag_for_stage_N+1>

b. If the registry is not shared, you can leverage the access tokens for each of your promotion
pipeline registries as you log into both the source and destination registries, pulling, tagging,
and pushing your application images accordingly:

i. Log in to the source environment registry:

$ docker login -u <username> -e <any_email_address> -p
<token_value> <src_env_registry_ip>:<port>

ii. Pull your application’s image:

$ docker pull <src_env_registry_ip>:<port>/<namespace>/<image
name>:<tag>

iii. Tag your application’s image to the destination registry’s location, updating namespace,
name, and tag as needed to conform to the destination staging environment:

$ docker tag <src_env_registry_ip>:<port>/<namespace>/<image
name>:<tag> <dest_env_registry_ip>:<port>/<namespace>/<image
name>:<tag>

iv. Log into the destination staging environment registry:

$ docker login -u <username> -e <any_email_address> -p
<token_value> <dest_env_registry_ip>:<port>

v. Push the image to its destination:

$ docker push <dest_env_registry_ip>:<port>/<namespace>/<image
name>:<tag>

TIP

To automatically import new versions of an image from an external registry, the oc tag
command has a --scheduled option. If used, the image the ImageStreamTag
references will be periodically pulled from the registry hosting the image.

2. Next, there are the cases where the evolution of your application necessitates fundamental
changes to your API objects or additions and deletions from the set of API objects that make up
the application. When such evolution in your application’s API objects occurs, the OpenShift

OpenShift Container Platform 3.5 Developer Guide

36

Container Platform CLI provides a broad range of options to transfer to changes from one
staging environment to the next.

a. Start in the same fashion as you did when you initially set up your promotion pipeline:

$ oc login <source_environment>
$ oc project <source_project>
$ oc export dc,is,svc,route,secret,sa -l template=
<application_template_name> -o yaml > export.yaml
$ oc login <target_environment>
$ oc <target_project>

b. Rather than simply creating the resources in the new environment, update them. You can do
this a few different ways:

i. The more conservative approach is to leverage oc apply and merge the new changes
to each API object in the target environment. In doing so, you can --dry-run=true
option and examine the resulting objects prior to actually changing the objects:

$ oc apply -f export.yaml --dry-run=true

If satisfied, actually run the apply command:

$ oc apply -f export.yaml

The apply command optionally takes additional arguments that help with more
complicated scenarios. See oc apply --help for more details.

ii. Alternatively, the simpler but more aggressive approach is to leverage oc replace.
There is no dry run with this update and replace. In the most basic form, this involves
executing:

$ oc replace -f export.yaml

As with apply, replace optionally takes additional arguments for more sophisticated
behavior. See oc replace --help for more details.

3. The previous steps automatically handle new API objects that were introduced, but if API objects
were deleted from the source environment, they must be manually deleted from the target
environment using oc delete.

4. Tuning of the environment variables cited on any of the API objects may be necessary as the
desired values for those may differ between staging environments. For this, use oc set env:

$ oc set env <api_object_type>/<api_object_ID> <env_var_name>=
<env_var_value>

5. Finally, trigger a new deployment of the updated application using the oc rollout command
or one of the other mechanisms discussed in the Deployments section above.

2.3.5.3. Repeatable Promotion Process Using Jenkins

CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT

37

The OpenShift Sample job defined in the Jenkins Docker Image for OpenShift Container Platform is an
example of image promotion within OpenShift Container Platform within the constructs of Jenkins. Setup
for this sample is located in the OpenShift Origin source repository.

This sample includes:

Use of Jenkins as the CI/CD engine.

Use of the OpenShift Pipeline plug-in for Jenkins . This plug-in provides a subset of the
functionality provided by the oc CLI for OpenShift Container Platform packaged as Jenkins
Freestyle and DSL Job steps. Note that the oc binary is also included in the Jenkins Docker
Image for OpenShift Container Platform, and can also be used to interact with OpenShift
Container Platform in Jenkins jobs.

The OpenShift Container Platform-provided templates for Jenkins. There is a template for both
ephemeral and persistent storage.

A sample application: defined in the OpenShift Origin source repository, this application
leverages ImageStreams, ImageChangeTriggers, ImageStreamTags, BuildConfigs,
and separate DeploymentConfigs and Services corresponding to different stages in the
promotion pipeline.

The following examines the various pieces of the OpenShift Sample job in more detail:

1. The first step is the equivalent of an oc scale dc frontend --replicas=0 call. This step
is intended to bring down any previous versions of the application image that may be running.

2. The second step is the equivalent of an oc start-build frontend call.

3. The third step is the equivalent of an oc rollout latest dc/frontend call.

4. The fourth step is the "test" for this sample. It ensures that the associated service for this
application is in fact accessible from a network perspective. Under the covers, a socket
connection is attempted against the IP address and port associated with the OpenShift
Container Platform service. Of course, additional tests can be added (if not via OpenShift
Pipepline plug-in steps, then via use of the Jenkins Shell step to leverage OS-level commands
and scripts to test your application).

5. The fifth step commences under that assumption that the testing of your application passed and
hence intends to mark the image as "ready". In this step, a new prod tag is created for the
application image off of the latest image. With the frontend DeploymentConfig having an
ImageChangeTriggerdefined for that tag, the corresponding "production" deployment is
launched.

6. The sixth and last step is a verification step, where the plug-in confirms that OpenShift Container
Platform launched the desired number of replicas for the "production" deployment.

OpenShift Container Platform 3.5 Developer Guide

38

https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml
https://github.com/openshift/jenkins
https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/origin/blob/master/examples/jenkins/application-template.json
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L15-L21
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L23-L29
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L31-L39
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L41-47
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L49-L61
https://github.com/openshift/origin/blob/master/examples/jenkins/application-template.json#L75-L87
https://github.com/openshift/jenkins/blob/master/2/contrib/openshift/configuration/jobs/OpenShift Sample/config.xml#L63-L73

CHAPTER 3. AUTHENTICATION

3.1. WEB CONSOLE AUTHENTICATION

When accessing the web console from a browser at <master_public_addr>:8443, you are automatically
redirected to a login page.

Review the browser versions and operating systems that can be used to access the web console.

You can provide your login credentials on this page to obtain a token to make API calls. After logging in,
you can navigate your projects using the web console.

3.2. CLI AUTHENTICATION

You can authenticate from the command line using the CLI command oc login. You can get started
with the CLI by running this command without any options:

$ oc login

The command’s interactive flow helps you establish a session to an OpenShift Container Platform server
with the provided credentials. If any information required to successfully log in to an OpenShift Container
Platform server is not provided, the command prompts for user input as required. The configuration is
automatically saved and is then used for every subsequent command.

All configuration options for the oc login command, listed in the oc login --help command output,
are optional. The following example shows usage with some common options:

$ oc login [-u=<username>] \
 [-p=<password>] \
 [-s=<server>] \
 [-n=<project>] \
 [--certificate-authority=</path/to/file.crt>|--insecure-skip-tls-verify]

The following table describes these common options:

Table 3.1. Common CLI Configuration Options

Option Syntax Description

-s, --
server $ oc login -s=

<server>

Specifies the host name of the OpenShift Container Platform
server. If a server is provided through this flag, the command does
not ask for it interactively. This flag can also be used if you already
have a CLI configuration file and want to log in and switch to
another server.

-u, --
usernam
e and -p,
--
passwor
d

$ oc login -u=
<username> -p=
<password>

Allows you to specify the credentials to log in to the OpenShift
Container Platform server. If user name or password are provided
through these flags, the command does not ask for it interactively.
These flags can also be used if you already have a configuration
file with a session token established and want to log in and switch
to another user name.

CHAPTER 3. AUTHENTICATION

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#browser-requirements
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-configuration-files

-n, --
namespa
ce

$ oc login -u=
<username> -p=
<password> -n=
<project>

A global CLI option which, when used with oc login, allows you
to specify the project to switch to when logging in as a given user.

--
certifi
cate-
authori
ty

$ oc login --
certificate-
authority=
<path/to/file.
crt>

Correctly and securely authenticates with an OpenShift Container
Platform server that uses HTTPS. The path to a certificate authority
file must be provided.

--
insecur
e-skip-
tls-
verify

$ oc login --
insecure-skip-
tls-verify

Allows interaction with an HTTPS server bypassing the server
certificate checks; however, note that it is not secure. If you try to
oc login to a HTTPS server that does not provide a valid
certificate, and this or the --certificate-authority flags
were not provided, oc login will prompt for user input to confirm
(y/N kind of input) about connecting insecurely.

Option Syntax Description

CLI configuration files allow you to easily manage multiple CLI profiles.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file. The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

OpenShift Container Platform 3.5 Developer Guide

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-manage-cli-profiles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-configuration-files

CHAPTER 4. AUTHORIZATION

4.1. OVERVIEW

This topic contains authorization tasks for application developers and their capabilities, as dictated by
the cluster administrator.

4.2. CHECKING IF USERS CAN CREATE PODS

Using the scc-review and scc-subject-review options, you can see if an individual user, or a user
under a specific service account, can create or update a pod.

Using the scc-review option, you can check if a service account can create or update a pod. The
command outputs the security context constraints that admit the resource.

For example, to check if a user with the system:serviceaccount:projectname:default service
account can a create a pod:

$ oc policy scc-review -z system:serviceaccount:projectname:default -f
my_resource.yaml

You can also use the scc-subject-review option to check whether a specific user can create or
update a pod:

$ oc policy scc-subject-review -u <username> -f my_resource.yaml

To check if a user belonging to a specific group can create a pod in a specific file:

$ oc policy scc-subject-review -u <username> -g <groupname> -f
my_resource.yaml

4.3. DETERMINING WHAT YOU CAN DO AS AN AUTHENTICATED
USER

From within your OpenShift Container Platform project, you can determine what verbs you can perform
against all namespace-scoped resources (including third-party resources).

The can-i command option tests scopes in terms of the user and role.

$ oc policy can-i --list --loglevel=8

The output helps you to determine what API request to make to gather the information.

To receive information back in a user-readable format, run:

$ oc policy can-i --list

The output provides a full list.

To determine if you can perform specific verbs, run:

CHAPTER 4. AUTHORIZATION

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#evaluating-authorization

$ oc policy can-i <verb> <resource>

User scopes can provide more information about a given scope. For example:

$ oc policy can-i <verb> <resource> --scopes=user:info

OpenShift Container Platform 3.5 Developer Guide

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-scoped-tokens-user-scopes

CHAPTER 5. PROJECTS

5.1. OVERVIEW

A project allows a community of users to organize and manage their content in isolation from other
communities.

5.2. CREATING A PROJECT

If allowed by your cluster administrator , you can create a new project using the CLI or the web console.

To create a new project using the CLI:

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

For example:

$ oc new-project hello-openshift \
 --description="This is an example project to demonstrate OpenShift v3"
\
 --display-name="Hello OpenShift"

NOTE

The number of projects you are allowed to create may be limited by the system
administrator. Once your limit is reached, you may need to delete an existing project in
order to create a new one.

5.3. VIEWING PROJECTS

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy.

To view a list of projects:

$ oc get projects

You can change from the current project to a different project for CLI operations. The specified project is
then used in all subsequent operations that manipulate project-scoped content:

$ oc project <project_name>

You can also use the web console to view and change between projects. After authenticating and
logging in, you are presented with a list of projects that you have access to:

CHAPTER 5. PROJECTS

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#selfprovisioning-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#limit-projects-per-user
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console

If you use the CLI to create a new project, you can then refresh the page in the browser to see the new
project.

Selecting a project brings you to the project overview for that project.

5.4. CHECKING PROJECT STATUS

The oc status command provides a high-level overview of the current project, with its components and
their relationships. This command takes no argument:

$ oc status

5.5. FILTERING BY LABELS

You can filter the contents of a project page in the web console by using the labels of a resource. You
can pick from a suggested label name and values, or type in your own. Multiple filters can be added.
When multiple filters are applied, resources must match all of the filters to remain visible.

To filter by labels:

1. Select a label type:

2. Select one of the following:

exists Verify that the label name exists, but ignore its value.

in Verify that the label name exists and is equal to one of the selected values.

OpenShift Container Platform 3.5 Developer Guide

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#project-overviews
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels

not in Verify that the label name does not exist, or is not equal to any of the selected values.

a. If you selected in or not in , select a set of values then select Filter:

3. After adding filters, you can stop filtering by selecting Clear all filters or by clicking individual
filters to remove them:

5.6. BOOKMARKING PAGE STATES

The OpenShift Container Platform web console now bookmarks page states, which is helpful in saving
label filters and other settings.

When you do something to change the page’s state, like switching between tabs, the URL in the
browser’s navigation bar is automatically updated.

5.7. DELETING A PROJECT

When you delete a project, the server updates the project status to Terminating from Active. The server
then clears all content from a project that is Terminating before finally removing the project. While a
project is in Terminating status, a user cannot add new content to the project. Projects can be deleted
from the CLI or the web console.

To delete a project using the CLI:

CHAPTER 5. PROJECTS

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console

$ oc delete project <project_name>

OpenShift Container Platform 3.5 Developer Guide

46

CHAPTER 6. MIGRATING APPLICATIONS

6.1. OVERVIEW

This topic covers the migration procedure of OpenShift version 2 (v2) applications to OpenShift version 3
(v3).

NOTE

This topic uses some terminology that is specific to OpenShift v2. Comparing OpenShift
Enterprise 2 and OpenShift Enterprise 3 provides insight on the differences between the
two versions and the language used.

To migrate OpenShift v2 applications to OpenShift Container Platform v3, all cartridges in the v2
application must be recorded as each v2 cartridge is equivalent with a corresponding image or template
in OpenShift Container Platform v3 and they must be migrated individually. For each cartridge, all
dependencies or required packages also must be recorded, as they must be included in the v3 images.

The general migration procedure is:

1. Back up the v2 application.

Web cartridge: The source code can be backed up to a Git repository such as by pushing to
a repository on GitHub.

Database cartridge: The database can be backed up using a dump command (mongodump,
mysqldump, pg_dump) to back up the database.

Web and database cartridges: rhc client tool provides snapshot ability to back up multiple
cartridges:

$ rhc snapshot save <app_name>

The snapshot is a tar file that can be unzipped, and its content is application source code
and the database dump.

2. If the application has a database cartridge, create a v3 database application, sync the database
dump to the pod of the new v3 database application, then restore the v2 database in the v3
database application with database restore commands.

3. For a web framework application, edit the application source code to make it v3 compatible.
Then, add any dependencies or packages required in appropriate files in the Git repository.
Convert v2 environment variables to corresponding v3 environment variables.

4. Create a v3 application from source (your Git repository) or from a quickstart with your Git URL.
Also, add the database service parameters to the new application to link the database
application to the web application.

5. In v2, there is an integrated Git environment and your applications automatically rebuild and
restart whenever a change is pushed to your v2 Git repository. In v3, in order to have a build
automatically triggered by source code changes pushed to your public Git repository, you must
set up a webhook after the initial build in v3 is completed.

6.2. MIGRATING DATABASE APPLICATIONS

CHAPTER 6. MIGRATING APPLICATIONS

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/release_notes/#release-notes-v2-vs-v3

6.2.1. Overview

This topic reviews how to migrate MySQL, PostgreSQL, and MongoDB database applications from
OpenShift version 2 (v2) to OpenShift version 3 (v3).

6.2.2. Supported Databases

v2 v3

MongoDB: 2.4 MongoDB: 2.4, 2.6

MySQL: 5.5 MySQL: 5.5, 5.6

PostgreSQL: 9.2 PostgreSQL: 9.2, 9.4

6.2.3. MySQL

1. Export all databases to a dump file and copy it to a local machine (into the current directory):

$ rhc ssh <v2_application_name>
$ mysqldump --skip-lock-tables -h $OPENSHIFT_MYSQL_DB_HOST -P
${OPENSHIFT_MYSQL_DB_PORT:-3306} -u ${OPENSHIFT_MYSQL_DB_USERNAME:-
'admin'} \
 --password="$OPENSHIFT_MYSQL_DB_PASSWORD" --all-databases > ~/app-
root/data/all.sql
$ exit

2. Download dbdump to your local machine:

$ mkdir mysqldumpdir
$ rhc scp -a <v2_application_name> download mysqldumpdir app-
root/data/all.sql

3. Create a v3 mysql-persistent pod from template:

$ oc new-app mysql-persistent -p \
 MYSQL_USER=<your_V2_mysql_username> -p \
 MYSQL_PASSWORD=<your_v2_mysql_password> -p MYSQL_DATABASE=
<your_v2_database_name>

4. Check to see if the pod is ready to use:

$ oc get pods

5. When the pod is up and running, copy database archive files to your v3 MySQL pod:

$ oc rsync /local/mysqldumpdir <mysql_pod_name>:/var/lib/mysql/data

6. Restore the database in the v3 running pod:

OpenShift Container Platform 3.5 Developer Guide

48

$ oc rsh <mysql_pod>
$ cd /var/lib/mysql/data/mysqldumpdir

In v3, to restore databases you need to access MySQL as root user.

In v2, the $OPENSHIFT_MYSQL_DB_USERNAME had full privileges on all databases. In v3, you
must grant privileges to $MYSQL_USER for each database.

$ mysql -u root
$ source all.sql

Grant all privileges on <dbname> to <your_v2_username>@localhost, then flush privileges.

7. Remove the dump directory from the pod:

$ cd ../; rm -rf /var/lib/mysql/data/mysqldumpdir

Supported MySQL Environment Variables

v2 v3

OPENSHIFT_MYSQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MYSQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MYSQL_DB_USERNAME MYSQL_USER

OPENSHIFT_MYSQL_DB_PASSWORD MYSQL_PASSWORD

OPENSHIFT_MYSQL_DB_URL

OPENSHIFT_MYSQL_DB_LOG_DIR

OPENSHIFT_MYSQL_VERSION

OPENSHIFT_MYSQL_DIR

OPENSHIFT_MYSQL_DB_SOCKET

OPENSHIFT_MYSQL_IDENT

OPENSHIFT_MYSQL_AIO MYSQL_AIO

OPENSHIFT_MYSQL_MAX_ALLOWED_PACKET MYSQL_MAX_ALLOWED_PACKET

OPENSHIFT_MYSQL_TABLE_OPEN_CACHE MYSQL_TABLE_OPEN_CACHE

OPENSHIFT_MYSQL_SORT_BUFFER_SIZE MYSQL_SORT_BUFFER_SIZE

CHAPTER 6. MIGRATING APPLICATIONS

49

OPENSHIFT_MYSQL_LOWER_CASE_TABLE_NAM
ES

MYSQL_LOWER_CASE_TABLE_NAMES

OPENSHIFT_MYSQL_MAX_CONNECTIONS MYSQL_MAX_CONNECTIONS

OPENSHIFT_MYSQL_FT_MIN_WORD_LEN MYSQL_FT_MIN_WORD_LEN

OPENSHIFT_MYSQL_FT_MAX_WORD_LEN MYSQL_FT_MAX_WORD_LEN

OPENSHIFT_MYSQL_DEFAULT_STORAGE_ENGI
NE

OPENSHIFT_MYSQL_TIMEZONE

 MYSQL_DATABASE

 MYSQL_ROOT_PASSWORD

 MYSQL_MASTER_USER

 MYSQL_MASTER_PASSWORD

v2 v3

6.2.4. PostgreSQL

1. Back up the v2 PostgreSQL database from the gear:

$ rhc ssh -a <v2-application_name>
$ mkdir ~/app-root/data/tmp
$ pg_dump <database_name> | gzip > ~/app-
root/data/tmp/<database_name>.gz

2. Extract the backup file back to your local machine:

$ rhc scp -a <v2_application_name> download <local_dest> app-
root/data/tmp/<db-name>.gz
$ gzip -d <database-name>.gz

NOTE

Save the backup file to a separate folder for step 4.

3. Create the PostgreSQL service using the v2 application database name, user name and
password to create the new service:

$ oc new-app postgresql-persistent -p POSTGRESQL_DATABASE=dbname -p
POSTGRESQL_PASSWORD=password -p POSTGRESQL_USER=username

OpenShift Container Platform 3.5 Developer Guide

50

4. Check to see if the pod is ready to use:

$ oc get pods

5. When the pod is up and running, sync the backup directory to pod:

$ oc rsync /local/path/to/dir
<postgresql_pod_name>:/var/lib/pgsql/data

6. Remotely access the pod:

$ oc rsh <pod_name>

7. Restore the database:

psql dbname < /var/lib/pgsql/data/<database_backup_file>

8. Remove all backup files that are no longer needed:

$ rm /var/lib/pgsql/data/<database-backup-file>

Supported PostgreSQL Environment Variables

v2 v3

OPENSHIFT_POSTGRESQL_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_POSTGRESQL_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_POSTGRESQL_DB_USERNAME POSTGRESQL_USER

OPENSHIFT_POSTGRESQL_DB_PASSWORD POSTGRESQL_PASSWORD

OPENSHIFT_POSTGRESQL_DB_LOG_DIR

OPENSHIFT_POSTGRESQL_DB_PID

OPENSHIFT_POSTGRESQL_DB_SOCKET_DIR

OPENSHIFT_POSTGRESQL_DB_URL

OPENSHIFT_POSTGRESQL_VERSION

OPENSHIFT_POSTGRESQL_SHARED_BUFFERS

OPENSHIFT_POSTGRESQL_MAX_CONNECTIONS

OPENSHIFT_POSTGRESQL_MAX_PREPARED_TR
ANSACTIONS

CHAPTER 6. MIGRATING APPLICATIONS

51

OPENSHIFT_POSTGRESQL_DATESTYLE

OPENSHIFT_POSTGRESQL_LOCALE

OPENSHIFT_POSTGRESQL_CONFIG

OPENSHIFT_POSTGRESQL_SSL_ENABLED

 POSTGRESQL_DATABASE

 POSTGRESQL_ADMIN_PASSWORD

v2 v3

6.2.5. MongoDB

NOTE

For OpenShift v3: MongoDB shell version 3.2.6

For OpenShift v2: MongoDB shell version 2.4.9

1. Remotely access the v2 application via the ssh command:

$ rhc ssh <v2_application_name>

2. Run mongodump, specifying a single database with -d <database_name> -c
<collections>. Without those options, dump all databases. Each database is dumped in its
own directory:

$ mongodump -h $OPENSHIFT_MONGODB_DB_HOST -o app-root/repo/mydbdump
-u 'admin' -p $OPENSHIFT_MONGODB_DB_PASSWORD
$ cd app-root/repo/mydbdump/<database_name>; tar -cvzf dbname.tar.gz
$ exit

3. Download dbdump to a local machine in the mongodump directory:

$ mkdir mongodump
$ rhc scp -a <v2 appname> download mongodump \
 app-root/repo/mydbdump/<dbname>/dbname.tar.gz

4. Start a MongoDB pod in v3. Because the latest image (3.2.6) does not include mongo-tools, to
use mongorestore or mongoimport commands you need to edit the default mongodb-
persistent template to specify the image tag that contains the mongo-tools,
“mongodb:2.4”. For that reason, the following oc export command and edit are necessary:

OpenShift Container Platform 3.5 Developer Guide

52

$ oc export template mongodb-persistent -n openshift -o json >
mongodb-24persistent.json

Edit L80 of mongodb-24persistent.json; replace mongodb:latest with mongodb:2.4.

$ oc new-app --template=mongodb-persistent -n <project-name-that-
template-was-created-in> \
 MONGODB_USER=user_from_v2_app -p \
 MONGODB_PASSWORD=password_from_v2_db -p \
 MONGODB_DATABASE=v2_dbname -p \
 MONGODB_ADMIN_PASSWORD=password_from_v2_db
$ oc get pods

5. When the mongodb pod is up and running, copy the database archive files to the v3 MongoDB
pod:

$ oc rsync local/path/to/mongodump
<mongodb_pod_name>:/var/lib/mongodb/data
$ oc rsh <mongodb_pod>

6. In the MongoDB pod, complete the following for each database you want to restore:

$ cd /var/lib/mongodb/data/mongodump
$ tar -xzvf dbname.tar.gz
$ mongorestore -u $MONGODB_USER -p $MONGODB_PASSWORD -d dbname -v
/var/lib/mongodb/data/mongodump

7. Check if the database is restored:

$ mongo admin -u $MONGODB_USER -p $MONGODB_ADMIN_PASSWORD
$ use dbname
$ show collections
$ exit

8. Remove the mongodump directory from the pod:

$ rm -rf /var/lib/mongodb/data/mongodump

Supported MongoDB Environment Variables

v2 v3

OPENSHIFT_MONGODB_DB_HOST [service_name]_SERVICE_HOST

OPENSHIFT_MONGODB_DB_PORT [service_name]_SERVICE_PORT

OPENSHIFT_MONGODB_DB_USERNAME MONGODB_USER

OPENSHIFT_MONGODB_DB_PASSWORD MONGODB_PASSWORD

CHAPTER 6. MIGRATING APPLICATIONS

53

OPENSHIFT_MONGODB_DB_URL

OPENSHIFT_MONGODB_DB_LOG_DIR

 MONGODB_DATABASE

 MONGODB_ADMIN_PASSWORD

 MONGODB_NOPREALLOC

 MONGODB_SMALLFILES

 MONGODB_QUIET

 MONGODB_REPLICA_NAME

 MONGODB_KEYFILE_VALUE

v2 v3

6.3. MIGRATING WEB FRAMEWORK APPLICATIONS

6.3.1. Overview

This topic reviews how to migrate Python, Ruby, PHP, Perl, Node.js, JBoss EAP, JBoss WS (Tomcat),
and Wildfly 10 (JBoss AS) web framework applications from OpenShift version 2 (v2) to OpenShift
version 3 (v3).

6.3.2. Python

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>.git

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Ensure that all important files such as setup.py, wsgi.py, requirements.txt, and etc are
pushed to new repository.

Ensure all required packages for your application are included in requirements.txt.

4. Use the oc command to launch a new Python application from the builder image and source
code:

$ oc new-app --strategy=source

OpenShift Container Platform 3.5 Developer Guide

54

python:3.3~https://github.com/<github-id>/<repo-name> --name=<app-
name> -e
<ENV_VAR_NAME>=<env_var_value>

Supported Python Versions

v2 v3

Python: 2.6, 2.7, 3.3 Supported Container Images

Django Django-psql-example (quickstart)

6.3.3. Ruby

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>.git

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If you do not have a Gemfile and are running a simple rack application, copy this Gemfile into
the root of your source:

https://github.com/sclorg/ruby-ex/blob/master/Gemfile

NOTE

The latest version of the rack gem that supports Ruby 2.0 is 1.6.4, so the Gemfile
needs to be modified to gem 'rack', “1.6.4”.

For Ruby 2.2 or later, use the rack gem 2.0 or later.

4. Use the oc command to launch a new Ruby application from the builder image and source code:

$ oc new-app --strategy=source
ruby:2.0~https://github.com/<github-id>/<repo-name>.git

Supported Ruby Versions

v2 v3

Ruby: 1.8, 1.9, 2.0 Supported Container Images

Ruby on Rails: 3, 4 Rails-postgresql-example (quickstart)

CHAPTER 6. MIGRATING APPLICATIONS

55

https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281

Sinatra

v2 v3

6.3.4. PHP

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Use the oc command to launch a new PHP application from the builder image and source code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

Supported PHP Versions

v2 v3

PHP: 5.3, 5.4 Supported Container Images

PHP 5.4 with Zend Server 6.1

CodeIgniter 2

HHVM

Laravel 5.0

 cakephp-mysql-example (quickstart)

6.3.5. Perl

1. Set up a new GitHub repository and add it as a remote branch to the current, local v2 Git
repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

OpenShift Container Platform 3.5 Developer Guide

56

https://access.redhat.com/articles/2176281

3. Edit the local Git repository and push changes upstream to make it v3 compatible:

a. In v2, CPAN modules reside in .openshift/cpan.txt. In v3, the s2i builder looks for a file
named cpanfile in the root directory of the source.

$ cd <local-git-repository>
$ mv .openshift/cpan.txt cpanfile

Edit cpanfile, as it has a slightly different format:

format of cpanfile format of cpan.txt

requires ‘cpan::mod’; cpan::mod

requires ‘Dancer’; Dancer

requires ‘YAML’; YAML

b. Remove .openshift directory

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

4. Use the oc command to launch a new Perl application from the builder image and source code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git

Supported Perl Versions

v2 v3

Perl: 5.10 Supported Container Images

 Dancer-mysql-example (quickstart)

6.3.6. Node.js

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push changes upstream to make it v3 compatible:

CHAPTER 6. MIGRATING APPLICATIONS

57

https://access.redhat.com/articles/2176281

a. Remove the .openshift directory.

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

b. Edit server.js.

L116 server.js: 'self.app = express();'

L25 server.js: self.ipaddress = '0.0.0.0';

L26 server.js: self.port = 8080;

NOTE

Lines(L) are from the base V2 cartridge server.js.

4. Use the oc command to launch a new Node.js application from the builder image and source
code:

$ oc new-app https://github.com/<github-id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

Supported Node.js Versions

v2 v3

Node.js 0.10 Supported Container Images

 Nodejs-mongodb-example. This quickstart template
only supports Node.js version 6.

6.3.7. JBoss EAP

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If the repository includes pre-built .war files, they need to reside in the deployments directory off
the root directory of the repository.

4. Create the new application using the JBoss EAP 6 builder image (jboss-eap64-openshift) and
the source code repository from GitHub:

OpenShift Container Platform 3.5 Developer Guide

58

https://access.redhat.com/articles/2176281

$ oc new-app --strategy=source jboss-eap64-
openshift~https://github.com/<github-id>/<repo-name>.git

6.3.8. JBoss WS (Tomcat)

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. If the repository includes pre-built .war files, they need to reside in the deployments directory off
the root directory of the repository.

4. Create the new application using the JBoss Web Server 3 (Tomcat 7) builder image (jboss-
webserver30-tomcat7) and the source code repository from GitHub:

$ oc new-app --strategy=source
jboss-webserver30-tomcat7-openshift~https://github.com/<github-
id>/<repo-name>.git
--name=<app-name> -e <ENV_VAR_NAME>=<env_var_value>

6.3.9. JBoss AS (Wildfly 10)

1. Set up a new GitHub repository and add it as a remote branch to the current, local Git repository:

$ git remote add <remote-name> https://github.com/<github-id>/<repo-
name>

2. Push the local v2 source code to the new repository:

$ git push -u <remote-name> master

3. Edit the local Git repository and push the changes upstream to make it v3 compatible:

a. Remove .openshift directory.

NOTE

In v3, action_hooks and cron tasks are not supported in the same way. See
Action Hooks for more information.

b. Add the deployments directory to the root of the source repository. Move the .war files to
‘deployments’ directory.

4. Use the the oc command to launch a new Wildfly application from the builder image and source
code:

CHAPTER 6. MIGRATING APPLICATIONS

59

$ oc new-app https://github.com/<github-id>/<repo-name>.git
 --image-stream=”openshift/wildfly:10.0" --name=<app-name> -e
 <ENV_VAR_NAME>=<env_var_value>

NOTE

The argument --name is optional to specify the name of your application. The
argument -e is optional to add environment variables that are needed for build
and deployment processes, such as OPENSHIFT_PYTHON_DIR.

6.3.10. Supported JBoss/XPaas Versions

v2 v3

JBoss App Server 7

Tomcat 6 (JBoss EWS 1.0) Supported Container Images

Tomcat 7 (JBoss EWS 2.0) Supported Container Images

Vert.x 2.1

WildFly App Server 10

WildFly App Server 8.2.1.Final

WildFly App Server 9

CapeDwarf

JBoss Data Virtualization 6 Supported Container Images

JBoss Enterprise App Platform (EAP) 6 Supported Container Images

JBoss Unified Push Server 1.0.0.Beta1, Beta2

JBoss BPM Suite Supported Container Images

JBoss BRMS Supported Container Images

 jboss-eap70-openshift: 1.3-Beta

 eap64-https-s2i

 eap64-mongodb-persistent-s2i

 eap64-mysql-persistent-s2i

OpenShift Container Platform 3.5 Developer Guide

60

https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/2176281

 eap64-psql-persistent-s2i

v2 v3

6.4. QUICKSTART EXAMPLES

6.4.1. Overview

Although there is no clear-cut migration path for v2 quickstart to v3 quickstart, the following quickstarts
are currently available in v3. If you have an application with a database, rather than using oc new-app
to create your application, then oc new-app again to start a separate database service and linking the
two with common environment variables, you can use one of the following to instantiate the linked
application and database at once, from your GitHub repository containing your source code. You can list
all available templates with oc get templates -n openshift:

CakePHP MySQL https://github.com/sclorg/cakephp-ex

template: cakephp-mysql-example

Node.js MongoDB https://github.com/sclorg/nodejs-ex

template: nodejs-mongodb-example

Django PosgreSQL https://github.com/sclorg/django-ex

template: django-psql-example

Dancer MySQL https://github.com/sclorg/dancer-ex

template: dancer-mysql-example

Rails PostgreSQL https://github.com/sclorg/rails-ex

template: rails-postgresql-example

6.4.2. Workflow

Run a git clone of one of the above template URLs locally. Add and commit your application source
code and push a GitHub repository, then start a v3 quickstart application from one of the templates listed
above:

1. Create a GitHub repository for your application.

2. Clone a quickstart template and add your GitHub repository as a remote:

$ git clone <one-of-the-template-URLs-listed-above>
$ cd <your local git repository>
$ git remote add upstream <https://github.com/<git-id>/<quickstart-
repo>.git>
$ git push -u upstream master

3. Commit and push your source code to GitHub:

CHAPTER 6. MIGRATING APPLICATIONS

61

https://github.com/sclorg/cakephp-ex
https://github.com/sclorg/nodejs-ex
https://github.com/sclorg/django-ex
https://github.com/sclorg/dancer-ex
https://github.com/sclorg/rails-ex

1

$ cd <your local repository>
$ git commit -am “added code for my app”
$ git push origin master

4. Create a new application in v3:

$ oc new-app --template=<template> \
-p SOURCE_REPOSITORY_URL=<https://github.com/<git-
id>/<quickstart_repo>.git> \
-p DATABASE_USER=<your_db_user> \
-p DATABASE_NAME=<your_db_name> \
-p DATABASE_PASSWORD=<your_db_password> \

-p DATABASE_ADMIN_PASSWORD=<your_db_admin_password> 1

Only applicable for MongoDB.

You should now have 2 pods running, a web framework pod, and a database pod. The web
framework pod environment should match the database pod environment. You can list the
environment variables with oc set env pod/<pod_name> --list:

DATABASE_NAME is now <DB_SERVICE>_DATABASE

DATABASE_USER is now <DB_SERVICE>_USER

DATABASE_PASSWORD is now <DB_SERVICE>_PASSWORD

DATABASE_ADMIN_PASSWORD is now MONGODB_ADMIN_PASSWORD (only applicable for
MongoDB)
If no SOURCE_REPOSITORY_URL is specified, the template will use the template URL
(https://github.com/openshift/<quickstart>-ex) listed above as the source repository, and
a hello-welcome application will be started.

5. If you are migrating a database, export databases to a dump file and restore the database in the
new v3 database pod. Refer to the steps outlined in Database Applications, skipping the oc
new-app step as the database pod is already up and running.

6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)

6.5.1. Overview

This topic reviews the differences in continuous integration and deployment (CI/CD) applications
between OpenShift version 2 (v2) and OpenShift version 3 (v3) and how to migrate these applications
into the v3 environment.

6.5.2. Jenkins

The Jenkins applications in OpenShift version 2 (v2) and OpenShift version 3 (v3) are configured
differently due to fundamental differences in architecture. For example, in v2, the application uses an
integrated Git repository that is hosted in the gear to store the source code. In v3, the source code is
located in a public or private Git repository that is hosted outside of the pod.

Furthermore, in OpenShift v3, Jenkins jobs can not only be triggered by source code changes, but also
by changes in ImageStream, which are changes on the images that are used to build the application

OpenShift Container Platform 3.5 Developer Guide

62

along with its source code. As a result, it is highly recommended that you migrate the Jenkins application
manually by creating a new Jenkins application in v3, and then re-creating jobs with the configurations
that are suitable to OpenShift v3 environment.

Consult these resources for more information on how to create a Jenkins application, configure jobs, and
use Jenkins plug-ins properly:

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md

https://github.com/openshift/jenkins-plugin/blob/master/README.md

https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

6.6. WEBHOOKS AND ACTION HOOKS

6.6.1. Overview

This topic reviews the differences in webhooks and action hooks between OpenShift version 2 (v2) and
OpenShift version 3 (v3) and how to migrate these applications into the v3 environment.

6.6.2. Webhooks

1. After creating a BuildConfig from a GitHub repository, run:

This will output a webhook GitHub URL that looks like:

<https://api.starter-us-east-
1.openshift.com:443/oapi/v1/namespaces/nsname/buildconfigs/bcname/we
bhooks/secret/github>.

2. Cut and paste this URL into GitHub, from the GitHub web console.

3. In your GitHub repository, select Add Webhook from Settings → Webhooks & Services.

4. Paste the URL output (similar to above) into the Payload URL field.

5. Set the Content Type to application/json.

6. Click Add webhook.

You should see a message from GitHub stating that your webhook was successfully configured.

Now, whenever you push a change to your GitHub repository, a new build will automatically start, and
upon a successful build a new deployment will start.

NOTE

If you delete or recreate your application, you will have to update the Payload URL field
in GitHub with the new BuildConfig webhook url.

6.6.3. Action Hooks

$ oc describe bc/<name-of-your-BuildConfig>

CHAPTER 6. MIGRATING APPLICATIONS

63

https://github.com/openshift/origin/blob/master/examples/jenkins/README.md
https://github.com/openshift/jenkins-plugin/blob/master/README.md
https://github.com/openshift/origin/blob/master/examples/sample-app/README.md

In OpenShift version 2 (v2), there are build, deploy, post_deploy, and pre_build scripts or action_hooks
that are located in the .openshift/action_hooks directory. While there is no one-to-one mapping of
function for these in v3, the S2I tool in v3 does have the option of adding customizable scripts, either in a
designated URL or in the .s2i/bin directory of your source repository.

OpenShift version 3 (v3) also offers a post-build hook for running basic testing of an image after it is built
and before it is pushed to the registry. Deployment hooks are configured in the deployment configuration.

In v2, action_hooks are commonly used to set up environment variables. In v2, any environment
variables should be passed with:

or:

Also, environment variables can be added or changed using:

6.7. S2I TOOL

6.7.1. Overview

The Source-to-Image (S2I) tool injects application source code into a container image and the final
product is a new and ready-to-run container image that incorporates the builder image and built source
code. The S2I tool can be installed on your local machine without OpenShift Container Platform from the
repository.

The S2I tool is a very powerful tool to test and verify your application and images locally before using
them on OpenShift Container Platform.

6.7.2. Creating a Container Image

1. Identify the builder image that is needed for the application. Red Hat offers multiple builder
images for different languages including Python, Ruby, Perl, PHP, and Node.js. Other images
are available from the community space.

2. S2I can build images from source code in a local file system or from a Git repository. To build a
new container image from the builder image and the source code:

$ s2i build <source-location> <builder-image-name> <output-image-
name>

NOTE

<source-location> can either be a Git repository URL or a directory to source
code in a local file system.

3. Test the built image with the Docker daemon:

$ oc new-app <source-url> -e ENV_VAR=env_var

$ oc new-app <template-name> -p ENV_VAR=env_var

$ oc set env dc/<name-of-dc>
ENV_VAR1=env_var1 ENV_VAR2=env_var2’

OpenShift Container Platform 3.5 Developer Guide

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-s2i-images-index
https://github.com/openshift/source-to-image#installation
https://github.com/sclorg?query=s2i
https://github.com/openshift-s2i

$ docker run -d --name <new-name> -p <port-number>:<port-number>
<output-image-name>
$ curl localhost:<port-number>

4. Push the new image to the OpenShift registry.

5. Create a new application from the image in the OpenShift registry using the oc command:

$ oc new-app <image-name>

6.8. SUPPORT GUIDE

6.8.1. Overview

This topic reviews supported languages, frameworks, databases, and markers for OpenShift version 2
(v2) and OpenShift version 3 (v3).

6.8.2. Supported Databases

See the Supported Databases section of the Database Applications topic.

6.8.3. Supported Languages

PHP

Python

Perl

Node.js

Ruby

JBoss/xPaaS

6.8.4. Supported Frameworks

Table 6.1. Supported Frameworks

v2 v3

Jenkins Server jenkins-persistent

Drupal 7

Ghost 0.7.5

WordPress 4

Ceylon

CHAPTER 6. MIGRATING APPLICATIONS

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#access-pushing-and-pulling-images

Go

MEAN

v2 v3

6.8.5. Supported Markers

Table 6.2. Python

v2 v3

pip_install If your repository contains requirements.txt, then pip
is invoked by default. Otherwise, pip is not used.

Table 6.3. Ruby

v2 v3

disable_asset_compilation This can be done by setting
DISABLE_ASSET_COMPILATION environment
variable to true on the buildconfig strategy
definition.

Table 6.4. Perl

v2 v3

enable_cpan_tests This can be done by setting ENABLE_CPAN_TEST
environment variable to true on the build
configuration.

Table 6.5. PHP

v2 v3

use_composer composer is always used if the source repository
includes a composer.json in the root directory.

Table 6.6. Node.js

v2 v3

NODEJS_VERSION N/A

OpenShift Container Platform 3.5 Developer Guide

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#configuration

use_npm npm is always used to start the application, unless
DEV_MODE is set to true, in which case nodemon is
used instead.

v2 v3

Table 6.7. JBoss EAP, JBoss WS, WildFly

v2 v3

enable_debugging This option is controlled via the ENABLE_JPDA
environment variable set on the deployment
configuration by setting it to any non-empty value.

skip_maven_build If pom.xml is present, maven will be run.

java7 N/A

java8 JavaEE is using JDK8.

Table 6.8. Jenkins

v2 v3

enable_debugging N/A

Table 6.9. All

v2 v3

force_clean_build There is a similar concept in v3, as noCache field in
buildconfig forces the container build to rerun each
layer. In the S2I build, the incremental flag is false
by default, which indicates a clean build .

hot_deploy Ruby, Python, Perl, PHP, Node.js

enable_public_server_status N/A

disable_auto_scaling Autoscaling is off by default and it can be turn on via
pod auto-scaling.

6.8.6. Supported Environment Variables

MySQL

CHAPTER 6. MIGRATING APPLICATIONS

67

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#ruby-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#python-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#perl-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#php-hot-deploy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#nodejs-hot-deploying

MongoDB

PostgreSQL

OpenShift Container Platform 3.5 Developer Guide

68

CHAPTER 7. APPLICATION TUTORIALS

7.1. OVERVIEW

This topic group includes information on how to get your application up and running in OpenShift
Container Platform and covers different languages and their frameworks.

7.2. QUICKSTART TEMPLATES

7.2.1. Overview

A quickstart is a basic example of an application running on OpenShift Container Platform. Quickstarts
come in a variety of languages and frameworks, and are defined in a template, which is constructed from
a set of services, build configurations, and deployment configurations. This template references the
necessary images and source repositories to build and deploy the application.

To explore a quickstart, create an application from a template. Your administrator may have already
installed these templates in your OpenShift Container Platform cluster, in which case you can simply
select it from the web console. See the template documentation for more information on how to upload,
create from, and modify a template.

Quickstarts refer to a source repository that contains the application source code. To customize the
quickstart, fork the repository and, when creating an application from the template, substitute the default
source repository name with your forked repository. This results in builds that are performed using your
source code instead of the provided example source. You can then update the code in your source
repository and launch a new build to see the changes reflected in the deployed application.

7.2.2. Web Framework Quickstart Templates

These quickstarts provide a basic application of the indicated framework and language:

CakePHP: a PHP web framework (includes a MySQL database)

Template definition

Source repository

Dancer: a Perl web framework (includes a MySQL database)

Template definition

Source repository

Django: a Python web framework (includes a PostgreSQL database)

Template definition

Source repository

NodeJS: a NodeJS web application (includes a MongoDB database)

Template definition

Source repository

CHAPTER 7. APPLICATION TUTORIALS

69

https://github.com/openshift/origin/tree/master/examples/quickstarts/cakephp-mysql.json
https://github.com/sclorg/cakephp-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/dancer-mysql.json
https://github.com/sclorg/dancer-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/django-postgresql.json
https://github.com/sclorg/django-ex
https://github.com/openshift/origin/tree/master/examples/quickstarts/nodejs-mongodb.json
https://github.com/sclorg/nodejs-ex

Rails: a Ruby web framework (includes a PostgreSQL database)

Template definition

Source repository

7.3. RUBY ON RAILS

7.3.1. Overview

Ruby on Rails is a popular web framework written in Ruby. This guide covers using Rails 4 on OpenShift
Container Platform.

WARNING

We strongly advise going through the whole tutorial to have an overview of all the
steps necessary to run your application on the OpenShift Container Platform. If you
experience a problem try reading through the entire tutorial and then going back to
your issue. It can also be useful to review your previous steps to ensure that all the
steps were executed correctly.

For this guide you will need:

Basic Ruby/Rails knowledge

Locally installed version of Ruby 2.0.0+, Rubygems, Bundler

Basic Git knowledge

Running instance of OpenShift Container Platform v3

7.3.2. Local Workstation Setup

First make sure that an instance of OpenShift Container Platform is running and is available. For more
info on how to get OpenShift Container Platform up and running check the installation methods. Also
make sure that your oc CLI client is installed and the command is accessible from your command shell,
so you can use it to log in using your email address and password.

7.3.2.1. Setting Up the Database

Rails applications are almost always used with a database. For the local development we chose the
PostgreSQL database. To install it type:

$ sudo yum install -y postgresql postgresql-server postgresql-devel

Next you need to initialize the database with:

$ sudo postgresql-setup initdb

OpenShift Container Platform 3.5 Developer Guide

70

https://github.com/openshift/origin/tree/master/examples/quickstarts/rails-postgresql.json
https://github.com/sclorg/rails-ex
https://github.com/sclorg/mysql-container/tree/master/5.5
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-get-started-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#basic-setup-and-login

This command will create the /var/lib/pgsql/data directory, in which the data will be stored.

Start the database by typing:

$ sudo systemctl start postgresql.service

When the database is running, create your rails user:

$ sudo -u postgres createuser -s rails

Note that the user we created has no password.

7.3.3. Writing Your Application

If you are starting your Rails application from scratch, you need to install the Rails gem first.

$ gem install rails
Successfully installed rails-4.2.0
1 gem installed

After you install the Rails gem create a new application, with PostgreSQL as your database:

$ rails new rails-app --database=postgresql

Then change into your new application directory.

$ cd rails-app

If you already have an application, make sure the pg (postgresql) gem is present in your Gemfile. If not
edit your Gemfile by adding the gem:

gem 'pg'

To generate a new Gemfile.lock with all your dependencies run:

$ bundle install

In addition to using the postgresql database with the pg gem, you’ll also need to ensure the
config/database.yml is using the postgresql adapter.

Make sure you updated default section in the config/database.yml file, so it looks like this:

default: &default
 adapter: postgresql
 encoding: unicode
 pool: 5
 host: localhost
 username: rails
 password:

Create your application’s development and test databases by using this rake command:

CHAPTER 7. APPLICATION TUTORIALS

71

$ rake db:create

This will create development and test database in your PostgreSQL server.

7.3.3.1. Creating a Welcome Page

Since Rails 4 no longer serves a static public/index.html page in production, we need to create a
new root page.

In order to have a custom welcome page we need to do following steps:

Create a controller with an index action

Create a view page for the welcome controller index action

Create a route that will serve applications root page with the created controller and view

Rails offers a generator that will do all this necessary steps for you.

$ rails generate controller welcome index

All the necessary files have been created, now we just need to edit line 2 in config/routes.rb file to
look like:

root 'welcome#index'

Run the rails server to verify the page is available.

$ rails server

You should see your page by visiting http://localhost:3000 in your browser. If you don’t see the page,
check the logs that are output to your server to debug.

7.3.3.2. Configuring the Application for OpenShift Container Platform

In order to have your application communicating with the PostgreSQL database service that will be
running in OpenShift Container Platform, you will need to edit the default section in your
config/database.yml to use environment variables, which you will define later, upon the database
service creation.

The default section in your edited config/database.yml together with pre-defined variables
should look like:

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>
<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling

OpenShift Container Platform 3.5 Developer Guide

72

http://localhost:3000
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#postgresql-environment-variables

 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>
 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

For an example of how the final file should look, see Ruby on Rails example application
config/database.yml.

7.3.3.3. Storing Your Application in Git

OpenShift Container Platform requires git, if you don’t have it installed you will need to install it.

Building an application in OpenShift Container Platform usually requires that the source code be stored
in a git repository, so you will need to install git if you do not already have it.

Make sure you are in your Rails application directory by running the ls -1 command. The output of the
command should look like:

$ ls -1
app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

Now run these commands in your Rails app directory to initialize and commit your code to git:

$ git init
$ git add .
$ git commit -m "initial commit"

Once your application is committed you need to push it to a remote repository. For this you would need a
GitHub account, in which you create a new repository.

Set the remote that points to your git repository:

$ git remote add origin git@github.com:<namespace/repository-name>.git

After that, push your application to your remote git repository.

$ git push

CHAPTER 7. APPLICATION TUTORIALS

73

https://github.com/sclorg/rails-ex
https://github.com/sclorg/rails-ex/blob/master/config/database.yml
http://git-scm.com/
http://git-scm.com/
https://github.com/join
https://help.github.com/articles/creating-a-new-repository/

7.3.4. Deploying Your Application to OpenShift Container Platform

To deploy your Ruby on Rails application, create a new Project for the application:

$ oc new-project rails-app --description="My Rails application" --display-
name="Rails Application"

After creating the the rails-app project, you will be automatically switched to the new project
namespace.

Deploying your application in OpenShift Container Platform involves three steps:

Creating a database service from OpenShift Container Platform’s PostgreSQL image

Creating a frontend service from OpenShift Container Platform’s Ruby 2.0 builder image and
your Ruby on Rails source code, which we wire with the database service

Creating a route for your application.

7.3.4.1. Creating the Database Service

Your Rails application expects a running database service. For this service use PostgeSQL database
image.

To create the database service you will use the oc new-app command. To this command you will need to
pass some necessary environment variables which will be used inside the database container. These
environment variables are required to set the username, password, and name of the database. You can
change the values of these environment variables to anything you would like. The variables we are going
to be setting are as follows:

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

Setting these variables ensures:

A database exists with the specified name

A user exists with the specified name

The user can access the specified database with the specified password

For example:

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

To also set the password for the database administrator, append to the previous command with:

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

To watch the progress of this command:

OpenShift Container Platform 3.5 Developer Guide

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-s2i-images-ruby
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
http://www.postgresql.org/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-db-images-postgresql
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#postgresql-environment-variables

$ oc get pods --watch

7.3.4.2. Creating the Frontend Service

To bring your application to OpenShift Container Platform, you need to specify a repository in which your
application lives, using once again the oc new-app command, in which you will need to specify
database related environment variables we setup in the Creating the Database Service:

$ oc new-app path/to/source/code --name=rails-app -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password -e
POSTGRESQL_DATABASE=db_name -e DATABASE_SERVICE_NAME=postgresql

With this command, OpenShift Container Platform fetches the source code, sets up the builder image,
builds your application image, and deploys the newly created image together with the specified
environment variables. The application is named rails-app.

You can verify the environment variables have been added by viewing the JSON document of the
rails-app DeploymentConfig:

$ oc get dc rails-app -o json

You should see the following section:

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },
 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },
 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }

],

To check the build process:

$ oc logs -f build rails-app-1

Once the build is complete, you can look at the running pods in OpenShift Container Platform.

$ oc get pods

You should see a line starting with myapp-<number>-<hash>, and that is your application running in
OpenShift Container Platform.

CHAPTER 7. APPLICATION TUTORIALS

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#postgresql-environment-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#postgresql-environment-variables

Before your application will be functional, you need to initialize the database by running the database
migration script. There are two ways you can do this:

Manually from the running frontend container:

First you need to exec into frontend container with rsh command:

$ oc rsh <FRONTEND_POD_ID>

Run the migration from inside the container:

$ RAILS_ENV=production bundle exec rake db:migrate

If you are running your Rails application in a development or test environment you don’t have to
specify the RAILS_ENV environment variable.

By adding pre-deployment lifecycle hooks in your template. For example check the hooks
example in our Rails example application.

7.3.4.3. Creating a Route for Your Application

To expose a service by giving it an externally-reachable hostname like www.example.com use
OpenShift Container Platform route. In your case you need to expose the frontend service by typing:

$ oc expose service rails-app --hostname=www.example.com

WARNING

It’s the user’s responsibility to ensure the hostname they specify resolves into the IP
address of the router. For more information, check the OpenShift Container Platform
documentation on:

Routes

Configuring a Highly-available Routing Service

7.4. SETTING UP A NEXUS MIRROR FOR MAVEN

7.4.1. Introduction

While developing your application with Java and Maven, you will most likely be building many times. In
order to shorten the build times of your pods, Maven dependencies can be cached in a local Nexus
repository. This tutorial will guide you through creating a Nexus repository on your cluster.

This tutorial assumes that you are working with a project that is already set up for use with Maven. If you
are interested in using Maven with your Java project, it is highly recommended that you look at their
guide.

OpenShift Container Platform 3.5 Developer Guide

76

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://github.com/sclorg/rails-ex/blob/master/openshift/templates/rails-postgresql.json#L122-L130
https://github.com/sclorg/rails-ex
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#routers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#configuring-a-highly-available-service
https://maven.apache.org/guides/getting-started/index.html

In addition, be sure to check your application’s image for Maven mirror capabilities. Many images that
use Maven have a MAVEN_MIRROR_URL environment variable that you can use to simplify this process.
If it does not have this capability, read the Nexus documentation to configure your build properly.

Furthermore, make sure that you give each pod enough resources to function. You may have to edit the
pod template in the Nexus deployment configuration to request more resources.

7.4.2. Setting up Nexus

1. Download and deploy the official Nexus container image:

oc new-app sonatype/nexus

2. Create a route by exposing the newly created Nexus service:

oc expose svc/nexus

3. Use oc get routes to find the pod’s new external address.

oc get routes

The output should resemble:

NAME HOST/PORT PATH
SERVICES PORT TERMINATION
nexus nexus-myproject.192.168.1.173.xip.io nexus
8081-tcp

4. Confirm that Nexus is running by navigating your browser to the URL under HOST/PORT. To
sign in to Nexus, the default administrator username is admin, and the password is admin123.

NOTE

Nexus comes pre-configured for the Central Repository, but you may need others for your
application. For many Red Hat images, it is recommended to add the jboss-ga repository
at Maven repository.

7.4.2.1. Using Probes to Check for Success

This is a good time to set up readiness and liveness probes. These will periodically check to see that
Nexus is running properly.

$ oc set probe dc/nexus \
 --liveness \
 --failure-threshold 3 \
 --initial-delay-seconds 30 \
 -- echo ok
$ oc set probe dc/nexus \
 --readiness \
 --failure-threshold 3 \
 --initial-delay-seconds 30 \
 --get-url=http://:8081/nexus/content/groups/public

CHAPTER 7. APPLICATION TUTORIALS

77

https://books.sonatype.com/nexus-book/reference/config.html
https://maven.repository.redhat.com/ga/
https://books.sonatype.com/nexus-book/reference/config-maven.html

7.4.2.2. Adding Persistence to Nexus

NOTE

If you do not want persistent storage, continue to Connecting to Nexus. However, your
cached dependencies and any configuration customization will be lost if the pod is
restarted for any reason.

Create a persistent volume claim (PVC) for Nexus, so that the cached dependencies are not lost when
the pod running the server terminates. PVCs require available persistent volumes (PV) in the cluster. If
there are no PVs available and you do not have administrator access on your cluster, ask your system
administrator to create a Read/Write Persistent Volume for you. Otherwise, see Persistent Storage in
OpenShift Container Platform for instructions on creating a persistent volume.

Add a PVC to the Nexus deployment configuration.

$ oc volumes dc/nexus --add \
 --name 'nexus-volume-1' \
 --type 'pvc' \
 --mount-path '/sonatype-work/' \
 --claim-name 'nexus-pv' \
 --claim-size '1G' \
 --overwrite

This removes the previous emptyDir volume for the deployment config and adds a claim for one
gigabyte of persistent storage mounted at /sonatype-work, which is where the dependencies will be
stored. Due to the change in configuration, the Nexus pod will be redeployed automatically.

To verify that Nexus is running, refresh the Nexus page in your browser. You can monitor the
deployment’s progress using:

$ oc get pods -w

7.4.3. Connecting to Nexus

The next steps demonstrate defining a build that uses the new Nexus repository. The rest of the tutorial
uses this example repository with wildfly-100-centos7 as a builder, but these changes should work for
any project.

The example builder image supports MAVEN_MIRROR_URL as part of its environment, so we can use
this to point our builder image to our Nexus repository. If your image does not support consuming an
environment variable to configure a Maven mirror, you may need to modify the builder image to provide
the correct Maven settings to point to the Nexus mirror.

$ oc new-build openshift/wildfly-100-
centos7:latest~https://github.com/openshift/jee-ex.git \
 -e MAVEN_MIRROR_URL='http://nexus.
<Nexus_Project>:8081/nexus/content/groups/public'
$ oc logs build/jee-ex-1 --follow

Replace <Nexus_Project> with the project name of the Nexus repository. If it is in the same project as
the application that is using it, you can remove the <Nexus_Project>.. Learn more about DNS
resolution in OpenShift Container Platform.

OpenShift Container Platform 3.5 Developer Guide

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-index
https://github.com/openshift/jee-ex.git
https://github.com/openshift/jee-ex.git
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-networking

7.4.4. Confirming Success

In your web browser, navigate to http://<NexusIP>:8081/nexus/content/groups/public to confirm that
it has stored your application’s dependencies. You can also check the build logs to see if Maven is using
the Nexus mirror. If successful, you should see output referencing the URL `http://nexus:8081.

7.4.5. Additional Resources

Managing Volumes in OpenShift Container Platform

Improving Build Time of Java Builds on OpenShift Container Platform

Nexus Repository Documentation

CHAPTER 7. APPLICATION TUTORIALS

79

https://blog.openshift.com/improving-build-time-java-builds-openshift/
https://books.sonatype.com/nexus-book/reference/index.html

CHAPTER 8. BUILDS

8.1. HOW BUILDS WORK

8.1.1. What Is a Build?

A build in OpenShift Container Platform is the process of transforming input parameters into a resulting
object. Most often, builds are used to transform source code into a runnable container image.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources.
The strategy determines the aforementioned process, while the sources provide its input.

The build strategies are:

Source-to-Image (S2I) (description, options)

Pipeline (description, options)

Docker (description, options)

Custom (description, options)

And there are six types of sources that can be given as build input:

Git

Dockerfile

Binary

Image

Input secrets

External artifacts

It is up to each build strategy to consider or ignore a certain type of source, as well as to determine how
it is to be used. Binary and Git are mutually exclusive source types. Dockerfile and Image can be used by
themselves, with each other, or together with either Git or Binary. The Binary source type is unique from
the other options in how it is specified to the system.

8.1.2. What Is a BuildConfig?

A build configuration describes a single build definition and a set of triggers for when a new build should
be created. Build configurations are defined by a BuildConfig, which is a REST object that can be
used in a POST to the API server to create a new instance.

Depending on how you choose to create your application using OpenShift Container Platform, a
BuildConfig is typically generated automatically for you if you use the web console or CLI, and it can
be edited at any time. Understanding the parts that make up a BuildConfig and their available options
can help if you choose to manually tweak your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the
source code changes:

OpenShift Container Platform 3.5 Developer Guide

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pipeline-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#custom-build

1

2

3

4

5

6

7

BuildConfig Object Definition

This specification will create a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds will run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary source
of input, and can be either Git, to point to a code repository location, Dockerfile, to build from
an inline Dockerfile, or Binary, to accept binary payloads. It is possible to have multiple sources at
once, refer to the documentation for each source type for details.

The strategy section describes the build strategy used to execute the build. You can specify a
Source , Docker, or Custom strategy here. This above example uses the ruby-20-centos7
container image that Source-To-Image will use for the application build.

After the container image is successfully built, it will be pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

kind: "BuildConfig"
apiVersion: "v1"
metadata:

 name: "ruby-sample-build" 1
spec:

 runPolicy: "Serial" 2

 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"

 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"

 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"

 postCommit: 7
 script: "bundle exec rake test"

CHAPTER 8. BUILDS

81

8.2. BASIC BUILD OPERATIONS

8.2.1. Starting a Build

Manually start a new build from an existing build configuration in your current project using the following
command:

$ oc start-build <buildconfig_name>

Re-run a build using the --from-build flag:

$ oc start-build --from-build=<build_name>

Specify the --follow flag to stream the build’s logs in stdout:

$ oc start-build <buildconfig_name> --follow

Specify the --env flag to set any desired environment variable for the build:

$ oc start-build <buildconfig_name> --env=<key>=<value>

Rather than relying on a Git source pull or a Dockerfile for a build, you can can also start a build by
directly pushing your source, which could be the contents of a Git or SVN working directory, a set of
prebuilt binary artifacts you want to deploy, or a single file. This can be done by specifying one of the
following options for the start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a build.
Add the --commit option to control which branch, tag, or commit is
used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

For example, the following command sends the contents of a local Git repository as an archive from the
tag v2 and starts a build:

OpenShift Container Platform 3.5 Developer Guide

82

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

8.2.2. Canceling a Build

Manually cancel a build using the web console, or with the following CLI command:

$ oc cancel-build <build_name>

Cancel multiple builds at the same time:

$ oc cancel-build <build1_name> <build2_name> <build3_name>

Cancel all builds created from the build configuration:

$ oc cancel-build bc/<buildconfig_name>

Cancel all builds in a given state (for example, new or pending), ignoring the builds in other states:

$ oc cancel-build bc/<buildconfig_name> --state=<state>

8.2.3. Deleting a BuildConfig

Delete a BuildConfig using the following command:

$ oc delete bc <BuildConfigName>

This will also delete all builds that were instantiated from this BuildConfig. Specify the --
cascade=false flag if you do not want to delete the builds:

$ oc delete --cascade=false bc <BuildConfigName>

8.2.4. Viewing Build Details

You can view build details with the web console or by using the oc describe CLI command:

$ oc describe build <build_name>

This displays information such as:

The build source

The build strategy

The output destination

Digest of the image in the destination registry

How the build was created

If the build uses the Docker or Source strategy, the oc describe output also includes information
about the source revision used for the build, including the commit ID, author, committer, and message.

CHAPTER 8. BUILDS

83

1

8.2.5. Accessing Build Logs

You can access build logs using the web console or the CLI.

To stream the logs using the build directly:

$ oc logs -f build/<build_name>

To stream the logs of the latest build for a build configuration:

$ oc logs -f bc/<buildconfig_name>

To return the logs of a given version build for a build configuration:

$ oc logs --version=<number> bc/<buildconfig_name>

Log Verbosity

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of the
sourceStrategy or dockerStrategy in a BuildConfig:

Adjust this value to the desired log level.

NOTE

A platform administrator can set the default build verbosity for the entire OpenShift
Container Platform instance by configuring env/BUILD_LOGLEVEL for the
BuildDefaults admission controller. This default can be overridden by specifying
BUILD_LOGLEVEL in a given BuildConfig. You can specify a higher priority override
on the command line for non-binary builds by passing --build-loglevel to oc
start-build.

Available log levels for Source builds are as follows:

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"

 value: "2" 1

OpenShift Container Platform 3.5 Developer Guide

84

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

8.3. BUILD INPUTS

8.3.1. How Build Inputs Work

A build input provides source content for builds to operate on. There are several ways to provide source
in OpenShift Container Platform. In order of precedence:

Inline Dockerfile definitions

Content extracted from existing images

Git repositories

Binary (Local) inputs

Input secrets

External artifacts

Different inputs can be combined into a single build. As the inline Dockerfile takes precedence, it can
overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git
repositories are mutually exclusive inputs.

Input secrets are useful for when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a Secret resource. External artifacts can be used to pull in additional files that are not
available as one of the other build input types.

Whenever a build is run:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.

3. The inline Dockerfile, if any, is written to the current directory.

4. The content from the current directory is provided to the build process for reference by the
Dockerfile, custom builder logic, or assemble script. This means any input content that resides
outside the contextDir will be ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how they
are combined. For more details on how each input type is defined, see the specific sections for each
input type.

source:
 git:

CHAPTER 8. BUILDS

85

1

2

3

4

1

The repository to be cloned into the working directory for the build.

/usr/lib/somefile.jar from myinputimage will be stored in <workingdir>/app/dir/injected/dir.

The working directory for the build will become <original_workingdir>/app/dir.

A Dockerfile with this content will be created in <original_workingdir>/app/dir, overwriting any
existing file with that name.

8.3.2. Dockerfile Source

When a dockerfile value is supplied, the content of this field will be written to disk as a file named
Dockerfile. This is done after other input sources are processed, so if the input source repository
contains a Dockerfile in the root directory, it will be overwritten with this content.

The typical use for this field is to provide a Dockerfile to a Docker strategy build.

The source definition is part of the spec section in the BuildConfig:

The dockerfile field contains an inline Dockerfile that will be built.

8.3.3. Image Source

Additional files can be provided to the build process via images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the build
context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image will be loaded and the indicated files and directories will be copied
into the context directory of the build process. This is the same directory into which the source repository
content (if any) is cloned. If the source path ends in /. then the content of the directory will be copied, but
the directory itself will not be created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

 uri: https://github.com/openshift/ruby-hello-world.git 1
 images:
 - from:
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths:

 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar

 contextDir: "app/dir" 3

 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:

 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

OpenShift Container Platform 3.5 Developer Guide

86

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag

1

2

3

4

5

6

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

NOTE

This feature is not supported for builds using the Custom Strategy.

8.3.4. Git Source

When specified, source code will be fetched from the location supplied.

If an inline Dockerfile is supplied, it will overwrite the Dockerfile (if any) in the contextDir of the Git
repository.

The source definition is part of the spec section in the BuildConfig:

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git

 images: 1

 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace

 paths: 3

 - destinationDir: injected/dir 4

 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace

 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

source:

 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"

 contextDir: "app/dir" 2

 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

CHAPTER 8. BUILDS

87

1

2

3

The git field contains the URI to the remote Git repository of the source code. Optionally, specify
the ref field to check out a specific Git reference. A valid ref can be a SHA1 tag or a branch
name.

The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

If the ref field denotes a pull request, the system will use a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, OpenShift Container Platform performs a shallow clone (--depth=1).
In this case, only the files associated with the most recent commit on the default branch (typically
master) are downloaded. This results in repositories downloading faster, but without the full commit
history. To perform a full git clone of the default branch of a specified repository, set ref to the name
of the default branch (for example master).

8.3.4.1. Using a Proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the BuildConfig. You can configure both a HTTP and HTTPS proxy to use. Both fields are
optional. Domains for which no proxying should be performed can also be specified via the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

Cluster administrators can also configure a global proxy for Git cloning using Ansible.

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plug-in for Jenkins,
any Git operations through the Git plug-in will not leverage the HTTP or HTTPS proxy
defined in the BuildConfig. The Git plug-in only will use the the proxy configured in the
Jenkins UI at the Plugin Manager panel. This proxy will then be used for all git interactions
within Jenkins, across all jobs. You can find instructions on how to configure proxies
through the Jenkins UI at JenkinsBehindProxy.

8.3.4.2. Source Clone Secrets

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 3.5 Developer Guide

88

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible
https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported.

.gitconfig File

Basic Authentication

SSH Key Authentication

Trusted Certificate Authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

Builds are run with the builder service account, which must have access to any source clone secrets
used. Access is granted with the following command:

$ oc secrets link builder mysecret

NOTE

Limiting secrets to only the service accounts that reference them is disabled by default.
This means that if serviceAccountConfig.limitSecretReferences is set to
false (the default setting) in the master configuration file, linking secrets to a service is
not required.

8.3.4.2.1. Automatically Adding a Source Clone Secret to a Build Configuration

When a BuildConfig is created, OpenShift Container Platform can automatically populate its source
clone secret reference. This behaviour allows the resulting Builds to automatically use the credentials
stored in the referenced Secret to authenticate to a remote Git repository, without requiring further
configuration.

To use this functionality, a Secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig will later be created. This Secret must additionally include one or more
annotations prefixed with build.openshift.io/source-secret-match-uri-. The value of each
of these annotations is a URI pattern, defined as follows. When a BuildConfig is created without a
source clone secret reference and its Git source URI matches a URI pattern in a Secret annotation,
OpenShift Container Platform will automatically insert a reference to that Secret in the BuildConfig.

A URI pattern must consist of:

a valid scheme (*://, git://, http://, https:// or ssh://).

a host (* or a valid hostname or IP address optionally preceded by *.).

a path (/* or / followed by any characters optionally including * characters).

In all of the above, a * character is interpreted as a wildcard.

CHAPTER 8. BUILDS

89

NOTE

URI patterns only match Git source URIs which are conformant to RFC3986. For
example, https://github.com/openshift/origin.git. They do not match the alternate SSH
style that Git also uses. For example, git@github.com:openshift/origin.git.

It is not valid to attempt to express a URI pattern in the alternate style, or to include a
username/password component in a URI pattern.

If multiple Secrets match the Git URI of a particular BuildConfig, OpenShift Container Platform will
select the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydev1.mycorp.com and mydev2.mycorp.com:

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret
using:

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

8.3.4.2.2. Manually Adding Source Clone Secrets

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created
(basicsecret, in this example).

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret
apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1:
https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2:
https://mydev2.mycorp.com/*
data:
 ...

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:

OpenShift Container Platform 3.5 Developer Guide

90

https://github.com/openshift/origin.git
mailto:git@github.com

NOTE

You can also use the oc set build-secret command to set the source clone secret
on an existing build configuration:

$ oc set build-secret --source bc/sample-build basicsecret

Defining Secrets in the BuildConfig provides more information on this topic.

8.3.4.2.3. .Gitconfig File

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it, and then add it to the builder service account, and then your BuildConfig.

To create a secret from a .gitconfig file:

$ oc secrets new mysecret .gitconfig=path/to/.gitconfig

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in
your .gitconfig file:

[http]
 sslVerify=false

8.3.4.2.4. .gitconfig File for Secured Git

If your Git server is secured with 2-way SSL and user name with password you must add the certificate
files to your source build and add references to the certificate files in the .gitconfig file:

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code.

2. In the .gitconfig file for the server, add the [http] section shown in the following example:

cat .gitconfig

 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

CHAPTER 8. BUILDS

91

1

2

[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

3. Create the secret:

$ oc secrets new <secret_name> \

--from-literal=username=<user_name> \ 1

--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \
--from-
file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-
file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-
file=client.key=/var/run/secrets/openshift.io/source/client.key

The user’s Git user name.

The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the S2I image in your
builds. However, if you cannot clone the repository, you still need to specify your user
name and password to promote the build.

8.3.4.2.5. Basic Authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the SCM server.

Create the secret first before using the user name and password to access the private repository:

$ oc secrets new-basicauth <secret_name> \
 --username=<user_name> \
 --password=<password>

To create a basic authentication secret with a token:

$ oc secrets new-basicauth <secret_name> \
 --password=<token>

8.3.4.2.6. SSH Key Authentication

SSH key based authentication requires a private SSH key.

OpenShift Container Platform 3.5 Developer Guide

92

1

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default. Generate SSH key credentials with the
following command:

$ ssh-keygen -t rsa -C "your_email@example.com"

NOTE

Creating a passphrase for the SSH key prevents OpenShift Container Platform from
building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management (SCM)
system’s manual on how to upload the public key. The private key is used to access your private
repository.

Before using the SSH key to access the private repository, create the secret first:

$ oc secrets new-sshauth sshsecret \
 --ssh-privatekey=$HOME/.ssh/id_rsa

8.3.4.2.7. Trusted Certificate Authorities

The set of TLS certificate authorities that are trusted during a git clone operation are built into the
OpenShift Container Platform infrastructure images. If your Git server uses a self-signed certificate or
one signed by an authority not trusted by the image, you can create a secret that contains the certificate
or disable TLS verification.

If you create a secret for the CA certificate, OpenShift Container Platform uses it to access your Git
server during the git clone operation. Using this method is significantly more secure than disabling
Git’s SSL verification, which accepts any TLS certificate that is presented.

Complete one of the following processes:

Create a secret with a CA certificate file (recommended).

a. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a
ca.crt file. Run the following command:

$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

b. Create the secret:

$ oc create secret generic mycert --from-file=ca.crt=

</path/to/file> 1

You must use the key name ca.crt.

Disable Git TLS verification.
Set the GIT_SSL_NO_VERIFY environment variable to true in the appropriate strategy section
of your build configuration. You can use the oc set env command to manage BuildConfig
environment variables.

CHAPTER 8. BUILDS

93

8.3.4.2.8. Combinations

Below are several examples of how you can combine the above methods for creating source clone
secrets for your specific needs.

a. To create an SSH-based authentication secret with a .gitconfig file:

$ oc secrets new-sshauth sshsecret \
 --ssh-privatekey=$HOME/.ssh/id_rsa \
 --gitconfig=</path/to/file>

b. To create a secret that combines a .gitconfig file and CA certificate:

$ oc secrets new mysecret \
 ca.crt=path/to/certificate \
 .gitconfig=path/to/.gitconfig

c. To create a basic authentication secret with a CA certificate file:

$ oc secrets new-basicauth <secret_name> \
 --username=<user_name> \
 --password=<password> \
 --ca-cert=</path/to/file>

d. To create a basic authentication secret with a .gitconfig file:

$ oc secrets new-basicauth <secret_name> \
 --username=<user_name> \
 --password=<password> \
 --gitconfig=</path/to/file>

e. To create a basic authentication secret with a .gitconfig file and CA certificate file:

$ oc secrets new-basicauth <secret_name> \
 --username=<user_name> \
 --password=<password> \
 --gitconfig=</path/to/file> \
 --ca-cert=</path/to/file>

8.3.5. Binary (Local) Source

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for such builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build (e.g. via an image change trigger) is not
possible, because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

OpenShift Container Platform 3.5 Developer Guide

94

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder.
You can also specify a URL to a file. Then, the builder stores the data in a file with the same
name at the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which will be extracted.

--from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the above cases:

If your BuildConfig already has a Binary source type defined, it will effectively be ignored
and replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary
and Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --
from-archive. When using --from-file with a URL, the name of the file in the builder image is
determined by the Content-Disposition header sent by the web server, or the last component of the
URL path if the header is not present. No form of authentication is supported and it is not possible to use
custom TLS certificate or disable certificate validation.

When using oc new-build --binary=true, the command ensures that the restrictions associated
with binary builds are enforced. The resulting BuildConfig will have a source type of Binary,
meaning that the only valid way to run a build for this BuildConfig is to use oc start-build with
one of the --from options to provide the requisite binary data.

The dockerfile and contextDir source options have special meaning with binary builds.

dockerfile can be used with any binary build source. If dockerfile is used and the binary stream is
an archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If
dockerfile is used with the --from-file argument, and the file argument is named dockerfile,
the value from dockerfile replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir
field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

8.3.6. Input Secrets

In some scenarios, build operations require credentials to access dependent resources, but it is
undesirable for those credentials to be available in the final application image produced by the build. You
can define input secrets for this purpose.

For example, when building a Node.js application, you can set up your private mirror for Node.js
modules. In order to download modules from that private mirror, you have to supply a custom .npmrc file
for the build that contains a URL, user name, and password. For security reasons, you do not want to
expose your credentials in the application image.

CHAPTER 8. BUILDS

95

This example describes Node.js, but you can use the same approach for adding SSL certificates into the
/etc/ssl/certs directory, API keys or tokens, license files, and more.

8.3.6.1. Adding Input Secrets

To add an input secret to an existing BuildConfig:

1. Create the secret, if it does not exist:

$ oc secrets new secret-npmrc .npmrc=~/.npmrc

This creates a new secret named secret-npmrc, which contains the base64 encoded content of
the ~/.npmrc file.

2. Add the secret to the source section in the existing BuildConfig:

To include the secret in a new BuildConfig, run the following command:

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/sclorg/nodejs-ex.git \
 --build-secret secret-npmrc

During the build, the .npmrc file is copied into the directory where the source code is located. In
OpenShift Container Platform S2I builder images, this is the image working directory, which is set using
the WORKDIR instruction in the Dockerfile. If you want to specify another directory, add a
destinationDir to the secret definition:

You can also specify the destination directory when creating a new BuildConfig:

$ oc new-build \
 openshift/nodejs-010-centos7~https://github.com/sclorg/nodejs-ex.git \
 --build-secret “secret-npmrc:/etc”

In both cases, the .npmrc file is added to the /etc directory of the build environment. Note that for a
Docker strategy the destination directory must be a relative path.

8.3.6.2. Source-to-Image Strategy

source:
 git:
 uri: https://github.com/sclorg/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc

source:
 git:
 uri: https://github.com/sclorg/nodejs-ex.git
 secrets:
 - secret:
 name: secret-npmrc
 destinationDir: /etc

OpenShift Container Platform 3.5 Developer Guide

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build

When using a Source strategy, all defined input secrets are copied to their respective
destinationDir. If you left destinationDir empty, then the secrets are placed in the working
directory of the builder image.

The same rule is used when a destinationDir is a relative path; the secrets are placed in the paths
that are relative to the image’s working directory. The destinationDir must exist or an error will
occur. No directory paths are created during the copy process.

NOTE

Currently, any files with these secrets are world-writable (have 0666 permissions) and will
be truncated to size zero after executing the assemble script. This means that the secret
files will exist in the resulting image, but they will be empty for security reasons.

8.3.6.3. Docker Strategy

When using a Docker strategy, you can add all defined input secrets into your container image using the
ADD and COPY instructions in your Dockerfile.

If you do not specify the destinationDir for a secret, then the files will be copied into the same
directory in which the Dockerfile is located. If you specify a relative path as destinationDir, then the
secrets will be copied into that directory, relative to your Dockerfile location. This makes the secret files
available to the Docker build operation as part of the context directory used during the build.

Example 8.1. Example of a Dockerfile referencing secret data

FROM centos/ruby-22-centos7

USER root
ADD ./secret-dir /secrets
COPY ./secret2 /

Create a shell script that will output secrets when the image is run
RUN echo '#!/bin/sh' > /secret_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat
/secrets/secret1)' >> /secret_report.sh
RUN echo '(test -f /secret2 && echo -n "relative-secret2=" && cat
/secret2)' >> /secret_report.sh
RUN chmod 755 /secret_report.sh

CMD ["/bin/sh", "-c", "/secret_report.sh"]

NOTE

Users should normally remove their input secrets from the final application image so that
the secrets are not present in the container running from that image. However, the secrets
will still exist in the image itself in the layer where they were added. This removal should
be part of the Dockerfile itself.

8.3.6.4. Custom Strategy

When using a Custom strategy, all the defined input secrets are available inside the builder container in

CHAPTER 8. BUILDS

97

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

the /var/run/secrets/openshift.io/build directory. The custom build image is responsible for using these
secrets appropriately. The Custom strategy also allows secrets to be defined as described in Custom
Strategy Options.

There is no technical difference between existing strategy secrets and the input secrets. However, your
builder image might distinguish between them and use them differently, based on your build use case.

The input secrets are always mounted into the /var/run/secrets/openshift.io/build directory or your
builder can parse the $BUILD environment variable, which includes the full build object.

8.3.7. Using External Artifacts

It is not recommended to store binary files in a source repository. Therefore, you may find it necessary to
define a build which pulls additional files (such as Java .jar dependencies) during the build process. How
this is done depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

.s2i/bin/run File

NOTE

For more information on how to control which assemble and run script is used by a
Source build, see Overriding Builder Image Scripts.

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Excerpt of Dockerfile

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

In practice, you may want to use an environment variable for the file location so that the specific file to be
downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the Dockerfile or assemble script.

You can choose between different methods of defining environment variables:

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

OpenShift Container Platform 3.5 Developer Guide

98

https://docs.docker.com/engine/reference/builder/#run

1

2

3

Using the .s2i/environment file (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered manually)

8.3.8. Using Docker Credentials for Private Registries

You can supply builds with a .docker/config.json file with valid credentials for private Docker registries.
This allows you to push the output image into a private Docker registry or pull a builder image from the
private Docker registry that requires authentication.

NOTE

For the OpenShift Container Platform Docker registry, this is not required because secrets
are generated automatically for you by OpenShift Container Platform.

The .docker/config.json file is found in your home directory by default and has the following format:

URL of the registry.

Encrypted password.

Email address for the login.

You can define multiple Docker registry entries in this file. Alternatively, you can also add authentication
entries to this file by running the docker login command. The file will be created if it does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

1. Create the secret from your local .docker/config.json file:

$ oc secrets new dockerhub ~/.docker/config.json

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Once the secret is created, add it to the builder service account. Each build is run with the
builder role, so you must give it access your secret with the following command:

$ oc secrets link builder dockerhub

3. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the above example is dockerhub:

auths:

 https://index.docker.io/v1/: 1

 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2

 email: "user@example.com" 3

spec:
 output:
 to:
 kind: "DockerImage"

CHAPTER 8. BUILDS

99

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#build-and-deployment-cli-operations

You can also use the oc set build-secret command to set the push secret on the build
configuration:

$ oc set build-secret --push bc/sample-build dockerhub

4. Pull the builder container image from a private Docker registry by specifying the pullSecret
field, which is part of the build strategy definition:

You can also use the oc set build-secret command to set the pull secret on the build
configuration:

$ oc set build-secret --pull bc/sample-build dockerhub

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker and
Custom builds.

8.4. BUILD OUTPUT

8.4.1. Build Output Overview

Builds that use the Docker or Source strategy result in the creation of a new container image. The
image is then pushed to the container image registry specified in the output section of the Build
specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
Container Platform registry and tagged in the specified image stream. If the output is of type
DockerImage, then the name of the output reference will be used as a Docker push specification. The
specification may contain a registry or will default to DockerHub if no registry is specified. If the output
section of the build specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

OpenShift Container Platform 3.5 Developer Guide

100

Output to a Docker Push Specification

8.4.2. Output Image Environment Variables

Docker and Source strategy builds set the following environment variables on output images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured via Source or
Docker strategy options, will also be part of the output image environment variable list.

8.4.3. Output Image Labels

Docker and Source builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom
labels that will be applied to each image built from the BuildConfig.

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

CHAPTER 8. BUILDS

101

Custom Labels to be Applied to Built Images

8.4.4. Output Image Digest

Built images can be uniquely identified by their digest, which can later be used to pull the image by digest
regardless of its current tag.

Docker and Source builds store the digest in Build.status.output.to.imageDigest after the
image is pushed to a registry. The digest is computed by the registry. Therefore, it may not always be
present, for example when the registry did not return a digest, or when the builder image did not
understand its format.

Built Image Digest After a Successful Push to the Registry

8.4.5. Using Docker Credentials for Private Registries

To push an image to a private Docker registry, credentials can be supplied using a secret. See Build
Inputs for instructions.

8.5. BUILD STRATEGY OPTIONS

8.5.1. Source-to-Image Strategy Options

The following options are specific to the S2I build strategy.

8.5.1.1. Force Pull

By default, if the builder image specified in the build configuration is available locally on the node, that
image will be used. However, to override the local image and refresh it from the registry to which the
image stream points, create a BuildConfig with the forcePull flag set to true:

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"
 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

status:
 output:
 to:
 imageDigest:
sha256:29f5d56d12684887bdfa50dcd29fc31eea4aaf4ad3bec43daf19026a7ce69912

strategy:
 sourceStrategy:
 from:

OpenShift Container Platform 3.5 Developer Guide

102

https://docs.docker.com/registry/spec/api/#/content-digests
https://docs.docker.com/engine/reference/commandline/pull/#/pull-an-image-by-digest-immutable-identifier
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build

1

2

1

2

The builder image being used, where the local version on the node may not be up to date with the
version in the registry to which the image stream points.

This flag causes the local builder image to be ignored and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default
behavior of honoring the image stored locally.

8.5.1.2. Incremental Builds

S2I can perform incremental builds, which means it reuses artifacts from previously-built images. To
create an incremental build, create a BuildConfig with the following modification to the strategy
definition:

Specify an image that supports incremental builds. Consult the documentation of the builder image
to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not support
incremental builds, the build will still succeed, but you will get a log message stating the incremental
build was not successful because of a missing save-artifacts script.

NOTE

See the S2I Requirements topic for information on how to create a builder image
supporting incremental builds.

8.5.1.3. Extended Builds

NOTE

This feature is in technology preview. This means the API may change without notice or
the feature may be removed entirely. For a supported mechanism to produce application
images with runtime-only content, consider using the Image Source feature and defining
two builds, one which produces an image containing the runtime artifacts and a second
build which consumes the runtime artifacts from that image and adds them to a runtime-
only image.

For compiled languages (Go, C, C++, Java, etc.) the dependencies necessary for compilation might
increase the size of the image or introduce vulnerabilities that can be exploited.

 kind: "ImageStreamTag"

 name: "builder-image:latest" 1

 forcePull: true 2

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"

 name: "incremental-image:latest" 1

 incremental: true 2

CHAPTER 8. BUILDS

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#creating-images-s2i

1

2

To avoid these problems, S2I (Source-to-Image) introduces a two-image build process that allows an
application to be built via the normal flow in a builder image, but then injects the resulting application
artifacts into a runtime-only image for execution.

To offer flexibility in this process, S2I executes an assemble-runtime script inside the runtime image
that allows further customization of the resulting runtime image.

More information about this can be found in the official S2I extended builds documents.

This feature is available only for the source strategy.

The runtime image that the artifacts should be copied to. This is the final image that the application
will run on. This image should contain the minimum application dependencies to run the injected
content from the builder image.

The runtime artifacts are a mapping of artifacts produced in the builder image that should be
injected into the runtime image. sourcePath can be the full path to a file or directory inside the
builder image. destinationDir must be a directory inside the runtime image where the artifacts
will be copied. This directory is relative to the specified WORKDIR inside that image.

NOTE

In the current implementation, you cannot have incremental extended builds thus, the
incremental option is not valid with runtimeImage.

If the runtime image needs authentication to be pulled across OpenShift projects or from another private
registry, the details can be specified within the image pull secret configuration.

8.5.1.3.1. Testing your Application

Extended builds offer two ways of running tests against your application.

The first option is to install all test dependencies and run the tests inside your builder image since that
image, in the context of extended builds, will not be pushed to a registry. This can be done as a part of
the assemble script for the builder image.

The second option is to specify a script via the postcommit hook. This is executed in an ephemeral
container based on the runtime image, thus it is not committed to the image.

8.5.1.4. Overriding Builder Image Scripts

strategy:
 type: "Source"
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"

 runtimeImage: 1
 kind: "ImageStreamTag"
 name: "runtime-image:latest"

 runtimeArtifacts: 2
 - sourcePath: "/path/to/source"
 destinationDir: "path/to/destination"

OpenShift Container Platform 3.5 Developer Guide

104

https://github.com/openshift/source-to-image/blob/master/docs/runtime_image.md

1

You can override the assemble, run, and save-artifactsS2I scripts provided by the builder image in one
of two ways. Either:

1. Provide an assemble, run, and/or save-artifacts script in the .s2i/bin directory of your
application source repository, or

2. Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

This path will have run, assemble, and save-artifacts appended to it. If any or all scripts are found
they will be used in place of the same named script(s) provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository. See the S2I Requirements topic and the S2I documentation for
information on how S2I scripts are used.

8.5.1.5. Environment Variables

There are two ways to make environment variables available to the source build process and resulting
image. Environment files and BuildConfig environment values. Variables provided will be present during
the build process and in the output image.

8.5.1.5.1. Environment Files

Source build enables you to set environment values (one per line) inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image. The complete list of supported environment
variables is available in the documentation for each image.

If you provide a .s2i/environment file in your source repository, S2I reads this file during the build. This
allows customization of the build behavior as the assemble script may use these variables.

For example, if you want to disable assets compilation for your Rails application, you can add
DISABLE_ASSET_COMPILATION=true in the .s2i/environment file to cause assets compilation to be
skipped during the build.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, you can add RAILS_ENV=development to the .s2i/environment file to cause the
Rails application to start in development mode instead of production.

8.5.1.5.2. BuildConfig Environment

You can add environment variables to the sourceStrategy definition of the BuildConfig. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"

 scripts: "http://somehost.com/scripts_directory" 1

CHAPTER 8. BUILDS

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#s2i-scripts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#creating-images-s2i
https://github.com/openshift/source-to-image/blob/master/docs/builder_image.md#sti-scripts
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-index

For example disabling assets compilation for your Rails application:

You can also manage environment variables defined in the BuildConfig with the oc set env
command.

8.5.1.6. Adding Secrets via Web Console

To add a secret to your build configuration so that it can access a private repository:

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a Source-to-Image (S2I) build configuration.

4. On the build configuration editor page or in the create app from builder image page of
the web console, set the Source Secret.

5. Click the Save button.

8.5.1.6.1. Enabling Pulling and Pushing

Enable pulling to a private registry by setting the Pull Secret in the build configuration and enable
pushing by setting the Push Secret.

8.5.1.7. Ignoring Source Files

Source to image supports a .s2iignore file, which contains a list of file patterns that should be ignored.
Files in the build working directory, as provided by the various input sources, that match a pattern found
in the .s2iignore file will not be made available to the assemble script.

For more details on the format of the .s2iignore file, see the source-to-image documentation.

8.5.2. Docker Strategy Options

The following options are specific to the Docker build strategy.

8.5.2.1. FROM Image

The FROM instruction of the Dockerfile will be replaced by the from of the BuildConfig:

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

OpenShift Container Platform 3.5 Developer Guide

106

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console
https://github.com/openshift/source-to-image#build-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build

1

8.5.2.2. Dockerfile Path

By default, Docker builds use a Dockerfile (named Dockerfile) located at the root of the context specified
in the BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative to
the BuildConfig.spec.source.contextDir field. It can be simply a different file name other than
the default Dockerfile (for example, MyDockerfile), or a path to a Dockerfile in a subdirectory (for
example, dockerfiles/app1/Dockerfile):

8.5.2.3. No Cache

Docker builds normally reuse cached layers found on the host performing the build. Setting the noCache
option to true forces the build to ignore cached layers and rerun all steps of the Dockerfile:

8.5.2.4. Force Pull

By default, if the builder image specified in the build configuration is available locally on the node, that
image will be used. However, to override the local image and refresh it from the registry to which the
image stream points, create a BuildConfig with the forcePull flag set to true:

This flag causes the local builder image to be ignored, and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default
behavior of honoring the image stored locally.

8.5.2.5. Environment Variables

To make environment variables available to the Docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the BuildConfig.

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after the
FROM instruction, so that it can be referenced later on within the Dockerfile.

The variables are defined during build and stay in the output image, therefore they will be present in any
container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

strategy:
 dockerStrategy:
 noCache: true

strategy:
 dockerStrategy:

 forcePull: true 1

dockerStrategy:
...

CHAPTER 8. BUILDS

107

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build

Cluster administrators can also configure global build settings using Ansible.

You can also manage environment variables defined in the BuildConfig with the oc set env
command.

8.5.2.6. Adding Secrets via Web Console

To add a secret to your build configuration so that it can access a private repository"

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a docker build configuration.

4. On the build configuration editor page or in the fromimage page of the web console, set the
Source Secret.

5. Click the Save button.

8.5.2.6.1. Enabling Pulling and Pushing

Enable pulling to a private registry by setting the Pull Secret in the build configuration and enable
pushing by setting the Push Secret.

8.5.3. Custom Strategy Options

The following options are specific to the Custom build strategy.

8.5.3.1. FROM Image

Use the customStrategy.from section to indicate the image to use for the custom build:

8.5.3.2. Exposing the Docker Socket

In order to allow the running of Docker commands and the building of container images from inside the
container, the build container must be bound to an accessible socket. To do so, set the
exposeDockerSocket option to true:

 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

strategy:
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 exposeDockerSocket: true

OpenShift Container Platform 3.5 Developer Guide

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#custom-build

1

2

8.5.3.3. Secrets

In addition to secrets for source and images that can be added to all build types, custom strategies allow
adding an arbitrary list of secrets to the builder pod.

Each secret can be mounted at a specific location:

secretSource is a reference to a secret in the same namespace as the build.

mountPath is the path inside the custom builder where the secret should be mounted.

8.5.3.3.1. Adding Secrets via Web Console

To add a secret to your build configuration so that it can access a private repository:

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a custom build configuration.

4. On the build configuration editor page or in the fromimage page of the web console, set the
Source Secret.

5. Click the Save button.

8.5.3.3.2. Enabling Pulling and Pushing

Enable pulling to a private registry by setting the Pull Secret in the build configuration and enable
pushing by setting the Push Secret.

8.5.3.4. Force Pull

By default, when setting up the build pod, the build controller checks if the image specified in the build
configuration is available locally on the node. If so, that image will be used. However, to override the
local image and refresh it from the registry to which the image stream points, create a BuildConfig
with the forcePull flag set to true:

strategy:
 customStrategy:
 secrets:

 - secretSource: 1
 name: "secret1"

 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

strategy:
 customStrategy:

 forcePull: true 1

CHAPTER 8. BUILDS

109

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#custom-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console

1 This flag causes the local builder image to be ignored, and a fresh version to be pulled from the
registry to which the image stream points. Setting forcePull to false results in the default
behavior of honoring the image stored locally.

8.5.3.5. Environment Variables

To make environment variables available to the Custom build process, you can add environment
variables to the customStrategy definition of the BuildConfig.

The environment variables defined there are passed to the pod that runs the custom build.

For example, defining a custom HTTP proxy to be used during build:

Cluster administrators can also configure global build settings using Ansible.

You can also manage environment variables defined in the BuildConfig with the oc set env
command.

8.5.4. Pipeline Strategy Options

The following options are specific to the Pipeline build strategy.

8.5.4.1. Providing the Jenkinsfile

You can provide the Jenkinsfile in one of two ways:

1. Embed the Jenkinsfile in the build configuration.

2. Include in the build configuration a reference to the Git repository that contains the Jenkinsfile.

Embedded Definition

Reference to Git Repository

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: "node('agent') {\nstage
'build'\nopenshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs:
'true')\nstage 'deploy'\nopenshiftDeploy(deploymentConfig: 'frontend')\n}"

kind: "BuildConfig"
apiVersion: "v1"

OpenShift Container Platform 3.5 Developer Guide

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#custom-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-hosts-for-proxies-using-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pipeline-build

1 The optional jenkinsfilePath field specifies the name of the file to use, relative to the source
contextDir. If contextDir is omitted, it defaults to the root of the repository. If
jenkinsfilePath is omitted, it defaults to Jenkinsfile.

8.6. TRIGGERING BUILDS

8.6.1. Build Triggers Overview

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

8.6.2. Webhook Triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Container
Platform API endpoint. You can define these triggers using GitHub webhooks or Generic webhooks.

8.6.2.1. GitHub Webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which will be part of the URL you supply to GitHub when configuring
the webhook. The secret ensures the uniqueness of the URL, preventing others from triggering the build.
The following example is a trigger definition YAML within the BuildConfig:

NOTE

The secret field in webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create HMAC
hex digest of the body, which is sent as an X-Hub-Signatureheader.

metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:

 jenkinsfilePath: some/repo/dir/filename 1

type: "GitHub"
github:
 secret: "secret101"

CHAPTER 8. BUILDS

111

https://developer.github.com/webhooks/
https://developer.github.com/webhooks/creating/
https://developer.github.com/webhooks/#delivery-headers

1

The payload URL is returned as the GitHub Webhook URL by the describe command (see Displaying
Webhook URLs), and is structured as follows:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

To configure a GitHub Webhook:

1. Describe the build configuration to get the webhook URL:

$ oc describe bc <name>

2. Copy the webhook URL.

3. Follow the GitHub setup instructions to paste the webhook URL into your GitHub repository
settings.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if you are using
a Gogs server, you can define a GitHub webhook trigger on your BuildConfig and
trigger it via your Gogs server also.

Given a file containing a valid JSON payload, you can manually trigger the webhook via curl:

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X
POST --data-binary @github_payload_file.json
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconf
igs/<name>/webhooks/<secret>/github

The -k argument is only necessary if your API server does not have a properly signed certificate.

8.6.2.2. Generic Webhooks

Generic webhooks are invoked from any system capable of making a web request. As with a GitHub
webhook, you must specify a secret, which will be part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

Set to true to allow a generic webhook to pass in environment variables.

To set up the caller, supply the calling system with the URL of the generic webhook endpoint for your
build:

http://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

type: "Generic"
generic:
 secret: "secret101"

 allowEnv: true 1

OpenShift Container Platform 3.5 Developer Guide

112

https://developer.github.com/webhooks/creating/#setting-up-a-webhook
https://gogs.io

1

The caller must invoke the webhook as a POST operation.

To invoke the webhook manually you can use curl:

$ curl -X POST -k
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconf
igs/<name>/webhooks/<secret>/generic

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate validation.
This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

Similar to the BuildConfig environment variables, the environment variables defined here are
made available to your build. If these variables collide with the BuildConfig environment
variables, these variables take precedence. By default, environment variables passed via webhook
are ignored. Set the allowEnv field to true on the webhook definition to enable this behavior.

To pass this payload using curl, define it in a file named payload_file.yaml and run:

$ curl -H "Content-Type: application/yaml" --data-binary
@payload_file.yaml -X POST -k
https://<openshift_api_host:port>/oapi/v1/namespaces/<namespace>/buildconf
igs/<name>/webhooks/<secret>/generic

The arguments are the same as the previous example with the addition of a header and a payload. The
-H argument sets the Content-Type header to application/yaml or application/json
depending on your payload format. The --data-binary argument is used to send a binary payload
with newlines intact with the POST request.

NOTE

OpenShift Container Platform permits builds to be triggered via the generic webhook even
if an invalid request payload is presented (for example, invalid content type, unparsable or
invalid content, and so on). This behavior is maintained for backwards compatibility. If an
invalid request payload is presented, OpenShift Container Platform returns a warning in
JSON format as part of its HTTP 200 OK response.

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"

env: 1
 - name: "<variable name>"
 value: "<variable value>"

CHAPTER 8. BUILDS

113

1

8.6.2.3. Displaying Webhook URLs

Use the following command to display any webhook URLs associated with a build configuration:

$ oc describe bc <name>

If the above command does not display any webhook URLs, then no webhook trigger is defined for that
build configuration.

8.6.3. Image Change Triggers

Image change triggers allow your build to be automatically invoked when a new version of an upstream
image is available. For example, if a build is based on top of a RHEL image, then you can trigger that
build to run any time the RHEL image changes. As a result, the application image is always running on
the latest RHEL base image.

Configuring an image change trigger requires the following actions:

1. Define an ImageStream that points to the upstream image you want to trigger on:

This defines the image stream that is tied to a container image repository located at <system-
registry>/<namespace>/ruby-20-centos7 . The <system-registry> is defined as a service
with the name docker-registry running in OpenShift Container Platform.

2. If an image stream is the base image for the build, set the from field in the build strategy to point
to the image stream:

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to image streams:

An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "imageChange" 1
imageChange: {}

type: "imageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

OpenShift Container Platform 3.5 Developer Guide

114

2 An image change trigger that monitors an arbitrary image stream. The imageChange part
in this case must include a from field that references the ImageStreamTag to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable Docker tag that points to the latest image corresponding to that tag. This new image
reference will be used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build will be
started, but the build strategy will not be updated with a unique image reference.

In the example above that has an image change trigger for the strategy, the resulting build will be:

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

In addition to setting the image field for all Strategy types, for custom builds, the
OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE environment variable is checked. If it does not exist, then it
is created with the immutable image reference. If it does exist then it is updated with the immutable
image reference.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that
builds are performed using consistent image tags for ease of reproduction.

NOTE

Image streams that point to container images in v1 Docker registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 Docker registries.

8.6.4. Configuration Change Triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new
BuildConfig is created. The following is an example trigger definition YAML within the BuildConfig:

NOTE

Configuration change triggers currently only work when creating a new BuildConfig. In
a future release, configuration change triggers will also be able to launch a build whenever
a BuildConfig is updated.

8.7. BUILD HOOKS

8.7.1. Build Hooks Overview

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

 type: "ConfigChange"

CHAPTER 8. BUILDS

115

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag

Build hooks allow behavior to be injected into the build process.

The postCommit field of a BuildConfig object executes commands inside a temporary container that
is running the build output image. The hook is executed immediately after the last layer of the image has
been committed and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of the
container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary container
fails. When the hook fails it marks the build as failed and the image is not pushed to a registry. The
reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and the
image is made available in a registry. If all tests pass and the test runner returns with exit code 0, the
build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build
log will contain the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as well.
Since it runs in a temporary container, changes made by the hook do not persist, meaning that the hook
execution cannot affect the final image. This behavior allows for, among other uses, the installation and
usage of test dependencies that are automatically discarded and will be not present in the final image.

8.7.2. Configuring Post Commit Build Hooks

There are different ways to configure the post build hook. All forms in the following examples are
equivalent and execute bundle exec rake test --verbose:

Shell script:

The script value is a shell script to be run with /bin/sh -ic. Use this when a shell script is
appropriate to execute the build hook. For example, for running unit tests as above. To control
the image entry point, or if the image does not have /bin/sh, use command and/or args.

NOTE

The additional -i flag was introduced to improve the experience working with
CentOS and RHEL images, and may be removed in a future release.

Command as the image entry point:

In this form, command is the command to run, which overrides the image entry point in the exec
form, as documented in the Dockerfile reference. This is needed if the image does not have
/bin/sh, or if you do not want to use a shell. In all other cases, using script might be more
convenient.

Pass arguments to the default entry point:

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

OpenShift Container Platform 3.5 Developer Guide

116

https://docs.docker.com/engine/reference/builder/#entrypoint

In this form, args is a list of arguments that are provided to the default entry point of the image.
The image entry point must be able to handle arguments.

Shell script with arguments:

Use this form if you need to pass arguments that would otherwise be hard to quote properly in
the shell script. In the script, $0 will be "/bin/sh" and $1, $2, etc, are the positional arguments
from args.

Command with arguments:

This form is equivalent to appending the arguments to command.

NOTE

Providing both script and command simultaneously creates an invalid build hook.

8.7.2.1. Using the CLI

The oc set build-hook command can be used to set the build hook for a build configuration.

To set a command as the post-commit build hook:

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

To set a script as the post-commit build hook:

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test
--verbose"

8.8. BUILD RUN POLICY

8.8.1. Build Run Policy Overview

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

postCommit:
 args: ["bundle", "exec", "rake", "test", "--verbose"]

postCommit:
 script: "bundle exec rake test $1"
 args: ["--verbose"]

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

CHAPTER 8. BUILDS

117

It is also possible to change the runPolicy value for existing build configurations.

Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this
configuration will cause the new build to wait until all parallel builds complete as the serial build
can only run alone.

Changing Serial to SerialLatestOnly and triggering a new build will cause cancellation of
all existing builds in queue, except the currently running build and the most recently created
build. The newest build will execute next.

8.8.2. Serial Run Policy

Setting the runPolicy field to Serial will cause all new builds created from the Build configuration to
be run sequentially. That means there will be only one build running at a time and every new build will
wait until the previous build completes. Using this policy will result in consistent and predictable build
output. This is the default runPolicy.

Triggering three builds from the sample-build configuration, using the Serial policy will result in:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git New
sample-build-3 Source Git New

When the sample-build-1 build completes, the sample-build-2 build will run:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git@1aa381b Running 2 seconds ago 2s
sample-build-3 Source Git New

8.8.3. SerialLatestOnly Run Policy

Setting the runPolicy field to SerialLatestOnly will cause all new builds created from the Build
configuration to be run sequentially, same as using the Serial run policy. The difference is that when a
currently running build completes, the next build that will run is the latest build created. In other words,
you do not wait for the queued builds to run, as they are skipped. Skipped builds are marked as
Cancelled. This policy can be used for fast, iterative development.

Triggering three builds from the sample-build configuration, using the SerialLatestOnly policy will
result in:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git New

The sample-build-2 build will be canceled (skipped) and the next build run after sample-build-1
completes will be the sample-build-3 build:

OpenShift Container Platform 3.5 Developer Guide

118

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Completed 43 seconds ago 34s
sample-build-2 Source Git Cancelled
sample-build-3 Source Git@1aa381b Running 2 seconds ago 2s

8.8.4. Parallel Run Policy

Setting the runPolicy field to Parallel causes all new builds created from the Build configuration to
be run in parallel. This can produce unpredictable results, as the first created build can complete last,
which will replace the pushed container image produced by the last build which completed earlier.

Use the parallel run policy in cases where you do not care about the order in which the builds will
complete.

Triggering three builds from the sample-build configuration, using the Parallel policy will result in
three simultaneous builds:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Running 17 seconds ago 3s

The completion order is not guaranteed:

NAME TYPE FROM STATUS STARTED
DURATION
sample-build-1 Source Git@e79d887 Running 13 seconds ago 13s
sample-build-2 Source Git@a76d881 Running 15 seconds ago 3s
sample-build-3 Source Git@689d111 Completed 17 seconds ago 5s

8.9. ADVANCED BUILD OPERATIONS

8.9.1. Setting Build Resources

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited by specifying resource limits in a project’s default container limits.

You can also limit resource use by specifying resource limits as part of the build configuration. In the
following example, each of the resources, cpu, and memory parameters are optional:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:

 cpu: "100m" 1

 memory: "256Mi" 2

CHAPTER 8. BUILDS

119

1

2

1

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of resources
in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply to
pods created during the build process.

Otherwise, build pod creation will fail, citing a failure to satisfy quota.

8.9.2. Setting Maximum Duration

When defining a BuildConfig, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching the
specified timeout, the build is terminated by OpenShift Container Platform.

The following example shows the part of a BuildConfig specifying completionDeadlineSeconds
field for 30 minutes:

spec:
 completionDeadlineSeconds: 1800

8.9.3. Assigning Builds to Specific Nodes

Builds can be targeted to run on specific nodes by specifying labels in the nodeSelector field of a build
configuration. The nodeSelector value is a set of key/value pairs that are matched to node labels
when scheduling the build pod.

resources:

 requests: 1
 cpu: "100m"
 memory: "256Mi"

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:

 nodeSelector: 1
 key1: value1
 key2: value2

OpenShift Container Platform 3.5 Developer Guide

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-limits

1 Builds associated with this build configuration will run only on nodes with the key1=value2 and
key2=value2 labels.

The nodeSelector value can also be controlled by cluster-wide default and override values. Defaults
will only be applied if the build configuration does not define any key/value pairs for the nodeSelector
and also does not define an explicitly empty map value of nodeSelector:{}. Override values will
replace values in the build configuration on a key by key basis.

See Configuring Global Build Defaults and Overrides for more information.

NOTE

If the specified NodeSelector cannot be matched to a node with those labels, the build
still stay in the Pending state indefinitely.

8.9.4. Chaining Builds

For compiled languages (Go, C, C++, Java, etc.), including the dependencies necessary for compilation
in the application image might increase the size of the image or introduce vulnerabilities that can be
exploited.

To avoid these problems, two builds can be chained together: one that produces the compiled artifact,
and a second build that places that artifact in a separate image that runs the artifact. In the following
example, a Source-to-Image build is combined with a Docker build to compile an artifact that is then
placed in a separate runtime image.

NOTE

Although this example chains a Source-to-Image build and a Docker build, the first build
can use any strategy that will produce an image containing the desired artifacts, and the
second build can use any strategy that can consume input content from an image.

CHAPTER 8. BUILDS

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-build-defaults-overrides
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-build

The first build takes the application source and produces an image containing a WAR file. The image is
pushed to the artifact-image image stream. The path of the output artifact will depend on the
assemble script of the Source-to-Image builder used. In this case, it will be output to
/wildfly/standalone/deployments/ROOT.war.

The second build uses Image Source with a path to the WAR file inside the output image from the first
build. An inline Dockerfile copies that WAR file into a runtime image.

apiVersion: v1
kind: BuildConfig
metadata:
 name: artifact-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: artifact-image:latest
 source:
 git:
 uri: https://github.com/openshift/openshift-jee-sample.git
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: wildfly:10.1
 namespace: openshift

apiVersion: v1
kind: BuildConfig
metadata:
 name: image-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: image-build:latest
 source:
 dockerfile: |-
 FROM jee-runtime:latest
 COPY ROOT.war /deployments/ROOT.war
 images:

 - from: 1
 kind: ImageStreamTag
 name: artifact-image:latest

 paths: 2
 - sourcePath: /wildfly/standalone/deployments/ROOT.war
 destinationDir: "."
 strategy:
 dockerStrategy:

 from: 3
 kind: ImageStreamTag
 name: jee-runtime:latest
 triggers:
 - imageChange: {}
 type: ImageChange

OpenShift Container Platform 3.5 Developer Guide

122

1

2

3

from specifies that the Docker build should include the output of the image from the artifact-
image image stream, which was the target of the previous build.

paths specifies which paths from the target image to include in the current Docker build.

The runtime image is used as the source image for the Docker build.

The result of this setup is that the output image of the second build does not need to contain any of the
build tools that are needed to create the WAR file. Also, because the second build contains an image
change trigger, whenever the first build is run and produces a new image with the binary artifact, the
second build is automatically triggered to produce a runtime image that contains that artifact. Therefore,
both builds behave as a single build with two stages.

8.10. BUILD TROUBLESHOOTING

8.10.1. Requested Access to Resources Denied

Issue

A build fails with:

requested access to the resource is denied

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and verify
the limits applied and storage in use:

$ oc describe quota

CHAPTER 8. BUILDS

123

CHAPTER 9. DEPLOYMENTS

9.1. HOW DEPLOYMENTS WORK

9.1.1. What Is a Deployment?

OpenShift Container Platform deployments provide fine-grained management over common user
applications. They are described using three separate API objects:

A deployment configuration, which describes the desired state of a particular component of the
application as a pod template.

One or more replication controllers, which contain a point-in-time record of the state of a
deployment configuration as a pod template.

One or more pods, which represent an instance of a particular version of an application.

IMPORTANT

Users do not need to manipulate replication controllers or pods owned by deployment
configurations. The deployment system ensures changes to deployment configurations
are propagated appropriately. If the existing deployment strategies are not suited for your
use case and you have the need to run manual steps during the lifecycle of your
deployment, then you should consider creating a custom strategy.

When you create a deployment configuration, a replication controller is created representing the
deployment configuration’s pod template. If the deployment configuration changes, a new replication
controller is created with the latest pod template, and a deployment process runs to scale down the old
replication controller and scale up the new replication controller.

Instances of your application are automatically added and removed from both service load balancers and
routers as they are created. As long as your application supports graceful shutdown when it receives the
TERM signal, you can ensure that running user connections are given a chance to complete normally.

Features provided by the deployment system:

A deployment configuration, which is a template for running applications.

Triggers that drive automated deployments in response to events.

User-customizable strategies to transition from the previous version to the new version. A
strategy runs inside a pod commonly referred as the deployment process.

A set of hooks for executing custom behavior in different points during the lifecycle of a
deployment.

Versioning of your application in order to support rollbacks either manually or automatically in
case of deployment failure.

Manual replication scaling and autoscaling.

9.1.2. Creating a Deployment Configuration

OpenShift Container Platform 3.5 Developer Guide

124

1

2

3

4

5

6

7

Deployment configurations are deploymentConfig OpenShift Container Platform API resources which
can be managed with the oc command like any other resource. The following is an example of a
deploymentConfig resource:

The pod template of the frontend deployment configuration describes a simple Ruby application.

There will be 5 replicas of frontend.

A configuration change trigger causes a new replication controller to be created any time the pod
template changes.

An image change trigger trigger causes a new replication controller to be created each time a new
version of the origin-ruby-sample:latest image stream tag is available.

The Rolling strategy is the default way of deploying your pods. May be omitted.

Pause a deployment configuration. This disables the functionality of all triggers and allows for
multiple changes on the pod template before actually rolling it out.

Revision history limit is the limit of old replication controllers you want to keep around for rolling
back. May be omitted. If omitted, old replication controllers will not be cleaned up.

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "frontend"
spec:

 template: 1
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 - name: "helloworld"
 image: "openshift/origin-ruby-sample"
 ports:
 - containerPort: 8080
 protocol: "TCP"

 replicas: 5 2
 triggers:

 - type: "ConfigChange" 3

 - type: "ImageChange" 4
 imageChangeParams:
 automatic: true
 containerNames:
 - "helloworld"
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"

 strategy: 5
 type: "Rolling"

 paused: false 6

 revisionHistoryLimit: 2 7

 minReadySeconds: 0 8

CHAPTER 9. DEPLOYMENTS

125

8 Minimum seconds to wait (after the readiness checks succeed) for a pod to be considered
available. The default value is 0.

9.2. BASIC DEPLOYMENT OPERATIONS

9.2.1. Starting a Deployment

You can start a new deployment process manually using the web console, or from the CLI:

$ oc deploy --latest dc/<name>

NOTE

If a deployment process is already in progress, the command will display a message and
a new replication controller will not be deployed.

9.2.2. Viewing a Deployment

To get basic information about all the available revisions of your application:

$ oc rollout history dc/<name>

This will show details about all recently created replication controllers for the provided deployment
configuration, including any currently running deployment process.

You can view details specific to a revision by using the --revision flag:

$ oc rollout history dc/<name> --revision=1

For more detailed information about a deployment configuration and its latest revision:

$ oc describe dc <name>

NOTE

The web console shows deployments in the Browse tab.

9.2.3. Rolling Back a Deployment

Rollbacks revert an application back to a previous revision and can be performed using the REST API,
the CLI, or the web console.

To rollback to the last successful deployed revision of your configuration:

$ oc rollout undo dc/<name>

The deployment configuration’s template will be reverted to match the deployment revision specified in
the undo command, and a new replication controller will be started. If no revision is specified with --to-
revision, then the last successfully deployed revision will be used.

OpenShift Container Platform 3.5 Developer Guide

126

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#project-overviews

Image change triggers on the deployment configuration are disabled as part of the rollback to prevent
accidentally starting a new deployment process soon after the rollback is complete. To re-enable the
image change triggers:

$ oc set triggers dc/<name> --auto

NOTE

Deployment configurations also support automatically rolling back to the last successful
revision of the configuration in case the latest deployment process fails. In that case, the
latest template that failed to deploy stays intact by the system and it is up to users to fix
their configurations.

9.2.4. Executing Commands Inside a Container

You can add a command to a container, which modifies the container’s startup behavior by overruling the
image’s ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

Add the command parameters to the spec field of the deployment configuration. You can also add an
args field, which modifies the command (or the ENTRYPOINT if command does not exist).

...
spec:
 containers:
 -
 name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'
...

For example, to execute the java command with the -jar and /opt/app-root/springboots2idemo.jar
arguments:

...
spec:
 containers:
 -
 name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar
...

9.2.5. Viewing Deployment Logs

CHAPTER 9. DEPLOYMENTS

127

To stream the logs of the latest revision for a given deployment configuration:

$ oc logs -f dc/<name>

If the latest revision is running or failed, oc logs will return the logs of the process that is responsible for
deploying your pods. If it is successful, oc logs will return the logs from a pod of your application.

You can also view logs from older failed deployment processes, if and only if these processes (old
replication controllers and their deployer pods) exist and have not been pruned or deleted manually:

$ oc logs --version=1 dc/<name>

For more options on retrieving logs see:

$ oc logs --help

9.2.6. Setting Deployment Triggers

A deployment configuration can contain triggers, which drive the creation of new deployment processes
in response to events inside the cluster.

WARNING

If no triggers are defined on a deployment configuration, a ConfigChange trigger is
added by default. If triggers are defined as an empty field, deployments must be
started manually.

9.2.6.1. Configuration Change Trigger

The ConfigChange trigger results in a new replication controller whenever changes are detected in the
pod template of the deployment configuration.

NOTE

If a ConfigChange trigger is defined on a deployment configuration, the first replication
controller will be automatically created soon after the deployment configuration itself is
created and it is not paused.

Example 9.1. A ConfigChange Trigger

9.2.6.2. ImageChange Trigger

triggers:
 - type: "ConfigChange"

OpenShift Container Platform 3.5 Developer Guide

128

1

The ImageChange trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

Example 9.2. An ImageChange Trigger

If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the deployment configuration’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE

If an ImageChange trigger is defined on a deployment configuration (with a
ConfigChange trigger and automatic=false, or with automatic=true) and the
ImageStreamTag pointed by the ImageChange trigger does not exist yet, then the initial
deployment process will automatically start as soon as an image is imported or pushed by
a build to the ImageStreamTag.

9.2.6.2.1. Using the Command Line

The oc set triggers command can be used to set a deployment trigger for a deployment
configuration. For the example above, you can set the ImageChangeTrigger by using the following
command:

$ oc set triggers dc/frontend --from-image=myproject/origin-ruby-
sample:latest -c helloworld

For more information, see:

$ oc set triggers --help

9.2.7. Setting Deployment Resources

A deployment is completed by a pod that consumes resources (memory and CPU) on a node. By default,
pods consume unbounded node resources. However, if a project specifies default container limits, then
pods consume resources up to those limits.

triggers:
 - type: "ImageChange"
 imageChangeParams:

 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

CHAPTER 9. DEPLOYMENTS

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag

1

2

1

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the Recreate, Rolling, or Custom deployment strategies.

In the following example, each of resources, cpu, and memory is optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of resources
in the quota.

See Quotas and Limit Ranges to learn more about compute resources and the differences between
requests and limits.

A limit range defined in your project, where the defaults from the LimitRange object apply to
pods created during the deployment process.

Otherwise, deploy pod creation will fail, citing a failure to satisfy quota.

9.2.8. Manual Scaling

In addition to rollbacks, you can exercise fine-grained control over the number of replicas from the web
console, or by using the oc scale command. For example, the following command sets the replicas in
the deployment configuration frontend to 3.

$ oc scale dc frontend --replicas=3

The number of replicas eventually propagates to the desired and current state of the deployment
configured by the deployment configuration frontend.

NOTE

Pods can also be autoscaled using the oc autoscale command. See Pod Autoscaling
for more details.

type: "Recreate"
resources:
 limits:

 cpu: "100m" 1

 memory: "256Mi" 2

 type: "Recreate"
 resources:

 requests: 1
 cpu: "100m"
 memory: "256Mi"

OpenShift Container Platform 3.5 Developer Guide

130

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-limits

9.2.9. Assigning Pods to Specific Nodes

You can use node selectors in conjunction with labeled nodes to control pod placement.

NOTE

OpenShift Container Platform administrators can assign labels during an advanced
installation, or added to a node after installation.

Cluster administrators can set the default node selector for your project in order to restrict pod placement
to specific nodes. As an OpenShift Container Platform developer, you can set a node selector on a pod
configuration to restrict nodes even further.

To add a node selector when creating a pod, edit the pod configuration, and add the nodeSelector
value. This can be added to a single pod configuration, or in a pod template:

apiVersion: v1
kind: Pod
spec:
 nodeSelector:
 disktype: ssd
...

Pods created when the node selector is in place are assigned to nodes with the specified labels.

The labels specified here are used in conjunction with the labels added by a cluster administrator.

For example, if a project has the type=user-node and region=east labels added to a project by the
cluster administrator, and you add the above disktype: ssd label to a pod, the pod will only ever be
scheduled on nodes that have all three labels.

NOTE

Labels can only be set to one value, so setting a node selector of region=west in a pod
configuration that has region=east as the administrator-set default, results in a pod that
will never be scheduled.

9.2.10. Running a Pod with a Different Service Account

You can run a pod with a service account other than the default:

1. Edit the deployment configuration:

$ oc edit dc/<deployment_config>

2. Add the serviceAccount and serviceAccountName parameters to the spec field, and
specify the service account you want to use:

spec:
 securityContext: {}
 serviceAccount: <service_account>
 serviceAccountName: <service_account>

CHAPTER 9. DEPLOYMENTS

131

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-node-host-labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#updating-labels-on-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#using-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#using-node-selectors

9.2.11. Adding Secrets to Deployment Configurations from the Web Console

Add a secret to your deployment configuration so that it can access a private repository.

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private image repository.

3. Create a deployment configuration.

4. On the deployment configuration editor page or in the fromimage page of the web console, set
the Pull Secret.

5. Click the Save button.

9.3. DEPLOYMENT STRATEGIES

9.3.1. What Are Deployment Strategies?

A deployment strategy determines the deployment process, and is defined by the deployment
configuration. Each application has different requirements for availability (and other considerations)
during deployments. OpenShift Container Platform provides strategies to support a variety of
deployment scenarios.

A deployment strategy uses readiness checks to determine if a new pod is ready for use. If a readiness
check fails, the deployment configuration will retry to run the pod until it times out. The default timeout is
10m, a value set in TimeoutSeconds in dc.spec.strategy.*params.

The Rolling strategy is the default strategy used if no strategy is specified on a deployment configuration.

9.3.2. Rolling Strategy

A rolling deployment slowly replaces instances of the previous version of an application with instances of
the new version of the application. A rolling deployment typically waits for new pods to become ready via
a readiness check before scaling down the old components. If a significant issue occurs, the rolling
deployment can be aborted.

9.3.2.1. Canary Deployments

All rolling deployments in OpenShift Container Platform are canary deployments; a new version (the
canary) is tested before all of the old instances are replaced. If the readiness check never succeeds, the
canary instance is removed and the deployment configuration will be automatically rolled back. The
readiness check is part of the application code, and may be as sophisticated as necessary to ensure the
new instance is ready to be used. If you need to implement more complex checks of the application
(such as sending real user workloads to the new instance), consider implementing a custom deployment
or using a blue-green deployment strategy.

9.3.2.2. When to Use a Rolling Deployment

When you want to take no downtime during an application update.

When your application supports having old code and new code running at the same time.

A rolling deployment means you to have both old and new versions of your code running at the same
time. This typically requires that your application handle N-1 compatibility, that data stored by the new

OpenShift Container Platform 3.5 Developer Guide

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-web-console

1

2

3

4

5

6

version can be read and handled (or gracefully ignored) by the old version of the code. This can take
many forms — data stored on disk, in a database, in a temporary cache, or that is part of a user’s
browser session. While most web applications can support rolling deployments, it is important to test and
design your application to handle it.

The following is an example of the Rolling strategy:

The time to wait between individual pod updates. If unspecified, this value defaults to 1.

The time to wait between polling the deployment status after update. If unspecified, this value
defaults to 1.

The time to wait for a scaling event before giving up. Optional; the default is 600. Here, giving up
means automatically rolling back to the previous complete deployment.

maxSurge is optional and defaults to 25% if not specified. See the information below the following
procedure.

maxUnavailable is optional and defaults to 25% if not specified. See the information below the
following procedure.

pre and post are both lifecycle hooks.

The Rolling strategy will:

1. Execute any pre lifecycle hook.

2. Scale up the new replication controller based on the surge count.

3. Scale down the old replication controller based on the max unavailable count.

4. Repeat this scaling until the new replication controller has reached the desired replica count and
the old replication controller has been scaled to zero.

5. Execute any post lifecycle hook.

IMPORTANT

When scaling down, the Rolling strategy waits for pods to become ready so it can decide
whether further scaling would affect availability. If scaled up pods never become ready,
the deployment process will eventually time out and result in a deployment failure.

The maxUnavailable parameter is the maximum number of pods that can be unavailable during the

strategy:
 type: Rolling
 rollingParams:

 updatePeriodSeconds: 1 1

 intervalSeconds: 1 2

 timeoutSeconds: 120 3

 maxSurge: "20%" 4

 maxUnavailable: "10%" 5

 pre: {} 6
 post: {}

CHAPTER 9. DEPLOYMENTS

133

update. The maxSurge parameter is the maximum number of pods that can be scheduled above the
original number of pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

maxUnavailable=0 and maxSurge=20% ensures full capacity is maintained during the update
and rapid scale up.

maxUnavailable=10% and maxSurge=0 performs an update using no extra capacity (an in-
place update).

maxUnavailable=10% and maxSurge=10% scales up and down quickly with some potential
for capacity loss.

Generally, if you want fast rollouts, use maxSurge. If you need to take into account resource quota and
can accept partial unavailability, use maxUnavailable.

9.3.2.3. Rolling Example

Rolling deployments are the default in OpenShift Container Platform. To see a rolling update, follow
these steps:

1. Create an application based on the example deployment images found in DockerHub:

$ oc new-app openshift/deployment-example

If you have the router installed, make the application available via a route (or use the service IP
directly)

$ oc expose svc/deployment-example

Browse to the application at deployment-example.<project>.<router_domain> to
verify you see the v1 image.

2. Scale the deployment configuration up to three replicas:

$ oc scale dc/deployment-example --replicas=3

3. Trigger a new deployment automatically by tagging a new version of the example as the latest
tag:

$ oc tag deployment-example:v2 deployment-example:latest

4. In your browser, refresh the page until you see the v2 image.

5. If you are using the CLI, the following command will show you how many pods are on version 1
and how many are on version 2. In the web console, you should see the pods slowly being
added to v2 and removed from v1.

$ oc describe dc deployment-example

During the deployment process, the new replication controller is incrementally scaled up. Once the new
pods are marked as ready (by passing their readiness check), the deployment process will continue. If

OpenShift Container Platform 3.5 Developer Guide

134

https://hub.docker.com/r/openshift/deployment-example/

1

2

the pods do not become ready, the process will abort, and the deployment configuration will be rolled
back to its previous version.

9.3.3. Recreate Strategy

The Recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into the
deployment process.

The following is an example of the Recreate strategy:

recreateParams are optional.

pre, mid, and post are lifecycle hooks.

The Recreate strategy will:

1. Execute any pre lifecycle hook.

2. Scale down the previous deployment to zero.

3. Execute any mid lifecycle hook.

4. Scale up the new deployment.

5. Execute any post lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first replica
of the deployment will be validated for readiness before fully scaling up the deployment. If
the validation of the first replica fails, the deployment will be considered a failure.

9.3.3.1. When to Use a Recreate Deployment

When you must run migrations or other data transformations before your new code starts.

When you do not support having new and old versions of your application code running at the
same time.

When you want to use a RWO volume, which is not supported being shared between multiple
replicas.

A recreate deployment incurs downtime because, for a brief period, no instances of your application are
running. However, your old code and new code do not run at the same time.

9.3.4. Custom Strategy

strategy:
 type: Recreate

 recreateParams: 1

 pre: {} 2
 mid: {}
 post: {}

CHAPTER 9. DEPLOYMENTS

135

The Custom strategy allows you to provide your own deployment behavior.

The following is an example of the Custom strategy:

In the above example, the organization/strategy container image provides the deployment
behavior. The optional command array overrides any CMD directive specified in the image’s Dockerfile.
The optional environment variables provided are added to the execution environment of the strategy
process.

Additionally, OpenShift Container Platform provides the following environment variables to the
deployment process:

Environment Variable Description

OPENSHIFT_DEPLOYMENT_N
AME

The name of the new deployment (a replication controller).

OPENSHIFT_DEPLOYMENT_N
AMESPACE

The name space of the new deployment.

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to make
the new deployment active using the logic that best serves the needs of the user.

Learn more about advanced deployment strategies.

Alternatively, use customParams to inject the custom deployment logic into the existing deployment
strategies. Provide a custom shell script logic and call the openshift-deploy binary. Users do not
have to supply their custom deployer container image, but the default OpenShift Container Platform
deployer image will be used instead:

This will result in following deployment:

strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%
 echo Halfway there
 openshift-deploy
 echo Complete

OpenShift Container Platform 3.5 Developer Guide

136

1

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-
deployment-1 from 2 to 0 (keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-
deployment-1 from 2 to 0 (keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

If the custom deployment strategy process requires access to the OpenShift Container Platform API or
the Kubernetes API the container that executes the strategy can use the service account token available
inside the container for authentication.

9.3.5. Lifecycle Hooks

The Recreate and Rolling strategies support lifecycle hooks, which allow behavior to be injected into the
deployment process at predefined points within the strategy:

The following is an example of a pre lifecycle hook:

execNewPod is a pod-based lifecycle hook.

Every hook has a failurePolicy, which defines the action the strategy should take when a hook
failure is encountered:

Abort The deployment process will be considered a failure if the hook fails.

Retry The hook execution should be retried until it succeeds.

Ignore Any hook failure should be ignored and the deployment should proceed.

Hooks have a type-specific field that describes how to execute the hook. Currently, pod-based hooks are
the only supported hook type, specified by the execNewPod field.

9.3.5.1. Pod-based Lifecycle Hook

Pod-based lifecycle hooks execute hook code in a new pod derived from the template in a deployment
configuration.

The following simplified example deployment configuration uses the Rolling strategy. Triggers and some
other minor details are omitted for brevity:

pre:
 failurePolicy: Abort

 execNewPod: {} 1

CHAPTER 9. DEPLOYMENTS

137

1

2

3

4

The helloworld name refers to spec.template.spec.containers[0].name.

This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample
image.

env is an optional set of environment variables for the hook container.

volumes is an optional set of volume references for the hook container.

In this example, the pre hook will be executed in a new pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook pod will have the following properties:

The hook command will be /usr/bin/command arg1 arg2.

The hook container will have the CUSTOM_VAR1=custom_value1 environment variable.

The hook failure policy is Abort, meaning the deployment process will fail if the hook fails.

The hook pod will inherit the data volume from the deployment configuration pod.

9.3.5.2. Using the Command Line

kind: DeploymentConfig
apiVersion: v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:
 failurePolicy: Abort
 execNewPod:

 containerName: helloworld 1

 command: ["/usr/bin/command", "arg1", "arg2"] 2

 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:

 - data 4

OpenShift Container Platform 3.5 Developer Guide

138

The oc set deployment-hook command can be used to set the deployment hook for a deployment
configuration. For the example above, you can set the pre-deployment hook with the following
command:

$ oc set deployment-hook dc/frontend --pre -c helloworld -e
CUSTOM_VAR1=custom_value1 \
 -v data --failure-policy=abort -- /usr/bin/command arg1 arg2

9.4. ADVANCED DEPLOYMENT STRATEGIES

9.4.1. Blue-Green Deployment

Blue-green deployments involve running two versions of an application at the same time and moving
production traffic from the old version to the new version. There are several ways to implement a blue-
green deployment in OpenShift Container Platform.

9.4.1.1. When to Use a Blue-Green Deployment

Use a blue-green deployment when you want to test a new version of your application in a production
environment before moving traffic to it.

Blue-green deployments make switching between two different versions of your application easy.
However, since many applications depend on persistent data, you will need to have an application that
supports N-1 compatibility if you share a database, or implement a live data migration between your
database, store, or disk if you choose to create two copies of your data layer.

9.4.1.2. Blue-Green Deployment Example

In order to maintain control over two distinct groups of instances (old and new versions of the code), the
blue-green deployment is best represented with multiple deployment configurations.

9.4.1.2.1. Using a Route and Two Services

A route points to a service, and can be changed to point to a different service at any time. As a
developer, test the new version of your code by connecting to the new service before your production
traffic is routed to it. Routes are intended for web (HTTP and HTTPS) traffic, so this technique is best
suited for web applications.

1. Create two copies of the example application:

$ oc new-app openshift/deployment-example:v1 --name=example-green
$ oc new-app openshift/deployment-example:v2 --name=example-blue

This will create two independent application components: one running the v1 image under the
example-green service, and one using the v2 image under the example-blue service.

2. Create a route that points to the old service:

$ oc expose svc/example-green --name=bluegreen-example

3. Browse to the application at bluegreen-example.<project>.<router_domain> to verify
you see the v1 image.

CHAPTER 9. DEPLOYMENTS

139

NOTE

On versions of OpenShift Container Platform older than v3.0.1, this command will
generate a route at example-green.<project>.<router_domain>, not the
above location.

4. Edit the route and change the service name to example-blue:

$ oc patch route/bluegreen-example -p '{"spec":{"to":
{"name":"example-blue"}}}'

5. In your browser, refresh the page until you see the v2 image.

9.4.2. A/B Deployment

A/B deployments generally imply running two (or more) versions of the application code or application
configuration at the same time for testing or experimentation purposes.

The simplest form of an A/B deployment is to divide production traffic between two or more distinct
shards — a single group of instances with homogeneous configuration and code.

More complicated A/B deployments may involve a specialized proxy or load balancer that assigns traffic
to specific shards based on information about the user or application (all "test" users get sent to the B
shard, but regular users get sent to the A shard).

A/B deployments can be considered similar to A/B testing, although an A/B deployment implies multiple
versions of code and configuration, where as A/B testing often uses one code base with application
specific checks.

9.4.2.1. When to Use an A/B Deployment

When you want to test multiple versions of code or configuration, but are not planning to roll one
out in preference to the other.

When you want to have different configuration in different regions.

An A/B deployment groups different configuration and code — multiple shards — together under a single
logical endpoint. Generally, these deployments, if they access persistent data, should properly deal with
N-1 compatibility (the more shards you have, the more possible versions you have running). Use this
pattern when you need separate internal configuration and code, but end users should not be aware of
the changes.

9.4.2.2. A/B Deployment Example

All A/B deployments are composite deployment types consisting of multiple deployment configurations.

9.4.2.2.1. One Service, Multiple Deployment Configurations

OpenShift Container Platform, through labels and deployment configurations, supports multiple
simultaneous shards being exposed through the same service. To the consuming user, the shards are
invisible. An example of the simplest possible sharding is described below:

1. Create the first shard of the application based on the example deployment images:

$ oc new-app openshift/deployment-example --name=ab-example-a --

OpenShift Container Platform 3.5 Developer Guide

140

labels=ab-example=true SUBTITLE="shard A"

2. Edit the newly created shard to set a label ab-example=true that will be common to all
shards:

$ oc edit dc/ab-example-a

In the editor, add the line ab-example: "true" underneath spec.selector and
spec.template.metadata.labels alongside the existing deploymentconfig=ab-
example-a label. Save and exit the editor.

3. Trigger a re-deployment of the first shard to pick up the new labels:

$ oc deploy ab-example-a --latest

4. Create a service that uses the common label:

$ oc expose dc/ab-example-a --name=ab-example --selector=ab-
example=true

If you have the router installed, make the application available via a route (or use the service IP
directly):

$ oc expose svc/ab-example

Browse to the application at ab-example.<project>.<router_domain> to verify you see
the v1 image.

5. Create a second shard based on the same source image as the first shard but different tagged
version, and set a unique value:

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b --
labels=ab-example=true SUBTITLE="shard B" COLOR="red"

6. Edit the newly created shard to set a label ab-example=true that will be common to all
shards:

$ oc edit dc/ab-example-b

In the editor, add the line ab-example: "true" underneath spec.selector and
spec.template.metadata.labels alongside the existing deploymentconfig=ab-
example-b label. Save and exit the editor.

7. Trigger a re-deployment of the second shard to pick up the new labels:

$ oc deploy ab-example-b --latest

8. At this point, both sets of pods are being served under the route. However, since both browsers
(by leaving a connection open) and the router (by default, through a cookie) will attempt to
preserve your connection to a back-end server, you may not see both shards being returned to
you. To force your browser to one or the other shard, use the scale command:

$ oc scale dc/ab-example-a --replicas=0

CHAPTER 9. DEPLOYMENTS

141

Refreshing your browser should show v2 and shard B (in red).

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --
replicas=0

Refreshing your browser should show v1 and shard A (in blue).

If you trigger a deployment on either shard, only the pods in that shard will be affected. You can
easily trigger a deployment by changing the SUBTITLE environment variable in either
deployment config oc edit dc/ab-example-a or oc edit dc/ab-example-b. You can
add additional shards by repeating steps 5-7.

NOTE

These steps will be simplified in future versions of OpenShift Container Platform.

9.4.3. Proxy Shard / Traffic Splitter

In production environments, you can precisely control the distribution of traffic that lands on a particular
shard. When dealing with large numbers of instances, you can use the relative scale of individual shards
to implement percentage based traffic. That combines well with a proxy shard, which forwards or splits
the traffic it receives to a separate service or application running elsewhere.

In the simplest configuration, the proxy would forward requests unchanged. In more complex setups, you
can duplicate the incoming requests and send to both a separate cluster as well as to a local instance of
the application, and compare the result. Other patterns include keeping the caches of a DR installation
warm, or sampling incoming traffic for analysis purposes.

While an implementation is beyond the scope of this example, any TCP (or UDP) proxy could be run
under the desired shard. Use the oc scale command to alter the relative number of instances serving
requests under the proxy shard. For more complex traffic management, consider customizing the
OpenShift Container Platform router with proportional balancing capabilities.

9.4.4. N-1 Compatibility

Applications that have new code and old code running at the same time must be careful to ensure that
data written by the new code can be read by the old code. This is sometimes called schema evolution
and is a complex problem.

For some applications, the period of time that old code and new code is running side by side is short, so
bugs or some failed user transactions are acceptable. For others, the failure pattern may result in the
entire application becoming non-functional.

One way to validate N-1 compatibility is to use an A/B deployment. Run the old code and new code at
the same time in a controlled way in a test environment, and verify that traffic that flows to the new
deployment does not cause failures in the old deployment.

9.4.5. Graceful Termination

OpenShift Container Platform and Kubernetes give application instances time to shut down before
removing them from load balancing rotations. However, applications must ensure they cleanly terminate
user connections as well before they exit.

On shutdown, OpenShift Container Platform will send a TERM signal to the processes in the container.

OpenShift Container Platform 3.5 Developer Guide

142

Application code, on receiving SIGTERM, should stop accepting new connections. This will ensure that
load balancers route traffic to other active instances. The application code should then wait until all open
connections are closed (or gracefully terminate individual connections at the next opportunity) before
exiting.

After the graceful termination period expires, a process that has not exited will be sent the KILL signal,
which immediately ends the process. The terminationGracePeriodSeconds attribute of a pod or
pod template controls the graceful termination period (default 30 seconds) and may be customized per
application as necessary.

9.5. KUBERNETES DEPLOYMENTS SUPPORT

9.5.1. New Object Type: Deployments

In the upstream Kubernetes project, a new first-class object type called deployments was added in
version 1.2. This object type (referred to here as Kubernetes deployments for distinction) serves as a
descendant of the deployment configuration object type.

Support for Kubernetes deployments is available as a Technology Preview feature.

Like deployment configurations, Kubernetes deployments describe the desired state of a particular
component of an application as a pod template. Kubernetes deployments create replica sets (an iteration
of replication controllers), which orchestrate pod lifecycles.

For example, this definition of a Kubernetes deployment creates a replica set to bring up one hello-
openshift pod:

Example Kubernetes Deployment Definition hello-openshift-deployment.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

After saving the definition to a local file, you could then use it to create a Kubernetes deployment:

$ oc create -f hello-openshift-deployment.yaml

You can use the CLI to inspect and operate on Kubernetes deployments and replica sets like other object
types, as described in Common Operations, like get and describe. For the object type, use
deployments or deploy for Kubernetes deployments and replicasets or rs for replica sets.

CHAPTER 9. DEPLOYMENTS

143

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#oc-common-operations

See the Kubernetes documentation for more details about Deployments and Replica Sets, substituting
oc for kubectl in CLI usage examples.

9.5.2. Kubernetes Deployments vs Deployment Configurations

Because deployment configurations existed in OpenShift Container Platform prior to deployments being
added in Kubernetes 1.2, the latter object type naturally diverges slightly from the former. The long-term
goal in OpenShift Container Platform is to reach full feature parity in Kubernetes deployments and switch
to using them as a single object type that provides fine-grained management over applications.

Kubernetes deployments are supported to ensure upstream projects and examples that use the new
object type can run smoothly on OpenShift Container Platform. Given the current feature set of
Kubernetes deployments, you may want to use them instead of deployment configurations in OpenShift
Container Platform if you do not plan to use any of the following in particular:

image streams

lifecycle hooks

Custom deployment strategies

The following sections go into more details on the differences between the two object types to further
help you decide when you might want to use Kubernetes deployments over deployment configurations.

9.5.2.1. Deployment Configuration-Specific Features

9.5.2.1.1. Automatic Rollbacks

Kubernetes deployments do not support automatically rolling back to the last successfully deployed
replica set in case of a failure. This feature should be added soon.

9.5.2.1.2. Triggers

Kubernetes deployments have an implicit ConfigChange trigger in that every change in the pod
template of a deployment automatically triggers a new rollout. If you do not want new rollouts on pod
template changes, pause the deployment:

$ oc rollout pause deployments/<name>

At the moment, Kubernetes deployments do not support ImageChange triggers. A generic triggering
mechanism has been proposed upstream, but it is unknown if and when it may be accepted. Eventually,
a OpenShift Container Platform-specific mechanism could be implemented to layer on top of Kubernetes
deployments, but it would be more desirable for it to exist as part of the Kubernetes core.

9.5.2.1.3. Lifecycle Hooks

Kubernetes deployments do not support any lifecycle hooks.

9.5.2.1.4. Custom Strategies

Kubernetes deployments do not yet support user-specified Custom deployment strategies yet.

9.5.2.1.5. Canary Deployments

OpenShift Container Platform 3.5 Developer Guide

144

http://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/user-guide/replicasets/

Kubernetes deployments do not yet run canaries as part of a new rollout.

9.5.2.1.6. Test Deployments

Kubernetes deployments do not support running test tracks.

9.5.2.2. Kubernetes Deployment-Specific Features

9.5.2.2.1. Rollover

The deployment process for Kubernetes deployments is driven by a controller loop, in contrast to
deployment configurations which use deployer pods for every new rollout. This means that a Kubernetes
deployment can have as many active replica sets as possible, and eventually the deployment controller
will scale down all old replica sets and scale up the newest one.

Deployment configurations can have at most one deployer pod running, otherwise multiple deployers
end up fighting with each other trying to scale up what they think should be the newest replication
controller. Because of this, only two replication controllers can be active at any point in time. Ultimately,
this translates to faster rapid rollouts for Kubernetes deployments.

9.5.2.2.2. Proportional Scaling

Because the Kubernetes deployment controller is the sole source of truth for the sizes of new and old
replica sets owned by a deployment, it is able to scale ongoing rollouts. Additional replicas are
distributed proportionally based on the size of each replica set.

Deployment configurations cannot be scaled when a rollout is ongoing because the deployment
configuration controller will end up fighting with the deployer process about the size of the new replication
controller.

9.5.2.2.3. Pausing Mid-rollout

Kubernetes deployments can be paused at any point in time, meaning you can also pause ongoing
rollouts. On the other hand, you cannot pause deployer pods currently, so if you try to pause a
deployment configuration in the middle of a rollout, the deployer process will not be affected and will
continue until it finishes.

CHAPTER 9. DEPLOYMENTS

145

CHAPTER 10. TEMPLATES

10.1. OVERVIEW

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Container Platform. A template can be processed to create anything
you have permission to create within a project, for example services, build configurations, and
deployment configurations. A template may also define a set of labels to apply to every object defined in
the template.

You can create a list of objects from a template using the CLI or, if a template has been uploaded to your
project or the global template library, using the web console. For a curated set of templates, see the
OpenShift Image Streams and Templates library.

10.2. UPLOADING A TEMPLATE

If you have a JSON or YAML file that defines a template, for example as seen in this example, you can
upload the template to projects using the CLI. This saves the template to the project for repeated use by
any user with appropriate access to that project. Instructions on writing your own templates are provided
later in this topic.

To upload a template to your current project’s template library, pass the JSON or YAML file with the
following command:

$ oc create -f <filename>

You can upload a template to a different project using the -n option with the name of the project:

$ oc create -f <filename> -n <project>

The template is now available for selection using the web console or the CLI.

10.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE

To create the objects from an uploaded template using the web console:

1. While in the desired project, click Add to Project:

2. Select a template from the list of templates in your project, or provided by the global template
library:

OpenShift Container Platform 3.5 Developer Guide

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels
https://github.com/openshift/library

3. Modify template parameters in the template creation screen:

CHAPTER 10. TEMPLATES

147

Template name and description.

Container images included in the template.

Parameters defined by the template. You can edit values for parameters defined in the
template here.

Labels to assign to all items included in the template. You can add and edit labels for
objects.

10.4. CREATING FROM TEMPLATES USING THE CLI

OpenShift Container Platform 3.5 Developer Guide

148

You can use the CLI to process templates and use the configuration that is generated to create objects.

10.4.1. Labels

Labels are used to manage and organize generated objects, such as pods. The labels specified in the
template are applied to every object that is generated from the template.

There is also the ability to add labels in the template from the command line.

$ oc process -f <filename> -l name=otherLabel

10.4.2. Parameters

The list of parameters that you can override are listed in the parameters section of the template. You
can list them with the CLI by using the following command and specifying the file to be used:

$ oc process --parameters -f <filename>

Alternatively, if the template is already uploaded:

$ oc process --parameters -n <project> <template_name>

For example, the following shows the output when listing the parameters for one of the Quickstart
templates in the default openshift project:

$ oc process --parameters -n openshift rails-postgresql-example
NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your
application source code
https://github.com/sclorg/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref
of your repository if you are not using the default branch
CONTEXT_DIR Set this to the relative path to your
project if it is not in the root of your repository
APPLICATION_DOMAIN The exposed hostname that will route to the
Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub
webhook expression
[a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity
of signed cookies expression
[a-z0-9]{127}
APPLICATION_USER The application user that is used within the
sample application to authorize access on pages
openshift
APPLICATION_PASSWORD The application password that is used within
the sample application to authorize access on pages
secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}

CHAPTER 10. TEMPLATES

149

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels

POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

The output identifies several parameters that are generated with a regular expression-like generator
when the template is processed.

10.4.3. Generating a List of Objects

Using the CLI, you can process a file defining a template to return the list of objects to standard output:

$ oc process -f <filename>

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template_name>

You can create objects from a template by processing the template and piping the output to oc create:

$ oc process -f <filename> | oc create -f -

Alternatively, if the template has already been uploaded to the current project:

$ oc process <template> | oc create -f -

You can override any parameter values defined in the file by adding the -p option for each <name>=
<value> pair you want to override. A parameter reference may appear in any text field inside the
template items.

For example, in the following the POSTGRESQL_USER and POSTGRESQL_DATABASE parameters of a
template are overridden to output a configuration with customized environment variables:

Example 10.1. Creating a List of Objects from a Template

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase

The JSON file can either be redirected to a file or applied directly without uploading the template by
piping the processed output to the oc create command:

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

OpenShift Container Platform 3.5 Developer Guide

150

If you have large number of parameters, you can store them in a file and then pass this file to oc
process:

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase
$ oc process -f my-rails-postgresql --param-file=postgres.env

You can also read the environment from standard input by using "-" as the argument to --param-
file:

$ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --
param-file=-

10.5. MODIFYING AN UPLOADED TEMPLATE

You can edit a template that has already been uploaded to your project by using the following command:

$ oc edit template <template>

10.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES

OpenShift Container Platform provides a number of default Instant App and Quickstart templates to
make it easy to quickly get started creating a new application for different languages. Templates are
provided for Rails (Ruby), Django (Python), Node.js, CakePHP (PHP), and Dancer (Perl). Your cluster
administrator should have created these templates in the default, global openshift project so you have
access to them. You can list the available default Instant App and Quickstart templates with:

$ oc get templates -n openshift

If they are not available, direct your cluster administrator to the Loading the Default Image Streams and
Templates topic.

By default, the templates build using a public source repository on GitHub that contains the necessary
application code. In order to be able to modify the source and build your own version of the application,
you must:

1. Fork the repository referenced by the template’s default SOURCE_REPOSITORY_URL parameter.

2. Override the value of the SOURCE_REPOSITORY_URL parameter when creating from the
template, specifying your fork instead of the default value.

By doing this, the build configuration created by the template will now point to your fork of the application
code, and you can modify the code and rebuild the application at will.

A walkthrough of this process using the web console is provided in Getting Started for Developers: Web
Console.

CHAPTER 10. TEMPLATES

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-imagestreams-templates
https://github.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/getting_started/#getting-started-developers-console

NOTE

Some of the Instant App and Quickstart templates define a database deployment
configuration. The configuration they define uses ephemeral storage for the database
content. These templates should be used for demonstration purposes only as all
database data will be lost if the database pod restarts for any reason.

10.7. WRITING TEMPLATES

You can define new templates to make it easy to recreate all the objects of your application. The
template will define the objects it creates along with some metadata to guide the creation of those
objects.

Example 10.2. A Simple Template Object Definition (YAML)

10.7.1. Description

The template description covers information that informs users what your template does and helps them
find it when searching in the web console. In addition to general descriptive information, it includes a set
of tags. Useful tags include the name of the language your template is related to (e.g., java, php, ruby,
etc.).

apiVersion: v1
kind: Template
metadata:
 name: redis-template
 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression
 name: REDIS_PASSWORD
labels:
 redis: master

OpenShift Container Platform 3.5 Developer Guide

152

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations

1

2

3

4

5

6

Example 10.3. Template Description Metadata

The unique name of the template.

A brief, user-friendly name, which can be employed by user interfaces.

A description of the template. Include enough detail that the user will understand what is being
deployed and any caveats they need to know before deploying. It should also provide links to
additional information, such as a README file. Newline characters \n can be included to create
paragraphs.

Tags to be associated with the template for searching and grouping. Add tags that will include it
into one of the provided catalog categories. Refer to the id and categoryAliases in
CATALOG_CATEGORIES in the console’s constants file. The categories can also be customized
for the whole cluster.

An icon to be displayed with your template in the web console. Choose from our existing logo
icons when possible. You can also use icons from FontAwesome. Alternatively, provide icons
through CSS customizations that can be added to an OpenShift Container Platform cluster that
uses your template. You must specify an icon class that exists, or it will prevent falling back to
the generic icon.

An instructional message that is displayed when this template is instantiated. This field should
inform the user how to use the newly created resources. Parameter substitution is performed on
the message before being displayed so that generated credentials and other parameters can be
included in the output. Include links to any next-steps documentation that users should follow.

10.7.2. Labels

Templates can include a set of labels. These labels will be added to each object created when the
template is instantiated. Defining a label in this way makes it easy for users to find and manage all the
objects created from a particular template.

Example 10.4. Template Object Labels

kind: "Template"
apiVersion: "v1"
metadata:

 name: "cakephp-mysql-example" 1
 annotations:

 openshift.io/display-name: "CakePHP MySQL Example" 2
 description: "An example CakePHP application with a MySQL
database.\n\nFor more information see https://github.com/sclorg/cakephp-

ex" 3

 tags: "instant-app,php,cakephp,mysql" 4

 iconClass: "icon-php" 5
message: "Your admin credentials are

${ADMIN_USERNAME}:${ADMIN_PASSWORD}" 6

kind: "Template"
apiVersion: "v1"
...

CHAPTER 10. TEMPLATES

153

https://github.com/openshift/origin-web-console/blob/master/app/scripts/constants.js
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-catalog-categories
https://rawgit.com/openshift/openshift-logos-icon/master/demo.html
http://fontawesome.io/icons/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#loading-custom-scripts-and-stylesheets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels

1 A label that will be applied to all objects created from this template.

10.7.3. Parameters

Parameters allow a value to be supplied by the user or generated when the template is instantiated.
Then, that value is substituted wherever the parameter is referenced. References can be defined in any
field in the objects list field. This is useful for generating random passwords or allowing the user to supply
a host name or other user-specific value that is required to customize the template. Parameters can be
referenced in two ways:

As a string value by placing values in the form ${PARAMETER_NAME} in any string field in the
template.

As a json/yaml value by placing values in the form ${{PARAMETER_NAME}} in place of any
field in the template.

When using the ${PARAMETER_NAME} syntax, multiple parameter references can be combined in a
single field and the reference can be embedded within fixed data, such as
"http://${PARAMETER_1}${PARAMETER_2}". Both parameter values will be substituted and the
resulting value will be a quoted string.

When using the ${{PARAMETER_NAME}} syntax only a single parameter reference is allowed and
leading/trailing characters are not permitted. The resulting value will be unquoted unless, after
substitution is performed, the result is not a valid json object. If the result is not a valid json value, the
resulting value will be quoted and treated as a standard string.

A single parameter can be referenced multiple times within a template and it can be referenced using
both substitution syntaxes within a single template.

A default value can be provided, which is used if the user does not supply a different value:

Example 10.5. Setting an Explicit Value as the Default Value

Parameter values can also be generated based on rules specified in the parameter definition:

Example 10.6. Generating a Parameter Value

labels:

 template: "cakephp-mysql-example" 1

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

OpenShift Container Platform 3.5 Developer Guide

154

In the example above, processing will generate a random password 12 characters long consisting of all
upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, and \a
modifiers:

[\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

[\d]{10} produces 10 numbers. This is equal to [0-9]{10}.

[\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

Here is an example of a full template with parameter definitions and references:

Example 10.7. A full template with parameter definitions and references

kind: Template
apiVersion: v1
objects:
 - kind: BuildConfig
 apiVersion: v1
 metadata:
 name: cakephp-mysql-example
 annotations:
 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:

 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
 - kind: DeploymentConfig
 apiVersion: v1
 metadata:
 name: frontend
 spec:

 replicas: "${{REPLICA_COUNT}}" 2
parameters:

 - name: SOURCE_REPOSITORY_URL 3

 displayName: Source Repository URL 4
 description: The URL of the repository with your application source

code 5

 value: https://github.com/sclorg/cakephp-ex.git 6

 required: true 7
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook

 generate: expression 8

 from: "[a-zA-Z0-9]{40}" 9
 - name: REPLICA_COUNT
 description: Number of replicas to run
 value: "2"

CHAPTER 10. TEMPLATES

155

1

2

3

4

5

6

7

8

9

10

This value will be replaced with the value of the SOURCE_REPOSITORY_URL parameter when
the template is instantiated.

This value will be replaced with the unquoted value of the REPLICA_COUNT parameter when the
template is instantiated.

The name of the parameter. This value is used to reference the parameter within the template.

The user-friendly name for the parameter. This will be displayed to users.

A description of the parameter. Provide more detailed information for the purpose of the
parameter, including any constraints on the expected value. Descriptions should use complete
sentences to follow the console’s text standards. Don’t make this a duplicate of the display
name.

A default value for the parameter which will be used if the user does not override the value when
instantiating the template. Avoid using default values for things like passwords, instead use
generated parameters in combination with Secrets.

Indicates this parameter is required, meaning the user cannot override it with an empty value. If
the parameter does not provide a default or generated value, the user must supply a value.

A parameter which has its value generated.

The input to the generator. In this case, the generator will produce a 40 character alphanumeric
value including upper and lowercase characters.

Parameters can be included in the template message. This informs the user about generated
values.

10.7.4. Object List

The main portion of the template is the list of objects which will be created when the template is
instantiated. This can be any valid API object, such as a BuildConfig, DeploymentConfig,
Service, etc. The object will be created exactly as defined here, with any parameter values substituted
in prior to creation. The definition of these objects can reference parameters defined earlier.

 required: true
message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..."

10

kind: "Template"
apiVersion: "v1"
objects:

 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:
 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"

OpenShift Container Platform 3.5 Developer Guide

156

https://www.patternfly.org/styles/terminology-and-wording/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-index

1 The definition of a Service which will be created by this template.

NOTE

If an object definition’s metadata includes a fixed namespace field value, the field will be
stripped out of the definition during template instantiation. If the namespace field contains
a parameter reference, normal parameter substitution will be performed and the object will
be created in whatever namespace the parameter substitution resolved the value to,
assuming the user has permission to create objects in that namespace.

10.7.5. Other Recommendations

Group related services together in the management console by adding the
service.alpha.openshift.io/dependencies annotation to the Service object in your
template.

Example 10.8. Group the Frontend and Database Services Together on the
Management Console Overview

Set memory, CPU, and storage default sizes to make sure your application is given enough
resources to run smoothly.

Avoid referencing the latest tag from images if that tag is used across major versions. This
may cause running applications to break when new images are pushed to that tag.

A good template builds and deploys cleanly without requiring modifications after the template is
deployed.

10.7.6. Creating a Template from Existing Objects

 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

kind: "Template"
apiVersion: "v1"
objects:
 - kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "frontend"
 annotations:
 "service.alpha.openshift.io/dependencies": "[{\"name\":
\"database\", \"kind\": \"Service\"}]"
...
 - kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "database"

CHAPTER 10. TEMPLATES

157

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pvc-resources

Rather than writing an entire template from scratch, you can export existing objects from your project in
template form, and then modify the template from there by adding parameters and other customizations.
To export objects in a project in template form, run:

$ oc export all --as-template=<template_name> > <template_filename>

You can also substitute a particular resource type or multiple resources instead of all. Run oc export
-h for more examples.

The object types included in oc export all are:

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

ReplicationController

Route

Service

OpenShift Container Platform 3.5 Developer Guide

158

CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS

11.1. OVERVIEW

The oc rsh command allows you to locally access and manage tools that are on the system. The
secure shell (SSH) is the underlying technology and industry standard that provides a secure connection
to the application. Access to applications with the shell environment is protected and restricted with
Security-Enhanced Linux (SELinux) policies.

11.2. START A SECURE SHELL SESSION

Open a remote shell session to a container:

$ oc rsh <pod>

While in the remote shell, you can issue commands as if you are inside the container and perform local
operations like monitoring, debugging, and using CLI commands specific to what is running in the
container.

For example, in a MySQL container, you can count the number of records in the database by invoking
the mysql command, then using the the prompt to type in the SELECT command. You can also use use
commands like ps(1) and ls(1) for validation.

BuildConfigs and DeployConfigs map out how you want things to look and pods (with containers
inside) are created and dismantled as needed. Your changes are not persistent. If you make changes
directly within the container and that container is destroyed and rebuilt, your changes will no longer exist.

NOTE

oc exec can be used to execute a command remotely. However, the oc rsh command
provides an easier way to keep a remote shell open persistently.

11.3. SECURE SHELL SESSION HELP

For help with usage, options, and to see examples:

$ oc rsh -h

CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/using_images/#using-images-db-images-mysql

CHAPTER 12. SERVICE ACCOUNTS

12.1. OVERVIEW

When a person uses the OpenShift Container Platform CLI or web console, their API token authenticates
them to the OpenShift API. However, when a regular user’s credentials are not available, it is common for
components to make API calls independently. For example:

Replication controllers make API calls to create or delete pods.

Applications inside containers could make API calls for discovery purposes.

External applications could make API calls for monitoring or integration purposes.

Service accounts provide a flexible way to control API access without sharing a regular user’s
credentials.

12.2. USER NAMES AND GROUPS

Every service account has an associated user name that can be granted roles, just like a regular user.
The user name is derived from its project and name:

system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

IMPORTANT

If you want to grant access to a specific service account in a project, you can use the -z
flag. From the project to which the service account belongs, use the -z flag and specify
the <serviceaccount_name>. This is highly recommended, as it helps prevent typos
and ensures that access is granted only to the specified service account. For example:

 $ oc policy add-role-to-user <role_name> -z
<serviceaccount_name>

If not in the project, use the -n option to indicate the project namespace it applies to, as
shown in the examples below.

Every service account is also a member of two groups:

system:serviceaccount

Includes all service accounts in the system.

system:serviceaccount:<project>

Includes all service accounts in the specified project.

For example, to allow all service accounts in all projects to view resources in the top-secret project:

$ oc policy add-role-to-group view system:serviceaccount -n top-secret

OpenShift Container Platform 3.5 Developer Guide

160

To allow all service accounts in the managers project to edit resources in the top-secret project:

$ oc policy add-role-to-group edit system:serviceaccount:managers -n top-
secret

12.3. DEFAULT SERVICE ACCOUNTS AND ROLES

Three service accounts are automatically created in every project:

Service Account Usage

builder Used by build pods. It is given the system:image-builder role, which allows
pushing images to any image stream in the project using the internal Docker
registry.

deployer Used by deployment pods and is given the system:deployer role, which allows
viewing and modifying replication controllers and pods in the project.

default Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal Docker registry.

12.4. MANAGING SERVICE ACCOUNTS

Service accounts are API objects that exist within each project. To manage service accounts, you can
use the oc command with the sa or serviceaccount object type or use the web console.

To get a list of existing service accounts in the current project:

$ oc get sa
NAME SECRETS AGE
builder 2 2d
default 2 2d
deployer 2 2d

To create a new service account:

$ oc create sa robot
serviceaccount "robot" created

As soon as a service account is created, two secrets are automatically added to it:

an API token

credentials for the OpenShift Container Registry

These can be seen by describing the service account:

$ oc describe sa robot
Name: robot

CHAPTER 12. SERVICE ACCOUNTS

161

1

2

3

Namespace: project1
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-qzbhb

Mountable secrets: robot-token-f4khf
 robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
 robot-token-z8h44

The system ensures that service accounts always have an API token and registry credentials.

The generated API token and registry credentials do not expire, but they can be revoked by deleting the
secret. When the secret is deleted, a new one is automatically generated to take its place.

12.5. ENABLING SERVICE ACCOUNT AUTHENTICATION

Service accounts authenticate to the API using tokens signed by a private RSA key. The authentication
layer verifies the signature using a matching public RSA key.

To enable service account token generation, update the serviceAccountConfig stanza in the
/etc/origin/master/master-config.yml file on the master to specify a privateKeyFile (for signing),
and a matching public key file in the publicKeyFiles list:

serviceAccountConfig:
 ...

 masterCA: ca.crt 1

 privateKeyFile: serviceaccount.private.key 2
 publicKeyFiles:

 - serviceaccount.public.key 3
 - ...

CA file used to validate the API server’s serving certificate.

Private RSA key file (for token signing).

Public RSA key files (for token verification). If private key files are provided, then the public key
component is used. Multiple public key files can be specified, and a token will be accepted if it can
be validated by one of the public keys. This allows rotation of the signing key, while still accepting
tokens generated by the previous signer.

12.6. MANAGED SERVICE ACCOUNTS

Service accounts are required in each project to run builds, deployments, and other pods. The
managedNames setting in the /etc/origin/master/master-config.yml file on the master controls which
service accounts are automatically created in every project:

serviceAccountConfig:
 ...

 managedNames: 1

 - builder 2

OpenShift Container Platform 3.5 Developer Guide

162

1

2

3

4

 - deployer 3

 - default 4
 - ...

List of service accounts to automatically create in every project.

A builder service account in each project is required by build pods, and is given the
system:image-builder role, which allows pushing images to any image stream in the project using
the internal container registry.

A deployer service account in each project is required by deployment pods, and is given the
system:deployer role, which allows viewing and modifying replication controllers and pods in the
project.

A default service account is used by all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal container registry.

12.7. INFRASTRUCTURE SERVICE ACCOUNTS

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server start,
and given the following roles cluster-wide:

Service Account Description

replication-controller Assigned the system:replication-controller role

deployment-controller Assigned the system:deployment-controller role

build-controller Assigned the system:build-controller role. Additionally, the build-controller
service account is included in the privileged security context constraint in order to
create privileged build pods.

To configure the project where those service accounts are created, set the
openshiftInfrastructureNamespace field in the /etc/origin/master/master-config.yml file on the
master:

policyConfig:
 ...
 openshiftInfrastructureNamespace: openshift-infra

12.8. SERVICE ACCOUNTS AND SECRETS

Set the limitSecretReferences field in the /etc/origin/master/master-config.yml file on the master
to true to require pod secret references to be whitelisted by their service accounts. Set its value to
false to allow pods to reference any secret in the project.

CHAPTER 12. SERVICE ACCOUNTS

163

serviceAccountConfig:
 ...
 limitSecretReferences: false

12.9. MANAGING ALLOWED SECRETS

In addition to providing API credentials, a pod’s service account determines which secrets the pod is
allowed to use.

Pods use secrets in two ways:

image pull secrets, providing credentials used to pull images for the pod’s containers

mountable secrets, injecting the contents of secrets into containers as files

To allow a secret to be used as an image pull secret by a service account’s pods, run:

$ oc secrets link --for=pull <serviceaccount-name> <secret-name>

To allow a secret to be mounted by a service account’s pods, run:

$ oc secrets link --for=mount <serviceaccount-name> <secret-name>

NOTE

Limiting secrets to only the service accounts that reference them is disabled by default.
This means that if serviceAccountConfig.limitSecretReferences is set to
false (the default setting) in the master configuration file, mounting secrets to a service
account’s pods with the --for=mount option is not required. However, using the --
for=pull option to enable using an image pull secret is required, regardless of the
serviceAccountConfig.limitSecretReferences value.

This example creates and adds secrets to a service account:

$ oc secrets new secret-plans plan1.txt plan2.txt
secret/secret-plans

$ oc secrets new-dockercfg my-pull-secret \
 --docker-username=mastermind \
 --docker-password=12345 \
 --docker-email=mastermind@example.com
secret/my-pull-secret

$ oc secrets link robot secret-plans --for=mount

$ oc secrets link robot my-pull-secret --for=pull

$ oc describe serviceaccount robot
Name: robot
Labels: <none>
Image pull secrets: robot-dockercfg-624cx
 my-pull-secret

OpenShift Container Platform 3.5 Developer Guide

164

Mountable secrets: robot-token-uzkbh
 robot-dockercfg-624cx
 secret-plans

Tokens: robot-token-8bhpp
 robot-token-uzkbh

12.10. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A
CONTAINER

When a pod is created, it specifies a service account (or uses the default service account), and is
allowed to use that service account’s API credentials and referenced secrets.

A file containing an API token for a pod’s service account is automatically mounted at
/var/run/secrets/kubernetes.io/serviceaccount/token.

That token can be used to make API calls as the pod’s service account. This example calls the users/~
API to get information about the user identified by the token:

$ TOKEN="$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)"

$ curl --cacert /var/run/secrets/kubernetes.io/serviceaccount/ca.crt \
 "https://openshift.default.svc.cluster.local/oapi/v1/users/~" \
 -H "Authorization: Bearer $TOKEN"

kind: "User"
apiVersion: "v1"
metadata:
 name: "system:serviceaccount:top-secret:robot"
 selflink: "/oapi/v1/users/system:serviceaccount:top-secret:robot"
 creationTimestamp: null
identities: null
groups:
 - "system:serviceaccount"
 - "system:serviceaccount:top-secret"

12.11. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

The same token can be distributed to external applications that need to authenticate to the API.

Use the following syntax to to view a service account’s API token:

$ oc describe secret <secret-name>

For example:

$ oc describe secret robot-token-uzkbh -n top-secret
Name: robot-token-uzkbh
Labels: <none>
Annotations: kubernetes.io/service-
account.name=robot,kubernetes.io/service-account.uid=49f19e2e-16c6-11e5-
afdc-3c970e4b7ffe

CHAPTER 12. SERVICE ACCOUNTS

165

Type: kubernetes.io/service-account-token

Data

token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...

$ oc login --token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...
Logged into "https://server:8443" as "system:serviceaccount:top-
secret:robot" using the token provided.

You don't have any projects. You can try to create a new project, by
running

 $ oc new-project <projectname>

$ oc whoami
system:serviceaccount:top-secret:robot

OpenShift Container Platform 3.5 Developer Guide

166

CHAPTER 13. MANAGING IMAGES

13.1. OVERVIEW

An image stream comprises any number of container images identified by tags. It presents a single
virtual view of related images, similar to a Docker image repository.

By watching an image stream, builds and deployments can receive notifications when new images are
added or modified and react by performing a build or deployment, respectively.

There are many ways you can interact with images and set up image streams, depending on where the
images' registries are located, any authentication requirements around those registries, and how you
want your builds and deployments to behave. The following sections cover a range of these topics.

13.2. TAGGING IMAGES

Before working with OpenShift Container Platform image streams and their tags, it helps to first
understand image tags in the context of container images generally.

Container images can have names added to them that make it more intuitive to determine what they
contain, called a tag. Using a tag to specify the version of what is contained in the image is a common
use case. If you have an image named ruby, you could have a tag named 2.0 for 2.0 version of Ruby,
and another named latest to indicate literally the latest built image in that repository overall.

When interacting directly with images using the docker CLI, the docker tag command can add tags,
which essentially adds an alias to an image that can consist of several parts. Those parts can include:

<registry_server>/<user_name>/<image_name>:<tag>

The <user_name> part in the above could also refer to a project or namespace if the image is being
stored in an OpenShift Container Platform environment with an internal registry (the OpenShift Container
Registry).

OpenShift Container Platform provides the oc tag command, which is similar to the docker tag
command, but operates on image streams instead of directly on images.

NOTE

See Red Hat Enterprise Linux 7’s Getting Started with Containers documentation for more
about tagging images directly using the docker CLI.

13.2.1. Adding Tags to Image Streams

Keeping in mind that an image stream in OpenShift Container Platform comprises zero or more
container images identified by tags, you can add tags to an image stream using the oc tag command:

$ oc tag <source> <destination>

For example, to configure the ruby imagestream’s static-2.0 tag to always refer to the current image for
the ruby imagestream’s 2.0 tag:

$ oc tag ruby:2.0 ruby:static-2.0

CHAPTER 13. MANAGING IMAGES

167

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#namespaces
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#creating_docker_images

This creates a new imagestream tag named static-2.0 in the ruby imagestream. The new tag directly
reference the image id that the ruby:2.0 imagestream tag pointed to at the time oc tag was run, and
the image it points to never changes.

There are different types of tags available. The default behavior uses a permanent tag, which points to a
specific image in time; even when the source changes, the new (destination) tag does not change.

A tracking tag means the destination tag’s metadata is updated during the import of the source tag. To
ensure the destination tag is updated whenever the source tag changes, use the --alias=true flag:

$ oc tag --alias=true <source> <destination>

You can also add the --scheduled=true flag to have the destination tag be refreshed (i.e., re-
imported) periodically. The period is configured globally at the system level.

See Importing Tag and Image Metadata for more details.

If you want to instruct Docker to always fetch the tagged image from the integrated registry, use --
reference-policy=local. The registry uses the pull-through feature pull-through feature to serve the
image to the client. By default, the image blobs are mirrored locally by the registry. As a result, they can
be pulled more quickly the next time they are needed. The flag also allows for pulling from insecure
registries without a need to supply --insecure-registry to the Docker daemon as long as the
image stream has an insecure annotation or the tag has an insecure import policy.

13.2.2. Recommended Tagging Conventions

Images evolve over time and their tags reflect this. An image tag always points to the latest image built.

If there is too much information embedded in a tag name (for example, v2.0.1-may-2016), the tag
points to just one revision of an image and is never updated. Using default image pruning options, such
an image is never removed. In very large clusters, the schema of creating new tags for every revised
image could eventually fill up the etcd datastore with excess tag metadata for images that are long
outdated.

Instead, if the tag is named v2.0, more image revisions are more likely. This results in longer tag history
and, therefore, the image pruner is more likely to remove old and unused images. Refer to Pruning
Images for more information.

Although tag naming convention is up to you, here are a few examples in the format <image_name>:
<image_tag>:

Table 13.1. Image Tag Naming Conventions

Description Example

Revision myimage:v2.0.1

Architecture myimage:v2.0-x86_64

Base image myimage:v1.2-centos7

Latest (potentially unstable) myimage:latest

OpenShift Container Platform 3.5 Developer Guide

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#master-config-image-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#middleware-repository-pullthrough
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#pruning-images

Latest stable myimage:stable

Description Example

If you require dates in tag names, periodically inspect old and unsupported images and istags and
remove them. Otherwise, you might experience increasing resource usage caused by old images.

13.2.3. Removing Tags from Image Streams

To remove a tag completely from an image stream run:

$ oc delete istag/ruby:latest

or:

$ oc tag -d ruby:latest

13.2.4. Referencing Images in Image Streams

Images can be referenced in image streams using the following reference types:

An ImageStreamTag is used to reference or retrieve an image for a given image stream and
tag. It uses the following convention for its name:

<image_stream_name>:<tag>

An ImageStreamImage is used to reference or retrieve an image for a given image stream and
image name. It uses the following convention for its name:

<image_stream_name>@<id>

The <id> is an immutable identifier for a specific image, also called a digest.

A DockerImage is used to reference or retrieve an image for a given external registry. It uses
standard Docker pull specification for its name, e.g.:

openshift/ruby-20-centos7:2.0

NOTE

When no tag is specified, it is assumed the latest tag is used.

You can also reference a third-party registry:

registry.access.redhat.com/rhel7:latest

Or an image with a digest:

CHAPTER 13. MANAGING IMAGES

169

centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c7
46e8986b28e

When viewing example image stream definitions, such as the example CentOS image streams, you may
notice they contain definitions of ImageStreamTag and references to DockerImage, but nothing
related to ImageStreamImage.

This is because the ImageStreamImage objects are automatically created in OpenShift Container
Platform whenever you import or tag an image into the image stream. You should never have to
explicitly define an ImageStreamImage object in any image stream definition that you use to create
image streams.

You can view an image’s object definition by retrieving an ImageStreamImage definition using the
image stream name and ID:

$ oc export isimage <image_stream_name>@<id>

NOTE

You can find valid <id> values for a given image stream by running:

$ oc describe is <image_stream_name>

For example, from the ruby image stream asking for the ImageStreamImage with the name and ID of
ruby@3a335d7:

Example 13.1. Definition of an Image Object Retrieved via ImageStreamImage

$ oc export isimage ruby@3a335d7

apiVersion: v1
image:
 dockerImageLayers:
 - name:
sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name:
sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name:
sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name:
sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 size: 0
 - name:
sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name:
sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 dockerImageMetadata:

OpenShift Container Platform 3.5 Developer Guide

170

https://github.com/openshift/origin/blob/master/examples/image-streams/image-streams-centos7.json

 Architecture: amd64
 Author: SoftwareCollections.org <sclorg@redhat.com>
 Config:
 Cmd:
 - /bin/sh
 - -c
 - $STI_SCRIPTS_PATH/usage
 Entrypoint:
 - container-entrypoint
 Env:
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Image:
d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2
applications
 io.k8s.display-name: Ruby 2.2
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version:
8847438ba06307f86ac877465eadc835201241df
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 ContainerConfig: {}
 Created: 2016-01-26T21:07:27Z
 DockerVersion: 1.8.2-el7
 Id: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Parent:
d9c3abc5456a9461954ff0de8ae25e0e016aad35700594714d42b687564b1f51
 Size: 430037130
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8
986b28e
 metadata:
 creationTimestamp: 2016-01-29T13:17:45Z
 name:
sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e

CHAPTER 13. MANAGING IMAGES

171

 resourceVersion: "352"
 uid: af2e7a0c-c68a-11e5-8a99-525400f25e34
kind: ImageStreamImage
metadata:
 creationTimestamp: null
 name: ruby@3a335d7
 namespace: openshift
 selflink: /oapi/v1/namespaces/openshift/imagestreamimages/ruby@3a335d7

13.3. IMAGE PULL POLICY

Each container in a pod has a container image. Once you have created an image and pushed it to a
registry, you can then refer to it in the pod.

When OpenShift Container Platform creates containers, it uses the container’s imagePullPolicy to
determine if the image should be pulled prior to starting the container. There are three possible values for
imagePullPolicy:

Always - always pull the image.

IfNotPresent - only pull the image if it does not already exist on the node.

Never - never pull the image.

If a container’s imagePullPolicy parameter is not specified, OpenShift Container Platform sets it
based on the image’s tag:

1. If the tag is latest, OpenShift Container Platform defaults imagePullPolicy to Always.

2. Otherwise, OpenShift Container Platform defaults imagePullPolicy to IfNotPresent.

13.4. ACCESSING THE INTERNAL REGISTRY

You can access OpenShift Container Platform’s internal registry directly to push or pull images. For
example, this could be helpful if you wanted to create an image stream by manually pushing an image,
or just to docker pull an image directly.

The internal registry authenticates using the same tokens as the OpenShift Container Platform API. To
perform a docker login against the internal registry, you can choose any user name and email, but
the password must be a valid OpenShift Container Platform token.

To log into the internal registry:

1. Log in to OpenShift Container Platform:

$ oc login

2. Get your access token:

$ oc whoami -t

3. Log in to the internal registry using the token. You must have docker installed on your system:

OpenShift Container Platform 3.5 Developer Guide

172

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#api-authentication

$ docker login -u <user_name> -e <email_address> \
 -p <token_value> <registry_server>:<port>

NOTE

Contact your cluster administrator if you do not know the registry IP or host name
and port to use.

In order to pull an image, the authenticated user must have get rights on the requested
imagestreams/layers. In order to push an image, the authenticated user must have update rights
on the requested imagestreams/layers.

By default, all service accounts in a project have rights to pull any image in the same project, and the
builder service account has rights to push any image in the same project.

13.5. USING IMAGE PULL SECRETS

Docker registries can be secured to prevent unauthorized parties from accessing certain images. If you
are using OpenShift Container Platform’s internal registry and are pulling from image streams located in
the same project, then your pod’s service account should already have the correct permissions and no
additional action should be required.

However, for other scenarios, such as referencing images across OpenShift Container Platform projects
or from secured registries, then additional configuration steps are required. The following sections detail
these scenarios and their required steps.

13.5.1. Allowing Pods to Reference Images Across Projects

When using the internal registry, to allow pods in project-a to reference images in project-b, a service
account in project-a must be bound to the system:image-puller role in project-b:

$ oc policy add-role-to-user \
 system:image-puller system:serviceaccount:project-a:default \
 --namespace=project-b

After adding that role, the pods in project-a that reference the default service account is able to pull
images from project-b.

To allow access for any service account in project-a, use the group:

$ oc policy add-role-to-group \
 system:image-puller system:serviceaccounts:project-a \
 --namespace=project-b

13.5.2. Allowing Pods to Reference Images from Other Secured Registries

The .dockercfg file (or $HOME/.docker/config.json for newer Docker clients) is a Docker credentials
file that stores your information if you have previously logged into a secured or insecure registry.

To pull a secured container image that is not from OpenShift Container Platform’s internal registry, you
must create a pull secret from your Docker credentials and add it to your service account.

CHAPTER 13. MANAGING IMAGES

173

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-infrastructure-components-image-registry

If you already have a .dockercfg file for the secured registry, you can create a secret from that file by
running:

$ oc secrets new <pull_secret_name> .dockercfg=<path/to/.dockercfg>

Or if you have a $HOME/.docker/config.json file:

$ oc secrets new <pull_secret_name> .dockerconfigjson=
<path/to/.docker/config.json>

If you do not already have a Docker credentials file for the secured registry, you can create a secret by
running:

$ oc secrets new-dockercfg <pull_secret_name> \
 --docker-server=<registry_server> --docker-username=<user_name> \
 --docker-password=<password> --docker-email=<email>

To use a secret for pulling images for pods, you must add the secret to your service account. The name
of the service account in this example should match the name of the service account the pod uses;
default is the default service account:

$ oc secrets link default <pull_secret_name> --for=pull

To use a secret for pushing and pulling build images, the secret must be mountable inside of a pod. You
can do this by running:

$ oc secrets link builder <pull_secret_name>

13.6. IMPORTING TAG AND IMAGE METADATA

An image stream can be configured to import tag and image metadata from an image repository in an
external Docker image registry. You can do this using a few different methods.

You can manually import tag and image information with the oc import-image command
using the --from option:

$ oc import-image <image_stream_name>[:<tag>] --from=
<docker_image_repo> --confirm

For example:

$ oc import-image my-ruby --from=docker.io/openshift/ruby-20-centos7
--confirm
The import completed successfully.

Name: my-ruby
Created: Less than a second ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2016-05-
06T20:59:30Z
Docker Pull Spec: 172.30.94.234:5000/demo-project/my-ruby

OpenShift Container Platform 3.5 Developer Guide

174

Tag Spec Created PullSpec Image
latest docker.io/openshift/ruby-20-centos7 Less than a second ago
docker.io/openshift/ruby-20-centos7@sha256:772c5bf9b2d1e8... <same>

You can also add the --all flag to import all tags for the image instead of just latest.

Like most objects in OpenShift Container Platform, you can also write and save a JSON or
YAML definition to a file then create the object using the CLI. Set the
spec.dockerImageRepository field to the Docker pull spec for the image:

apiVersion: "v1"
kind: "ImageStream"
metadata:
 name: "my-ruby"
spec:
 dockerImageRepository: "docker.io/openshift/ruby-20-centos7"

Then create the object:

$ oc create -f <file>

When you create an image stream that references an image in an external Docker registry, OpenShift
Container Platform communicates with the external registry within a short amount of time to get up to
date information about the image.

After the tag and image metadata is synchronized, the image stream object would look similar to the
following:

apiVersion: v1
kind: ImageStream
metadata:
 name: my-ruby
 namespace: demo-project
 selflink: /oapi/v1/namespaces/demo-project/imagestreams/my-ruby
 uid: 5b9bd745-13d2-11e6-9a86-0ada84b8265d
 resourceVersion: '4699413'
 generation: 2
 creationTimestamp: '2016-05-06T21:34:48Z'
 annotations:
 openshift.io/image.dockerRepositoryCheck: '2016-05-06T21:34:48Z'
spec:
 dockerImageRepository: docker.io/openshift/ruby-20-centos7
 tags:
 -
 name: latest
 annotations: null
 from:
 kind: DockerImage
 name: 'docker.io/openshift/ruby-20-centos7:latest'
 generation: 2
 importPolicy: { }
status:
 dockerImageRepository: '172.30.94.234:5000/demo-project/my-ruby'
 tags:
 -

CHAPTER 13. MANAGING IMAGES

175

1

 tag: latest
 items:
 -
 created: '2016-05-06T21:34:48Z'
 dockerImageReference: 'docker.io/openshift/ruby-20-
centos7@sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda54
93dc3'
 image:
'sha256:772c5bf9b2d1e8e80742ed75aab05820419dc4532fa6d7ad8a1efddda5493dc3'
 generation: 2

You can set a tag to query external registries at a scheduled interval to synchronize tag and image
metadata by setting the --scheduled=true flag with the oc tag command as mentioned in Adding
Tags to Image Streams.

Alternatively, you can set importPolicy.scheduled to true in the tag’s definition:

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
spec:
 tags:
 - from:
 kind: DockerImage
 name: openshift/ruby-20-centos7
 name: latest
 importPolicy:
 scheduled: true

13.6.1. Importing Images from Insecure Registries

An image stream can be configured to import tag and image metadata from insecure image registries,
such as those signed with a self-signed certificate or using plain HTTP instead of HTTPS.

To configure this, add the openshift.io/image.insecureRepository annotation and set it to
true. This setting bypasses certificate validation when connecting to the registry:

Set the openshift.io/image.insecureRepository annotation to true

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 annotations:

 openshift.io/image.insecureRepository: "true" 1
 spec:
 dockerImageRepository: my.repo.com:5000/myimage

OpenShift Container Platform 3.5 Developer Guide

176

IMPORTANT

This option instructs integrated registry to fall back to an insecure transport for any
external image tagged in the image stream when serving it, which is dangerous. If
possible, avoid this risk by marking just an istag as insecure.

IMPORTANT

The above definition only affects importing tag and image metadata. For this image to be
used in the cluster (e.g., to be able to do a docker pull), one of the following must be
true:

1. Each node has Docker configured with the --insecure-registry flag
matching the registry part of the dockerImageRepository. See Host
Preparation for more information.

2. Each istag specification must have referencePolicy.type set to Local.
See Reference Policy for more information.

13.6.1.1. ImageStream Tag Policies

13.6.1.1.1. Insecure Tag Import Policy

The above annotation applies to all images and tags of a particular ImageStream. For a finer-grained
control, policies may be set on istags. Set importPolicy.insecure in the tag’s definition to true
to allow a fall-back to insecure transport just for images under this tag.

NOTE

The fall-back to insecure transport for an image under particular istag is enabled either
when the image stream is annotated as insecure or the istag has insecure import
policy. The importPolicy.insecure` set to false can not override the image stream
annotation.

13.6.1.1.2. Reference Policy

The Reference Policy allows you to specify where the image consumers pulls from. It is only applicable
to remote images (those imported from external registries). There are two options to choose from, Local
and Source.

The Source policy instructs clients to pull directly from the source registry of the image. The integrated
registry is not involved unless the image is managed by the cluster. (It is not an external image.) This is
the default policy.

The Local policy instructs clients to always pull from the integrated registry. This is useful if you want to
pull from external insecure registries without modifying Docker daemon settings.

The pull-through feature of the registry serves the remote image to the client. Additionally, all the blobs
are mirrored for faster access later.

You can set the policy in a specification of image stream tag as referencePolicy.type.

Example 13.2. Example of Insecure Tag with a Local Reference Policy

CHAPTER 13. MANAGING IMAGES

177

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-install-host-preparation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#image-stream-tag
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#middleware-repository-pullthrough

1

2

Set tag mytag to use an insecure connection to that registry.

Set tag mytag to use integrated registry for pulling external images. If the reference policy type
is set to Source, clients fetch the image directly from my.repo.com:5000/myimage.

13.6.2. Importing Images from Private Registries

An image stream can be configured to import tag and image metadata from private image registries,
requiring authentication.

To configure this, you need to create a secret, which is used to store your credentials. See Allowing Pods
to Reference Images from Other Secured Registries for instructions on creating a secret using oc
create secret command.

After the secret is configured, proceed with creating the new image stream or using the oc import-
image command. During the import process, OpenShift Container Platform picks up the secrets and
provide them to the remote party.

NOTE

When importing from an insecure registry, the registry URL defined in the secret must
include the :80 port suffix or the secret is not used when attempting to import from the
registry.

13.6.3. Adding Trusted Certificates for External Registries

If the registry you are importing from is using a certificate that is not signed by a standard certificate
authority, you need to explicitly configure the system to trust the registry’s certificate or signing authority.
This can be done by adding the CA certificate or registry certificate to the host system running the
registry import controller (typically the master node).

The certificate or CA certificate must be added to /etc/pki/tls/certs or /etc/pki/ca-trust,
respectively, on the host system. The update-ca-trust command also needs to be run on Red Hat
distributions followed by a restart of the master service to pick up the certificate changes.

13.6.4. Importing Images Across Projects

kind: ImageStream
apiVersion: v1
metadata:
 name: ruby
 tags:
 - from:
 kind: DockerImage
 name: my.repo.com:5000/myimage
 name: mytag
 importPolicy:

 insecure: true 1
 referencePolicy:

 type: Local 2

OpenShift Container Platform 3.5 Developer Guide

178

An image stream can be configured to import tag and image metadata from the internal registry, but from
a different project. The recommended method for this is to use the oc tag command as shown in
Adding Tags to Image Streams:

$ oc tag <source_project>/<image_stream>:<tag> <new_image_stream>:
<new_tag>

Another method is to import the image from the other project manually using the pull spec:

WARNING

The following method is strongly discouraged and should be used only if the former
using oc tag is insufficient.

1. First, add the necessary policy to access the other project:

$ oc policy add-role-to-group \
 system:image-puller \
 system:serviceaccounts:<destination_project> \
 -n <source_project>

This allows <destination_project> to pull images from <source_project>.

2. With the policy in place, you can import the image manually:

$ oc import-image <new_image_stream> --confirm \
 --from=<docker_registry>/<source_project>/<image_stream>

13.6.5. Creating an Image Stream by Manually Pushing an Image

An image stream can also be automatically created by manually pushing an image to the internal
registry. This is only possible when using an OpenShift Container Platform internal registry.

Before performing this procedure, the following must be satisfied:

The destination project you push to must already exist.

The user must be authorized to {get, update} "imagestream/layers" in that project. In
addition, since the image stream does not already exist, the user must be authorized to
{create} "imagestream" in that project. If you are a project administrator, then you would
have these permissions.

NOTE

The system:image-pusher role does not grant permission to create new image streams,
only to push images to existing image streams, so it cannot be used to push images to
image streams that do not yet exist unless additional permissions are also granted to the
user.

CHAPTER 13. MANAGING IMAGES

179

To create an image stream by manually pushing an image:

1. First, log in to the internal registry.

2. Then, tag your image using the appropriate internal registry location. For example, if you had
already pulled the docker.io/centos:centos7 image locally:

$ docker tag docker.io/centos:centos7 172.30.48.125:5000/test/my-
image

3. Finally, push the image to your internal registry. For example:

$ docker push 172.30.48.125:5000/test/my-image
The push refers to a repository [172.30.48.125:5000/test/my-image]
(len: 1)
c8a648134623: Pushed
2bf4902415e3: Pushed
latest: digest:
sha256:be8bc4068b2f60cf274fc216e4caba6aa845fff5fa29139e6e7497bb57e48
d67 size: 6273

4. Verify that the image stream was created:

$ oc get is
NAME DOCKER REPO TAGS UPDATED
my-image 172.30.48.125:5000/test/my-image latest 3 seconds
ago

13.7. WRITING IMAGE STREAM DEFINITIONS

You can define image streams by writing the image stream definition for the entire image stream. This
allows you to distribute the definition to different clusters without running oc commands.

An image stream definition specifies information about the image stream and the specific tags to be
imported.

Definition of an Image Stream Object

apiVersion: v1
kind: ImageStream
metadata:
 name: ruby
 annotations:

 openshift.io/display-name: Ruby 1
spec:
 tags:

 - name: '2.0' 2
 annotations:

 openshift.io/display-name: Ruby 2.0 3

 description: >- 4
 Build and run Ruby 2.0 applications on CentOS 7. For more
information
 about using this builder image, including OpenShift
considerations,

OpenShift Container Platform 3.5 Developer Guide

180

1

2

3

4

5

6

7

8

9

10

 see
 https://github.com/sclorg/s2i-ruby-
container/tree/master/2.0/README.md.

 iconClass: icon-ruby 5

 sampleRepo: 'https://github.com/sclorg/ruby-ex.git' 6

 tags: 'builder,ruby' 7

 version: '2.0' 8
 from:

 kind: DockerImage 9

 name: 'docker.io/openshift/ruby-20-centos7:latest' 10

A brief, user-friendly name for the whole image stream.

The tag is referred to as the version. Tags appear in a drop-down menu.

A user-friendly name for this tag within the image stream. This should be brief and include version
information when appropriate.

A description of the tag, which includes enough detail for users to understand what the image is
providing. It can include links to additional instructions. Limit the description to a few sentences.

The icon to show for this tag. Pick from our existing logo icons when possible. Icons from
FontAwesome and Patternfly can also be used. Alternatively, provide icons through CSS
customizations that can be added to an OpenShift Container Platform cluster that uses your image
stream. You must specify an icon class that exists, or it prevents falling back to the generic icon.

A URL to a source repository that works with this builder image tag and results in a sample running
application.

Categories that the image stream tag is associated with. The builder tag is required for it to show up
in the catalog. Add tags that associates it with one of the provided catalog categories. Refer to the
id and categoryAliases in CATALOG_CATEGORIES in the console’s constants file. The
categories can also be customized for the whole cluster.

Languages this image supports. This value is used during oc new-app invocations to try to match
potential builder images to the provided source repository.

Version information for this tag.

The type of object this image stream tag is referencing. Valid values are: DockerImage,
ImageStreamTag, and ImageStreamImage.

The object this image stream tag imports.

CHAPTER 13. MANAGING IMAGES

181

https://rawgit.com/openshift/openshift-logos-icon/master/demo.html
http://fontawesome.io/icons/
https://www.patternfly.org/styles/icons/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#loading-custom-scripts-and-stylesheets
https://github.com/openshift/origin-web-console/blob/master/app/scripts/constants.js
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-catalog-categories

CHAPTER 14. IMAGE SIGNATURES

14.1. OVERVIEW

Container image signing on Red Hat Enterprise Linux (RHEL) systems provides a means of:

Validating where a container image came from,

Checking that the image has not been tampered with, and

Setting policies to determine which validated images can be pulled to a host.

For a more complete understanding of the architecture of container image signing on RHEL systems, see
the Container Image Signing Integration Guide.

The OpenShift Container Registry allows the ability to store signatures via REST API. The oc CLI can be
used to verify image signatures, with their validiated displayed in the web console or CLI.

NOTE

Initial support for storing image signatures was added in OpenShift Container Platform
3.3.

14.2. SIGNING IMAGES USING ATOMIC CLI

OpenShift Container Platform does not automate image signing. Signing requires a developer’s private
GPG key, typically stored securely on a workstation. This document describes that workflow.

The atomic command line interface (CLI), version 1.12.5 or greater, provides commands for signing
container images, which can be pushed to an OpenShift Container Registry. The atomic CLI is
available on Red Hat-based distributions: RHEL, Centos, and Fedora.

You can sign an image at push time:

$ atomic push [--sign-by ...] <image>

Or you can sign an image that has already been pushed to the registry:

$ atomic sign [--sign-by ...] <image>

For full details on how to set up and perform image signing using the atomic CLI, see the RHEL Atomic
Host Managing Containers: Signing Container Images documentation.

A specific example workflow of working with the atomic CLI and an OpenShift Container Registry is
documented in the Container Image Signing Integration Guide.

14.3. ACCESSING IMAGE SIGNATURES USING REGISTRY API

The OpenShift Container Registry provides an extensions endpoint that allows you to write and read
image signatures. The image signatures are stored in the OpenShift Container Platform key-value store
via the Docker Registry API.

OpenShift Container Platform 3.5 Developer Guide

182

https://access.redhat.com/articles/2750891#architecture
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/signing_container_images
https://access.redhat.com/articles/2750891#working-with-openshift-and-atomic-registry

NOTE

This endpoint is experimental and not supported by the upstream Docker Registry project.
See the upstream API documentation for general information about the Docker Registry
API.

14.3.1. Writing Image Signatures

In order to add a new signature to the image, you can use the HTTP PUT method to send a JSON
payload to the extensions endpoint:

PUT /extensions/v2/<namespace>/<name>/signatures/<digest>

$ curl -X PUT --data @signature.json http://<user>:
<token>@<registry_endpoint>:5000/extensions/v2/<namespace>/<name>/signatur
es/sha256:<digest>

The JSON payload with the signature content should have the following structure:

{
 "version": 2,
 "type": "atomic",
 "name":
"sha256:4028782c08eae4a8c9a28bf661c0a8d1c2fc8e19dbaae2b018b21011197e1484@c
ddeb7006d914716e2728000746a0b23",
 "content": "<cryptographic_signature>"
}

The name field contains the name of the image signature, which must be unique and in the format
<digest>@<name>. The <digest> represents an image name and the <name> is the name of the
signature. The signature name must be 32 characters long. The <cryptographic_signature> must
follow the specification documented in the containers/image library.

NOTE

In order to attach the signature to the image, the user must have the system:image-
signer cluster role. Cluster administrators can add this using:

$ oc adm policy add-cluster-role-to-user system:image-signer
<user_name>

14.3.2. Reading Image Signatures

Assuming a signed image has already been pushed into the OpenShift Container Registry, you can read
the signatures using the following command:

GET /extensions/v2/<namespace>/<name>/signatures/<digest>

$ curl http://<user>:
<token>@<registry_endpoint>:5000/extensions/v2/<namespace>/<name>/signatur
es/sha256:<digest>

CHAPTER 14. IMAGE SIGNATURES

183

https://docs.docker.com/registry/spec/api/
https://github.com/containers/image/blob/master/docs/atomic-signature.md#the-cryptographic-signature

The <namespace> represents the OpenShift Container Platform project name or registry repository
name and the <name> refers to the name of the image repository. The digest represents the SHA-256
checksum of the image.

If the given image contains the signature data, the output of the command above should produce
following JSON response:

{
 "signatures": [
 {
 "version": 2,
 "type": "atomic",
 "name":
"sha256:4028782c08eae4a8c9a28bf661c0a8d1c2fc8e19dbaae2b018b21011197e1484@c
ddeb7006d914716e2728000746a0b23",
 "content": "<cryptographic_signature>"
 }
]
}

The name field contains the name of the image signature, which must be unique and in the format
<digest>@<name>. The <digest> represents an image name and the <name> is the name of the
signature. The signature name must be 32 characters long. The <cryptographic_signature> must
follow the specification documented in the containers/image library.

14.4. VERIFYING IMAGE SIGNATURES USING OPENSHIFT CLI

You can verify the signatures of an image imported to an OpenShift Container Registry using the oc
adm verify-image-signature command. This command verifies if the image identity contained in
the image signature can be trusted by using the public GPG key to verify the signature itself then match
the provided expected identity with the identity (the pull spec) of the given image.

By default, this command uses the public GPG keyring located in $GNUPGHOME/pubring.gpg, typically
in path ~/.gnupg. By default, this command does not save the result of the verification back to the image
object. To do so, you must specify the --save flag.

NOTE

To modify the image signature verification status, your account must have to have
permissions to edit image objects, for example using the image-auditor role.

Using the --save flag on already verified image together with invalid GPG key or invalid expected
identity causes the saved verification status to be removed, and the image will become unverified.

To verify an image signature:

$ oc adm verify-image-signature <image> --expected-identity=<pull_spec> [-
-save] [options]

OpenShift Container Platform 3.5 Developer Guide

184

https://github.com/containers/image/blob/master/docs/atomic-signature.md#the-cryptographic-signature

CHAPTER 15. QUOTAS AND LIMIT RANGES

15.1. OVERVIEW

Using quotas and limit ranges, cluster administrators can set constraints to limit the number of objects or
amount of compute resources that are used in your project. This helps cluster administrators better
manage and allocate resources across all projects, and ensure that no projects are using more than is
appropriate for the cluster size.

As a developer, you can also set requests and limits on compute resources at the pod and container
level.

The following sections help you understand how to check on your quota and limit range settings, what
sorts of things they can constrain, and how you can request or limit compute resources in your own pods
and containers.

15.2. QUOTAS

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that may be consumed by resources
in that project.

NOTE

Quotas are set by cluster administrators and are scoped to a given project.

15.2.1. Viewing Quotas

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details:

1. First, get the list of quotas defined in the project. For example, for a project called demoproject:

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
core-object-counts 29m

2. Then, describe the quota you are interested in, for example the core-object-counts quota:

$ oc describe quota core-object-counts -n demoproject
Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

CHAPTER 15. QUOTAS AND LIMIT RANGES

185

1

2

3

4

5

1

Full quota definitions can be viewed by running oc export on the object. The following show some
sample quota definitions:

object-counts.yaml

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

openshift-object-counts.yaml

The total number of image streams that can exist in the project.

compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:

 configmaps: "10" 1

 persistentvolumeclaims: "4" 2

 replicationcontrollers: "20" 3

 secrets: "10" 4

 services: "10" 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:

 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:

 pods: "4" 1

 requests.cpu: "1" 2

OpenShift Container Platform 3.5 Developer Guide

186

1

2

3

4

5

1

2

1

2

3

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

besteffort.yaml

The total number of pods in a non-terminal state with BestEffort quality of service that can exist in
the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either memory
or CPU.

compute-resources-long-running.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:

 pods: "4" 1

 limits.cpu: "4" 2

 limits.memory: "2Gi" 3
 scopes:

 - NotTerminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

 requests.memory: 1Gi 3

 limits.cpu: "2" 4

 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:

 pods: "1" 1
 scopes:

 - BestEffort 2

CHAPTER 15. QUOTAS AND LIMIT RANGES

187

4

1

2

3

4

1

2

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil.
Build pods will fall under NotTerminating unless the RestartNever policy is applied.

compute-resources-time-bound.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:

 pods: "2" 1

 limits.cpu: "1" 2

 limits.memory: "1Gi" 3
 scopes:

 - Terminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For
example, this quota would charge for build or deployer pods, but not long running pods like a web
server or database.

storage-consumption.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: storage-consumption
spec:
 hard:

 persistentvolumeclaims: "10" 1

 requests.storage: "50Gi" 2

The total number of persistent volume claims in a project

Across all persistent volume claims in a project, the sum of storage requested cannot exceed this
value.

15.2.2. Resources Managed by Quota

The following describes the set of compute resources and object types that may be managed by a quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

OpenShift Container Platform 3.5 Developer Guide

188

Table 15.1. Compute Resources Managed by Quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.storage The sum of storage requests across all persistent volume claims cannot exceed
this value. storage and requests.storage are the same value and can
be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot
exceed this value.

Table 15.2. Storage Resources Managed by Quota

Resource Name Description

requests.storage The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

persistentvolumecl
aims

The total number of persistent volume claims that can exist in the project.

<storage-class-
name>.storageclass
.storage.k8s.io/re
quests.storage

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

<storage-class-
name>.storageclass
.storage.k8s.io/pe
rsistentvolumeclai
ms

The total number of persistent volume claims with a matching storage class that
can exist in the project.

CHAPTER 15. QUOTAS AND LIMIT RANGES

189

Table 15.3. Object Counts Managed by Quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrol
lers

The total number of replication controllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumecl
aims

The total number of persistent volume claims that can exist in the project.

openshift.io/image
streams

The total number of image streams that can exist in the project.

15.2.3. Quota Scopes

Each quota can have an associated set of scopes. A quota will only measure usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds >= 0.

NotTerminating Match pods where spec.activeDeadlineSeconds is nil.

BestEffort Match pods that have best effort quality of service for either cpu or memory.
See the Quality of Service Classes for more on committing compute resources.

NotBestEffort Match pods that do not have best effort quality of service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A Terminating, NotTerminating, and NotBestEffort scope restricts a quota to tracking the following
resources:

OpenShift Container Platform 3.5 Developer Guide

190

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#qos-classes

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

15.2.4. Quota Enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. If project modifications exceed a quota usage limit, the server denies the action.
An appropriate error message is returned explaining the quota constraint violated, and what your
currently observed usage stats are in the system.

15.2.5. Requests vs Limits

When allocating compute resources, each container may specify a request and a limit value each for
CPU and memory. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit
for those resources.

See Compute Resources for more on setting requests and limits in pods and containers.

15.3. LIMIT RANGES

A limit range, defined by a LimitRange object, enumerates compute resource constraints in a project at
the pod, container, image, image stream, and persistent volume claim level, and specifies the amount of
resources that a pod, container, image, image stream, or persistent volume claim can consume.

All resource create and modification requests are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, then the resource is rejected. If the
resource does not set an explicit value, and if the constraint supports a default value, then the default
value is applied to the resource.

NOTE

Limit ranges are set by cluster administrators and are scoped to a given project.

CHAPTER 15. QUOTAS AND LIMIT RANGES

191

15.3.1. Viewing Limit Ranges

You can view any limit ranges defined in a project by navigating in the web console to the project’s
Quota page.

You can also use the CLI to view limit range details:

1. First, get the list of limit ranges defined in the project. For example, for a project called
demoproject:

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. Then, describe the limit range you are interested in, for example the resource-limits limit range:

$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min
Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- -
-- --------------- ------------- -----------------------
Pod cpu 200m 2
- - -
Pod memory 6Mi
1Gi - - -
Container cpu 100m 2
200m 300m 10
Container memory 4Mi
1Gi 100Mi 200Mi -
openshift.io/Image storage -
1Gi - - -
openshift.io/ImageStream openshift.io/image - 12
- - -
openshift.io/ImageStream openshift.io/image-tags - 10
- - -

Full limit range definitions can be viewed by running oc export on the object. The following shows an
example limit range definition:

Example 15.1. Limit Range Object Definition

apiVersion: "v1"
kind: "LimitRange"
metadata:

 name: "core-resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:

 cpu: "2" 2

 memory: "1Gi" 3
 min:

 cpu: "200m" 4

OpenShift Container Platform 3.5 Developer Guide

192

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The name of the limit range object.

The maximum amount of CPU that a pod can request on a node across all containers.

The maximum amount of memory that a pod can request on a node across all containers.

The minimum amount of CPU that a pod can request on a node across all containers.

The minimum amount of memory that a pod can request on a node across all containers.

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over request.

For more information on how CPU and memory are measured, see Compute Resources.

15.3.2. Container Limits

Supported Resources:

CPU

 memory: "6Mi" 5
 - type: "Container"
 max:

 cpu: "2" 6

 memory: "1Gi" 7
 min:

 cpu: "100m" 8

 memory: "4Mi" 9
 default:

 cpu: "300m" 10

 memory: "200Mi" 11
 defaultRequest:

 cpu: "200m" 12

 memory: "100Mi" 13
 maxLimitRequestRatio:

 cpu: "10" 14

CHAPTER 15. QUOTAS AND LIMIT RANGES

193

Memory

Supported Constraints:

Per container, the following must hold true if specified:

Table 15.4. Container

Constraint Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or
equal to container/resources.limits[resource] (optional)

If the configuration defines a min CPU, then the request value must be greater
than the CPU value. A limit value does not need to be specified.

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

If the configuration defines a max CPU, then you do not need to define a
request value, but a limit value does need to be set that satisfies the maximum
CPU constraint.

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

If a configuration defines a maxLimitRequestRatio value, then any new
containers must have both a request and limit value. Additionally, OpenShift
Container Platform calculates a limit to request ratio by dividing the limit by the
request. This value should be a non-negative integer greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu:
100 in the request value, then its limit to request ratio for cpu is 5. This
ratio must be less than or equal to the maxLimitRequestRatio.

Supported Defaults:

Default[resource]

Defaults container.resources.limit[resource] to specified value if none.

Default Requests[resource]

Defaults container.resources.requests[resource] to specified value if none.

15.3.3. Pod Limits

Supported Resources:

CPU

Memory

Supported Constraints:

OpenShift Container Platform 3.5 Developer Guide

194

1

2

3

Across all containers in a pod, the following must hold true:

Table 15.5. Pod

Constraint Enforced Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or
equal to container.resources.limits[resource] (optional)

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

15.4. COMPUTE RESOURCES

Each container running on a node consumes compute resources, which are measurable quantities that
can be requested, allocated, and consumed.

When authoring a pod configuration file, you can optionally specify how much CPU and memory (RAM)
each container needs in order to better schedule pods in the cluster and ensure satisfactory
performance.

CPU is measured in units called millicores. Each node in a cluster inspects the operating system to
determine the amount of CPU cores on the node, then multiplies that value by 1000 to express its total
capacity. For example, if a node has 2 cores, the node’s CPU capacity would be represented as 2000m.
If you wanted to use 1/10 of a single core, it would be represented as 100m.

Memory is measured in bytes. In addition, it may be used with SI suffices (E, P, T, G, M, K) or their
power-of-two-equivalents (Ei, Pi, Ti, Gi, Mi, Ki).

The container requests 100m cpu.

The container requests 200Mi memory.

The container limits 200m cpu.

apiVersion: v1
kind: Pod
spec:
 containers:
 - image: openshift/hello-openshift
 name: hello-openshift
 resources:
 requests:

 cpu: 100m 1

 memory: 200Mi 2
 limits:

 cpu: 200m 3

 memory: 400Mi 4

CHAPTER 15. QUOTAS AND LIMIT RANGES

195

4 The container limits 400Mi memory.

15.4.1. CPU Requests

Each container in a pod can specify the amount of CPU it requests on a node. The scheduler uses CPU
requests to find a node with an appropriate fit for a container.

The CPU request represents a minimum amount of CPU that your container may consume, but if there is
no contention for CPU, it can use all available CPU on the node. If there is CPU contention on the node,
CPU requests provide a relative weight across all containers on the system for how much CPU time the
container may use.

On the node, CPU requests map to Kernel CFS shares to enforce this behavior.

15.4.2. Viewing Compute Resources

To view compute resources for a pod:

$ oc describe pod ruby-hello-world-tfjxt
Name: ruby-hello-world-tfjxt
Namespace: default
Image(s): ruby-hello-world
Node: /
Labels: run=ruby-hello-world
Status: Pending
Reason:
Message:
IP:
Replication Controllers: ruby-hello-world (1/1 replicas created)
Containers:
 ruby-hello-world:
 Container ID:
 Image ID:
 Image: ruby-hello-world
 QoS Tier:
 cpu: Burstable
 memory: Burstable
 Limits:
 cpu: 200m
 memory: 400Mi
 Requests:
 cpu: 100m
 memory: 200Mi
 State: Waiting
 Ready: False
 Restart Count: 0
 Environment Variables:

15.4.3. CPU Limits

Each container in a pod can specify the amount of CPU it is limited to use on a node. CPU limits control
the maximum amount of CPU that your container may use independent of contention on the node. If a
container attempts to exceed the specified limit, the system will throttle the container. This allows the
container to have a consistent level of service independent of the number of pods scheduled to the node.

OpenShift Container Platform 3.5 Developer Guide

196

15.4.4. Memory Requests

By default, a container is able to consume as much memory on the node as possible. In order to improve
placement of pods in the cluster, specify the amount of memory required for a container to run. The
scheduler will then take available node memory capacity into account prior to binding your pod to a node.
A container is still able to consume as much memory on the node as possible even when specifying a
request.

15.4.5. Memory Limits

If you specify a memory limit, you can constrain the amount of memory the container can use. For
example, if you specify a limit of 200Mi, a container will be limited to using that amount of memory on the
node. If the container exceeds the specified memory limit, it will be terminated and potentially restarted
dependent upon the container restart policy.

15.4.6. Quality of Service Tiers

A compute resource is classified with a quality of service (QoS) based on the specified request and limit
value.

Quality of Service Description

BestEffort Provided when a request and limit are not specified.

Burstable Provided when a request is specified that is less than an optionally specified
limit.

Guaranteed Provided when a limit is specified that is equal to an optionally specified
request.

If a container has requests and limits set that would result in a different quality of service for each
compute resource, it will be classified as Burstable.

The quality of service has different impacts on different resources, depending on whether the resource is
compressible or not. CPU is a compressible resource, whereas memory is an incompressible resource.

With CPU Resources:

A BestEffort CPU container is able to consume as much CPU as is available on a node but
runs with the lowest priority.

A Burstable CPU container is guaranteed to get the minimum amount of CPU requested, but
it may or may not get additional CPU time. Excess CPU resources are distributed based on
the amount requested across all containers on the node.

A Guaranteed CPU container is guaranteed to get the amount requested and no more, even
if there are additional CPU cycles available. This provides a consistent level of performance
independent of other activity on the node.

With Memory Resources:

A BestEffort memory container is able to consume as much memory as is available on the
node, but there are no guarantees that the scheduler will place that container on a node with

CHAPTER 15. QUOTAS AND LIMIT RANGES

197

enough memory to meet its needs. In addition, a BestEffort container has the greatest
chance of being killed if there is an out of memory event on the node.

A Burstable memory container is scheduled on the node to get the amount of memory
requested, but it may consume more. If there is an out of memory event on the node,
Burstable containers are killed after BestEffort containers when attempting to recover
memory.

A Guaranteed memory container gets the amount of memory requested, but no more. In the
event of an out of memory event, it will only be killed if there are no more BestEffort or
Burstable containers on the system.

15.4.7. Specifying Compute Resources via CLI

To specify compute resources via the CLI:

$ oc run ruby-hello-world --image=ruby-hello-world --
limits=cpu=200m,memory=400Mi --requests=cpu=100m,memory=200Mi

15.4.8. Opaque Integer Resources

Opaque integer resources allow cluster operators to provide new node-level resources that would be
otherwise unknown to the system. Users can consume these resources in pod specifications, similar to
CPU and memory. The scheduler performs resource accounting so that no more than the available
amount is simultaneously allocated to pods.

NOTE

Opaque integer resources are Alpha currently, and only resource accounting is
implemented. There is no resource quota or limit range support for these resources, and
they have no impact on QoS.

Opaque integer resources are called opaque because OpenShift Container Platform does not know
what the resource is, but will schedule a pod on a node only if enough of that resource is available. They
are called integer resources because they must be available, or advertised, in integer amounts. The API
server restricts quantities of these resources to whole numbers. Examples of valid quantities are 3,
3000m, and 3Ki.

The cluster administrator is usually responsible for creating the resources and making them available.
For more information on creating opaque integer resources, see Opaque Integer Resources in the
Administrator Guide.

To consume an opaque integer resource in a pod, edit the pod to include the name of the opaque
resource as a key in the spec.containers[].resources.requests field.

For example: The following pod requests two CPUs and one foo (an opaque resource).

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:

OpenShift Container Platform 3.5 Developer Guide

198

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-opaque-resources

The pod will be scheduled only if all of the resource requests are satisfied (including CPU, memory, and
any opaque resources). The pod will remain in the PENDING state while the resource request cannot be
met by any node.

Conditions:
 Type Status
 PodScheduled False
...
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
Message
 --------- -------- ----- ---- ------------- -------- ------

 14s 0s 6 default-scheduler Warning FailedScheduling No nodes
are available that match all of the following predicates:: Insufficient
pod.alpha.kubernetes.io/opaque-int-resource-foo (1).

15.5. PROJECT RESOURCE LIMITS

Resource limits can be set per-project by cluster administrators. Developers do not have the ability to
create, edit, or delete these limits, but can view them for projects they have access to.

 - name: my-container
 image: myimage
 resources:
 requests:
 cpu: 2
 pod.alpha.kubernetes.io/opaque-int-resource-foo: 1

CHAPTER 15. QUOTAS AND LIMIT RANGES

199

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#viewing-limits

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

16.1. GETTING TRAFFIC INTO A CLUSTER

OpenShift Container Platform provides multiple methods for communicating from outside the cluster with
services running in the cluster.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

Administrators can expose a service endpoint that external traffic can reach, by assigning a unique
external IP address to that service from a range of external IP addresses. Administrators can designate a
range of addresses using a CIDR notation, which allows an application user to make a request against
the cluster for an external IP address.

Each IP address should be assigned to only one service to ensure that each service has a unique
endpoint. Potential port clashes are handled on a first-come, first-served basis.

The recommendation, in order or preference, is:

If you have HTTP/HTTPS, use a router.

If you have a TLS-encrypted protocol other than HTTPS (for example, TLS with the SNI header),
use a router.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use a router Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically Assign a Public IP Using a Load
Balancer Service

Allows traffic to non-standard ports through an IP
address assigned from a pool.

Manually assign an external IP to a service Allows traffic to non-standard ports through a specific
IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

16.2. USING A ROUTER TO GET TRAFFIC INTO THE CLUSTER

16.2.1. Overview

Using a router is the most common way to allow external access to an OpenShift Container Platform
cluster.

OpenShift Container Platform 3.5 Developer Guide

200

A router is configured to accept external requests and proxy them based on the configured routes. This is
limited to HTTP/HTTPS(SNI)/TLS(SNI), which covers web applications.

16.2.2. Administrator Prerequisites

Before starting this procedure, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster. For example, names can be configured into DNS to point to specific nodes or other IP
addresses in the cluster. The DNS wildcard feature can be used to configure a subset of names
to an IP address in the cluster. This allows the users to set up routes within the cluster without
further administrator attention.

Make sure that the local firewall on each node permits the request to reach the IP address.

Configure the OpenShift Container Platform cluster to use an identity provider that allows
appropriate user access.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking required
for external systems on a different subnet is out-of-scope for this topic.

16.2.2.1. Defining the Public IP Range

The first step in allowing access to a service is to define an external IP address range in the master
configuration file:

1. Log into OpenShift Container Platform as a user with the cluster admin role.

$ oc login
Authentication required (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between
them with 'oc project <projectname>':
 * default
Using project "default".

2. Configure the externalIPNetworkCIDRs parameter in the /etc/origin/master/master-
config.yaml file as shown:

networkConfig:
 externalIPNetworkCIDRs:
 - <ip_address>/<cidr>

For example:

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

201

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-authentication

networkConfig:
 externalIPNetworkCIDRs:
 - 192.168.120.0/24

3. Restart the OpenShift Container Platform master service to apply the changes.

systemctl restart atomic-openshift-master

CAUTION

The IP address pool must terminate at one or more nodes in the cluster.

16.2.3. Create a Project and Service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, go to the next step: Expose the Service to Create a Route.

1. Log into OpenShift Container Platform.

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project external-ip

3. Use the oc new-app command to create a service:
For example:

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

4. Run the following command to see that the new service is created:

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 <none> 3306/TCP 13m

By default, the new service does not have an external IP address.

16.2.4. Expose the Service to Create a Route

You must expose the service as a route using the oc expose command.

To expose the service:

1. Log into OpenShift Container Platform.

OpenShift Container Platform 3.5 Developer Guide

202

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#expose

2. Log into the project where the service you want to expose is located.

$ oc project project1

3. Run the following command to expose the route:

oc expose service <service-name>

For example:

oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. On the master, use a tool, such as cURL, to make sure you can reach the service using the
cluster IP address for the service:

curl <pod-ip>:<port>

For example:

curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get
a string of characters with the Got packets out of order message, you are connected to
the service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

16.2.5. Configure the Router

Work with your administrator to configure a router to accept external requests and proxy them based on
the configured routes.

The administrator can create a wildcard DNS entry and then set up a router. Then, you can self-service
the edge router without having to contact the administrators.

The router has controls to allow the administrator to specify whether the users can self-provision host
names or the host names require a specific pattern.

When a set of routes is created in various projects, the overall set of routes is available to the set of
routers. Each router admits (or selects) routes from the set of routes. By default, all routers admit all
routes.

Routers that have permission to view all of the labels in all projects can select routes to admit based on
the labels. This is called router sharding. This is useful when balancing incoming traffic load among a set
of routers and when isolating traffic to a specific router. For example, company A goes to one router and
company B to another.

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

203

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#router-sharding

Since a router runs on a specific node, when it or the node fails traffic ingress stops. The impact of this
can be reduced by creating redundant routers on different nodes and using high availability to switch the
router IP address when a node fails.

16.2.6. Configure IP Failover using VIPs

Optionally, an administrator can configure IP failover.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long as a single node is available, the VIPs will be served.
There is no way to explicitly distribute the VIPs over the nodes. As such, there may be nodes with no
VIPs and other nodes with multiple VIPs. If there is only one node, all VIPs will be on it.

The VIPs must be routable from outside the cluster.

To configure IP failover:

1. On the master, make sure the ipfailover service account has sufficient security privileges:

oc adm policy add-scc-to-user privileged -z ipfailover

2. Run the following command to create the IP failover:

oc adm ipfailover --virtual-ips=<exposed-ip-address> --watch-port=
<exposed-port> --replicas=<number-of-pods> --create

For example:

oc adm ipfailover --virtual-ips="172.30.233.169" --watch-port=32315
--replicas=4 --create
--> Creating IP failover ipfailover ...
 serviceaccount "ipfailover" created
 deploymentconfig "ipfailover" created
--> Success

16.3. USING A LOAD BALANCER TO GET TRAFFIC INTO THE
CLUSTER

16.3.1. Overview

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP from a configured pool. The load balancer has a single
edge router IP (which can be a virtual IP (VIP), but is still a single machine for initial load balancing).

This process involves the following:

The administrator performs the prerequisites;

The developer creates a project and service, if the service to be exposed does not exist;

The developer exposes the service to create a route.

OpenShift Container Platform 3.5 Developer Guide

204

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-high-availability

The developer creates the Load Balancer Service.

The network administrator configures networking to the service.

16.3.2. Administrator Prerequisites

Before starting this procedure, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster. For example, names can be configured into DNS to point to specific nodes or other IP
addresses in the cluster. The DNS wildcard feature can be used to configure a subset of names
to an IP address in the cluster. This allows the users to set up routes within the cluster without
further administrator attention.

Make sure that the local firewall on each node permits the request to reach the IP address.

Configure the OpenShift Container Platform cluster to use an identity provider that allows
appropriate user access.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking required
for external systems on a different subnet is out-of-scope for this topic.

16.3.2.1. Defining the Public IP Range

The first step in allowing access to a service is to define an external IP address range in the master
configuration file:

1. Log into OpenShift Container Platform as a user with the cluster admin role.

$ oc login
Authentication required (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between
them with 'oc project <projectname>':
 * default
Using project "default".

2. Configure the externalIPNetworkCIDRs parameter in the /etc/origin/master/master-
config.yaml file as shown:

networkConfig:
 externalIPNetworkCIDRs:
 - <ip_address>/<cidr>

For example:

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

205

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-authentication

networkConfig:
 externalIPNetworkCIDRs:
 - 192.168.120.0/24

3. Restart the OpenShift Container Platform master service to apply the changes.

systemctl restart atomic-openshift-master

CAUTION

The IP address pool must terminate at one or more nodes in the cluster.

16.3.3. Create a Project and Service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, go to the next step: Expose the Service to Create a Route.

1. Log into OpenShift Container Platform.

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project external-ip

3. Use the oc new-app command to create a service:
For example:

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

4. Run the following command to see that the new service is created:

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 <none> 3306/TCP 13m

By default, the new service does not have an external IP address.

16.3.4. Expose the Service to Create a Route

You must expose the service as a route using the oc expose command.

To expose the service:

1. Log into OpenShift Container Platform.

OpenShift Container Platform 3.5 Developer Guide

206

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#expose

2. Log into the project where the service you want to expose is located.

$ oc project project1

3. Run the following command to expose the route:

oc expose service <service-name>

For example:

oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. On the master, use a tool, such as cURL, to make sure you can reach the service using the
cluster IP address for the service:

curl <pod-ip>:<port>

For example:

curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get
a string of characters with the Got packets out of order message, you are connected to
the service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

Then, perform the following tasks:

Create the Load Balancer Service

Configure networking

Configure IP Failover

16.3.5. Create the Load Balancer Service

To create a load balancer service:

1. Log into OpenShift Container Platform.

2. Load the project where the service you want to expose is located. If the project or service does
not exist, see Create a Project and Service.

$ oc project project1

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

207

1

2

3

4

3. Open a text file on the master node and paste the following text, editing the file as needed:

Example 16.1. Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:

 name: egress-2 1
spec:
 ports:
 - name: db

 port: 3306 2
 loadBalancerIP:

 type: LoadBalancer 3
 selector:

 name: mysql 4

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

Enter loadbalancer as the type.

Enter the name of the service.

4. Save and exit the file.

5. Run the following command to create the service:

oc create -f <file-name>

For example:

oc create -f mysql-lb.yaml

6. Execute the following command to view the new service:

oc get svc
NAME CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
egress-2 172.30.236.167 172.29.121.74,172.29.121.74
3306/TCP 6s

Note that the service has an external IP address automatically assigned.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the
public IP address:

$ curl <public-ip>:<port>

++ For example:

OpenShift Container Platform 3.5 Developer Guide

208

$ curl 172.29.121.74:3306

The examples in this section use a MySQL service, which requires a client application. If you get
a string of characters with the Got packets out of order message, you are connecting
with the service:

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

16.3.6. Configuring Networking

The following steps are general guidelines for configuring the networking required to access the exposed
service from other nodes. As network environments vary, consult your network administrator for specific
configurations that need to be made within your environment.

These steps assume that all of the systems are on the same subnet.

On the Node:

1. Restart the network to make sure the network is up.

$ service network restart
Restarting network (via systemctl): [OK]

If the network is not up, you will receive error messages such as Network is unreachable when
executing the following commands.

2. Add a route between the IP address of the exposed service on the master and the IP address of
the master host:

$ route add -net 172.29.121.74 netmask 255.255.0.0 gw 10.16.41.22
dev eth0

3. Use a tool, such as cURL, to make sure you can reach the service using the public IP address:

$ curl <public-ip>:<port>

For example:

curl 172.29.121.74:3306

If you get a string of characters with the Got packets out of order message, your service
is accessible from the node.

On the system that is not in the cluster:

1. Restart the network to make sure the network is up.

$ service network restart

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

209

Restarting network (via systemctl): [OK]

If the network is not up, you will receive error messages such as Network is unreachable when
executing the following commands.

2. Add a route between the IP address of the exposed service on master and the IP address of the
master host:

$ route add -net 172.29.121.74 netmask 255.255.0.0 gw 10.16.41.22
dev eth0

3. Make sure you can reach the service using the public IP address:

$ curl <public-ip>:<port>

For example:

curl 172.29.121.74:3306

If you get a string of characters with the Got packets out of order message, your service
is accessible outside the cluster.

16.3.7. Configure IP Failover using VIPs

Optionally, an administrator can configure IP failover.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long as a single node is available, the VIPs will be served.
There is no way to explicitly distribute the VIPs over the nodes. As such, there may be nodes with no
VIPs and other nodes with multiple VIPs. If there is only one node, all VIPs will be on it.

The VIPs must be routable from outside the cluster.

To configure IP failover:

1. On the master, make sure the ipfailover service account has sufficient security privileges:

oc adm policy add-scc-to-user privileged -z ipfailover

2. Run the following command to create the IP failover:

oc adm ipfailover --virtual-ips=<exposed-ip-address> --watch-port=
<exposed-port> --replicas=<number-of-pods> --create

For example:

oc adm ipfailover --virtual-ips="172.30.233.169" --watch-port=32315
--replicas=4 --create
--> Creating IP failover ipfailover ...
 serviceaccount "ipfailover" created
 deploymentconfig "ipfailover" created
--> Success

OpenShift Container Platform 3.5 Developer Guide

210

16.4. USING A SERVICE EXTERNAL IP TO GET TRAFFIC INTO THE
CLUSTER

16.4.1. Overview

One method to expose a service is to assign an external IP access directly to the service you want to
make accessible from outside the cluster.

Make sure you have created a range of IP addresses to use, as shown in Defining the Public IP Address
Range.

By setting an external IP on the service, OpenShift Container Platform sets up IP table rules to allow
traffic arriving at any cluster node that is targeting that IP address to be sent to one of the internal pods.
This is similar to the internal service IP addresses, but the external IP tells OpenShift Container Platform
that this service should also be exposed externally at the given IP. The administrator must assign the IP
address to a host (node) interface on one of the nodes in the cluster. Alternatively, the address can be
used as a virtual IP (VIP).

These IPs are not managed by OpenShift Container Platform and administrators are responsible for
ensuring that traffic arrives at a node with this IP.

NOTE

The following is a non-HA solution and does not configure IP failover. IP failover is
required to make the service highly-available.

This process involves the following:

The administrator performs the prerequisites;

The developer creates a project and service, if the service to be exposed does not exist;

The developer exposes the service to create a route.

The developer assigns the IP address to the service.

The network administrator configures networking to the service.

16.4.2. Administrator Prerequisites

Before starting this procedure, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster. For example, names can be configured into DNS to point to specific nodes or other IP
addresses in the cluster. The DNS wildcard feature can be used to configure a subset of names
to an IP address in the cluster. This allows the users to set up routes within the cluster without
further administrator attention.

Make sure that the local firewall on each node permits the request to reach the IP address.

Configure the OpenShift Container Platform cluster to use an identity provider that allows
appropriate user access.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-authentication

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking required
for external systems on a different subnet is out-of-scope for this topic.

16.4.2.1. Defining the Public IP Range

The first step in allowing access to a service is to define an external IP address range in the master
configuration file:

1. Log into OpenShift Container Platform as a user with the cluster admin role.

$ oc login
Authentication required (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between
them with 'oc project <projectname>':
 * default
Using project "default".

2. Configure the externalIPNetworkCIDRs parameter in the /etc/origin/master/master-
config.yaml file as shown:

networkConfig:
 externalIPNetworkCIDRs:
 - <ip_address>/<cidr>

For example:

networkConfig:
 externalIPNetworkCIDRs:
 - 192.168.120.0/24

3. Restart the OpenShift Container Platform master service to apply the changes.

systemctl restart atomic-openshift-master

CAUTION

The IP address pool must terminate at one or more nodes in the cluster.

16.4.3. Create a Project and Service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, go to the next step: Expose the Service to Create a Route.

1. Log into OpenShift Container Platform.

OpenShift Container Platform 3.5 Developer Guide

212

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project external-ip

3. Use the oc new-app command to create a service:
For example:

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.access.redhat.com/openshift3/mysql-55-rhel7

4. Run the following command to see that the new service is created:

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 <none> 3306/TCP 13m

By default, the new service does not have an external IP address.

16.4.4. Expose the Service to Create a Route

You must expose the service as a route using the oc expose command.

To expose the service:

1. Log into OpenShift Container Platform.

2. Log into the project where the service you want to expose is located.

$ oc project project1

3. Run the following command to expose the route:

oc expose service <service-name>

For example:

oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. On the master, use a tool, such as cURL, to make sure you can reach the service using the
cluster IP address for the service:

curl <pod-ip>:<port>

For example:

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

213

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#expose

curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get
a string of characters with the Got packets out of order message, you are connected to
the service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

Then, perform the following tasks:

Assign an IP Address to the Service

Configure networking

Configure IP Failover

16.4.5. Assigning an IP Address to the Service

To assign an external IP address to a service:

1. Log into OpenShift Container Platform.

2. Load the project where the service you want to expose is located. If the project or service does
not exist, see Create a Project and Service in the Prerequisites.

3. Run the following command to assign an external IP address to the service you want to access.
Use an IP address from the external IP address range:

oc patch svc <name> -p '{"spec":{"externalIPs":["<ip_address>"]}}'

The <name> is the name of the service and -p indicates a patch to be applied to the service
JSON file. The expression in the brackets will assign the specified IP address to the specified
service.

For example:

oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":
["192.174.120.10"]}}'

"mysql-55-rhel7" patched

4. Run the following command to see that the service has a public IP:

oc get svc
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

OpenShift Container Platform 3.5 Developer Guide

214

5. On the master, use a tool, such as cURL, to make sure you can reach the service using the
public IP address:

$ curl <public-ip>:<port>

For example:

curl 192.168.120.10:3306

If you get a string of characters with the Got packets out of order message, you are
connected to the service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 192.168.120.10 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

16.4.6. Configuring Networking

After the external IP address is assigned, you need to create routes to that IP.

The following steps are general guidelines for configuring the networking required to access the exposed
service from other nodes. As network environments vary, consult your network administrator for specific
configurations that need to be made within your environment.

NOTE

These steps assume that all of the systems are on the same subnet.

On the master:

1. Restart the network to make sure the network is up.

$ service network restart
Restarting network (via systemctl): [OK]

If the network is not up, you will receive error messages such as Network is unreachable when
running the following commands.

2. Run the following command with the external IP address of the service you want to expose and
device name associated with the host IP from the ifconfig command output:

$ ip address add <external-ip> dev <device>

For example:

$ ip address add 192.168.120.10 dev eth0

If you need to, run the following command to obtain the IP address of the host server where the
master resides:

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

215

$ ifconfig

Look for the device that is listed similar to: UP,BROADCAST,RUNNING,MULTICAST.

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.16.41.22 netmask 255.255.248.0 broadcast
10.16.47.255
 ...

3. Add a route between the IP address of the host where the master resides and the gateway IP
address of the master host:

$ route add -net <host_ip_address> netmask <netmask> gw
<gateway_ip_address> dev <device>

For example:

$ route add -host 10.16.41.22 gw 10.16.41.254 dev eth0

The netstat -nr command provides the gateway IP address:

$ netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window
irtt Iface
0.0.0.0 10.16.41.254 0.0.0.0 UG 0 0
0 eth0

4. Add a route between the IP address of the exposed service and the IP address of the master
host:

$ route add -net 192.174.120.0/24 gw 10.16.41.22 eth0

On the Node:

1. Restart the network to make sure the network is up.

$ service network restart
Restarting network (via systemctl): [OK]

If the network is not up, you will receive error messages such as Network is unreachable when
executing the following commands.

2. Add a route between IP address of the host where the node is located and the gateway IP of the
node host:

$ route add -net 10.16.40.0 netmask 255.255.248.0 gw 10.16.47.254
eth0

The ifconfig command displays the host IP:

ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

OpenShift Container Platform 3.5 Developer Guide

216

 inet 10.16.41.71 netmask 255.255.255.0 broadcast
10.19.41.255

The netstat -nr command displays the gateway IP:

netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window
irtt Iface
0.0.0.0 10.16.41.254 0.0.0.0 UG 0 0
0 eth0

3. Add a route between the IP address of the exposed service and the IP address of the host
system where the master node resides:

$ route add -net 192.174.120.0 netmask 255.255.255.0 gw 10.16.41.22
dev eth0

4. Use a tool, such as cURL, to make sure you can reach the service using the public IP address:

$ curl <public-ip>:<port>

For example:

curl 192.168.120.10:3306

If you get a string of characters with the Got packets out of order message, your service
is accessible from the node.

On the system that is not in the cluster:

1. Restart the network to make sure the network is up.

$ service network restart
Restarting network (via systemctl): [OK]

If the network is not up, you will receive error messages such as Network is unreachable when
executing the following commands.

2. Add a route between the IP address of the remote host and the gateway IP of the remote host:

$ route add -net 10.16.64.0 netmask 255.255.248.0 gw 10.16.71.254
eno1

3. Add a route between the IP address of the exposed service on master and the IP address of the
master host:

$ route add -net 192.174.120.0 netmask 255.255.255.0 gw 10.16.41.22

4. Use a tool, such as cURL, to make sure you can reach the service using the public IP address:

$ curl <public-ip>:<port>

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

217

For example:

curl 192.168.120.10:3306

If you get a string of characters with the Got packets out of order message, your service
is accessible outside the cluster.

16.4.7. Configure IP Failover using VIPs

Optionally, an administrator can configure IP failover.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long as a single node is available, the VIPs will be served.
There is no way to explicitly distribute the VIPs over the nodes. As such, there may be nodes with no
VIPs and other nodes with multiple VIPs. If there is only one node, all VIPs will be on it.

The VIPs must be routable from outside the cluster.

To configure IP failover:

1. On the master, make sure the ipfailover service account has sufficient security privileges:

oc adm policy add-scc-to-user privileged -z ipfailover

2. Run the following command to create the IP failover:

oc adm ipfailover --virtual-ips=<exposed-ip-address> --watch-port=
<exposed-port> --replicas=<number-of-pods> --create

For example:

oc adm ipfailover --virtual-ips="172.30.233.169" --watch-port=32315
--replicas=4 --create
--> Creating IP failover ipfailover ...
 serviceaccount "ipfailover" created
 deploymentconfig "ipfailover" created
--> Success

16.5. USING A NODEPORT TO GET TRAFFIC INTO THE CLUSTER

16.5.1. Overview

Use NodePorts to expose the service nodePort on all nodes in the cluster.

Using NodePorts requires additional port resources.

A node port exposes the service on a static port on the node IP address.

NodePorts are in the 30000-32767 range by default, which means a NodePort is unlikely to match a
service’s intended port (for example, 8080 may be exposed as 31020).

The administrator must ensure the external IPs are routed to the nodes and local firewall rules on all
nodes allow access to the open port.

OpenShift Container Platform 3.5 Developer Guide

218

NodePorts and external IPs are independent and both can be used concurrently.

16.5.2. Administrator Prerequisites

Before starting this procedure, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster. For example, names can be configured into DNS to point to specific nodes or other IP
addresses in the cluster. The DNS wildcard feature can be used to configure a subset of names
to an IP address in the cluster. This allows the users to set up routes within the cluster without
further administrator attention.

Make sure that the local firewall on each node permits the request to reach the IP address.

Configure the OpenShift Container Platform cluster to use an identity provider that allows
appropriate user access.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking required
for external systems on a different subnet is out-of-scope for this topic.

16.5.3. Configuring the Service

You specify a port number for the nodePort when you create or modify a service. If you didn’t manually
specify a port, system will allocate one for you.

1. Log into the master node.

2. If the project you want to use does not exist, create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project external-ip

3. Edit the service definition to specify spec.type:NodePort and optionally specify a port in the
in the 30000-32767 range.

apiVersion: v1
kind: Service
metadata:
 name: mysql
 labels:
 name: mysql
spec:
 type: NodePort
 ports:
 - port: 3036

CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER

219

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#prereq-dns
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-authentication

 nodePort: 30036
 name: http
 selector:
 name: mysql

4. Execute the following command to create the service:

$ oc new-app <file-name>

For example:

oc new-app mysql.yaml

5. Execute the following command to see that the new service is created:

oc get svc

NAME CLUSTER_IP EXTERNAL_IP PORT(S)
AGE
mysql 172.30.89.219 <nodes> 3036:30036/TCP
2m

Note that the external IP is listed as <nodes> and the node ports are listed.

You should be able to access the service using the <NodeIP>:<NodePort> address.

OpenShift Container Platform 3.5 Developer Guide

220

CHAPTER 17. ROUTES

17.1. OVERVIEW

An OpenShift Container Platform route exposes a service at a host name, like www.example.com, so
that external clients can reach it by name.

DNS resolution for a host name is handled separately from routing; your administrator may have
configured a cloud domain that will always correctly resolve to the OpenShift Container Platform router,
or if using an unrelated host name you may need to modify its DNS records independently to resolve to
the router.

17.2. CREATING ROUTES

You can create unsecured and secured routes using the web console or the CLI.

Using the web console, you can navigate to the Browse → Routes page, then click Create Route to
define and create a route in your project:

Figure 17.1. Creating a Route Using the Web Console

Using the CLI, the following example creates an unsecured route:

$ oc expose svc/frontend --hostname=www.example.com

The new route inherits the name from the service unless you specify one using the --name option.

YAML Definition of the Unsecured Route Created Above

apiVersion: v1
kind: Route

CHAPTER 17. ROUTES

221

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services

1 For path-based routing, specify a path component that can be compared against a URL.

For information on configuring routes using the CLI, see Route Types.

Unsecured routes are the default configuration, and are therefore the simplest to set up. However,
secured routes offer security for connections to remain private. To create a secured HTTPS route
encrypted with a key and certificate (PEM-format files which you must generate and sign separately), you
can use the create route command and optionally provide certificates and a key.

NOTE

TLS is the replacement of SSL for HTTPS and other encrypted protocols.

$ oc create route edge --service=frontend \
 --cert=${MASTER_CONFIG_DIR}/ca.crt \
 --key=${MASTER_CONFIG_DIR}/ca.key \
 --ca-cert=${MASTER_CONFIG_DIR}/ca.crt \
 --hostname=www.example.com

YAML Definition of the Secured Route Created Above

metadata:
 name: frontend
spec:
 host: www.example.com

 path: "/test" 1
 to:
 kind: Service
 name: frontend

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 3.5 Developer Guide

222

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#path-based-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#route-types
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#secured-routes
https://en.wikipedia.org/wiki/Transport_Layer_Security

Currently, password protected key files are not supported. HAProxy prompts for a password upon
starting and does not have a way to automate this process. To remove a passphrase from a keyfile, you
can run:

openssl rsa -in <passwordProtectedKey.key> -out <new.key>

You can create a secured route without specifying a key and certificate, in which case the router’s
default certificate will be used for TLS termination.

NOTE

TLS termination in OpenShift Container Platform relies on SNI for serving custom
certificates. Any non-SNI traffic received on port 443 is handled with TLS termination and
a default certificate, which may not match the requested host name, resulting in validation
errors.

Further information on all types of TLS termination as well as path-based routing are available in the
Architecture section.

17.3. LOAD BALANCING FOR A/B TESTING

You can run two versions of an application, and, entirely within OpenShift Container Platform, control the
percentage of traffic to and from each application for A/B testing. A/B testing is a method of comparing
two versions of an application against each other to determine which one performs better.

Previously, A/B testing only worked by adding or removing more pods of every kind (A or B). However,
this was not a scalable solution because for lower B percentages, you would create a large number of
pods. Starting in 3.3, the HAProxy router now supports splitting the traffic coming to a route across
multiple back end services via weighting.

The web console allows users to set the weighting and show balance between them:

If you have two deployments, A and B, or more, then create respective services for the pods in those
deployments and use labels.

The Route resource now has an alternateBackends field, which you can use to specify Service.
Use the alternateBackends and To fields to supply the route with all of the back end deployments
grouped as services. Use the weight sub-field to specify a relative weight in integers ranging from 0 to

CHAPTER 17. ROUTES

223

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#using-wildcard-certificates
https://en.wikipedia.org/wiki/Server_Name_Indication
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#secured-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#path-based-routes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-core-concepts-routes

256. This value defaults to 100. The combined value of all the weights sets the relative proportions of
traffic.

When you deploy the route, the router will balance the traffic according to the weights specified for the
services.

To edit the route, run:

$ oc edit route <route-name>

Then, update the percentage/weight of the services in the to and alternateBackends fields.

OpenShift Container Platform 3.5 Developer Guide

224

CHAPTER 18. INTEGRATING EXTERNAL SERVICES

18.1. OVERVIEW

Many OpenShift Container Platform applications use external resources, such as external databases, or
an external SaaS endpoint. These external resources can be modeled as native OpenShift Container
Platform services, so that applications can work with them as they would any other internal service.

Egress traffic can be controlled by firewall rules or an Egress router. This permits having a static IP
address for their application service.

18.2. DEFINING A SERVICE FOR AN EXTERNAL DATABASE

One of the most common types of external services is an external database. To support an external
database, an application needs:

1. An endpoint to communicate with.

2. A set of credentials and coordinates, including:

A user name

A passphrase

A database name

The solution for integrating with an external database includes:

A Service object to represent the SaaS provider as an OpenShift Container Platform service.

One or more Endpoints for the service.

Environment variables in the appropriate pods containing the credentials.

The following steps outline a scenario for integrating with an external MySQL database:

18.2.1. Step 1: Define a Service

You can define a service either by providing an IP address and endpoints, or by providing a Fully
qualified domain name (FQDN).

18.2.1.1. Using an IP address

1. Create an OpenShift Container Platform service to represent your external database. This is
similar to creating an internal service; the difference is in the service’s Selector field.
Internal OpenShift Container Platform services use the Selector field to associate pods with
services using labels. The EndpointsController system component synchronizes the
endpoints for services that specify selectors with the pods that match the selector. The service
proxy and OpenShift Container Platform router load-balance requests to the service amongst the
service’s endpoints.

Services that represent an external resource do not require associated pods. Instead, leave the
Selector field unset. This represents the external service, making the
EndpointsController ignore the service and allows you to specify endpoints manually:

CHAPTER 18. INTEGRATING EXTERNAL SERVICES

225

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-controlling-egress-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#service-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#routers

1

1

2

3

4

The selector field to leave blank.

2. Next, create the required endpoints for the service. This gives the service proxy and router the
location to send traffic directed to the service:

The name of the Service instance, as defined in the previous step.

Traffic to the service will be load-balanced between the supplied Endpoints if more than
one is supplied.

Endpoints IPs cannot be loopback (127.0.0.0/8), link-local (169.254.0.0/16), or link-local
multicast (224.0.0.0/24).

The port and name definition must match the port and name value in the service defined
in the previous step.

18.2.1.2. Using an External Domain Name

Using external domain names make it easier to manage an external service linkage, because you do not
have to worry about the external service’s IP addresses changing.

ExternalName services do not have selectors, or any defined ports or endpoints, therefore, you can
use an ExternalName service to direct traffic to an external service.

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306
 nodePort: 0

 selector: {} 1

 kind: "Endpoints"
 apiVersion: "v1"
 metadata:

 name: "external-mysql-service" 1

 subsets: 2
 -
 addresses:
 -

 ip: "10.0.0.0" 3
 ports:
 -

 port: 3306 4
 name: "mysql"

OpenShift Container Platform 3.5 Developer Guide

226

http://kubernetes.io/docs/user-guide/services/#services-without-selectors

1 The selector field to leave blank.

Using an external domain name service tells the system that the DNS name in the externalName field
(example.domain.name in the previous example) is the location of the resource that backs the
service. When a DNS request is made against the Kubernetes DNS server, it returns the
externalName in a CNAME record telling the client to look up the returned name to get the IP address.

18.2.2. Step 2: Consume a Service

Now that the service and endpoints are defined, give the appropriate pods access to the credentials to
use the service by setting environment variables in the appropriate containers:

kind: "Service"
apiVersion: "v1"
metadata:
 name: "external-mysql-service"
spec:
 type: ExternalName
 externalName: example.domain.name

selector: {} 1

kind: "DeploymentConfig"
apiVersion: "v1"
metadata:
 name: "my-app-deployment"

spec: 1
 strategy:
 type: "Rolling"
 rollingParams:

 updatePeriodSeconds: 1 2

 intervalSeconds: 1 3
 timeoutSeconds: 120
 replicas: 2
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -
 name: "MYSQL_USER"

 value: "${MYSQL_USER}" 4
 -

CHAPTER 18. INTEGRATING EXTERNAL SERVICES

227

1

2

3

4

5

6

Other fields on the DeploymentConfig are omitted

The time to wait between individual pod updates.

The time to wait between polling the deployment status after update.

The user name to use with the service.

The passphrase to use with the service.

The database name.

External Database Environment Variables

Using an external service in your application is similar to using an internal service. Your application will
be assigned environment variables for the service and the additional environment variables with the
credentials described in the previous step. For example, a MySQL container receives the following
environment variables:

EXTERNAL_MYSQL_SERVICE_SERVICE_HOST=<ip_address>

EXTERNAL_MYSQL_SERVICE_SERVICE_PORT=<port_number>

MYSQL_USERNAME=<mysql_username>

MYSQL_PASSWORD=<mysql_password>

MYSQL_DATABASE_NAME=<mysql_database>

The application is responsible for reading the coordinates and credentials for the service from the
environment and establishing a connection with the database via the service.

18.3. EXTERNAL SAAS PROVIDER

A common type of external service is an external SaaS endpoint. To support an external SaaS provider,
an application needs:

1. An endpoint to communicate with

2. A set of credentials, such as:

a. An API key

b. A user name

c. A passphrase

The following steps outline a scenario for integrating with an external SaaS provider:

 name: "MYSQL_PASSWORD"

 value: "${MYSQL_PASSWORD}" 5
 -
 name: "MYSQL_DATABASE"

 value: "${MYSQL_DATABASE}" 6

OpenShift Container Platform 3.5 Developer Guide

228

1

1

2

18.3.1. Using an IP address and Endpoints

1. Create an OpenShift Container Platform service to represent the external service. This is similar
to creating an internal service; however the difference is in the service’s Selector field.
Internal OpenShift Container Platform services use the Selector field to associate pods with
services using labels. A system component called EndpointsController synchronizes the
endpoints for services that specify selectors with the pods that match the selector. The service
proxy and OpenShift Container Platform router load-balance requests to the service amongst the
service’s endpoints.

Services that represents an external resource do not require that pods be associated with it.
Instead, leave the Selector field unset. This makes the EndpointsController ignore the
service and allows you to specify endpoints manually:

The selector field to leave blank.

2. Next, create endpoints for the service containing the information about where to send traffic
directed to the service proxy and the router:

The name of the Service instance.

Traffic to the service is load-balanced between the subsets supplied here.

3. Now that the service and endpoints are defined, give pods the credentials to use the service by
setting environment variables in the appropriate containers:

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "example-external-service"
 spec:
 ports:
 -
 name: "mysql"
 protocol: "TCP"
 port: 3306
 targetPort: 3306
 nodePort: 0

 selector: {} 1

kind: "Endpoints"
apiVersion: "v1"
metadata:

 name: "example-external-service" 1

subsets: 2
- addresses:
 - ip: "10.10.1.1"
 ports:
 - name: "mysql"
 port: 3306

 kind: "DeploymentConfig"
 apiVersion: "v1"

CHAPTER 18. INTEGRATING EXTERNAL SERVICES

229

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#service-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#routers

1

2

3

4

Other fields on the DeploymentConfig are omitted.

SAAS_API_KEY: The API key to use with the service.

SAAS_USERNAME: The user name to use with the service.

SAAS_PASSPHRASE: The passphrase to use with the service.

These variables get added to the containers as environment variables. Using environment
variables allows service-to-service communication and it may or may not require additional
parameters such as API keys, user name and password authentication, or certificates.

External SaaS Provider Environment Variables

Similarly, when using an internal service, your application is assigned environment variables for the
service and the additional environment variables with the credentials described in the previous steps. In
the previous example, the container receives the following environment variables:

EXAMPLE_EXTERNAL_SERVICE_SERVICE_HOST=<ip_address>

EXAMPLE_EXTERNAL_SERVICE_SERVICE_PORT=<port_number>

 metadata:
 name: "my-app-deployment"

 spec: 1
 strategy:
 type: "Rolling"
 rollingParams:
 timeoutSeconds: 120
 replicas: 1
 selector:
 name: "frontend"
 template:
 metadata:
 labels:
 name: "frontend"
 spec:
 containers:
 -
 name: "helloworld"
 image: "openshift/openshift/origin-ruby-sample"
 ports:
 -
 containerPort: 3306
 protocol: "TCP"
 env:
 -

 name: "SAAS_API_KEY" 2
 value: "<SaaS service API key>"
 -

 name: "SAAS_USERNAME" 3
 value: "<SaaS service user>"
 -

 name: "SAAS_PASSPHRASE" 4
 value: "<SaaS service passphrase>"

OpenShift Container Platform 3.5 Developer Guide

230

1

SAAS_API_KEY=<saas_api_key>

SAAS_USERNAME=<saas_username>

SAAS_PASSPHRASE=<saas_passphrase>

The application reads the coordinates and credentials for the service from the environment and
establishes a connection with the service.

18.3.2. Using an External Domain Name

ExternalName services do not have selectors, or any defined ports or endpoints. You can use an
ExternalName service to assign traffic to an external service outside the cluster.

The selector field to leave blank.

Using an ExternalName service maps the service to the value of the externalName field
(example.domain.name in the previous example), by automatically injecting a CNAME record,
mapping the service name directly to an outside DNS address, and bypassing the need for endpoint
records.

 kind: "Service"
 apiVersion: "v1"
 metadata:
 name: "external-mysql-service"
 spec:
 type: ExternalName
 externalName: example.domain.name

 selector: {} 1

CHAPTER 18. INTEGRATING EXTERNAL SERVICES

231

1

2

3

4 5

CHAPTER 19. SECRETS

19.1. USING SECRETS

This topic discusses important properties of secrets and provides an overview on how developers can
use them.

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, private source repository
credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into
containers using a volume plug-in or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry will then be moved to the
data map automatically. This field is write-only; the value will only be returned via the data field.

The value associated with keys in the the stringData map is made up of plain text strings.

1. Create the secret from your local .docker/config.json file:

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json>
\
 --type=kubernetes.io/dockerconfigjson

This command generates a JSON specification of the secret named dockerhub and
creates the object.

YAML Opaque Secret Object Definition

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace

type: Opaque 1

data: 2

 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=

stringData: 4

 hostname: myapp.mydomain.com 5

apiVersion: v1
kind: Secret

OpenShift Container Platform 3.5 Developer Guide

232

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

1

1

2

Specifies an opaque secret.

Docker Configuration JSON File Secret Object Definition

Specifies that the secret is using a Docker configuration JSON file.

The output of a base64-encoded the Docker configuration JSON file

19.1.1. Properties of Secrets

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

19.1.2. Creating Secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a
secret volume).

You can use the create command to create a secret object from a JSON or YAML file:

$ oc create -f <filename>

metadata:
 name: mysecret

type: Opaque 1
data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps

type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg

YXV0aCBrZXlzCg== 2

CHAPTER 19. SECRETS

233

19.1.3. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/dockercfg. Uses the .dockercfg file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with Basic Authentication.

kubernetes.io/ssh-auth. Use with SSH Key Authentication.

kubernetes.io/tls. Use with TLS certificate authorities

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

For examples of differet secret types, see the code samples in Using Secrets.

19.1.4. Updating Secrets

When you modify the value of a secret, the value (used by an already running pod) will not dynamically
change. To change a secret, you must delete the original pod and create a new pod (perhaps with an
identical PodSpec).

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, then the version of the secret will be used for the pod will
not be defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods will report this information, so that a
controller could restart ones using a old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

OpenShift Container Platform 3.5 Developer Guide

234

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#enabling-service-account-authentication

19.2. SECRETS IN VOLUMES AND ENVIRONMENT VARIABLES

See examples of YAML files with secret data.

After you create a secret, you can:

1. Create the pod to reference your secret:

$ oc create -f <your_yaml_file>.yaml

2. Get the logs:

$ oc logs secret-example-pod

3. Delete the pod:

$ oc delete pod secret-example-pod

19.3. IMAGE PULL SECRETS

See Using Image Pull Secrets for more information.

19.4. SOURCE CLONE SECRETS

See Build Inputs for more information about using source clone secrets during a build.

19.5. SERVICE SERVING CERTIFICATE SECRETS

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace. To do this, set the service.alpha.openshift.io/serving-
cert-secret-name annotation on your service with the value set to the name you want to use for your
secret. Then, your PodSpec can mount that secret. When it is available, your pod will run. The certificate
will be good for the internal service DNS name, <service.name>.<service.namespace>.svc.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The
certificate/key pair is automatically replaced when it gets close to expiration. View the expiration date in
the service.alpha.openshift.io/expiry annotation on the secret, which is in RFC3339 format.

Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by
using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is
automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

19.6. RESTRICTIONS

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

CHAPTER 19. SECRETS

235

1

2

3

4

to populate environment variables for containers.

as files in a volume mounted on one or more of its containers.

by kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that depend
on it. The most effective way to ensure this is to have it get injected automatically through the use of a
service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

19.6.1. Secret Data Keys

Secret keys must be in a DNS subdomain.

19.7. EXAMPLES

Example 19.1. YAML Secret That Will Create Four Files

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:

 username: dmFsdWUtMQ0K 1

 password: dmFsdWUtMQ0KDQo= 2
stringData:

 hostname: myapp.mydomain.com 3

 secret.properties: |- 4
 property1=valueA
 property2=valueB

OpenShift Container Platform 3.5 Developer Guide

236

Example 19.2. YAML of a Pod Populating Files in a Volume with Secret Data

Example 19.3. YAML of a Pod Populating Environment Variables with Secret Data

19.8. TROUBLESHOOTING

If a service certificate generations fails with (service’s service.alpha.openshift.io/serving-
cert-generation-error annotation contains):

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608,
which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on the

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

CHAPTER 19. SECRETS

237

service service.alpha.openshift.io/serving-cert-generation-error,
service.alpha.openshift.io/serving-cert-generation-error-num:

$ oc delete secret <secret_name>
$ oc annotate service <service_name> service.alpha.openshift.io/serving-
cert-generation-error-
$ oc annotate service <service_name> service.alpha.openshift.io/serving-
cert-generation-error-num-

NOTE

The command removing annotation has a - after the annotation name to be removed.

OpenShift Container Platform 3.5 Developer Guide

238

1

CHAPTER 20. CONFIGMAPS

20.1. OVERVIEW

Many applications require configuration using some combination of configuration files, command line
arguments, and environment variables. These configuration artifacts should be decoupled from image
content in order to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of OpenShift Container Platform. A ConfigMap can be used to store fine-grained
information like individual properties or coarse-grained information like entire configuration files or JSON
blobs.

The ConfigMap API object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. ConfigMap is similar to
secrets, but designed to more conveniently support working with strings that do not contain sensitive
information.

For example:

Example 20.1. ConfigMap Object Definition

Contains the configuration data.

Configuration data can be consumed in pods in a variety of ways. A ConfigMap can be used to:

1. Populate the value of environment variables.

2. Set command-line arguments in a container.

3. Populate configuration files in a volume.

Both users and system components may store configuration data in a ConfigMap.

20.2. CREATING CONFIGMAPS

You can use the following command to create a ConfigMap easily from directories, specific files, or
literal values:

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: default

data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3

CHAPTER 20. CONFIGMAPS

239

$ oc create configmap <configmap_name> [options]

The following sections cover the different ways you can create a ConfigMap.

20.2.1. Creating from Directories

Consider a directory with some files that already contain the data with which you want to populate a
ConfigMap:

$ ls example-files
game.properties
ui.properties

$ cat example-files/game.properties
enemies=aliens
lives=3
enemies.cheat=true
enemies.cheat.level=noGoodRotten
secret.code.passphrase=UUDDLRLRBABAS
secret.code.allowed=true
secret.code.lives=30

$ cat example-files/ui.properties
color.good=purple
color.bad=yellow
allow.textmode=true
how.nice.to.look=fairlyNice

You can use the following command to create a ConfigMap holding the content of each file in this
directory:

$ oc create configmap game-config \
 --from-file=example-files/

When the --from-file option points to a directory, each file directly in that directory is used to
populate a key in the ConfigMap, where the name of the key is the file name, and the value of the key is
the content of the file.

For example, the above command creates the following ConfigMap:

$ oc describe configmaps game-config
Name: game-config
Namespace: default
Labels: <none>
Annotations: <none>

Data

game.properties: 121 bytes
ui.properties: 83 bytes

OpenShift Container Platform 3.5 Developer Guide

240

You can see the two keys in the map are created from the file names in the directory specified in the
command. Because the content of those keys may be large, the output of oc describe only shows the
names of the keys and their sizes.

If you want to see the values of the keys, you can oc get the object with the -o option:

$ oc get configmaps game-config -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:34:05Z
 name: game-config
 namespace: default
 resourceVersion: "407"-
 selflink: /api/v1/namespaces/default/configmaps/game-config
 uid: 30944725-d66e-11e5-8cd0-68f728db1985

20.2.2. Creating from Files

You can also pass the --from-file option with a specific file, and pass it multiple times to the CLI.
The following yields equivalent results to the Creating from Directories example:

1. Create the ConfigMap specifying a specific file:

$ oc create configmap game-config-2 \
 --from-file=example-files/game.properties \
 --from-file=example-files/ui.properties

2. Verify the results:

$ oc get configmaps game-config-2 -o yaml

apiVersion: v1
data:
 game.properties: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS

CHAPTER 20. CONFIGMAPS

241

 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z
 name: game-config-2
 namespace: default
 resourceVersion: "516"
 selflink: /api/v1/namespaces/default/configmaps/game-config-2
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985

You can also set the key to use for an individual file with the --from-file option by passing an
expression of key=value. For example:

1. Create the ConfigMap specifying a key-value pair:

$ oc create configmap game-config-3 \
 --from-file=game-special-key=example-files/game.properties

2. Verify the results:

$ oc get configmaps game-config-3 -o yaml

apiVersion: v1
data:
 game-special-key: |-
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:54:22Z
 name: game-config-3
 namespace: default
 resourceVersion: "530"
 selflink: /api/v1/namespaces/default/configmaps/game-config-3
 uid: 05f8da22-d671-11e5-8cd0-68f728db1985

20.2.3. Creating from Literal Values

You can also supply literal values for a ConfigMap. The --from-literal option takes a key=value
syntax that allows literal values to be supplied directly on the command line:

1. Create the ConfigMap specifying a literal value:

$ oc create configmap special-config \

OpenShift Container Platform 3.5 Developer Guide

242

$ oc create configmap special-config \
 --from-literal=special.how=very \
 --from-literal=special.type=charm

2. Verify the results:

$ oc get configmaps special-config -o yaml

apiVersion: v1
data:
 special.how: very
 special.type: charm
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: special-config
 namespace: default
 resourceVersion: "651"
 selflink: /api/v1/namespaces/default/configmaps/special-config
 uid: dadce046-d673-11e5-8cd0-68f728db1985

20.3. USE CASES: CONSUMING CONFIGMAPS IN PODS

The following sections describe some uses cases when consuming ConfigMap objects in pods.

20.3.1. Consuming in Environment Variables

A ConfigMap can be used to populate the value of command line arguments. For example, consider the
following ConfigMap:

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections:

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:

CHAPTER 20. CONFIGMAPS

243

When this pod is run, its output will include the following lines:

SPECIAL_LEVEL_KEY=very
SPECIAL_TYPE_KEY=charm

20.3.2. Setting Command-line Arguments

A ConfigMap can also be used to set the value of the command or arguments in a container. This is
accomplished using the Kubernetes substitution syntax $(VAR_NAME). Consider the following
ConfigMap:

To inject values into the command line, you must consume the keys you want to use as environment
variables, as in the Consuming in Environment Variables use case. Then you can refer to them in a
container’s command using the $(VAR_NAME) syntax.

 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY)
$(SPECIAL_TYPE_KEY)"]
 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:

OpenShift Container Platform 3.5 Developer Guide

244

When this pod is run, the output from the test-container container will be:

very charm

20.3.3. Consuming in Volumes

A ConfigMap can also be consumed in volumes. Returning again to the following example ConfigMap:

You have a couple different options for consuming this ConfigMap in a volume. The most basic way is
to populate the volume with files where the key is the file name and the content of the file is the value of
the key:

When this pod is run, the output will be:

very

You can also control the paths within the volume where ConfigMap keys are projected:

 name: special-config
 key: special.type
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod

CHAPTER 20. CONFIGMAPS

245

When this pod is run, the output will be:

very

20.4. EXAMPLE: CONFIGURING REDIS

For a real-world example, you can configure Redis using a ConfigMap. To inject Redis with the
recommended configuration for using Redis as a cache, the Redis configuration file should contain the
following:

maxmemory 2mb
maxmemory-policy allkeys-lru

If your configuration file is located at example-files/redis/redis-config, create a ConfigMap with it:

1. Create the ConfigMap specifying the configuration file:

$ oc create configmap example-redis-config \
 --from-file=example-files/redis/redis-config

2. Verify the results:

$ oc get configmap example-redis-config -o yaml

apiVersion: v1
data:
 redis-config: |
 maxmemory 2mb
 maxmemory-policy allkeys-lru
kind: ConfigMap
metadata:
 creationTimestamp: 2016-04-06T05:53:07Z
 name: example-redis-config
 namespace: default
 resourceVersion: "2985"
 selflink: /api/v1/namespaces/default/configmaps/example-redis-
config

spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key
 restartPolicy: Never

OpenShift Container Platform 3.5 Developer Guide

246

 uid: d65739c1-fbbb-11e5-8a72-68f728db1985

Now, create a pod that uses this ConfigMap:

1. Create a pod definition like the following and save it to a file, for example redis-pod.yaml:

2. Create the pod:

$ oc create -f redis-pod.yaml

The newly-created pod has a ConfigMap volume that places the redis-config key of the example-
redis-config ConfigMap into a file called redis.conf. This volume is mounted into the /redis-master
directory in the Redis container, placing our configuration file at /redis-master/redis.conf, which is
where the image looks for the Redis configuration file for the master.

If you oc exec into this pod and run the redis-cli tool, you can check that the configuration was
applied correctly:

$ oc exec -it redis redis-cli
127.0.0.1:6379> CONFIG GET maxmemory
1) "maxmemory"
2) "2097152"

apiVersion: v1
kind: Pod
metadata:
 name: redis
spec:
 containers:
 - name: redis
 image: kubernetes/redis:v1
 env:
 - name: MASTER
 value: "true"
 ports:
 - containerPort: 6379
 resources:
 limits:
 cpu: "0.1"
 volumeMounts:
 - mountPath: /redis-master-data
 name: data
 - mountPath: /redis-master
 name: config
 volumes:
 - name: data
 emptyDir: {}
 - name: config
 configMap:
 name: example-redis-config
 items:
 - key: redis-config
 path: redis.conf

CHAPTER 20. CONFIGMAPS

247

127.0.0.1:6379> CONFIG GET maxmemory-policy
1) "maxmemory-policy"
2) "allkeys-lru"

20.5. RESTRICTIONS

A ConfigMap must be created before they are consumed in pods. Controllers can be written to tolerate
missing configuration data; consult individual components configured via ConfigMap on a case-by-case
basis.

ConfigMap objects reside in a project. They can only be referenced by pods in the same project.

The Kubelet only supports use of a ConfigMap for pods it gets from the API server. This includes any
pods created using the CLI, or indirectly from a replication controller. It does not include pods created
using the OpenShift Container Platform node’s --manifest-url flag, its --config flag, or its REST
API (these are not common ways to create pods).

OpenShift Container Platform 3.5 Developer Guide

248

CHAPTER 21. USING DAEMONSETS

21.1. OVERVIEW

A daemonset can be used to run replicas of a pod on specific or all nodes in an OpenShift Container
Platform cluster.

Use daemonsets to create shared storage, run a logging pod on every node in your cluster, or deploy a
monitoring agent on every node.

For more information on daemonsets, see the Kubernetes documentation.

IMPORTANT

Daemonset scheduling is incompatible with project’s default node selector. If you fail to
disable it, the daemonset gets restricted by merging with the default node selector. This
results in frequent pod recreates on the nodes that got unselected by the merged node
selector, which in turn puts unwanted load on the cluster.

Therefore,

Before you start using daemonsets, disable the default project-wide node selector
in your namespace, by setting the namespace annotation
openshift.io/node-selector to an empty string:

oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-
selector": ""}}}'

If you are creating a new project, overwrite the default node selector using oc
adm new-project --node-selector="".

21.2. CREATING DAEMONSETS

IMPORTANT

Before creating daemonsets, ensure you have been given the required role by your
OpenShift Container Platform administrator.

When creating daemonsets, the nodeSelector field is used to indicate the nodes on which the
daemonset should deploy replicas.

1. Define the daemonset yaml file:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:
 selector:
 matchLabels:

 name: hello-daemonset 1
 template:

CHAPTER 21. USING DAEMONSETS

249

http://kubernetes.io/docs/admin/daemons/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#using-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-granting-users-daemonset-permissions

1

2

3

 metadata:
 labels:

 name: hello-daemonset 2
 spec:

 nodeSelector: 3
 type: infra
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10

The label selector that determines which pods belong to the daemonset.

The pod template’s label selector. Must match the label selector above.

The node selector that determines on which nodes pod replicas should be deployed.

2. Create the daemonset object:

oc create -f daemonset.yaml

3. To verify that the pods were created, and that each node has a pod replica:

a. Find the daemonset pods:

$ oc get pods
hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

b. View the pods to verify the pod has been placed onto the node:

$ oc describe pod/hello-daemonset-cx6md|grep Node
Node: openshift-node01.hostname.com/10.14.20.134
$ oc describe pod/hello-daemonset-e3md9|grep Node
Node: openshift-node02.hostname.com/10.14.20.137

OpenShift Container Platform 3.5 Developer Guide

250

IMPORTANT

If you update a DaemonSet’s pod template, the existing pod replicas are not
affected.

If you delete a DaemonSet and then create a new DaemonSet with a different
template but the same label selector, it recognizes any existing pod replicas as
having matching labels and thus does not update them or create new replicas
despite a mismatch in the pod template.

If you change node labels, the DaemonSet adds pods to nodes that match the
new labels and deletes pods from nodes that do not match the new labels.

To update a DaemonSet, force new pod replicas to be created by deleting the old replicas
or nodes.

CHAPTER 21. USING DAEMONSETS

251

CHAPTER 22. POD AUTOSCALING

22.1. OVERVIEW

A horizontal pod autoscaler, defined by a HorizontalPodAutoscaler object, specifies how the
system should automatically increase or decrease the scale of a replication controller or deployment
configuration, based on metrics collected from the pods that belong to that replication controller or
deployment configuration.

NOTE

Horizontal pod autoscaling is supported starting in OpenShift Enterprise 3.1.1.

22.2. REQUIREMENTS FOR USING HORIZONTAL POD AUTOSCALERS

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics.

22.3. SUPPORTED METRICS

The following metrics are supported by horizontal pod autoscalers:

Table 22.1. Metrics

Metric Description

CPU Utilization Percentage of the requested CPU

22.4. AUTOSCALING

You can create a horizontal pod autoscaler with the oc autoscale command and specify the minimum
and maximum number of pods you want to run, as well as the CPU utilization your pods should target.

After a horizontal pod autoscaler is created, it begins attempting to query Heapster for metrics on the
pods. It may take one to two minutes before Heapster obtains the initial metrics.

After metrics are available in Heapster, the horizontal pod autoscaler computes the ratio of the current
metric utilization with the desired metric utilization, and scales up or down accordingly. The scaling will
occur at a regular interval, but it may take one to two minutes before metrics make their way into
Heapster.

For replication controllers, this scaling corresponds directly to the replicas of the replication controller. For
deployment configurations, scaling corresponds directly to the replica count of the deployment
configuration. Note that autoscaling applies only to the latest deployment in the Complete phase.

OpenShift Container Platform automatically accounts for resources and prevents unnecessary
autoscaling during resource spikes, such as during start up. Pods in the unready state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known
metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows for more
stability during the HPA decision. To use this feature, you must configure readiness checks to determine
if a new pod is ready for use.

OpenShift Container Platform 3.5 Developer Guide

252

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-cluster-metrics

1

2

3

4

5

6

7

22.5. CREATING A HORIZONTAL POD AUTOSCALER

Use the oc autoscale command and specify at least the maximum number of pods you want to run at
any given time. You can optionally specify the minimum number of pods and the average CPU utilization
your pods should target, otherwise those are given default values from the OpenShift Container Platform
server.

For example:

$ oc autoscale dc/frontend --min 1 --max 10 --cpu-percent=80
deploymentconfig "frontend" autoscaled

The above example creates a horizontal pod autoscaler with the following definition:

Example 22.1. Horizontal Pod Autoscaler Object Definition

The name of this horizontal pod autoscaler object

The kind of object to scale

The name of the object to scale

The API version of the object to scale

The minimum number of replicas to which to scale down

The maximum number of replicas to which to scale up

The percentage of the requested CPU that each pod should ideally be using

22.6. VIEWING A HORIZONTAL POD AUTOSCALER

To view the status of a horizontal pod autoscaler:

$ oc get hpa/frontend
NAME REFERENCE TARGET

apiVersion: extensions/v1beta1
kind: HorizontalPodAutoscaler
metadata:

 name: frontend 1
spec:
 scaleRef:

 kind: DeploymentConfig 2

 name: frontend 3

 apiVersion: v1 4
 subresource: scale

 minReplicas: 1 5

 maxReplicas: 10 6
 cpuUtilization:

 targetPercentage: 80 7

CHAPTER 22. POD AUTOSCALING

253

CURRENT MINPODS MAXPODS AGE
frontend DeploymentConfig/default/frontend/scale 80% 79%
1 10 8d

$ oc describe hpa/frontend
Name: frontend
Namespace: default
Labels: <none>
CreationTimestamp: Mon, 26 Oct 2015 21:13:47 -0400
Reference: DeploymentConfig/default/frontend/scale
Target CPU utilization: 80%
Current CPU utilization: 79%
Min pods: 1
Max pods: 10

OpenShift Container Platform 3.5 Developer Guide

254

CHAPTER 23. MANAGING VOLUMES

23.1. OVERVIEW

Containers are not persistent by default; on restart, their contents are cleared. Volumes are mounted file
systems available to pods and their containers which may be backed by a number of host-local or
network attached storage endpoints.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them
when possible, OpenShift Container Platform invokes the fsck utility prior to the mount utility. This
occurs when either adding a volume or updating an existing volume.

The simplest volume type is emptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to your
pods.

NOTE

emptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
the FSGroup parameter is enabled by your cluster administrator.

You can use the CLI command oc volume to add, update, or remove volumes and volume mounts for
any object that has a pod template like replication controllers or deployment configurations. You can also
list volumes in pods or any object that has a pod template.

23.2. GENERAL CLI USAGE

The oc volume command uses the following general syntax:

$ oc volume <object_selection> <operation> <mandatory_parameters>
<optional_parameters>

This topic uses the form <object_type>/<name> for <object_selection> in later examples.
However, you can choose one of the following options:

Table 23.1. Object Selection

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig
registry

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/regist
ry

<object_type>--
selector=<object_label_
selector>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry
"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

CHAPTER 23. MANAGING VOLUMES

255

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#deployments-and-deployment-configurations

-f or --
filename=<file_name>

File name, directory, or URL to
file to use to edit the resource.

-f registry-
deployment-config.json

Syntax Description Example

The <operation> can be one of --add, --remove, or --list.

Any <mandatory_parameters> or <optional_parameters> are specific to the selected operation
and are discussed in later sections.

23.3. ADDING VOLUMES

To add a volume, a volume mount, or both to pod templates:

$ oc volume <object_type>/<name> --add [options]

Table 23.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret,
configmap, or
persistentVolumeClaim.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that
matches any character.

'*'

-m, --mount-path Mount path inside the selected
containers.

--path Host path. Mandatory parameter
for --type=hostPath.

--secret-name Name of the secret. Mandatory
parameter for --type=secret.

--configmap-name Name of the configmap.
Mandatory parameter for --
type=configmap.

OpenShift Container Platform 3.5 Developer Guide

256

--claim-name Name of the persistent volume
claim. Mandatory parameter for -
-
type=persistentVolumeCl
aim.

--source Details of volume source as a
JSON string. Recommended if the
desired volume source is not
supported by --type. See
available volume sources

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

Examples
Add a new volume source emptyDir to deployment configuration registry:

$ oc volume dc/registry --add

Add volume v1 with secret $ecret for replication controller r1 and mount inside the containers at /data:

$ oc volume rc/r1 --add --name=v1 --type=secret --secret-name='$ecret' --
mount-path=/data

Add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json on disk,
mount the volume on container c1 at /data, and update the deployment configuration on the server:

$ oc volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

Add volume v1 based on Git repository https://github.com/namespace1/project1 with revision
5125c45f9f563 for all replication controllers:

$ oc volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

23.4. UPDATING VOLUMES

CHAPTER 23. MANAGING VOLUMES

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/rest_api_reference/#rest-api-kubernetes-v1

Updating existing volumes or volume mounts is the same as adding volumes, but with the --
overwrite option:

$ oc volume <object_type>/<name> --add --overwrite [options]

Examples
Replace existing volume v1 for replication controller r1 with existing persistent volume claim pvc1:

$ oc volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim
--claim-name=pvc1

Change deployment configuration d1 mount point to /opt for volume v1:

$ oc volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

23.5. REMOVING VOLUMES

To remove a volume or volume mount from pod templates:

$ oc volume <object_type>/<name> --remove [options]

Table 23.3. Supported Options for Removing Volumes

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that
matches any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Examples
Remove a volume v1 from deployment configuration d1:

$ oc volume dc/d1 --remove --name=v1

Unmount volume v1 from container c1 for deployment configuration d1 and remove the volume v1 if it is
not referenced by any containers on d1:

OpenShift Container Platform 3.5 Developer Guide

258

$ oc volume dc/d1 --remove --name=v1 --containers=c1

Remove all volumes for replication controller r1:

$ oc volume rc/r1 --remove --confirm

23.6. LISTING VOLUMES

To list volumes or volume mounts for pods or pod templates:

$ oc volume <object_type>/<name> --list [options]

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that
matches any character.

'*'

Examples
List all volumes for pod p1:

$ oc volume pod/p1 --list

List volume v1 defined on all deployment configurations:

$ oc volume dc --all --name=v1

23.7. SPECIFYING A SUB-PATH

Use the volumeMounts.subPath property to specify a subPath inside a volume instead of the
volume’s root. subPath allows you to share one volume for multiple uses in a single pod.

To view the list of files in the volume, run the oc rsh command:

$ oc rsh <pod>
sh-4.2$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

Specify the subPath:

Example subPath Usage

apiVersion: v1
kind: Pod
metadata:

CHAPTER 23. MANAGING VOLUMES

259

1

2

 name: my-site
spec:
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data

 subPath: mysql 1
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data

 subPath: html 2
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

Databases are stored in the mysql folder.

HTML content is stored in the html folder.

OpenShift Container Platform 3.5 Developer Guide

260

CHAPTER 24. USING PERSISTENT VOLUMES

24.1. OVERVIEW

A PersistentVolume object is a storage resource in an OpenShift Container Platform cluster. Storage
is provisioned by your cluster administrator by creating PersistentVolume objects from sources such
as GCE Persistent Disk, AWS Elastic Block Store (EBS), and NFS mounts.

NOTE

The Installation and Configuration Guide provides instructions for cluster administrators on
provisioning an OpenShift Container Platform cluster with persistent storage using NFS,
GlusterFS, Ceph RBD, OpenStack Cinder, AWS EBS, GCE Persistent Disk, iSCSI, and
Fibre Channel.

Storage can be made available to you by laying claims to the resource. You can make a request for
storage resources using a PersistentVolumeClaim object; the claim is paired with a volume that
generally matches your request.

24.2. REQUESTING STORAGE

You can request storage by creating PersistentVolumeClaim objects in your projects:

Persistent Volume Claim Object Definition

24.3. VOLUME AND CLAIM BINDING

A PersistentVolume is a specific resource. A PersistentVolumeClaim is a request for a resource
with specific attributes, such as storage size. In between the two is a process that matches a claim to an
available volume and binds them together. This allows the claim to be used as a volume in a pod.
OpenShift Container Platform finds the volume backing the claim and mounts it into the pod.

You can tell whether a claim or volume is bound by querying using the CLI:

$ oc get pvc
NAME LABELS STATUS VOLUME
claim1 map[] Bound pv0001

$ oc get pv
NAME LABELS CAPACITY ACCESSMODES

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

CHAPTER 24. USING PERSISTENT VOLUMES

261

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-nfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-ceph-rbd
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-cinder
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-gce
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-iscsi
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-fibre-channel

STATUS CLAIM
pv0001 map[] 5368709120 RWO
Bound yournamespace / claim1

24.4. CLAIMS AS VOLUMES IN PODS

A PersistentVolumeClaim is used by a pod as a volume. OpenShift Container Platform finds the
claim with the given name in the same namespace as the pod, then uses the claim to find the
corresponding volume to mount.

Pod Definition with a Claim

24.5. VOLUME AND CLAIM PRE-BINDING

If you know exactly what PersistentVolume you want your PersistentVolumeClaim to bind to,
you can specify the PV in your PVC using the volumeName field. This method skips the normal
matching and binding process. The PVC will only be able to bind to a PV that has the same name
specified in volumeName. If such a PV with that name exists and is Available, the PV and PVC will be
bound regardless of whether the PV satisfies the PVC’s label selector, access modes, and resource
requests.

Example 24.1. Persistent Volume Claim Object Definition with volumeName

apiVersion: "v1"
kind: "Pod"
metadata:
 name: "mypod"
 labels:
 name: "frontendhttp"
spec:
 containers:
 -
 name: "myfrontend"
 image: openshift/hello-openshift
 ports:
 -
 containerPort: 80
 name: "http-server"
 volumeMounts:
 -
 mountPath: "/var/www/html"
 name: "pvol"
 volumes:
 -
 name: "pvol"
 persistentVolumeClaim:
 claimName: "claim1"

apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
 name: "claim1"
spec:
 accessModes:

OpenShift Container Platform 3.5 Developer Guide

262

IMPORTANT

The ability to set claimRefs is a temporary workaround for the described use cases. A
long-term solution for limiting who can claim a volume is in development.

NOTE

The cluster administrator should first consider configuring selector-label volume binding
before resorting to setting claimRefs on behalf of users.

You may also want your cluster administrator to "reserve" the volume for only your claim so that nobody
else’s claim can bind to it before yours does. In this case, the administrator can specify the PVC in the
PV using the claimRef field. The PV will only be able to bind to a PVC that has the same name and
namespace specified in claimRef. The PVC’s access modes and resource requests must still be
satisfied in order for the PV and PVC to be bound, though the label selector is ignored.

Persistent Volume Object Definition with claimRef

Specifying a volumeName in your PVC does not prevent a different PVC from binding to the specified
PV before yours does. Your claim will remain Pending until the PV is Available.

Specifying a claimRef in a PV does not prevent the specified PVC from being bound to a different PV.
The PVC is free to choose another PV to bind to according to the normal binding process. Therefore, to
avoid these scenarios and ensure your claim gets bound to the volume you want, you must ensure that
both volumeName and claimRef are specified.

You can tell that your setting of volumeName and/or claimRef influenced the matching and binding
process by inspecting a Bound PV and PVC pair for the pv.kubernetes.io/bound-by-
controller annotation. The PVs and PVCs where you set the volumeName and/or claimRef

 - "ReadWriteOnce"
 resources:
 requests:
 storage: "1Gi"
 volumeName: "pv0001"

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Recycle
 claimRef:
 name: claim1
 namespace: default

CHAPTER 24. USING PERSISTENT VOLUMES

263

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#selector-label-volume-binding

yourself will have no such annotation, but ordinary PVs and PVCs will have it set to "yes".

When a PV has its claimRef set to some PVC name and namespace, and is reclaimed according to a
Retain or Recycle reclaim policy, its claimRef will remain set to the same PVC name and
namespace even if the PVC or the whole namespace no longer exists.

OpenShift Container Platform 3.5 Developer Guide

264

CHAPTER 25. EXECUTING REMOTE COMMANDS

25.1. OVERVIEW

You can use the CLI to execute remote commands in a container. This allows you to run general Linux
commands for routine operations in the container.

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user. See the
CLI operations topic for more information.

25.2. BASIC USAGE

Support for remote container command execution is built into the CLI:

$ oc exec <pod> [-c <container>] <command> [<arg_1> ... <arg_n>]

For example:

$ oc exec mypod date
Thu Apr 9 02:21:53 UTC 2015

25.3. PROTOCOL

Clients initiate the execution of a remote command in a container by issuing a request to the Kubernetes
API server:

/proxy/minions/<node_name>/exec/<namespace>/<pod>/<container>?command=
<command>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

<container> is the name of the target container.

<command> is the desired command to be executed.

For example:

/proxy/minions/node123.openshift.com/exec/myns/mypod/mycontainer?
command=date

Additionally, the client can add parameters to the request to indicate if:

CHAPTER 25. EXECUTING REMOTE COMMANDS

265

https://access.redhat.com/errata/RHSA-2015:1650
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#troubleshooting-and-debugging-cli-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-index

the client should send input to the remote container’s command (stdin).

the client’s terminal is a TTY.

the remote container’s command should send output from stdout to the client.

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that supports
multiplexed streams; the current implementation uses SPDY.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the remote command execution request.

NOTE

Administrators can see the Architecture guide for more information.

OpenShift Container Platform 3.5 Developer Guide

266

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-remote-commands

CHAPTER 26. COPYING FILES TO OR FROM A CONTAINER

26.1. OVERVIEW

You can use the CLI to copy local files to or from a remote directory in a container. This is a useful tool
for copying database archives to and from your pods for backup and restore purposes. It can also be
used to copy source code changes into a running pod for development debugging, when the running pod
supports hot reload of source files.

26.2. BASIC USAGE

Support for copying local files to or from a container is built into the CLI:

$ oc rsync <source> <destination> [-c <container>]

For example, to copy a local directory to a pod directory:

$ oc rsync /home/user/source devpod1234:/src

Or to copy a pod directory to a local directory:

$ oc rsync devpod1234:/src /home/user/source

26.3. BACKING UP AND RESTORING DATABASES

Use oc rsync to copy database archives from an existing database container to a new database
container’s persistent volume directory.

NOTE

MySQL is used in the example below. Replace mysql|MYSQL with pgsql|PGSQL or
mongodb|MONGODB and refer to the migration guide to find the exact commands for each
of our supported database images. The example assumes an existing database
container.

1. Back up the existing database from a running database pod:

$ oc rsh <existing db container>
mkdir /var/lib/mysql/data/db_archive_dir
mysqldump --skip-lock-tables -h ${MYSQL_SERVICE_HOST} -P
${MYSQL_SERVICE_PORT:-3306} \
 -u ${MYSQL_USER} --password="$MYSQL_PASSWORD" --all-databases >
/var/lib/mysql/data/db_archive_dir/all.sql
exit

2. Remote sync the archive file to your local machine:

$ oc rsync <existing db container with db
archive>:/var/lib/mysql/data/db_archive_dir /tmp/.

CHAPTER 26. COPYING FILES TO OR FROM A CONTAINER

267

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-index

1

3. Start a second MySQL pod into which to load the database archive file created above. The
MySQL pod must have a unique DATABASE_SERVICE_NAME.

$ oc new-app mysql-persistent \
 -p MYSQL_USER=<archived mysql username> \
 -p MYSQL_PASSWORD=<archived mysql password> \
 -p MYSQL_DATABASE=<archived database name> \

 -p DATABASE_SERVICE_NAME='mysql2' 1
$ oc rsync /tmp/db_archive_dir new_dbpod1234:/var/lib/mysql/data
$ oc rsh new_dbpod1234

mysql is the default. In this example, mysql2 is created.

4. Use the appropriate commands to restore the database in the new database container from the
copied database archive directory:

MySQL

$ cd /var/lib/mysql/data/db_archive_dir
$ mysql -u root
$ source all.sql
$ GRANT ALL PRIVILEGES ON <dbname>.* TO '<your
username>'@'localhost'; FLUSH PRIVILEGES;
$ cd ../; rm -rf /var/lib/mysql/data/db_backup_dir

You now have two MySQL database pods running in your project with the archived database.

26.4. REQUIREMENTS

The oc rsync command uses the local rsync command if present on the client’s machine. This
requires that the remote container also have the rsync command.

If rsync is not found locally or in the remote container, then a tar archive will be created locally and sent
to the container where tar will be used to extract the files. If tar is not available in the remote container,
then the copy will fail.

The tar copy method does not provide the same functionality as rsync. For example, rsync creates
the destination directory if it does not exist and will only send files that are different between the source
and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for use with
the oc rsync command.

26.5. SPECIFYING THE COPY SOURCE

The source argument of the oc rsync command must point to either a local directory or a pod directory.
Individual files are not currently supported.

When specifying a pod directory the directory name must be prefixed with the pod name:

OpenShift Container Platform 3.5 Developer Guide

268

<pod name>:<dir>

Just as with standard rsync, if the directory name ends in a path separator (/), only the contents of the
directory are copied to the destination. Otherwise, the directory itself is copied to the destination with all
its contents.

26.6. SPECIFYING THE COPY DESTINATION

The destination argument of the oc rsync command must point to a directory. If the directory does not
exist, but rsync is used for copy, the directory is created for you.

26.7. DELETING FILES AT THE DESTINATION

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

26.8. CONTINUOUS SYNCING ON FILE CHANGE

Using the --watch option causes the command to monitor the source path for any file system changes,
and synchronizes changes when they occur. With this argument, the command runs forever.

Synchronization occurs after short quiet periods to ensure a rapidly changing file system does not result
in continuous synchronization calls.

When using the --watch option, the behavior is effectively the same as manually invoking oc rsync
repeatedly, including any arguments normally passed to oc rsync. Therefore, you can control the
behavior via the same flags used with manual invocations of oc rsync, such as --delete.

26.9. ADVANCED RSYNC FEATURES

The oc rsync command exposes fewer command line options than standard rsync. In the case that
you wish to use a standard rsync command line option which is not available in oc rsync (for
example the --exclude-from=FILE option), it may be possible to use standard rsync 's --rsh (-e)
option or RSYNC_RSH environment variable as a workaround, as follows:

$ rsync --rsh='oc rsh' --exclude-from=FILE SRC POD:DEST

or:

$ export RSYNC_RSH='oc rsh'
$ rsync --exclude-from=FILE SRC POD:DEST

Both of the above examples configure standard rsync to use oc rsh as its remote shell program to
enable it to connect to the remote pod, and are an alternative to running oc rsync.

CHAPTER 26. COPYING FILES TO OR FROM A CONTAINER

269

CHAPTER 27. PORT FORWARDING

27.1. OVERVIEW

OpenShift Container Platform takes advantage of a feature built-in to Kubernetes to support port
forwarding to pods. See Architecture for more information.

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

27.2. BASIC USAGE

Support for port forwarding is built into the CLI:

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]
<remote_port_n>]

The CLI listens on each local port specified by the user, forwarding via the protocol described below.

Ports may be specified using the following formats:

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

For example, to listen on ports 5000 and 6000 locally and forward data to and from ports 5000 and 6000
in the pod, run:

$ oc port-forward <pod> 5000 6000

To listen on port 8888 locally and forward to 5000 in the pod, run:

$ oc port-forward <pod> 8888:5000

To listen on a free port locally and forward to 5000 in the pod, run:

$ oc port-forward <pod> :5000

Or, alternatively:

$ oc port-forward <pod> 0:5000

27.3. PROTOCOL

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

OpenShift Container Platform 3.5 Developer Guide

270

https://kubernetes.io/docs/user-guide/kubectl/kubectl_port-forward/#
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-port-forwarding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#cli-reference-index

/proxy/minions/<node_name>/portForward/<namespace>/<pod>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

For example:

/proxy/minions/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates a stream with the port header containing the target port in the pod. All data written to
the stream is delivered via the Kubelet to the target pod and port. Similarly, all data sent from the pod for
that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the port forwarding request.

NOTE

Administrators can see the Architecture guide for more information.

CHAPTER 27. PORT FORWARDING

271

http://www.chromium.org/spdy
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#architecture-additional-concepts-port-forwarding

1

2

3

CHAPTER 28. SHARED MEMORY

28.1. OVERVIEW

There are two types of shared memory objects in Linux: System V and POSIX. The containers in a pod
share the IPC namespace of the pod infrastructure container and so are able to share the System V
shared memory objects. This document describes how they can also share POSIX shared memory
objects.

28.2. POSIX SHARED MEMORY

POSIX shared memory requires that a tmpfs be mounted at /dev/shm. The containers in a pod do not
share their mount namespaces so we use volumes to provide the same /dev/shm into each container in
a pod. The following example shows how to set up POSIX shared memory between two containers.

shared-memory.yaml

specifies the tmpfs volume dshm.

enables POSIX shared memory for hello-container1 via dshm.

enables POSIX shared memory for hello-container2 via dshm.

apiVersion: v1
id: hello-openshift
kind: Pod
metadata:
 name: hello-openshift
 labels:
 name: hello-openshift
spec:

 volumes: 1
 - name: dshm
 emptyDir:
 medium: Memory
 containers:
 - image: kubernetes/pause
 name: hello-container1
 ports:
 - containerPort: 8080
 hostPort: 6061

 volumeMounts: 2
 - mountPath: /dev/shm
 name: dshm
 - image: kubernetes/pause
 name: hello-container2
 ports:
 - containerPort: 8081
 hostPort: 6062

 volumeMounts: 3
 - mountPath: /dev/shm
 name: dshm

OpenShift Container Platform 3.5 Developer Guide

272

Create the pod using the shared-memory.yaml file:

$ oc create -f shared-memory.yaml

CHAPTER 28. SHARED MEMORY

273

CHAPTER 29. APPLICATION HEALTH

29.1. OVERVIEW

In software systems, components can become unhealthy due to transient issues (such as temporary
connectivity loss), configuration errors, or problems with external dependencies. OpenShift Container
Platform applications have a number of options to detect and handle unhealthy containers.

29.2. CONTAINER HEALTH CHECKS USING PROBES

A probe is a Kubernetes action that periodically performs diagnostics on a running container. Currently,
two types of probes exist, each serving a different purpose:

Liveness Probe A liveness probe checks if the container in which it is configured is still running. If the
liveness probe fails, the kubelet kills the container, which will be subjected to its restart
policy. Set a liveness check by configuring the
template.spec.containers.livenessprobe stanza of a pod configuration.

Readiness Probe A readiness probe determines if a container is ready to service requests. If the
readiness probe fails a container, the endpoints controller ensures the container has its
IP address removed from the endpoints of all services. A readiness probe can be used
to signal to the endpoints controller that even though a container is running, it should not
receive any traffic from a proxy. Set a readiness check by configuring the
template.spec.containers.readinessprobe stanza of a pod
configuration.

The exact timing of a probe is controlled by two fields, both expressed in units of seconds:

Field Description

initialDelaySeconds How long to wait after the container starts to begin
the probe.

timeoutSeconds How long to wait for the probe to finish (default: 1). If
this time is exceeded, OpenShift Container Platform
considers the probe to have failed.

Both probes can be configured in three ways:

HTTP Checks

The kubelet uses a web hook to determine the healthiness of the container. The check is deemed
successful if the HTTP response code is between 200 and 399. The following is an example of a
readiness check using the HTTP checks method:

Example 29.1. Readiness HTTP check

...
readinessProbe:
 httpGet:

OpenShift Container Platform 3.5 Developer Guide

274

1

 path: /healthz
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

A HTTP check is ideal for applications that return HTTP status codes when completely initialized.

Container Execution Checks

The kubelet executes a command inside the container. Exiting the check with status 0 is considered a
success. The following is an example of a liveness check using the container execution method:

Example 29.2. Liveness Container Execution Check

...
livenessProbe:
 exec:
 command:
 - cat
 - /tmp/health
 initialDelaySeconds: 15
...

NOTE

The timeoutSeconds parameter has no effect on the readiness and liveness probes for
Container Execution Checks. You can implement a timeout inside the probe itself, as
OpenShift Container Platform cannot time out on an exec call into the container. One way
to implement a timeout in a probe is by using the timeout parameter to run your liveness
or readiness probe:

[...]
 livenessProbe:
 exec:
 command:
 - /bin/bash
 - '-c'

 - timeout 60 /opt/eap/bin/livenessProbe.sh 1
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
[...]

Timeout value and path to the probe script.

TCP Socket Checks

CHAPTER 29. APPLICATION HEALTH

275

The kubelet attempts to open a socket to the container. The container is only considered healthy if the
check can establish a connection. The following is an example of a liveness check using the TCP socket
check method:

Example 29.3. Liveness TCP Socket Check

...
livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
...

A TCP socket check is ideal for applications that do not start listening until initialization is complete.

For more information on health checks, see the Kubernetes documentation.

OpenShift Container Platform 3.5 Developer Guide

276

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

CHAPTER 30. EVENTS

30.1. OVERVIEW

Events in OpenShift Container Platform are modeled based on events that happen to API objects in an
OpenShift Container Platform cluster. Events allow OpenShift Container Platform to record information
about real-world events in a resource-agnostic manner. They also allow developers and administrators to
consume information about system components in a unified way.

30.2. VIEWING EVENTS WITH THE CLI

You can get a list of events in a given project using the following command:

$ oc get events [-n <project>]

30.3. VIEWING EVENTS IN THE CONSOLE

You can see events in your project from the web console from the Browse → Events page. Many other
objects, such as pods and deployments, have their own Events tab as well, which shows events related
to that object.

30.4. COMPREHENSIVE LIST OF EVENTS

This section describes the events of OpenShift Container Platform.

Table 30.1. Configuration Events

Name Description

FailedValida
tion

Failed pod configuration validation.

Table 30.2. Container Events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Preempting Preempting other pods.

CHAPTER 30. EVENTS

277

ExceededGrac
ePeriod

Container runtime did not stop the pod within specified grace period.

Name Description

Table 30.3. Health Events

Name Description

Unhealthy Container is unhealthy.

Table 30.4. Image Events

Name Description

BackOff Back off Ctr Start, image pull.

ErrImageNeve
rPull

The image’s NeverPull Policy is violated.

Failed Failed to pull the image.

InspectFaile
d

Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the
machine.

Pulling Pulling the image.

Table 30.5. Image Manager Events

Name Description

FreeDiskSpac
eFailed

Free disk space failed.

InvalidDiskC
apacity

Invalid disk capacity.

Table 30.6. Node Events

Name Description

FailedMount Volume mount failed.

OpenShift Container Platform 3.5 Developer Guide

278

HostNetworkN
otSupported

Host network not supported.

HostPortConf
lict

Host/port conflict.

Insufficient
FreeCPU

Insufficient free CPU.

Insufficient
FreeMemory

Insufficient free memory.

KubeletSetup
Failed

Kubelet setup failed.

NilShaper Undefined shaper.

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

NodeReady Node is ready.

NodeSchedula
ble

Node is schedulable.

NodeSelector
Mismatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

FailedAttach
Volume

Failed to attach volume.

FailedDetach
Volume

Failed to detach volume.

VolumeResize
Failed

Failed to expand/reduce volume.

Name Description

CHAPTER 30. EVENTS

279

VolumeResize
Successful

Successfully expanded/reduced volume.

FileSystemRe
sizeFailed

Failed to expand/reduce file system.

FileSystemRe
sizeSuccessf
ul

Successfully expanded/reduced file system.

FailedUnMoun
t

Failed to unmount volume.

FailedMapVol
ume

Failed to map a volume.

FailedUnmapD
evice

Failed unmaped device.

AlreadyMount
edVolume

Volume is already mounted.

SuccessfulDe
tachVolume

Volume is successfully detached.

SuccessfulMo
untVolume

Volume is successfully mounted.

SuccessfulUn
MountVolume

Volume is successfully unmounted.

ContainerGCF
ailed

Container garbage collection failed.

ImageGCFaile
d

Image garbage collection failed.

FailedNodeAl
locatableEnf
orcement

Failed to enforce System Reserved Cgroup limit.

NodeAllocata
bleEnforced

Enforced System Reserved Cgroup limit.

UnsupportedM
ountOption

Unsupported mount option.

Name Description

OpenShift Container Platform 3.5 Developer Guide

280

SandboxChang
ed

Pod sandbox changed.

FailedCreate
PodSandBox

Failed to create pod sandbox.

FailedPodSan
dBoxStatus

Failed pod sandbox status.

Name Description

Table 30.7. Pod Worker Events

Name Description

FailedSync Pod sync failed.

Table 30.8. System Events

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

Table 30.9. Pod Events

Name Description

FailedKillPo
d

Failed to stop a pod.

FailedCreate
PodContainer

Failed to create a pod contianer.

Failed Failed to make pod data directories.

NetworkNotRe
ady

Network is not ready.

FailedCreate Error creating: <error-msg>.

SuccessfulCr
eate

Created pod: <pod-name>.

FailedDelete Error deleting: <error-msg>.

SuccessfulDe
lete

Deleted pod: <pod-id>.

CHAPTER 30. EVENTS

281

Table 30.10. Horizontal Pod AutoScaler Events

Name Description

SelectorRequired Selector is required.

InvalidSelec
tor

Could not convert selector into a corresponding internal selector object.

FailedGetObj
ectMetric

HPA was unable to compute the replica count.

InvalidMetri
cSourceType

Unknown metric source type.

ValidMetricF
ound

HPA was able to successfully calculate a replica count.

FailedConver
tHPA

Failed to convert the given HPA.

FailedGetSca
le

HPA controller was unable to get the target’s current scale.

SucceededGet
Scale

HPA controller was able to get the target’s current scale.

FailedComput
eMetricsRepl
icas

Failed to compute desired number of replicas based on listed metrics.

FailedRescal
e

New size: <size>; reason: <msg>; error: <error-msg>.

SuccessfulRe
scale

New size: <size>; reason: <msg>.

FailedUpdate
Status

Failed to update status.

Table 30.11. Network Events (openshift-sdn)

Name Description

Starting Starting OpenShift-SDN.

NetworkFaile
d

The pod’s network interface has been lost and the pod will be stopped.

OpenShift Container Platform 3.5 Developer Guide

282

Table 30.12. Network Events (kube-proxy)

Name Description

NeedPods The service-port <serviceName>:<port> needs pods.

Table 30.13. Volume Events

Name Description

FailedBindin
g

There are no persistent volumes available and no storage class is set.

VolumeMismat
ch

Volume size or class is different from what is requested in claim.

VolumeFailed
Recycle

Error creating recycler pod.

VolumeRecycl
ed

Occurs when volume is recycled.

RecyclerPod Occurs when pod is recycled.

VolumeDelete Occurs when volume is deleted.

VolumeFailed
Delete

Error when deleting the volume.

ExternalProv
isioning

Occurs when volume for the claim is provisioned either manually or via external
software.

Provisioning
Failed

Failed to provision volume.

Provisioning
CleanupFaile
d

Error cleaning provisioned volume.

Provisioning
Succeeded

Occurs when the volume is provisioned successfully.

WaitForFirst
Consumer

Delay binding until pod scheduling.

Table 30.14. Lifecycle hooks

CHAPTER 30. EVENTS

283

Name Description

FailedPostSt
artHook

Handler failed for pod start.

FailedPreSto
pHook

Handler failed for pre-stop.

UnfinishedPr
eStopHook

Pre-stop hook unfinished.

Table 30.15. Deployments

Name Description

DeploymentCa
ncellationFa
iled

Failed to cancel deployment.

DeploymentCa
ncelled

Cancelled deployment.

DeploymentCr
eated

Created new replication controller.

IngressIPRan
geFull

No available ingress IP to allocate to service.

Table 30.16. Scheduler Events

Name Description

FailedSchedu
ling

Failed to schedule pod: <pod-namespace>/<pod-name>. This event is raised for
multiple reasons, for example: AssumePodVolumes failed, Binding rejected etc.

Preempted By <preemptor-namespace>/<preemptor-name> on node <node-name>.

Scheduled Successfully assigned <pod-name> to <node-name>.

Table 30.17. DaemonSet Events

Name Description

SelectingAll This daemon set is selecting all pods. A non-empty selector is required.

FailedPlacem
ent

Failed to place pod on <node-name>.

OpenShift Container Platform 3.5 Developer Guide

284

FailedDaemon
Pod

Found failed daemon pod <pod-name> on node <node-name>, will try to kill it.

Name Description

Table 30.18. LoadBalancer Service Events

Name Description

CreatingLoad
BalancerFail
ed

Error creating load balancer.

DeletingLoad
Balancer

Deleting load balancer.

EnsuringLoad
Balancer

Ensuring load balancer.

EnsuredLoadB
alancer

Ensured load balancer.

UnAvailableL
oadBalancer

There are no available nodes for LoadBalancer service.

LoadBalancer
SourceRanges

Lists the new LoadBalancerSourceRanges. For example, <old-source-
range> → <new-source-range>.

Loadbalancer
IP

Lists the new IP address. For example, <old-ip> → <new-ip>.

ExternalIP Lists external IP address. For example, Added: <external-ip>.

UID Lists the new UID. For example, <old-service-uid> → <new-service-
uid>.

ExternalTraf
ficPolicy

Lists the new ExternalTrafficPolicy. For example, <old-policy> →
<new-ploicy>.

HealthCheckN
odePort

Lists the new HealthCheckNodePort. For example, <old-node-port> →
new-node-port>.

UpdatedLoadB
alancer

Updated load balancer with new hosts.

LoadBalancer
UpdateFailed

Error updating load balancer with new hosts.

CHAPTER 30. EVENTS

285

DeletingLoad
Balancer

Deleting load balancer.

DeletingLoad
BalancerFail
ed

Error deleting load balancer.

DeletedLoadB
alancer

Deleted load balancer.

Name Description

OpenShift Container Platform 3.5 Developer Guide

286

CHAPTER 31. DOWNWARD API

31.1. OVERVIEW

The downward API is a mechanism that allows containers to consume information about API objects
without coupling to OpenShift Container Platform. Such information includes the pod’s name,
namespace, and resource values. Containers can consume information from the downward API using
environment variables or a volume plug-in.

31.2. SELECTING FIELDS

Fields within the pod are selected using the FieldRef API type. FieldRef has two fields:

Field Description

fieldPath The path of the field to select, relative to the pod.

apiVersion The API version to interpret the fieldPath
selector within.

Currently, the valid selectors in the v1 API include:

Selector Description

metadata.name The pod’s name. This is supported in both
environment variables and volumes.

metadata.namespace The pod’s namespace.This is supported in both
environment variables and volumes.

metadata.labels The pod’s labels. This is only supported in volumes
and not in environment variables.

metadata.annotations The pod’s annotations. This is only supported in
volumes and not in environment variables.

status.podIP The pod’s IP. This is only supported in environment
variables and not volumes.

The apiVersion field, if not specified, defaults to the API version of the enclosing pod template.

31.3. CONSUMING THE CONTAINER VALUES USING THE DOWNWARD
API

31.3.1. Using Environment Variables

One mechanism for consuming the downward API is using a container’s environment variables. The

CHAPTER 31. DOWNWARD API

287

EnvVar type’s valueFrom field (of type EnvVarSource) is used to specify that the variable’s value
should come from a FieldRef source instead of the literal value specified by the value field. In the
future, additional sources may be supported; currently the source’s fieldRef field is used to select a
field from the downward API.

Only constant attributes of the pod can be consumed this way, as environment variables cannot be
updated once a process is started in a way that allows the process to be notified that the value of a
variable has changed. The fields supported using environment variables are:

Pod name

Pod namespace

1. Create a pod.json file:

2. Create the pod from the pod.json file:

$ oc create -f pod.json

3. Check the container’s logs for the MY_POD_NAME and MY_POD_NAMESPACE values:

$ oc logs -p dapi-env-test-pod

31.3.2. Using the Volume Plug-in

Another mechanism for consuming the downward API is using a volume plug-in. The downward API
volume plug-in creates a volume with configured fields projected into files. The metadata field of the
VolumeSource API object is used to configure this volume. The plug-in supports the following fields:

Pod name

Pod namespace

Pod annotations

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 restartPolicy: Never

OpenShift Container Platform 3.5 Developer Guide

288

1

2

3

4

Pod labels

Example 31.1. Downward API Volume Plug-in Configuration

The metadata field of the volume source configures the downward API volume.

The items field holds a list of fields to project into the volume.

The name of the file to project the field into.

The selector of the field to project.

For example:

1. Create a volume-pod.json file:

spec:
 volumes:
 - name: podinfo

 metadata: 1

 items: 2

 - name: "labels" 3
 fieldRef:

 fieldPath: metadata.labels 4

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: "345"
 annotation2: "456"
spec:
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /etc/labels /etc/annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 metadata:
 items:
 - name: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - name: "annotations"

CHAPTER 31. DOWNWARD API

289

2. Create the pod from the volume-pod.json file:

$ oc create -f volume-pod.json

3. Check the container’s logs and verify the presence of the configured fields:

$ oc logs -p dapi-volume-test-pod
cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

31.4. CONSUMING CONTAINER RESOURCES USING THE DOWNWARD
API

When creating pods, you can use the downward API to inject information about computing resource
requests and limits so that image and application authors can correctly create an image for specific
environments.

You can do this using both the environment variable and volume plug-in methods.

31.4.1. Using Environment Variables

1. When creating a pod configuration, specify environment variables that correspond to the
contents of the resources field in the spec.container field:

...
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["/bin/sh", "-c", "env"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 env:
 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.cpu

 fieldRef:
 fieldPath: metadata.annotations
 restartPolicy: Never

OpenShift Container Platform 3.5 Developer Guide

290

 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.memory
...

If the resource limits are not included in the container configuration, the downward API defaults
to the node’s CPU and memory allocatable values.

2. Create the pod from the pod.json file:

$ oc create -f pod.json

31.4.2. Using the Volume Plug-in

1. When creating a pod configuration, use the spec.volumes.downwardAPI.items field to
describe the desired resources that correspond to the spec.resources field:

....
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c", "while true; do echo; if [[-e
/etc/cpu_limit]]; then cat /etc/cpu_limit; fi; if [[-e
/etc/cpu_request]]; then cat /etc/cpu_request; fi; if [[-e
/etc/mem_limit]]; then cat /etc/mem_limit; fi; if [[-e
/etc/mem_request]]; then cat /etc/mem_request; fi; sleep 5; done"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu

CHAPTER 31. DOWNWARD API

291

 - path: "mem_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory
....

If the resource limits are not included in the container configuration, the downward API defaults
to the node’s CPU and memory allocatable values.

2. Create the pod from the volume-pod.json file:

$ oc create -f volume-pod.json

OpenShift Container Platform 3.5 Developer Guide

292

CHAPTER 32. MANAGING ENVIRONMENT VARIABLES

32.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES

OpenShift Container Platform provides the oc set env command to set or unset environment variables
for objects that have a pod template, such as replication controllers or deployment configurations. It can
also list environment variables in pods or any object that has a pod template. This command can also be
used on BuildConfig objects.

32.2. LIST ENVIRONMENT VARIABLES

To list environment variables in pods or pod templates:

$ oc set env <object-selection> --list [<common-options>]

This example lists all environment variables for pod p1:

$ oc set env pod/p1 --list

32.3. SET ENVIRONMENT VARIABLES

To set environment variables in the pod templates:

$ oc set env <object-selection> KEY_1=VAL_1 ... KEY_N=VAL_N [<set-env-
options>] [<common-options>]

Set environment options:

Option Description

-e, --env=<KEY>=<VAL> Set given key value pairs of environment variables.

--overwrite Confirm updating existing environment variables.

In the following example, both commands modify environment variable STORAGE in the deployment
config registry. The first adds, with value /data. The second updates, with value /opt.

$ oc set env dc/registry STORAGE=/data
$ oc set env dc/registry --overwrite STORAGE=/opt

The following example finds environment variables in the current shell whose names begin with RAILS_
and adds them to the replication controller r1 on the server:

$ env | grep RAILS_ | oc set env rc/r1 -e -

The following example does not modify the replication controller defined in file rc.json. Instead, it
writes a YAML object with updated environment STORAGE=/local to new file rc.yaml.

CHAPTER 32. MANAGING ENVIRONMENT VARIABLES

293

$ oc set env -f rc.json STORAGE=/opt -o yaml > rc.yaml

32.3.1. Automatically Added Environment Variables

Table 32.1. Automatically Added Environment Variables

Variable Name

<SVCNAME>_SERVICE_HOST

<SVCNAME>_SERVICE_PORT

Example Usage

The service KUBERNETES which exposes TCP port 53 and has been allocated cluster IP address
10.0.0.11 produces the following environment variables:

KUBERNETES_SERVICE_PORT=53
MYSQL_DATABASE=root
KUBERNETES_PORT_53_TCP=tcp://10.0.0.11:53
KUBERNETES_SERVICE_HOST=10.0.0.11

NOTE

Use the oc rsh command to SSH into your container and run oc set env to list all
available variables.

32.4. UNSET ENVIRONMENT VARIABLES

To unset environment variables in the pod templates:

$ oc set env <object-selection> KEY_1- ... KEY_N- [<common-options>]

IMPORTANT

The trailing hyphen (-, U+2D) is required.

This example removes environment variables ENV1 and ENV2 from deployment config d1:

$ oc set env dc/d1 ENV1- ENV2-

This removes environment variable ENV from all replication controllers:

$ oc set env rc --all ENV-

This removes environment variable ENV from container c1 for replication controller r1:

$ oc set env rc r1 --containers='c1' ENV-

OpenShift Container Platform 3.5 Developer Guide

294

CHAPTER 33. JOBS

33.1. OVERVIEW

A job, in contrast to a replication controller, runs a pod with any number of replicas to completion. A job
tracks the overall progress of a task and updates its status with information about active, succeeded, and
failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the Kubernetes API,
which can be managed with oc commands like other object types.

See the Kubernetes documentation for more information about jobs.

33.2. CREATING A JOB

A job configuration consists of the following key parts:

A pod template, which describes the application the pod will create.

An optional parallelism parameter, which specifies how many pod replicas running in parallel
should execute a job. If not specified, this defaults to the value in the completions parameter.

An optional completions parameter, specifying how many concurrently running pods should
execute a job. If not specified, this value defaults to one.

The following is an example of a job resource:

1. Optional value for how many pod replicas a job should run in parallel; defaults to completions.

2. Optional value for how many successful pod completions are needed to mark a job completed;
defaults to one.

3. Template for the pod the controller creates.

4. The restart policy of the pod. This does not apply to the job controller. See Section 33.2.1,
“Known Limitations” for details.

You can also create and launch a job from a single command using oc run. The following command
creates and launches the same job as specified in the previous example:

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:

 parallelism: 1 1

 completions: 1 2

 template: 3
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

 restartPolicy: OnFailure 4

CHAPTER 33. JOBS

295

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#object-types
http://kubernetes.io/docs/user-guide/jobs/

$ oc run pi --image=perl --replicas=1 --restart=OnFailure \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

33.2.1. Known Limitations

The job specification restart policy only applies to the pods, and not the job controller. However, the job
controller is hard-coded to keep retrying jobs to completion.

As such, restartPolicy: Never or --restart=Never results in the same behavior as
restartPolicy: OnFailure or --restart=OnFailure. That is, when a job fails it is restarted
automatically until it succeeds (or is manually discarded). The policy only sets which subsystem performs
the restart.

With the Never policy, the job controller performs the restart. With each attempt, the job controller
increments the number of failures in the job status and create new pods. This means that with each
failed attempt, the number of pods increases.

With the OnFailure policy, kubelet performs the restart. Each attempt does not increment the number of
failures in the job status. In addition, kubelet will retry failed jobs starting pods on the same nodes.

33.3. SCALING A JOB

A job can be scaled up or down by using the oc scale command with the --replicas option, which,
in the case of jobs, modifies the spec.parallelism parameter. This will result in modifying the
number of pod replicas running in parallel, executing a job.

The following command uses the example job above, and sets the parallelism parameter to three:

$ oc scale job pi --replicas=3

NOTE

Scaling replication controllers also uses the oc scale command with the --replicas
option, but instead changes the replicas parameter of a replication controller
configuration.

33.4. SETTING MAXIMUM DURATION

When defining a Job, you can define its maximum duration by setting the activeDeadlineSeconds
field. It is specified in seconds and is not set by default. When not set, there is no maximum duration
enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a job can be active. It tracks overall time of an execution and is irrelevant to the number
of completions (number of pod replicas needed to execute a task). After reaching the specified timeout,
the job is terminated by OpenShift Container Platform.

The following example shows the part of a Job specifying activeDeadlineSeconds field for 30
minutes:

 spec:
 activeDeadlineSeconds: 1800

OpenShift Container Platform 3.5 Developer Guide

296

CHAPTER 34. CRON JOBS

34.1. OVERVIEW

A cron job builds on a regular job by allowing you to specifically schedule how the job should be run.
Cron jobs are part of the Kubernetes API, which can be managed with oc commands like other object
types.

NOTE

As of OpenShift Container Platform 3.3.1, Cron Jobs is a feature in Technology Preview.

WARNING

A cron job creates a job object approximately once per execution time of its
schedule, but there are circumstances in which it will fail to create a job or two jobs
might be created. As a result, jobs should be idempotent.

34.2. CREATING A CRON JOB

A cron job configuration consists of the following key parts:

A schedule specified in cron format.

A job template used when creating the next job.

An optional deadline (in seconds) for starting the job if it misses its scheduled time for any
reason. Missed jobs executions will be counted as failed ones. If not specified, there is no
deadline.

ConcurrencyPolicy: An optional concurrency policy, specifying how to treat concurrent jobs
within a cron job. Only one of the following concurrent policies may be specified. If not specified,
this defaults to allowing concurrent executions.

Allow allows Cron Jobs to run concurrently.

Forbid forbids concurrent runs, skipping the next run if the previous has not finished yet.

Replace cancels the currently running job and replaces it with a new one.

An optional flag allowing the suspension of a cron job. If set to true, all subsequent executions
will be suspended.

The following is an example of a CronJob resource:

apiVersion: batch/v2alpha1
kind: CronJob
metadata:
 name: pi

CHAPTER 34. CRON JOBS

297

http://kubernetes.io/docs/user-guide/cron-jobs
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cli_reference/#object-types
https://access.redhat.com/support/offerings/techpreview
https://en.wikipedia.org/wiki/Cron

1. Schedule for the job. In this example, the job will run every minute.

2. Job template. This is similar to the job example.

3. Sets a label for jobs spawned by this cron job.

4. The restart policy of the pod. This does not apply to the job controller. See Known Issues and
Limitations for details.

NOTE

All cron job schedule times are based on the timezone of the master where the job is
initiated.

You can also create and launch a cron job from a single command using oc run. The following
command creates and launches the same cron job as specified in the previous example:

$ oc run pi --image=perl --schedule='*/1 * * * *' \
 --restart=OnFailure --labels parent="cronjobpi" \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

With oc run, the --schedule option accepts schedules in cron format.

NOTE

When creating a cron job, oc run only supports the Never or OnFailure restart
policies (--restart).

TIP

Delete cron jobs that you no longer need:

$ oc delete cronjob/<cron_job_name>

Doing this prevents them from generating unnecessary artifacts.

34.3. CLEANING UP AFTER A CRON JOB

spec:

 schedule: "*/1 * * * *" 1

 jobTemplate: 2
 spec:
 template:
 metadata:

 labels: 3
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]

 restartPolicy: OnFailure 4

OpenShift Container Platform 3.5 Developer Guide

298

https://en.wikipedia.org/wiki/Cron

Cron jobs can leave behind artifact resources such as jobs or pods. Check if any remain:

$ oc get jobs
$ oc get pods

All artifacts left over from a job execution use the job name as their prefix. For example, given the cron
job example:

$ oc get jobs
NAME DESIRED SUCCESSFUL AGE
pi-1497848100 1 1 1m
pi-1497848160 1 1 49s

$ oc get pods
NAME READY STATUS RESTARTS AGE
pi-1497848100-lxs4k 0/1 Completed 0 2m
pi-1497848160-6r0c8 0/1 Completed 0 59s

Delete each artifact if you no longer need them. To delete all jobs spawned by a cron job, specify the
label set during cron job creation:

$ oc delete jobs -l <label>

For example, to delete only the jobs generated by the cron job example:

$ oc delete jobs -l parent=cronjobpi
job "pi-1497848100" deleted
job "pi-1497848160" deleted

CHAPTER 34. CRON JOBS

299

CHAPTER 35. CREATE FROM URL

35.1. OVERVIEW

Create From URL is a function that allows you to construct a URL from an image stream, image tag, or
template.

Create from URL only works with image streams or templates from namespaces that have been
explicitly whitelisted. The whitelist contains the openshift namespace by default. To add namespaces
to the whitelist, see Configuring the Create From URL Namespace Whitelist.

You can define custom buttons.

These buttons leverage a defined URL pattern with an appropriate query string. The user is prompted to
select the project. Then, the Create from URL workflow continues.

35.2. USING AN IMAGE STREAM AND IMAGE TAG

35.2.1. Query String Parameters

Name Description Required Schema Default

imageStream The value
metadata.nam
e as defined in the
image stream to be
used.

true string

imageTag The value
spec.tags.na
me as defined in
the image stream
to be used.

true string

namespace The name of the
namespace
containing the
image stream and
image tag to use.

false string openshift

name Identifies the
resources created
for this application.

false string

OpenShift Container Platform 3.5 Developer Guide

300

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-the-create-from-url-namespace-whitelist

sourceURI The Git repository
URL containing the
application source
code.

false string

sourceRef The branch, tag, or
commit for the
application source
code specified in
sourceURI.

false string

contextDir The subdirectory
for the application
source code
specified in
sourceURI,
used as the
context directory
for the build.

false string

Name Description Required Schema Default

NOTE

Reserved characters in parameter values should be URL encoded.

35.2.1.1. Example

 create?
imageStream=nodejs&imageTag=4&name=nodejs&sourceURI=https%3A%2F%2Fgithub.c
om%2Fopenshift%2Fnodejs-ex.git&sourceRef=master&contextDir=%2F

35.3. USING A TEMPLATE

35.3.1. Query String Parameters

Name Description Required Schema Default

template The value of
metadata.nam
e as defined in the
template to be
used.

true string

CHAPTER 35. CREATE FROM URL

301

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

templatePara
msMap

A JSON
parameters map
containing the
template
parameter name
and corresponding
value you wish to
override.

false JSON

namespace The name of the
namespace
containing the
template to use.

false string openshift

Name Description Required Schema Default

NOTE

Reserved characters in parameter values should be URL encoded.

35.3.1.1. Example

 create?template=nodejs-mongodb-example&templateParamsMap=
{"SOURCE_REPOSITORY_URL"%3A"https%3A%2F%2Fgithub.com%2Fopenshift%2Fnodejs-
ex.git"}

OpenShift Container Platform 3.5 Developer Guide

302

https://en.wikipedia.org/wiki/Percent-encoding#Percent-encoding_reserved_characters

CHAPTER 36. REVISION HISTORY: DEVELOPER GUIDE

36.1. FRI FEB 23 2018

Affected Topic Description of Change

Service Accounts Noted the importance of -z flag usage when granting access to service accounts.

36.2. FRI FEB 16 2018

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

Build Inputs Added an example of a Dockerfile referencing secret data in the Docker Strategy
section.

Build Inputs Updated git clone behavior in the Git Source section.

36.3. TUE FEB 06 2018

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

Build Inputs Added an example of a Dockerfile referencing secret data in the Docker Strategy
section.

Build Inputs Updated git clone behavior in the Git Source section.

36.4. THU JAN 25 2018

CHAPTER 36. REVISION HISTORY: DEVELOPER GUIDE

303

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

Build Inputs Added an example of a Dockerfile referencing secret data in the Docker Strategy
section.

Build Inputs Updated git clone behavior in the Git Source section.

36.5. MON JAN 08 2018

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

36.6. FRI DEC 22 2017

Affected Topic Description of Change

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

36.7. MON DEC 11 2017

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

OpenShift Container Platform 3.5 Developer Guide

304

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

Affected Topic Description of Change

36.8. TUE NOV 21 2017

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

Application Life Cycle
Management →
Creating New
Applications

New section on Searching for Images, Templates, and Other Inputs when creating
new applications.

36.9. FRI NOV 10 2017

Affected Topic Description of Change

Service Accounts Changed serviceaccounts to serviceaccount in the User Names and
Groups section.

36.10. FRI NOV 03 2017

Affected Topic Description of Change

Managing Volumes Added --configmap-name to the Supported Options for Adding Volumes
table.

36.11. MON OCT 16 2017

Affected Topic Description of Change

Manging Images Clarified wording around Image Streams and added new section on Adding
Trusted Certificates for External Registries.

36.12. MON SEP 18 2017

CHAPTER 36. REVISION HISTORY: DEVELOPER GUIDE

305

Affected Topic Description of Change

Build Inputs Clarified the Automatically Adding a Source Clone Secret to a Build Configuration
section.

Integrating External
Services

Added context and use cases for the ExternalName parameter.

Pod Autoscaling Added information on how resource startup spikes are handled to avoid
autoscaling.

Managing Images Noted that importPolicy.scheduled is disabled by default.

36.13. WED SEP 06 2017

Affected Topic Description of Change

Routes Added a file path to the unsecured route CLI example in the Creating Routes
section.

36.14. FRI AUG 25 2017

Affected Topic Description of Change

Using Daemonsets Removed Technology Preview notice.

36.15. TUE JUL 18 2017

Affected Topic Description of Change

Image Signatures New topic about signing and verifying container image signatures.

36.16. WED JUL 12 2017

Affected Topic Description of Change

Developer Guide →
Integrating External
Services

Added updatePeriodSeconds and intervalSeconds to the Consume a
Service example with definitions.

Developer Guide →
Deployment Stratecties

Added updatePeriodSeconds and intervalSeconds to the Rolling
Deployment example with definitions.

OpenShift Container Platform 3.5 Developer Guide

306

36.17. WED JUL 05 2017

Affected Topic Description of Change

Downward API Updated annotation formatting in the Using the Volume Plug-in section.

Creating New
Applications

Added Specifying Build Environment Variables section.

36.18. TUE JUN 27 2017

Affected Topic Description of Change

Authorization Added the Authorization topic.

36.19. MON JUN 19 2017

Affected Topic Description of Change

Build Inputs Added proxy warning for Jenkins in the Using a Proxy section.

36.20. TUE JUN 13 2017

Affected Topic Description of Change

Managing Images Renamed section to Recommended Tagging Conventions and updated Image
Tag Naming Conventions table.

36.21. MON MAY 15 2017

Affected Topic Description of Change

Environment Variables Added Ignoring Source Files section.

36.22. WED APR 12 2017

OpenShift Container Platform 3.5 Initial Release

CHAPTER 36. REVISION HISTORY: DEVELOPER GUIDE

307

Affected Topic Description of Change

Application Life Cycle
Management →
Creating New
Applications

Added golang to the Languages Detected by new-app table.

Added information about --param-file and --env-file oc command
arguments to the Template Parameters section.

Added information about the pipeline build strategy.

Noted that any BuildConfig objects created as part of oc new-app
processing will not be updated with environment variables passed via the --e|-
-env argument.

Builds → Build Inputs Clarified when URLs can be used with binary builds.

Added details about the build.openshift.io/source-secret-
match-uri- annotation.

Added information about using URLs with oc start-build --from-file
and oc start build --from-dir.

Templates Added link to OpenShift Image Streams and Templates library in the Overview
section.

Updated the NOTE box about updating template namespace behavior in the
Object List section to reflect parameter support.

Added information about --param-file and working with a large number of
parameters to the Parameters section.

Managing Images Added new sections about the Insecure Tag Import Policy and Reference Policy.

Quotas and Limit
Ranges

Added a new section Opaque Integer Resources.

Secrets Added information about expiration to the Service Serving Certificate Secrets
section.

Cron Jobs Changed instances of "Scheduled jobs" to "Cron jobs".

Create from URL New topic on Create from URL, a function that allows you to construct a URL from
an image stream, image tag, or template.

OpenShift Container Platform 3.5 Developer Guide

308

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. APPLICATION LIFE CYCLE MANAGEMENT
	2.1. PLANNING YOUR DEVELOPMENT PROCESS
	2.1.1. Overview
	2.1.2. Using OpenShift Container Platform as Your Development Environment
	2.1.3. Bringing an Application to Deploy on OpenShift Container Platform

	2.2. CREATING NEW APPLICATIONS
	2.2.1. Overview
	2.2.2. Creating an Application Using the CLI
	2.2.2.1. Creating an Application From Source Code
	2.2.2.2. Creating an Application From an Image
	2.2.2.3. Creating an Application From a Template
	2.2.2.4. Further Modifying Application Creation

	2.2.3. Creating an Application Using the Web Console

	2.3. PROMOTING APPLICATIONS ACROSS ENVIRONMENTS
	2.3.1. Overview
	2.3.2. Application Components
	2.3.2.1. API Objects
	2.3.2.2. Images
	2.3.2.3. Summary

	2.3.3. Deployment Environments
	2.3.3.1. Considerations
	2.3.3.2. Summary

	2.3.4. Methods and Tools
	2.3.4.1. Managing API Objects
	2.3.4.2. Managing Images and Image Streams
	2.3.4.3. Summary

	2.3.5. Scenarios and Examples
	2.3.5.1. Setting up for Promotion
	2.3.5.2. Repeatable Promotion Process
	2.3.5.3. Repeatable Promotion Process Using Jenkins

	CHAPTER 3. AUTHENTICATION
	3.1. WEB CONSOLE AUTHENTICATION
	3.2. CLI AUTHENTICATION

	CHAPTER 4. AUTHORIZATION
	4.1. OVERVIEW
	4.2. CHECKING IF USERS CAN CREATE PODS
	4.3. DETERMINING WHAT YOU CAN DO AS AN AUTHENTICATED USER

	CHAPTER 5. PROJECTS
	5.1. OVERVIEW
	5.2. CREATING A PROJECT
	5.3. VIEWING PROJECTS
	5.4. CHECKING PROJECT STATUS
	5.5. FILTERING BY LABELS
	5.6. BOOKMARKING PAGE STATES
	5.7. DELETING A PROJECT

	CHAPTER 6. MIGRATING APPLICATIONS
	6.1. OVERVIEW
	6.2. MIGRATING DATABASE APPLICATIONS
	6.2.1. Overview
	6.2.2. Supported Databases
	6.2.3. MySQL
	6.2.4. PostgreSQL
	6.2.5. MongoDB

	6.3. MIGRATING WEB FRAMEWORK APPLICATIONS
	6.3.1. Overview
	6.3.2. Python
	6.3.3. Ruby
	6.3.4. PHP
	6.3.5. Perl
	6.3.6. Node.js
	6.3.7. JBoss EAP
	6.3.8. JBoss WS (Tomcat)
	6.3.9. JBoss AS (Wildfly 10)
	6.3.10. Supported JBoss/XPaas Versions

	6.4. QUICKSTART EXAMPLES
	6.4.1. Overview
	6.4.2. Workflow

	6.5. CONTINUOUS INTEGRATION AND DEPLOYMENT (CI/CD)
	6.5.1. Overview
	6.5.2. Jenkins

	6.6. WEBHOOKS AND ACTION HOOKS
	6.6.1. Overview
	6.6.2. Webhooks
	6.6.3. Action Hooks

	6.7. S2I TOOL
	6.7.1. Overview
	6.7.2. Creating a Container Image

	6.8. SUPPORT GUIDE
	6.8.1. Overview
	6.8.2. Supported Databases
	6.8.3. Supported Languages
	6.8.4. Supported Frameworks
	6.8.5. Supported Markers
	6.8.6. Supported Environment Variables

	CHAPTER 7. APPLICATION TUTORIALS
	7.1. OVERVIEW
	7.2. QUICKSTART TEMPLATES
	7.2.1. Overview
	7.2.2. Web Framework Quickstart Templates

	7.3. RUBY ON RAILS
	7.3.1. Overview
	7.3.2. Local Workstation Setup
	7.3.2.1. Setting Up the Database

	7.3.3. Writing Your Application
	7.3.3.1. Creating a Welcome Page
	7.3.3.2. Configuring the Application for OpenShift Container Platform
	7.3.3.3. Storing Your Application in Git

	7.3.4. Deploying Your Application to OpenShift Container Platform
	7.3.4.1. Creating the Database Service
	7.3.4.2. Creating the Frontend Service
	7.3.4.3. Creating a Route for Your Application

	7.4. SETTING UP A NEXUS MIRROR FOR MAVEN
	7.4.1. Introduction
	7.4.2. Setting up Nexus
	7.4.2.1. Using Probes to Check for Success
	7.4.2.2. Adding Persistence to Nexus

	7.4.3. Connecting to Nexus
	7.4.4. Confirming Success
	7.4.5. Additional Resources

	CHAPTER 8. BUILDS
	8.1. HOW BUILDS WORK
	8.1.1. What Is a Build?
	8.1.2. What Is a BuildConfig?

	8.2. BASIC BUILD OPERATIONS
	8.2.1. Starting a Build
	8.2.2. Canceling a Build
	8.2.3. Deleting a BuildConfig
	8.2.4. Viewing Build Details
	8.2.5. Accessing Build Logs

	8.3. BUILD INPUTS
	8.3.1. How Build Inputs Work
	8.3.2. Dockerfile Source
	8.3.3. Image Source
	8.3.4. Git Source
	8.3.4.1. Using a Proxy
	8.3.4.2. Source Clone Secrets

	8.3.5. Binary (Local) Source
	8.3.6. Input Secrets
	8.3.6.1. Adding Input Secrets
	8.3.6.2. Source-to-Image Strategy
	8.3.6.3. Docker Strategy
	8.3.6.4. Custom Strategy

	8.3.7. Using External Artifacts
	8.3.8. Using Docker Credentials for Private Registries

	8.4. BUILD OUTPUT
	8.4.1. Build Output Overview
	8.4.2. Output Image Environment Variables
	8.4.3. Output Image Labels
	8.4.4. Output Image Digest
	8.4.5. Using Docker Credentials for Private Registries

	8.5. BUILD STRATEGY OPTIONS
	8.5.1. Source-to-Image Strategy Options
	8.5.1.1. Force Pull
	8.5.1.2. Incremental Builds
	8.5.1.3. Extended Builds
	8.5.1.4. Overriding Builder Image Scripts
	8.5.1.5. Environment Variables
	8.5.1.6. Adding Secrets via Web Console
	8.5.1.7. Ignoring Source Files

	8.5.2. Docker Strategy Options
	8.5.2.1. FROM Image
	8.5.2.2. Dockerfile Path
	8.5.2.3. No Cache
	8.5.2.4. Force Pull
	8.5.2.5. Environment Variables
	8.5.2.6. Adding Secrets via Web Console

	8.5.3. Custom Strategy Options
	8.5.3.1. FROM Image
	8.5.3.2. Exposing the Docker Socket
	8.5.3.3. Secrets
	8.5.3.4. Force Pull
	8.5.3.5. Environment Variables

	8.5.4. Pipeline Strategy Options
	8.5.4.1. Providing the Jenkinsfile

	8.6. TRIGGERING BUILDS
	8.6.1. Build Triggers Overview
	8.6.2. Webhook Triggers
	8.6.2.1. GitHub Webhooks
	8.6.2.2. Generic Webhooks
	8.6.2.3. Displaying Webhook URLs

	8.6.3. Image Change Triggers
	8.6.4. Configuration Change Triggers

	8.7. BUILD HOOKS
	8.7.1. Build Hooks Overview
	8.7.2. Configuring Post Commit Build Hooks
	8.7.2.1. Using the CLI

	8.8. BUILD RUN POLICY
	8.8.1. Build Run Policy Overview
	8.8.2. Serial Run Policy
	8.8.3. SerialLatestOnly Run Policy
	8.8.4. Parallel Run Policy

	8.9. ADVANCED BUILD OPERATIONS
	8.9.1. Setting Build Resources
	8.9.2. Setting Maximum Duration
	8.9.3. Assigning Builds to Specific Nodes
	8.9.4. Chaining Builds

	8.10. BUILD TROUBLESHOOTING
	8.10.1. Requested Access to Resources Denied

	CHAPTER 9. DEPLOYMENTS
	9.1. HOW DEPLOYMENTS WORK
	9.1.1. What Is a Deployment?
	9.1.2. Creating a Deployment Configuration

	9.2. BASIC DEPLOYMENT OPERATIONS
	9.2.1. Starting a Deployment
	9.2.2. Viewing a Deployment
	9.2.3. Rolling Back a Deployment
	9.2.4. Executing Commands Inside a Container
	9.2.5. Viewing Deployment Logs
	9.2.6. Setting Deployment Triggers
	9.2.6.1. Configuration Change Trigger
	9.2.6.2. ImageChange Trigger

	9.2.7. Setting Deployment Resources
	9.2.8. Manual Scaling
	9.2.9. Assigning Pods to Specific Nodes
	9.2.10. Running a Pod with a Different Service Account
	9.2.11. Adding Secrets to Deployment Configurations from the Web Console

	9.3. DEPLOYMENT STRATEGIES
	9.3.1. What Are Deployment Strategies?
	9.3.2. Rolling Strategy
	9.3.2.1. Canary Deployments
	9.3.2.2. When to Use a Rolling Deployment
	9.3.2.3. Rolling Example

	9.3.3. Recreate Strategy
	9.3.3.1. When to Use a Recreate Deployment

	9.3.4. Custom Strategy
	9.3.5. Lifecycle Hooks
	9.3.5.1. Pod-based Lifecycle Hook
	9.3.5.2. Using the Command Line

	9.4. ADVANCED DEPLOYMENT STRATEGIES
	9.4.1. Blue-Green Deployment
	9.4.1.1. When to Use a Blue-Green Deployment
	9.4.1.2. Blue-Green Deployment Example

	9.4.2. A/B Deployment
	9.4.2.1. When to Use an A/B Deployment
	9.4.2.2. A/B Deployment Example

	9.4.3. Proxy Shard / Traffic Splitter
	9.4.4. N-1 Compatibility
	9.4.5. Graceful Termination

	9.5. KUBERNETES DEPLOYMENTS SUPPORT
	9.5.1. New Object Type: Deployments
	9.5.2. Kubernetes Deployments vs Deployment Configurations
	9.5.2.1. Deployment Configuration-Specific Features
	9.5.2.2. Kubernetes Deployment-Specific Features

	CHAPTER 10. TEMPLATES
	10.1. OVERVIEW
	10.2. UPLOADING A TEMPLATE
	10.3. CREATING FROM TEMPLATES USING THE WEB CONSOLE
	10.4. CREATING FROM TEMPLATES USING THE CLI
	10.4.1. Labels
	10.4.2. Parameters
	10.4.3. Generating a List of Objects

	10.5. MODIFYING AN UPLOADED TEMPLATE
	10.6. USING THE INSTANT APP AND QUICKSTART TEMPLATES
	10.7. WRITING TEMPLATES
	10.7.1. Description
	10.7.2. Labels
	10.7.3. Parameters
	10.7.4. Object List
	10.7.5. Other Recommendations
	10.7.6. Creating a Template from Existing Objects

	CHAPTER 11. OPENING A REMOTE SHELL TO CONTAINERS
	11.1. OVERVIEW
	11.2. START A SECURE SHELL SESSION
	11.3. SECURE SHELL SESSION HELP

	CHAPTER 12. SERVICE ACCOUNTS
	12.1. OVERVIEW
	12.2. USER NAMES AND GROUPS
	12.3. DEFAULT SERVICE ACCOUNTS AND ROLES
	12.4. MANAGING SERVICE ACCOUNTS
	12.5. ENABLING SERVICE ACCOUNT AUTHENTICATION
	12.6. MANAGED SERVICE ACCOUNTS
	12.7. INFRASTRUCTURE SERVICE ACCOUNTS
	12.8. SERVICE ACCOUNTS AND SECRETS
	12.9. MANAGING ALLOWED SECRETS
	12.10. USING A SERVICE ACCOUNT’S CREDENTIALS INSIDE A CONTAINER
	12.11. USING A SERVICE ACCOUNT’S CREDENTIALS EXTERNALLY

	CHAPTER 13. MANAGING IMAGES
	13.1. OVERVIEW
	13.2. TAGGING IMAGES
	13.2.1. Adding Tags to Image Streams
	13.2.2. Recommended Tagging Conventions
	13.2.3. Removing Tags from Image Streams
	13.2.4. Referencing Images in Image Streams

	13.3. IMAGE PULL POLICY
	13.4. ACCESSING THE INTERNAL REGISTRY
	13.5. USING IMAGE PULL SECRETS
	13.5.1. Allowing Pods to Reference Images Across Projects
	13.5.2. Allowing Pods to Reference Images from Other Secured Registries

	13.6. IMPORTING TAG AND IMAGE METADATA
	13.6.1. Importing Images from Insecure Registries
	13.6.1.1. ImageStream Tag Policies

	13.6.2. Importing Images from Private Registries
	13.6.3. Adding Trusted Certificates for External Registries
	13.6.4. Importing Images Across Projects
	13.6.5. Creating an Image Stream by Manually Pushing an Image

	13.7. WRITING IMAGE STREAM DEFINITIONS

	CHAPTER 14. IMAGE SIGNATURES
	14.1. OVERVIEW
	14.2. SIGNING IMAGES USING ATOMIC CLI
	14.3. ACCESSING IMAGE SIGNATURES USING REGISTRY API
	14.3.1. Writing Image Signatures
	14.3.2. Reading Image Signatures

	14.4. VERIFYING IMAGE SIGNATURES USING OPENSHIFT CLI

	CHAPTER 15. QUOTAS AND LIMIT RANGES
	15.1. OVERVIEW
	15.2. QUOTAS
	15.2.1. Viewing Quotas
	15.2.2. Resources Managed by Quota
	15.2.3. Quota Scopes
	15.2.4. Quota Enforcement
	15.2.5. Requests vs Limits

	15.3. LIMIT RANGES
	15.3.1. Viewing Limit Ranges
	15.3.2. Container Limits
	15.3.3. Pod Limits

	15.4. COMPUTE RESOURCES
	15.4.1. CPU Requests
	15.4.2. Viewing Compute Resources
	15.4.3. CPU Limits
	15.4.4. Memory Requests
	15.4.5. Memory Limits
	15.4.6. Quality of Service Tiers
	15.4.7. Specifying Compute Resources via CLI
	15.4.8. Opaque Integer Resources

	15.5. PROJECT RESOURCE LIMITS

	CHAPTER 16. GETTING TRAFFIC INTO A CLUSTER
	16.1. GETTING TRAFFIC INTO A CLUSTER
	16.2. USING A ROUTER TO GET TRAFFIC INTO THE CLUSTER
	16.2.1. Overview
	16.2.2. Administrator Prerequisites
	16.2.2.1. Defining the Public IP Range

	16.2.3. Create a Project and Service
	16.2.4. Expose the Service to Create a Route
	16.2.5. Configure the Router
	16.2.6. Configure IP Failover using VIPs

	16.3. USING A LOAD BALANCER TO GET TRAFFIC INTO THE CLUSTER
	16.3.1. Overview
	16.3.2. Administrator Prerequisites
	16.3.2.1. Defining the Public IP Range

	16.3.3. Create a Project and Service
	16.3.4. Expose the Service to Create a Route
	16.3.5. Create the Load Balancer Service
	16.3.6. Configuring Networking
	16.3.7. Configure IP Failover using VIPs

	16.4. USING A SERVICE EXTERNAL IP TO GET TRAFFIC INTO THE CLUSTER
	16.4.1. Overview
	16.4.2. Administrator Prerequisites
	16.4.2.1. Defining the Public IP Range

	16.4.3. Create a Project and Service
	16.4.4. Expose the Service to Create a Route
	16.4.5. Assigning an IP Address to the Service
	16.4.6. Configuring Networking
	16.4.7. Configure IP Failover using VIPs

	16.5. USING A NODEPORT TO GET TRAFFIC INTO THE CLUSTER
	16.5.1. Overview
	16.5.2. Administrator Prerequisites
	16.5.3. Configuring the Service

	CHAPTER 17. ROUTES
	17.1. OVERVIEW
	17.2. CREATING ROUTES
	17.3. LOAD BALANCING FOR A/B TESTING

	CHAPTER 18. INTEGRATING EXTERNAL SERVICES
	18.1. OVERVIEW
	18.2. DEFINING A SERVICE FOR AN EXTERNAL DATABASE
	18.2.1. Step 1: Define a Service
	18.2.1.1. Using an IP address
	18.2.1.2. Using an External Domain Name

	18.2.2. Step 2: Consume a Service

	18.3. EXTERNAL SAAS PROVIDER
	18.3.1. Using an IP address and Endpoints
	18.3.2. Using an External Domain Name

	CHAPTER 19. SECRETS
	19.1. USING SECRETS
	19.1.1. Properties of Secrets
	19.1.2. Creating Secrets
	19.1.3. Types of Secrets
	19.1.4. Updating Secrets

	19.2. SECRETS IN VOLUMES AND ENVIRONMENT VARIABLES
	19.3. IMAGE PULL SECRETS
	19.4. SOURCE CLONE SECRETS
	19.5. SERVICE SERVING CERTIFICATE SECRETS
	19.6. RESTRICTIONS
	19.6.1. Secret Data Keys

	19.7. EXAMPLES
	19.8. TROUBLESHOOTING

	CHAPTER 20. CONFIGMAPS
	20.1. OVERVIEW
	20.2. CREATING CONFIGMAPS
	20.2.1. Creating from Directories
	20.2.2. Creating from Files
	20.2.3. Creating from Literal Values

	20.3. USE CASES: CONSUMING CONFIGMAPS IN PODS
	20.3.1. Consuming in Environment Variables
	20.3.2. Setting Command-line Arguments
	20.3.3. Consuming in Volumes

	20.4. EXAMPLE: CONFIGURING REDIS
	20.5. RESTRICTIONS

	CHAPTER 21. USING DAEMONSETS
	21.1. OVERVIEW
	21.2. CREATING DAEMONSETS

	CHAPTER 22. POD AUTOSCALING
	22.1. OVERVIEW
	22.2. REQUIREMENTS FOR USING HORIZONTAL POD AUTOSCALERS
	22.3. SUPPORTED METRICS
	22.4. AUTOSCALING
	22.5. CREATING A HORIZONTAL POD AUTOSCALER
	22.6. VIEWING A HORIZONTAL POD AUTOSCALER

	CHAPTER 23. MANAGING VOLUMES
	23.1. OVERVIEW
	23.2. GENERAL CLI USAGE
	23.3. ADDING VOLUMES
	Examples

	23.4. UPDATING VOLUMES
	Examples

	23.5. REMOVING VOLUMES
	Examples

	23.6. LISTING VOLUMES
	Examples

	23.7. SPECIFYING A SUB-PATH

	CHAPTER 24. USING PERSISTENT VOLUMES
	24.1. OVERVIEW
	24.2. REQUESTING STORAGE
	24.3. VOLUME AND CLAIM BINDING
	24.4. CLAIMS AS VOLUMES IN PODS
	24.5. VOLUME AND CLAIM PRE-BINDING

	CHAPTER 25. EXECUTING REMOTE COMMANDS
	25.1. OVERVIEW
	25.2. BASIC USAGE
	25.3. PROTOCOL

	CHAPTER 26. COPYING FILES TO OR FROM A CONTAINER
	26.1. OVERVIEW
	26.2. BASIC USAGE
	26.3. BACKING UP AND RESTORING DATABASES
	26.4. REQUIREMENTS
	26.5. SPECIFYING THE COPY SOURCE
	26.6. SPECIFYING THE COPY DESTINATION
	26.7. DELETING FILES AT THE DESTINATION
	26.8. CONTINUOUS SYNCING ON FILE CHANGE
	26.9. ADVANCED RSYNC FEATURES

	CHAPTER 27. PORT FORWARDING
	27.1. OVERVIEW
	27.2. BASIC USAGE
	27.3. PROTOCOL

	CHAPTER 28. SHARED MEMORY
	28.1. OVERVIEW
	28.2. POSIX SHARED MEMORY

	CHAPTER 29. APPLICATION HEALTH
	29.1. OVERVIEW
	29.2. CONTAINER HEALTH CHECKS USING PROBES

	CHAPTER 30. EVENTS
	30.1. OVERVIEW
	30.2. VIEWING EVENTS WITH THE CLI
	30.3. VIEWING EVENTS IN THE CONSOLE
	30.4. COMPREHENSIVE LIST OF EVENTS

	CHAPTER 31. DOWNWARD API
	31.1. OVERVIEW
	31.2. SELECTING FIELDS
	31.3. CONSUMING THE CONTAINER VALUES USING THE DOWNWARD API
	31.3.1. Using Environment Variables
	31.3.2. Using the Volume Plug-in

	31.4. CONSUMING CONTAINER RESOURCES USING THE DOWNWARD API
	31.4.1. Using Environment Variables
	31.4.2. Using the Volume Plug-in

	CHAPTER 32. MANAGING ENVIRONMENT VARIABLES
	32.1. SETTING AND UNSETTING ENVIRONMENT VARIABLES
	32.2. LIST ENVIRONMENT VARIABLES
	32.3. SET ENVIRONMENT VARIABLES
	32.3.1. Automatically Added Environment Variables

	32.4. UNSET ENVIRONMENT VARIABLES

	CHAPTER 33. JOBS
	33.1. OVERVIEW
	33.2. CREATING A JOB
	33.2.1. Known Limitations

	33.3. SCALING A JOB
	33.4. SETTING MAXIMUM DURATION

	CHAPTER 34. CRON JOBS
	34.1. OVERVIEW
	34.2. CREATING A CRON JOB
	34.3. CLEANING UP AFTER A CRON JOB

	CHAPTER 35. CREATE FROM URL
	35.1. OVERVIEW
	35.2. USING AN IMAGE STREAM AND IMAGE TAG
	35.2.1. Query String Parameters
	35.2.1.1. Example

	35.3. USING A TEMPLATE
	35.3.1. Query String Parameters
	35.3.1.1. Example

	CHAPTER 36. REVISION HISTORY: DEVELOPER GUIDE
	36.1. FRI FEB 23 2018
	36.2. FRI FEB 16 2018
	36.3. TUE FEB 06 2018
	36.4. THU JAN 25 2018
	36.5. MON JAN 08 2018
	36.6. FRI DEC 22 2017
	36.7. MON DEC 11 2017
	36.8. TUE NOV 21 2017
	36.9. FRI NOV 10 2017
	36.10. FRI NOV 03 2017
	36.11. MON OCT 16 2017
	36.12. MON SEP 18 2017
	36.13. WED SEP 06 2017
	36.14. FRI AUG 25 2017
	36.15. TUE JUL 18 2017
	36.16. WED JUL 12 2017
	36.17. WED JUL 05 2017
	36.18. TUE JUN 27 2017
	36.19. MON JUN 19 2017
	36.20. TUE JUN 13 2017
	36.21. MON MAY 15 2017
	36.22. WED APR 12 2017

