‘® redhat.

JBoss Enterprise Application Platform
Common Criteria Certification 5

Transactions Administrators Guide

for use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Last Updated: 2017-11-20

JBoss Enterprise Application Platform Common Criteria Certification5
Transactions Administrators Guide

for use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Mark Little
mlittle@redhat.com

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is the JBoss Transactions Administrators Guide for JBoss Enterprise Application Platform
5.1.0.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

CHAPTER 1. INTRODUCTION ... ittt ittt et e e e s ta e s a s a s a e asanana s asnnnnnnnn 3
CHAPTER 2. OBJECTSTORE MANAGEMENTttt iiinaa i anasaennnnsasasnnnnnnnn 4
CHAPTER 3. OTS AND J2EE TRANSACTION SERVICE MANAGEMENTcciiiiiiiiiiiianns, 5
3.1. STARTING THE RUN-TIME SYSTEM 5
3.2. OTS CONFIGURATION FILE 5
3.3. NAME SERVICE 6
3.4. RESOLVE_INITIAL_REFERENCES 6
3.5. RESOLUTION SERVICE TABLE 6
CHAPTER 4. XA SPECIFIC MANAGEMENTttt i e e sa e e ainnnnsnsasnannnnnn 7
4.1. XA RECOVERY 7
CHAPTER 5. WEB SERVICE TRANSACTION SERVICE MANAGEMENT ciiiiiiirnnnnnnnnnn, 8
5.1. THE TRANSACTION MANAGER 8
5.1.1. Configuring the Transaction Manager 8
5.1.2. Deploying the Transaction Manager 9
5.1.3. Deployment descriptors 10
CHAPTER 6. JBOSS TRANSACTION SERVER RUN-TIME INFORMATION c.ciiiiiirinnnnnn, 11
CHAPTER 7. RESOURCE RECOVERY IN JBOSS TRANSACTIONSERVICEccivivnnnnn, 12
7.1. INTRODUCTION 12
7.2. ASSUMPTIONS 12
7.3. ANOTE ABOUT CLUSTERS 12
7.4. RECOVERY MODULES 12
7.4.1. JDBC Recovery 12
7.4.1.1. Vendor-Specific Database Information 12

7.4.2. JMS Recovery 13

7.5. NOTES FOR JMS CLUSTERS 13
CHAPTER 8. SELECTING THE JTA IMPLEMENTATIONitii ittt i e aana e 15
CHAPTER 9. ORB SPECIFIC CONFIGURATIONSiiiiii it iie e ti i e sannennsasannnnnnnns 16
CHAPTER 10. INITIALIZING JBOSS TRANSACTION SERVICE APPLICATIONSccivuennn. 17
CHAPTER 11. ERRORS AND EXCEPTIONSttt ittt e e i e asannnnnsasannnnnnnns 18
APPENDIX A. REVISION HISTORY ...ttt it te e et ata e asa s a e asananansnsarnnnnnnns 19

Transactions Administrators Guide

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

JBoss Transaction Service generates few administrative tasks. It relies on proper functioning of the
underlying operating system and infrastructure. As the administrator, keep the following things in mind:

1. JBoss Transaction Service does not provide a security layer. The objects stored in the JBoss
Transactions Object Store are typically owned by the user running the application that created
them. The Object Store and Object Manager facilities do not enforce ownership of objects.
Ownership of objects is not checked or enforced by the Transaction Manager.

2. Persistent objects created in the Object Store are never deleted unless the
StateManager .destroy method is invoked on an object, or an application explicitly deletes
them. This means that the Object Store gradually accumulates garbage, especially during
application development and testing phases. JBoss Transaction Service provides no automated
garbage collection facility. This lack of garbage collection can create dangling references. Here
is an example of a dangling reference. A persistent object called ObjectA stores a Uid for
ObjectB, which is also a persistent object, in its passive representation on disk. An application
can delete ObjectB even though ObjectA still contains a reference to it. When ObjectA is next
activated and attempts to access ObjectB, a run-time error occurs.

3. JBoss Transaction Service includes no version control of objects or database reconfiguration in
the event of class structure changes. If you change the definition of a class of persistent objects,
you must ensure that existing instances of the object in the Object Store are converted to the
new representation. The JBoss Transactions Service software cannot detect or correct
references to old object state by new operation versions or vice versa.

4. Object store management is critically important to the transaction service.

Transactions Administrators Guide

CHAPTER 2. OBJECTSTORE MANAGEMENT

Within the Transaction Service installation, the Object Store is updated regularly, whenever transactions
are created, or when Transactional Objects for Java is used. In a failure-free environment, the only
object states within the object store are those representing objects created with the Transactional
Objects for Java API.

However, if failures occur, transaction logs may remain in the object store until crash recovery facilities
have resolved the transactions they represent. Therefore, it is very important that the contents of the
object store are not deleted inadvertently, as this will make it impossible to resolve in-doubt transactions.
In addition, if multiple users share the same object store, they must understand that it is not an exclusive
resource, and not delete transaction logs without careful consideration.

CHAPTER 3. OTS AND J2EE TRANSACTION SERVICE MANAGEMENT

CHAPTER 3. OTS AND J2EE TRANSACTION SERVICE
MANAGEMENT

3.1. STARTING THE RUN-TIME SYSTEM

Run-time support for the JBoss Transaction Service consists of run-time packages and the OTS
Transaction Manager server. By default JBoss Transaction Service does not use a separate Transaction
Manager server. Instead, transaction managers are co-located with each application process. This
improves performance and application fault-tolerance by removing external dependencies of applications
upon other services for proper function.

If your application requires a separate transaction manager, set the
com.arjuna.ats.jts.transactionManager environment variable to yes. The system locates the
transaction manager using an ORB-specific mechanism. It might be registered with a name server,
added to the ORB’s initial references, listed in a references file specific to JBoss Transaction Service, or
located by the ORB’s specific location mechanism.

You can override the default registration mechanism by setting the
com.arjuna.orbportability.resolveService environment variable to one of the following
values:

CONFIGURATION_FILE, the default value

causes the system to use the CosServices.cfqg file.

NAME_SERVICE

JBoss Transaction Service attempts to use a name service to register the transaction factory. If this is
not supported by the ORB, an exception will be thrown.

BIND_CONNECT

JBoss Transaction Service uses the ORB-specific bind mechanism. If this is not supported by the
ORB, an exception will be thrown.

RESOLVE_INITIAL_REFERENCES

JBoss Transaction Service attempts to register the transaction service with the ORB's initial service
references.

3.2. OTS CONFIGURATION FILE

Similar to the RESOLVE_INITIAL_REFERENCES option, JBoss Transaction Service supports an initial
reference file where references for specific services can be stored and used at run-time. The file,
CosServices.cfg, consists of two columns: the service name (which is always
TransactionService if you are using OTS server) and the IOR, separated by a single space.
CosServices.cfg normally resides in the etc directory of the JBoss Transaction Service installation,
although the actual location is determined at run-time by searching the CLASSPATH for a copy of the file
in an etc directory or the location of the TransactionService properties file directory.

The OTS server creates this file if not found, and registers itself within the file. Stale information is
automatically removed. Machines sharing the same transaction server need access to either this file
itself, or a copy of it.

Transactions Administrators Guide

You can override the name and location of the file using the
com.arjuna.orbportability.initialReferencesFile and
com.arjuna.orbportability.initialReferencesRoot variables, respectively.

com.arjuna.orbportability.initialReferencesFile=myFile
com.arjuna.orbportability.initialReferencesRoot=c:\\temp

3.3. NAME SERVICE

If your ORB supports a name service, and JBoss Transaction Service has been configured to use it, the
transaction manager will automatically be registered with it.

NOTE

This option is not used for JacORB

3.4. RESOLVE_INITIAL_REFERENCES

Currently this option is only supported for JacORB.

3.5. RESOLUTION SERVICE TABLE

The following table summarizes the different ways in which the OTS transaction manager may be
located on specific ORBs:

Table 3.1. Locating the OTS transaction manager server

Resolution Mechanism ORB

OTS configuration file All available ORBs
Name Service JacORB
resolve_initial_references JacORB

CHAPTER 4. XA SPECIFIC MANAGEMENT

CHAPTER 4. XA SPECIFIC MANAGEMENT

Each XA Xid that JBoss Transaction Service creates needs a unique node identifier encoded within it.
JBoss Transaction Service can only recover transactions and states that match a specified node
identifier, which is passed to JBoss Transaction Service via the
com.arjuna.ats.arjuna.xa.nodeIdentifier property. This value must be unique across all your
JBoss Transaction Service instances. If no value is given, JBoss Transaction Service will generate one
and report the value via the logging infrastructure.

4.1. XA RECOVERY

When running XA recovery, JBoss Transaction Service must be told which types of Xid it can recover.
The node identifier to use should be provided to JBoss Transaction Service in a property that starts with
the name com.arjuna.ats.jta.xaRecoveryNode. You can pass multiple values. A value of *
forces JBoss Transaction Service to recover (and possibly rollback) all transactions, regardless of their
node identifier. Use this option with extreme caution.

More information about recovery can be found in the Failure and Recovery chapter.

Transactions Administrators Guide

CHAPTER 5. WEB SERVICE TRANSACTION SERVICE
MANAGEMENT

The basic building blocks of a transactional Web Services application are:
e the application itself
e the Web services that the application consumes
e the Transaction Manager
e the transaction participants which support those Web services
In a typical deployment, a single developer is not likely to support all of these roles. An overview is

presented because developers often produce services, or applications that consume services, while
system administrators run the transaction-management infrastructure.

5.1. THE TRANSACTION MANAGER

The transaction manager is a Web service which coordinates JBoss Transaction Service transactions. It
is the only software component in the JBoss Transaction Service that is meant to be run directly as a
network service, instead of supporting end-user code. The transaction manager runs as a JAXM
request/response Web service.

IMPORTANT

When starting up an application server instance that has JBoss Transaction Service
deployed within it, you may see various error messages in the console or log. Here is one
such message:

16:53:38,850 ERROR [STDERR] Message Listener Service: started,
message listener jndi name activationcoordinator

Messages like these are for information purposes, not actual errors.

5.1.1. Configuring the Transaction Manager

The Transaction Manager and related infrastructure are configured by means of properties files:
e wscf.xml
e wst.xml
e wstx.xml

These files are located in the conf directory and are used to configure the demo application and the
standalone module.

For the most part, the default values in these files do not need to be altered. However, the
com.arjuna.ats.arjuna.objectstore.objectStoreDir property determines the location of the persistent store
used to record transaction state. The default value of C: /temp/0bjectStore should be changed to a
value appropriate to your system. In a production environment, this directory should be located on fault-
tolerant media, such as a RAID array.

CHAPTER 5. WEB SERVICE TRANSACTION SERVICE MANAGEMENT

When a standalone coordinator is being used by an application, you must enable and modify two
additional properties in the wstx . xm1 file:

e com.arjuna.mw.wst.coordinatorURL
e com.arjuna.mw.wst.terminatorURL
These properties represent the URLs used by the client application to contact the standalone

coordinator. They should be configured with the correct host name and port of the standalone
coordinator.

NOTE

JBoss Transaction Service is highly modular. In order to allow for flexible deployment of
individual components, the same property values are sometimes needed in more than
one configuration file. For the majority of configurations, you should maintain consistent
values for properties that are defined in more than one file.

5.1.2. Deploying the Transaction Manager

The Web Service Transaction Manager component of the Transaction Service consists of a number of
JAR files which contain the application’s class files, as well as Web service (WAR) files which expose
the necessary services. Programmers include all these components in their application EAR file during
application development, to simplify deployment of the transaction infrastructure. In production, you can
install the Transaction Manager as a stand-alone application, to centralize configuration and
management at the server level. The demonstration application shipped with JBoss Transaction Server
includes a sample deployment descriptor which includes the Transaction Manager components in an
application.

JBoss Transaction Service uses fixed endpoints for its underlying protocol communication. Therefore,
problems may arise if multiple applications using the Transaction Service are deployed to the same
server concurrently. To deploy several transactional applications in the same server, deploy the
Transaction Manager as a separate application, rather than embedding it within the deployment of
individual applications.

The coordinator directory in the JBoss Transaction Service installation assists in the configuration and
deployment of a stand-alone transaction manager. In order to use this, you must:

e Have JBoss Enterprise Application Platform 5 installed

e Install ant 1.4 or later.

IMPORTANT

The application server installation must be different from the one that clients and services
are deployed into. Otherwise, conflicts may occur between the various JBoss Transaction
Service components.

Edit the build. xml included with the coordinator, so that it points to the application server installation
where the transaction coordinator will be deployed, and the location of the JBoss Transaction Service
installation. The files ws-c_jaxm_web-app.xml andws-t_jaxm_web-app.xmlin the dd/ directory
of the coordinator are the deployment descriptors for the WS-C and WS-T WAR files. They contain
templated URLs. During the build phase, ant substitutes the hostname and port values from the
build.xml into these files.

Transactions Administrators Guide

Run ant, with target deploy-weblogic, deploy-jboss or deploy-webmethods, to create and
deploy a new coordinator into the correct application server installation.

Next, point your client at the required coordinator, by generating the demo application and specifying the
port and hostname of the coordinator.

5.1.3. Deployment descriptors

It is not generally necessary to change the contents of the various deployment descriptors used by
JBoss Transaction Service. However, if you do need to modify them they are all included in the
coordinator module.

Not all JBoss Transaction Service components have ready access to the information in the deployment
descriptors. Therefore, if you modify the JNDI names used by any of the WS-C or WS-T deployment

descriptors, you may need to inform other JBoss Transaction Service components at run-time, by setting
an appropriate property in the wstx.xml configuration file.

The Table 5.1, “Deployment descriptor values and properties” table shows the default JNDI names used
by the deployment descriptors and the corresponding property to set if the default value is changed.

Table 5.1. Deployment descriptor values and properties

JNDI Name Property

10

Activationrequester

Activationcoordinator

Completionparticipant

Registrationrequester

durable2pcdispatcher

durable2pcparticipant

volatile2pcdispatcher

volatile2pcparticipant

businessagreementwithparticipantcompletiondispatch
er

businessagreementwithparticipantcompletionparticipa
nt

businessagreementwithcoordinatorcompletiondispatc
her

businessagreementwithcoordinatorcompletionparticip
ant

com.arjuna.mw.wst.at.activationrequester

com.arjuna.mw.wst.at.activationcoordinator

com.arjuna.mw.wst.at.completionparticipant

com.arjuna.mw.wst.at.registrationrequester

com.arjuna.mw.wst.at.durable2pcdispatcher

com.arjuna.mw.wst.at.durable2pcparticipant

com.arjuna.mw.wst.at.volatile2pcdispatcher

com.arjuna.mw.wst.at.volatile2pcparticipant

com.arjuna.mw.wst.ba.businessagreementwpcdispat
cher

com.arjuna.mw.wst.ba.businessagreementwpcpartici
pant

com.arjuna.mw.wst.ba.businessagreementwccdispat
cher

com.arjuna.mw.wst.ba.businessagreementwccpartici
pant

CHAPTER 6. JBOSS TRANSACTION SERVER RUN-TIME INFORMATION

CHAPTER 6. JBOSS TRANSACTION SERVER RUN-TIME
INFORMATION

Each JBoss Transaction Server module contains an Info class. This class provides a toString
method, which returns an XML dump of the configuration information for the module in question. See
Example 6.1, “Using the toString Method” for an example of the output.

Example 6.1. Using the toString Method
<module-info>
<source-identifier>unknown</source-identifier>
<build-information>
Arjuna Technologies [mlittle] (Windows 2000 5.0)

</build-information>
<version>unknown</version>
<date>2002/06/15 04:06 PM</date>
<notes></notes>
<configuration>

<properties-file dir="null">arjuna.properties</properties-file>

<object-store-root>null</object-store-root>

</configuration>
</module-info>

11

Transactions Administrators Guide

CHAPTER 7. RESOURCE RECOVERY IN JBOSS
TRANSACTION SERVICE

7.1. INTRODUCTION

JBoss Transaction Service is a crash tolerant transaction manager. When enlisting XAResources such
as JDBC connections defined with <xa-datasource>, or JMS connections using JBoss Messaging in a 2-
phase transaction, JBoss Transaction Service keeps a transaction log that allows recovery if the
application server crashes during a transaction. If an appropriate recovery module is configured, most
failed transactions can be recovered automatically when all resources become available again.

7.2. ASSUMPTIONS

The configuration options mentioned here are contained by default in the jbossts-properties.xml
file, located in your server configuration's conf directory. For a server installed at JBOSS_HOME using
the default configuration, the correct file path is: JBOSS_HOME/server/default/conf/jbossts-
properties.xml

7.3. ANOTE ABOUT CLUSTERS

Each application server instance is responsible for recovering transactions it was coordinating.
Commonly, a single database serves multiple application servers, and thus participates in transactions
from multiple coordinators. During recovery, JBoss Transaction Service requests a list of in-doubt
transactions which it can potentially recover, from each application server. The database returns all in-
doubt transactions, including ones that may not have been coordinated by a given instance. To
effectively separate each node's transactions, you must configure a unique node id for each application
server instance that shares a common database, by setting a unique value for the following property:

I <property name="com.arjuna.ats.arjuna.xa.nodeIdentifier" value="1"/>

You also need an element that indicates what node needs the recovery. This needs to match the
nodeIdentifier configured above.

I <property name="com.arjuna.ats.jta.xaRecoveryNode" value="1"/>

7.4. RECOVERY MODULES

Each XA resource for which recovery is desired needs a corresponding recovery module configured in
the "jta" section of jbossjta-properties.xml. Each recovery module must extend

com.arjuna.ats.jta.recovery.XAResourceRecovery. We provide implementations for JDBC
and JMS XA resources.

7.4.1. JDBC Recovery

JBoss Enterprise Application Platform now includes recovery auto-registration in the JCA. Thus, the
AppServerdDBCXARecovery which was used in previous releases is disabled by default, and will be
removed entirely from future releases of the Platform.

7.4.1.1. Vendor-Specific Database Information

Oracle

12

CHAPTER 7. RESOURCE RECOVERY IN JBOSS TRANSACTION SERVICE

If Oracle is configured incorrectly, you will experience the following error in your log files:

WARN [com.arjuna.ats.jta.logging.loggerI18N]
[com.arjuna.ats.internal.jta.recovery.xarecoveryl] Local
XARecoveryModule.xaRecovery got XA exception
javax.transaction.xa.XAException, XAException.XAER_RMERR

To resolve this error, be sure that the Oracle user has access to the appropriate tables to accomplish
the recovery:

GRANT SELECT ON sys.dba_pending_transactions TO user;
GRANT SELECT ON sys.pending_trans$ TO user;

GRANT SELECT ON sys.dba_2pc_pending TO user;

GRANT EXECUTE ON sys.dbms_xa TO user;

The above assumes that useris the user defined to connect from JBoss to Oracle. It also assumes
that either Oracle 10g R2 (patched for bug 5945463) or 11g is in use. If an unpatched version prior to
11g is used then change the last GRANT EXECUTE to:

I GRANT EXECUTE ON sys.dbms_system TO user;

PostgreSQL

See the PostgreSQL documentation for instructions on enabling prepared (i.e. XA) transactions.
Version 8.4-701 of PostgreSQL's JDBC driver has a bug in
org.postgresqgl.xa.PGXAConnection which breaks recovery in certain situations. This is fixed
in newer versions.

MySQL

Based on http://bugs.mysql.com/bug.php?id=12161, XA transaction recovery does not appear to be
possible using MySQL. This is scheduled to be addressed in MySQL 6.1. See also JBPAPP-2576 in
the release notes for JBoss Enterprise Application Platform 5.

DB2

DB2 expects XAResource. recover calls only during designated resynchronization stage which
occurs when application server is restarted after crash/failure. This is a design flaw in DB2, and out of
the scope of this documentation.

7.4.2. JMS Recovery

Refer to the JBoss Messaging Guide for recovery as it relates to Messaging. These guides are available
in the suite of documentation for the Enterprise Application Platform, on http://docs.redhat.com..

7.5. NOTES FOR JMS CLUSTERS

When one node in JBoss Messaging cluster goes down, its buddy in the cluster loads all of the dead
server's messages from the database.

If the dead node was performing an XA transaction when it went down, the transaction log may have
been written but the associated messages may move to another server in the cluster.

When the dead server comes back to life, the recovery manager may try to recover the transactions

13

http://bugs.mysql.com/bug.php?id=12161
http://docs.redhat.com

Transactions Administrators Guide

stored in the transaction log. If the messages have been moved to another server, it is impossible to
acquire the proper XAResource from the local JMS provider, because the associated messages are no
longer on that server. The result is that JBoss Transaction Service returns:

Could not find new XAResource to use for recovering non-serializable
XAResource

To resolve this, add a JMS provider and a Recovery Manager for each node in the cluster. For example,
if the cluster had three nodes, add this to jbossts-properties.xml:

<property
name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGINGREMOTE1"

value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery; java:/Rem
oteJMSProvideri"/>

<property
name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGINGREMOTE2"

value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery; java:/Rem
oteJMSProvider2"/>

The remote providers can be configured in JBOSS_HOME/server/default/deploy/jms-ds.xml:

<properties depends="arjuna" name="jta">
<I--
Support subtransactions in the JTA layer?
Default is NO.
-->
<property name="com.arjuna.ats.jta.supportSubtransactions" value="NO"/>
<property name="com.arjuna.ats.jta.jtaTMImplementation"

value="com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManag
erImple"/>
<property name="com.arjuna.ats.jta.jtaUTImplementation"

value="com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionI
mple"/>

<I--

*** Add this line to enable recovery for JMS resources using

DefaultJMSProvider ***

-=>

<property
name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"

value="org.jboss.jms.server.recovery.MessagingXAResourceRecovery; java:/Def
aultJIMSProvider"/>

</properties>

The JNDI properties are configured to connect to the remote nodes in the cluster. Add providers and
recovery managers to each node in the cluster for all the other nodes of the cluster in order to get proper
recovery.

14

CHAPTER 8. SELECTING THE JTA IMPLEMENTATION

CHAPTER 8. SELECTING THE JTA IMPLEMENTATION

Two variants of the JTA implementation are provided and accessible through the same interface. These
are:

1. Alocal JTA, which only allows non-distributed JTA transactions to be executed. This is the only
version available with the JBoss Transaction Service.

2. A remote, CORBA-based JTA, which allows distributed JTA transactions to be executed. This
version is only available with the ArjunadTS product and requires a supported CORBA ORB.

Both of these implementations are fully compatible with the transactional JDBC driver provided with the
JBoss Transaction Service.

In order to select the local JTA implementation it is necessary to perform the following steps:

1. Setthe com.arjuna.ats.jta.jtaTMImplementation property to
com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerIm
ple.

2. Setthe com.arjuna.ats.jta.jtaUTImplementation to
com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImpl

e.

These settings are the default values and do not need to be set to use the local implementation.

15

Transactions Administrators Guide

CHAPTER 9. ORB SPECIFIC CONFIGURATIONS

JacORB

For JacORB to function correctly, ensure there is a valid jacorb.properties or
.jacorb_properties file in one of the following places:

e The CLASSPATH.

e The home directory of the user running the JBoss Transaction Service. The home directory is
retrieved using System.getProperty(“user.home”);

e The current directory.

e The 1ib directory of the JDK used to run your application. This is retrieved using
System.getProperty(“java.home”);

The above places are searched in the order given. A template jacorb.properties file can be found
in the JacORB installation directory.

The JacORB properties file contains two important properties which must be configured appropriately for
your application, they are:

e jacorb.poa.thread pool_max
e jacorb.poa.thread_pool_min
These properties specify the minimum and maximum number of request processing threads that

JacORB will use in its thread pool. If too few threads are available, the application may become
deadlocked. For more information on configuring JacORB please reference the JacORB documentation.

NOTE

JacORB comes with its own implementation of the classes defined in the
CosTransactions.idl file. Unfortunately these are incompatible with the version
shipped with JBoss Transaction Service. Therefore, the JBoss Transaction Service JAR
files must appear in the CLASSPATH before any JacORB JARs.

The recovery manager must always use the same well-known port for each machine on which it runs.
You should not use the 0APort property provided by JacORB unless the recovery manager has its own
jacorb.properties file or the port is provided on the command line when starting the recovery
manager. If the recovery manager and other components of JBoss Transaction Service share the same
jacorb.properties file, then you should use the com.arjuna.ats.jts.recoveryManagerPort
and com.arjuna.ats.jts.recoveryManagerAddress properties.

16

CHAPTER 10. INITIALIZING JBOSS TRANSACTION SERVICE APPLICATIONS

CHAPTER 10. INITIALIZING JBOSS TRANSACTION SERVICE
APPLICATIONS

JBoss Transaction Service needs to be correctly initialized before any application object is created. To
guarantee this, use the ORB_init and create_POA methods.

17

Transactions Administrators Guide

CHAPTER 11. ERRORS AND EXCEPTIONS

Errors and Exceptions During Transactional Applications

NO_MEMORY

The application has run out of memory, and thrown an OutOfMemoryError exception. JBoss
Transactions has attempted to do some garbage collection before re-throwing the exception. This is
sometimes a transient problem and retrying the invocation might succeed.

com.arjuna.ats.arjuna.exceptions.FatalError

The transaction system has encountered a fatal error and must shut down. Prior to this error, the
transaction service ensures that all running transactions have rolled back. If caught, the application
should tidy up and exit. If further work is attempted, application consistency may be violated.

com.arjuna.ats.arjuna.exceptions.LicenceError

An attempt has been made to use the transaction service in a manner inconsistent with the current
license. The transaction service will not allow further forward progress for existing or new
transactions.

com.arjuna.ats.arjuna.exceptions.ObjectStoreError

An error occurred while the transaction service attempted to use the object store. Further forward
progress is not possible.

Object store warnings about access problems on states

This error may occur during the normal execution of crash recovery, as the result of multiple
concurrent attempts to perform recovery on the same transaction. It can be safely ignored.

18

APPENDIX A. REVISION HISTORY

APPENDIX A. REVISION HISTORY

Revision 5.1.0-113.400 2013-10-31 Riidiger Landmann
Rebuild with publican 4.0.0

Revision 5.1.0-113 2012-07-18 Anthony Towns
Rebuild for Publican 3.0

Revision 5.1.0-112 Wed Sep 15 2010 Misty Stanley-Jones

Changed version number in line with new versioning requirements.
Revised for JBoss Enterprise Application Platform 5.1.0.GA.

19

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. OBJECTSTORE MANAGEMENT
	CHAPTER 3. OTS AND J2EE TRANSACTION SERVICE MANAGEMENT
	3.1. STARTING THE RUN-TIME SYSTEM
	3.2. OTS CONFIGURATION FILE
	3.3. NAME SERVICE
	3.4. RESOLVE_INITIAL_REFERENCES
	3.5. RESOLUTION SERVICE TABLE

	CHAPTER 4. XA SPECIFIC MANAGEMENT
	4.1. XA RECOVERY

	CHAPTER 5. WEB SERVICE TRANSACTION SERVICE MANAGEMENT
	5.1. THE TRANSACTION MANAGER
	5.1.1. Configuring the Transaction Manager
	5.1.2. Deploying the Transaction Manager
	5.1.3. Deployment descriptors

	CHAPTER 6. JBOSS TRANSACTION SERVER RUN-TIME INFORMATION
	CHAPTER 7. RESOURCE RECOVERY IN JBOSS TRANSACTION SERVICE
	7.1. INTRODUCTION
	7.2. ASSUMPTIONS
	7.3. A NOTE ABOUT CLUSTERS
	7.4. RECOVERY MODULES
	7.4.1. JDBC Recovery
	7.4.1.1. Vendor-Specific Database Information

	7.4.2. JMS Recovery

	7.5. NOTES FOR JMS CLUSTERS

	CHAPTER 8. SELECTING THE JTA IMPLEMENTATION
	CHAPTER 9. ORB SPECIFIC CONFIGURATIONS
	CHAPTER 10. INITIALIZING JBOSS TRANSACTION SERVICE APPLICATIONS
	CHAPTER 11. ERRORS AND EXCEPTIONS
	APPENDIX A. REVISION HISTORY

