
JBoss Enterprise Application Platform 5

Transactions Development Quick Start Guide

Getting Started with JBoss Transaction Service

Edition 5.2.0

Last Updated: 2017-10-13

JBoss Enterprise Application Platform 5 Transactions Development

Quick Start Guide

Getting Started with JBoss Transaction Service
Edition 5.2.0

Andrew Dinn

Mark Little

Jonathan Halliday

Edited by

Eva Kopalova

Misty Stanley-Jones

Petr Penicka

Russell Dickenson

Scott Mumford

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide is a quick introduction aimed at Java developers who want to write applications using
the JBoss Transaction Service APIs.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH JTA
1.1. PACKAGE LAYOUT
1.2. SETTING PROPERTIES

1.2.1. Specifying the Object Store Location
1.3. DEMARCATING TRANSACTIONS

1.3.1. UserTransaction
1.3.2. TransactionManager
1.3.3. Transaction

1.4. LOCAL VERSUS DISTRIBUTED JTA IMPLEMENTATIONS
1.5. JDBC AND TRANSACTIONS
1.6. CONFIGURABLE OPTIONS

CHAPTER 2. GETTING STARTED WITH JTS / OTS
2.1. PACKAGE LAYOUT
2.2. SETTING PROPERTIES
2.3. STARTING AND STOPPING THE ORB AND BOA/POA
2.4. SPECIFYING THE OBJECT STORE LOCATION
2.5. IMPLICIT TRANSACTION PROPAGATION AND INTERPOSITION
2.6. OBTAINING CURRENT
2.7. TRANSACTION TERMINATION
2.8. TRANSACTION FACTORY
2.9. RECOVERY MANAGER

CHAPTER 3. GETTING STARTED WITH WEB SERVICES TRANSACTIONS AND XTS
3.1. CONFIGURING THE WEB SERVICES COMPONENT

INDEX

APPENDIX A. REVISION HISTORY

3
3
3
3
3
4
4
4
5
5
6

7
7
7
8
9
9
11
11
11
12

13
13

15

17

Table of Contents

1

Transactions Development Quick Start Guide

2

CHAPTER 1. GETTING STARTED WITH JTA
This chapter summarizes the key features required to construct a Java Transactions API (JTA)
application. If you are not familiar with the JTA, please begin by reading the first section of the
Transactions Development Guide, provided as part of the Enterprise Application Platform
documentation suite..

1.1. PACKAGE LAYOUT

Everything you need to write basic JTA applications is included in the Enterprise Application Platform.
The key packages are detailed in Packages Relating to the JTA .

Packages Relating to the JTA

com.arjuna.ats.jts

Contains the JBoss Transaction Service implementation of the JTS and JTA APIs (Application
Programming Interfaces).

com.arjuna.ats.jta

Contains local and remote JTA implementation support.

com.arjuna.ats.jdbc

Contains transactional JDBC 2.0 support.

1.2. SETTING PROPERTIES

You can configure JBossJTA at runtime by setting various property attributes, either at run-time on
the command line, or through a properties file. The initial properties file is located at
$JBOSS_HOME/server/default/conf/jbossts-properties.xml.

1.2.1. Specifying the Object Store Location

JBossJTA uses an object store to persistently record the outcomes of transactions, to be used in the
event of failures. To customize the location of the object store, you need to pass the location when you
are executing the application, as shown in Example 1.1, “Specifying the Object Store” .

Example 1.1. Specifying the Object Store

 java –
Dcom.arjuna.ats.arjuna.objectstore.objectStoreDir=/location/of/objectsto
re myprogram

By default, the object store is located in a a directory beneath the current execution directory.

By default, all object states are stored within the defaultStore sub-directory of the object store
root. You can change the sub-directory by setting the
com.arjuna.ats.arjuna.objectstore.localOSRoot property variable.

1.3. DEMARCATING TRANSACTIONS

CHAPTER 1. GETTING STARTED WITH JTA

3

The JBossJTA API consists of three elements:

A high-level application transaction demarcation interface

A high-level transaction manager interface intended for application server

and a standard Java mapping of the X/Open XA protocol intended for transactional resource
manager

All of the JTA classes and interfaces are located in the javax.transaction package, and the
corresponding JBossJTA implementations in the com.arjuna.ats.jta package.

1.3.1. UserTransaction

The UserTransaction interface allows applications to control transaction boundaries.

You can obtain UserTransaction implementations via JNDI.

Example 1.2. Controlling Transactions

1.3.2. TransactionManager

The TransactionManager interface allows the application server to control transaction boundaries
on behalf of the application being managed.

You can obtain TransactionManager implementations via JNDI.

1.3.3. Transaction

The Transaction interface allows operations to be performed on the transaction associated with the
target object. Every top-level transaction is associated with one Transaction object when the
transaction is created. The Transaction object has several uses, as described in Transaction
Interface uses.

Transaction Interface uses

Enlists the transactional resources in use by the application.

Register for transaction synchronization call backs.

 // Initialize the context and get UserTransaction
 InitialContext ic = new InitialContext();
 UserTransaction utx = ic.lookup("java:comp/UserTransaction")
 // start transaction work..
 utx.begin();
 .. do work
 utx.commit();

 // Initialize the context and get the TransactionManager
 InitialContext ic = new InitialContext();
 TransactinoManager utm = ic.lookup("java:/TransactionManager")

Transactions Development Quick Start Guide

4

Commit or roll back the transaction.

Obtain the status of the transaction.

You can obtain a Transaction object by invoking the getTransaction method of the
TransactionManager interface, as shown in Example 1.3, “Obtaining a Transaction”.

Example 1.3. Obtaining a Transaction

1.4. LOCAL VERSUS DISTRIBUTED JTA IMPLEMENTATIONS

You should rely on the JTS/OTS specifications for transaction propagation among transaction
managers, to ensure interoperability between JTA applications.

Procedure 1.1. Selecting the Local JTA Implementation

1. Set the om.arjuna.ats.jta.jtaTMImplementation property to
com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerIm
ple.

2. Set the com.arjuna.ats.jta.jtaUTImplementation to
com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImpl
e.

Procedure 1.2. Selecting the Distributed JTA Implementation

1. Set the com.arjuna.ats.jta.jtaTMImplementation property to
com.arjuna.ats.internal.jta.transaction.jts.TransactionManagerImple.

2. Set the com.arjuna.ats.jta.jtaUTImplementation property to
com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple.

1.5. JDBC AND TRANSACTIONS

JBossJTA supports the construction of both local and distributed transactional applications which
access databases using the JDBC 2.0 APIs. JDBC 2.0 supports two-phase commit of transactions, and
is similar to the XA X/Open standard. The JDBC 2.0 support is found in the com.arjuna.ats.jdbc
package.

JBossJTA incorporates JDBC connections within transactions by providing transactional JDBC drivers
through which all interactions occur. These drivers intercept all invocations and ensure that they are
registered with, and driven by, appropriate transactions. There is a single type of transactional driver
through which any JDBC driver can be driven. This driver is com.arjuna.ats.jdbc.TransactionalDriver,
and it implements the java.sql.Driver interface.

One way to establish the connection is through the java.sql.DriverManager.getConnection
method. After establishing the connection, JBossJTA monitors all operations. You can use such
connections in the same way as any other JDBC driver connection.

JBossJTA connections can be used within multiple different transactions simultaneously. Different

 Transaction txObj = TransactionManager.getTransaction();

CHAPTER 1. GETTING STARTED WITH JTA

5

threads, with different notions of the current transaction, may use the same JDBC connection.
JBossJTA performs connection pooling for each transaction within the JDBC connection. Although
multiple threads may use the same instance of the JDBC connection, internally a different connection
instance may be used per transaction. With the exception of the close method, all operations
performed on the connection at the application level are only performed on this transaction-specific
connection.

JBossJTA automatically registers the JDBC driver connection with the transaction via an appropriate
resource. When the transaction terminates, this resource either commits or rolls back any changes
made to the underlying database, through appropriate calls on the JDBC driver.

1.6. CONFIGURABLE OPTIONS

Important Configurable Options shows the most important configuration features, along with possible
values and defaults. For more information, consult the Transactions Development Guide.

Important Configurable Options

com.arjuna.ats.jta.supportSubtransactions

Possible Values

1. Yes (default)

2. No

com.arjuna.ats.jta.jtaTMImplementation

Possible Values

1. com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple

2. com.arjuna.ats.internal.jta.transaction.jts.TransactionManagerImple

com.arjuna.ats.jta.jtaUTImplementation

Possible Values

1. com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImple

2. com.arjuna.ats.internal.jta.transaction.jts.UserTransactionImple

com.arjuna.ats.jta.xaBackoffPeriod

Possible Values

1. Time in seconds

com.arjuna.ats.jdbc.isolationLevel

Possible Values

1. Any supported JDBC isolation level

Transactions Development Quick Start Guide

6

CHAPTER 2. GETTING STARTED WITH JTS / OTS
This chapter discusses the key features required to construct a basic OTS (Object Transaction Service)
application using the raw OTS interfaces defined by the Object Management Group (OMG) specification.
This work focuses on implementation details. Refer to the Transactions Development Guide for a
conceptual overview.

2.1. PACKAGE LAYOUT

Table 2.1. Important Packages Needed To Create OTS Applications

Package Description

com.arjuna.orbportability this package contains the classes which constitute
the ORB portability library and other useful utility
classes.

org.omg.CosTransactions this package contains the classes which make up the
CosTransactions.idl module.

com.arjuna.ats.jts this package contains the JBoss Transaction Service
implementations of the JTS and JTA.

com.arjuna.ats.arjuna this package contains further classes necessary for
the JBoss Transaction Service implementation of
the JTS.

com.arjuna.ats.jta this package contains local and remote JTA
implementation support.

com.arjuna.ats.jdbc this package contains transactional JDBC 2.0
support.

2.2. SETTING PROPERTIES

JBoss Transaction Service is configurable at runtime through the use of various property attributes,
which are described in subsequent sections. You can provide these attributes at run-time on the
command line. However, it often more convenient to specify them through the jbossts-
properties.xml, which may be in any of the locations mentioned, in search order, in Possible
Locations of the jbossts-properties.xml File. properties file.

Possible Locations of the jbossts-properties.xml File

1. The current working directory.

2. The home directory of the executing user.

3. The CLASSPATH, by means of the getResource method.

If the properties file is found, all entries within it added to the system properties, and override the
defaults. You can also specify other properties not specific to the Transaction Service.

CHAPTER 2. GETTING STARTED WITH JTS / OTS

7

2.3. STARTING AND STOPPING THE ORB AND BOA/POA

BOA refers to Basic Object Adapter, and POA refers to Portable Object Adepter.

JBoss Transaction Service needs to be correctly initialized before any application object is created. To
guarantee this, you must use the initORB method, and either of the initBOA or initPOA methods of
the ORBInterface class, which is described in the ORB Portability Manual. Do not use the ORB_init,
BOA_init, or create_POA methods provided by the underlying ORB, because they may lead to
incorrectly operating applications.

Example 2.1. ORB Initialization

ORBInterface Methods

orb

Returns references to the ORB

boa

Returns references to the BOA

poa

Returns references to the POA

rootPoa

Returns references to the root POA

shutdownOA

Shut down the BOA. Run this before shutdownORB, and before terminating the application.

shutdownORB

Shut down the ORB. Use this after shutdownOA. Run this before terminating the application.

Use the shutdownOA and shutdownORB methods, in sequence, before terminating an application.
This allows JBoss Transaction Service to perform necessary cleanup routines. The shutdownOA
routine either shuts down the BOA or the POA, depending upon the ORB being used.

Example 2.2. Shutting Down the ORB

public static void main (String[] args)
{
 ORBInterface.initORB(args, null);
 ORBInterface.initOA();
 . . .
};

public static void main (String[] args)
{
 . . .

Transactions Development Quick Start Guide

8

Do not use more CORBA objects after you call shutdown. You need to reinitialize the BOA/POA and
ORB before using more CORBA objects.

NOTE

The term Object Adapter is used in the rest of this guide to refer to either the BOA or the
POA, interchangeably. Where possible, this guide uses the ORB Portability classes to
mask the differences between POA and BOA.

2.4. SPECIFYING THE OBJECT STORE LOCATION

JBoss Transaction Service uses an object store to persistently record the outcomes of transactions,
for failure recovery. You can specify the location of the object store using the objectStoreDir
property.

Example 2.3. Specifying the Object Store at Application Execution

By default, the object store is located in a directory under the current execution directory. In the
default configuration, all object states are stored within the defaultStore. However, this sub-
directory can be changed by setting the com.arjuna.ats.arjuna.objectstore.localOSRoot property
variable.

2.5. IMPLICIT TRANSACTION PROPAGATION AND INTERPOSITION

You can create transactions within one domain and use them within another. Therefore, information
about a transaction, called the transaction context, needs to be propagated between these domains.

Propagating the Transaction Context

Explicit propagation

An application passes context objects as explicit parameters. These objects are either instances of
the Control interface or the PropagationContext structure, and are defined by the Transaction
Service. It is more efficient to use the PropagationContext structure, rather than the Control
interface.

Implicit propagation

Requests on objects are implicitly associated with the client’s transaction, and share the client’s
transaction context. The context is transmitted implicitly to the objects, without direct client
intervention.

 ORBInterface.shutdownOA();
 ORBInterface.shutdownORB();
};

 java
Dcom.arjuna.ats.arjuna.objectstore.objectStoreDir=/var/tmp/ObjectStore
myprogram

CHAPTER 2. GETTING STARTED WITH JTS / OTS

9

OTS objects supporting the Control interface are standard CORBA objects. When the interface is
passed as a parameter in an operation call to a remote server, only an object reference is passed. Any
operations that the remote object performs on the interface are performed on the real object.

This behavior can impose substantial penalties on an application which frequently uses these
interfaces due to the overheads of remote invocation. To avoid this overhead, JBoss Transaction
Service supports interposition. In interposition, the server creates a local object which acts as a proxy
for the remote transaction, fielding all requests that would normally be passed back to the originator.
This local object registers itself with the original transaction coordinator, so that it can correctly
participate in the termination of the transaction. Interposed coordinators effectively form a tree
structure with their parent coordinators, as shown in Figure 2.1, “Interposition”.

Figure 2.1. Interposition

NOTE

implicit transaction propagation does not imply that interposition is also used at the
server. Instead, interposition typically requires implicit propagation.

If you require implicit context propagation and interposition, ensure that JBoss Transaction Service is
correctly initialized before creating any objects. The client and server need to agree whether implicit
propagation or interposition, or neither, is used. Implicit context propagation is only possible on those
ORBs which support filters and interceptors, or which support the CosTSPortability interface.
JacORB and the JDK miniORB both provide the required support.

Enabling Propagation

Implicit context propagation

Set the com.arjuna.ats.jts.contextPropMode property variable to CONTEXT.

Interposition

Set the com.arjuna.ats.jts.contextPropMode property variable to INTERPOSITION.

Transactions Development Quick Start Guide

10

NOTE

To use the JBoss Transaction Service advanced API, you must use interposition.

2.6. OBTAINING CURRENT

You can obtain the Current pseudo-object from the com.arjuna.ats.jts.OTSManager class by
using its get_current method.

2.7. TRANSACTION TERMINATION

How long a Control can access a terminated transaction is implementation-specific. In JBoss
Transaction Service, if you are using the Current pseudo-object, all information about a transaction is
destroyed when it terminates. For this reason, you should not use any Control references to the
transaction after issuing the commit or rollback operation.

However, if you terminate the transaction explicitly, using the Terminator interface, information
about the transaction is only removed when all the outstanding references to it have been destroyed.
You can signal that the transaction information is no longer required, by using the destroyControl
method of the OTS class, which is found in the com.arjuna.CosTransactions package. After the program
indicates that the transaction information is no longer required, you should not use any Control
references to the transaction.

2.8. TRANSACTION FACTORY

By default, JBoss Transaction Service does not use a separate transaction manager when creating
transactions through the Current interface. Each transactional client essentially has its own
transaction manager, the TransactionFactory, which is co-located with it. To override this behavior
at run-time, set the com.arjuna.ats.jts.transactionManager property variable to YES. To execute the
Transaction Factory, execute the start-transaction-service script, located in the
ATS_ROOT/bin directory.

Current typically locates the factory using the CosServices.cfg file located in the
$JBOSS_HOME/etc directory. This file is similar to the resolve_initial_references file, and is
automatically created or updated when the transaction factory is started on a particular machine. This
file must be copied locally to each machine which needs to share the same transaction factory.

NOTE

The information about CosServices.cfg refers to the default name and location of
the configuration file. To change the name of the file, use the
com.arjuna.orbportability.initialReferencesFile variable. To change its location, set the
com.arjuna.orbportability.initialReferencesRoot variable.

Example 2.4. Customizing the Initial References File

 java –Dcom.arjuna.orbportability.initialReferencesFile=ref –
Dcom.arjuna.orbportability.initialReferencesRoot=c:\\temp prog

CHAPTER 2. GETTING STARTED WITH JTS / OTS

11

You can override the default location mechanism by setting the
com.arjuna.orbportability.resolveService property variable with any of the parameters listed in
ResolveService Parameters.

ResolveService Parameters

CONFIGURATION_FILE

The system uses the CosServices.cfg file. This is the default behavior.

NAME_SERVICE

JBoss Transaction Service attempts to use a name service to locate the transaction factory. If this
is not supported, an exception is thrown.

BIND_CONNECT

JBoss Transaction Service uses the ORB-specific bind mechanism. If this is not supported, an
exception is thrown.

If com.arjuna.orbportability.resolveService is specified when the transaction factory is run, the factory
registers itself with the specified resolution mechanism.

2.9. RECOVERY MANAGER

You need to start the recovery manager subsystem to ensure that transactions are recoverable in the
event of a failure. To start the recovery manager, run the start-recovery-manager script in
$ATS_ROOT/bin.

Transactions Development Quick Start Guide

12

CHAPTER 3. GETTING STARTED WITH WEB SERVICES
TRANSACTIONS AND XTS

3.1. CONFIGURING THE WEB SERVICES COMPONENT

For in-depth information about JBoss Transactions XTS, see the XTS section of the Transactions
Development Guide, which ships as part of the documentation suite for the Enterprise Application
Platform.

Table 3.1. Web Services Configuration

Property Possible Values

com.arjuna.orbportability.initialReferencesFile CosServices.cfg

com.arjuna.orbportability.initialReferencesRoot The directory containing the file arjuna.properties.

ArjunaJTS_LicenceKey System specific license.

com.arjuna.orbportability.resolveService CONFIGURATION_FILE

NAME_SERVICE

BIND_CONNECT

com.arjuna.ats.arjuna.objectstore.objectStoreDir Any location that the application can write to.

com.arjuna.ats.arjuna.objectstore.localOSRoot defaultStore

PROPERTIES_FILE arjuna.properties

com.arjuna.ats.arjuna.coordinator.asyncPrepare YES/NO

com.arjuna.ats.arjuna.coordinator.asyncCommit YES/NO

com.arjuna.ats.arjuna.coordinator.commitOnePhase YES/NO

com.arjuna.ats.arjuna.coordinator.transactionSync ON/OFF

com.arjuna.ats.arjuna.coordinator.enableStatistics ON/OFF

com.arjuna.ats.jts.alwaysPropagateContext YES/NO

com.arjuna.ats.jts.defaultTimeout No timeout

com.arjuna.ats.jts.supportRollbackSync YES/NO

com.arjuna.ats.jts.supportInterposedSynchronizatio
n

YES/NO

CHAPTER 3. GETTING STARTED WITH WEB SERVICES TRANSACTIONS AND XTS

13

com.arjuna.ats.jts.supportSubtransactions YES/NO

com.arjuna.ats.jts.checkedTransactions YES/NO

com.arjuna.ats.jts.transactionManager YES/NO

com.arjuna.ats.jts.needTranContext YES/NO

com.arjuna.ats.arjuna.coordinator.txReaperTimeout 120000000 microseconds

com.arjuna.ats.arjuna.coordinator.txReaperMode NORMAL

DYNAMIC

com.arjuna.ats.jts.contextPropMode NONE

CONTEXT

INTERPOSITION

Property Possible Values

Transactions Development Quick Start Guide

14

INDEX

B

BOA, Getting Started with JTS / OTS

C

CLASSPATH, Getting Started with JTA, Getting Started with JTS / OTS

configuration, Getting Started with Web Services Transactions and XTS

Control interface, Getting Started with JTS / OTS

CORBA, Getting Started with JTS / OTS

Current pseudo-object, Getting Started with JTS / OTS

D

distributed JTA, Getting Started with JTA

I

implicit transaction propagation, Getting Started with JTS / OTS

interposition, Getting Started with JTS / OTS

J

javax.transaction package, Getting Started with JTA

JDBC, Getting Started with JTA

JDBC driver, Getting Started with JTA

JTA

Java Transactions API, Getting Started with JTA

L

local JTA, Getting Started with JTA

O

object store, Getting Started with JTA

object store, location of, Getting Started with JTS / OTS

ORB, Getting Started with JTS / OTS

ORB, starting and stopping, Getting Started with JTS / OTS

P

packages, Getting Started with JTS / OTS

POA, Getting Started with JTS / OTS

PropagationContext, Getting Started with JTS / OTS

properties, Getting Started with JTA, Getting Started with JTS / OTS , Getting Started with Web
Services Transactions and XTS

R

INDEX

15

Recovery Manager, starting and stopping, Getting Started with JTS / OTS

ResolveService parameters, Getting Started with JTS / OTS

run-time, Getting Started with JTA

T

Transaction Factory, Getting Started with JTS / OTS

TransactionManager, Getting Started with JTA

U

UserTransaction, Getting Started with JTA

W

Web Services, Getting Started with Web Services Transactions and XTS

X

XTS, Getting Started with Web Services Transactions and XTS

Transactions Development Quick Start Guide

16

APPENDIX A. REVISION HISTORY

Revision 5.2.0-100.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.2.0-100 Wed 23 Jan 2013 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about documentation changes to
this guide, refer to Release Notes 5.2.0.

Revision 5.1.2-100 Thu 8 December 2011 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about documentation changes to
this guide, refer to Release Notes 5.1.2.

APPENDIX A. REVISION HISTORY

17

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH JTA
	1.1. PACKAGE LAYOUT
	1.2. SETTING PROPERTIES
	1.2.1. Specifying the Object Store Location

	1.3. DEMARCATING TRANSACTIONS
	1.3.1. UserTransaction
	1.3.2. TransactionManager
	1.3.3. Transaction

	1.4. LOCAL VERSUS DISTRIBUTED JTA IMPLEMENTATIONS
	1.5. JDBC AND TRANSACTIONS
	1.6. CONFIGURABLE OPTIONS

	CHAPTER 2. GETTING STARTED WITH JTS / OTS
	2.1. PACKAGE LAYOUT
	2.2. SETTING PROPERTIES
	2.3. STARTING AND STOPPING THE ORB AND BOA/POA
	2.4. SPECIFYING THE OBJECT STORE LOCATION
	2.5. IMPLICIT TRANSACTION PROPAGATION AND INTERPOSITION
	2.6. OBTAINING CURRENT
	2.7. TRANSACTION TERMINATION
	2.8. TRANSACTION FACTORY
	2.9. RECOVERY MANAGER

	CHAPTER 3. GETTING STARTED WITH WEB SERVICES TRANSACTIONS AND XTS
	3.1. CONFIGURING THE WEB SERVICES COMPONENT

	INDEX
	APPENDIX A. REVISION HISTORY

