
Red Hat Streams for Apache Kafka 2.5

Release Notes for AMQ Streams 2.5 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on
OpenShift Container Platform

Last Updated: 2024-05-31

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams
2.5 on OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on OpenShift
Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The release notes summarize the new features, enhancements, and fixes introduced in the AMQ
Streams 2.5 release.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. AMQ STREAMS 2.5 LONG TERM SUPPORT

CHAPTER 2. FEATURES
2.1. AMQ STREAMS 2.5.X (LONG TERM SUPPORT)
2.2. OPENSHIFT CONTAINER PLATFORM SUPPORT
2.3. KAFKA 3.5.0 SUPPORT
2.4. SUPPORTING THE V1BETA2 API VERSION

2.4.1. Upgrading custom resources to v1beta2
2.5. (PREVIEW) NODE POOLS FOR MANAGING NODES IN A KAFKA CLUSTER
2.6. (PREVIEW) UNIDIRECTIONAL TOPIC MANAGEMENT USING THE TOPIC OPERATOR
2.7. REPORTING TOOL FOR RETRIEVING DIAGNOSTIC AND TROUBLESHOOTING DATA
2.8. OPENTELEMETRY FOR DISTRIBUTED TRACING

CHAPTER 3. ENHANCEMENTS
3.1. KAFKA 3.5.0 ENHANCEMENTS
3.2. USESTRIMZIPODSETS FEATURE GATE MOVES TO GA
3.3. KRAFT REQUIRES NODE POOL CONFIGURATION
3.4. OAUTH 2.0 SUPPORT FOR KRAFT MODE
3.5. OAUTH 2.0 CONFIGURATION PROPERTIES FOR GRANT MANAGEMENT
3.6. OAUTH 2.0 SUPPORT FOR JSONPATH QUERIES WHEN EXTRACTING USERNAMES
3.7. ADDED KAFKA EXPORTER SUPPORT TO EXCLUDE TOPICS AND CONSUMER GROUPS
3.8. KAFKA BRIDGE ENHANCEMENTS FOR METRICS AND OPENAPI

CHAPTER 4. TECHNOLOGY PREVIEWS
4.1. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

CHAPTER 5. DEVELOPER PREVIEWS
5.1. KAFKANODEPOOLS FEATURE GATE
5.2. UNIDIRECTIONALTOPICOPERATOR FEATURE GATE
5.3. STABLECONNECTIDENTITIES FEATURE GATE
5.4. USEKRAFT FEATURE GATE

CHAPTER 6. KAFKA BREAKING CHANGES
6.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

CHAPTER 7. DEPRECATED FEATURES
7.1. RHEL 7 DEPRECATED IN AMQ STREAMS 2.5.X (LTS)
7.2. STATEFULSET SUPPORT REMOVED
7.3. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0
7.4. OPENTRACING
7.5. ACL RULE CONFIGURATION
7.6. KAFKA MIRRORMAKER 2 IDENTITY REPLICATION POLICY
7.7. KAFKA MIRRORMAKER 1
7.8. LISTENERSTATUS TYPE PROPERTY
7.9. CRUISE CONTROL TLS SIDECAR PROPERTIES
7.10. CRUISE CONTROL CAPACITY CONFIGURATION

CHAPTER 8. FIXED ISSUES
8.1. FIXED ISSUES FOR AMQ STREAMS 2.5.1
8.2. FIXED ISSUES FOR AMQ STREAMS 2.5.0

CHAPTER 9. KNOWN ISSUES

4

5

6
6
6
6
6
7
7
8
8
9

10
10
10
10
10
10
11

12
13

14
14

15
15
15
15
16

17
17

18
18
18
18
18
18
19
19
19
19

20

21
21
21

24

Table of Contents

1

. .

. .

. .

9.1. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED
9.2. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
9.3. CRUISE CONTROL CPU UTILIZATION ESTIMATION
9.4. JMX AUTHENTICATION WHEN RUNNING IN FIPS MODE

CHAPTER 10. SUPPORTED CONFIGURATIONS
10.1. SUPPORTED PLATFORMS
10.2. SUPPORTED APACHE KAFKA ECOSYSTEM
10.3. ADDITIONAL SUPPORTED FEATURES
10.4. STORAGE REQUIREMENTS

CHAPTER 11. COMPONENT DETAILS

CHAPTER 12. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS
12.1. RED HAT SINGLE SIGN-ON
12.2. RED HAT 3SCALE API MANAGEMENT
12.3. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE
12.4. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA VALIDATION
12.5. RED HAT BUILD OF APACHE CAMEL K

24
24
26
27

28
28
28
29
29

30

32
32
32
32
33
33

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. AMQ STREAMS 2.5 LONG TERM SUPPORT
AMQ Streams 2.5 is a Long Term Support (LTS) offering for AMQ Streams.

For information on the LTS terms and dates, see the AMQ Streams LTS Support Policy .

CHAPTER 1. AMQ STREAMS 2.5 LONG TERM SUPPORT

5

https://access.redhat.com/articles/6975608

CHAPTER 2. FEATURES
AMQ Streams 2.5 introduces the features described in this section.

AMQ Streams 2.5 on OpenShift is based on Apache Kafka 3.5.0 and Strimzi 0.36.x.

NOTE

To view all the enhancements and bugs that are resolved in this release, see the AMQ
Streams Jira project.

2.1. AMQ STREAMS 2.5.X (LONG TERM SUPPORT)

AMQ Streams 2.5.x is the Long Term Support (LTS) offering for AMQ Streams.

The latest patch release is AMQ Streams 2.5.1. The AMQ Streams product images have changed to
version 2.5.1. The supported Kafka version remains at 3.5.0.

For information on the LTS terms and dates, see the AMQ Streams LTS Support Policy .

2.2. OPENSHIFT CONTAINER PLATFORM SUPPORT

AMQ Streams 2.5 is supported on OpenShift Container Platform 4.10 to 4.14.

For more information, see Chapter 10, Supported Configurations .

2.3. KAFKA 3.5.0 SUPPORT

AMQ Streams now supports and uses Apache Kafka version 3.5.0. Only Kafka distributions built by Red
Hat are supported.

You must upgrade the Cluster Operator to AMQ Streams version 2.5 before you can upgrade brokers
and client applications to Kafka 3.5.0. For upgrade instructions, see Upgrading AMQ Streams .

Refer to the Kafka 3.5.0 Release Notes for additional information.

Kafka 3.4.x is supported only for the purpose of upgrading to AMQ Streams 2.5.

NOTE

Kafka 3.5.0 provides access to KRaft mode, where Kafka runs without ZooKeeper by
utilizing the Raft protocol. KRaft mode is available as a Developer Preview.

2.4. SUPPORTING THE V1BETA2 API VERSION

The v1beta2 API version for all custom resources was introduced with AMQ Streams 1.7. For AMQ
Streams 1.8, v1alpha1 and v1beta1 API versions were removed from all AMQ Streams custom
resources apart from KafkaTopic and KafkaUser.

Upgrade of the custom resources to v1beta2 prepares AMQ Streams for a move to Kubernetes CRD
v1, which is required for Kubernetes 1.22.

If you are upgrading from an AMQ Streams version prior to version 1.7:

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

6

https://issues.redhat.com/issues/?filter=12418395
https://access.redhat.com/articles/6975608
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-upgrade-str
https://archive.apache.org/dist/kafka/3.5.0/RELEASE_NOTES.html

1. Upgrade to AMQ Streams 1.7

2. Convert the custom resources to v1beta2

3. Upgrade to AMQ Streams 1.8

IMPORTANT

You must upgrade your custom resources to use API version v1beta2 before upgrading
to AMQ Streams version 2.5.

2.4.1. Upgrading custom resources to v1beta2

To support the upgrade of custom resources to v1beta2, AMQ Streams provides an API conversion tool,
which you can download from the AMQ Streams 1.8 software downloads page .

You perform the custom resources upgrades in two steps.

Step one: Convert the format of custom resources

Using the API conversion tool, you can convert the format of your custom resources into a format
applicable to v1beta2 in one of two ways:

Converting the YAML files that describe the configuration for AMQ Streams custom resources

Converting AMQ Streams custom resources directly in the cluster

Alternatively, you can manually convert each custom resource into a format applicable to v1beta2.
Instructions for manually converting custom resources are included in the documentation.

Step two: Upgrade CRDs to v1beta2

Next, using the API conversion tool with the crd-upgrade command, you must set v1beta2 as the
storage API version in your CRDs. You cannot perform this step manually.

For more information, see Upgrading from an AMQ Streams version earlier than 1.7 .

2.5. (PREVIEW) NODE POOLS FOR MANAGING NODES IN A KAFKA
CLUSTER

This release introduces the KafkaNodePools feature gate and a new KafkaNodePool custom resource
that enables the configuration of different pools of Apache Kafka nodes. This feature gate is at an alpha
level of maturity, which means that it is disabled by default, and should be treated as a developer
preview.

A node pool refers to a distinct group of Kafka nodes within a Kafka cluster. The KafkaNodePool
custom resource represents the configuration for nodes only in the node pool. Each pool has its own
unique configuration, which includes mandatory settings such as the number of replicas, storage
configuration, and a list of assigned roles. As you can assign roles to the nodes in a node pool, you can
try the feature with a Kafka cluster that uses ZooKeeper for cluster management or KRaft mode.

To enable the KafkaNodePools feature gate, specify +KafkaNodePools in the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the KafkaNodePools feature gate

CHAPTER 2. FEATURES

7

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&version=1.8.0
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-upgrade-paths-earlier-versions-str

NOTE

Drain Cleaner is not supported for the node pools preview.

See Configuring node pools .

2.6. (PREVIEW) UNIDIRECTIONAL TOPIC MANAGEMENT USING THE
TOPIC OPERATOR

This release also incorporates the UnidirectionalTopicOperator feature gate, introducing a
unidirectional topic management mode. With unidirectional mode, you create Kafka topics using the
KafkaTopic resource, which are then managed by the Topic Operator. This feature gate is at an alpha
level of maturity, and should be treated as a developer preview.

To enable the UnidirectionalTopicOperator feature gate, specify +UnidirectionalTopicOperator in
the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the UnidirectionalTopicOperator feature gate

Up to this release, the only way to use the Topic Operator to manage topics was in bidirectional mode,
which is compatible with using ZooKeeper for cluster management. Unidirectional mode does not
require ZooKeeper for cluster management, which is an important development as Kafka moves to using
KRaft mode for managing clusters.

See Using the Topic Operator .

2.7. REPORTING TOOL FOR RETRIEVING DIAGNOSTIC AND
TROUBLESHOOTING DATA

The report.sh diagnostics tool is a script provided by Red Hat to gather essential data for
troubleshooting AMQ Streams deployments on OpenShift. It collects relevant logs, configuration files,
and other diagnostic data to assist in identifying and resolving issues. When you run the script, you can
use additional parameters to retrieve specific data.

The tool requires the OpenShift oc command-line tool to establish a connection to the running cluster.
After which you can open a terminal and run the tool to retrieve data on components.

From the following request, data is collected on a Kafka cluster, a Kafka Bridge cluster, and on secret
keys and data values:

Example request with data collection options

env:
 - name: STRIMZI_FEATURE_GATES
 value: +KafkaNodePools

env:
 - name: STRIMZI_FEATURE_GATES
 value: +UnidirectionalTopicOperator

./report.sh --namespace=my-amq-streams-namespace --cluster=my-kafka-cluster --bridge=my-
bridge-component --secrets=all --out-dir=~/reports

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

8

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#config-node-pools-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-the-topic-operator-str

The data is output to a specified directory.

See Retrieving diagnostic and troubleshooting data .

2.8. OPENTELEMETRY FOR DISTRIBUTED TRACING

OpenTelemetry for distributed tracing has moved to GA. You can use OpenTelemetry with a specified
tracing system. OpenTelemetry has replaced OpenTracing for distributed tracing. Support for
OpenTracing is deprecated.

By Default, OpenTelemetry uses the OTLP (OpenTelemetry Protocol) exporter for tracing. AMQ
Streams with OpenTelemetry is distributed for use with the Jaeger exporter, but you can specify other
tracing systems supported by OpenTelemetry. AMQ Streams plans to migrate to using OpenTelemetry
with the OTLP exporter by default, and is phasing out support for the Jaeger exporter.

See Introducing distributed tracing.

CHAPTER 2. FEATURES

9

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-reporting-tool-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-distributed-tracing-str

CHAPTER 3. ENHANCEMENTS
AMQ Streams 2.5 adds a number of enhancements.

3.1. KAFKA 3.5.0 ENHANCEMENTS

For an overview of the enhancements introduced with Kafka 3.5.0, refer to the Kafka 3.5.0 Release
Notes.

3.2. USESTRIMZIPODSETS FEATURE GATE MOVES TO GA

The UseStrimziPodSets feature gate has moved to GA, which means it is now permanently enabled
and cannot be disabled.

StrimziPodSet resources are now used to manage pods instead of StatefulSet resources. This means
that AMQ Streams handles the creation and management of pods instead of OpenShift, providing more
control over the functionality.

See UseStrimziPodSets feature gate and Feature gate releases.

3.3. KRAFT REQUIRES NODE POOL CONFIGURATION

To deploy a Kafka cluster in KRaft mode, you must now enable the UseStrimziPodSets and
KafkaNodePools feature gates. KRaft mode is supported only by using KafkaNodePool resources to
manage the configuration of Kafka nodes.

For more information, see the following:

Section 2.5, “(Preview) Node pools for managing nodes in a Kafka cluster”

Section 5.4, “UseKRaft feature gate”

3.4. OAUTH 2.0 SUPPORT FOR KRAFT MODE

KeycloakRBACAuthorizer, the Red Hat Single Sign-On authorizer provided with AMQ Streams, has
been replaced with the KeycloakAuthorizer. The new authorizer is compatible with using AMQ Streams
with ZooKeeper cluster management or in KRaft mode. As with the previous authorizer, to be able to use
the Red Hat Single Sign-On REST endpoints for Authorization Services provided by Red Hat Single
Sign-On, you configure KeycloakAuthorizer on the Kafka broker. KeycloakRBACAuthorizer can still
be used when using AMQ Streams with ZooKeeper cluster management, but you should migrate to the
new authorizer.

3.5. OAUTH 2.0 CONFIGURATION PROPERTIES FOR GRANT
MANAGEMENT

You can now use additional configuration to manage OAuth 2.0 grants from the authorization server.

If you are using Red Hat Single Sign-On for OAuth 2.0 authorization, you can add the following
properties to the authorization configuration of your Kafka brokers:

grantsMaxIdleTimeSeconds specifies the time in seconds after which an idle grant in the
cache can be evicted. The default value is 300.

grantsGcPeriodSeconds specifies the time, in seconds, between consecutive runs of a job that

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

10

https://archive.apache.org/dist/kafka/3.5.0/RELEASE_NOTES.html
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-use-strimzi-pod-sets-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str

grantsGcPeriodSeconds specifies the time, in seconds, between consecutive runs of a job that
cleans stale grants from the cache. The default value is 300.

grantsAlwaysLatest controls whether the latest grants are fetched for a new session. When
enabled, grants are retrieved from Red Hat Single Sign-On and cached for the user. The default
value is false.

Kafka configuration to use OAuth 2.0 authorization

See Configuring OAuth 2.0 authorization support .

3.6. OAUTH 2.0 SUPPORT FOR JSONPATH QUERIES WHEN
EXTRACTING USERNAMES

To use OAuth 2.0 authentication in a Kafka cluster, you specify listener configuration in the Kafka
custom resource with the authentication method oauth. When configuring the listener properties, it is
now possible to use a JsonPath query to extract a username from the authorization server being used.
You can use a JsonPath query to specify username extraction options in your listener for the
userNameClaim and fallbackUserNameClaim properties. This allows you to extract a username from a
token by accessing a specific value within a nested data structure. For example, you might have a
username that is contained within a user info data structure within a JSON token data structure.

The following example shows how JsonPath queries are used with the properties when configuring
token validation using an introspection endpoint.

Configuring token validation using an introspection endpoint

- name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: oauth
 validIssuerUri: <https://<auth-server-address>/auth/realms/external>
 introspectionEndpointUri: <https://<auth-server-address>/auth/realms/external/protocol/openid-
connect/token/introspect>
 clientId: kafka-broker

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 authorization:
 type: keycloak
 tokenEndpointUri: <https://<auth_server_-_address>/auth/realms/external/protocol/openid-
connect/token>
 clientId: kafka
 # ...
 grantsMaxIdleSeconds: 300
 grantsGcPeriodSeconds: 300
 grantsAlwaysLatest: false
 #...

CHAPTER 3. ENHANCEMENTS

11

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-oauth-authorization-broker-config-str

1

2

 clientSecret:
 secretName: my-cluster-oauth
 key: clientSecret
 userNameClaim: "['user.info'].['user.id']" 1
 maxSecondsWithoutReauthentication: 3600
 fallbackUserNameClaim: "['client.info'].['client.id']" 2
 fallbackUserNamePrefix: client-account-
 # ...

The token claim (or key) that contains the actual user name in the token. The user name is the
principal used to identify the user. The userNameClaim value depends on the authorization server
used.

An authorization server may not provide a single attribute to identify both regular users and clients.
When a client authenticates in its own name, the server might provide a client ID. When a user
authenticates using a username and password, to obtain a refresh token or an access token, the
server might provide a username attribute in addition to a client ID. Use this fallback option to
specify the username claim (attribute) to use if a primary user ID attribute is not available. If
required, you can use JsonPath query to target nested attributes.

See Configuring OAuth 2.0 support for Kafka brokers .

3.7. ADDED KAFKA EXPORTER SUPPORT TO EXCLUDE TOPICS AND
CONSUMER GROUPS

Support for Kafka Exporter deployment configuration introduces new properties to exclude specified
topics and consumer groups from the metrics extracted from Kafka brokers.

You can use the following properties in the Kafka Exporter specification:

groupExcludeRegex to exclude specific consumer groups

topicExcludeRegex to exclude specific topics

In the following example configuration, the two properties exclude topics and consumer groups that
start with the prefix excluded-.

Example configuration for deploying Kafka Exporter

See KafkaExporterSpec schema reference.

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 kafkaExporter:
 image: my-registry.io/my-org/my-exporter-cluster:latest
 groupRegex: ".*"
 topicRegex: ".*"
 groupExcludeRegex: "^excluded-.*"
 topicExcludeRegex: "^excluded-.*"
...

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

12

{BookURLUsing}#proc-oauth-authentication-broker-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-KafkaExporterSpec-reference

3.8. KAFKA BRIDGE ENHANCEMENTS FOR METRICS AND OPENAPI

The latest release of the Kafka Bridge introduces the following changes:

Removes the remote and local labels from HTTP server-related metrics to prevent time series
sample growth.

Eliminates accounting HTTP server metrics for requests on the /metrics endpoint.

Exposes the /metrics endpoint through the OpenAPI specification, providing a standardized
interface for metrics access and management.

Fixes the OffsetRecordSentList component schema to return record offsets or errors.

Fixes the ConsumerRecord component schema to return key and value as objects, not just
(JSON) strings.

Corrects the HTTP status codes returned by the /ready and /healthy endpoints:

Changes the successful response code from 200 to 204, indicating no content in the
response for success.

Adds the 500 status code to the specification for the failure case, indicating no content in
the response for errors.

See Using the AMQ Streams Kafka Bridge .

CHAPTER 3. ENHANCEMENTS

13

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/using_the_amq_streams_kafka_bridge/index

CHAPTER 4. TECHNOLOGY PREVIEWS
Technology Preview features included with AMQ Streams 2.5.

IMPORTANT

Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about the support scope, see Technology Preview Features
Support Scope.

4.1. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

Use the technology preview of the Kafka Static Quota plugin to set throughput and storage limits on
brokers in your Kafka cluster. You enable the plugin and set limits by configuring the Kafka resource.
You can set a byte-rate threshold and storage quotas to put limits on the clients interacting with your
brokers.

Example Kafka Static Quota plugin configuration

See Setting limits on brokers using the Kafka Static Quota plugin .

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback
 client.quota.callback.static.produce: 1000000
 client.quota.callback.static.fetch: 1000000
 client.quota.callback.static.storage.soft: 400000000000
 client.quota.callback.static.storage.hard: 500000000000
 client.quota.callback.static.storage.check-interval: 5

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

14

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-setting-broker-limits-str

CHAPTER 5. DEVELOPER PREVIEWS
Developer preview features included with AMQ Streams 2.5.

As a Kafka cluster administrator, you can toggle a subset of features on and off using feature gates in
the Cluster Operator deployment configuration. The feature gates available as developer previews are
at an alpha level of maturity and disabled by default.

IMPORTANT

Developer Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Developer Preview features in production environments.
This Developer Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about the support scope, see Developer Preview Support Scope.

5.1. KAFKANODEPOOLS FEATURE GATE

To use KafkaNodePool resources to manage the configuration of pools of Kafka nodes, try the
KafkaNodePools feature gate.

For more information, see Section 2.5, “(Preview) Node pools for managing nodes in a Kafka cluster” .

5.2. UNIDIRECTIONALTOPICOPERATOR FEATURE GATE

To set up the Topic Operator so that it only manages Kafka topics associated with KafkaTopic
resources, try the UnidirectionalTopicOperator feature gate.

For more information, see Section 2.6, “(Preview) Unidirectional topic management using the Topic
Operator”.

5.3. STABLECONNECTIDENTITIES FEATURE GATE

To use StrimziPodSet resources to manage Kafka Connect and Kafka MirrorMaker 2 pods, try the
StableConnectIdentities feature gate.

The StableConnectIdentities feature gate controls the use of StrimziPodSet resources to manage
Kafka Connect and Kafka MirrorMaker 2 pods instead of using OpenShift Deployment resources. This
helps to minimize the number of rebalances of connector tasks.

To enable the StableConnectIdentities feature gate, specify +StableConnectIdentities as a value for
the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the StableConnectIdentities feature gate

See StableConnectIdentities feature gate.

env:
 - name: STRIMZI_FEATURE_GATES
 value: +StableConnectIdentities

CHAPTER 5. DEVELOPER PREVIEWS

15

https://access.redhat.com/support/offerings/devpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-stable-connect-identities-feature-gate-str

5.4. USEKRAFT FEATURE GATE

Apache Kafka is in the process of phasing out the need for ZooKeeper. With the new UseKRaft feature
gate enabled, you can try deploying a Kafka cluster in KRaft (Kafka Raft metadata) mode without
ZooKeeper.

CAUTION

This feature gate is experimental, intended only for development and testing, and must not be enabled
for a production environment.

To use KRaft mode, you must also use KafkaNodePool resources to manage the configuration of
groups of nodes. To enable the UseKRaft feature gate, specify +UseKRaft,+KafkaNodePools as
values for the STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the UseKRaft feature gate

Currently, the KRaft mode in AMQ Streams has the following major limitations:

Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not
supported.

Controller-only nodes cannot undergo rolling updates or be updated individually.

Upgrades and downgrades of Apache Kafka versions or the Strimzi operator are not supported.
Users might need to delete the cluster, upgrade the operator and deploy a new Kafka cluster.

Only the Unidirectional Topic Operator is supported in KRaft mode. You can enable it using the
UnidirectionalTopicOperator feature gate. The Bidirectional Topic Operator is not supported
and when the UnidirectionalTopicOperator feature gate is not enabled, the
spec.entityOperator.topicOperator property must be removed from the Kafka custom
resource.

JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can
contain only one disk.

See the following:

UseKRaft feature gate

Feature gate releases

env:
 - name: STRIMZI_FEATURE_GATES
 value: +UseKRaft,+KafkaNodePools

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

16

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-use-kraft-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str

CHAPTER 6. KAFKA BREAKING CHANGES
This section describes any changes to Kafka that required a corresponding change to AMQ Streams to
continue to work.

6.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

Kafka no longer includes the example file connectors FileStreamSourceConnector and
FileStreamSinkConnector in its CLASSPATH and plugin.path by default. AMQ Streams has been
updated so that you can still use these example connectors. The examples now have to be added to the
plugin path like any connector.

Two example connector configuration files are provided:

examples/connect/kafka-connect-build.yaml provides a Kafka Connect build configuration,
which you can deploy to build a new Kafka Connect image with the file connectors.

examples/connect/source-connector.yaml provides the configuration required to deploy the
file connectors as KafkaConnector resources.

See the following:

Deploying example KafkaConnector resources

Extending Kafka Connect with connector plugins

CHAPTER 6. KAFKA BREAKING CHANGES

17

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-deploying-kafkaconnector-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str

CHAPTER 7. DEPRECATED FEATURES
The features deprecated in this release, and that were supported in previous releases of AMQ Streams,
are outlined below.

7.1. RHEL 7 DEPRECATED IN AMQ STREAMS 2.5.X (LTS)

Support for RHEL 7 is deprecated in AMQ Streams 2.5.x. AMQ Streams 2.5.x (LTS) is the last LTS
version to support RHEL 7.

7.2. STATEFULSET SUPPORT REMOVED

In this release, the UseStrimziPodSets feature gate moved to GA, which means it is now permanently
enabled and cannot be disabled. For this reason, support for StatefulSet resources to manage pods is
no longer available.

The StatefulSet template properties in the Kafka custom resource
(.spec.zookeeper.template.statefulSet and .spec.kafka.template.statefulSet) are deprecated and
ignored. You should remove them from your custom resources.

7.3. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0

Support for Java 8 was deprecated in Kafka 3.0.0 and AMQ Streams 2.0. Support for Java 8 was
removed in AMQ Streams 2.4.0. This applies to all AMQ Streams components, including clients.

AMQ Streams supports Java 11 and Java 17. Use Java 11 or 17 when developing new applications. Plan to
migrate any applications that currently use Java 8 to Java 11 or 17.

If you want to continue using Java 8 for the time being, AMQ Streams 2.2 provides Long Term Support
(LTS). For information on the LTS terms and dates, see the AMQ Streams LTS Support Policy .

7.4. OPENTRACING

Support for type: jaeger tracing is deprecated.

The Jaeger clients are now retired and the OpenTracing project archived. As such, we cannot guarantee
their support for future Kafka versions. We are introducing a new tracing implementation based on the
OpenTelemetry project.

7.5. ACL RULE CONFIGURATION

The operation property for configuring operations for ACL rules is deprecated. A new, more-
streamlined configuration format using the operations property is now available.

New format for configuring ACL rules

authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 operations:

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

18

https://access.redhat.com/articles/6975608

The operation property for the old configuration format is deprecated, but still supported.

7.6. KAFKA MIRRORMAKER 2 IDENTITY REPLICATION POLICY

Identity replication policy is a feature used with MirrorMaker 2 to override the automatic renaming of
remote topics. Instead of prepending the name with the source cluster’s name, the topic retains its
original name. This setting is particularly useful for active/passive backups and data migration scenarios.

To implement an identity replication policy, you must specify a replication policy class
(replication.policy.class) in the MirrorMaker 2 configuration. Previously, you could specify the
io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy class included with the AMQ Streams
mirror-maker-2-extensions component. However, this component is now deprecated and will be
removed in the future. Therefore, it is recommended to update your implementation to use Kafka’s own
replication policy class (org.apache.kafka.connect.mirror.IdentityReplicationPolicy).

See Configuring Kafka MirrorMaker 2.

7.7. KAFKA MIRRORMAKER 1

Kafka MirrorMaker replicates data between two or more active Kafka clusters, within or across data
centers. Kafka MirrorMaker 1 was deprecated in Kafka 3.0.0 and will be removed in Kafka 4.0.0.
MirrorMaker 2 will be the only version available. MirrorMaker 2 is based on the Kafka Connect
framework, connectors managing the transfer of data between clusters.

As a consequence, the AMQ Streams KafkaMirrorMaker custom resource which is used to deploy Kafka
MirrorMaker 1 has been deprecated. The KafkaMirrorMaker resource will be removed from AMQ
Streams when Kafka 4.0.0 is adopted.

If you are using MirrorMaker 1 (referred to as just MirrorMaker in the AMQ Streams documentation), use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy class. MirrorMaker 2
renames topics replicated to a target cluster. IdentityReplicationPolicy configuration overrides the
automatic renaming. Use it to produce the same active/passive unidirectional replication as MirrorMaker
1.

See Configuring Kafka MirrorMaker 2.

7.8. LISTENERSTATUS TYPE PROPERTY

The type property of ListenerStatus has been deprecated and will be removed in the future.
ListenerStatus is used to specify the addresses of internal and external listeners. Instead of using the
type, the addresses are now specified by name.

See ListenerStatus schema reference.

7.9. CRUISE CONTROL TLS SIDECAR PROPERTIES

The Cruise Control TLS sidecar has been removed. As a result, the .spec.cruiseControl.tlsSidecar and
.spec.cruiseControl.template.tlsSidecar properties are now deprecated. The properties are ignored
and will be removed in the future.

 - Read
 - Describe
 - Create
 - Write

CHAPTER 7. DEPRECATED FEATURES

19

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-mirrormaker-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-mirrormaker-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/amq_streams_api_reference/index#type-ListenerStatus-reference

7.10. CRUISE CONTROL CAPACITY CONFIGURATION

The disk and cpuUtilization capacity configuration properties have been deprecated, are ignored, and
will be removed in the future. The properties were used in setting capacity limits in optimization
proposals to determine if resource-based optimization goals are being broken. Disk and CPU capacity
limits are now automatically generated by AMQ Streams.

See Configuring and deploying Cruise Control with Kafka .

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

20

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-configuring-deploying-cruise-control-str

CHAPTER 8. FIXED ISSUES
The following sections list the issues fixed in AMQ Streams 2.5.x. Red Hat recommends that you
upgrade to the latest patch release.

For details of the issues fixed in Kafka 3.5.0, refer to the Kafka 3.5.0 Release Notes.

8.1. FIXED ISSUES FOR AMQ STREAMS 2.5.1

The AMQ Streams 2.5.1 patch release (Long Term Support) is now available.

KAFKA-15353

The 2.5.1 patch release includes a fix for KAFKA-15353, an issue that was included in the Kafka 3.5.2
release. Note that the patch release introduced a fix for this specific issue, not all issues fixed for Kafka
3.5.2.

For more information on the issue, see the Kafka 3.5.2 Release Notes.

HTTP/2 DoS vulnerability (CVE-2023-44487)

The release addresses CVE-2023-44487, a critical Denial of Service (DoS) vulnerability in the HTTP/2
protocol. The vulnerability stems from mishandling multiplexed streams, allowing a malicious client to
repeatedly request new streams and promptly cancel them using an RST_STREAM frame. By doing so,
the attacker forces the server to expend resources setting up and tearing down streams without
reaching the server-side limit for active streams per connection. For more information on this
vulnerability, see the CVE-2023-44487 page for a description.

For additional details about the issues resolved in AMQ Streams 2.5.1, see AMQ Streams 2.5.x Resolved
Issues.

8.2. FIXED ISSUES FOR AMQ STREAMS 2.5.0

Table 8.1. Fixed issues

Issue Number Description

ENTMQST-3757 [KAFKA] Mirror Maker 2 negative lag

ENTMQST-3954 Topic is not successfully created without "spec:" in KafkaTopic

ENTMQST-4430 All Zookeeper pods are deleted when are rolled with invalid configuration

ENTMQST-4496 [BRIDGE] Logged HTTP response status code could be different from the actual one
returned to the client

ENTMQST-4555 When KafkaRebalance resource is Ready, it should not transition due to Kafka Cluster
failure

ENTMQST-4707 Make connector task backoff configurable in Kafka Connect

CHAPTER 8. FIXED ISSUES

21

https://archive.apache.org/dist/kafka/3.5.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.5.2/RELEASE_NOTES.html
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/articles/7039497
https://issues.redhat.com/ENTMQST-3757
https://issues.redhat.com/ENTMQST-3954
https://issues.redhat.com/ENTMQST-4430
https://issues.redhat.com/ENTMQST-4496
https://issues.redhat.com/ENTMQST-4555
https://issues.redhat.com/ENTMQST-4707

ENTMQST-4723 The AMQ Streams Operator doesn’t create the require Network Policy once Kafka
Exporter is enabled

ENTMQST-4735 Startup failure for Cruise Control when OAuth 2.0 metrics are enabled

ENTMQST-4772 Connect/Coonector operator stuck when REST API query fails

ENTMQST-4774 Add insecure=true parameter to be applicable to maven type in the build of
KafkaConnect

ENTMQST-4822 Certificate key replacement fails when Cluster Operator crashes before the trust is
established

ENTMQST-4850 Provide proper error message when Cruise Control fails to generate KafkaRebalance
proposal

ENTMQST-4909 Improve usability of resizing persistent volumes

ENTMQST-5050 Cruise Control and KafkaNodePool resources - operator doesn’t reflect number of
replicas inside KafkaNodePool

ENTMQST-5051 Fix various validations based on number of replicas to work with node pools

Issue Number Description

Table 8.2. Fixed common vulnerabilities and exposures (CVEs)

Issue Number Description

ENTMQST-4484 snakeyaml: Constructor Deserialization Remote Code Execution

ENTMQST-4995 TRIAGE-CVE-2023-34454 snappy-java-repolib: snappy-java: Integer overflow in
compress leads to DoS

ENTMQST-4996 TRIAGE-CVE-2023-34454 snappy-java-debuginfo: snappy-java: Integer overflow in
compress leads to DoS

ENTMQST-4997 TRIAGE-CVE-2023-34454 snappy-java: Integer overflow in compress leads to DoS

ENTMQST-4998 TRIAGE-CVE-2023-34455 snappy-java: Unchecked chunk length leads to DoS

ENTMQST-5120 CVE-2023-34462 Flaw in Netty’s SniHandler while navigating TLS handshake; DoS

ENTMQST-5121 CVE-2023-0482 RESTEasy: creation of insecure temp files

ENTMQST-5122 CVE-2022-24823 netty: world readable temporary file containing sensitive data

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

22

https://issues.redhat.com/ENTMQST-4723
https://issues.redhat.com/ENTMQST-4735
https://issues.redhat.com/ENTMQST-4772
https://issues.redhat.com/ENTMQST-4774
https://issues.redhat.com/ENTMQST-4822
https://issues.redhat.com/ENTMQST-4850
https://issues.redhat.com/ENTMQST-4909
https://issues.redhat.com/browse/ENTMQST-5050
https://issues.redhat.com/browse/ENTMQST-5051
https://issues.redhat.com/browse/ENTMQST-4484
https://issues.redhat.com/browse/ENTMQST-4995
https://issues.redhat.com/browse/ENTMQST-4996
https://issues.redhat.com/browse/ENTMQST-4997
https://issues.redhat.com/browse/ENTMQST-4998
https://issues.redhat.com/browse/ENTMQST-5120
https://issues.redhat.com/browse/ENTMQST-5121
https://issues.redhat.com/browse/ENTMQST-5122

ENTMQST-5123 CVE-2021-37137 netty-codec: SnappyFrameDecoder doesn’t restrict chunk length and
may buffer skippable chunks in an unnecessary way

ENTMQST-5124 CVE-2021-37136 netty-codec: Bzip2Decoder doesn’t allow setting size restrictions for
decompressed data

ENTMQST-5125 CVE-2023-3635 DoS of the Okio client when handling a crafted GZIP archive

ENTMQST-5126 CVE-2023-26048 Jetty servlets with multipart support may cause OOM error with
client requests

ENTMQST-5127 CVE-2023-26049 Non-standard cookie parsing in Jetty may allow an attacker to
smuggle cookies within other cookies

ENTMQST-5128 CVE-2022-36944 scala: deserialization gadget chain

ENTMQST-5134 TRIAGE-CVE-2023-3635 okio: GzipSource class improper exception handling

ENTMQST-5178 CVE-2023-26048 jetty-server: OutOfMemoryError for large multipart without
filename read via request.getParameter()

ENTMQST-5179 CVE-2023-26049 jetty-server: Cookie parsing of quoted values can exfiltrate values
from other cookies

Issue Number Description

CHAPTER 8. FIXED ISSUES

23

https://issues.redhat.com/browse/ENTMQST-5123
https://issues.redhat.com/browse/ENTMQST-5124
https://issues.redhat.com/browse/ENTMQST-5125
https://issues.redhat.com/browse/ENTMQST-5126
https://issues.redhat.com/browse/ENTMQST-5127
https://issues.redhat.com/browse/ENTMQST-5128
https://issues.redhat.com/browse/ENTMQST-5134
https://issues.redhat.com/browse/ENTMQST-5178
https://issues.redhat.com/browse/ENTMQST-5179

CHAPTER 9. KNOWN ISSUES
This section lists the known issues for AMQ Streams 2.5 on OpenShift.

9.1. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED

If Cross-Origin Resource Sharing (CORS) is enabled for the Kafka Bridge, a 400 bad request error is
returned when sending a HTTP request to produce messages.

Workaround

To avoid this error, disable CORS in the Kafka Bridge configuration. HTTP requests to produce
messages must have CORS disabled in the Kafka Bridge. This issue will be fixed in a future release of
AMQ Streams.

To use CORS, you can deploy Red Hat 3scale for the Kafka Bridge.

For information on deploying 3scale see, Using 3scale API Management with the AMQ Streams
Kafka Bridge.

For information on CORS request handling by 3scale, see Administering the API Gateway.

9.2. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS

The AMQ Streams Cluster Operator does not start on Internet Protocol version 6 (IPv6) clusters.

Workaround

There are two workarounds for this issue.

Workaround one: Set the KUBERNETES_MASTER environment variable

1. Display the address of the Kubernetes master node of your OpenShift Container Platform
cluster:

Copy the address of the master node.

2. List all Operator subscriptions:

3. Edit the Subscription resource for AMQ Streams:

4. In spec.config.env, add the KUBERNETES_MASTER environment variable, set to the address
of the Kubernetes master node. For example:

oc cluster-info
Kubernetes master is running at <master_address>
...

oc get subs -n <operator_namespace>

oc edit sub amq-streams -n <operator_namespace>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

24

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index

5. Save and exit the editor.

6. Check that the Subscription was updated:

7. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

Workaround two: Disable hostname verification

1. List all Operator subscriptions:

2. Edit the Subscription resource for AMQ Streams:

3. In spec.config.env, add the KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
environment variable, set to true. For example:

metadata:
 name: amq-streams
 namespace: <operator_namespace>
spec:
 channel: amq-streams-1.8.x
 installPlanApproval: Automatic
 name: amq-streams
 source: mirror-amq-streams
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: KUBERNETES_MASTER
 value: MASTER-ADDRESS

oc get sub amq-streams -n <operator_namespace>

oc get deployment <cluster_operator_deployment_name>

oc get subs -n <operator_namespace>

oc edit sub amq-streams -n <operator_namespace>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: amq-streams
 namespace: <operator_namespace>
spec:
 channel: amq-streams-1.8.x
 installPlanApproval: Automatic
 name: amq-streams
 source: mirror-amq-streams
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
 value: "true"

CHAPTER 9. KNOWN ISSUES

25

4. Save and exit the editor.

5. Check that the Subscription was updated:

6. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

9.3. CRUISE CONTROL CPU UTILIZATION ESTIMATION

Cruise Control for AMQ Streams has a known issue that relates to the calculation of CPU utilization
estimation. CPU utilization is calculated as a percentage of the defined capacity of a broker pod. The
issue occurs when running Kafka brokers across nodes with varying CPU cores. For example, node1
might have 2 CPU cores and node2 might have 4 CPU cores. In this situation, Cruise Control can
underestimate and overestimate CPU load of brokers The issue can prevent cluster rebalances when
the pod is under heavy load.

There are two workarounds for this issue.

Workaround one: Equal CPU requests and limits

You can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources. That way, all CPU
resources are reserved upfront and are always available. This configuration allows Cruise Control to
properly evaluate the CPU utilization when preparing the rebalance proposals based on CPU goals.

Workaround two: Exclude CPU goals

You can exclude CPU goals from the hard and default goals specified in the Cruise Control
configuration.

Example Cruise Control configuration without CPU goals

oc get sub amq-streams -n <operator_namespace>

oc get deployment <cluster_operator_deployment_name>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 config:
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

26

For more information, see Insufficient CPU capacity.

9.4. JMX AUTHENTICATION WHEN RUNNING IN FIPS MODE

When running AMQ Streams in FIPS mode with JMX authentication enabled, clients may fail
authentication. To work around this issue, do not enable JMX authentication while running in FIPS
mode. We are investigating the issue and working to resolve it in a future release.

 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal

CHAPTER 9. KNOWN ISSUES

27

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.5/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str

CHAPTER 10. SUPPORTED CONFIGURATIONS
Supported configurations for the AMQ Streams 2.5 release.

10.1. SUPPORTED PLATFORMS

The following platforms are tested for AMQ Streams 2.5 running with Kafka on the version of OpenShift
stated.

Platform Version Architecture

OpenShift Container Platform 4.10 to 4.14 x86_64, ppc64le (IBM Power), s390x
(IBM Z and IBM® LinuxONE), aarch64
(64-bit ARM)

OpenShift Dedicated Latest x86_64

Microsoft Azure Red Hat OpenShift Latest x86_64

Red Hat OpenShift Service on AWS Latest x86_64

Red Hat MicroShift Latest x86_64

NOTE

Support for aarch64 (64-bit ARM) applies to AMQ Streams 2.5 when running Kafka 3.5.0
only.

Unsupported features

Red Hat MicroShift does not support Kafka Connect’s build configuration for building container
images with connectors.

AMQ Streams running on IBM Power ppc64le, IBM Z s390x, or IBM® LinuxONE s390x
architecture is unsupported on disconnected OpenShift Container Platform environments.
Additionally, the IBM Z and IBM® LinuxONE s390x architecture does not support AMQ Streams
OPA integration.

10.2. SUPPORTED APACHE KAFKA ECOSYSTEM

In AMQ Streams, only the following components released directly from the Apache Software
Foundation are supported:

Apache Kafka Broker

Apache Kafka Connect

Apache MirrorMaker

Apache MirrorMaker 2

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

28

Apache Kafka Java Producer, Consumer, Management clients, and Kafka Streams

Apache ZooKeeper

NOTE

Apache ZooKeeper is supported solely as an implementation detail of Apache Kafka and
should not be modified for other purposes. Additionally, the cores or vCPU allocated to
ZooKeeper nodes are not included in subscription compliance calculations. In other
words, ZooKeeper nodes do not count towards a customer’s subscription.

10.3. ADDITIONAL SUPPORTED FEATURES

Kafka Bridge

Drain Cleaner

Cruise Control

Distributed Tracing

See also, Chapter 12, Supported integration with Red Hat products .

10.4. STORAGE REQUIREMENTS

Kafka requires block storage; file storage options like NFS are not compatible.

Additional resources

For information on the supported configurations for the AMQ Streams 2.2 LTS release, see the AMQ
Streams Supported Configurations article on the customer portal.

CHAPTER 10. SUPPORTED CONFIGURATIONS

29

{supported-configurations}

CHAPTER 11. COMPONENT DETAILS
The following table shows the component versions for each AMQ Streams release.

AMQ Streams Apache Kafka Strimzi
Operators

Kafka Bridge Oauth Cruise Control

2.5.1 3.5.0 0.36.0 0.26 0.13.0 2.5.123

2.5.0 3.5.0 0.36.0 0.26 0.13.0 2.5.123

2.4.0 3.4.0 0.34.0 0.25.0 0.12.0 2.5.112

2.3.0 3.3.1 0.32.0 0.22.3 0.11.0 2.5.103

2.2.2 3.2.3 0.29.0 0.21.5 0.10.0 2.5.103

2.2.1 3.2.3 0.29.0 0.21.5 0.10.0 2.5.103

2.2.0 3.2.3 0.29.0 0.21.5 0.10.0 2.5.89

2.1.0 3.1.0 0.28.0 0.21.4 0.10.0 2.5.82

2.0.1 3.0.0 0.26.0 0.20.3 0.9.0 2.5.73

2.0.0 3.0.0 0.26.0 0.20.3 0.9.0 2.5.73

1.8.4 2.8.0 0.24.0 0.20.1 0.8.1 2.5.59

1.8.0 2.8.0 0.24.0 0.20.1 0.8.1 2.5.59

1.7.0 2.7.0 0.22.1 0.19.0 0.7.1 2.5.37

1.6.7 2.6.3 0.20.1 0.19.0 0.6.1 2.5.11

1.6.6 2.6.3 0.20.1 0.19.0 0.6.1 2.5.11

1.6.5 2.6.2 0.20.1 0.19.0 0.6.1 2.5.11

1.6.4 2.6.2 0.20.1 0.19.0 0.6.1 2.5.11

1.6.0 2.6.0 0.20.0 0.19.0 0.6.1 2.5.11

1.5.0 2.5.0 0.18.0 0.16.0 0.5.0 -

1.4.1 2.4.0 0.17.0 0.15.2 0.3.0 -

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

30

1.4.0 2.4.0 0.17.0 0.15.2 0.3.0 -

1.3.0 2.3.0 0.14.0 0.14.0 0.1.0 -

1.2.0 2.2.1 0.12.1 0.12.2 - -

1.1.1 2.1.1 0.11.4 - - -

1.1.0 2.1.1 0.11.1 - - -

1.0 2.0.0 0.8.1 - - -

AMQ Streams Apache Kafka Strimzi
Operators

Kafka Bridge Oauth Cruise Control

NOTE

Strimzi 0.26.0 contains a Log4j vulnerability. The version included in the product has been
updated to depend on versions that do not contain the vulnerability.

CHAPTER 11. COMPONENT DETAILS

31

CHAPTER 12. SUPPORTED INTEGRATION WITH RED HAT
PRODUCTS

AMQ Streams 2.5 supports integration with the following Red Hat products:

Red Hat Single Sign-On

Provides OAuth 2.0 authentication and OAuth 2.0 authorization.

Red Hat 3scale API Management

Secures the Kafka Bridge and provides additional API management features.

Red Hat build of Debezium

Monitors databases and creates event streams.

Red Hat Red Hat build of Apicurio Registry

Provides a centralized store of service schemas for data streaming.

Red Hat build of Apache Camel K

Provides a lightweight integration framework.

For information on the functionality these products can introduce to your AMQ Streams deployment,
refer to the product documentation.

12.1. RED HAT SINGLE SIGN-ON

AMQ Streams supports the use of OAuth 2.0 token-based authorization through Red Hat Single Sign-
On Authorization Services, which allows you to manage security policies and permissions centrally.

12.2. RED HAT 3SCALE API MANAGEMENT

If you deployed the Kafka Bridge on OpenShift Container Platform, you can use it with 3scale. 3scale API
Management can secure the Kafka Bridge with TLS, and provide authentication and authorization.
Integration with 3scale also means that additional features like metrics, rate limiting and billing are
available.

For information on deploying 3scale, see Using 3scale API Management with the AMQ Streams Kafka
Bridge.

12.3. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE

The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level
changes in databases, creates change event records, and streams the records to Kafka topics.
Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with
AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector
configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on
OpenShift. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

32

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/

Data integration

Enabling streaming queries

Debezium provides connectors (based on Kafka Connect) for the following common databases:

Db2

MongoDB

MySQL

PostgreSQL

SQL Server

For more information on deploying Debezium with AMQ Streams, refer to the product documentation
for the Red Hat build of Debezium .

12.4. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA
VALIDATION

You can use the Red Hat build of Apicurio Registry as a centralized store of service schemas for data
streaming. For Kafka, you can use the Red Hat build of Apicurio Registry to store Apache Avro or JSON
schema.

Apicurio Registry provides a REST API and a Java REST client to register and query the schemas from
client applications through server-side endpoints.

Using Apicurio Registry decouples the process of managing schemas from the configuration of client
applications. You enable an application to use a schema from the registry by specifying its URL in the
client code.

For example, the schemas to serialize and deserialize messages can be stored in the registry, which are
then referenced from the applications that use them to ensure that the messages that they send and
receive are compatible with those schemas.

Kafka client applications can push or pull their schemas from Apicurio Registry at runtime.

For more information on using the Red Hat build of Apicurio Registry with AMQ Streams, refer to the
product documentation for the Red Hat build of Apicurio Registry .

12.5. RED HAT BUILD OF APACHE CAMEL K

The Red Hat build of Apache Camel K is a lightweight integration framework built from Apache Camel K
that runs natively in the cloud on OpenShift. Camel K supports serverless integration, which allows for
development and deployment of integration tasks without the need to manage the underlying
infrastructure. You can use Camel K to build and integrate event-driven applications with your AMQ
Streams environment. For scenarios requiring real-time data synchronization between different systems
or databases, Camel K can be used to capture and transform change in events and send them to AMQ
Streams for distribution to other systems.

For more information on using the Camel K with AMQ Streams, refer to the product documentation for
the Red Hat build of Apache Camel K .

CHAPTER 12. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS

33

https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium
https://access.redhat.com/documentation/en-us/red_hat_build_of_apicurio_registry
https://access.redhat.com/documentation/en-us/red_hat_build_of_apache_camel_k

Additional resources

Red Hat Single Sign-On Supported Configurations

Red Hat 3scale API Management Supported Configurations

Red Hat build of Debezium Supported Configurations

Red Hat build of Apicurio Registry Supported Configurations

Red Hat build of Apache Camel K Supported Configurations

Revised on 2024-05-31 13:04:03 UTC

Red Hat Streams for Apache Kafka 2.5 Release Notes for AMQ Streams 2.5 on OpenShift

34

https://access.redhat.com/articles/2342861
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/4938181
https://access.redhat.com/articles/5208571
https://access.redhat.com/articles/6241991

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. AMQ STREAMS 2.5 LONG TERM SUPPORT
	CHAPTER 2. FEATURES
	2.1. AMQ STREAMS 2.5.X (LONG TERM SUPPORT)
	2.2. OPENSHIFT CONTAINER PLATFORM SUPPORT
	2.3. KAFKA 3.5.0 SUPPORT
	2.4. SUPPORTING THE V1BETA2 API VERSION
	2.4.1. Upgrading custom resources to v1beta2

	2.5. (PREVIEW) NODE POOLS FOR MANAGING NODES IN A KAFKA CLUSTER
	2.6. (PREVIEW) UNIDIRECTIONAL TOPIC MANAGEMENT USING THE TOPIC OPERATOR
	2.7. REPORTING TOOL FOR RETRIEVING DIAGNOSTIC AND TROUBLESHOOTING DATA
	2.8. OPENTELEMETRY FOR DISTRIBUTED TRACING

	CHAPTER 3. ENHANCEMENTS
	3.1. KAFKA 3.5.0 ENHANCEMENTS
	3.2. USESTRIMZIPODSETS FEATURE GATE MOVES TO GA
	3.3. KRAFT REQUIRES NODE POOL CONFIGURATION
	3.4. OAUTH 2.0 SUPPORT FOR KRAFT MODE
	3.5. OAUTH 2.0 CONFIGURATION PROPERTIES FOR GRANT MANAGEMENT
	3.6. OAUTH 2.0 SUPPORT FOR JSONPATH QUERIES WHEN EXTRACTING USERNAMES
	3.7. ADDED KAFKA EXPORTER SUPPORT TO EXCLUDE TOPICS AND CONSUMER GROUPS
	3.8. KAFKA BRIDGE ENHANCEMENTS FOR METRICS AND OPENAPI

	CHAPTER 4. TECHNOLOGY PREVIEWS
	4.1. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

	CHAPTER 5. DEVELOPER PREVIEWS
	5.1. KAFKANODEPOOLS FEATURE GATE
	5.2. UNIDIRECTIONALTOPICOPERATOR FEATURE GATE
	5.3. STABLECONNECTIDENTITIES FEATURE GATE
	5.4. USEKRAFT FEATURE GATE

	CHAPTER 6. KAFKA BREAKING CHANGES
	6.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

	CHAPTER 7. DEPRECATED FEATURES
	7.1. RHEL 7 DEPRECATED IN AMQ STREAMS 2.5.X (LTS)
	7.2. STATEFULSET SUPPORT REMOVED
	7.3. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0
	7.4. OPENTRACING
	7.5. ACL RULE CONFIGURATION
	7.6. KAFKA MIRRORMAKER 2 IDENTITY REPLICATION POLICY
	7.7. KAFKA MIRRORMAKER 1
	7.8. LISTENERSTATUS TYPE PROPERTY
	7.9. CRUISE CONTROL TLS SIDECAR PROPERTIES
	7.10. CRUISE CONTROL CAPACITY CONFIGURATION

	CHAPTER 8. FIXED ISSUES
	8.1. FIXED ISSUES FOR AMQ STREAMS 2.5.1
	8.2. FIXED ISSUES FOR AMQ STREAMS 2.5.0

	CHAPTER 9. KNOWN ISSUES
	9.1. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED
	9.2. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
	9.3. CRUISE CONTROL CPU UTILIZATION ESTIMATION
	9.4. JMX AUTHENTICATION WHEN RUNNING IN FIPS MODE

	CHAPTER 10. SUPPORTED CONFIGURATIONS
	10.1. SUPPORTED PLATFORMS
	10.2. SUPPORTED APACHE KAFKA ECOSYSTEM
	10.3. ADDITIONAL SUPPORTED FEATURES
	10.4. STORAGE REQUIREMENTS

	CHAPTER 11. COMPONENT DETAILS
	CHAPTER 12. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS
	12.1. RED HAT SINGLE SIGN-ON
	12.2. RED HAT 3SCALE API MANAGEMENT
	12.3. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE
	12.4. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA VALIDATION
	12.5. RED HAT BUILD OF APACHE CAMEL K

