
Red Hat Customer Content
Services

Red Hat Single Sign-On
7.0
Securing Applications and Services
Guide

Securing Applications and Services Guide

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

Securing Applications and Services Guide

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide consist of information for securing applications and services using Red Hat Single Sign-
On 7.0

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. WHAT ARE CLIENT ADAPTERS?
1.2. SUPPORTED PLATFORMS
1.3. SUPPORTED PROTOCOLS

CHAPTER 2. OPENID CONNECT
2.1. JAVA ADAPTERS
2.2. JAVASCRIPT ADAPTER
2.3. OTHER OPENID CONNECT LIBRARIES

CHAPTER 3. SAML
3.1. JAVA ADAPTERS
3.2. MOD_AUTH_MELLON APACHE HTTPD MODULE

CHAPTER 4. CLIENT REGISTRATION
4.1. AUTHENTICATION
4.2. RED HAT SINGLE SIGN-ON REPRESENTATIONS
4.3. RED HAT SINGLE SIGN-ON ADAPTER CONFIGURATION
4.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION
4.5. SAML ENTITY DESCRIPTORS
4.6. EXAMPLE USING CURL
4.7. EXAMPLE USING JAVA CLIENT REGISTRATION API

3
3
3
3

6
6

29
36

41
41
55

57
57
58
58
59
59
59
59

Table of Contents

1

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

2

CHAPTER 1. OVERVIEW

Red Hat Single Sign-On supports both OpenID Connect (an extension to OAuth 2.0) and SAML 2.0.
When securing clients and services the first thing you need to decide is which of the two you are
going to use. If you want you can also choose to secure some with OpenID Connect and others with
SAML.

To secure clients and services you are also going to need an adapter or library for the protocol
you’ve selected. Red Hat Single Sign-On comes with its own adapters for selected platforms, but it
is also possible to use generic OpenID Connect Resource Provider and SAML Service Provider
libraries.

1.1. WHAT ARE CLIENT ADAPTERS?

Red Hat Single Sign-On client adapters are libraries that makes it very easy to secure applications
and services with Red Hat Single Sign-On. We call them adapters rather than libraries as they
provide a tight integration to the underlying platform and framework. This makes our adapters easy
to use and they require less boilerplate code than what is typically required by a library.

1.2. SUPPORTED PLATFORMS

1.2.1. OpenID Connect

1.2.1.1. Java

JBoss EAP

Fuse

1.2.1.2. Apache Cordova

JavaScript

1.2.2. SAML

1.2.2.1. Java

JBoss EAP

1.2.2.2. Apache HTTP Server

mod_auth_mellon

1.3. SUPPORTED PROTOCOLS

1.3.1. OpenID Connect

Open ID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0. While
OAuth 2.0 is only a framework for building authorization protocols and is mainly incomplete, OIDC is

CHAPTER 1. OVERVIEW

3

https://github.com/UNINETT/mod_auth_mellon
http://openid.net/connect/
https://tools.ietf.org/html/rfc6749

a full-fledged authentication and authorization protocol. OIDC also makes heavy use of the Json
Web Token (JWT) set of standards. These standards define an identity token JSON format and
ways to digitally sign and encrypt that data in a compact and web-friendly way.

There is really two types of use cases when using OIDC. The first is an application that asks the
Red Hat Single Sign-On server to authenticate a user for them. After a successful login, the
application will receive an identity token and an access token. The identity token contains
information about the user such as username, email, and other profile information. The access token
is digitally signed by the realm and contains access information (like user role mappings) that the
application can use to determine what resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this
case, the client asks Red Hat Single Sign-On to obtain an access token it can use to invoke on
other remote services on behalf of the user. Red Hat Single Sign-On authenticates the user then
asks the user for consent to grant access to the client requesting it. The client then receives the
access token. This access token is digitally signed by the realm. The client can make REST
invocations on remote services using this access token. The REST service extracts the access
token, verifies the signature of the token, then decides based on access information within the token
whether or not to process the request.

1.3.2. SAML 2.0

SAML 2.0 is a similar specification to OIDC but a lot older and more mature. It has its roots in SOAP
and the plethora of WS-* specifications so it tends to be a bit more verbose than OIDC. SAML 2.0 is
primarily an authentication protocol that works by exchanging XML documents between the
authentication server and the application. XML signatures and encryption are used to verify requests
and responses.

In Red Hat Single Sign-On SAML serves two types of use cases: browser applications and REST
invocations.

There is really two types of use cases when using SAML. The first is an application that asks the
Red Hat Single Sign-On server to authenticate a user for them. After a successful login, the
application will receive an XML document that contains something called a SAML assertion that
specifies various attributes about the user. This XML document is digitally signed by the realm and
contains access information (like user role mappings) that the application can use to determine what
resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this
case, the client asks Red Hat Single Sign-On to obtain a SAML assertion it can use to invoke on
other remote services on behalf of the user.

1.3.3. OpenID Connect vs. SAML

Choosing between OpenID Connect and SAML is not just a matter of using a newer protocol (OIDC)
instead of the older more mature protocol (SAML).

In most cases Red Hat Single Sign-On recommends using OIDC.

SAML tends to be a bit more verbose than OIDC.

Beyond verbosity of exchanged data, if you compare the specifications you’ll find that OIDC was
designed to work with the web while SAML was retrofitted to work on top of the web. For example,
OIDC is also more suited for HTML5/JavaScript applications because it is easier to implement on
the client side than SAML. As tokens are in the JSON format, they are easier to consume by

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

4

https://jwt.io
http://saml.xml.org/saml-specifications

JavaScript. You will also find several nice features that make implementing security in your web
applications easier. For example, check out the iframe trick that the specification uses to easily
determine if a user is still logged in or not.

SAML has its uses though. As you see the OIDC specifications evolve you see they implement
more and more features that SAML has had for years. What we often see is that people pick SAML
over OIDC because of the perception that it is more mature and also because they already have
existing applications that are secured with it.

CHAPTER 1. OVERVIEW

5

CHAPTER 2. OPENID CONNECT

This section describes how you can secure applications and services with OpenID Connect using
either Red Hat Single Sign-On adapters or generic OpenID Connect Resource Provider libraries.

2.1. JAVA ADAPTERS

Red Hat Single Sign-On comes with a range of different adapters for Java application. Selecting the
correct adapter depends on the target platform.

All Java adapters share a set of common configuration options described in the Java Adapters
Config chapter.

2.1.1. Java Adapter Config

Each Java adapter supported by Red Hat Single Sign-On can be configured by a simple JSON file.
This is what one might look like:

You can use ${… ​} enclosure for system property replacement. For example
${jboss.server.config.dir} would be replaced by /path/to/Red Hat Single Sign-
On.

The initial config file can be obtained from the the admin console. This can be done by opening the
admin console, select Clients from the menu and clicking on the corresponding client. Once the
page for the client is opened click on the Installation tab and select Keycloak OIDC JSON.

Here is a description of each configuration option:

{
 "realm" : "demo",
 "resource" : "customer-portal",
 "realm-public-key" : "MIGfMA0GCSqGSIb3D...31LwIDAQAB",
 "auth-server-url" : "https://localhost:8443/auth",
 "ssl-required" : "external",
 "use-resource-role-mappings" : false,
 "enable-cors" : true,
 "cors-max-age" : 1000,
 "cors-allowed-methods" : "POST, PUT, DELETE, GET",
 "bearer-only" : false,
 "enable-basic-auth" : false,
 "expose-token" : true,
 "credentials" : {
 "secret" : "234234-234234-234234"
 },

 "connection-pool-size" : 20,
 "disable-trust-manager": false,
 "allow-any-hostname" : false,
 "truststore" : "path/to/truststore.jks",
 "truststore-password" : "geheim",
 "client-keystore" : "path/to/client-keystore.jks",
 "client-keystore-password" : "geheim",
 "client-key-password" : "geheim"
}

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

6

realm

Name of the realm. This is REQUIRED.

resource

The client-id of the application. Each application has a client-id that is used to identify the
application. This is REQUIRED.

realm-public-key

PEM format of the realm public key. You can obtain this from the administration console.
This is OPTIONAL. If not set the adapter will download this from Red Hat Single Sign-On.

auth-server-url

The base URL of the Red Hat Single Sign-On server. All other Red Hat Single Sign-On
pages and REST service endpoints are derived from this. It is usually of the form
https://host:port/auth. This is REQUIRED.

ssl-required

Ensures that all communication to and from the Red Hat Single Sign-On server is over
HTTPS. In production this should be set to all. This is OPTIONAL. The default value is
external meaning that HTTPS is required by default for external requests. Valid values are
'all', 'external' and 'none'.

use-resource-role-mappings

If set to true, the adapter will look inside the token for application level role mappings for the
user. If false, it will look at the realm level for user role mappings. This is OPTIONAL. The
default value is false.

public-client

If set to true, the adapter will not send credentials for the client to Red Hat Single Sign-On.
This is OPTIONAL. The default value is false.

enable-cors

This enables CORS support. It will handle CORS preflight requests. It will also look into the
access token to determine valid origins. This is OPTIONAL. The default value is false.

cors-max-age

If CORS is enabled, this sets the value of the Access-Control-Max-Age header. This is
OPTIONAL. If not set, this header is not returned in CORS responses.

cors-allowed-methods

If CORS is enabled, this sets the value of the Access-Control-Allow-Methods header.
This should be a comma-separated string. This is OPTIONAL. If not set, this header is not
returned in CORS responses.

cors-allowed-headers

If CORS is enabled, this sets the value of the Access-Control-Allow-Headers header.
This should be a comma-separated string. This is OPTIONAL. If not set, this header is not
returned in CORS responses.

bearer-only

CHAPTER 2. OPENID CONNECT

7

This should be set to true for services. If enabled the adapter will not attempt to authenticate
users, but only verify bearer tokens. This is OPTIONAL. The default value is false.

enable-basic-auth

This tells the adapter to also support basic authentication. If this option is enabled, then
secret must also be provided. This is OPTIONAL. The default value is false.

expose-token

If true, an authenticated browser client (via a Javascript HTTP invocation) can obtain the
signed access token via the URL root/k_query_bearer_token. This is OPTIONAL.
The default value is false.

credentials

Specify the credentials of the application. This is an object notation where the key is the
credential type and the value is the value of the credential type. Currently password and
jwt is supported. This is REQUIRED.

connection-pool-size

Adapters will make separate HTTP invocations to the Red Hat Single Sign-On server to turn
an access code into an access token. This config option defines how many connections to
the Red Hat Single Sign-On server should be pooled. This is OPTIONAL. The default value
is 20.

disable-trust-manager

If the Red Hat Single Sign-On server requires HTTPS and this config option is set to true
you do not have to specify a truststore. This setting should only be used during development
and never in production as it will disable verification of SSL certificates. This is OPTIONAL.
The default value is false.

allow-any-hostname

If the Red Hat Single Sign-On server requires HTTPS and this config option is set to true
the Red Hat Single Sign-On server’s certificate is validated via the truststore, but host name
validation is not done. This setting should only be used during development and never in
production as it will disable verification of SSL certificates. This seting may be useful in test
environments This is OPTIONAL. The default value is false.

truststore

The value is the file path to a keystore file. If you prefix the path with classpath:, then the
truststore will be obtained from the deployment’s classpath instead. Used for outgoing
HTTPS communications to the Red Hat Single Sign-On server. Client making HTTPS
requests need a way to verify the host of the server they are talking to. This is what the
trustore does. The keystore contains one or more trusted host certificates or certificate
authorities. You can create this truststore by extracting the public certificate of the Red Hat
Single Sign-On server’s SSL keystore. This is REQUIRED unless ssl-required is none
or disable-trust-manager is true.

truststore-password

Password for the truststore keystore. This is REQUIRED if truststore is set and the
truststore requires a password.

client-keystore

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

8

This is the file path to a keystore file. This keystore contains client certificate for two-way
SSL when the adapter makes HTTPS requests to the Red Hat Single Sign-On server. This
is OPTIONAL.

client-keystore-password

Password for the client keystore. This is REQUIRED if client-keystore is set.

client-key-password

Password for the client’s key. This is REQUIRED if client-keystore is set.

always-refresh-token

If true, the adapter will refresh token in every request.

register-node-at-startup

If true, then adapter will send registration request to Red Hat Single Sign-On. It’s false by
default and useful only when application is clustered. See Application Clustering for details

register-node-period

Period for re-registration adapter to Red Hat Single Sign-On. Useful when application is
clustered. See Application Clustering for details

token-store

Possible values are session and cookie. Default is session, which means that adapter
stores account info in HTTP Session. Alternative cookie means storage of info in cookie.
See Application Clustering for details

principal-attribute

OpenID Connection ID Token attribute to populate the UserPrincipal name with. If token
attribute is null, defaults to sub. Possible values are sub, preferred_username, email,
name, nickname, given_name, family_name.

turn-off-change-session-id-on-login

The session id is changed by default on a successful login on some platforms to plug a
security attack vector. Change this to true if you want to turn this off This is OPTIONAL. The
default value is false.

2.1.2. JBoss EAP Adapter

To be able to secure WAR apps deployed on JBoss EAP, you must install and configure the Red
Hat Single Sign-On adapter subsystem. You then have two options to secure your WARs.

You can provide an adapter config file in your WAR and change the auth-method to KEYCLOAK
within web.xml.

Alternatively, you don’t have to modify your WAR at all and you can secure it via the Red Hat Single
Sign-On adapter subsystem configuration in standalone.xml. Both methods are described in this
section.

2.1.2.1. Adapter Installation

Adapters are available as a separate archive and are also available as Maven artifacts.

CHAPTER 2. OPENID CONNECT

9

Install on JBoss EAP 7:

$ cd $EAP_HOME
$ unzip rh-sso-7.0.0-eap7-adapter.zip

Install on JBoss EAP 6:

$ cd $EAP_HOME
$ unzip rh-sso-7.0.0-eap6-adapter.zip

This ZIP archive contains JBoss Modules specific to the Red Hat Single Sign-On adapter. It also
contains JBoss CLI scripts to install and configure the adapter.

Once the ZIP archive is extracted you have to enable the Red Hat Single Sign-On subystem in the
server configuration (i.e. standalone.xml). The easiest way to do this is to use the supplied
JBoss CLI scripts.

To install and configure the adapter, first start the server and then run the JBoss CLI installation
script :

$./bin/jboss-cli.sh -c --file=adapter-install.cli

The script will add the required configuration to the server configuration file.

For JBoss EAP 7 there is also an offline CLI script that can be used to install the adapter while the
server is not running:

$./bin/jboss-cli.sh --file=adapter-install-offline.cli

If you are planning to add it manually you need to add the extension and subsystem definition to the
server configuration:

If you need to be able to propagate the security context from the web tier to the EJB tier you also
need to add the keycloak security domain:

<extensions>
 <extension module="org.keycloak.keycloak-adapter-subsystem"/>
 ...
</extensions>

<profile>
 <subsystem xmlns="urn:jboss:domain:keycloak:1.1"/>
 ...
</profile>

<subsystem xmlns="urn:jboss:domain:security:...">
 <security-domains>
 ...
 <security-domain name="keycloak">
 <authentication>
 <login-module
code="org.keycloak.adapters.jboss.KeycloakLoginModule"
 flag="required"/>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

10

For example, if you have a JAX-RS service that is an EJB within your WEB-INF/classes directory,
you’ll want to annotate it with the @SecurityDomain annotation as follows:

import org.jboss.ejb3.annotation.SecurityDomain;
import org.jboss.resteasy.annotations.cache.NoCache;

import javax.annotation.security.RolesAllowed;
import javax.ejb.EJB;
import javax.ejb.Stateless;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import java.util.ArrayList;
import java.util.List;

@Path("customers")
@Stateless
@SecurityDomain("keycloak")
public class CustomerService {

 @EJB
 CustomerDB db;

 @GET
 @Produces("application/json")
 @NoCache
 @RolesAllowed("db_user")
 public List<String> getCustomers() {
 return db.getCustomers();
 }
}

2.1.2.2. Required Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your
WAR package.

The first thing you must do is create a keycloak.json adapter config file within the WEB-INF
directory of your WAR.

The format of this config file is describe in the Java adapter configuration section.

Next you must set the auth-method to KEYCLOAK in web.xml. You also have to use standard
servlet security to specify role-base constraints on your URLs.

Here’s an example:

 </authentication>
 </security-domain>
 </security-domains>
 ...

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

CHAPTER 2. OPENID CONNECT

11

2.1.2.3. Securing WARs via Adapter Subsystem

You do not have to modify your WAR to secure it with Red Hat Single Sign-On. Instead you can
externally secure it via the Red Hat Single Sign-On Adapter Subsystem. While you don’t have to
specify KEYCLOAK as an auth-method, you still have to define the security-constraints in
web.xml. You do not, however, have to create a WEB-INF/keycloak.json file. This metadata is
instead defined within server configuration (i.e. standalone.xml) in the Red Hat Single Sign-On
subsystem definition.

 version="3.0">

 <module-name>application</module-name>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admins</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <login-config>
 <auth-method>KEYCLOAK</auth-method>
 <realm-name>this is ignored currently</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

<extensions>
 <extension module="org.keycloak.keycloak-adapter-subsystem"/>
</extensions>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

12

The secure-deployment name attribute identifies the WAR you want to secure. Its value is the
module-name defined in web.xml with .war appended. The rest of the configuration corresponds
pretty much one to one with the keycloak.json configuration options defined in Java adapter
configuration.

The exception is the credential element.

To make it easier for you, you can go to the Red Hat Single Sign-On Administration Console and go
to the Client/Installation tab of the application this WAR is aligned with. It provides an example XML
file you can cut and paste.

If you have multiple deployments secured by the same realm you can share the realm configuration
in a separate element. For example:

2.1.3. JBoss Fuse Adapter

<profile>
 <subsystem xmlns="urn:jboss:domain:keycloak:1.1">
 <secure-deployment name="WAR MODULE NAME.war">
 <realm>demo</realm>
 <realm-public-key>MIGfMA0GCSqGSIb3DQEBAQUAA</realm-public-key>
 <auth-server-url>http://localhost:8081/auth</auth-server-url>
 <ssl-required>external</ssl-required>
 <resource>customer-portal</resource>
 <credential name="secret">password</credential>
 </secure-deployment>
 </subsystem>
</profile>

<subsystem xmlns="urn:jboss:domain:keycloak:1.1">
 <realm name="demo">
 <realm-public-key>MIGfMA0GCSqGSIb3DQEBA...</realm-public-key>
 <auth-server-url>http://localhost:8080/auth</auth-server-url>
 <ssl-required>external</ssl-required>
 </realm>
 <secure-deployment name="customer-portal.war">
 <realm>demo</realm>
 <resource>customer-portal</resource>
 <credential name="secret">password</credential>
 </secure-deployment>
 <secure-deployment name="product-portal.war">
 <realm>demo</realm>
 <resource>product-portal</resource>
 <credential name="secret">password</credential>
 </secure-deployment>
 <secure-deployment name="database.war">
 <realm>demo</realm>
 <resource>database-service</resource>
 <bearer-only>true</bearer-only>
 </secure-deployment>
</subsystem>

CHAPTER 2. OPENID CONNECT

13

Note

JBoss Fuse is a Technology Preview feature and is not fully supported

Currently Red Hat Single Sign-On supports securing your web applications running inside JBoss
Fuse .

What is supported for Fuse is:

Security for classic WAR applications deployed on Fuse with Pax Web War Extender.

Security for servlets deployed on Fuse as OSGI services with Pax Web Whiteboard Extender.

Security for Apache Camel Jetty endpoints running with Camel Jetty component.

Security for Apache CXF endpoints running on their own separate Jetty engine.

Security for Apache CXF endpoints running on default engine provided by CXF servlet.

Security for SSH and JMX admin access.

2.1.3.1. How to secure your web applications inside Fuse

Basically all mentioned web applications require to inject Red Hat Single Sign-On Jetty authenticator
into underlying Jetty server . The steps to achieve it are bit different according to application type.
The details are described in individual sub-chapters.

2.1.3.2. Secure Classic WAR application

The needed steps to secure your WAR are:

Declare needed security constraints in /WEB-INF/web.xml . You also need to declare login-
config and all the roles inside security-role. The example configuration can look like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <module-name>customer-portal</module-name>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

14

http://www.jboss.org/products/fuse/overview/
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+War
https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+Whiteboard
http://camel.apache.org/
http://camel.apache.org/jetty.html
http://cxf.apache.org/
http://cxf.apache.org/docs/jetty-configuration.html
http://cxf.apache.org/

Add jetty-web.xml file with the authenticator to /WEB-INF/jetty-web.xml . Typically it
will look like this:

Add /WEB-INF/keycloak.json with your Red Hat Single Sign-On configuration. The format
of this config file is described in the Java Adapters Config section.

Make sure your WAR imports org.keycloak.adapters.jetty and maybe some more
packages in META-INF/MANIFEST.MF file in header Import-Package. It’s recommended to
use maven-bundle-plugin in your project to properly generate OSGI headers in manifest.
Note that "*" resolution for package doesn’t import org.keycloak.adapters.jetty package
as it’s not used by application or Blueprint or Spring descriptor, but it’s used just in jetty-
web.xml file. So list of the packages to import may look like this:

org.keycloak.adapters.jetty;version="1.9.8.Final-redhat-1",
org.keycloak.adapters;version="1.9.8.Final-redhat-1",
org.keycloak.constants;version="1.9.8.Final-redhat-1",
org.keycloak.util;version="1.9.8.Final-redhat-1",
org.keycloak.*;version="1.9.8.Final-redhat-1",
*;resolution:=optional

2.1.3.3. Secure Servlet deployed as OSGI service

This is useful for the case, when you have sevlet class inside your OSGI bundle project, which is not
deployed as classic WAR. Fuse uses Pax Web Whiteboard Extender for deploy such servlet as web
application.

The needed steps to secure your servlet with Red Hat Single Sign-On are:

 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>does-not-matter</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"
 "http://www.eclipse.org/jetty/configure_9_0.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <Get name="securityHandler">
 <Set name="authenticator">
 <New
class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">
 </New>
 </Set>
 </Get>
</Configure>

CHAPTER 2. OPENID CONNECT

15

https://ops4j1.jira.com/wiki/display/ops4j/Pax+Web+Extender+-+Whiteboard

Red Hat Single Sign-On provides PaxWebIntegrationService, which allows to inject jetty-
web.xml and configure security constraints for your application. You need to declare such service
in OSGI-INF/blueprint/blueprint.xml inside your application. Note that your servlet
needs to depend on it. The example configuration can look like this:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

 <!-- Using jetty bean just for the compatibility with other fuse
services -->
 <bean id="servletConstraintMapping"
class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint">
 <bean class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="cst1"/>
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>
 </property>
 <property name="pathSpec" value="/product-portal/*"/>
 </bean>

 <bean id="keycloakPaxWebIntegration"
class="org.keycloak.adapters.osgi.PaxWebIntegrationService"
 init-method="start" destroy-method="stop">
 <property name="jettyWebXmlLocation" value="/WEB-INF/jetty-
web.xml" />
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="constraintMappings">
 <list>
 <ref component-id="servletConstraintMapping" />
 </list>
 </property>
 </bean>

 <bean id="productServlet"
class="org.keycloak.example.ProductPortalServlet" depends-
on="keycloakPaxWebIntegration">
 </bean>

 <service ref="productServlet" interface="javax.servlet.Servlet">
 <service-properties>
 <entry key="alias" value="/product-portal" />
 <entry key="servlet-name" value="ProductServlet" />
 <entry key="keycloak.config.file" value="/keycloak.json"
/>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

16

 </service-properties>
 </service>

</blueprint>

You may need to have directory WEB-INF inside your project (even if your project is not web
application) and create files /WEB-INF/jetty-web.xml and /WEB-INF/keycloak.json in
similar way like it’s in Classic WAR application. Note you don’t need web.xml as the security-
constrains are declared in blueprint configuration file.

The Import-Package in META-INF/MANIFEST.MF needs to contain at least those imports:

org.keycloak.adapters.jetty;version="1.9.8.Final-redhat-1",
org.keycloak.adapters;version="1.9.8.Final-redhat-1",
org.keycloak.constants;version="1.9.8.Final-redhat-1",
org.keycloak.util;version="1.9.8.Final-redhat-1",
org.keycloak.*;version="1.9.8.Final-redhat-1",
*;resolution:=optional

2.1.3.4. Apache Camel Application

You can secure your Apache camel endpoint using camel-jetty component by adding
securityHandler with KeycloakJettyAuthenticator and proper security constraints injected.
You can add file OSGI-INF/blueprint/blueprint.xml into your camel application with the
configuration similar to below. The roles, security constraint mappings and Red Hat Single Sign-
On adapter configuration may be a bit different according to your environment and needs:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <bean id="kcAdapterConfig"
class="org.keycloak.representations.adapters.config.AdapterConfig">
 <property name="realm" value="demo"/>
 <property name="resource" value="admin-camel-endpoint"/>
 <property name="realmKey" value="MIGfMA0G..."/>
 <property name="bearerOnly" value="true"/>
 <property name="authServerUrl" value="http://localhost:8080/auth"
/>
 <property name="sslRequired" value="EXTERNAL"/>
 </bean>

 <bean id="keycloakAuthenticator"
class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">
 <property name="adapterConfig" ref="kcAdapterConfig"/>
 </bean>

 <bean id="constraint"

CHAPTER 2. OPENID CONNECT

17

http://camel.apache.org/jetty.html

The Import-Package in META-INF/MANIFEST.MF needs to contain those imports:

javax.servlet;version="[3,4)",
javax.servlet.http;version="[3,4)",
org.apache.camel.*,

class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="Customers"/>
 <property name="roles">
 <list>
 <value>admin</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>

 <bean id="constraintMapping"
class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
 </bean>

 <bean id="securityHandler"
class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator" ref="keycloakAuthenticator" />
 <property name="constraintMappings">
 <list>
 <ref component-id="constraintMapping" />
 </list>
 </property>
 <property name="authMethod" value="BASIC"/>
 <property name="realmName" value="does-not-matter"/>
 </bean>

 <bean id="sessionHandler"
class="org.keycloak.adapters.jetty.spi.WrappingSessionHandler">
 <property name="handler" ref="securityHandler" />
 </bean>

 <bean id="helloProcessor"
class="org.keycloak.example.CamelHelloProcessor" />

 <camelContext id="blueprintContext"
 trace="false"
 xmlns="http://camel.apache.org/schema/blueprint">
 <route id="httpBridge">
 <from uri="jetty:http://0.0.0.0:8383/admin-camel-endpoint?
handlers=sessionHandler&matchOnUriPrefix=true" />
 <process ref="helloProcessor" />
 <log message="The message from camel endpoint contains
${body}"/>
 </route>
 </camelContext>

</blueprint>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

18

org.apache.camel;version="[2.13,3)",
org.eclipse.jetty.security;version="[8,10)",
org.eclipse.jetty.server.nio;version="[8,10)",
org.eclipse.jetty.util.security;version="[8,10)",
org.keycloak.*;version="1.9.8.Final-redhat-1",
org.osgi.service.blueprint,
org.osgi.service.blueprint.container,
org.osgi.service.event,

2.1.3.5. Secure Apache CXF Endpoint on separate Jetty

It’s recommended to run your CXF endpoints secured by Red Hat Single Sign-On on separate Jetty
engine. This is the setup described in this section.

You need to add META-INF/spring/beans.xml to your application and then declare
httpj:engine-factory with Jetty SecurityHandler with injected
KeycloakJettyAuthenticator inside. The configuration may look like this for CXF JAX-WS
application:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <bean id="kcAdapterConfig"
class="org.keycloak.representations.adapters.config.AdapterConfig">
 <property name="realm" value="demo"/>
 <property name="resource" value="custom-cxf-endpoint"/>
 <property name="realmKey" value="MIGfMA0..."/>
 <property name="bearerOnly" value="true"/>
 <property name="authServerUrl" value="http://localhost:8080/auth"
/>
 <property name="sslRequired" value="EXTERNAL"/>
 </bean>

 <bean id="keycloakAuthenticator"
class="org.keycloak.adapters.jetty.KeycloakJettyAuthenticator">
 <property name="adapterConfig">
 <ref local="kcAdapterConfig" />
 </property>
 </bean>

CHAPTER 2. OPENID CONNECT

19

For the CXF JAX-RS application, the only difference might be in the configuration of the endpoint
dependent on engine-factory:

 <bean id="constraint"
class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="Customers"/>
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>

 <bean id="constraintMapping"
class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
 </bean>

 <bean id="securityHandler"
class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator" ref="keycloakAuthenticator" />
 <property name="constraintMappings">
 <list>
 <ref local="constraintMapping" />
 </list>
 </property>
 <property name="authMethod" value="BASIC"/>
 <property name="realmName" value="does-not-matter"/>
 </bean>

 <httpj:engine-factory bus="cxf" id="kc-cxf-endpoint">
 <httpj:engine port="8282">
 <httpj:handlers>
 <ref local="securityHandler" />
 </httpj:handlers>
 <httpj:sessionSupport>true</httpj:sessionSupport>
 </httpj:engine>
 </httpj:engine-factory>

 <jaxws:endpoint
 implementor="org.keycloak.example.ws.ProductImpl"
 address="http://localhost:8282/ProductServiceCF"
depends-on="kc-cxf-endpoint" />

</beans>

<jaxrs:server serviceClass="org.keycloak.example.rs.CustomerService"
address="http://localhost:8282/rest"
 depends-on="kc-cxf-endpoint">
 <jaxrs:providers>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

20

The Import-Package in META-INF/MANIFEST.MF needs to contain those imports:

META-INF.cxf;version="[2.7,3.2)",
META-INF.cxf.osgi;version="[2.7,3.2)";resolution:=optional,
org.apache.cxf.bus;version="[2.7,3.2)",
org.apache.cxf.bus.spring;version="[2.7,3.2)",
org.apache.cxf.bus.resource;version="[2.7,3.2)",
org.apache.cxf.transport.http;version="[2.7,3.2)",
org.apache.cxf.*;version="[2.7,3.2)",
org.springframework.beans.factory.config,
org.eclipse.jetty.security;version="[8,10)",
org.eclipse.jetty.util.security;version="[8,10)",
org.keycloak.*;version="1.9.8.Final-redhat-1"

2.1.3.6. Secure Apache CXF Endpoint on default Jetty Engine

Some services automatically come with deployed servlets on startup. One of such services is CXF
servlet running on http://localhost:8181/cxf context. Securing such endpoints is quite tricky. The
approach, which Red Hat Single Sign-On is currently using, is providing
ServletReregistrationService, which undeploys builtin servlet at startup, so you are able to re-deploy
it again on context secured by Red Hat Single Sign-On. This is how configuration file OSGI-
INF/blueprint/blueprint.xml inside your application may look like. Note it adds JAX-RS
customerservice endpoint, which is endpoint specific to your application, but more importantly, it
secures whole /cxf context.

 <bean
class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
 </jaxrs:providers>
</jaxrs:server>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/blueprint/jaxrs
http://cxf.apache.org/schemas/blueprint/jaxrs.xsd">

 <!-- JAXRS Application -->

 <bean id="customerBean"
class="org.keycloak.example.rs.CxfCustomerService" />

 <jaxrs:server id="cxfJaxrsServer" address="/customerservice">
 <jaxrs:providers>
 <bean
class="com.fasterxml.jackson.jaxrs.json.JacksonJsonProvider" />
 </jaxrs:providers>
 <jaxrs:serviceBeans>
 <ref component-id="customerBean" />
 </jaxrs:serviceBeans>
 </jaxrs:server>

CHAPTER 2. OPENID CONNECT

21

As a side effect, all other CXF services running on default CXF HTTP destination will be secured
too. Similarly when the application is undeployed, then whole /cxf context will become unsecured
too. For this reason, it’s recommended to use your own Jetty engine for your apps like described in
Secure CXF Application on separate Jetty Engine as then you have more control over security for
each application individually.

 <!-- Securing of whole /cxf context by unregister default cxf servlet
from paxweb and re-register with applied security constraints -->

 <bean id="cxfConstraintMapping"
class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint">
 <bean class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="cst1"/>
 <property name="roles">
 <list>
 <value>user</value>
 </list>
 </property>
 <property name="authenticate" value="true"/>
 <property name="dataConstraint" value="0"/>
 </bean>
 </property>
 <property name="pathSpec" value="/cxf/*"/>
 </bean>

 <bean id="cxfKeycloakPaxWebIntegration"
class="org.keycloak.adapters.osgi.PaxWebIntegrationService"
 init-method="start" destroy-method="stop">
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="jettyWebXmlLocation" value="/WEB-INF/jetty-
web.xml" />
 <property name="constraintMappings">
 <list>
 <ref component-id="cxfConstraintMapping" />
 </list>
 </property>
 </bean>

 <bean id="defaultCxfReregistration"
class="org.keycloak.adapters.osgi.ServletReregistrationService" depends-
on="cxfKeycloakPaxWebIntegration"
 init-method="start" destroy-method="stop">
 <property name="bundleContext" ref="blueprintBundleContext" />
 <property name="managedServiceReference">
 <reference interface="org.osgi.service.cm.ManagedService"
filter="(service.pid=org.apache.cxf.osgi)" timeout="5000" />
 </property>
 </bean>

</blueprint>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

22

You may need to have directory WEB-INF inside your project (even if your project is not web
application) and create files /WEB-INF/jetty-web.xml and /WEB-INF/keycloak.json in
similar way like it’s in Classic WAR application. Note you don’t need web.xml as the security-
constrains are declared in blueprint configuration file.

The Import-Package in META-INF/MANIFEST.MF needs to contain those imports:

META-INF.cxf;version="[2.7,3.2)",
META-INF.cxf.osgi;version="[2.7,3.2)";resolution:=optional,
org.apache.cxf.transport.http;version="[2.7,3.2)",
org.apache.cxf.*;version="[2.7,3.2)",
com.fasterxml.jackson.jaxrs.json;version="[2.5,3)",
org.eclipse.jetty.security;version="[8,10)",
org.eclipse.jetty.util.security;version="[8,10)",
org.keycloak.*;version="1.9.8.Final-redhat-1",
org.keycloak.adapters.jetty;version="1.9.8.Final-redhat-1",
*;resolution:=optional

2.1.3.7. Secure Fuse Admin Services

2.1.3.7.1. SSH authentication to Fuse terminal

Red Hat Single Sign-On mainly addresses usecases for authentication of web applications, however
if your other web services and applications are protected with Red Hat Single Sign-On, it may be
good to protect non-web admin services like SSH with Red Hat Single Sign-On credentials too. It’s
possible to do it by using JAAS login module, which allows to remotely connect to Red Hat Single
Sign-On and verify credentials based on Resource Owner Password Credentials.

Example steps for enable SSH authentication:

In Red Hat Single Sign-On you need to create client (assume it’s called ssh-jmx-admin-
client), which will be used for SSH authentication. This client needs to have switch Direct
grant enabled to true.

You need to update/specify this property in file
$FUSE_HOME/etc/org.apache.karaf.shell.cfg:

sshRealm=keycloak

Add file $FUSE_HOME/etc/keycloak-direct-access.json with the content similar to this
(change based on your environment and Red Hat Single Sign-On client settings):

{
 "realm": "demo",
 "resource": "ssh-jmx-admin-client",
 "realm-public-key": "MIGfMA...",
 "ssl-required" : "external",
 "auth-server-url" : "http://localhost:8080/auth",
 "credentials": {
 "secret": "password"
 }
}

CHAPTER 2. OPENID CONNECT

23

This file contains configuration of the client application, which is used by JAAS
DirectAccessGrantsLoginModule from keycloak JAAS realm for SSH authentication.

Start Fuse and install keycloak JAAS realm into Fuse. This could be done easily by installing
keycloak-jaas feature, which has JAAS realm predefined (you are able to override it by using
your own keycloak JAAS realm with higher ranking). Use those commands in Fuse terminal:

features:addurl mvn:org.keycloak/keycloak-osgi-
features/7.0.0/xml/features
features:install keycloak-jaas

Now let’s type this from your terminal to login via SSH as admin user:

ssh -o PubkeyAuthentication=no -p 8101 admin@localhost

And login with password password. Note that your user needs to have realm role admin . The
required roles are configured in $FUSE_HOME/etc/org.apache.karaf.shell.cfg

2.1.3.7.2. JMX authentication

This may be needed in case if you really want to use jconsole or other external tool to perform
remote connection to JMX through RMI. Otherwise it may be better to use just hawt.io/jolokia as
jolokia agent is installed in hawt.io by default.

In file $FUSE_HOME/etc/org.apache.karaf.management.cfg you can change this
property:

jmxRealm=keycloak

You need keycloak-jaas feature and file $FUSE_HOME/etc/keycloak-direct-
access.json as described in SSH section above.

In jconsole you can fill URL like:

service:jmx:rmi://localhost:44444/jndi/rmi://localhost:1099/karaf-root

and credentials: admin/password (based on the user with admin privileges according to your
environment)

Note again that users without admin role are not able to login as they are not authorized. However
users with access to Hawt.io admin console may be still able to access MBeans remotely via HTTP
(Hawtio). So make sure to protect Hawt.io web console with same roles like JMX through RMI to
really protect JMX mbeans.

2.1.3.7.3. Secure Fuse admin console

Fuse admin console is Hawt.io. See Hawt.io documentation for more info about how to secure it
with Red Hat Single Sign-On. ==== Security Context

The KeycloakSecurityContext interface is available if you need to access to the tokens
directly. This could be useful if you want to retrieve additional details from the token (such as user
profile information) or you want to invoke a RESTful service that is protected by Red Hat Single
Sign-On.

In servlet environments it is available in secured invocations as an attribute in HttpServletRequest:

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

24

http://hawt.io/configuration/index.html

Or, it is available in secure and insecure requests in the HttpSession:

2.1.4. Error Handling

Red Hat Single Sign-On has some error handling facilities for servlet based client adapters. When
an error is encountered in authentication, Red Hat Single Sign-On will call
HttpServletResponse.sendError(). You can set up an error-page within your web.xml file to
handle the error however you want. Red Hat Single Sign-On may throw 400, 401, 403, and 500
errors.

Red Hat Single Sign-On also sets a HttpServletRequest attribute that you can retrieve. The
attribute name is org.keycloak.adapters.spi.AuthenticationError, which should be
casted to org.keycloak.adapters.OIDCAuthenticationError.

For example:

2.1.5. Logout

You can log out of a web application in multiple ways. For Java EE servlet containers, you can call
HttpServletRequest.logout(). For other browser applications, you can redirect the browser to
http://auth-server/auth/realms/{realm-name}/protocol/openid-
connect/logout?redirect_uri=encodedRedirectUri, which logs you out if you have an
SSO session with your browser.

2.1.6. Multi Tenancy

Multi Tenancy, in our context, means that a single target application (WAR) can be secured with
multiple Red Hat Single Sign-On realms. The realms can be located one the same Red Hat Single
Sign-On instance or on different instances.

In practice, this means that the application needs to have multiple keycloak.json adapter

httpServletRequest
 .getAttribute(KeycloakSecurityContext.class.getName());

httpServletRequest.getSession()
 .getAttribute(KeycloakSecurityContext.class.getName());

<error-page>
 <error-code>404</error-code>
 <location>/ErrorHandler</location>
</error-page>

import org.keycloak.adapters.OIDCAuthenticationError;
import org.keycloak.adapters.OIDCAuthenticationError.Reason;
...

OIDCAuthenticationError error = (OIDCAuthenticationError)
httpServletRequest
 .getAttribute('org.keycloak.adapters.spi.AuthenticationError');

Reason reason = error.getReason();
System.out.println(reason.name());

CHAPTER 2. OPENID CONNECT

25

configuration files.

You could have multiple instances of your WAR with different adapter configuration files deployed to
different context-paths. However, this may be inconvenient and you may also want to select the
realm based on something else than context-path.

Red Hat Single Sign-On makes it possible to have a custom config resolver so you can choose what
adapter config is used for each request.

To achieve this first you need to create an implementation of
org.keycloak.adapters.KeycloakConfigResolver. For example:

You also need to configure which KeycloakConfigResolver implementation to use with the
keycloak.config.resolver context-param in your web.xml:

2.1.7. Application Clustering

This chapter is related to supporting clustered applications deployed to JBoss EAP.

package example;

import org.keycloak.adapters.KeycloakConfigResolver;
import org.keycloak.adapters.KeycloakDeployment;
import org.keycloak.adapters.KeycloakDeploymentBuilder;

public class PathBasedKeycloakConfigResolver implements
KeycloakConfigResolver {

 @Override
 public KeycloakDeployment resolve(OIDCHttpFacade.Request request) {
 if (path.startsWith("alternative")) {
 KeycloakDeployment deployment = cache.get(realm);
 if (null == deployment) {
 InputStream is =
getClass().getResourceAsStream("/tenant1-keycloak.json");
 return KeycloakDeploymentBuilder.build(is);
 }
 } else {
 InputStream is = getClass().getResourceAsStream("/default-
keycloak.json");
 return KeycloakDeploymentBuilder.build(is);
 }
 }

}

<web-app>
 ...
 <context-param>
 <param-name>keycloak.config.resolver</param-name>
 <param-value>example.PathBasedKeycloakConfigResolver</param-
value>
 </context-param>
</web-app>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

26

There are a few options available depending on whether your application is:

Stateless or stateful

Distributable (replicated http session) or non-distributable

Relying on sticky sessions provided by load balancer

Hosted on same domain as Red Hat Single Sign-On

Dealing with clustering is not quite as simple as for a regular application. Mainly due to the fact that
both the browser and the server-side application sends requests to Red Hat Single Sign-On, so it’s
not as simple as enabling sticky sessions on your load balancer.

2.1.7.1. Stateless token store

By default, the web application secured by Red Hat Single Sign-On uses the HTTP session to store
security context. This means that you either have to enable sticky sessions or replicate the HTTP
session.

As an alternative to storing the security context in the HTTP session the adapter can be configured
to store this in a cookie instead. This is useful if you want to make your application stateless or if
you don’t want to store the security context in the HTTP session.

To use the cookie store for saving the security context, edit your applications WEB-
INF/keycloak.json and add:

Note

The default value for token-store is session, which stores the security context in the
HTTP session.

One limitation of using the cookie store is that the whole security context is passed in the cookie for
every HTTP request. This may impact performance.

Another small limitation is limited support for Single-Sign Out. It works without issues if you init
servlet logout (HttpServletRequest.logout) from the application itself as the adapter will delete the
KEYCLOAK_ADAPTER_STATE cookie. However, back-channel logout initialized from a different
application isn’t propagated by Red Hat Single Sign-On to applications using cookie store. Hence
it’s recommended to use a short value for the access token timeout (for example 1 minute).

2.1.7.2. Relative URI optimization

In deployment scenarios where Red Hat Single Sign-On and the application is hosted on the same
domain (through a reverse proxy or load balancer) it can be convenient to use relative URI options
in your client configuration.

With relative URIs the URI is resolved as relative to the URL of the URL used to access Red Hat
Single Sign-On.

For example if the URL to your application is https://acme.org/myapp and the URL to Red Hat
Single Sign-On is https://acme.org/auth, then you can use the redirect-uri /myapp instead of
https://acme.org/myapp.

"token-store": "cookie"

CHAPTER 2. OPENID CONNECT

27

2.1.7.3. Admin URL configuration

Admin URL for a particular client can be configured in the Red Hat Single Sign-On Administration
Console. It’s used by the Red Hat Single Sign-On server to send backend requests to the
application for various tasks, like logout users or push revocation policies.

For example the way backchannel logout works is:

1. User sends logout request from one application

2. The application sends logout request to Red Hat Single Sign-On

3. The Red Hat Single Sign-On server invalidates the user session

4. The Red Hat Single Sign-On server then sends a backchannel request to application with
an admin url that are associated with the session

5. When an application receives the logout request it invalidates the corresponding HTTP
session

If admin URL contains ${application.session.host} it will be replaced with the URL to the
node associated with the HTTP session.

2.1.7.4. Registration of application nodes

The previous section describes how Red Hat Single Sign-On can send logout request to node
associated with a specific HTTP session. However, in some cases admin may want to propagate
admin tasks to all registered cluster nodes, not just one of them. For example to push a new not
before policy to the application or to logout all users from the application.

In this case Red Hat Single Sign-On needs to be aware of all application cluster nodes, so it can
send the event to all of them. To achieve this, we support auto-discovery mechanism:

1. When a new application node joins the cluster, it sends a registration request to the Red Hat
Single Sign-On server

2. The request may be re-sent to Red Hat Single Sign-On in configured periodic intervals

3. If the Red Hat Single Sign-On server doesn’t receive a re-registration request within a
specified timeout then it automatically unregisters the specific node

4. The node is also unregistered in Red Hat Single Sign-On when it sends an unregistration
request, which is usually during node shutdown or application undeployment. This may not
work properly for forced shutdown when undeployment listeners are not invoked, which
results in the need for automatic unregistration

Sending startup registrations and periodic re-registration is disabled by default as it’s only required
for some clustered applications.

To enable the feature edit the WEB-INF/keycloak.json file for your application and add:

"register-node-at-startup": true,
"register-node-period": 600,

This means the adapter will send the registration request on startup and re-register every 10
minutes.

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

28

In the Red Hat Single Sign-On Administration Console you can specify the maximum node re-
registration timeout (should be larger than register-node-period from the adapter configuration). You
can also manually add and remove cluster nodes in through the Adminstration Console, which is
useful if you don’t want to rely on the automatic registration feature or if you want to remove stale
application nodes in the event your not using the automatic unregistration feature.

2.1.7.5. Refresh token in each request

By default the application adapter will only refresh the access token when it’s expired. However, you
can also configure the adapter to refresh the token on every request. This may have a performance
impact as your application will send more requests to the Red Hat Single Sign-On server.

To enable the feature edit the WEB-INF/keycloak.json file for your application and add:

"always-refresh-token": true

Note

This may have a significant impact on performance. Only enable this feature if you can’t
rely on backchannel messages to propagate logout and not before policies. Another thing
to consider is that by default access tokens has a short expiration so even if logout is not
propagated the token will expire within minutes of the logout.

2.2. JAVASCRIPT ADAPTER

Red Hat Single Sign-On comes with a client-side JavaScript library that can be used to secure
HTML5/JavaScript applications. The JavaScript adapter has built-in support for Cordova
applications.

The library can be retrieved directly from the Red Hat Single Sign-On server at
/auth/js/keycloak.js and is also distributed as a ZIP archive.

One important thing to note about using client-side applications is that the client has to be a public
client as there is no secure way to store client credentials in a client-side application. This makes it
very important to make sure the redirect URIs you have configured for the client are correct and as
specific as possible.

To use the JavaScript adapter you must first create a client for your application in the Red Hat
Single Sign-On Administration Console. Make sure public is selected for Access Type.

You also need to configure valid redirect URIs and valid web origins. Be as specific as possible as
failing to do so may result in a security vulnerability.

Once the client is created click on the Installation tab select Keycloak OIDC JSON for
Format Option then click on Download. The downloaded keycloak.json file should be hosted
on your web server at the same location as your HTML pages.

Alternatively, you can skip the configuration file and manually configure the adapter.

The following example shows how to initialize the JavaScript adapter:

<head>
 <script src="keycloak.js"></script>
 <script>

CHAPTER 2. OPENID CONNECT

29

If the keycloak.json file is in a different location you can specify it:

Alternatively, you can pass in a JavaScript object with the required configuration instead:

By default to authenticate you need to call the login function. However, there are two options
available to make the adapter automatically authenticate. You can pass login-required or
check-sso to the init function. login-required will authenticate the client if the user is logged-in
to Red Hat Single Sign-On or display the login page if not. check-sso will only authenticate the
client if the user is already logged-in, if the user is not logged-in the browser will be redirected back
to the application and remain unauthenticated.

To enable login-required set onLoad to login-required and pass to the init method:

keycloak.init({ onLoad: 'login-required' })

After the user is authenticated the application can make requests to RESTful services secured by
Red Hat Single Sign-On by including the bearer token in the Authorization header. For
example:

 var keycloak = Keycloak();
 keycloak.init().success(function(authenticated) {
 alert(authenticated ? 'authenticated' : 'not authenticated');
 }).error(function() {
 alert('failed to initialize');
 });
 </script>
</head>

var keycloak = Keycloak('http://localhost:8080/myapp/keycloak.json'));

var keycloak = Keycloak({
 url: 'http://keycloak-server/auth',
 realm: 'myrealm',
 clientId: 'myapp'
});

var loadData = function () {
 document.getElementById('username').innerText = keycloak.username;

 var url = 'http://localhost:8080/restful-service';

 var req = new XMLHttpRequest();
 req.open('GET', url, true);
 req.setRequestHeader('Accept', 'application/json');
 req.setRequestHeader('Authorization', 'Bearer ' + keycloak.token);

 req.onreadystatechange = function () {
 if (req.readyState == 4) {
 if (req.status == 200) {
 alert('Success');
 } else if (req.status == 403) {
 alert('Forbidden');
 }
 }

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

30

One thing to keep in mind is that the access token by default has a short life expiration so you may
need to refresh the access token prior to sending the request. You can do this by the updateToken
method. The updateToken method returns a promise object which makes it easy to invoke the
service only if the token was successfully refreshed and for example display an error to the user if it
wasn’t. For example:

2.2.1. Session status iframe

By default, the JavaScript adapter creates a hidden iframe that is used to detect if a Single-Sign Out
has occurred. This does not require any network traffic, instead the status is retrieved by looking at
a special status cookie. This feature can be disabled by setting checkLoginIframe: false in
the options passed to the init method.

You should not rely on looking at this cookie directly. It’s format can change and it’s also associated
with the URL of the Red Hat Single Sign-On server, not your application.

2.2.2. Implicit and Hybrid Flow

By default, the JavaScript adapter uses the Authorization Code flow.

With this flow the Red Hat Single Sign-On server returns an authorization code, not an
authentication token, to the application. The JavaScript adapter exchanges the code for an access
token and a refresh token after the browser is redirected back to the application.

Red Hat Single Sign-On also supports the Implicit flow where an access token is sent immediately
after successful authentication with Red Hat Single Sign-On. This may have better performance
than standard flow, as there is no additional request to exchange the code for tokens, but it has
implications when the access token expires.

However, sending the access token in the URL fragment can be a security vulnerability. For
example the token could be leaked through web server logs and or browser history.

To enable implicit flow, you need to enable the Implicit Flow Enabled flag for the client in the
Red Hat Single Sign-On Administration Console. You also need to pass the parameter flow with
value implicit to init method:

One thing to note is that only an access token is provided and there is no refresh token. This means
that once the access token has expired the application has to do the redirect to the Red Hat Single
Sign-On again to obtain a new access token.

Red Hat Single Sign-On also supports the Hybrid flow.

 }

 req.send();
};

keycloak.updateToken(30).success(function() {
 loadData();
}).error(function() {
 alert('Failed to refresh token');
);

keycloak.init({ flow: 'implicit' })

CHAPTER 2. OPENID CONNECT

31

http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

This requires the client to have both the Standard Flow Enabled and Implicit Flow
Enabled flags enabled in the admin console. The Red Hat Single Sign-On server will then send
both the code and tokens to your application. The access token can be used immediately while the
code can be exchanged for access and refresh tokens. Similar to the implicit flow, the hybrid flow is
good for performance because the access token is available immediately. But, the token is still sent
in the URL, and the security vulnerability mentioned earlier may still apply.

One advantage in the Hybrid flow is that the refresh token is made available to the application.

For the Hybrid flow, you need to pass the parameter flow with value hybrid to the init method:

2.2.3. Older browsers

The JavaScript adapter depends on Base64 (window.btoa and window.atob) and HTML5 History
API. If you need to support browsers that don’t have these available (for example IE9) you need to
add polyfillers.

Example polyfill libraries:

https://github.com/davidchambers/Base64.js

https://github.com/devote/HTML5-History-API

2.2.4. JavaScript Adapter reference

2.2.4.1. Constructor

new Keycloak();
new Keycloak('http://localhost/keycloak.json');
new Keycloak({ url: 'http://localhost/auth', realm: 'myrealm',
clientId: 'myApp' });

2.2.4.2. Properties

authenticated

Is true if the user is authenticated, false otherwise.

token

The base64 encoded token that can be sent in the Authorization header in requests to
services.

tokenParsed

The parsed token as a JavaScript object.

subject

The user id.

idToken

keycloak.init({ flow: 'hybrid' })

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

32

https://github.com/davidchambers/Base64.js
https://github.com/devote/HTML5-History-API

The base64 encoded ID token.

idTokenParsed

The parsed id token as a JavaScript object.

realmAccess

The realm roles associated with the token.

resourceAccess

The resource roles assocaited with the token.

refreshToken

The base64 encoded refresh token that can be used to retrieve a new token.

refreshTokenParsed

The parsed refresh token as a JavaScript object.

timeSkew

The estimated time difference between the browser time and the Red Hat Single Sign-On
server in seconds. This value is just an estimation, but is accurate enough when
determining if a token is expired or not.

responseMode

Response mode passed in init (default value is fragment).

flow

Flow passed in init.

responseType

Response type sent to Red Hat Single Sign-On with login requests. This is determined
based on the flow value used during initialization, but can be overridden by setting this
value.

2.2.4.3. Methods

2.2.4.3.1. init(options)

Called to initialize the adapter.

Options is an Object, where:

onLoad - Specifies an action to do on load. Supported values are 'login-required' or 'check-sso'.

token - Set an initial value for the token.

refreshToken - Set an initial value for the refresh token.

idToken - Set an initial value for the id token (only together with token or refreshToken).

timeSkew - Set an initial value for skew between local time and Red Hat Single Sign-On server
in seconds (only together with token or refreshToken).

CHAPTER 2. OPENID CONNECT

33

checkLoginIframe - Set to enable/disable monitoring login state (default is true).

checkLoginIframeInterval - Set the interval to check login state (default is 5 seconds).

responseMode - Set the OpenID Connect response mode send to Red Hat Single Sign-On
server at login request. Valid values are query or fragment . Default value is fragment, which
means that after successful authentication will Red Hat Single Sign-On redirect to javascript
application with OpenID Connect parameters added in URL fragment. This is generally safer
and recommended over query.

flow - Set the OpenID Connect flow. Valid values are standard, implicit or hybrid.

Returns promise to set functions to be invoked on success or error.

2.2.4.3.2. login(options)

Redirects to login form on (options is an optional object with redirectUri and/or prompt fields).

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after login.

prompt - By default the login screen is displayed if the user is not logged-in to Red Hat Single
Sign-On. To only authenticate to the application if the user is already logged-in and not display
the login page if the user is not logged-in, set this option to none.

loginHint - Used to pre-fill the username/email field on the login form.

action - If value is 'register' then user is redirected to registration page, otherwise to login page.

locale - Specifies the desired locale for the UI.

2.2.4.3.3. createLoginUrl(options)

Returns the URL to login form on (options is an optional object with redirectUri and/or prompt fields).

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after login.

prompt - Can be set to 'none' to check if the user is logged in already (if not logged in, a login
form is not displayed).

2.2.4.3.4. logout(options)

Redirects to logout.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after logout.

2.2.4.3.5. createLogoutUrl(options)

Returns the URL to logout the user.

Options is an Object, where:

redirectUri - Specifies the uri to redirect to after logout.

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

34

2.2.4.3.6. register(options)

Redirects to registration form. Shortcut for login with option action = 'register'

Options are same as for the login method but 'action' is set to 'register'

2.2.4.3.7. createRegisterUrl(options)

Returns the url to registration page. Shortcut for createLoginUrl with option action = 'register'

Options are same as for the createLoginUrl method but 'action' is set to 'register'

2.2.4.3.8. accountManagement()

Redirects to the Account Management Console.

2.2.4.3.9. createAccountUrl()

Returns the URL to the Account Management Console.

2.2.4.3.10. hasRealmRole(role)

Returns true if the token has the given realm role.

2.2.4.3.11. hasResourceRole(role, resource)

Returns true if the token has the given role for the resource (resource is optional, if not specified
clientId is used).

2.2.4.3.12. loadUserProfile()

Loads the users profile.

Returns promise to set functions to be invoked on success or error.

2.2.4.3.13. isTokenExpired(minValidity)

Returns true if the token has less than minValidity seconds left before it expires (minValidity is
optional, if not specified 0 is used).

2.2.4.3.14. updateToken(minValidity)

If the token expires within minValidity seconds (minValidity is optional, if not specified 0 is used) the
token is refreshed. If the session status iframe is enabled, the session status is also checked.

Returns promise to set functions that can be invoked if the token is still valid, or if the token is no
longer valid. For example:

keycloak.updateToken(5).success(function(refreshed) {
 if (refreshed) {
 alert('Token was successfully refreshed');
 } else {
 alert('Token is still valid');

CHAPTER 2. OPENID CONNECT

35

2.2.4.3.15. clearToken()

Clear authentication state, including tokens. This can be useful if application has detected the
session was expired, for example if updating token fails.

Invoking this results in onAuthLogout callback listener being invoked.

2.2.4.4. Callback Events

The adapter supports setting callback listeners for certain events.

For example:

keycloak.onAuthSuccess = function() { alert('authenticated'); }

The available events are:

onReady(authenticated) - Called when the adapter is initialized.

onAuthSuccess - Called when a user is successfully authenticated.

onAuthError - Called if there was an error during authentication.

onAuthRefreshSuccess - Called when the token is refreshed.

onAuthRefreshError - Called if there was an error while trying to refresh the token.

onAuthLogout - Called if the user is logged out (will only be called if the session status iframe is
enabled, or in Cordova mode).

onTokenExpired - Called when the access token is expired. When this happens you can for
refresh the token, or if refresh is not available (ie. with implicit flow) you can redirect to login
screen.

2.3. OTHER OPENID CONNECT LIBRARIES

Note

Using Red Hat Single Sign-On with generic OpenID Connect libraries is a Technology
Preview feature and is not fully supported

Red Hat Single Sign-On can be secured by supplied adapters that usually are easier to use and
provide better integration with Red Hat Single Sign-On. However, if there is no adapter available for
your programming language, framework or platform you may opt to use a generic OpenID Connect
Resource Provider (RP) library instead. This chapter describes details specific to Red Hat Single
Sign-On and doesn’t go into low-level details of the protocols. For more details refer to the OpenID
Connect specifications and OAuth2 specification.

 }
 }).error(function() {
 alert('Failed to refresh the token, or the session has expired');
 });

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

36

http://openid.net/connect/
https://tools.ietf.org/html/rfc6749

2.3.1. Endpoints

The most important endpoint to know is the well-known configuration endpoint. It lists endpoints
and other configuration options relevant to the OpenID Connect implementation in Red Hat Single
Sign-On. The endpoint is:

/realms/{realm-name}/.well-known/openid-configuration

To get the full URL add the base URL for Red Hat Single Sign-On and replace {realm-name} with
the name of your realm. For example:

http://localhost:8080/auth/realms/master/.well-known/openid-configuration

Some RP libraries will retrieve all required endpoints from this endpoint, but for others you may
need to list the endpoints individually.

2.3.1.1. Authorization Endpoint

/realms/{realm-name}/protocol/openid-connect/auth

Performs authentication of the end-user. This is done by redirecting user agent to this endpoint.

For more details see Authorization Endpoint section in OpenID Connect specification.

2.3.1.2. Token Endpoint

/realms/{realm-name}/protocol/openid-connect/token

Used to obtain tokens. Tokens can either be obtained by exchanging an authorization code or by
supplying credentials directly depending on what flow is used. The token endpoint is also used to
obtain new access tokens when they expire.

For more details see Token Endpoint section in OpenID Connect specification.

2.3.1.3. Userinfo Endpoint

/realms/{realm-name}/protocol/openid-connect/userinfo

Returns standard claims about the authenticated user. Protected by a bearer token.

For more details see Userinfo Endpoint section in OpenID Connect specification.

2.3.1.4. Logout Endpoint

/realms/{realm-name}/protocol/openid-connect/logout

Logs out the authenticated user.

User agent can be redirected to the endpoint in which case the active user session will be logged
out. Afterwards the user agent is redirected back to the application.

The endpoint can also be invoked directly by the application. To invoke this endpoint directly the
refresh token needs to be included as well as credentials required to authenticate the client.

CHAPTER 2. OPENID CONNECT

37

http://openid.net/specs/openid-connect-core-1_0.html#AuthorizationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

2.3.1.5. Certificate Endpoint

/realms/{realm-name}/protocol/openid-connect/certs

Public key used by realm encoded as a JSON Web Key (JWK). This key can be used to verify
tokens issued by Red Hat Single Sign-On without making invocations to the server.

For more details see JSON Web Key specification.

2.3.1.6. Introspection Endpoint

/realms/{realm-name}/protocol/openid-connect/token/introspect

Used to retrieve the active state of a token. Protected by a bearer token and can only be invoked by
confidential clients.

For more details see OAuth 2.0 Token Introspection specification.

2.3.1.7. Dynamic Client Registration Endpoint

/realms/{realm-name}/clients-registrations/openid-connect

Used to dynamically register clients.

For more details see Client Registration chapter and the OpenID Connect Dynamic Client
Registration specification.

2.3.2. Flows

2.3.2.1. Authorization Code

The Authorization Code flow redirects the user agent to Red Hat Single Sign-On. Once the user has
successfully authenticated with Red Hat Single Sign-On an Authorization Code is created and the
user agent is redirected back to the application. The application then uses the authorization code
along with its credentials to obtain an Access Token, Refresh Token and ID Token from Red Hat
Single Sign-On.

The flow is targeted towards web applications, but is also recommended for native applications,
including mobile applications, where it is possible to embed a user agent.

For more details refer to the Authorization Code Flow in the OpenID Connect specification.

2.3.2.2. Implicit

The Implicit flow redirects works similarly to the Authorization Code flow, but instead of returning a
Authorization Code the Access Token and ID Token is returned. This reduces the need for the extra
invocation to exchange the Authorization Code for an Access Token. However, it does not include a
Refresh Token. This results in the need to either permit Access Tokens with a long expiration, which
is problematic as it’s very hard to invalidate these. Or requires a new redirect to obtain new Access
Token once the initial Access Token has expired. The Implicit flow is useful if the application only
wants to authenticate the user and deals with logout itself.

There’s also a Hybrid flow where both the Access Token and an Authorization Code is returned.

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

38

https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7662
https://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

One thing to note is that both the Implicit flow and Hybrid flow has potential security risks as the
Access Token may be leaked through web server logs and browser history. This is somewhat
mitigated by using short expiration for Access Tokens.

For more details refer to the Implicit Flow in the OpenID Connect specification.

2.3.2.3. Resource Owner Password Credentials

Resource Owner Password Credentials, referred to as Direct Grant in Red Hat Single Sign-On,
allows exchanging user credentials for tokens. It’s not recommended to use this flow unless you
absolutely need to. Examples where this could be useful are legacy applications and command-line
interfaces.

There are a number of limitations of using this flow, including:

User credentials are exposed to the application

Applications need login pages

Application needs to be aware of the authentication scheme

Changes to authentication flow requires changes to application

No support for identity brokering or social login

Flows are not supported (user self-registration, required actions, etc.)

For a client to be permitted to use the Resource Owner Password Credentials grant the client has to
have the Direct Access Grants Enabled option enabled.

This flow is not included in OpenID Connect, but is a part of the OAuth 2.0 specification.

For more details refer to the Resource Owner Password Credentials Grant chapter in the OAuth 2.0
specification.

2.3.2.3.1. Example using CURL

The following example shows how to obtain an access token for a user in the realm master with
username user and password password. The example is using the confidential client myclient:

2.3.2.4. Client Credentials

Client Credentials is used when clients (applications and services) wants to obtain access on behalf
of themselves rather than on behalf of a user. This can for example be useful for background
services that applies changes to the system in general rather than for a specific user.

Red Hat Single Sign-On provides support for clients to authenticate either with a secret or with
public/private keys.

curl \
 -d "client_id=myclient" \
 -d "client_secret=40cc097b-2a57-4c17-b36a-8fdf3fc2d578" \
 -d "username=user" \
 -d "password=password" \
 -d "grant_type=password" \
 "http://localhost:8080/auth/realms/master/protocol/openid-
connect/token"

CHAPTER 2. OPENID CONNECT

39

http://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
https://tools.ietf.org/html/rfc6749#section-4.3

This flow is not included in OpenID Connect, but is a part of the OAuth 2.0 specification.

For more details refer to the Client Credentials Grant chapter in the OAuth 2.0 specification.

2.3.3. Redirect URIs

When using the redirect based flows it’s important to use valid redirect uris for your clients. The
redirect uris should be as specific as possible. This especially applies to client-side (public clients)
applications. Failing to do so could result in:

Open redirects - this can allow attackers to create spoof links that looks like they are coming
from your domain

Unauthorized entry - when users are already authenticated with Red Hat Single Sign-On an
attacker can use a public client where redirect uris have not be configured correctly to gain
access by redirecting the user without the users knowledge

In production for web applications always use https for all redirect URIs. Do not allow redirects to
http.

There’s also a few special redirect URIs:

http://localhost

This redirect URI is useful for native applications and allows the native application to create
a web server on a random port that can be used to obtain the authorization code. This
redirect uri allows any port.

urn:ietf:wg:oauth:2.0:oob

If its not possible to start a web server in the client (or a browser is not available) it is
possible to use the special urn:ietf:wg:oauth:2.0:oob redirect uri. When this redirect
uri is used Red Hat Single Sign-On displays a page with the code in the title and in a box on
the page. The application can either detect that the browser title has changed, or the user
can copy/paste the code manually to the application. With this redirect uri it is also possible
for a user to use a different device to obtain a code to paste back to the application.

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

40

https://tools.ietf.org/html/rfc6749#section-4.4

CHAPTER 3. SAML

This section describes how you can secure applications and services with SAML using either Red
Hat Single Sign-On client adapters or generic SAML provider libraries.

3.1. JAVA ADAPTERS

Red Hat Single Sign-On comes with a range of different adapters for Java application. Selecting the
correct adapter depends on the target platform.

3.1.1. General Adapter Config

Each SAML client adapter supported by Red Hat Single Sign-On can be configured by a simple
XML text file. This is what one might look like:

<keycloak-saml-adapter>
 <SP entityID="http://localhost:8081/sales-post-sig/"
 sslPolicy="EXTERNAL"
 nameIDPolicyFormat="urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified"
 logoutPage="/logout.jsp"
 forceAuthentication="false"
 isPassive="false"
 turnOffChangeSessionIdOnLogin="false">
 <Keys>
 <Key signing="true" >
 <KeyStore resource="/WEB-INF/keystore.jks"
password="store123">
 <PrivateKey alias="http://localhost:8080/sales-post-
sig/" password="test123"/>
 <Certificate alias="http://localhost:8080/sales-
post-sig/"/>
 </KeyStore>
 </Key>
 </Keys>
 <PrincipalNameMapping policy="FROM_NAME_ID"/>
 <RoleIdentifiers>
 <Attribute name="Role"/>
 </RoleIdentifiers>
 <IDP entityID="idp"
 signaturesRequired="true">
 <SingleSignOnService requestBinding="POST"

bindingUrl="http://localhost:8081/auth/realms/demo/protocol/saml"
 />

 <SingleLogoutService
 requestBinding="POST"
 responseBinding="POST"

postBindingUrl="http://localhost:8081/auth/realms/demo/protocol/saml"

redirectBindingUrl="http://localhost:8081/auth/realms/demo/protocol/saml"
 />

CHAPTER 3. SAML

41

Some of these configuration switches may be adapter specific and some are common across all
adapters. For Java adapters you can use $\{… ​} enclosure as System property replacement. For
example $\{jboss.server.config.dir}.

3.1.1.1. SP Element

Here is the explanation of the SP element attributes

entityID

This is the identifier for this client. The IDP needs this value to determine who the client is
that is communicating with it. This setting is REQUIRED.

sslPolicy

This is the SSL policy the adapter will enforce. Valid values are: ALL, EXTERNAL, and NONE.
For ALL, all requests must come in via HTTPS. For EXTERNAL, only non-private IP
addresses must come over the wire via HTTPS. For NONE, no requests are required to
come over via HTTPS. This settings is OPTIONAL. Default value is EXTERNAL.

nameIDPolicyFormat

SAML clients can request a specific NameID Subject format. Fill in this value if you want a
specific format. It must be a standard SAML format identifier, i.e.
urn:oasis:names:tc:SAML:2.0:nameid-format:transient. This setting is
OPTIONAL. By default, no special format is requested.

forceAuthentication

SAML clients can request that a user is re-authenticated even if they are already logged in
at the IDP. Set this to true to enable. This setting is OPTIONAL. Default value is false.

isPassive

SAML clients can request that a user is never asked to authenticate even if they are not
logged in at the IDP. Set this to true if you want this. Do not use together with
forceAuthentication as they are opposite. This setting is OPTIONAL. Default value is

 <Keys>
 <Key signing="true">
 <KeyStore resource="/WEB-INF/keystore.jks"
password="store123">
 <Certificate alias="demo"/>
 </KeyStore>
 </Key>
 </Keys>
 </IDP>
 </SP>
</keycloak-saml-adapter>

<SP entityID="sp"
 sslPolicy="ssl"
 nameIDPolicyFormat="format"
 forceAuthentication="true"
 isPassive="false">
...
</SP>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

42

false.

turnOffChangeSessionIdOnLogin

The session id is changed by default on a successful login on some platforms to plug a
security attack vector. Change this to true to disable this. It is recommended you do not
turn it off. Default value is false.

3.1.1.2. SP Keys and Key elements

If the IDP requires that the client application (SP) sign all of its requests and/or if the IDP will encrypt
assertions, you must define the keys used to do this. For client signed documents you must define
both the private and public key or certificate that will be used to sign documents. For encryption, you
only have to define the private key that will be used to decrypt.

There are two ways to describe your keys. They can be stored within a Java KeyStore or you can
copy/paste the keys directly within keycloak-saml.xml in the PEM format.

The Key element has two optional attributes signing and encryption. When set to true these
tell the adapter what the key will be used for. If both attributes are set to true, then the key will be
used for both signing documents and decrypting encrypted assertions. You must set at least one of
these attributes to true.

3.1.1.2.1. KeyStore element

Within the Key element you can load your keys and certificates from a Java Keystore. This is
declared within a KeyStore element.

Here are the XML config attributes that are defined with the KeyStore element.

file

File path to the key store. This option is OPTIONAL. The file or resource attribute must be
set.

resource

WAR resource path to the KeyStore. This is a path used in method call to
ServletContext.getResourceAsStream(). This option is OPTIONAL. The file or resource
attribute must be set.

 <Keys>
 <Key signing="true" >
 ...
 </Key>
 </Keys>

 <Keys>
 <Key signing="true" >
 <KeyStore resource="/WEB-INF/keystore.jks"
password="store123">
 <PrivateKey alias="myPrivate" password="test123"/>
 <Certificate alias="myCertAlias"/>
 </KeyStore>
 </Key>
 </Keys>

CHAPTER 3. SAML

43

password

The password of the KeyStore. This option is REQUIRED.

If you are defining keys that the SP will use to sign document, you must also specify references to
your private keys and certificates within the Java KeyStore. The PrivateKey and Certificate
elements in the above example define an alias that points to the key or cert within the keystore.
Keystores require an additional password to access private keys. In the PrivateKey element you
must define this password within a password attribute.

3.1.1.2.2. Key PEMS

Within the Key element you declare your keys and certificates directly using the sub elements
PrivateKeyPem, PublicKeyPem, and CertificatePem. The values contained in these
elements must conform to the PEM key format. You usually use this option if you are generating
keys using openssl or similar command line tool.

3.1.1.3. SP PrincipalNameMapping element

This element is optional. When creating a Java Principal object that you obtain from methods like
HttpServletRequest.getUserPrincipal(), you can define what name that is returned by
the Principal.getName() method.

The policy attribute defines the policy used to populate this value. The possible values for this
attribute are:

FROM_NAME_ID

This policy just uses whatever the SAML subject value is. This is the default setting

FROM_ATTRIBUTE

This will pull the value from one of the attributes declared in the SAML assertion received
from the server. You’ll need to specify the name of the SAML assertion attribute to use
within the attribute XML attribute.

<Keys>
 <Key signing="true>
 <PrivateKeyPem>
 2341251234AB31234==231BB998311222423522334
 </PrivateKeyPem>
 <CertificatePem>
 211111341251234AB31234==231BB998311222423522334
 </CertificatePem>
 </Key>
</Keys>

<SP ...>
 <PrincipalNameMapping policy="FROM_NAME_ID"/>
</SP>

<SP ...>
 <PrincipalNameMapping policy="FROM_ATTRIBUTE" attribute="email" />
</SP>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

44

3.1.1.4. RoleIdentifiers element

The RoleIdentifiers element defines what SAML attributes within the assertion received from
the user should be used as role identifiers within the Java EE Security Context for the user.

By default Role attribute values are converted to Java EE roles. Some IDPs send roles via a
member or memberOf attribute assertion. You can define one or more Attribute elements to
specify which SAML attributes must be converted into roles.

3.1.1.5. IDP Element

Everything in the IDP element describes the settings for the identity provider (authentication server)
the SP is communicating with.

Here are the attribute config options you can specify within the IDP element declaration.

entityID

This is the issuer ID of the IDP. This setting is REQUIRED.

signaturesRequired

If set to true, the client adapter will sign every document it sends to the IDP. Also, the client
will expect that the IDP will be signing any documents sent to it. This switch sets the default
for all request and response types, but you will see later that you have some fine grain
control over this. This setting is OPTIONAL and will default to false.

signatureAlgorithm

This is the signature algorithm that the IDP expects signed documents to use. Allowed
values are: RSA_SHA1, RSA_SHA256, RSA_SHA512, and DSA_SHA1. This setting is
OPTIONAL and defaults to RSA_SHA256.

signatureCanonicalizationMethod

This is the signature canonicalization method that the IDP expects signed documents to
use. This setting is OPTIONAL. The default value is
http://www.w3.org/2001/10/xml-exc-c14n# and should be good for most IDPs.

3.1.1.6. IDP SingleSignOnService sub element

The SingleSignOnService sub element defines the login SAML endpoint of the IDP. The client

<RoleIdentifiers>
 <Attribute name="Role"/>
 <Attribute name="member"/>
 <Attribute name="memberOf"/>
</RoleIdentifiers>

<IDP entityID="idp"
 signaturesRequired="true"
 signatureAlgorithm="RSA_SHA1"
 signatureCanonicalizationMethod="http://www.w3.org/2001/10/xml-exc-
c14n#">
...
</IDP>

CHAPTER 3. SAML

45

http://www.w3.org/2001/10/xml-exc-c14n#

adapter will send requests to the IDP formatted via the settings within this element when it wants to
login.

Here are the config attributes you can define on this element:

signRequest

Should the client sign authn requests? This setting is OPTIONAL. Defaults to whatever the
IDP signaturesRequired element value is.

validateResponseSignature

Should the client expect the IDP to sign the assertion response document sent back from an
auhtn request? This setting OPTIONAL. Defaults to whatever the IDP
signaturesRequired element value is.

requestBinding

This is the SAML binding type used for communicating with the IDP. This setting is
OPTIONAL. The default value is POST, but you can set it to REDIRECT as well.

responseBinding

SAML allows the client to request what binding type it wants authn responses to use. The
values of this can be POST or REDIRECT. This setting is OPTIONAL. The default is that the
client will not request a specific binding type for responses.

bindingUrl

This is the URL for the IDP login service that the client will send requests to. This setting is
REQUIRED.

3.1.1.7. IDP SingleLogoutService sub element

The SingleLogoutService sub element defines the logout SAML endpoint of the IDP. The client
adapter will send requests to the IDP formatted via the settings within this element when it wants to
logout.

signRequest

Should the client sign logout requests it makes to the IDP? This setting is OPTIONAL.
Defaults to whatever the IDP signaturesRequired element value is.

<SingleSignOnService signRequest="true"
 validateResponseSignature="true"
 requestBinding="post"
 bindingUrl="url"/>

<SingleLogoutService validateRequestSignature="true"
 validateResponseSignature="true"
 signRequest="true"
 signResponse="true"
 requestBinding="redirect"
 responseBinding="post"
 postBindingUrl="posturl"
 redirectBindingUrl="redirecturl">

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

46

signResponse

Should the client sign logout responses it sends to the IDP requests? This setting is
OPTIONAL. Defaults to whatever the IDP signaturesRequired element value is.

validateRequestSignature

Should the client expect signed logout request documents from the IDP? This setting is
OPTIONAL. Defaults to whatever the IDP signaturesRequired element value is.

validateResponseSignature

Should the client expect signed logout response documents from the IDP? This setting is
OPTIONAL. Defaults to whatever the IDP signaturesRequired element value is.

requestBinding

This is the SAML binding type used for communicating SAML requests to the IDP. This
setting is OPTIONAL. The default value is POST, but you can set it to REDIRECT as well.

responseBinding

This is the SAML binding type used for communicating SAML responses to the IDP. The
values of this can be POST or REDIRECT. This setting is OPTIONAL. The default value is
POST, but you can set it to REDIRECT as well.

postBindingUrl

This is the URL for the IDP’s logout service when using the POST binding. This setting is
REQUIRED if using the POST binding.

redirectBindingUrl

This is the URL for the IDP’s logout service when using the REDIRECT binding. This setting
is REQUIRED if using the REDIRECT binding.

3.1.1.8. IDP Keys subelement

The Keys sub element of IDP is only used to define the certificate or public key to use to verify
documents signed by the IDP. It is defined in the same way as the SP’s Key’s element. But again,
you only have to define one certificate or public key reference.

3.1.2. JBoss EAP Adapter

To be able to secure WAR apps deployed on JBoss EAP, you must install and configure the Red
Hat Single Sign-On SAML Adapter Subsystem.

 <IDP entityID="idp">
 ...
 <Keys>
 <Key signing="true">
 <KeyStore resource="/WEB-INF/keystore.jks"
password="store123">
 <Certificate alias="demo"/>
 </KeyStore>
 </Key>
 </Keys>
 </IDP>

CHAPTER 3. SAML

47

You then provide a keycloak config, /WEB-INF/keycloak-saml.xml file in your WAR and
change the auth-method to KEYCLOAK-SAML within web.xml. Both methods are described in this
section.

3.1.2.1. Adapter Installation

Each adapter is a separate download on the Red Hat Single Sign-On download site.

Install on JBoss EAP 6.x:

$ cd $JBOSS_HOME
$ unzip rh-sso-saml-eap6-adapter.zip

Install on JBoss EAP 7.x:

$ cd $JBOSS_HOME
$ unzip rh-sso-saml-eap7-adapter.zip

These zip files create new JBoss Modules specific to the Wildfly/JBoss EAP SAML Adapter within
your Wildfly or JBoss EAP distro.

After adding the modules, you must then enable the Red Hat Single Sign-On SAML Subsystem
within your app server’s server configuration: domain.xml or standalone.xml.

There is a CLI script that will help you modify your server configuration. Start the server and run the
script from the server’s bin directory:

$ cd $JBOSS_HOME/bin
$ jboss-cli.sh -c --file=adapter-install-saml.cli

The script will add the extension, subsystem, and optional security-domain as described below.

The keycloak security domain should be used with EJBs and other components when you need
the security context created in the secured web tier to be propagated to the EJBs (other EE
component) you are invoking. Otherwise this configuration is optional.

<server xmlns="urn:jboss:domain:1.4">

 <extensions>
 <extension module="org.keycloak.keycloak-saml-adapter-
subsystem"/>
 ...
 </extensions>

 <profile>
 <subsystem xmlns="urn:jboss:domain:keycloak-saml:1.1"/>
 ...
 </profile>

<server xmlns="urn:jboss:domain:1.4">
 <subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
...
 <security-domain name="keycloak">
 <authentication>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

48

For example, if you have a JAX-RS service that is an EJB within your WEB-INF/classes directory,
you’ll want to annotate it with the @SecurityDomain annotation as follows:

We hope to improve our integration in the future so that you don’t have to specify the
@SecurityDomain annotation when you want to propagate a keycloak security context to the EJB
tier.

3.1.2.2. Per WAR Configuration

This section describes how to secure a WAR directly by adding config and editing files within your
WAR package.

The first thing you must do is create a keycloak-saml.xml adapter config file within the WEB-INF
directory of your WAR. The format of this config file is described in the General Adapter Config
section.

Next you must set the auth-method to KEYCLOAK-SAML in web.xml. You also have to use
standard servlet security to specify role-base constraints on your URLs. Here’s an example web.xml
file:

 <login-module
code="org.keycloak.adapters.jboss.KeycloakLoginModule"
 flag="required"/>
 </authentication>
 </security-domain>
 </security-domains>

import org.jboss.ejb3.annotation.SecurityDomain;
import org.jboss.resteasy.annotations.cache.NoCache;

import javax.annotation.security.RolesAllowed;
import javax.ejb.EJB;
import javax.ejb.Stateless;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import java.util.ArrayList;
import java.util.List;

@Path("customers")
@Stateless
@SecurityDomain("keycloak")
public class CustomerService {

 @EJB
 CustomerDB db;

 @GET
 @Produces("application/json")
 @NoCache
 @RolesAllowed("db_user")
 public List<String> getCustomers() {
 return db.getCustomers();
 }
}

CHAPTER 3. SAML

49

All standard servlet settings except the auth-method setting.

3.1.2.3. Securing WARs via Red Hat Single Sign-On SAML Subsystem

You do not have to crack open a WAR to secure it with Red Hat Single Sign-On. Alternatively, you
can externally secure it via the Red Hat Single Sign-On SAML Adapter Subsystem. While you don’t
have to specify KEYCLOAK-SAML as an auth-method, you still have to define the security-
constraints in web.xml. You do not, however, have to create a WEB-INF/keycloak-

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <module-name>customer-portal</module-name>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admins</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Customers</web-resource-name>
 <url-pattern>/customers/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <login-config>
 <auth-method>KEYCLOAK-SAML</auth-method>
 <realm-name>this is ignored currently</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>
</web-app>

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

50

saml.xml file. This metadata is instead defined within the XML in your server’s domain.xml or
standalone.xml subsystem configuration section.

The secure-deployment name attribute identifies the WAR you want to secure. Its value is the
module-name defined in web.xml with .war appended. The rest of the configuration uses the
same XML syntax as keycloak-saml.xml configuration defined in General Adapter Config.

An example configuration:

<extensions>
 <extension module="org.keycloak.keycloak-saml-adapter-subsystem"/>
</extensions>

<profile>
 <subsystem xmlns="urn:jboss:domain:keycloak-saml:1.1">
 <secure-deployment name="WAR MODULE NAME.war">
 <SP entityID="APPLICATION URL">
 ...
 </SP>
 </secure-deployment>
 </subsystem>
</profile>

<subsystem xmlns="urn:jboss:domain:keycloak-saml:1.1">
 <secure-deployment name="saml-post-encryption.war">
 <SP entityID="http://localhost:8080/sales-post-enc/"
 sslPolicy="EXTERNAL"
 nameIDPolicyFormat="urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified"
 logoutPage="/logout.jsp"
 forceAuthentication="false">
 <Keys>
 <Key signing="true" encryption="true">
 <KeyStore resource="/WEB-INF/keystore.jks"
password="store123">
 <PrivateKey alias="http://localhost:8080/sales-post-enc/"
password="test123"/>
 <Certificate alias="http://localhost:8080/sales-post-enc/"/>
 </KeyStore>
 </Key>
 </Keys>
 <PrincipalNameMapping policy="FROM_NAME_ID"/>
 <RoleIdentifiers>
 <Attribute name="Role"/>
 </RoleIdentifiers>
 <IDP entityID="idp">
 <SingleSignOnService signRequest="true"
 validateResponseSignature="true"
 requestBinding="POST"
 bindingUrl="http://localhost:8080/auth/realms/saml-
demo/protocol/saml"/>

 <SingleLogoutService
 validateRequestSignature="true"
 validateResponseSignature="true"
 signRequest="true"

CHAPTER 3. SAML

51

3.1.3. Registering with an IDP

For each servlet based adapter, the endpoint you register for the assert consumer service url and
and single logout service must be the base url of your servlet application with /saml appended to it
i.e. https://example.com/contextPath/saml

3.1.4. Logout

There are multiple ways you can logout from a web application. For Java EE servlet containers, you
can call HttpServletRequest.logout(). For any other browser application, you can point the
browser at any url of your web application that has a security constraint and pass in a query
parameter GLO, i.e. http://myapp?GLO=true. This will log you out if you have an SSO session
with your browser.

3.1.5. Obtaining Assertion Attributes

After a successful SAML login, your application code may want to obtain attribute values passed
with the SAML assertion. HttpServletRequest.getUserPrincipal() returns a Principal
object that you can typecast into a Red Hat Single Sign-On specific class called
org.keycloak.adapters.saml.SamlPrincipal. This object allows you to look at the raw
assertion and also has convenience functions to look up attribute values.

 signResponse="true"
 requestBinding="POST"
 responseBinding="POST"
 postBindingUrl="http://localhost:8080/auth/realms/saml-
demo/protocol/saml"
 redirectBindingUrl="http://localhost:8080/auth/realms/saml-
demo/protocol/saml"/>
 <Keys>
 <Key signing="true" >
 <KeyStore resource="/WEB-INF/keystore.jks"
password="store123">
 <Certificate alias="saml-demo"/>
 </KeyStore>
 </Key>
 </Keys>
 </IDP>
 </SP>
 </secure-deployment>
</subsystem>

package org.keycloak.adapters.saml;

public class SamlPrincipal implements Serializable, Principal {
 /**
 * Get full saml assertion
 *
 * @return
 */
 public AssertionType getAssertion() {
 ...
 }

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

52

 /**
 * Get SAML subject sent in assertion
 *
 * @return
 */
 public String getSamlSubject() {
 ...
 }

 /**
 * Subject nameID format
 *
 * @return
 */
 public String getNameIDFormat() {
 ...
 }

 @Override
 public String getName() {
 ...
 }

 /**
 * Convenience function that gets Attribute value by attribute name
 *
 * @param name
 * @return
 */
 public List<String> getAttributes(String name) {
 ...

 }

 /**
 * Convenience function that gets Attribute value by attribute
friendly name
 *
 * @param friendlyName
 * @return
 */
 public List<String> getFriendlyAttributes(String friendlyName) {
 ...
 }

 /**
 * Convenience function that gets first value of an attribute by
attribute name
 *
 * @param name
 * @return
 */
 public String getAttribute(String name) {
 ...
 }

CHAPTER 3. SAML

53

3.1.6. Error Handling

Red Hat Single Sign-On has some error handling facilities for servlet based client adapters. When
an error is encountered in authentication, the client adapter will call
HttpServletResponse.sendError(). You can set up an error-page within your web.xml
file to handle the error however you want. The client adapter may throw 400, 401, 403, and 500
errors.

The client adapter also sets an HttpServletRequest attribute that you can retrieve. The attribute
name is org.keycloak.adapters.spi.AuthenticationError. Typecast this object to:
org.keycloak.adapters.saml.SamlAuthenticationError. This class can tell you exactly
what happened. If this attribute is not set, then the adapter was not responsible for the error code.

 /**
 * Convenience function that gets first value of an attribute by
attribute name
 *
 *
 * @param friendlyName
 * @return
 */
 public String getFriendlyAttribute(String friendlyName) {
 ...
 }

 /**
 * Get set of all assertion attribute names
 *
 * @return
 */
 public Set<String> getAttributeNames() {
 ...
 }

 /**
 * Get set of all assertion friendly attribute names
 *
 * @return
 */
 public Set<String> getFriendlyNames() {
 ...
 }
}

<error-page>
 <error-code>404</error-code>
 <location>/ErrorHandler</location>
</error-page>

public class SamlAuthenticationError implements AuthenticationError {
 public static enum Reason {
 EXTRACTION_FAILURE,
 INVALID_SIGNATURE,
 ERROR_STATUS
 }

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

54

3.1.7. Troubleshooting

The best way to troubleshoot some problems is to turn on debugging for saml in both the client
adapter and the Red Hat Single Sign-On server. To do this turn on debugging int the
org.keycloak.saml package to debug in your log4j or other logging framework. Turning this on
allows you to see the SAML requests and response documents being sent to and from the server.

3.2. MOD_AUTH_MELLON APACHE HTTPD MODULE

The mod_auth_mellon is an Apache HTTPD plugin for SAML. If your language/environment
supports using Apache HTTPD as a proxy, then you can use mod_auth_mellon to secure your web
application with SAML. Configuration of this adapter is beyond the scope of this document. Please
see the mod_auth_mellon Github repo for more details on configuration.

To configure mod_auth_mellon you’ll need

IDP entity descriptor XML file. This describes the connection to Red Hat Single Sign-On or
another SAML IDP

SP entity descriptor XML file. This describes the SAML connections and config for the
application you are securing.

Private key PEM file. This is a text file that defines the private key the application will use to sign
documents. It is in the PEM format

Certificate PEM file. This is a text file that defines the certificate for your application.

mod_auth_mellon specific Apache HTTPD module config.

If you have already defined and registered the client application within a realm on the Red Hat
Single Sign-On application server, Red Hat Single Sign-On can generate all the files you need
except the Apache HTTPD module config. Go to the Installation tab of your SAML client and
select the Mod Auth Mellon files option.

mod_auth_mellon config download

 public Reason getReason() {
 return reason;
 }
 public StatusResponseType getStatus() {
 return status;
 }
}

CHAPTER 3. SAML

55

https://github.com/UNINETT/mod_auth_mellon

Click the Download button and you will download a zip file that contains the XML descriptor and
pem files you need.

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

56

CHAPTER 4. CLIENT REGISTRATION

In order for an application or service to utilize Red Hat Single Sign-On it has to register a client in
Red Hat Single Sign-On. An admin can do this through the admin console (or admin REST
endpoints), but clients can also register themselves through the Red Hat Single Sign-On client
registration service.

The Client Registration Service provides built-in support for Red Hat Single Sign-On Client
Representations, OpenID Connect Client Meta Data and SAML Entity Descriptors. The Client
Registration Service endpoint is /realms/<realm>/clients-registrations/<provider>.

The built-in supported providers are:

default - Red Hat Single Sign-On Client Representation (JSON)

install - Red Hat Single Sign-On Adapter Configuration (JSON)

openid-connect - OpenID Connect Client Metadata Description (JSON)

saml2-entity-descriptor - SAML Entity Descriptor (XML)

The following sections will describe how to use the different providers.

4.1. AUTHENTICATION

To invoke the Client Registration Services you need a token. The token can be a bearer token, an
initial access token or a registration access token.

4.1.1. Bearer Token

The bearer token can be issued on behalf of a user or a Service Account. The following permissions
are required to invoke the endpoints (see Server Administration Guide for more details):

create-client or manage-client - To create clients

view-client or manage-client - To view clients

manage-client - To update or delete client

If you are using a bearer token to create clients it’s recommend to use a token from a Service
Account with only the create-client role (see Server Administration Guide for more details).

4.1.2. Initial Access Token

The recommended approach to registering new clients is by using initial access tokens. An initial
access token can only be used to create clients and has a configurable expiration as well as a
configurable limit on how many clients can be created.

An initial access token can be created through the admin console. To create a new initial access
token first select the realm in the admin console, then click on Realm Settings in the menu on
the left, followed by Initial Access Tokens in the tabs displayed in the page.

You will now be able to see any existing initial access tokens. If you have access you can delete
tokens that are no longer required. You can only retrieve the value of the token when you are
creating it. To create a new token click on Create. You can now optionally add how long the token
should be valid, also how many clients can be created using the token. After you click on Save the

CHAPTER 4. CLIENT REGISTRATION

57

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-administration-guide/
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-administration-guide/

token value is displayed.

It is important that you copy/paste this token now as you won’t be able to retrieve it later. If you
forget to copy/paste it, then delete the token and create another one.

The token value is used as a standard bearer token when invoking the Client Registration Services,
by adding it to the Authorization header in the request. For example:

Authorization: bearer eyJhbGciOiJSUz...

4.1.3. Registration Access Token

When you create a client through the Client Registration Service the response will include a
registration access token. The registration access token provides access to retrieve the client
configuration later, but also to update or delete the client. The registration access token is included
with the request in the same way as a bearer token or initial access token. Registration access
tokens are only valid once when it’s used the response will include a new token.

If a client was created outside of the Client Registration Service it won’t have a registration access
token associated with it. You can create one through the admin console. This can also be useful if
you loose the token for a particular client. To create a new token find the client in the admin console
and click on Credentials. Then click on Generate registration access token.

4.2. RED HAT SINGLE SIGN-ON REPRESENTATIONS

The default client registration provider can be used to create, retrieve, update and delete a client.
It uses Red Hat Single Sign-On Client Representation format which provides support for configuring
clients exactly as they can be configured through the admin console, including for example
configuring protocol mappers.

To create a client create a Client Representation (JSON) then do a HTTP POST to
/realms/<realm>/clients-registrations/default.

It will return a Client Representation that also includes the registration access token. You should
save the registration access token somewhere if you want to retrieve the config, update or delete the
client later.

To retrieve the Client Representation then do a HTTP GET to /realms/<realm>/clients-
registrations/default/<client id>.

It will also return a new registration access token.

To update the Client Representation then do a HTTP PUT to with the updated Client Representation
to: /realms/<realm>/clients-registrations/default/<client id>.

It will also return a new registration access token.

To delete the Client Representation then do a HTTP DELETE to: /realms/<realm>/clients-
registrations/default/<client id>

4.3. RED HAT SINGLE SIGN-ON ADAPTER CONFIGURATION

The installation client registration provider can be used to retrieve the adapter configuration for
a client. In addition to token authentication you can also authenticate with client credentials using
HTTP basic authentication. To do this include the following header in the request:

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

58

Authorization: basic BASE64(client-id + ':' + client-secret)

To retrieve the Adapter Configuration then do a HTTP GET to /realms/<realm>/clients-
registrations/install/<client id>.

No authentication is required for public clients. This means that for the JavaScript adapter you can
load the client configuration directly from Red Hat Single Sign-On using the above URL.

4.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION

Red Hat Single Sign-On implements OpenID Connect Dynamic Client Registration, which extends
OAuth 2.0 Dynamic Client Registration Protocol and OAuth 2.0 Dynamic Client Registration
Management Protocol.

The endpoint to use these specifications to register clients in Red Hat Single Sign-On is
/realms/<realm>/clients-registrations/openid-connect[/<client id>].

This endpoints can also be found in the OpenID Connect Discovery endpoint for the realm,
/realms/<realm>/.well-known/openid-configuration.

4.5. SAML ENTITY DESCRIPTORS

The SAML Entity Descriptor endpoint only supports using SAML v2 Entity Descriptors to create
clients. It doesn’t support retrieving, updating or deleting clients. For those operations the Red Hat
Single Sign-On representation endpoints should be used. When creating a client a Red Hat Single
Sign-On Client Representation is returned with details about the created client, including a
registration access token.

To create a client do a HTTP POST with the SAML Entity Descriptor to
/realms/<realm>/clients-registrations/saml2-entity-descriptor.

4.6. EXAMPLE USING CURL

The following example creates a client with the clientId myclient using CURL. You need to
replace eyJhbGciOiJSUz… ​ with a proper initial access token or bearer token.

4.7. EXAMPLE USING JAVA CLIENT REGISTRATION API

The Client Registration Java API makes it easy to use the Client Registration Service using Java. To
use include the dependency org.keycloak:keycloak-client-registration-
api:>VERSION< from Maven.

For full instructions on using the Client Registration refer to the JavaDocs. Below is an example of
creating a client. You need to replace eyJhbGciOiJSUz… ​ with a proper initial access token or
bearer token.

curl -X POST \
 -d '{ "clientId": "myclient" }' \
 -H "Content-Type:application/json" \
 -H "Authorization: bearer eyJhbGciOiJSUz..." \
 http://localhost:8080/auth/realms/master/clients-
registrations/default

CHAPTER 4. CLIENT REGISTRATION

59

https://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7592

String token = "eyJhbGciOiJSUz...";

ClientRepresentation client = new ClientRepresentation();
client.setClientId(CLIENT_ID);

ClientRegistration reg =
ClientRegistration.create().url("http://localhost:8080/auth/realms/myreal
m/clients").build();
reg.auth(Auth.token(token));

client = reg.create(client);

String registrationAccessToken = client.getRegistrationAccessToken();

Red Hat Single Sign-On 7.0 Securing Applications and Services Guide

60

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. WHAT ARE CLIENT ADAPTERS?
	1.2. SUPPORTED PLATFORMS
	1.2.1. OpenID Connect
	1.2.1.1. Java
	1.2.1.2. Apache Cordova

	1.2.2. SAML
	1.2.2.1. Java
	1.2.2.2. Apache HTTP Server

	1.3. SUPPORTED PROTOCOLS
	1.3.1. OpenID Connect
	1.3.2. SAML 2.0
	1.3.3. OpenID Connect vs. SAML

	CHAPTER 2. OPENID CONNECT
	2.1. JAVA ADAPTERS
	2.1.1. Java Adapter Config
	2.1.2. JBoss EAP Adapter
	2.1.2.1. Adapter Installation
	2.1.2.2. Required Per WAR Configuration
	2.1.2.3. Securing WARs via Adapter Subsystem

	2.1.3. JBoss Fuse Adapter
	2.1.3.1. How to secure your web applications inside Fuse
	2.1.3.2. Secure Classic WAR application
	2.1.3.3. Secure Servlet deployed as OSGI service
	2.1.3.4. Apache Camel Application
	2.1.3.5. Secure Apache CXF Endpoint on separate Jetty
	2.1.3.6. Secure Apache CXF Endpoint on default Jetty Engine
	2.1.3.7. Secure Fuse Admin Services

	2.1.4. Error Handling
	2.1.5. Logout
	2.1.6. Multi Tenancy
	2.1.7. Application Clustering
	2.1.7.1. Stateless token store
	2.1.7.2. Relative URI optimization
	2.1.7.3. Admin URL configuration
	2.1.7.4. Registration of application nodes
	2.1.7.5. Refresh token in each request

	2.2. JAVASCRIPT ADAPTER
	2.2.1. Session status iframe
	2.2.2. Implicit and Hybrid Flow
	2.2.3. Older browsers
	2.2.4. JavaScript Adapter reference
	2.2.4.1. Constructor
	2.2.4.2. Properties
	2.2.4.3. Methods
	2.2.4.4. Callback Events

	2.3. OTHER OPENID CONNECT LIBRARIES
	2.3.1. Endpoints
	2.3.1.1. Authorization Endpoint
	2.3.1.2. Token Endpoint
	2.3.1.3. Userinfo Endpoint
	2.3.1.4. Logout Endpoint
	2.3.1.5. Certificate Endpoint
	2.3.1.6. Introspection Endpoint
	2.3.1.7. Dynamic Client Registration Endpoint

	2.3.2. Flows
	2.3.2.1. Authorization Code
	2.3.2.2. Implicit
	2.3.2.3. Resource Owner Password Credentials
	2.3.2.4. Client Credentials

	2.3.3. Redirect URIs

	CHAPTER 3. SAML
	3.1. JAVA ADAPTERS
	3.1.1. General Adapter Config
	3.1.1.1. SP Element
	3.1.1.2. SP Keys and Key elements
	3.1.1.3. SP PrincipalNameMapping element
	3.1.1.4. RoleIdentifiers element
	3.1.1.5. IDP Element
	3.1.1.6. IDP SingleSignOnService sub element
	3.1.1.7. IDP SingleLogoutService sub element
	3.1.1.8. IDP Keys subelement

	3.1.2. JBoss EAP Adapter
	3.1.2.1. Adapter Installation
	3.1.2.2. Per WAR Configuration
	3.1.2.3. Securing WARs via Red Hat Single Sign-On SAML Subsystem

	3.1.3. Registering with an IDP
	3.1.4. Logout
	3.1.5. Obtaining Assertion Attributes
	3.1.6. Error Handling
	3.1.7. Troubleshooting

	3.2. MOD_AUTH_MELLON APACHE HTTPD MODULE

	CHAPTER 4. CLIENT REGISTRATION
	4.1. AUTHENTICATION
	4.1.1. Bearer Token
	4.1.2. Initial Access Token
	4.1.3. Registration Access Token

	4.2. RED HAT SINGLE SIGN-ON REPRESENTATIONS
	4.3. RED HAT SINGLE SIGN-ON ADAPTER CONFIGURATION
	4.4. OPENID CONNECT DYNAMIC CLIENT REGISTRATION
	4.5. SAML ENTITY DESCRIPTORS
	4.6. EXAMPLE USING CURL
	4.7. EXAMPLE USING JAVA CLIENT REGISTRATION API

